TWI785526B - Measurement system and method for vapor chamber - Google Patents

Measurement system and method for vapor chamber Download PDF

Info

Publication number
TWI785526B
TWI785526B TW110108641A TW110108641A TWI785526B TW I785526 B TWI785526 B TW I785526B TW 110108641 A TW110108641 A TW 110108641A TW 110108641 A TW110108641 A TW 110108641A TW I785526 B TWI785526 B TW I785526B
Authority
TW
Taiwan
Prior art keywords
chamber
temperature
insulation layer
thermal
center
Prior art date
Application number
TW110108641A
Other languages
Chinese (zh)
Other versions
TW202235834A (en
Inventor
馮建忠
Original Assignee
長聖儀器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長聖儀器股份有限公司 filed Critical 長聖儀器股份有限公司
Priority to TW110108641A priority Critical patent/TWI785526B/en
Publication of TW202235834A publication Critical patent/TW202235834A/en
Application granted granted Critical
Publication of TWI785526B publication Critical patent/TWI785526B/en

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

A measurement system and method for vapor chamber is configured to measure a vapor chamber and includes a heat insulation layer, a cooler, a heater and a control device. The heat insulation layer is disposed on the upper center of the vapor chamber and covered a part area of the upper of the vapor chamber. The cooler is disposed on the upper center of the vapor chamber and covered an area of the upper of the vapor chamber other than the heat insulation layer. The heater is disposed below the bottom center of the vapor chamber. A temperature sensor is disposed on upper and bottom of the vapor chamber, and they disposed under the shadow area of the heat insulation layer. The control device is connected to the heater and the temperature sensor.

Description

均溫板測量系統與方法 Vapor chamber measurement system and method

一種測量系統與方法,特別是一種均溫板的測量系統與方法。 A measurement system and method, in particular a measurement system and method for a temperature chamber.

均溫板(Vapor Chamber,又稱導熱板)是一種能夠將局部熱源的熱能快速傳遞到大面積平板的裝置,目前廣泛應用於散熱裝置上,特別是伺服器、繪圖卡或LED等電子元件,可搭配散熱片、風扇或水套等其他設備,產生良好的散熱效果。 Vapor Chamber (also known as heat conduction plate) is a device that can quickly transfer heat energy from a local heat source to a large-area flat panel. It is currently widely used in heat dissipation devices, especially electronic components such as servers, graphics cards, or LEDs. It can be matched with other equipment such as heat sink, fan or water jacket to produce a good heat dissipation effect.

然而,均溫板的熱傳導性能則需透過測量來進行判斷和決定。請參閱圖1,圖1所繪示為習知的均溫板測量系統。習知的均溫板測量系統10是在均溫板11下方設置加熱器12,均溫板11上方則設置了散熱片13與風扇14(在某些習知技術中也會使用水套散熱)。以下對均溫板的冷卻與測量方式說明。 However, the thermal conductivity of the vapor chamber needs to be judged and determined through measurement. Please refer to FIG. 1 . FIG. 1 shows a conventional chamber measurement system. In the known vapor chamber measurement system 10, a heater 12 is arranged under the vapor chamber 11, and a heat sink 13 and a fan 14 are arranged above the vapor chamber 11 (a water jacket is also used for heat dissipation in some conventional technologies) . The cooling and measurement methods of the vapor chamber are described below.

習知的均溫板測量系統運作時,是由加熱器12對均溫板11加熱,並由風扇14運轉進行散熱,同時針對各個不同位置的測量點P1、P2、P3、P4與P5進行溫度測量,進一步與一比較材料(如銅塊)的溫度變化進行比較,以推算熱傳導效率。 When the known vapor chamber measurement system is in operation, the heater 12 heats the vapor chamber 11, and the fan 14 operates to dissipate heat. At the same time, the temperature of the measurement points P1, P2, P3, P4 and P5 at different positions is measured. The measurement is further compared with the temperature change of a comparative material (such as copper block) to calculate the heat transfer efficiency.

然而,圖1的測量系統10中是使用風扇14進行散熱,風扇14的轉速則會大幅度的影響測量結果,特別是在風扇14低轉速的狀況下,會測量出較佳的熱傳導效率,反之亦然。舉例來說,在風扇14高轉速運轉時,熱量會快速的向上傳導,導致測量點P2與測量點P3的溫度差較大,造成測量出的熱傳導效率會偏 低。反之,在風扇14低轉速運轉時,熱量向上傳導的速度較慢,而向左右傳導,使致測量點P2與測量點P3的溫度差較小,測量出的熱傳導效率就會偏高。 因此這樣的測量方式並無法穩定且精確的測量均溫板11的熱傳導效率。並且只要降低風散轉速便可得到較佳的熱傳導效率,對於均溫板11的效能測試也有作弊之嫌。 However, in the measurement system 10 of FIG. 1 , a fan 14 is used to dissipate heat, and the speed of the fan 14 will greatly affect the measurement results, especially when the fan 14 rotates at a low speed, a better heat conduction efficiency will be measured, and vice versa. The same is true. For example, when the fan 14 is running at a high speed, the heat will be rapidly transferred upwards, resulting in a large temperature difference between the measurement point P2 and the measurement point P3, resulting in a biased heat transfer efficiency. Low. Conversely, when the fan 14 is running at a low speed, the heat conducts upwards slowly and conducts to the left and right, so that the temperature difference between the measurement point P2 and the measurement point P3 is small, and the measured heat transfer efficiency will be high. Therefore, such a measurement method cannot measure the heat conduction efficiency of the chamber 11 stably and accurately. In addition, as long as the fan speed is reduced, better heat conduction efficiency can be obtained, which is also suspected of cheating in the performance test of the chamber 11 .

因此,如何解決上述問題,便是本領域具通常知識者值得去思考的。 Therefore, how to solve the above problems is worthy of consideration by those skilled in the art.

有鑑於此,本發明之目的在於提供一種均溫板測量系統與方法,克服習知均溫板測量方式的缺陷,並解決均溫板熱傳導係數難以精確的計算的技術問題。所使用的技術手段如下:一種均溫板測量系統,適於測量一均溫板,該均溫板測量系統包括:一絕熱層、一散熱器、一加熱器及一控制裝置。絕熱層設置於該均溫板上方的中央,並覆蓋該均溫板上側的一定面積。散熱器設置於該均溫板上方,並覆蓋該均溫板上側的該絕熱層以外的面積。加熱器設置於該均溫板下方的中央。溫度感測器分別設置於該均溫板的上方與下方,並且是設置在該絕熱層的投影面積的下方。控制裝置電性連接至該加熱器與該溫度感測器。 In view of this, the purpose of the present invention is to provide a chamber measurement system and method, which overcomes the defects of conventional chamber measurement methods and solves the technical problem that it is difficult to accurately calculate the chamber thermal conductivity. The technical means used are as follows: A chamber measuring system is suitable for measuring a chamber, and the chamber measuring system includes: a heat insulating layer, a radiator, a heater and a control device. The thermal insulation layer is arranged in the center above the uniform temperature plate, and covers a certain area on the upper side of the uniform temperature plate. The radiator is arranged above the temperature chamber and covers the area on the upper side of the temperature chamber other than the heat insulation layer. The heater is arranged in the center below the vapor chamber. The temperature sensors are respectively arranged above and below the temperature uniform plate, and are arranged below the projected area of the heat insulating layer. The control device is electrically connected to the heater and the temperature sensor.

上述之均溫板測量系統,其中,該散熱器為水套或風扇散熱裝置。 In the vapor chamber measurement system above, the radiator is a water jacket or fan cooling device.

上述之均溫板測量系統,其中,該絕熱層為絕熱泡棉。 In the above vapor chamber measuring system, wherein the heat insulating layer is heat insulating foam.

本發明還提供一種均溫板測量方法,包括:提供一均溫板;於該均溫板的上表面中央處設置一絕熱層,該絕熱層的面積小於該均溫板上表面的面積;於該均溫板的上表面邊緣處設置一散熱器; 以一電功率使用一加熱器從該均溫板下表面中心位置對該均溫板加熱;測量該均溫板上各處的溫度,包括:測量該均溫板下表面中心位置的溫度、該均溫板上表面中心位置的溫度、該均溫板下表面於該絕熱層投影面積邊緣處的溫度以及該均溫板上表面於該絕熱層投影面積邊緣處的溫度;及根據該均溫板的測量參數計算多個熱力學參數。 The present invention also provides a method for measuring a vapor chamber, comprising: providing a vapor chamber; setting a thermal insulation layer at the center of the upper surface of the vapor chamber, and the area of the thermal insulation layer is smaller than the area of the vapor chamber surface; A radiator is arranged at the edge of the upper surface of the vapor chamber; Using a heater with an electric power to heat the vapor chamber from the central position of the lower surface of the vapor chamber; measuring the temperature everywhere on the vapor chamber includes: measuring the temperature at the central position of the lower surface of the vapor chamber, the uniform the temperature at the center of the upper surface of the chamber, the temperature at the lower surface of the chamber at the edge of the projected area of the insulation, and the temperature at the upper surface of the chamber at the edge of the projected area of the insulation; and according to the temperature of the chamber Measured Parameters Calculates a number of thermodynamic parameters.

上述之均溫板測量方法,其中,該散熱器為水套或風扇散熱裝置。 In the above vapor chamber measurement method, wherein the radiator is a water jacket or a fan cooling device.

上述之均溫板測量方法,其中,該絕熱層為絕熱泡棉。 The above-mentioned temperature chamber measurement method, wherein the heat insulation layer is heat insulation foam.

上述之均溫板測量方法,其中,該熱力學參數包括水平方向的熱傳導係數與垂直的熱傳導係數。 In the above vapor chamber measurement method, wherein the thermodynamic parameters include the thermal conductivity in the horizontal direction and the thermal conductivity in the vertical direction.

上述之均溫板測量方法,其中,該熱力學參數還包括水平方向的熱阻與垂直方向的熱阻。 In the above vapor chamber measurement method, the thermodynamic parameters further include thermal resistance in the horizontal direction and thermal resistance in the vertical direction.

上述之均溫板測量方法,其中,該熱力學參數還包括垂直方向之熱阻抗、水平方向之熱阻抗與熱阻抗和。 In the above-mentioned temperature chamber measurement method, the thermodynamic parameters further include vertical thermal impedance, horizontal thermal impedance, and thermal impedance sum.

相較於習知技術多以溫度差比對方法。本案是採用傅立葉定律來計算熱傳導係數,更能夠對應具有不同熱源尺寸、熱通量、均溫板尺寸、散熱方式的模型計算出均溫板的熱傳導係數,也能夠更精確地計算出均溫板的熱傳導係數。 Compared with the conventional technology, the temperature difference comparison method is more used. In this case, Fourier's law is used to calculate the heat conduction coefficient, which is more able to calculate the heat conduction coefficient of the chamber corresponding to models with different heat source sizes, heat fluxes, chamber sizes, and heat dissipation methods, and can also calculate the chamber more accurately. The thermal conductivity coefficient.

10:均溫板測量系統 10: Vapor plate measurement system

11:均溫板 11: vapor chamber

12:加熱器 12: heater

13:散熱板 13: cooling plate

14:風扇 14: fan

100:均溫板測量系統 100: Vapor plate measurement system

110:均溫板 110: vapor chamber

120:加熱器 120: heater

130:絕熱層 130: insulation layer

140:散熱器 140: Radiator

150:多個溫度感測器 150: multiple temperature sensors

160:控制裝置 160: Control device

Pu1、Pd1、Pu2、Pd2、Pu3、Pd3、Pu4、Pd4、Puc、Pdc:測量點 Pu1, Pd1, Pu2, Pd2, Pu3, Pd3, Pu4, Pd4, Puc, Pdc: measuring points

Q:電功率 Q: Electric power

Tu1、Td1、Tu2、Td2、Tu3、Td3、Tu4、Td4、Tuc、Tdc:溫度 Tu1, Td1, Tu2, Td2, Tu3, Td3, Tu4, Td4, Tuc, Tdc: temperature

Tua:上表面周圍的平均溫度 Tua: average temperature around the upper surface

Tda:下表面周圍的平均溫度 Tda: average temperature around the lower surface

t:均溫板厚度 t: thickness of vapor chamber

D1:加熱器特徵直徑 D1: heater characteristic diameter

D2:周圍溫度點特徵直徑 D2: characteristic diameter of ambient temperature point

A1:加熱器面積 A1: heater area

A2:周圍溫度點虛擬面積 A2: Virtual area of surrounding temperature points

K:熱傳導係數 K: Thermal conductivity coefficient

A:傳導面積 A: Conduction area

Figure 110108641-A0305-02-0012-21
T:溫度差
Figure 110108641-A0305-02-0012-21
T : temperature difference

Figure 110108641-A0305-02-0012-22
X:位置差
Figure 110108641-A0305-02-0012-22
X : Position difference

Kz:垂直方向的熱傳導係數 Kz: thermal conductivity in the vertical direction

Kxy:水平方向的熱傳導係數 Kxy: thermal conductivity in the horizontal direction

Rz:垂直方向的熱阻 Rz: thermal resistance in the vertical direction

Rxy:水平方向的熱阻 Rxy: thermal resistance in the horizontal direction

Iz:垂直方向的熱阻抗 Iz: Thermal impedance in the vertical direction

Ixy:水平方向的熱阻抗 Ixy: thermal impedance in the horizontal direction

Ixyz:熱阻抗和 Ixyz: thermal impedance and

圖1所繪示為習知的均溫板測量系統。 Figure 1 shows a conventional chamber measurement system.

圖2所繪示為本發明之均溫板測量系統之架構圖。 FIG. 2 is a structural diagram of the vapor chamber measurement system of the present invention.

圖3A至圖3C所繪示為測量位置的示意圖。 3A to 3C are schematic diagrams of measurement positions.

請參閱圖2,圖2所繪示為本發明之均溫板測量系統之架構圖。本發明之均溫板測量系統100適於測量一均溫板110,均溫板測量系統100包括了一絕熱層130、一散熱器140、一加熱器120、多個溫度感測器150與一控制裝置160。絕熱層130設置於均溫板110上方的中央,並覆蓋均溫板110上側的一定面積。在本實施例中,絕熱層130是一種絕熱泡棉。 Please refer to FIG. 2 . FIG. 2 is a structural diagram of the chamber measuring system of the present invention. The vapor chamber measurement system 100 of the present invention is suitable for measuring a vapor chamber 110, and the chamber temperature measurement system 100 includes a heat insulating layer 130, a radiator 140, a heater 120, a plurality of temperature sensors 150 and a control device 160 . The thermal insulation layer 130 is disposed at the center above the temperature chamber 110 and covers a certain area on the upper side of the temperature chamber 110 . In this embodiment, the heat insulating layer 130 is a kind of heat insulating foam.

散熱器140設置於均溫板110上方,並覆蓋均溫板110上側的絕熱層130以外的面積。在本實施例中,散熱器140是一種水套或風扇,其中水套一種液體管路,可讓冷卻液體在水套中流動,帶走均溫板110上的熱能,達到散熱的目的。此外,散熱器140是設置於均溫板110的邊緣,從邊緣處對均溫板110進行散熱。加熱器150設置於均溫板110下方的中央,並且緊貼均溫板110而設置。加熱器150可為均溫板110提供局部的熱能。 The radiator 140 is disposed above the chamber 110 and covers an area on the upper side of the chamber 110 other than the heat insulating layer 130 . In this embodiment, the radiator 140 is a water jacket or a fan, wherein the water jacket is a kind of liquid pipeline, which allows the cooling liquid to flow in the water jacket to take away the heat energy on the vapor chamber 110 to achieve the purpose of heat dissipation. In addition, the radiator 140 is disposed on the edge of the temperature chamber 110 to dissipate heat from the edge of the temperature chamber 110 . The heater 150 is disposed at the center below the vapor chamber 110 and closely attached to the chamber 110 . The heater 150 can provide local heat energy to the vapor chamber 110 .

多個溫度感測器150,分別設置於均溫板110的上方與下方,並且是設置在絕熱層130的投影面積的下方,即是溫度感測器150必須設置在絕熱層130的覆蓋範圍內。 A plurality of temperature sensors 150 are respectively arranged above and below the temperature equalizing plate 110, and are arranged below the projected area of the heat insulating layer 130, that is, the temperature sensors 150 must be arranged within the coverage of the heat insulating layer 130 .

控制裝置160電性連接至加熱器120與溫度感測器150。在本實施例中,控制裝置160是一種具有顯示螢幕與操作介面的電子裝置,如個人電腦。因此控制裝置160適於輸入一訊號,以控制加熱器120的加熱功率。並且控制裝置160還能從溫度感測器150接收溫度感測訊號,並顯示於顯示螢幕上。 The control device 160 is electrically connected to the heater 120 and the temperature sensor 150 . In this embodiment, the control device 160 is an electronic device with a display screen and an operation interface, such as a personal computer. Therefore, the control device 160 is suitable for inputting a signal to control the heating power of the heater 120 . Moreover, the control device 160 can also receive a temperature sensing signal from the temperature sensor 150 and display it on the display screen.

請參閱圖3A至圖3C,圖3A至圖3C所繪示為測量位置的示意圖。其中圖3A為均溫板110的側截面示意圖,圖3B為均溫板110的俯視圖,圖3C則為均溫板110的仰視圖。均溫板110上有多個測量點Pu1、Pd1、Pu2、Pd2、Pu3、Pd3、Pu4、Pd4、Puc與Pdc,同時也是溫度感測器150設置的位置。因此,在本實施例中,溫度感測器150共有10個。本領域具通常知識者應可得知,以測量均溫 板各處的溫度為目的,可根據均溫板的尺寸增加或減少測量點與溫度感測器的數量,並不限制於10個。 Please refer to FIG. 3A to FIG. 3C . FIG. 3A to FIG. 3C are schematic diagrams of measurement positions. 3A is a schematic side sectional view of the temperature chamber 110 , FIG. 3B is a top view of the temperature chamber 110 , and FIG. 3C is a bottom view of the temperature chamber 110 . There are multiple measurement points Pu1, Pd1, Pu2, Pd2, Pu3, Pd3, Pu4, Pd4, Puc and Pdc on the temperature chamber 110, which are also the positions where the temperature sensor 150 is set. Therefore, in this embodiment, there are ten temperature sensors 150 in total. Those skilled in the art should know that to measure the average temperature For the purpose of controlling the temperature of each part of the plate, the number of measuring points and temperature sensors can be increased or decreased according to the size of the temperature chamber, and the number is not limited to 10.

其中,1個溫度感測器150設置於加熱器120與均溫板110之間,即是設置於測量點Pdc。1個溫度感測器150設置於絕熱層130與均溫板110之間的中央位置,即是測量點Puc。4個設置於均溫板110上表面絕熱層投影面積的邊緣,即是測量點Pu1、Pu2、Pu3與Pu4。4個設置於均溫板110下表面絕熱層投影面積的邊緣,即是測量點Pd1、Pd2、Pd3與Pd4。因此,測量點共有10個,溫度感測器150也對應設置10個。 Wherein, one temperature sensor 150 is arranged between the heater 120 and the temperature chamber 110 , that is, it is arranged at the measuring point Pdc. One temperature sensor 150 is set at the central position between the heat insulating layer 130 and the temperature chamber 110 , which is the measurement point Puc. The 4 edges set on the projected area of the heat insulation layer on the upper surface of the chamber 110 are the measurement points Pu1, Pu2, Pu3 and Pu4. The 4 edges set on the projected area of the heat insulation layer on the lower surface of the chamber 110 are the measurement points Pd1, Pd2, Pd3 and Pd4. Therefore, there are 10 measuring points in total, and 10 temperature sensors 150 are correspondingly provided.

其中,均溫板110上側表面的測量點Pu1、Pu2、Pu3與Pu4是分別設置於絕熱層130投影面積的四個角落(如圖3B所示)。而均溫板110下側表面的測量點Pd1、Pd2、Pd3與Pd4也是設置於絕熱層130投影面積的四個角落(如圖3C所示)。 Wherein, the measurement points Pu1, Pu2, Pu3 and Pu4 on the upper surface of the temperature chamber 110 are respectively set at the four corners of the projected area of the thermal insulation layer 130 (as shown in FIG. 3B ). The measurement points Pd1 , Pd2 , Pd3 and Pd4 on the lower surface of the temperature chamber 110 are also set at four corners of the projected area of the heat insulating layer 130 (as shown in FIG. 3C ).

接下來,均溫板110的厚度為t,對加熱器120的輸入電功率為Q,加熱器120的特徵直徑為D1,周圍溫度點特徵直徑為D2,加熱器120的面積為A1,周圍溫度點虛擬面積為A2(由Pu1、Pu2、Pu3與Pu4或Pd1、Pd2、Pd3與Pd4連線構成的面積) Next, the thickness of the vapor chamber 110 is t, the input power to the heater 120 is Q, the characteristic diameter of the heater 120 is D1, the characteristic diameter of the surrounding temperature point is D2, the area of the heater 120 is A1, and the surrounding temperature point The virtual area is A2 (the area formed by the connecting lines of Pu1, Pu2, Pu3 and Pu4 or Pd1, Pd2, Pd3 and Pd4)

溫度感測器150可從各個感測點側得溫度,測量點Pu1所測得的溫度為Tu1;測量點Pu2所測得的溫度為Tu2;測量點Pu3所測得的溫度為Tu3;測量點Pu4所測得的溫度為Tu4;測量點Pd1所測得的溫度為Td1;測量點Pd2所測得的溫度為Td2;測量點Pd3所測得的溫度為Td3;測量點Pd4所測得的溫度為Td4;測量點Puc所測得的溫度為Tuc,為均溫板110上表面之中心點溫度;測量點Pdc所測得的溫度為Tdc,為均溫板110下表面之中心點溫度。並且可以經由以下方式計算上表面周圍的平均溫度Tua與下表面周圍的平均溫度Tda:

Figure 110108641-A0305-02-0007-2
Figure 110108641-A0305-02-0008-17
The temperature sensor 150 can obtain the temperature from each sensing point side, the temperature measured at the measuring point Pu1 is Tu1; the temperature measured at the measuring point Pu2 is Tu2; the temperature measured at the measuring point Pu3 is Tu3; The temperature measured by Pu4 is Tu4; the temperature measured by measuring point Pd1 is Td1; the temperature measured by measuring point Pd2 is Td2; the temperature measured by measuring point Pd3 is Td3; the temperature measured by measuring point Pd4 is Td4; the temperature measured at the measurement point Puc is Tuc, which is the central temperature of the upper surface of the chamber 110; the temperature measured at the measurement point Pdc is Tdc, which is the central temperature of the lower surface of the chamber 110. And the average temperature Tua around the upper surface and the average temperature Tda around the lower surface can be calculated in the following way:
Figure 110108641-A0305-02-0007-2
Figure 110108641-A0305-02-0008-17

接著,便可以利用傅立葉定律(Fourier Law,如下所示)計算熱傳導係數K。其中,Q為輸入功率、A為傳導面積、

Figure 110108641-A0305-02-0008-19
T為溫度差、
Figure 110108641-A0305-02-0008-20
X為位置差。如此一來,便可計算垂直方向Z與水平方向XY方向的熱傳導係數Kz、Kxy。 Then, the thermal conductivity K can be calculated using Fourier Law (Fourier Law, shown below). Among them, Q is the input power, A is the conduction area,
Figure 110108641-A0305-02-0008-19
T is the temperature difference,
Figure 110108641-A0305-02-0008-20
X is the position difference. In this way, the heat conduction coefficients Kz and Kxy in the vertical direction Z and the horizontal direction XY can be calculated.

Figure 110108641-A0305-02-0008-4
Figure 110108641-A0305-02-0008-4

垂直方向Z的計算方式如下:首先,將上述實施例之參數帶入傅立葉定律,即為:

Figure 110108641-A0305-02-0008-18
The calculation method of Z in the vertical direction is as follows: First, the parameters of the above-mentioned embodiment are brought into Fourier's law, which is:
Figure 110108641-A0305-02-0008-18

進一步轉換則為:

Figure 110108641-A0305-02-0008-6
Further conversion is:
Figure 110108641-A0305-02-0008-6

其中,Q為控制裝置160對加熱器120的輸入功率,A1為加熱器120的面積,t為均溫板110的厚度,均溫板110下表面之中心點溫度Tdc與均溫板110上表面之中心點溫度Tuc則由溫度感測器150測得,故參數均為已知數,便可計算出垂直方向的熱傳導係數Kz。 Wherein, Q is the input power of the control device 160 to the heater 120, A1 is the area of the heater 120, t is the thickness of the vapor chamber 110, the temperature Tdc of the center point of the lower surface of the vapor chamber 110 is the same as that of the upper surface of the vapor chamber 110 The central point temperature Tuc is measured by the temperature sensor 150, so the parameters are all known, and the thermal conductivity Kz in the vertical direction can be calculated.

進一步的,還可透過以下方式計算垂直方向的熱阻Rz(Thermal Resistance)與熱阻抗Iz(Thermal Impedance):

Figure 110108641-A0305-02-0008-7
Further, the vertical thermal resistance Rz (Thermal Resistance) and thermal impedance Iz (Thermal Impedance) can also be calculated in the following way:
Figure 110108641-A0305-02-0008-7

而水平方向的熱傳導係數Kxv計算方式如下:

Figure 110108641-A0305-02-0008-8
The calculation method of the thermal conductivity Kxv in the horizontal direction is as follows:
Figure 110108641-A0305-02-0008-8

進一步轉換則為:

Figure 110108641-A0305-02-0008-9
Further conversion is:
Figure 110108641-A0305-02-0008-9

其中,Q為控制裝置160對加熱器120的輸入功率,A2為測量點周圍的虛擬面積,t為均溫板110的厚度,均溫板110上表面之中心點溫度Tuc則由溫度感測器150測得,均溫板110上表面的週圍平均溫度Tua則可由溫度感測器150測量週圍溫度Tu1、Tu2、Tu3與Tu4後計算得出,故這些參數均為已知數,便可計算出水平方向的熱傳導係數Kxy。 Among them, Q is the input power of the control device 160 to the heater 120, A2 is the virtual area around the measurement point, t is the thickness of the chamber 110, and the temperature Tuc of the center point on the upper surface of the chamber 110 is determined by the temperature sensor 150, the average ambient temperature Tua on the upper surface of the temperature chamber 110 can be calculated by measuring the ambient temperatures Tu1, Tu2, Tu3 and Tu4 by the temperature sensor 150, so these parameters are known and can be calculated The thermal conductivity Kxy in the horizontal direction.

可透過以下方式計算計算出水平方向熱阻Rxy與熱阻抗Ixy:

Figure 110108641-A0305-02-0009-10
The horizontal thermal resistance Rxy and thermal impedance Ixy can be calculated by the following method:
Figure 110108641-A0305-02-0009-10

進一步的將垂直方向的熱阻抗Iz與水平方向的熱阻抗Ixy相加,便可得到xyz方向的熱阻抗和Ixyz,如下:

Figure 110108641-A0305-02-0009-11
Further add the thermal impedance Iz in the vertical direction and the thermal impedance Ixy in the horizontal direction to obtain the thermal impedance and Ixyz in the xyz direction, as follows:
Figure 110108641-A0305-02-0009-11

綜上所述,本發明之均溫板測量方法包括以下步驟,首先,提供一均溫板110。在均溫板110的上表面中央處設置一絕熱層130,絕熱層130的面積小於均溫板110的上表面面積。在均溫板110上表面的邊緣處設置散熱器140。 In summary, the temperature chamber measurement method of the present invention includes the following steps. First, a temperature chamber 110 is provided. A heat insulating layer 130 is provided at the center of the upper surface of the temperature chamber 110 , and the area of the heat insulating layer 130 is smaller than the area of the upper surface of the temperature chamber 110 . A radiator 140 is provided at the edge of the upper surface of the chamber 110 .

之後,以一電功率使用加熱器120從均溫板110下表面中心位置對均溫板110加熱。接下來,測量均溫板110下表面中心位置的溫度、均溫板110上表面中心位置的溫度、均溫板110下表面於絕熱層130投影面積邊緣處的溫度以及均溫板110上表面於絕熱層130投影面積邊緣處的溫度。有了以上測量參數,便可計算計算多個熱力學參數。其中,熱力學參數包括了水平方向的熱傳導係數、垂直的熱傳導係數、水平方向的熱阻、垂直方向的熱阻、垂直方向之熱阻抗、水平方向之熱阻抗與熱阻抗和。這些的熱力學參數的具體計算方式如下: 以電功率Q、加熱器120的面積A1、均溫板110的厚度t、均溫板110下表面中心位置至均溫板110上表面中心位置的溫度差(Tdc減去Tuc)作為參數,帶入以下公式,求出垂直方向的導熱係數。 Afterwards, the heater 120 is used to heat the vapor chamber 110 from the center of the lower surface of the chamber 110 with an electric power. Next, measure the temperature at the center of the lower surface of the chamber 110, the temperature at the center of the upper surface of the chamber 110, the temperature of the lower surface of the chamber 110 at the edge of the projected area of the heat insulating layer 130, and the temperature of the upper surface of the chamber 110 at the edge of the projected area. The temperature at the edge of the projected area of the thermal insulation layer 130. With the above measured parameters, multiple thermodynamic parameters can be calculated. Among them, the thermodynamic parameters include horizontal thermal conductivity, vertical thermal conductivity, horizontal thermal resistance, vertical thermal resistance, vertical thermal impedance, horizontal thermal impedance and thermal impedance sum. The specific calculation method of these thermodynamic parameters is as follows: Taking the electric power Q, the area A1 of the heater 120, the thickness t of the vapor chamber 110, and the temperature difference from the center of the lower surface of the vapor chamber 110 to the center of the upper surface of the vapor chamber 110 (Tdc minus Tuc) as parameters, the input Calculate the thermal conductivity in the vertical direction with the following formula.

Figure 110108641-A0305-02-0010-12
Figure 110108641-A0305-02-0010-12

以電功率Q、加熱器120的特徵直徑D1、周圍溫度點特徵直徑D2、均溫板110上側中心位置至週圍位置的平均溫度差(Tuc減去Tua)以及均溫板110的厚度t,帶入以下公式,求出水平方向的導熱係數。 Taking the electric power Q, the characteristic diameter D1 of the heater 120, the characteristic diameter D2 of the surrounding temperature point, the average temperature difference (Tuc minus Tua) from the upper center position of the temperature chamber 110 to the surrounding position, and the thickness t of the temperature chamber 110, into The following formula finds the thermal conductivity in the horizontal direction.

Figure 110108641-A0305-02-0010-13
Figure 110108641-A0305-02-0010-13

透過以下方式計算垂直方向的熱阻Rz與熱阻抗Iz:

Figure 110108641-A0305-02-0010-14
Calculate the thermal resistance Rz and thermal resistance Iz in the vertical direction by the following method:
Figure 110108641-A0305-02-0010-14

透過以下公式求出水平方向熱阻Rxy與熱阻抗Ixy:

Figure 110108641-A0305-02-0010-15
Calculate the horizontal thermal resistance Rxy and thermal impedance Ixy by the following formula:
Figure 110108641-A0305-02-0010-15

透過以下公式求出熱阻抗和Ixyz:

Figure 110108641-A0305-02-0010-16
Calculate the thermal impedance and Ixyz by the following formula:
Figure 110108641-A0305-02-0010-16

相較於習知技術多以溫度差比對方法。本案是採用傅立葉定律來計算熱傳導係數,更能夠對應具有不同熱源尺寸、熱通量、均溫板尺寸、散熱方式的模型計算出均溫板的熱傳導係數,也能夠更精確地計算出。均溫板的熱傳導係數。 Compared with the conventional technology, the temperature difference comparison method is more used. In this case, Fourier's law is used to calculate the heat transfer coefficient, which is more able to calculate the heat conduction coefficient of the chamber corresponding to models with different heat source sizes, heat fluxes, chamber sizes, and heat dissipation methods, and can also be calculated more accurately. Thermal conductivity of the vapor chamber.

本發明說明如上,然其並非用以限定本創作所主張之專利權利範圍。其專利保護範圍當視後附之申請專利範圍及其等同領域而定。凡本領域具有通常知 識者,在不脫離本專利精神或範圍內,所作之更動或潤飾,均屬於本創作所揭示精神下所完成之等效改變或設計,且應包含在下述之申請專利範圍內。 The description of the present invention is as above, but it is not intended to limit the scope of patent rights claimed by this creation. The scope of its patent protection shall depend on the scope of the appended patent application and its equivalent fields. Those who are generally known in the art Those who know, without departing from the spirit or scope of this patent, the changes or modifications made are all equivalent changes or designs completed under the spirit disclosed in this creation, and should be included in the scope of the following patent application.

100:均溫板測量系統 100: Vapor plate measurement system

110:均溫板 110: vapor chamber

120:加熱器 120: heater

130:絕熱層 130: insulation layer

140:散熱器 140: Radiator

150:多個溫度感測器 150: multiple temperature sensors

160:控制裝置 160: Control device

Claims (10)

一種均溫板測量系統,適於測量一均溫板,包括:一絕熱層,設置於該均溫板上方的中央,並覆蓋該均溫板上側的一定面積;一散熱器,設置於該均溫板上方,並覆蓋該均溫板上側的該絕熱層以外的面積;一加熱器,設置於該均溫板下方的中央;多個溫度感測器,分別設置於該均溫板的上方與下方的中央及設置在該絕熱層的投影面積的邊緣;及一控制裝置,電性連接至該加熱器與該溫度感測器;其中,所有該溫度感測器都覆蓋於該絕熱層的投影面積。 A chamber measuring system, suitable for measuring a chamber, comprising: a thermal insulation layer arranged in the center above the chamber and covering a certain area above the chamber; a radiator arranged on the chamber above the temperature chamber, and cover the area outside the thermal insulation layer on the upper side of the chamber; a heater is arranged in the center below the chamber; a plurality of temperature sensors are respectively arranged above and above the chamber the center of the bottom and the edge of the projected area of the heat insulation layer; and a control device electrically connected to the heater and the temperature sensor; wherein, all the temperature sensors are covered on the projection of the heat insulation layer area. 如請求項1所述之均溫板測量系統,其中,該溫度感測器分別設置於該加熱器與該均溫板之間、該絕熱層與該均溫板之間的中央位置、該均溫板上側表面的該絕熱層的投影面積的邊緣、以及該均溫板下側表面的該絕熱層的投影面積的邊緣。 The temperature chamber measurement system as described in claim 1, wherein the temperature sensor is respectively arranged between the heater and the temperature chamber, the central position between the heat insulation layer and the temperature chamber, and the temperature chamber. The edge of the projected area of the thermal insulation layer on the upper surface of the warm plate, and the edge of the projected area of the thermal insulation layer on the lower surface of the temperature chamber. 如請求項1所述之均溫板測量系統,其中,該散熱器為水套或風扇散熱裝置。 The temperature chamber measurement system as described in Claim 1, wherein the radiator is a water jacket or a fan cooling device. 如請求項1所述之均溫板測量系統,其中,該絕熱層為絕熱泡棉。 The temperature chamber measuring system according to Claim 1, wherein the heat insulating layer is heat insulating foam. 一種均溫板測量方法,包括:提供一均溫板;於該均溫板的上表面中央處設置一絕熱層,該絕熱層的面積小於該均溫板上表面的面積; 於該均溫板的上表面邊緣處設置一散熱器;以一電功率使用一加熱器從該均溫板下表面中心位置對該均溫板加熱;測量該均溫板上各處的溫度,包括:該均溫板下表面中心位置的溫度、該均溫板上表面中心位置的溫度、該均溫板下表面於該絕熱層投影面積邊緣處的溫度以及該均溫板上表面於該絕熱層投影面積邊緣處的溫度;及根據該均溫板的測量參數計算多個熱力學參數。 A method for measuring a vapor chamber, comprising: providing a vapor chamber; setting a thermal insulation layer at the center of the upper surface of the vapor chamber, the area of the thermal insulation layer being smaller than the area of the upper surface of the vapor chamber; A radiator is arranged at the edge of the upper surface of the chamber; a heater is used to heat the chamber from the center of the lower surface of the chamber with an electric power; the temperature of various places on the chamber is measured, including : The temperature at the center of the lower surface of the chamber, the temperature at the center of the upper surface of the chamber, the temperature at the edge of the projected area of the lower surface of the chamber at the edge of the heat insulation layer, and the temperature of the upper surface of the chamber at the edge of the insulation layer the temperature at the edge of the projected area; and calculating a plurality of thermodynamic parameters based on the measured parameters of the chamber. 如請求項5所述之均溫板測量方法,其中,該散熱器為水套或風扇散熱裝置。 The temperature chamber measurement method as described in Claim 5, wherein the radiator is a water jacket or a fan cooling device. 如請求項5所述之均溫板測量方法,其中,該絕熱層為絕熱泡棉。 The temperature chamber measurement method as described in Claim 5, wherein the heat insulation layer is heat insulation foam. 如請求項5所述之均溫板測量方法,其中,該熱力學參數包括水平方向的熱傳導係數與垂直的熱傳導係數。 The temperature chamber measurement method as described in Claim 5, wherein the thermodynamic parameters include the thermal conductivity in the horizontal direction and the thermal conductivity in the vertical direction. 如請求項8所述之均溫板測量方法,其中,該熱力學參數還包括水平方向的熱阻與垂直方向的熱阻。 The method for measuring a temperature chamber according to Claim 8, wherein the thermodynamic parameters further include thermal resistance in the horizontal direction and thermal resistance in the vertical direction. 如請求項9所述之均溫板測量方法,其中,該熱力學參數還包括垂直方向之熱阻抗、水平方向之熱阻抗與熱阻抗和。 The method for measuring a temperature chamber according to Claim 9, wherein the thermodynamic parameters further include thermal impedance in the vertical direction, thermal impedance in the horizontal direction, and the sum of the thermal impedance.
TW110108641A 2021-03-11 2021-03-11 Measurement system and method for vapor chamber TWI785526B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110108641A TWI785526B (en) 2021-03-11 2021-03-11 Measurement system and method for vapor chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110108641A TWI785526B (en) 2021-03-11 2021-03-11 Measurement system and method for vapor chamber

Publications (2)

Publication Number Publication Date
TW202235834A TW202235834A (en) 2022-09-16
TWI785526B true TWI785526B (en) 2022-12-01

Family

ID=84957164

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110108641A TWI785526B (en) 2021-03-11 2021-03-11 Measurement system and method for vapor chamber

Country Status (1)

Country Link
TW (1) TWI785526B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130736A (en) * 2001-10-24 2003-05-08 Mitsubishi Heavy Ind Ltd Calorimeter
US20040243327A1 (en) * 2003-05-29 2004-12-02 Shuichi Matsuo Thermoelectric measuring method and thermoelectric measuring apparatus using thereof
TWI277727B (en) * 2005-08-24 2007-04-01 Yeh Chiang Technology Corp Measuring system for heat conductance performance of heat conductance device
TW201033593A (en) * 2009-03-06 2010-09-16 Wen-Jin Chen Detection and inspection device and method for heat sink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003130736A (en) * 2001-10-24 2003-05-08 Mitsubishi Heavy Ind Ltd Calorimeter
US20040243327A1 (en) * 2003-05-29 2004-12-02 Shuichi Matsuo Thermoelectric measuring method and thermoelectric measuring apparatus using thereof
TWI277727B (en) * 2005-08-24 2007-04-01 Yeh Chiang Technology Corp Measuring system for heat conductance performance of heat conductance device
TW201033593A (en) * 2009-03-06 2010-09-16 Wen-Jin Chen Detection and inspection device and method for heat sink

Also Published As

Publication number Publication date
TW202235834A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
Das et al. Conjugate natural convection heat transfer in an inclined square cavity containing a conducting block
Choi et al. A new CPU cooler design based on an active cooling heatsink combined with heat pipes
Nakayama et al. Conjugate heat transfer from a single surface-mounted block to forced convective air flow in a channel
Mehrtash et al. A correlation for natural convection heat transfer from inclined plate-finned heat sinks
Baïri et al. 2D transient natural convection in diode cavities containing an electronic equipment with discrete active bands under constant heat flux
Alves et al. An invariant descriptor for heaters temperature prediction in conjugate cooling
Durgam et al. A novel concept of discrete heat source array with dummy components cooled by forced convection in a vertical channel
Hsieh et al. Optimization of thermal management by integration of an SCGM, a finite-element method, and an experiment on a high-power LED array
Sarper et al. Natural convection in a parallel-plate vertical channel with discrete heating by two flush-mounted heaters: effect of the clearance between the heaters
CN110688820A (en) Method and device for detecting layout hot spot of power supply network layer of integrated circuit
Hożejowska et al. Equalizing calculus in Trefftz method for solving two-dimensional temperature field of FC-72 flowing along the minichannel
Pirasaci et al. Experimental investigation of laminar mixed convection heat transfer from arrays of protruded heat sources
TWI785526B (en) Measurement system and method for vapor chamber
Alawadhi Phase change process with free convection in a circular enclosure: numerical simulations
CN205607902U (en) Metal heat preservation plate thermal insulation performance detection device
Janicki et al. Transient thermal analysis of multilayered structures using Green's functions
Chen et al. Experimental and numerical study of stator end-winding cooling with impinging oil jet
Huang et al. Determination of relative positions and phase angle of dual piezoelectric fans for maximum heat dissipation of fin surface
Qu et al. Numerical and experimental investigation on heat transfer of multi-heat sources mounted on a fined radiator within embedded heat pipes in an electronic cabinet
Onbasioglu et al. On enhancement of heat transfer with ribs
Kopeć et al. The influence of air humidity on convective cooling conditions of electronic devices
CN107579625A (en) Motor temperature regulating device for infrared band test system
CN107526868A (en) A kind of Thermal design for radar electric cabinet system
Huang et al. An inverse heat conduction-convection conjugated problem in estimating the unknown volumetric heat generation of an encapsulated chip
JP5862510B2 (en) Semiconductor device evaluation system and evaluation method