TWI785462B - Memory device and method for manufacturing the same - Google Patents

Memory device and method for manufacturing the same Download PDF

Info

Publication number
TWI785462B
TWI785462B TW110101262A TW110101262A TWI785462B TW I785462 B TWI785462 B TW I785462B TW 110101262 A TW110101262 A TW 110101262A TW 110101262 A TW110101262 A TW 110101262A TW I785462 B TWI785462 B TW I785462B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric layer
insulating
memory device
vertical channel
Prior art date
Application number
TW110101262A
Other languages
Chinese (zh)
Other versions
TW202228249A (en
Inventor
胡志瑋
葉騰豪
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110101262A priority Critical patent/TWI785462B/en
Publication of TW202228249A publication Critical patent/TW202228249A/en
Application granted granted Critical
Publication of TWI785462B publication Critical patent/TWI785462B/en

Links

Images

Abstract

A method for manufacturing a memory device is provided. The method includes: providing a stack structure; forming a dielectric layer on the stack structure; forming a slit passing through the dielectric layer; forming a spacer on a sidewall of the slit. The stack structure includes first insulating layers and second insulating layers arranged alternately. The materials of the first insulating layers are different from the materials of the second insulating layers. A bottom of the slit exposes a first insulating layer disposed at the top of the first insulating layers.

Description

記憶裝置及其製造方法 Memory device and manufacturing method thereof

本揭露係有關於記憶裝置及製造其的方法,更特別是有關於具有設置於堆疊結構上的介電層的記憶裝置及製造其的方法。 The present disclosure relates to memory devices and methods of fabricating the same, and more particularly to memory devices having dielectric layers disposed on stacked structures and methods of fabricating the same.

記憶裝置中,特別是三維記憶裝置中,通常通過接觸結構(contact)來使位元線(bit line;BL)與記憶胞陣列(array)電性連接。來自堆疊結構或金屬閘極之應力(stress)可導致記憶胞陣列彎曲,使接觸結構難以對準記憶胞陣列。從而,未對準記憶胞陣列的接觸結構可能會延伸至串列選擇線(string select line;SSL)的位置,造成位元線與串列選擇線之間的短路問題(short risk),影響記憶裝置之良率與產量。 In a memory device, especially in a three-dimensional memory device, a bit line (BL) is usually electrically connected to a memory cell array (array) through a contact structure. Stress from the stack structure or metal gates can cause the cell array to bend, making it difficult for the contact structure to align with the memory cell array. Therefore, the contact structure of the misaligned memory cell array may extend to the position of the string select line (SSL), causing a short-circuit problem (short risk) between the bit line and the string select line, affecting the memory Device yield and throughput.

因此,避免位元線與串列選擇線之間的短路問題是相當重要的。 Therefore, it is very important to avoid the short circuit problem between the bit line and the string select line.

本揭露係有關於記憶裝置及製造其的方法。 The present disclosure relates to memory devices and methods of making them.

根據本揭露之一方面,提供一種記憶裝置之製造方法。記憶裝置之製造方法包括以下多個步驟。提供堆疊結構,堆疊結構包含交錯堆疊的多個第一絕緣層與多個第二絕緣層,第一絕緣層的材質 不同於第二絕緣層的材質。在堆疊結構上形成介電層。形成狹縫貫穿介電層,狹縫的底部使多個絕緣層中設置於頂部的絕緣層暴露。在該狹縫的側壁形成間隔層。 According to an aspect of the present disclosure, a method for manufacturing a memory device is provided. The manufacturing method of the memory device includes the following steps. Provide a stack structure, the stack structure includes a plurality of first insulating layers and a plurality of second insulating layers stacked staggered, the material of the first insulating layer different from the material of the second insulating layer. A dielectric layer is formed on the stacked structure. A slit is formed to penetrate the dielectric layer, and the bottom of the slit exposes the top insulating layer among the plurality of insulating layers. A spacer layer is formed on the sidewall of the slit.

根據本揭露之另一方面,提供一種記憶裝置。記憶裝置包括:堆疊結構、設置於堆疊結構上方之介電層、貫穿堆疊結構與介電層之導電膜、以及設置於導電膜與介電層之間的間隔層。堆疊結構包含交錯堆疊的多個絕緣層與多個導電層。介電層的材質不同於絕緣層的材質。 According to another aspect of the present disclosure, a memory device is provided. The memory device includes: a stack structure, a dielectric layer disposed above the stack structure, a conductive film passing through the stack structure and the dielectric layer, and a spacer layer disposed between the conductive film and the dielectric layer. The stack structure includes a plurality of insulating layers and a plurality of conductive layers stacked alternately. The material of the dielectric layer is different from that of the insulating layer.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下。 In order to have a better understanding of the above and other aspects of the present invention, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

10,20:記憶裝置 10,20: memory device

101:基板 101: Substrate

101U,121U,127U,130U,131U,133U,135U,138U,139U:上表面 101U, 121U, 127U, 130U, 131U, 133U, 135U, 138U, 139U: upper surface

110:堆疊結構 110:Stack structure

111~118:第一絕緣層 111~118: the first insulating layer

121~127:第二絕緣層 121~127: second insulating layer

130:介電層 130: dielectric layer

122B,130B,138B,147B:下表面 122B, 130B, 138B, 147B: lower surface

131:第一絕緣膜 131: first insulating film

132:孔洞 132: hole

133:下插塞 133: lower plug

134:垂直通道結構 134: Vertical channel structure

135:記憶層 135: memory layer

136:通道層 136: Channel layer

137:絕緣柱 137: Insulation column

138:上插塞 138: upper plug

139:第二絕緣膜 139: second insulating film

140:狹縫 140: slit

141:間隔層 141: spacer layer

142:溝槽 142: Groove

142R:凹室 142R: alcove

143:閘極氧化層 143:Gate oxide layer

144:間隙壁 144: gap wall

145:導電膜 145: Conductive film

146:層間介電層 146: interlayer dielectric layer

147,147’,148:接觸結構 147, 147’, 148: contact structure

150:堆疊結構 150: stacked structure

151~157:導電層 151~157: conductive layer

160:介電膜 160: Dielectric film

第1圖至第15圖係繪示根據一實施例之記憶裝置的製造方法的剖面示意圖;及第16圖至第18圖係繪示根據另一實施例之記憶裝置的製造方法的剖面示意圖。 1 to 15 are schematic cross-sectional views illustrating a method of manufacturing a memory device according to an embodiment; and FIGS. 16 to 18 are schematic cross-sectional views illustrating a method of manufacturing a memory device according to another embodiment.

在本揭露之實施例中,提出一種記憶裝置及記憶裝置的製造方法。根據製造方法之實施例可得到記憶裝置,例如是包括設置於堆疊結構上的介電層的記憶裝置,藉此改善位元線與串列選擇線之間的短路問題,同時提升記憶裝置之良率與產量。 In an embodiment of the disclosure, a memory device and a method for manufacturing the memory device are proposed. According to the embodiment of the manufacturing method, a memory device can be obtained, for example, a memory device including a dielectric layer disposed on a stack structure, thereby improving the short circuit problem between the bit line and the serial selection line, and improving the quality of the memory device at the same time. rate and production.

在實際應用上,本揭露之實施例可實施為多種不同的記憶裝置。例如,實施例可應用於三維垂直通道類型記憶裝置,但本揭露不限於此應用。以下係提出相關實施例,配合圖式以詳細說明本揭露所提出之記憶裝置及其製造方法。然而,本揭露並不以此為限。實施例中之敘述,例如細部結構、製造方法之步驟和材料應用等,僅為舉例說明之用,本揭露欲保護之範圍並非僅限於所述態樣。 In practical applications, the embodiments of the present disclosure can be implemented as various memory devices. For example, the embodiments can be applied to three-dimensional vertical channel type memory devices, but the present disclosure is not limited to this application. The relevant embodiments are proposed below, and the memory device and its manufacturing method proposed in this disclosure are described in detail in conjunction with the drawings. However, the present disclosure is not limited thereto. The descriptions in the embodiments, such as the detailed structure, the steps of the manufacturing method and the application of materials, etc., are for illustration purposes only, and the protection scope of the present disclosure is not limited to the above-mentioned aspects.

同時,需注意的是,本揭露並非顯示出所有可能的實施例。相關技術領域者當可在不脫離本揭露之精神和範圍之前提下,對實施例之結構和製造方法加以變化與修飾,以符合實際應用所需。因此,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式係簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖式僅作敘述實施例之用,而非用以限縮本揭露保護範圍。以下是以相同/類似的符號表示相同/類似的元件做說明。 At the same time, it should be noted that this disclosure does not show all possible embodiments. Those skilled in the art may change and modify the structures and manufacturing methods of the embodiments without departing from the spirit and scope of the present disclosure, so as to meet the needs of practical applications. Therefore, other implementation aspects not proposed in this disclosure may also be applicable. Furthermore, the drawings are simplified to clearly illustrate the content of the embodiments, and the size ratios in the drawings are not drawn according to the proportion of the actual product. Therefore, the specification and drawings are only used to describe the embodiments, rather than to limit the protection scope of the present disclosure. The same/similar symbols are used to represent the same/similar components in the following description.

再者,說明書與申請專利範圍中所使用的序數例如「第一」、「第二」、「第三」等用詞,是為了修飾請求項之元件,其本身並不意含及代表該所請元件有任何之前的序數,也不代表某一所請元件與另一所請元件的順序、或是製造方法上的順序,該些序數的使用,僅是用來使具有某命名的一所請元件得以和另一具有相同命名的所請元件能作出清楚區分。 Furthermore, the ordinal numbers used in the specification and claims, such as "first", "second", and "third", are intended to modify the elements of the claim, and do not imply and represent the claimed The components have any previous ordinal numbers, nor does it imply the order of one claimed component with another, or the order in the method of manufacture. The use of these ordinal numbers is only used to make a claimed component with a certain designation An element is clearly distinguishable from another claimed element having the same designation.

第1圖至第15圖係繪示根據一實施例之記憶裝置10的製造方法的剖面圖。記憶裝置10的製造方法包含以下步驟: 1 to 15 are cross-sectional views illustrating a manufacturing method of the memory device 10 according to an embodiment. The manufacturing method of memory device 10 comprises the following steps:

請參照第1圖。提供基板101。基板101可包含半導體基板,例如包含p型摻雜、n型摻雜或無摻雜的多晶矽、鍺或其他合適的半導體材料之半導體基板。在基板101的上表面101U上形成堆疊結構110,堆疊結構110包含沿著Z軸方向交錯堆疊的多個第一絕緣層111,112,113,114,115,116,117,118與多個第二絕緣層121,122,123,124,125,126,127,第一絕緣層111~118的材質不同於第二絕緣層121~127的材質。在一實施例中,第一絕緣層111~118可包含氧化物,例如二氧化矽(silicon oxide);第二絕緣層121~127可包含氮化物,例如氮化矽(silicon nitride)。接著,在堆疊結構110上沿著Z軸方向依序形成介電層130與第一絕緣膜131,第一絕緣膜131形成於介電層130上。介電層130的材質不同於第一絕緣層111~118的材質。具體而言,在同一次蝕刻製程中,介電層130的材質不同於第一絕緣層111~118的材質,使得介電層130的蝕刻速率不同於第一絕緣層111~118的蝕刻速率。在一實施例中,介電層130可包含氮化物,例如氮化矽;第一絕緣膜131可包含氧化物,例如二氧化矽。 Please refer to Figure 1. A substrate 101 is provided. The substrate 101 may comprise a semiconductor substrate, such as a semiconductor substrate comprising p-type doped, n-type doped or undoped polysilicon, germanium or other suitable semiconductor materials. A stacked structure 110 is formed on the upper surface 101U of the substrate 101. The stacked structure 110 includes a plurality of first insulating layers 111, 112, 113, 114, 115, 116, 117, 118 and a plurality of second insulating layers 121, 122, 123, 124, 125, 126, 127 stacked staggered along the Z-axis direction. The materials of the first insulating layers 111-118 It is different from the material of the second insulating layers 121-127. In an embodiment, the first insulating layers 111 - 118 may include oxides, such as silicon oxide; the second insulating layers 121 - 127 may include nitrides, such as silicon nitride. Next, a dielectric layer 130 and a first insulating film 131 are sequentially formed on the stack structure 110 along the Z-axis direction, and the first insulating film 131 is formed on the dielectric layer 130 . The material of the dielectric layer 130 is different from that of the first insulating layers 111 - 118 . Specifically, in the same etching process, the material of the dielectric layer 130 is different from that of the first insulating layers 111 - 118 , so that the etching rate of the dielectric layer 130 is different from the etching rate of the first insulating layers 111 - 118 . In one embodiment, the dielectric layer 130 may include nitride, such as silicon nitride; the first insulating film 131 may include oxide, such as silicon dioxide.

在此實施例中,第一絕緣層111位於堆疊結構110的底部且和基板101直接接觸,第一絕緣層118位於堆疊結構110的頂部且和介電層130直接接觸。第一絕緣層111~118中,最接近第一絕緣層111的第一絕緣層112之厚度可和其他第一絕緣層111,113,114,115,116,117,118不同,例如第一絕緣層112之厚度大於第一絕緣層111與第一絕緣層113~118,但本發明不以此為限。在一實施例中,第一絕緣層111~118與第二絕緣層121~127可藉由沉積製 程來形成,例如是化學氣相沉積(chemical vapor deposition;CVD)製程。 In this embodiment, the first insulating layer 111 is located at the bottom of the stack structure 110 and directly contacts the substrate 101 , and the first insulating layer 118 is located at the top of the stack structure 110 and directly contacts the dielectric layer 130 . Among the first insulating layers 111-118, the thickness of the first insulating layer 112 closest to the first insulating layer 111 can be different from other first insulating layers 111, 113, 114, 115, 116, 117, 118, for example, the thickness of the first insulating layer 112 is greater than that of the first insulating layer 111 and the first insulating layer 111. An insulating layer 113-118, but the present invention is not limited thereto. In one embodiment, the first insulating layers 111-118 and the second insulating layers 121-127 can be made by deposition process, such as chemical vapor deposition (chemical vapor deposition; CVD) process.

請參照第2圖。在堆疊結構110、介電層130與第一絕緣膜131中形成孔洞132,例如是藉由曝光微影製程(photolithography process)來圖案化堆疊結構110、介電層130與第一絕緣膜131以形成孔洞132。孔洞132沿著Z軸向下延伸,且貫穿堆疊結構110、介電層130與第一絕緣膜131,以使基板101的上表面101U以及用來做為孔洞132側壁的一部分第一絕緣層111~118與第二絕緣層121~127暴露。在X軸與Y軸交錯形成的平面上,孔洞132可具有大致為圓形或橢圓形之截面形狀,但本揭露不以此為限。 Please refer to Figure 2. The hole 132 is formed in the stack structure 110, the dielectric layer 130 and the first insulating film 131, for example, by patterning the stack structure 110, the dielectric layer 130 and the first insulating film 131 through an exposure lithography process. A hole 132 is formed. The hole 132 extends downward along the Z axis and penetrates through the stacked structure 110 , the dielectric layer 130 and the first insulating film 131 , so that the upper surface 101U of the substrate 101 and a part of the first insulating layer 111 used as the sidewall of the hole 132 ~118 and the second insulating layers 121~127 are exposed. On the plane formed by the intersection of the X axis and the Y axis, the hole 132 may have a substantially circular or elliptical cross-sectional shape, but the present disclosure is not limited thereto.

請參照第3圖。接著,在孔洞132中形成下插塞133,例如是藉由選擇性沉積(selective deposition)製程,以於孔洞132的底部形成下插塞133。在一實施例中,下插塞133可以是經由選擇性磊晶成長(selective epitaxial growth,SEG)所形成的單晶或多晶矽層或上述之任一組合,也可以是未摻雜或n型或p型摻雜的磊晶成長層。 Please refer to Figure 3. Next, a lower plug 133 is formed in the hole 132 , such as by a selective deposition process, so as to form the lower plug 133 at the bottom of the hole 132 . In one embodiment, the lower plug 133 can be a single crystal or polycrystalline silicon layer formed by selective epitaxial growth (SEG) or any combination of the above, and can also be undoped or n-type or p-type doped epitaxial growth layer.

在此實施例中,下插塞133的上表面133U介於第二絕緣層121與第二絕緣層122之間。更具體地,下插塞133的上表面133U高於第二絕緣層121的上表面121U且低於第二絕緣層122的下表面122B。但本揭露不以此為限。 In this embodiment, the upper surface 133U of the lower plug 133 is interposed between the second insulating layer 121 and the second insulating layer 122 . More specifically, the upper surface 133U of the lower plug 133 is higher than the upper surface 121U of the second insulating layer 121 and lower than the lower surface 122B of the second insulating layer 122 . But this disclosure is not limited thereto.

請參照第4圖。接著,在孔洞132的內部側壁上形成垂直通道結構134,垂直通道結構134沿著Z軸延伸貫穿堆疊結構110、介電層130與第一絕緣膜131。垂直通道結構134可填充孔洞132。垂直通道結構134可形成於下插塞133的上表面133U上。垂直通道結構134包含記憶層135、通道層136、絕緣柱137與上插塞138。形成垂直通道結構134可例如包含以下步驟: Please refer to Figure 4. Next, a vertical channel structure 134 is formed on the inner sidewall of the hole 132 , and the vertical channel structure 134 extends along the Z-axis through the stack structure 110 , the dielectric layer 130 and the first insulating film 131 . The vertical channel structure 134 can fill the hole 132 . The vertical channel structure 134 may be formed on the upper surface 133U of the lower plug 133 . The vertical channel structure 134 includes a memory layer 135 , a channel layer 136 , insulating pillars 137 and upper plugs 138 . Forming the vertical channel structure 134 may, for example, include the following steps:

首先,在孔洞132的內部側壁、下插塞133的上表面133U與第一絕緣膜131的上表面131U上形成記憶層135,例如是藉由沉積製程來形成。記憶層135可包含記憶體技術領域中已知的多層結構(multilayer structure),例如ONO(氧化物-氮化物-氧化物)結構、ONONO(氧化物-氮化物-氧化物-氮化物-氧化物)結構、ONONONO(氧化物-氮化物-氧化物-氮化物-氧化物-氮化物-氧化物)結構、SONOS(矽-氧化矽-氮化矽-氧化矽-矽)結構、BE-SONOS(能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構、TANOS(氮化鉭-氧化鋁-氮化矽-氧化矽-矽)結構、MA BE-SONOS(金屬-高介電常數材料能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構及其組合。 First, the memory layer 135 is formed on the inner sidewall of the hole 132 , the upper surface 133U of the lower plug 133 and the upper surface 131U of the first insulating film 131 , for example, by a deposition process. The memory layer 135 may comprise a multilayer structure (multilayer structure) known in the field of memory technology, such as ONO (oxide-nitride-oxide) structure, ONONO (oxide-nitride-oxide-nitride-oxide ) structure, ONONONO (oxide-nitride-oxide-nitride-oxide-nitride-oxide) structure, SONOS (silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, BE-SONOS ( Band gap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, TANOS (tantalum nitride-alumina-silicon nitride-silicon oxide-silicon) structure, MA BE-SONOS (metal-high dielectric constant Material bandgap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure and its combination.

接著,以蝕刻製程移除形成於第一絕緣膜131的上表面131U上的記憶層135,並移除形成於下插塞133的上表面133U上的部分記憶層135,以使下插塞133的上表面133U的一部分暴露。 Next, the memory layer 135 formed on the upper surface 131U of the first insulating film 131 is removed by an etching process, and part of the memory layer 135 formed on the upper surface 133U of the lower plug 133 is removed, so that the lower plug 133 A portion of the upper surface 133U is exposed.

接著,在記憶層135的內部側壁、下插塞133被暴露的上表面133U上形成通道層136,例如是藉由沉積製程來形成。通道層136亦可覆蓋第一絕緣膜131的上表面131U以及大致與上表面 131U共平面的記憶層135之上表面135U。以蝕刻製程移除形成於第一絕緣膜131的上表面131U、以及記憶層135的上表面135U之通道層136,以使第一絕緣膜131的上表面131U以及記憶層135的上表面135U暴露。通道層136可包含半導體材料,例如摻雜的(doped)半導體材料或未摻雜的(undoped)半導體材料。在一實施例中,通道層136可包含多晶矽(polysilicon),例如摻雜的多晶矽或未摻雜的多晶矽。 Next, a channel layer 136 is formed on the inner sidewall of the memory layer 135 and the exposed upper surface 133U of the lower plug 133 , for example, by a deposition process. The channel layer 136 may also cover the upper surface 131U of the first insulating film 131 and approximately the upper surface 131U is coplanar with the upper surface 135U of the memory layer 135 . The channel layer 136 formed on the upper surface 131U of the first insulating film 131 and the upper surface 135U of the memory layer 135 is removed by an etching process, so that the upper surface 131U of the first insulating film 131 and the upper surface 135U of the memory layer 135 are exposed . The channel layer 136 may comprise a semiconductor material, such as a doped semiconductor material or an undoped semiconductor material. In one embodiment, the channel layer 136 may include polysilicon, such as doped polysilicon or undoped polysilicon.

接著,在通道層136的內部側壁上形成絕緣柱137。更具體地,藉由沉積形成絕緣柱137以填充孔洞132。絕緣柱137可包含介電材料,介電材料包含氧化物(例如氧化矽)。對絕緣柱137進行回蝕(etch back)製程後,在絕緣柱137上形成上插塞138,例如是藉由沉積製程來形成上插塞138。上插塞138可包含半導體材料,例如金屬矽化物(silicide)、摻雜的半導體材料或未摻雜的半導體材料。在一實施例中,上插塞138可包含多晶矽,例如摻雜的多晶矽或未摻雜的多晶矽。上插塞138可電性連接至通道層136。 Next, insulating pillars 137 are formed on inner sidewalls of the channel layer 136 . More specifically, the insulating pillars 137 are formed by deposition to fill the holes 132 . The insulating pillar 137 may include a dielectric material including an oxide (eg, silicon oxide). After an etch back process is performed on the insulating pillar 137, the upper plug 138 is formed on the insulating pillar 137, for example, the upper plug 138 is formed by a deposition process. The upper plug 138 may include semiconductor material, such as metal silicide, doped semiconductor material or undoped semiconductor material. In one embodiment, the upper plug 138 may comprise polysilicon, such as doped polysilicon or undoped polysilicon. The upper plug 138 is electrically connected to the channel layer 136 .

如第4圖所示,垂直通道結構134之通道層136設置於記憶層135與絕緣柱137之間,且設置於記憶層135與上插塞138之間。記憶層135亦可理解為設置於通道層136的外部側壁上。垂直通道結構134之側表面接觸介電層130。 As shown in FIG. 4 , the channel layer 136 of the vertical channel structure 134 is disposed between the memory layer 135 and the insulating pillar 137 , and is disposed between the memory layer 135 and the upper plug 138 . The memory layer 135 can also be understood as being disposed on the outer sidewall of the channel layer 136 . Side surfaces of the vertical channel structure 134 are in contact with the dielectric layer 130 .

在一實施例中,介電層130在Z軸方向上的高度小於上插塞138在Z軸方向上的高度。例如,在Z軸方向上,介電層130的上表面130U可低於上插塞138的上表面138U,介電層130的下表面130B可高於上插塞138的下表面138B。但本揭露不以此為限。 In one embodiment, the height of the dielectric layer 130 in the Z-axis direction is smaller than the height of the upper plug 138 in the Z-axis direction. For example, in the Z-axis direction, the upper surface 130U of the dielectric layer 130 may be lower than the upper surface 138U of the upper plug 138 , and the lower surface 130B of the dielectric layer 130 may be higher than the lower surface 138B of the upper plug 138 . But this disclosure is not limited thereto.

在垂直通道結構134形成後,形成第二絕緣膜139以覆蓋第一絕緣膜131的上表面131U與垂直通道結構134(如第4圖所示),例如是藉由沉積製程來形成。在一實施例中,第二絕緣膜139可包含氧化物,例如二氧化矽。 After the vertical channel structure 134 is formed, the second insulating film 139 is formed to cover the upper surface 131U of the first insulating film 131 and the vertical channel structure 134 (as shown in FIG. 4 ), for example, by a deposition process. In one embodiment, the second insulating film 139 may include oxide, such as silicon dioxide.

請參照第5圖。接著,在堆疊結構110、介電層130、第一絕緣膜131與第二絕緣膜139中形成狹縫140,例如是藉由蝕刻製程來形成狹縫140。狹縫140沿著Z軸延伸貫穿第二絕緣膜139、第一絕緣膜131與介電層130,以使用來做為狹縫140側壁的一部分第一絕緣層118、介電層130、第一絕緣膜131與第二絕緣膜139暴露。在此實施例中,用以形成狹縫140的蝕刻製程在稍微蝕刻超過介電層130的下表面130B時停止,使得狹縫140的底部設置於介電層130的下表面130B與第二絕緣層121~127中設置於頂部的第二絕緣層127的上表面127U之間,狹縫140的底部使第一絕緣層111~118中設置於頂部的第一絕緣層118暴露。但本揭露不以此為限,狹縫140的底部亦可設置於其他層中。 Please refer to Figure 5. Next, the slit 140 is formed in the stacked structure 110 , the dielectric layer 130 , the first insulating film 131 and the second insulating film 139 , for example, the slit 140 is formed by an etching process. The slit 140 extends through the second insulating film 139, the first insulating film 131 and the dielectric layer 130 along the Z axis, so as to be used as a part of the sidewall of the slit 140, the first insulating layer 118, the dielectric layer 130, the first The insulating film 131 and the second insulating film 139 are exposed. In this embodiment, the etching process for forming the slit 140 stops when etching slightly beyond the lower surface 130B of the dielectric layer 130, so that the bottom of the slit 140 is disposed between the lower surface 130B of the dielectric layer 130 and the second insulating layer 130B. The bottom of the slit 140 exposes the first insulating layer 118 disposed on the top of the first insulating layers 111 - 118 between the upper surfaces 127U of the second insulating layer 127 disposed on the top among the layers 121 - 127 . However, the present disclosure is not limited thereto, and the bottom of the slit 140 may also be disposed in other layers.

在此實施例中,狹縫140繪示為在Y軸與Z軸交錯形成的平面上,具有上寬下窄的截面形狀,但本揭露不以此為限。 In this embodiment, the slit 140 is shown as having a cross-sectional shape with a wide top and a narrow bottom on a plane formed by the intersection of the Y-axis and the Z-axis, but the disclosure is not limited thereto.

請參照第6圖。接著,在狹縫140的內部側壁、狹縫140的底部與第二絕緣膜139的上表面139U上形成間隔層141,例如是藉由沉積製程來形成間隔層141。間隔層141可包含半導體材料,例如矽。 Please refer to Figure 6. Next, the spacer layer 141 is formed on the inner sidewall of the slit 140 , the bottom of the slit 140 and the upper surface 139U of the second insulating film 139 , for example, the spacer layer 141 is formed by a deposition process. The spacer layer 141 may include semiconductor material, such as silicon.

請參照第7圖。接著,進行回蝕製程以移除形成於第二絕緣膜139的上表面139U上的間隔層141,並移除形成於狹縫140的底部的部分間隔層141,以使第一絕緣層111~118中設置於頂部的第一絕緣層118暴露。 Please refer to Figure 7. Next, perform an etch-back process to remove the spacer layer 141 formed on the upper surface 139U of the second insulating film 139, and remove part of the spacer layer 141 formed at the bottom of the slit 140, so that the first insulating layer 111~ The first insulating layer 118 disposed on the top in 118 is exposed.

請參照第8圖。接著,從狹縫140的底部,朝向基板101,對堆疊結構110進行蝕刻製程,以形成溝槽142。溝槽沿著Z軸向下(即朝向基板101)延伸,貫穿堆疊結構110、介電層130、第一絕緣膜131與第二絕緣膜139,以使基板101之上表面101U暴露,且使用來做為溝槽142側壁的間隔層141、一部分第一絕緣層111~118與第二絕緣層121~127暴露。如第8圖所示,間隔層141使介電層130、第一絕緣膜131與第二絕緣膜139不會被溝槽142暴露。間隔層141可用以在後續步驟中保護介電層130。 Please refer to Figure 8. Next, an etching process is performed on the stacked structure 110 from the bottom of the slit 140 toward the substrate 101 to form the trench 142 . The trench extends downward along the Z axis (ie, toward the substrate 101 ), and penetrates the stacked structure 110 , the dielectric layer 130 , the first insulating film 131 and the second insulating film 139 , so that the upper surface 101U of the substrate 101 is exposed, and used The spacer layer 141 serving as the sidewall of the trench 142 , a part of the first insulating layers 111 - 118 and the second insulating layers 121 - 127 are exposed. As shown in FIG. 8 , the spacer layer 141 prevents the dielectric layer 130 , the first insulating film 131 and the second insulating film 139 from being exposed by the trench 142 . The spacer layer 141 can be used to protect the dielectric layer 130 in subsequent steps.

請參照第9圖。透過溝槽142進行蝕刻製程以移除第二絕緣層121~127,從而形成第一絕緣層111~118之間的空間。由於間隔層141使介電層130不會被溝槽142暴露,介電層130不會在移除第二絕緣層121~127的期間被移除。 Please refer to Figure 9. An etching process is performed through the trench 142 to remove the second insulating layers 121 - 127 , thereby forming spaces between the first insulating layers 111 - 118 . Since the spacer layer 141 prevents the dielectric layer 130 from being exposed by the trench 142 , the dielectric layer 130 will not be removed during the removal of the second insulating layers 121 - 127 .

請參照第10圖。然後,在下插塞133被第一絕緣層111與第一絕緣層112之間的空間暴露出來的側壁上形成閘極氧化層143。閘極氧化層143可藉由對下插塞133進行氧化製程所形成。在此實施例中,藉由對下插塞133之暴露側壁進行熱氧化(thermal oxidation)製程,以使下插塞133之暴露側壁被氧化,進而形成閘極氧化層143。在一實施例中,閘極氧化層143可環繞下插塞133。。 Please refer to Figure 10. Then, a gate oxide layer 143 is formed on the sidewall of the lower plug 133 exposed by the space between the first insulating layer 111 and the first insulating layer 112 . The gate oxide layer 143 can be formed by performing an oxidation process on the lower plug 133 . In this embodiment, the exposed sidewall of the lower plug 133 is oxidized by performing a thermal oxidation process on the exposed sidewall of the lower plug 133 to form the gate oxide layer 143 . In one embodiment, the gate oxide layer 143 may surround the lower plug 133 . .

在一實施例中,在進行熱氧化製程期間,間隔層141亦會被氧化,例如是部分氧化或全部氧化,所以熱氧化製程後的間隔層141可包含半導體材料的氧化物,例如氧化矽(未繪示)。 In one embodiment, during the thermal oxidation process, the spacer layer 141 is also oxidized, such as partially oxidized or fully oxidized, so the spacer layer 141 after the thermal oxidation process may include oxides of semiconductor materials, such as silicon oxide ( not shown).

請參照第11圖。接著,在第一絕緣層111~118之間的空間中填充導電材料,換言之,使導電材料填充於被移除之第二絕緣層121~127原來的位置上。導電材料可包含多晶矽、金屬或其他合適的導電材質。在一實施例中,導電材料可包含鎢(tungsten)。 Please refer to Figure 11. Next, the spaces between the first insulating layers 111 - 118 are filled with conductive material, in other words, the conductive material is filled in the original positions of the removed second insulating layers 121 - 127 . The conductive material may include polysilicon, metal or other suitable conductive materials. In one embodiment, the conductive material may include tungsten.

在填充導電材料後,對結構進行回蝕製程,以移除部分導電材料,從而形成多個凹室142R,如同第11圖所示。在回蝕製程後,剩餘的導電材料形成導電層151~157。在此實施例中,凹室142R中的每一者係為側向凹室,從溝槽142延伸(沿著Y軸方向)進入導電材料。因此,凹室142R中的每一者連接溝槽142。凹室142R中的每一者可定義為由兩相鄰第一絕緣層111~118、介於此兩相鄰第一絕緣層111~118之間的導電層151~157與溝槽142所形成的空間。閘極氧化層143可用以使下插塞133電性隔離於導電層151。在一實施例中,導電層151~157可做為閘極。包含於第9圖至第11圖之製程步驟可被理解為閘極取代(gate replacement)製程。 After filling the conductive material, an etch-back process is performed on the structure to remove part of the conductive material, thereby forming a plurality of recesses 142R, as shown in FIG. 11 . After the etch-back process, the remaining conductive materials form the conductive layers 151 - 157 . In this embodiment, each of the alcoves 142R are lateral alcoves extending from the trench 142 (along the Y-axis direction) into the conductive material. Accordingly, each of the alcoves 142R connects to the trench 142 . Each of the alcoves 142R can be defined as being formed by two adjacent first insulating layers 111-118, the conductive layers 151-157 between the two adjacent first insulating layers 111-118, and the trench 142. Space. The gate oxide layer 143 can be used to electrically isolate the lower plug 133 from the conductive layer 151 . In one embodiment, the conductive layers 151 - 157 can be used as gates. The process steps included in FIGS. 9 to 11 can be understood as a gate replacement process.

在一實施例中,導電層151~157和第一絕緣層111~118之間可更包含介電膜160,如第11A圖所示。例如,在填充導電材料之前,先使介電膜160襯裡式地形成於第一絕緣層111~118之間的空間中,然後再以導電材料填充第一絕緣層111~118之間的剩餘空間。介電膜160可包含高介電常數(high-k)材料,例如是氧化鋁(Al2O3)、 二氧化鉿(HfO2)、氮化矽(Si3N4)、二氧化鋯(ZrO2)、二氧化鈦(TiO2)、氧化鉭(Ta2O5)、氧化鑭(La2O)或其他合適的材料等。可藉由沉積製程來形成介電膜。 In one embodiment, a dielectric film 160 may be further included between the conductive layers 151 - 157 and the first insulating layers 111 - 118 , as shown in FIG. 11A . For example, before filling the conductive material, the dielectric film 160 is formed as a lining in the space between the first insulating layers 111-118, and then the remaining space between the first insulating layers 111-118 is filled with the conductive material. . The dielectric film 160 may include high-k materials, such as aluminum oxide (Al 2 O 3 ), hafnium dioxide (HfO 2 ), silicon nitride (Si 3 N 4 ), zirconium dioxide ( ZrO 2 ), titanium dioxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), lanthanum oxide (La 2 O) or other suitable materials. The dielectric film can be formed by a deposition process.

在第11圖與第11A圖所示的結構中,記憶胞可定義在記憶層135中。更具體地,記憶胞可定義在導電層151~157中的每一者與垂直通道結構134之通道層136交錯處的記憶層135中。包含交錯堆疊的多個第一絕緣層111~118與多個導電層151~157之堆疊結構150包含多個記憶胞。多個記憶胞形成記憶胞陣列。 In the structures shown in FIG. 11 and FIG. 11A , the memory cells can be defined in the memory layer 135 . More specifically, memory cells can be defined in the memory layer 135 where each of the conductive layers 151 - 157 intersects with the channel layer 136 of the vertical channel structure 134 . The stack structure 150 comprising a plurality of first insulating layers 111 - 118 and a plurality of conductive layers 151 - 157 stacked alternately comprises a plurality of memory cells. A plurality of memory cells form a memory cell array.

請參照第12圖。在溝槽142及凹室142R中形成間隙壁144,具體而言,在間隔層141的側壁、導電層151~157的側壁、第一絕緣層111~118的側壁與基板101被溝槽142暴露出來的上表面101U上形成間隙壁144,例如是藉由沉積製程來形成。間隙壁144可包含介電材料,例如二氧化矽。接著,移除溝槽142底部的間隙壁144,以使基板101之上表面101U暴露,例如是以突破蝕刻(break-through etch)製程來移除溝槽142底部的間隙壁144。 Please refer to Figure 12. The spacers 144 are formed in the trenches 142 and the recesses 142R, specifically, the sidewalls of the spacer layer 141, the sidewalls of the conductive layers 151-157, the sidewalls of the first insulating layers 111-118, and the substrate 101 are exposed by the trenches 142. A spacer 144 is formed on the upper surface 101U, for example, formed by a deposition process. The spacer 144 may include a dielectric material, such as silicon dioxide. Next, the spacer 144 at the bottom of the trench 142 is removed to expose the upper surface 101U of the substrate 101 , for example, the spacer 144 at the bottom of the trench 142 is removed by a break-through etch process.

請參照第13圖,在形成間隙壁144後,在溝槽142中形成導電膜145。間隙壁144使導電膜145與導電層151~157電性隔離。導電膜145可包含多晶矽、金屬或其他合適的導電材質。在一實施例中,導電膜145可包含鎢。在此實施例中,導電膜145在X軸與Z軸交錯形成的平面上延伸,且接觸基板101。如第13圖所示,導電膜145貫穿堆疊結構150與介電層130,間隔層141設置於導電膜145與介電層130之間。 Referring to FIG. 13 , after the spacer 144 is formed, a conductive film 145 is formed in the trench 142 . The spacers 144 electrically isolate the conductive film 145 from the conductive layers 151 - 157 . The conductive film 145 may include polysilicon, metal or other suitable conductive materials. In one embodiment, the conductive film 145 may include tungsten. In this embodiment, the conductive film 145 extends on a plane formed by the intersection of the X axis and the Z axis, and contacts the substrate 101 . As shown in FIG. 13 , the conductive film 145 penetrates through the stack structure 150 and the dielectric layer 130 , and the spacer layer 141 is disposed between the conductive film 145 and the dielectric layer 130 .

請參照第14圖。接著,在第二絕緣膜139上形成層間介電層(interlayer dielectric;ILD)146,例如是藉由沉積製程來形成。 Please refer to Figure 14. Next, an interlayer dielectric (ILD) 146 is formed on the second insulating film 139 , for example, by a deposition process.

請參照第15圖。然後,形成接觸結構147和148,接觸結構147和148分別電性連接至垂直通道結構134與導電膜145。垂直通道結構134可經由接觸結構147電性連接至其他導電元件,例如電性連接至層間介電層146上方的多條位元線(未繪示)。接觸結構147和148可包含多晶矽、金屬或其他合適的導電材質。 Please refer to Figure 15. Then, contact structures 147 and 148 are formed, and the contact structures 147 and 148 are electrically connected to the vertical channel structure 134 and the conductive film 145 respectively. The vertical channel structure 134 can be electrically connected to other conductive elements through the contact structure 147 , such as electrically connected to a plurality of bit lines (not shown) above the interlayer dielectric layer 146 . The contact structures 147 and 148 may include polysilicon, metal or other suitable conductive materials.

電性連接至垂直通道結構134之接觸結構147設置於上插塞138的上表面138U上,接觸結構147可不接觸介電層130。記憶胞陣列通過通道層136、上插塞138與接觸結構147電性連接至其他導電元件,例如電性連接至多條位元線。 The contact structure 147 electrically connected to the vertical channel structure 134 is disposed on the upper surface 138U of the upper plug 138 , and the contact structure 147 may not contact the dielectric layer 130 . The memory cell array is electrically connected to other conductive elements through the channel layer 136 , the upper plug 138 and the contact structure 147 , for example, electrically connected to a plurality of bit lines.

在一些情況下,形成接觸結構147的過程可能發生偏離,例如,以第15圖為例,接觸結構147’未完全對齊上插塞138,接觸結構147’可沿著Z軸方向朝向基板101延伸且接觸介電層130。具體而言,接觸結構147’的下表面147B可低於上插塞138的上表面138U,接觸結構147’的下表面147B可和介電層130的上表面130U共平面且直接接觸。在此情況下,記憶胞陣列通過通道層136與上插塞138電性連接至其他導電元件,例如電性連接至多條位元線;或者,記憶胞陣列通過通道層136與接觸結構147’電性連接至其他導電元件,例如電性連接至多條位元線。即便形成接觸結構147的過程發生非預期之偏離(例如形成為接觸結構147’的位置),介電層130可避免接觸結構 147’延伸至堆疊結構150之導電層151~157及/或接觸導電層151~157之至少一者而造成短路等問題。 In some cases, the process of forming the contact structure 147 may deviate. For example, taking FIG. 15 as an example, the contact structure 147' is not completely aligned with the upper plug 138, and the contact structure 147' may extend toward the substrate 101 along the Z-axis direction. And contact the dielectric layer 130 . Specifically, the lower surface 147B of the contact structure 147' may be lower than the upper surface 138U of the upper plug 138, and the lower surface 147B of the contact structure 147' may be coplanar with and in direct contact with the upper surface 130U of the dielectric layer 130. In this case, the memory cell array is electrically connected to other conductive elements through the channel layer 136 and the upper plug 138, for example, electrically connected to a plurality of bit lines; or, the memory cell array is electrically connected to the contact structure 147' through the channel layer 136. electrically connected to other conductive elements, such as electrically connected to a plurality of bit lines. Even if the process of forming the contact structure 147 deviates unexpectedly (such as forming the position of the contact structure 147'), the dielectric layer 130 can avoid contact structure 147' extends to the conductive layers 151-157 of the stack structure 150 and/or contacts at least one of the conductive layers 151-157 to cause problems such as short circuit.

第16圖至第18圖係繪示根據另一實施例之記憶裝置20的製造方法的剖面圖。記憶裝置20與記憶裝置10的不同之處說明如下。 16 to 18 are cross-sectional views illustrating a manufacturing method of the memory device 20 according to another embodiment. The differences between the memory device 20 and the memory device 10 are described as follows.

記憶裝置10的製造方法中,如第1圖至第4圖所示,先在基板101上依序形成堆疊結構110、介電層130與第一絕緣膜131,接著再形成沿著Z軸延伸貫穿堆疊結構110、介電層130與第一絕緣膜131之垂直通道結構134;換言之,垂直通道結構134之形成是在介電層130之形成之後。記憶裝置20的製造方法中,先在基板101上依序形成堆疊結構110,接著形成沿著Z軸延伸貫穿堆疊結構110之垂直通道結構134(如第16圖所示),然後再於堆疊結構110上依序形成介電層130與第一絕緣膜131(如第17圖所示);換言之,垂直通道結構134之形成是在形成介電層130之前,如第17圖所示,垂直通道結構134未貫穿介電層130與第一絕緣膜131。 In the manufacturing method of the memory device 10, as shown in FIG. 1 to FIG. 4, the stacked structure 110, the dielectric layer 130 and the first insulating film 131 are formed sequentially on the substrate 101, and then formed along the Z-axis. The vertical channel structure 134 runs through the stack structure 110 , the dielectric layer 130 and the first insulating film 131 ; in other words, the vertical channel structure 134 is formed after the dielectric layer 130 is formed. In the manufacturing method of the memory device 20, the stacked structure 110 is sequentially formed on the substrate 101 first, and then the vertical channel structure 134 extending through the stacked structure 110 along the Z axis is formed (as shown in FIG. 16 ), and then the stacked structure Dielectric layer 130 and first insulating film 131 are sequentially formed on 110 (as shown in FIG. 17); in other words, the formation of vertical channel structure 134 is before the formation of dielectric layer 130. As shown in FIG. The structure 134 does not penetrate the dielectric layer 130 and the first insulating film 131 .

此外,如第4圖所示,記憶裝置10的製造方法包含形成第二絕緣膜139以覆蓋第一絕緣膜131的上表面131U與垂直通道結構134,接著再進行第5圖至第15圖所示之步驟。由於記憶裝置20的製造方法未包含形成第二絕緣膜139,形成第一絕緣膜131之後即可接著進行第5圖至第15圖所示之步驟。 In addition, as shown in FIG. 4, the manufacturing method of the memory device 10 includes forming a second insulating film 139 to cover the upper surface 131U of the first insulating film 131 and the vertical channel structure 134, and then performing the steps shown in FIGS. the steps shown. Since the manufacturing method of the memory device 20 does not include the formation of the second insulating film 139, the steps shown in FIG. 5 to FIG. 15 can be performed after the first insulating film 131 is formed.

以下簡要說明記憶裝置20的製造方法,其包含以下步驟: The following briefly describes the manufacturing method of the memory device 20, which includes the following steps:

請參照第16圖。提供基板101。在基板101上形成包含交錯堆疊的第一絕緣層111~118與第二絕緣層121~127之堆疊結構110。在堆疊結構110中形成下插塞133。在下插塞133上形成貫穿堆疊結構110的垂直通道結構134,垂直通道結構134包含記憶層135、通道層136、絕緣柱137與上插塞138。接著,請參照第17圖,在堆疊結構110上形成介電層130以覆蓋第一絕緣層118與垂直通道結構134,垂直通道結構134之上表面接觸介電層130。然後,在介電層130上形成第一絕緣膜131。 Please refer to Figure 16. A substrate 101 is provided. A stack structure 110 comprising first insulating layers 111 - 118 and second insulating layers 121 - 127 stacked alternately is formed on the substrate 101 . Lower plugs 133 are formed in the stack structure 110 . A vertical channel structure 134 penetrating through the stack structure 110 is formed on the lower plug 133 , and the vertical channel structure 134 includes a memory layer 135 , a channel layer 136 , an insulating pillar 137 and an upper plug 138 . Next, please refer to FIG. 17 , a dielectric layer 130 is formed on the stack structure 110 to cover the first insulating layer 118 and the vertical channel structure 134 , and the upper surface of the vertical channel structure 134 contacts the dielectric layer 130 . Then, a first insulating film 131 is formed on the dielectric layer 130 .

接著,以類似於第5圖至第15圖所示之步驟,形成間隔層141、閘極氧化層143、導電層151~157、間隙壁144與導電膜145。在形成導電膜145之後,在第一絕緣膜131上形成層間介電層146,然後再形成分別電性連接至垂直通道結構134與導電膜145之接觸結構147和148,從而形成如第18圖所示之記憶裝置20。 Next, a spacer layer 141 , a gate oxide layer 143 , conductive layers 151 - 157 , spacers 144 and a conductive film 145 are formed by steps similar to those shown in FIGS. 5 to 15 . After the conductive film 145 is formed, an interlayer dielectric layer 146 is formed on the first insulating film 131, and then the contact structures 147 and 148 electrically connected to the vertical channel structure 134 and the conductive film 145 are formed, thereby forming a structure as shown in FIG. Memory device 20 is shown.

請參照第18圖。在此實施例中,電性連接至垂直通道結構134之接觸結構147設置於上插塞138的上表面138U上,且接觸結構147貫穿介電層130。接觸結構147的下表面147B可和介電層130的下表面130B共平面。 Please refer to Figure 18. In this embodiment, the contact structure 147 electrically connected to the vertical channel structure 134 is disposed on the upper surface 138U of the upper plug 138 , and the contact structure 147 penetrates through the dielectric layer 130 . The lower surface 147B of the contact structure 147 may be coplanar with the lower surface 130B of the dielectric layer 130 .

在一實施例中,當本揭露之記憶裝置10/20應用於三維記憶裝置,例如是具有垂直通道結構之反及閘(NAND)類型的記憶裝置時,堆疊結構150之導電層151~157中設置於最下方(底部)的導電層151可做為記憶裝置10/20之接地選擇線(ground select line;GSL),導電層151~157中設置於頂部的導電層157可做為串列選擇線(string select line;SSL),導電層152~156可做為字元線(word line;WL),導電膜145可做為共同源極線(common source line;CSL)。或者,記憶裝置10/20可包含複數條串列選擇線,例如導電層156和157皆做為串列選擇線。在一實施例中,記憶裝置10/20可以是閘極全環繞(gate-all-around)類型的記憶裝置。 In one embodiment, when the memory device 10/20 of the present disclosure is applied to a three-dimensional memory device, such as a NAND type memory device with a vertical channel structure, in the conductive layers 151-157 of the stack structure 150 The conductive layer 151 disposed at the bottom (bottom) can be used as a ground select line (GSL) of the memory device 10/20, and the conductive layer 157 disposed at the top of the conductive layers 151-157 can be used as a serial selection line (string select line (SSL), the conductive layers 152-156 can be used as a word line (word line; WL), and the conductive film 145 can be used as a common source line (common source line; CSL). Alternatively, the memory device 10/20 may include a plurality of serial selection lines, for example, the conductive layers 156 and 157 are both used as serial selection lines. In one embodiment, the memory device 10/20 may be a gate-all-around type memory device.

在根據本揭露之記憶裝置10/20中,介電層130設置於堆疊結構150上方,介電層130的材質不同於堆疊結構150之第一絕緣層111~118的材質。由於介電層130的蝕刻速率不同於第一絕緣層111~118的蝕刻速率(在同一次蝕刻製程中),在形成接觸結構147/147’的過程中,介電層130可做為蝕刻停止層(etch stop layer),以避免接觸結構147/147’沿著Z軸方向延伸至堆疊結構150之導電層151~157及/或接觸導電層151~157之至少一者而造成短路等問題。此外,記憶裝置10/20包含間隔層141,間隔層141可在閘極取代製程中保護介電層130,使介電層130不會在閘極取代製程中被移除。 In the memory device 10 / 20 according to the present disclosure, the dielectric layer 130 is disposed above the stack structure 150 , and the material of the dielectric layer 130 is different from that of the first insulating layers 111 - 118 of the stack structure 150 . Since the etching rate of the dielectric layer 130 is different from the etching rate of the first insulating layers 111-118 (in the same etching process), the dielectric layer 130 can be used as an etching stop during the process of forming the contact structure 147/147'. layer (etch stop layer), so as to prevent the contact structure 147 / 147 ′ extending to the conductive layers 151 - 157 of the stack structure 150 along the Z-axis direction and/or contacting at least one of the conductive layers 151 - 157 to cause a short circuit and the like. In addition, the memory device 10/20 includes a spacer layer 141, and the spacer layer 141 can protect the dielectric layer 130 during the gate replacement process, so that the dielectric layer 130 will not be removed during the gate replacement process.

在一比較例中,記憶裝置未包含蝕刻停止層,從而在形成電性連接至垂直通道結構之接觸結構時,例如為了建立位元線與垂直通道結構之電性連接而在垂直通道結構上方形成接觸結構,接觸結構會朝向基板的方向向下延伸至堆疊結構中的導電層,導致電性連接無法被正確地建立,並造成位元線與導電層的短路問題,例如位元線與串列選擇線之間的短路問題,進而影響記憶裝置之良率與產量。本揭露提供之記憶裝置及其製造方法藉由在堆疊結構上設置做為蝕刻停止層之介電層,使接觸結構的深度得以被適當地控制(或可理解為,接 觸結構的下表面得以定位於適當的位置),可有效降低短路問題,並提升記憶裝置之良率與產量。並且,本揭露提供之記憶裝置及其製造方法包含可保護介電層之間隔層,可避免介電層在後續形成閘極之過程中受到損傷。此外,本揭露提供之記憶裝置及其製造方法可整合於現有之記憶裝置製程中,具備容易施行且低成本之益處。 In a comparative example, the memory device does not include an etch stop layer, so that contact structures electrically connected to the vertical channel structures are formed above the vertical channel structures, for example, to establish electrical connections between the bit lines and the vertical channel structures. The contact structure, the contact structure will extend down to the conductive layer in the stack structure towards the substrate, causing the electrical connection to not be established correctly, and causing a short circuit problem between the bit line and the conductive layer, such as bit line and serial The short circuit problem between the selection lines further affects the yield and yield of the memory device. The memory device and its manufacturing method provided in this disclosure enable the depth of the contact structure to be properly controlled by disposing a dielectric layer as an etch stop layer on the stack structure (or it can be understood as, contact The lower surface of the contact structure can be positioned in a proper position), which can effectively reduce the short circuit problem and improve the yield and yield of the memory device. Moreover, the memory device and the manufacturing method provided by the present disclosure include a spacer layer that can protect the dielectric layer, and can prevent the dielectric layer from being damaged in the subsequent process of forming the gate electrode. In addition, the memory device and its manufacturing method provided by the present disclosure can be integrated into the existing memory device manufacturing process, which has the advantages of easy implementation and low cost.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

10:記憶裝置 10: memory device

101:基板 101: Substrate

111~118:第一絕緣層 111~118: the first insulating layer

130U,138U:上表面 130U, 138U: upper surface

130:介電層 130: dielectric layer

131:第一絕緣膜 131: first insulating film

134:垂直通道結構 134: Vertical channel structure

135:記憶層 135: memory layer

136:通道層 136: Channel layer

137:絕緣柱 137: Insulation column

138:上插塞 138: upper plug

139:第二絕緣膜 139: second insulating film

145:導電膜 145: Conductive film

146:層間介電層 146: interlayer dielectric layer

147,147’,148:接觸結構 147, 147’, 148: contact structure

150:堆疊結構 150: stacked structure

151~157:導電層 151~157: conductive layer

Claims (10)

一種記憶裝置之製造方法,包括:提供一堆疊結構,該堆疊結構包含交錯堆疊的多個第一絕緣層與多個第二絕緣層,該些第一絕緣層的材質不同於該些第二絕緣層的材質;在該堆疊結構上形成一介電層;形成一狹縫貫穿該介電層,該狹縫的一底部使該些第一絕緣層中設置於頂部的一第一絕緣層暴露;以及在該狹縫的一側壁形成一間隔層,其中該間隔層的一底表面形成在該些第一絕緣層中設置於頂部的該第一絕緣層中。 A method of manufacturing a memory device, comprising: providing a stack structure, the stack structure includes a plurality of first insulating layers and a plurality of second insulating layers stacked alternately, the materials of the first insulating layers are different from those of the second insulating layers layer material; forming a dielectric layer on the stacked structure; forming a slit through the dielectric layer, a bottom of the slit exposes a first insulating layer disposed on the top among the first insulating layers; And a spacer layer is formed on a side wall of the slit, wherein a bottom surface of the spacer layer is formed in the first insulating layer disposed at the top among the first insulating layers. 如請求項1所述之製造方法,更包括:形成一垂直通道結構貫穿該堆疊結構,其中該垂直通道結構形成於在該堆疊結構上形成該介電層之該步驟之前。 The manufacturing method according to claim 1, further comprising: forming a vertical channel structure through the stack structure, wherein the vertical channel structure is formed before the step of forming the dielectric layer on the stack structure. 如請求項2所述之製造方法,其中該垂直通道結構之一上表面接觸該介電層。 The manufacturing method according to claim 2, wherein an upper surface of the vertical channel structure contacts the dielectric layer. 如請求項1所述之製造方法,更包括:形成一垂直通道結構貫穿該堆疊結構,其中該垂直通道結構形成於在該堆疊結構上形成該介電層之該步驟之後。 The manufacturing method as claimed in claim 1, further comprising: forming a vertical channel structure through the stacked structure, wherein the vertical channel structure is formed after the step of forming the dielectric layer on the stacked structure. 如請求項4所述之製造方法,其中該垂直通道結構貫穿該介電層,該垂直通道結構之一側表面接觸該介電層。 The manufacturing method according to claim 4, wherein the vertical channel structure penetrates the dielectric layer, and one side surface of the vertical channel structure contacts the dielectric layer. 一種記憶裝置,包括:一堆疊結構,包含交錯堆疊的多個絕緣層與多個導電層;一介電層,設置於該堆疊結構上方,該介電層的材質不同於該些絕緣層的材質;一導電膜,貫穿該堆疊結構與該介電層;以及一間隔層,設置於該導電膜與該介電層之間,該間隔層的一底表面形成在該些絕緣層中設置於頂部的一絕緣層中。 A memory device, comprising: a stack structure, including a plurality of insulating layers and a plurality of conductive layers stacked alternately; a dielectric layer, disposed above the stack structure, the material of the dielectric layer is different from the material of the insulating layers ; a conductive film, penetrating the stacked structure and the dielectric layer; and a spacer layer, disposed between the conductive film and the dielectric layer, a bottom surface of the spacer layer is formed in the insulating layers and disposed on the top in an insulating layer. 如請求項6所述之記憶裝置,更包括:一垂直通道結構,貫穿該堆疊結構,其中該垂直通道結構接觸該介電層。 The memory device according to claim 6, further comprising: a vertical channel structure passing through the stacked structure, wherein the vertical channel structure contacts the dielectric layer. 如請求項7所述之記憶裝置,其中該垂直通道結構之一上表面接觸該介電層。 The memory device as claimed in claim 7, wherein an upper surface of the vertical channel structure contacts the dielectric layer. 如請求項7所述之記憶裝置,其中該垂直通道結構之一側表面接觸該介電層。 The memory device as claimed in claim 7, wherein a side surface of the vertical channel structure contacts the dielectric layer. 如請求項7所述之記憶裝置,更包括:一接觸結構,設置於該堆疊結構上方且電性連接該垂直通道結構,其中該接觸結構具有一下表面,該下表面和該介電層的一上表面或一下表面共平面。 The memory device as claimed in claim 7, further comprising: a contact structure disposed above the stack structure and electrically connected to the vertical channel structure, wherein the contact structure has a lower surface, the lower surface and a portion of the dielectric layer The upper or lower surface is coplanar.
TW110101262A 2021-01-13 2021-01-13 Memory device and method for manufacturing the same TWI785462B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110101262A TWI785462B (en) 2021-01-13 2021-01-13 Memory device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110101262A TWI785462B (en) 2021-01-13 2021-01-13 Memory device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW202228249A TW202228249A (en) 2022-07-16
TWI785462B true TWI785462B (en) 2022-12-01

Family

ID=83437150

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101262A TWI785462B (en) 2021-01-13 2021-01-13 Memory device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI785462B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201941369A (en) * 2018-03-20 2019-10-16 日商東芝記憶體股份有限公司 Semiconductor memory device and method of manufacturing semiconductor memory device
TW201944542A (en) * 2018-04-18 2019-11-16 大陸商長江存儲科技有限責任公司 Method of forming channel plugs of 3D memory device
US10797061B2 (en) * 2018-12-17 2020-10-06 Sandisk Technologies Llc Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201941369A (en) * 2018-03-20 2019-10-16 日商東芝記憶體股份有限公司 Semiconductor memory device and method of manufacturing semiconductor memory device
TW201944542A (en) * 2018-04-18 2019-11-16 大陸商長江存儲科技有限責任公司 Method of forming channel plugs of 3D memory device
US10797061B2 (en) * 2018-12-17 2020-10-06 Sandisk Technologies Llc Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same

Also Published As

Publication number Publication date
TW202228249A (en) 2022-07-16

Similar Documents

Publication Publication Date Title
US10593393B2 (en) Semiconductor memory device
US10453859B2 (en) Methods of manufacturing vertical memory devices
KR102416028B1 (en) Three-dimensional semiconductor memory device and method for fabricating the same
US9978771B2 (en) Manufacturing method of semiconductor device including multi-layered source layer and channel extending therethrough
KR102650995B1 (en) Vertical type memory device
US20230292515A1 (en) Vertical memory devices and methods of manufacturing the same
KR102195112B1 (en) Vertical memory devices and methods of manufacturing the same
US10636808B2 (en) Vertical memory device having an epitaxial layer in contact with a channel layer
US10892278B2 (en) Three-dimensional semiconductor devices
US10886296B2 (en) Three-dimensional semiconductor devices including vertical structures with varied spacing
US20200105782A1 (en) Vertical channel structure and memory device
US10985112B2 (en) Memory device and method for fabricating the memory device
US11456356B2 (en) Semiconductor device and method for fabricating a semiconductor device
US11069410B1 (en) Three-dimensional NOR-NAND combination memory device and method of making the same
US11417675B2 (en) Three-dimensional semiconductor memory devices
CN112310096A (en) Semiconductor device with a plurality of semiconductor chips
TWI785462B (en) Memory device and method for manufacturing the same
TW202322361A (en) Semiconductor device
CN113497062A (en) Semiconductor memory device
US11647627B2 (en) Integrated circuit device
CN114823483A (en) Memory device and method of manufacturing the same
US11737273B2 (en) Three-dimensional semiconductor memory devices
US11908797B2 (en) Integrated circuit device having a bit line and a main insulating spacer with an extended portion
US20230157036A1 (en) Semiconductor memory devices
TWI713154B (en) Memory device