TWI784777B - Method for detecting an eyeball and the related system - Google Patents

Method for detecting an eyeball and the related system Download PDF

Info

Publication number
TWI784777B
TWI784777B TW110140416A TW110140416A TWI784777B TW I784777 B TWI784777 B TW I784777B TW 110140416 A TW110140416 A TW 110140416A TW 110140416 A TW110140416 A TW 110140416A TW I784777 B TWI784777 B TW I784777B
Authority
TW
Taiwan
Prior art keywords
depth
coordinate value
reflection time
light source
surface area
Prior art date
Application number
TW110140416A
Other languages
Chinese (zh)
Other versions
TW202317025A (en
Inventor
洪宗彬
潘怡潔
吳佩昌
許兆民
黃柏文
Original Assignee
正修學校財團法人正修科技大學
長庚醫療財團法人高雄長庚紀念醫院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正修學校財團法人正修科技大學, 長庚醫療財團法人高雄長庚紀念醫院 filed Critical 正修學校財團法人正修科技大學
Priority to TW110140416A priority Critical patent/TWI784777B/en
Application granted granted Critical
Publication of TWI784777B publication Critical patent/TWI784777B/en
Publication of TW202317025A publication Critical patent/TW202317025A/en

Links

Images

Abstract

The present invention provides a method for detecting an eyeball and the related system, in which an optical image sensing device is used for detection. Firstly, a light is emitted to a first position, a second position, and a third position of an eyeball at a first time and a second time, and then all reflection times of the light are obtained. A depth of the first position, a depth of the second position, and a depth of the third position are obtained by calculation of all reflection times using a processing element, and a first specific area and a second specific area are obtained according to the three depths. Finally, a deformation level of the eyeball is generated according to the ratio of the two specific areas. By such a way, the eyeball can’t be sunken using pulsed airflow during detection so that the discomfort for the eyeball detection and reduces and the detection accuracy increases.

Description

用以檢測眼球之方法及其系統Method and system for detecting eyeballs

一種用以檢測眼球之方法及其系統,特別是涉及一種非接觸式檢測眼球之方法及其系統。 A method and system for detecting eyeballs, in particular to a method and system for non-contact eyeball detection.

正常人的眼內壓約為10~20毫米汞柱(mmHg),且雙眼的差異小於5mmHg,一般來說,眼內壓並非固定值,會因晝夜變化而有3~6mmHg的變化,而眼內壓的維持,主要來自於眼球內睫狀體所分泌的房水,正常情況下房水的生成與排出會維持著動態的平衡,然而,當房水產生過多或是排出受阻時,就會導致眼內房水積存使得眼內壓升高。 The intraocular pressure of normal people is about 10-20 millimeters of mercury (mmHg), and the difference between the two eyes is less than 5mmHg. The maintenance of intraocular pressure mainly comes from the aqueous humor secreted by the ciliary body in the eyeball. Under normal circumstances, the generation and discharge of aqueous humor will maintain a dynamic balance. However, when the aqueous humor is produced too much or the discharge is blocked, it will Aqueous humor builds up in the eye and increases intraocular pressure.

因此,當眼內壓上升時,眼睛可能開始有輕微的不舒服、酸澀或虹暈現象,倘若逐漸嚴重時則開始會有頭痛、眼脹或噁心嘔吐的現象,眼內壓高時會壓迫視神經,長期下來會使視神經萎縮、病變,進而造成視野缺損、視力下降等症狀,顯見眼內壓控制的重要性。 Therefore, when the intraocular pressure rises, the eyes may start to have slight discomfort, soreness or rainbow phenomenon, and if it gradually becomes severe, there will be headache, eye swelling or nausea and vomiting. When the intraocular pressure is high, it will compress the optic nerve In the long run, it will cause optic nerve atrophy and disease, and then cause visual field defect, vision loss and other symptoms, which shows the importance of intraocular pressure control.

習知最常見的測量眼內壓方式為非接觸式壓平眼內壓計(non-contact tonometer,NCT)測量法,其利用氣體脈衝力壓平3.06mm直徑角膜中央區,因此不需要麻醉,僅需要將頭擺放於支架上,並注視儀器中的光點,此時,檢查 者由非接觸式壓平眼內壓計之目鏡中瞄準患者眼睛後,按下發射鈕,發出的脈衝氣流而可壓平角膜,在此過程中,眼角膜表面因受力而從凸起變形至平坦,再到凹陷,並隨著力量的減弱,漸漸地由凹陷至平坦,最後回復至原本的形狀,透過發射紅外線以偵測角膜反射光的能量,來推測得知角膜的凹陷程度,不同的曲率使得紅外線的反射角度也會有所不同,儀器接收紅外線訊號最強的時間點定為壓平點,並且將第一個壓平點的吹氣壓力定為眼內壓,如此一來,即可顯示眼內壓值,通常連續2-3次後,取其平均值。 The most common way to measure intraocular pressure is the non-contact applanation intraocular tonometer (non-contact tonometer, NCT) measurement method, which uses gas pulse force to flatten the central area of the cornea with a diameter of 3.06 mm, so no anesthesia is required. Just place the head on the bracket and watch the light spot in the instrument. At this time, check After aiming at the patient's eye through the eyepiece of the non-contact applanation intraocular pressure meter, the firing button is pressed, and the pulsed airflow sent out can flatten the cornea. During this process, the surface of the cornea is deformed from the protrusion due to force. From flat to concave, and with the weakening of the force, gradually from concave to flat, and finally back to the original shape, by emitting infrared rays to detect the energy of the corneal reflected light, to infer the degree of corneal depression, different The curvature makes the reflection angle of infrared rays also vary. The time point when the instrument receives the strongest infrared signal is defined as the applanation point, and the air blowing pressure at the first applanation point is defined as the intraocular pressure. In this way, It can display the intraocular pressure value, usually after 2-3 consecutive times, take the average value.

前述非接觸式壓平眼內壓計雖稱非接觸式,惟尚需發出脈衝氣流以壓平角膜,此一動作,經常使得患者不自覺眨眼,更甚者有些患者本身因眼睛有發炎、乾眼症或其他症狀導致頻繁性的眨眼,如此一來,更難得以此測量方式測得其眼內壓,而本發明提供一種用以檢測眼內壓的方法及其系統,其以光學影像感測裝置進行測量,僅以發射之光源測得其眼球變形量,進而換算出眼內壓,大幅改善習知須以脈衝氣流接觸眼睛的不適感,亦增加其精準度。 Although the aforementioned non-contact applanation intraocular tonometer is called non-contact, it still needs to send out pulsed airflow to flatten the cornea. This action often makes patients blink unconsciously. Eye disease or other symptoms cause frequent blinking, so it is more difficult to measure the intraocular pressure in this way, and the present invention provides a method and system for detecting intraocular pressure, which uses optical image sensing The measuring device is used to measure the deformation of the eyeball only by the emitted light source, and then convert the intraocular pressure, which greatly improves the discomfort of conventional pulse airflow contacting the eyes and increases its accuracy.

本發明之主要目的,係提供一種用以檢測眼球之方法,其以光學影像感測裝置分別發射光源至眼球之第一位置、第二位置及第三位置,並接收反射時間,再經由運算處理單元依據其反射時間取得第一位置、第二位置及第三位置之深度,並計算出其表面積,針對其表面積之比例差異,取得眼球變形量,而不須另以脈衝氣流於眼球形成凹陷,並提升精確度。 The main purpose of the present invention is to provide a method for detecting the eyeball, which uses an optical image sensing device to emit light to the first position, the second position and the third position of the eyeball respectively, and receives the reflection time, and then performs calculation and processing The unit obtains the depth of the first position, the second position and the third position according to the reflection time, and calculates the surface area, and obtains the amount of eyeball deformation according to the proportional difference of the surface area, without the need to form a depression in the eyeball with pulse airflow, and improve accuracy.

為了達到上述之目的,本發明之一實施例係揭示用以檢測眼球之方法,包含步驟:一光學影像感測裝置於一第一時間發射一第一光源至一眼球之 一第一位置、發射一第二光源至該眼球之一第二位置,及發射一第三光源至一第三位置,並接收於該第一位置反射之該第一光源之一第一反射時間、於該第二位置反射之該第二光源之一第二反射時間,及於該第三位置反射之該第三光源之一第三反射時間;該光學影像感測裝置於一第二時間發射一第四光源至該眼球之該第一位置、發射一第五光源至該眼球之該第二位置,及發射一第六光源至該第三位置,並接收於該第一位置反射之該第四光源之一第四反射時間、於該第二位置反射之該第五光源之一第五反射時間,及於該第三位置反射之該第六光源之一第六反射時間;一運算處理單元依據該第一反射時間、該第二反射時間及該第三反射時間,取得對應於該第一位置之一第一深度、對應於該第二位置之一第二深度及對應於該第三位置之一第三深度,並依據該第四反射時間、該第五反射時間及該第六反射時間,取得對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度;該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積;及該運算處理單元比對該第一表面積與該第二表面積之比例,取得一變形量。 In order to achieve the above object, one embodiment of the present invention discloses a method for detecting the eyeball, including the steps: an optical image sensing device emits a first light source to the eyeball at a first time A first position, emit a second light source to a second position of the eyeball, and emit a third light source to a third position, and receive a first reflection time of the first light source reflected at the first position , a second reflection time of the second light source reflected at the second position, and a third reflection time of the third light source reflected at the third position; the optical image sensing device emits at a second time a fourth light source to the first position of the eye, emit a fifth light source to the second position of the eye, and emit a sixth light source to the third position, and receive the first light reflected at the first position A fourth reflection time of the four light sources, a fifth reflection time of the fifth light source reflected at the second position, and a sixth reflection time of the sixth light source reflected at the third position; an arithmetic processing unit According to the first reflection time, the second reflection time and the third reflection time, a first depth corresponding to the first position, a second depth corresponding to the second position and a depth corresponding to the third position are obtained A third depth, and according to the fourth reflection time, the fifth reflection time and the sixth reflection time, obtain a fourth depth corresponding to the first position, a fifth depth corresponding to the second position and a sixth depth corresponding to the third position; the arithmetic processing unit generates a first surface area according to the first depth, the second depth and the third depth, and generates a first surface area according to the fourth depth and the fifth depth and the sixth depth to generate a second surface area; and the calculation processing unit compares the ratio of the first surface area to the second surface area to obtain a deformation amount.

較佳地,該第一深度為該第一反射時間與一光速之乘積、該第二深度為該第二反射時間與該光速之乘積、該第三深度為該第三反射時間與該光速之乘積、該第四深度為該第四反射時間與該光速之乘積、該第五深度為該第五反射時間與該光速之乘積,及該第六深度為該第六反射時間與該光速之乘積。 Preferably, the first depth is the product of the first reflection time and a speed of light, the second depth is the product of the second reflection time and the speed of light, the third depth is the product of the third reflection time and the speed of light product, the fourth depth is the product of the fourth reflection time and the speed of light, the fifth depth is the product of the fifth reflection time and the speed of light, and the sixth depth is the product of the sixth reflection time and the speed of light .

較佳地,該運算處理單元依據該第一深度生成對應之一第一座標值、該第二深度生成對應之一第二座標值、該第三深度生成對應之一第三座標值、該第四深度生成對應之一第四座標值、該第五深度生成對應之一第五座標 值,及該第六深度生成對應之一第六座標值;該運算處理單元依據該第一座標值、該第二座標值及該第三座標值,取得一第一方程組,並依據該第三座標值、該第四座標值及該第五座標值,取得一第二方程組;該運算處理單元依據該第一方程組及該第二方程組,取得對應該眼球之一中心座標值;及該運算處理單元依據一演算法、該中心座標值、該第一座標值、該第二座標值及該第三座標值進行演算,取得該第一表面積,並依據該演算法、該中心座標值、該第四座標值、該第五座標值及該第六座標值進行演算,取得該第二表面積。 Preferably, the arithmetic processing unit generates a first coordinate value corresponding to the first depth, a second coordinate value corresponding to the second depth, a third coordinate value corresponding to the third depth, and a third coordinate value corresponding to the third depth. Four depths are generated corresponding to one of the fourth coordinate values, and the fifth depth is generated corresponding to one of the fifth coordinates value, and the sixth depth generates a corresponding sixth coordinate value; the arithmetic processing unit obtains a first equation group according to the first coordinate value, the second coordinate value and the third coordinate value, and according to the first coordinate value The three coordinate values, the fourth coordinate value and the fifth coordinate value obtain a second equation group; the operation processing unit obtains a center coordinate value corresponding to the eyeball according to the first equation group and the second equation group; and the calculation processing unit performs calculation according to an algorithm, the center coordinate value, the first coordinate value, the second coordinate value and the third coordinate value to obtain the first surface area, and according to the algorithm, the center coordinate value value, the fourth coordinate value, the fifth coordinate value and the sixth coordinate value to obtain the second surface area.

較佳地,該第一表面積為該中心座標值投影至該第一座標值、該第二座標值及該第三座標值之投影面積,該第二表面積為該中心座標值投影至該第四座標值、該第五座標值及該第六座標值之投影面積,該演算法為曲面積分,以計算該第一表面積與該第二表面積。 Preferably, the first surface area is the projected area of the central coordinate value projected to the first coordinate value, the second coordinate value and the third coordinate value, and the second surface area is the projected area of the central coordinate value projected to the fourth Coordinate value, the projected area of the fifth coordinate value and the sixth coordinate value, the algorithm is surface integral to calculate the first surface area and the second surface area.

較佳地,該光學影像感測裝置為紅外線影像感測器。 Preferably, the optical image sensing device is an infrared image sensor.

本發明之另一目的,係提供一種用以檢測眼球之系統,其以光學影像感測裝置分別發射光源至眼球之第一位置、第二位置及第三位置,並接收反射時間,再經由運算處理單元依據其反射時間取得第一位置、第二位置及第三位置之深度,並計算出其表面積,針對其表面積之比例,取得眼球變形量,並進一步依據眼球變形量換算其眼內壓值,實現完全不接觸的檢測眼球系統。 Another object of the present invention is to provide a system for detecting the eyeball, which uses an optical image sensing device to emit light to the first position, the second position and the third position of the eyeball respectively, and receives the reflection time, and then calculates The processing unit obtains the depths of the first position, the second position and the third position according to their reflection time, and calculates their surface area, and obtains the amount of eyeball deformation based on the ratio of the surface area, and further converts the intraocular pressure value according to the amount of eyeball deformation , to achieve a completely non-contact detection eye system.

為了達到上述之目的,本發明之另一實施例係揭示用以檢測眼球之系統,包含:一光學影像感測裝置,用以於一第一時間發射一第一光源至一眼球之一第一位置、發射一第二光源至該眼球之一第二位置,及發射一第三光源至一第三位置,並接收於該第一位置反射之該第一光源之一第一反射時間、於該第二位置反射之該第二光源之一第二反射時間,及於該第三位置反射之該第三光 源之一第三反射時間,以及於一第二時間發射一第四光源至該眼球之該第一位置、發射一第五光源至該眼球之該第二位置,及發射一第六光源至該第三位置,並接收於該第一位置反射之該第四光源之一第四反射時間、於該第二位置反射之該第五光源之一第五反射時間,及於該第三位置反射之該第六光源之一第六反射時間;及一運算處理單元,與光學影像感測裝置訊號連接,用以接收該第一反射時間、該第二反射時間、該第三反射時間、該第四反射時間、該第五反射時間及該第六反射時間,並經運算取得對應於該第一位置之一第一深度、對應於該第二位置之一第二深度、對應於該第三位置之一第三深度、對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度;其中,該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積,並依據該第一表面積與該第二表面積之比例,取得一變形量,並經該變形量換算為該眼球之一眼內壓值。 In order to achieve the above object, another embodiment of the present invention discloses a system for detecting eyeballs, including: an optical image sensing device, used to emit a first light source to one of the eyeballs at a first time position, emit a second light source to a second position of the eyeball, and emit a third light source to a third position, and receive a first reflection time of the first light source reflected at the first position, at the The second reflection time of the second light source reflected at the second position, and the third light reflected at the third position a third reflection time of the source, and emit a fourth light source to the first position of the eyeball at a second time, emit a fifth light source to the second position of the eyeball, and emit a sixth light source to the eyeball a third position, and receive a fourth reflection time of the fourth light source reflected at the first position, a fifth reflection time of the fifth light source reflected at the second position, and a reflection time of the fifth light source reflected at the third position A sixth reflection time of the sixth light source; and an arithmetic processing unit, connected to the optical image sensing device for receiving the first reflection time, the second reflection time, the third reflection time, the fourth reflection time, reflection time, the fifth reflection time, and the sixth reflection time, and obtain a first depth corresponding to the first position, a second depth corresponding to the second position, and a depth corresponding to the third position through calculation. A third depth, a fourth depth corresponding to the first position, a fifth depth corresponding to the second position, and a sixth depth corresponding to the third position; wherein, the arithmetic processing unit is based on the first A depth, the second depth, and the third depth generate a first surface area, and generate a second surface area based on the fourth depth, the fifth depth, and the sixth depth, and generate a second surface area based on the first surface area and the According to the ratio of the second surface area, a deformation amount is obtained, and the deformation amount is converted into an intraocular pressure value of the eyeball.

較佳地,該第一深度為該第一反射時間與一光速之乘積、該第二深度為該第二反射時間與該光速之乘積、該第三深度為該第三反射時間與該光速之乘積、該第四深度為該第四反射時間與該光速之乘積、該第五深度為該第五反射時間與該光速之乘積,及該第六深度為該第六反射時間與該光速之乘積。 Preferably, the first depth is the product of the first reflection time and a speed of light, the second depth is the product of the second reflection time and the speed of light, the third depth is the product of the third reflection time and the speed of light product, the fourth depth is the product of the fourth reflection time and the speed of light, the fifth depth is the product of the fifth reflection time and the speed of light, and the sixth depth is the product of the sixth reflection time and the speed of light .

較佳地,該運算處理單元依據該第一深度生成對應之一第一座標值、該第二深度生成對應之一第二座標值、該第三深度生成對應之一第三座標值、該第四深度生成對應之一第四座標值、該第五深度生成對應之一第五座標值,及該第六深度生成對應之一第六座標值,並依據該第一座標值、該第二座標 值及該第三座標值,取得一第一方程組,並依據該第三座標值、該第四座標值及該第五座標值,取得一第二方程組,並經由該第一方程組及該第二方程組,取得對應該眼球之一中心座標值,該運算處理單元透過一演算法、該中心座標值、該第一座標值、該第二座標值及該第三座標值進行演算,取得該第一表面積,並依據該演算法、該中心座標值、該第四座標值、該第五座標值及該第六座標值進行演算,取得該第二表面積。 Preferably, the arithmetic processing unit generates a first coordinate value corresponding to the first depth, a second coordinate value corresponding to the second depth, a third coordinate value corresponding to the third depth, and a third coordinate value corresponding to the third depth. Four depths are generated corresponding to a fourth coordinate value, the fifth depth is generated corresponding to a fifth coordinate value, and the sixth depth is generated corresponding to a sixth coordinate value, and according to the first coordinate value and the second coordinate value value and the third coordinate value, a first equation set is obtained, and a second equation set is obtained according to the third coordinate value, the fourth coordinate value and the fifth coordinate value, and through the first equation set and The second equation set obtains a center coordinate value corresponding to the eyeball, and the calculation processing unit performs calculation through an algorithm, the center coordinate value, the first coordinate value, the second coordinate value, and the third coordinate value, The first surface area is obtained, and calculation is performed according to the algorithm, the center coordinate value, the fourth coordinate value, the fifth coordinate value, and the sixth coordinate value to obtain the second surface area.

較佳地,該第一表面積為該中心座標值投影至該第一座標值、該第二座標值及該第三座標值之投影面積,該第二表面積為該中心座標值投影至該第四座標值、該第五座標值及該第六座標值之投影面積,該演算法為曲面積分,以計算該第一表面積與該第二表面積。 Preferably, the first surface area is the projected area of the central coordinate value projected to the first coordinate value, the second coordinate value and the third coordinate value, and the second surface area is the projected area of the central coordinate value projected to the fourth Coordinate value, the projected area of the fifth coordinate value and the sixth coordinate value, the algorithm is surface integral to calculate the first surface area and the second surface area.

較佳地,該光學影像感測裝置為紅外線影像感測器。 Preferably, the optical image sensing device is an infrared image sensor.

本發明之有益功效在於以光學影像感測裝置且具高精準度之方法進行眼球檢測,經由運算處理單元將第一時間及第二時間所接收反射光源之反射時間經運算取得第一位置、第二位置及第三位置之深度,再將其深度計算出於第一時間對應生成之第一表面積,及於第二時間對應生成之第二表面積,並依第一表面積與第二表面積之比例,取得其變形量,並可進一步換算眼球之眼內壓值,實現不接觸之眼球檢測,提升測量精準度,且無任何檢測不適感。 The beneficial effect of the present invention is to use an optical image sensing device and a high-precision method to detect eyeballs, and obtain the first position, the second position, and the second position by calculating the reflection time of the reflected light source received at the first time and the second time through the calculation processing unit. The depths of the second position and the third position are then calculated based on the first surface area corresponding to the first time and the second surface area corresponding to the second time, and according to the ratio of the first surface area to the second surface area, Obtain the amount of deformation, and further convert the intraocular pressure value of the eyeball to realize non-contact eyeball detection, improve measurement accuracy, and have no discomfort in detection.

1:光學影像感測裝置 1: Optical image sensing device

2:運算處理單元 2: Operation processing unit

C1:第一座標值 C1: first coordinate value

C2:第二座標值 C2: second coordinate value

C3:第三座標值 C3: The third coordinate value

C4:第四座標值 C4: The fourth coordinate value

C5:第五座標值 C5: fifth coordinate value

C6:第六座標值 C6: The sixth coordinate value

D1:第一深度 D1: first depth

D2:第二深度 D2: second depth

D3:第三深度 D3: third depth

D4:第四深度 D4: fourth depth

D5:第五深度 D5: fifth depth

D6:第六深度 D6: sixth depth

E:眼球 E: eyeball

L1:第一光源 L1: the first light source

L2:第二光源 L2: Second light source

L3:第三光源 L3: third light source

L4:第四光源 L4: The fourth light source

L5:第五光源 L5: fifth light source

L6:第六光源 L6: sixth light source

O:中心座標值 O: center coordinate value

P1:第一位置 P1: first position

P2:第二位置 P2: second position

P3:第三位置 P3: third position

S1:步驟 S1: step

S3:步驟 S3: step

S5:步驟 S5: step

S7:步驟 S7: step

S71:步驟 S71: Steps

S73:步驟 S73: step

S75:步驟 S75: Steps

S77:步驟 S77: step

S9:步驟 S9: step

SA1:第一表面積 SA1: first surface area

SA2:第二表面積 SA2: second surface area

T1:第一時間 T1: the first time

T2:第二時間 T2: second time

第1圖:其為本發明之一實施例之系統作動示意圖;第2A圖:其為本發明之一實施例之方法流程圖;及 第2B圖:其為本發明之一實施例之部分方法流程圖。 Figure 1: It is a schematic diagram of the system action of one embodiment of the present invention; Figure 2A: It is a flow chart of the method of one embodiment of the present invention; and FIG. 2B: It is a partial method flow chart of an embodiment of the present invention.

有關本發明之相關申請專利特色與技術內容,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。 The features and technical contents of the relevant patent applications of the present invention will be clearly presented in the following detailed description of preferred embodiments with reference to the drawings.

請參閱第1圖,為本發明之一實施例之系統作動示意圖。如圖所示,本發明之一種用以檢測眼球之系統,包含:光學影像感測裝置1及運算處理單元2,其中,光學影像感測裝置1係與運算處理單元2訊號連接。 Please refer to FIG. 1, which is a schematic diagram of the system operation of an embodiment of the present invention. As shown in the figure, a system for detecting eyeballs according to the present invention includes: an optical image sensing device 1 and a computing processing unit 2 , wherein the optical image sensing device 1 is connected to the computing processing unit 2 with signals.

請一併參閱第2A圖,其為本發明之一實施例之方法流程圖。如圖所示,本發明之一種用以檢測眼球之方法包含下列步驟。 Please also refer to FIG. 2A , which is a flow chart of a method according to an embodiment of the present invention. As shown in the figure, a method for detecting eyeballs of the present invention includes the following steps.

步驟S1:一光學影像感測裝置於一第一時間發射一第一光源至一眼球之一第一位置、發射一第二光源至該眼球之一第二位置,及發射一第三光源至一第三位置,並接收於該第一位置反射之該第一光源之一第一反射時間、於該第二位置反射之該第二光源之一第二反射時間,及於該第三位置反射之該第三光源之一第三反射時間;步驟S3:該光學影像感測裝置於一第二時間發射一第四光源至該眼球之該第一位置、發射一第五光源至該眼球之該第二位置,及發射一第六光源至該第三位置,並接收於該第一位置反射之該第四光源之一第四反射時間、於該第二位置反射之該第五光源之一第五反射時間,及於該第三位置反射之該第六光源之一第六反射時間;步驟S5:一運算處理單元依據該第一反射時間、該第二反射時間及該第三反射時間,取得對應於該第一位置之一第一深度、對應於該第二位置之 一第二深度及對應於該第三位置之一第三深度,並依據該第四反射時間、該第五反射時間及該第六反射時間,取得對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度;步驟S7:該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積;及步驟S9:該運算處理單元依據該第一表面積與該第二表面積之比例,取得一變形量。 Step S1: An optical image sensing device emits a first light source to a first position of the eyeball at a first time, emits a second light source to a second position of the eyeball, and emits a third light source to a a third position, and receive a first reflection time of the first light source reflected at the first position, a second reflection time of the second light source reflected at the second position, and a reflection time of the second light source reflected at the third position A third reflection time of the third light source; step S3: the optical image sensing device emits a fourth light source to the first position of the eyeball at a second time, emits a fifth light source to the first position of the eyeball Two positions, and emit a sixth light source to the third position, and receive a fourth reflection time of the fourth light source reflected at the first position, a fifth light source of the fifth light source reflected at the second position reflection time, and a sixth reflection time of the sixth light source reflected at the third position; step S5: an arithmetic processing unit obtains a corresponding A first depth at the first location corresponding to the second location A second depth and a third depth corresponding to the third position, and according to the fourth reflection time, the fifth reflection time and the sixth reflection time, obtain a fourth depth corresponding to the first position, A fifth depth corresponding to the second position and a sixth depth corresponding to the third position; step S7: the arithmetic processing unit generates a first depth, the second depth and the third depth according to the first depth a surface area, and generate a second surface area according to the fourth depth, the fifth depth, and the sixth depth; and step S9: the calculation processing unit obtains a deformation according to the ratio of the first surface area to the second surface area quantity.

如步驟S1所示,本實施例如第1圖所示,光學影像感測裝置1於第一時間T1發射第一光源L1至眼球E之第一位置P1、發射第二光源L2至眼球E之第二位置P2,及發射第三光源L3至眼球E之第三位置P3,並接收於第一位置P1反射之第一光源L1之第一反射時間、於第二位置P2反射之第二光源L2之第二反射時間,及於第三位置P3反射之第三光源L3之第三反射時間,其中,光學影像感測裝置1為紅外線影像感測器,且第一光源L1、第二光源L2及第三光源L3皆為波長在760nm至1mm之間的紅外光。 As shown in step S1, in this embodiment, as shown in Figure 1, the optical image sensing device 1 emits the first light source L1 to the first position P1 of the eyeball E at the first time T1, and emits the second light source L2 to the first position P1 of the eyeball E. Two positions P2, and the third position P3 that emits the third light source L3 to the eyeball E, and receives the first reflection time of the first light source L1 reflected at the first position P1, and the second light source L2 reflected at the second position P2 The second reflection time, and the third reflection time of the third light source L3 reflected at the third position P3, wherein the optical image sensing device 1 is an infrared image sensor, and the first light source L1, the second light source L2 and the second light source L1 All three light sources L3 are infrared light with a wavelength between 760nm and 1mm.

如步驟S3所示,其與前一步驟相似,係以光學影像感測裝置1於第二時間T2發射第四光源L4至眼球E之第一位置P1、發射第五光源L5至眼球E之第二位置P2,及發射第六光源L6至眼球E之第三位置P3,並接收於第一位置P1反射之第四光源L4之第四反射時間、於第二位置P2反射之第五光源L5之第五反射時間,及於第三位置P3反射之第六光源L6之第六反射時間,其中,光學影像感測裝置1為紅外線影像感測器,且第四光源L4、第五光源L5及第六光源L6皆為波長在760nm至1mm之間的紅外光,其與前一步驟差異僅在於第一時間T1不等於第 二時間T2,意即於不同時間點,同樣於第一位置P1、第二位置P2及第三位置P3發射同樣的光源,以及接收對應光源之反射時間。 As shown in step S3, which is similar to the previous step, the optical image sensing device 1 emits the fourth light source L4 to the first position P1 of the eyeball E at the second time T2, and emits the fifth light source L5 to the first position P1 of the eyeball E. The second position P2, and the third position P3 that emits the sixth light source L6 to the eyeball E, and receives the fourth reflection time of the fourth light source L4 reflected at the first position P1, and the fifth light source L5 reflected at the second position P2 The fifth reflection time, and the sixth reflection time of the sixth light source L6 reflected at the third position P3, wherein the optical image sensing device 1 is an infrared image sensor, and the fourth light source L4, the fifth light source L5 and the sixth light source L6 The six light sources L6 are all infrared light with a wavelength between 760nm and 1mm. The difference from the previous step is that the first time T1 is not equal to the first time T1. The second time T2 means that at different time points, the same light source is emitted at the first position P1, the second position P2 and the third position P3, and the reflection time of receiving the corresponding light source.

如步驟S5所示,運算處理單元2依據前述取得之第一反射時間、第二反射時間及第三反射時間,取得對應第一位置P1之第一深度D1、對應第二位置P2之第二深度D2,及對應第三位置P3之第三深度D3,並依據第四反射時間、第五反射時間及第六反射時間,取得對應第一位置P1之第四深度D4、對應第二位置P2之第五深度D5,及對應第三位置P3之第六深度D6,即第1圖中,反射之虛線為所述各位置之深度,其中,光速為指光在真空中的速率,其為一個物理常數,精確值為299,792,458m/s,本實施例則以3×108m/s作為運算,但不在此限,距離為時間與速率的乘積,因此第一深度D1為第一反射時間與光速之乘積、第二深度D2為第二反射時間與光速之乘積、第三深度D3為第三反射時間與光速之乘積、第四深度D4為第四反射時間與光速之乘積、第五深度D5為第五反射時間與光速之乘積,及第六深度D6為第六反射時間與光速之乘積。 As shown in step S5, the arithmetic processing unit 2 obtains the first depth D1 corresponding to the first position P1 and the second depth corresponding to the second position P2 according to the obtained first reflection time, second reflection time and third reflection time. D2, and the third depth D3 corresponding to the third position P3, and according to the fourth reflection time, the fifth reflection time and the sixth reflection time, obtain the fourth depth D4 corresponding to the first position P1, and the third depth D4 corresponding to the second position P2 The fifth depth D5, and the sixth depth D6 corresponding to the third position P3, that is, the dotted line reflected in the first figure is the depth of each position, wherein, the speed of light refers to the speed of light in a vacuum, which is a physical constant , the exact value is 299,792,458m/s. In this embodiment, 3×108m/s is used as the calculation, but not limited thereto. The distance is the product of time and speed, so the first depth D1 is the product of the first reflection time and the speed of light, The second depth D2 is the product of the second reflection time and the speed of light, the third depth D3 is the product of the third reflection time and the speed of light, the fourth depth D4 is the product of the fourth reflection time and the speed of light, and the fifth depth D5 is the fifth reflection The product of time and the speed of light, and the sixth depth D6 is the product of the sixth reflection time and the speed of light.

如步驟S7所示,運算處理單元依據第一深度D1、第二深度D2及第三深度D3生成第一表面積SA1,並依據第四深度D4、第五深度D5及第六深度D6生成第二表面積SA2,請參閱第2B圖,其為本發明之一實施例之部分流程圖,此一步驟中,更包含以下步驟:步驟S71:該運算處理單元依據該第一深度生成對應之一第一座標值、該第二深度生成對應之一第二座標值、該第三深度生成對應之一第三座標值、該第四深度生成對應之一第四座標值、該第五深度生成對應之一第五座標值,及該第六深度生成對應之一第六座標值; 步驟S73:該運算處理單元依據該第一座標值、該第二座標值及該第三座標值,取得一第一方程組,並依據該第三座標值、該第四座標值及該第五座標值,取得一第二方程組;步驟S75:該運算處理單元依據該第一方程組及該第二方程組,取得對應該眼球之一中心座標值;及步驟S75:該運算處理單元依據一演算法、該中心座標值、該第一座標值、該第二座標值及該第三座標值進行演算,取得該第一表面積,並依據該演算法、該中心座標值、該第四座標值、該第五座標值及該第六座標值進行演算,取得該第二表面積。 As shown in step S7, the arithmetic processing unit generates the first surface area SA1 according to the first depth D1, the second depth D2 and the third depth D3, and generates the second surface area according to the fourth depth D4, the fifth depth D5 and the sixth depth D6 SA2, please refer to FIG. 2B, which is a partial flow chart of an embodiment of the present invention. In this step, the following steps are further included: Step S71: The calculation processing unit generates a corresponding first coordinate according to the first depth value, a second coordinate value corresponding to the second depth generation, a third coordinate value corresponding to the third depth generation, a fourth coordinate value corresponding to the fourth depth generation, and a first coordinate value corresponding to the fifth depth generation Five coordinate values, and a sixth coordinate value corresponding to the sixth depth generation; Step S73: The operation processing unit obtains a first equation group according to the first coordinate value, the second coordinate value and the third coordinate value, and obtains a first equation group according to the third coordinate value, the fourth coordinate value and the fifth coordinate value Coordinate value, obtain a second equation group; Step S75: The operation processing unit obtains a center coordinate value corresponding to the eyeball according to the first equation group and the second equation group; and Step S75: The operation processing unit obtains a center coordinate value according to a algorithm, the center coordinate value, the first coordinate value, the second coordinate value, and the third coordinate value to obtain the first surface area, and according to the algorithm, the center coordinate value, and the fourth coordinate value , the fifth coordinate value and the sixth coordinate value to obtain the second surface area.

如步驟S71所示,運算處理單元2依據第一深度D1生成對應第一座標值C1、第二深度D2生成對應第二座標值C2、第三深度D3生成對應第三座標值C3、第四深度D4生成對應第四座標值C4、第五深度D5生成對應第五座標值C5,及第六深度D6生成對應第六座標值C6,於本實施例中,係假設發射光源處為原點(0,0,0),進而推測上述該些座標值,以利計算,但不在此限。 As shown in step S71, the arithmetic processing unit 2 generates the first coordinate value C1 corresponding to the first depth D1, the second coordinate value C2 corresponding to the second depth D2, the third coordinate value C3 corresponding to the third depth D3, and the fourth depth D3. D4 generates a corresponding fourth coordinate value C4, the fifth depth D5 generates a corresponding fifth coordinate value C5, and the sixth depth D6 generates a corresponding sixth coordinate value C6. In this embodiment, it is assumed that the emitting light source is the origin (0 ,0,0), and then infer the above coordinate values to facilitate calculation, but not limited thereto.

如步驟S73所示,運算處理單元2依據第一座標值C1、第二座標值C2及第三座標值C3,取得第一方程組,依據第四座標值C4、第五座標值C5及第六座標值C6,取得第二方程組,於本實施例中,以球面三角學理論取得其方程組,但不在此限。 As shown in step S73, the arithmetic processing unit 2 obtains the first equation group according to the first coordinate value C1, the second coordinate value C2 and the third coordinate value C3, and obtains the first equation group according to the fourth coordinate value C4, the fifth coordinate value C5 and the sixth coordinate value The coordinate value C6 obtains the second equation group. In this embodiment, the equation group is obtained by spherical trigonometry theory, but not limited thereto.

如步驟S75所示,運算處理單元2依據第一方程組及第二方程組取得眼球E之中心座標值O,於本實施例中,接續前一步驟,依據球面三角學理論推導出中心座標值O,而可進一步計算其球面三角形中,任一邊之弧長,但不在此限。 As shown in step S75, the calculation processing unit 2 obtains the center coordinate value O of the eyeball E according to the first equation group and the second equation group. In this embodiment, following the previous step, the center coordinate value is deduced according to the theory of spherical trigonometry O, and the arc length of any side in the spherical triangle can be further calculated, but not limited to this.

如步驟S77所示,運算處理單元2依據演算法、中心座標值O、第一座標值C1、第二座標值C2及第三座標值C3,取得第一表面積SA1,並依據演算法、中心座標值O、第四座標值C4、第五座標值C5及第六座標值C6,取得第二表面積SA2,其中第一表面積為SA1由中心座標值O投影至第一座標值C1、第二座標值C2及第三座標值C3之投影面積,第二表面積SA2為該中心座標值O投影至第四座標值C4、第五座標值C5及第六座標值C6之投影面積,且演算法為曲面積分,以計算第一表面積SA1與第二表面積SA2,但不在此限。 As shown in step S77, the arithmetic processing unit 2 obtains the first surface area SA1 according to the algorithm, the center coordinate value O, the first coordinate value C1, the second coordinate value C2 and the third coordinate value C3, and according to the algorithm, the center coordinate value value O, the fourth coordinate value C4, the fifth coordinate value C5 and the sixth coordinate value C6 to obtain the second surface area SA2, wherein the first surface area is SA1 projected from the center coordinate value O to the first coordinate value C1 and the second coordinate value The projected area of C2 and the third coordinate value C3, the second surface area SA2 is the projected area of the center coordinate value O projected to the fourth coordinate value C4, the fifth coordinate value C5 and the sixth coordinate value C6, and the algorithm is surface integral , to calculate the first surface area SA1 and the second surface area SA2, but not limited thereto.

如步驟S9所示,運算處理單元2依據第一表面積SA1與第二表面積SA2之比例,取得變形量,由於眼球E之眼內壓值的維持,主要來自於眼球E內睫狀體所分泌的房水,正常情況下房水的生成與排出會維持著動態的平衡,然而,當房水產生過多或是排出受阻時,就會導致眼內房水積存使得眼內壓值升高,因此當處於正常眼內壓值時,其具有一定比例之變形量,反之,倘若眼內壓值逐漸變高時,此時,因房水排出受阻,其變形量之比例就會隨之下降,此時,於另一實施例中,亦可以變形量換算為相對之眼內壓值。 As shown in step S9, the arithmetic processing unit 2 obtains the amount of deformation according to the ratio of the first surface area SA1 to the second surface area SA2, because the maintenance of the intraocular pressure of the eyeball E mainly comes from the secretion of the ciliary body in the eyeball E Aqueous humor, under normal circumstances, the production and discharge of aqueous humor will maintain a dynamic balance. However, when the aqueous humor is produced too much or the discharge is blocked, it will cause the accumulation of aqueous humor in the eye and increase the intraocular pressure. Therefore, when When the intraocular pressure is at a normal value, it has a certain proportion of deformation. On the contrary, if the intraocular pressure gradually increases, at this time, due to the obstruction of the discharge of aqueous humor, the proportion of its deformation will decrease accordingly. At this time , in another embodiment, the amount of deformation can also be converted into a relative intraocular pressure value.

綜上所述,本發明之用以檢測眼球之方法及其系統,採用光學影像感測裝置而可直接偵測眼球情形,並利用運算處理單元進一步進行運算,實現完全不接觸式取得眼球變形量,最後經由運算處理單元可將其變形量進行換算,取得眼內壓值,大幅降低檢測的不適感,且提升其精準度,故確實可以達成本發明之目的。 To sum up, the method and system for detecting the eyeball of the present invention can directly detect the condition of the eyeball by using an optical image sensing device, and use an arithmetic processing unit to perform further calculations, so as to obtain the amount of eyeball deformation completely without contact , and finally the amount of deformation can be converted through the calculation processing unit to obtain the intraocular pressure value, which greatly reduces the discomfort of detection and improves its accuracy, so the purpose of the present invention can indeed be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 But the above-mentioned ones are only preferred embodiments of the present invention, and should not limit the implementation scope of the present invention, that is, any simple equivalent changes and modifications made according to the scope of the patent application for the present invention and the contents of the description of the invention, All still belong to the scope covered by the patent of the present invention.

1:光學影像感測裝置 1: Optical image sensing device

2:運算處理單元 2: Operation processing unit

C1:第一座標值 C1: first coordinate value

C2:第二座標值 C2: second coordinate value

C3:第三座標值 C3: The third coordinate value

C4:第四座標值 C4: The fourth coordinate value

C5:第五座標值 C5: fifth coordinate value

C6:第六座標值 C6: The sixth coordinate value

D1:第一深度 D1: first depth

D2:第二深度 D2: second depth

D3:第三深度 D3: third depth

D4:第四深度 D4: fourth depth

D5:第五深度 D5: fifth depth

D6:第六深度 D6: sixth depth

E:眼球 E: eyeball

L1:第一光源 L1: the first light source

L2:第二光源 L2: Second light source

L3:第三光源 L3: third light source

L4:第四光源 L4: The fourth light source

L5:第五光源 L5: fifth light source

L6:第六光源 L6: sixth light source

O:中心座標值 O: center coordinate value

P1:第一位置 P1: first position

P2:第二位置 P2: second position

P3:第三位置 P3: third position

SA1:第一表面積 SA1: first surface area

SA2:第二表面積 SA2: second surface area

T1:第一時間 T1: the first time

T2:第二時間 T2: second time

Claims (10)

一種用以檢測眼球之方法,包含步驟:一光學影像感測裝置於一第一時間發射一第一光源至一眼球之一第一位置、發射一第二光源至該眼球之一第二位置,及發射一第三光源至一第三位置,並接收於該第一位置反射之該第一光源之一第一反射時間、於該第二位置反射之該第二光源之一第二反射時間,及於該第三位置反射之該第三光源之一第三反射時間;該光學影像感測裝置於一第二時間發射一第四光源至該眼球之該第一位置、發射一第五光源至該眼球之該第二位置,及發射一第六光源至該第三位置,並接收於該第一位置反射之該第四光源之一第四反射時間、於該第二位置反射之該第五光源之一第五反射時間,及於該第三位置反射之該第六光源之一第六反射時間;一運算處理單元依據該第一反射時間、該第二反射時間及該第三反射時間,取得對應於該第一位置之一第一深度、對應於該第二位置之一第二深度及對應於該第三位置之一第三深度,並依據該第四反射時間、該第五反射時間及該第六反射時間,取得對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度;該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積;及該運算處理單元依據該第一表面積與該第二表面積之比例,取得一變形量。 A method for detecting eyeballs, comprising steps: an optical image sensing device emits a first light source to a first position of the eyeball at a first time, emits a second light source to a second position of the eyeball, and emitting a third light source to a third position, and receiving a first reflection time of the first light source reflected at the first position and a second reflection time of the second light source reflected at the second position, And a third reflection time of the third light source reflected at the third position; the optical image sensing device emits a fourth light source to the first position of the eyeball at a second time, and emits a fifth light source to the eyeball at a second time. The second position of the eyeball, and emit a sixth light source to the third position, and receive the fourth reflection time of the fourth light source reflected at the first position, and the fifth light source reflected at the second position a fifth reflection time of the light source, and a sixth reflection time of the sixth light source reflected at the third position; an arithmetic processing unit according to the first reflection time, the second reflection time and the third reflection time, Obtain a first depth corresponding to the first position, a second depth corresponding to the second position, and a third depth corresponding to the third position, and according to the fourth reflection time and the fifth reflection time and the sixth reflection time, obtain a fourth depth corresponding to the first position, a fifth depth corresponding to the second position, and a sixth depth corresponding to the third position; the arithmetic processing unit according to the A first surface area is generated from the first depth, the second depth, and the third depth, and a second surface area is generated according to the fourth depth, the fifth depth, and the sixth depth; and the arithmetic processing unit generates a second surface area according to the The ratio of the first surface area to the second surface area obtains a deformation amount. 依據請求項1所述之用以檢測眼球之方法,於一運算處理單元依據該第一反射時間、該第二反射時間及該第三反射時間,取得對應於該第一位置之一第一深度、對應於該第二位置之一第二深度及對應於該第三位置之一第三深度,並依據該第四反射時間、該第五反射時間及該第六反射時間,取得對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度之步驟中,該第一深度為該第一反射時間與一光速之乘積、該第二深度為該第二反射時間與該光速之乘積、該第三深度為該第三反射時間與該光速之乘積、該第四深度為該第四反射時間與該光速之乘積、該第五深度為該第五反射時間與該光速之乘積,及該第六深度為該第六反射時間與該光速之乘積。 According to the method for detecting eyeballs described in claim 1, a first depth corresponding to the first position is obtained in an arithmetic processing unit according to the first reflection time, the second reflection time and the third reflection time , a second depth corresponding to the second position and a third depth corresponding to the third position, and according to the fourth reflection time, the fifth reflection time and the sixth reflection time, obtain the In the steps of a fourth depth at a position, a fifth depth corresponding to the second position, and a sixth depth corresponding to the third position, the first depth is the product of the first reflection time and a speed of light , the second depth is the product of the second reflection time and the speed of light, the third depth is the product of the third reflection time and the speed of light, the fourth depth is the product of the fourth reflection time and the speed of light, the The fifth depth is the product of the fifth reflection time and the speed of light, and the sixth depth is the product of the sixth reflection time and the speed of light. 依據請求項1所述之用以檢測眼球之方法,於該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積之步驟中,更包含步驟:該運算處理單元依據該第一深度生成對應之一第一座標值、該第二深度生成對應之一第二座標值、該第三深度生成對應之一第三座標值、該第四深度生成對應之一第四座標值、該第五深度生成對應之一第五座標值,及該第六深度生成對應之一第六座標值;該運算處理單元依據該第一座標值、該第二座標值及該第三座標值,取得一第一方程組,並依據該第三座標值、該第四座標值及該第五座標值,取得一第二方程組;該運算處理單元依據該第一方程組及該第二方程組,取得對應該眼球之一中心座標值;及 該運算處理單元依據一演算法、該中心座標值、該第一座標值、該第二座標值及該第三座標值進行演算,取得該第一表面積,並依據該演算法、該中心座標值、該第四座標值、該第五座標值及該第六座標值進行演算,取得該第二表面積。 According to the method for detecting eyeballs described in Claim 1, a first surface area is generated in the calculation processing unit according to the first depth, the second depth and the third depth, and according to the fourth depth, the first The fifth depth and the sixth depth, in the step of generating a second surface area, further include the step of: the arithmetic processing unit generates a corresponding first coordinate value according to the first depth, and a corresponding second coordinate value is generated by the second depth value, the third depth generation corresponds to a third coordinate value, the fourth depth generation corresponds to a fourth coordinate value, the fifth depth generation corresponds to a fifth coordinate value, and the sixth depth generation corresponds to a The sixth coordinate value; the arithmetic processing unit obtains a first equation group according to the first coordinate value, the second coordinate value and the third coordinate value, and obtains a first equation group according to the third coordinate value, the fourth coordinate value and the The fifth coordinate value obtains a second equation group; the arithmetic processing unit obtains a center coordinate value corresponding to the eyeball according to the first equation group and the second equation group; and The operation processing unit performs calculation according to an algorithm, the center coordinate value, the first coordinate value, the second coordinate value and the third coordinate value to obtain the first surface area, and according to the algorithm, the center coordinate value , the fourth coordinate value, the fifth coordinate value and the sixth coordinate value to obtain the second surface area. 依據請求項3所述之用以檢測眼球之方法,於該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積之步驟中,該第一表面積為該中心座標值投影至該第一座標值、該第二座標值及該第三座標值之投影面積,該第二表面積為該中心座標值投影至該第四座標值、該第五座標值及該第六座標值之投影面積,該演算法為曲面積分,以計算該第一表面積與該第二表面積。 According to the method for detecting eyeballs described in claim 3, a first surface area is generated in the calculation processing unit according to the first depth, the second depth and the third depth, and according to the fourth depth, the first The fifth depth and the sixth depth, in the step of generating a second surface area, the first surface area is the projected area of the center coordinate value projected to the first coordinate value, the second coordinate value and the third coordinate value, the The second surface area is the projected area of the center coordinate value projected to the fourth coordinate value, the fifth coordinate value and the sixth coordinate value, and the algorithm is surface integral to calculate the first surface area and the second surface area. 依據請求項1所述之用以檢測眼球之方法,其中,該光學影像感測裝置為紅外線影像感測器。 According to the method for detecting eyeballs described in Claim 1, wherein the optical image sensing device is an infrared image sensor. 一種用以檢測眼球之系統,包含:一光學影像感測裝置,用以於一第一時間發射一第一光源至一眼球之一第一位置、發射一第二光源至該眼球之一第二位置,及發射一第三光源至一第三位置,並接收於該第一位置反射之該第一光源之一第一反射時間、於該第二位置反射之該第二光源之一第二反射時間,及於該第三位置反射之該第三光源之一第三反射時間,以及於一第二時間發射一第四光源至該眼球之該第一位置、發射一第五光源至該眼球之該第二位置,及發射一第六光源至該第三位置,並接收於該第一位置反射之該第四光源之一第四反射時間、於該 第二位置反射之該第五光源之一第五反射時間,及於該第三位置反射之該第六光源之一第六反射時間;及一運算處理單元,與光學影像感測裝置訊號連接,用以接收該第一反射時間、該第二反射時間、該第三反射時間、該第四反射時間、該第五反射時間及該第六反射時間,並經運算取得對應於該第一位置之一第一深度、對應於該第二位置之一第二深度、對應於該第三位置之一第三深度、對應於該第一位置之一第四深度、對應於該第二位置之一第五深度及對應於該第三位置之一第六深度;其中,該運算處理單元依據該第一深度、該第二深度及該第三深度,生成一第一表面積,並依據該第四深度、該第五深度及該第六深度,生成一第二表面積,並依據該第一表面積與該第二表面積之比例,取得一變形量,並經該變形量換算為該眼球之一眼內壓值。 A system for detecting eyeballs, comprising: an optical image sensing device for emitting a first light source to a first position of the eyeball at a first time, emitting a second light source to a second position of the eyeball position, and emit a third light source to a third position, and receive a first reflection time of the first light source reflected at the first position, and a second reflection time of the second light source reflected at the second position time, and a third reflection time of the third light source reflected at the third position, and a fourth light source is emitted to the first position of the eyeball at a second time, and a fifth light source is emitted to the eyeball at a second time The second position, and a fourth reflection time of emitting a sixth light source to the third position and receiving the fourth light source reflected at the first position, at the a fifth reflection time of the fifth light source reflected at the second position, and a sixth reflection time of the sixth light source reflected at the third position; and an arithmetic processing unit connected to the optical image sensing device for signal, Used to receive the first reflection time, the second reflection time, the third reflection time, the fourth reflection time, the fifth reflection time and the sixth reflection time, and obtain the corresponding to the first position through calculation A first depth, a second depth corresponding to the second position, a third depth corresponding to the third position, a fourth depth corresponding to the first position, a first depth corresponding to the second position Five depths and a sixth depth corresponding to the third position; wherein, the arithmetic processing unit generates a first surface area according to the first depth, the second depth and the third depth, and generates a first surface area according to the fourth depth, The fifth depth and the sixth depth generate a second surface area, and obtain a deformation amount according to the ratio of the first surface area to the second surface area, and convert the deformation amount into an intraocular pressure value of the eyeball. 依據請求項6所述之用以檢測眼球之系統,其中,該第一深度為該第一反射時間與一光速之乘積、該第二深度為該第二反射時間與該光速之乘積、該第三深度為該第三反射時間與該光速之乘積、該第四深度為該第四反射時間與該光速之乘積、該第五深度為該第五反射時間與該光速之乘積,及該第六深度為該第六反射時間與該光速之乘積。 According to the system for detecting eyeballs described in Claim 6, wherein the first depth is the product of the first reflection time and a speed of light, the second depth is the product of the second reflection time and the speed of light, and the second depth is the product of the second reflection time and the speed of light. The third depth is the product of the third reflection time and the speed of light, the fourth depth is the product of the fourth reflection time and the speed of light, the fifth depth is the product of the fifth reflection time and the speed of light, and the sixth depth is the product of the fifth reflection time and the speed of light. The depth is the product of the sixth reflection time and the speed of light. 依據請求項6所述之用以檢測眼球之系統,其中,該運算處理單元依據該第一深度生成對應之一第一座標值、該第二深度生成對應之一第二座標值、該第三深度生成對應之一第三座標值、該第四深度生成對應之一第四座標值、該第五深度生成對應之一第五座標值,及該第六深度生成對應之一第六座標值,並依據該第一座標值、該第二座標值及該第三座標值,取得一第一方程組, 並依據該第三座標值、該第四座標值及該第五座標值,取得一第二方程組,並經由該第一方程組及該第二方程組,取得對應該眼球之一中心座標值,該運算處理單元透過一演算法、該中心座標值、該第一座標值、該第二座標值及該第三座標值進行演算,取得該第一表面積,並依據該演算法、該中心座標值、該第四座標值、該第五座標值及該第六座標值進行演算,取得該第二表面積。 According to the system for detecting eyeballs described in Claim 6, wherein the arithmetic processing unit generates a corresponding first coordinate value according to the first depth, generates a corresponding second coordinate value according to the second depth, and generates a corresponding second coordinate value according to the third depth. The depth generation corresponds to a third coordinate value, the fourth depth generation corresponds to a fourth coordinate value, the fifth depth generation corresponds to a fifth coordinate value, and the sixth depth generation corresponds to a sixth coordinate value, and according to the first coordinate value, the second coordinate value and the third coordinate value, a first equation system is obtained, And according to the third coordinate value, the fourth coordinate value and the fifth coordinate value, obtain a second equation group, and obtain a center coordinate value corresponding to the eyeball through the first equation group and the second equation group , the calculation processing unit performs calculations through an algorithm, the center coordinate value, the first coordinate value, the second coordinate value and the third coordinate value to obtain the first surface area, and according to the algorithm, the center coordinate value value, the fourth coordinate value, the fifth coordinate value and the sixth coordinate value to obtain the second surface area. 依據請求項8所述之用以檢測眼球之系統,其中,該第一表面積為該中心座標值投影至該第一座標值、該第二座標值及該第三座標值之投影面積,該第二表面積為該中心座標值投影至該第四座標值、該第五座標值及該第六座標值之投影面積,該演算法為曲面積分,以計算該第一表面積與該第二表面積。 According to the system for detecting eyeballs described in Claim 8, wherein the first surface area is the projected area of the center coordinate value projected to the first coordinate value, the second coordinate value and the third coordinate value, the first The second surface area is the projected area of the center coordinate value projected to the fourth coordinate value, the fifth coordinate value and the sixth coordinate value, and the algorithm is surface integral to calculate the first surface area and the second surface area. 依據請求項6所述之用以檢測眼球之系統,其中,該光學影像感測裝置為紅外線影像感測器。 According to the system for detecting eyeballs described in Claim 6, wherein the optical image sensing device is an infrared image sensor.
TW110140416A 2021-10-29 2021-10-29 Method for detecting an eyeball and the related system TWI784777B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110140416A TWI784777B (en) 2021-10-29 2021-10-29 Method for detecting an eyeball and the related system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110140416A TWI784777B (en) 2021-10-29 2021-10-29 Method for detecting an eyeball and the related system

Publications (2)

Publication Number Publication Date
TWI784777B true TWI784777B (en) 2022-11-21
TW202317025A TW202317025A (en) 2023-05-01

Family

ID=85794642

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110140416A TWI784777B (en) 2021-10-29 2021-10-29 Method for detecting an eyeball and the related system

Country Status (1)

Country Link
TW (1) TWI784777B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328432A (en) * 1998-11-02 2001-12-26 马西奥·马克·奥雷利奥·马丁斯·阿布雷乌 Method and apparatus for signal transmission and detection using contact device
US20170000345A1 (en) * 2015-03-16 2017-01-05 Magic Leap, Inc. Methods and systems for determining intraocular pressure
US10342430B2 (en) * 2007-12-13 2019-07-09 Bioventures, Llc Device and method for in vivo noninvasive magnetic manipulation of circulating objects in bioflows

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1328432A (en) * 1998-11-02 2001-12-26 马西奥·马克·奥雷利奥·马丁斯·阿布雷乌 Method and apparatus for signal transmission and detection using contact device
US10342430B2 (en) * 2007-12-13 2019-07-09 Bioventures, Llc Device and method for in vivo noninvasive magnetic manipulation of circulating objects in bioflows
US20170000345A1 (en) * 2015-03-16 2017-01-05 Magic Leap, Inc. Methods and systems for determining intraocular pressure
US10379350B2 (en) * 2015-03-16 2019-08-13 Magic Leap, Inc. Methods and systems for diagnosing eyes using ultrasound

Also Published As

Publication number Publication date
TW202317025A (en) 2023-05-01

Similar Documents

Publication Publication Date Title
US9364148B2 (en) Method and apparatus for measuring the deformation characteristics of an object
JP4164066B2 (en) Device for detecting corneal hysteresis
US7909765B2 (en) Method and apparatus for determining true intraocular pressure
JP4017835B2 (en) Non-contact type intraocular pressure measurement method
US20040183998A1 (en) Method and apparatus for measuring biomechanical characteristics of corneal tissue
US20150018661A1 (en) Non-contact system for measuring corneal properties and method for measuring corneal elastic constant and viscosity constant
CN111329442A (en) Eyesight health detection method and device and electronic equipment
TWI784777B (en) Method for detecting an eyeball and the related system
JP4435764B2 (en) Ophthalmic equipment
JP2001275974A5 (en)
CN102813502B (en) Contact tonometer
JPH0354574B2 (en)
TWI820842B (en) Method for detecting dynamic intraocular pressure and the system
TW202406499A (en) Method for detecting dynamic intraocular pressure and the system
JP7201375B2 (en) tonometry device
CN108992039B (en) Non-contact intraocular pressure measurement method based on coaxial principle
JP2001500419A (en) Non-contact tonometer with off-axis fluid pulse system
Verdoorn et al. Clinical evaluation of the Topcon CT10 tonometer
JPH0360262B2 (en)
JP3073278B2 (en) Non-contact tonometer
CN117838036A (en) Peripheral eye axis measurement system, peripheral eye axis development inspection system and control method
CN115708664A (en) Non-contact tonometer
JP3073279B2 (en) Non-contact tonometer
KR20230095463A (en) Non-contact tonometer
CN115553716A (en) Biological data conversion diopter calculation method