TWI784672B - Packaging structure for flexible organic solar cell module and packaging method thereof - Google Patents

Packaging structure for flexible organic solar cell module and packaging method thereof Download PDF

Info

Publication number
TWI784672B
TWI784672B TW110130422A TW110130422A TWI784672B TW I784672 B TWI784672 B TW I784672B TW 110130422 A TW110130422 A TW 110130422A TW 110130422 A TW110130422 A TW 110130422A TW I784672 B TWI784672 B TW I784672B
Authority
TW
Taiwan
Prior art keywords
adhesive layer
solar cell
barrier layer
layer
cell module
Prior art date
Application number
TW110130422A
Other languages
Chinese (zh)
Other versions
TW202310482A (en
Inventor
查厚錦
宋運明
鍾翠芸
莊智閔
劉天成
胡哲誠
張藝騰
馬維揚
曹正熙
Original Assignee
行政院原子能委員會核能研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 行政院原子能委員會核能研究所 filed Critical 行政院原子能委員會核能研究所
Priority to TW110130422A priority Critical patent/TWI784672B/en
Application granted granted Critical
Publication of TWI784672B publication Critical patent/TWI784672B/en
Publication of TW202310482A publication Critical patent/TW202310482A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Laminated Bodies (AREA)
  • Packages (AREA)

Abstract

A packaging structure for flexible organic solar cell module and packaging method thereof are provided. The package structure includes a first barrier layer, a first adhesive layer, a second barrier layer, a second adhesive layer, and a solar cell module. The first barrier layer, the first adhesive layer, the second barrier layer, the second adhesive layer are combined with each other in a thermal compression bonding method. The packaging method includes providing a first barrier layer and a second barrier layer respectively having a first surface and second surface opposite to the first surface; forming a first adhesive layer on the second surface of the first barrier layer; forming a second adhesive layer on the first surface of the second barrier layer; setting the solar cell module between the first adhesive layer and the second adhesive layer; combining the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer and the second barrier layer with each other in a thermal compression bonding method.

Description

用於軟性有機太陽電池模組的封裝結構及其封裝方法Encapsulation structure and encapsulation method for flexible organic solar cell module

本發明是有關於一種有機太陽電池,特別是關於一種用於軟性有機太陽電池模組的封裝結構及其封裝方法。The invention relates to an organic solar battery, in particular to a packaging structure and packaging method for a flexible organic solar battery module.

有機太陽電池於弱光環境下擁有高光電轉換效率,因此,在近年來逐漸被討論用來作為低功耗電子裝置的電力來源,而物聯網的出現,不但改變了我們工作和生活的方式,並且創造了一個讓有機太陽光電(Organic Photovoltaic,OPV )大展長才的應用舞台。然而,壽命將是影響太陽電池切入上述應用面的關鍵因素。Organic solar cells have high photoelectric conversion efficiency in low-light environments. Therefore, in recent years, they have been gradually discussed as power sources for low-power electronic devices. The emergence of the Internet of Things has not only changed the way we work and live, And it has created an application stage for Organic Photovoltaic (OPV) to show its full potential. However, lifetime will be a key factor affecting solar cell cutting into the above application.

OPV的封裝技術多在硬式的玻璃基材上發展,較少以軟性基材作為研發標的,習知技術在軟性基材封裝的策略上,常在阻絕膜上以高成本的製程方式(例如,以濺鍍、蒸鍍、電漿輔助化學氣相沉積)覆蓋增加阻氣率的阻氣膜層,但此阻氣膜層有影響光穿透度及可彎折性的疑慮。另外,封裝膠品中的有機溶劑也有可能會與OPV中的膜層產生反應,進而破壞有機太陽電池模組的效率與壽命。OPV packaging technology is mostly developed on hard glass substrates, and soft substrates are rarely used as research and development targets. Conventional technologies often use high-cost manufacturing methods on barrier films (for example, Sputtering, vapor deposition, plasma-assisted chemical vapor deposition) are used to cover the gas barrier film layer to increase the gas barrier rate, but the gas barrier film layer has doubts about affecting light penetration and bendability. In addition, the organic solvent in the encapsulation product may also react with the film layer in the OPV, thereby destroying the efficiency and life of the organic solar cell module.

另外,習知技術中有利用多層堆疊的封裝方式,來提升有機太陽電池模組的阻氣能力。然而,多層堆疊的封裝方式勢必導致成本上升,並衍生出降低光穿透度與可彎折性的問題。In addition, in the prior art, a multi-layer stacked packaging method is used to improve the gas barrier capability of the organic solar cell module. However, the packaging method of multi-layer stacking will inevitably lead to an increase in cost, and will lead to problems of reducing light penetration and bendability.

因此,如何能提供一種『用於軟性有機太陽電池模組的封裝結構及其封裝方法』,成為業界所待解決之課題。Therefore, how to provide a "packaging structure and packaging method for flexible organic solar cell modules" has become a problem to be solved in the industry.

本發明實施例提供一種用於軟性有機太陽電池模組的封裝結構,包含第一阻絕層,具有第一表面與相對於第一表面的第二表面;第一黏著層,形成於第一阻絕層的第二表面;第二阻絕層,具有第一表面與相對於第一表面的第二表面;第二黏著層,形成於第二阻絕層的第一表面;太陽電池模組,設置於第一黏著層與第二黏著層之間;其中第一阻絕層、第一黏著層、太陽電池模組、第二黏著層與第二阻絕層以一熱壓合方式彼此結合。An embodiment of the present invention provides a packaging structure for a flexible organic solar cell module, comprising a first barrier layer having a first surface and a second surface opposite to the first surface; a first adhesive layer formed on the first barrier layer The second surface of the second barrier layer; the second barrier layer has the first surface and the second surface opposite to the first surface; the second adhesive layer is formed on the first surface of the second barrier layer; the solar cell module is arranged on the first surface Between the adhesive layer and the second adhesive layer; wherein the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer and the second barrier layer are combined with each other in a heat-pressing manner.

在一些實施例中,第一阻絕層、第一黏著層、太陽電池模組、第二黏著層與第二阻絕層的一端形成有至少一貫孔。In some embodiments, at least one through hole is formed at one end of the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer, and the second barrier layer.

在一些實施例中,少一貫孔內埋設有一電極,且電極之一端突出於第一阻絕層之第一表面,以形成一電極接觸點。In some embodiments, an electrode is embedded in at least one through hole, and one end of the electrode protrudes from the first surface of the first barrier layer to form an electrode contact point.

在一些實施例中,更包含有一填補膠包覆於電極接觸點。In some embodiments, a filling glue is further included to cover the electrode contact points.

在一些實施例中,第一黏著層與該第二黏著層包覆太陽電池模組。In some embodiments, the first adhesive layer and the second adhesive layer cover the solar cell module.

在一些實施例中,第一黏著層與第二黏著層為壓敏膠。In some embodiments, the first adhesive layer and the second adhesive layer are pressure-sensitive adhesives.

在另一實施例中,本發明提出一種用於軟性有機太陽電池模組的封裝方法,包含有下列步驟:提供分別具有第一表面與相對於第一表面的第二表面之第一阻絕層與第二阻絕層;形成第一黏著層於第一阻絕層的第二表面;形成第二黏著層於第二阻絕層的第一表面;設置太陽電池模組於第一黏著層與第二黏著層之間;及以熱壓合方式將第一阻絕層、第一黏著層、太陽電池模組、第二黏著層與第二阻絕層彼此結合。In another embodiment, the present invention provides a packaging method for a flexible organic solar cell module, which includes the following steps: providing a first barrier layer and a first barrier layer respectively having a first surface and a second surface opposite to the first surface. The second barrier layer; forming the first adhesive layer on the second surface of the first barrier layer; forming the second adhesive layer on the first surface of the second barrier layer; disposing the solar cell module on the first adhesive layer and the second adhesive layer between; and combining the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer and the second barrier layer with each other in a thermocompression bonding manner.

在一些實施例中,於設置太陽電池模組於第一黏著層與第二黏著層之間之步驟後,還包含有下列步驟:於第一阻絕層、第一黏著層、太陽電池模組、第二黏著層與第二阻絕層的一端形成有至少一貫孔;埋設一電極於至少一貫孔內,且電極之一端突出於第一阻絕層之第一表面,以形成一電極接觸點;及包覆一填補膠於電極接觸點。In some embodiments, after the step of arranging the solar cell module between the first adhesive layer and the second adhesive layer, the following steps are further included: on the first barrier layer, the first adhesive layer, the solar cell module, At least one through hole is formed between the second adhesive layer and one end of the second barrier layer; an electrode is embedded in the at least one through hole, and one end of the electrode protrudes from the first surface of the first barrier layer to form an electrode contact point; and Apply a filling gel to the electrode contact point.

在一些實施例中,於設置一太陽電池模組於第一黏著層與第二黏著層之間之步驟後,還包含有真空烘烤第一阻絕層、第一黏著層、太陽電池模組、第二黏著層與第二阻絕層之步驟。In some embodiments, after the step of disposing a solar cell module between the first adhesive layer and the second adhesive layer, it further includes vacuum baking the first barrier layer, the first adhesive layer, the solar cell module, The step of the second adhesive layer and the second barrier layer.

為讓本發明能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings.

以下結合附圖和實施例,對本發明的具體實施方式作進一步描述。以下實施例僅用於更加清楚地說明本發明的技術方案,而不能以此限制本發明的保護範圍。The specific implementation manners of the present invention will be further described below in conjunction with the accompanying drawings and examples. The following examples are only used to illustrate the technical solutions of the present invention more clearly, but not to limit the protection scope of the present invention.

為了清楚與方便圖式說明之故,圖式中的各部件在尺寸與比例上可能會被擴大或縮小地呈現。在以下描述及/或申請專利範圍中,當提及元件「連接」或「耦合」至另一元件時,其可直接連接或耦合至該另一元件或可存在介入元件;而當提及元件「直接連接」或「直接耦合」至另一元件時,不存在介入元件,用於描述元件或層之間之關係之其他字詞應以相同方式解釋;「第一」、「第二」、「第三」等序數,彼此之間並沒有順序上的先後關係,其僅用於標示區分兩個具有相同名字之不同元件。為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。For the sake of clarity and convenience of drawing description, the size and proportion of each component in the drawing may be presented enlarged or reduced. In the following description and/or claims, when it is mentioned that an element is "connected" or "coupled" to another element, it may be directly connected or coupled to the other element or there may be an intervening element; When "directly connected" or "directly coupled" to another element, there are no intervening elements, and other words used to describe the relationship between elements or layers should be construed in the same way; "first", "second", Ordinal numbers such as "third" have no sequential relationship with each other, and are only used to mark and distinguish two different components with the same name. To facilitate understanding, the same components in the following embodiments are described with the same symbols.

請參照第1A圖,為本發明實施例之太陽電池模組結構示意圖。如第1A圖所示,太陽電池模組10包含有:軟性基材11、透明導電層12、電子傳輸層13、主動層14、電洞傳輸層/上電極15。太陽電池模組10具有可彎曲的特性。Please refer to FIG. 1A, which is a schematic structural diagram of a solar cell module according to an embodiment of the present invention. As shown in FIG. 1A , the solar cell module 10 includes: a flexible substrate 11 , a transparent conductive layer 12 , an electron transport layer 13 , an active layer 14 , and a hole transport layer/top electrode 15 . The solar cell module 10 has the property of being bendable.

軟性基材11位於透明導電層12的下方。透明導電層12位於電子傳輸層13的下方。電子傳輸層13位於主動層14的下方。主動層14位於電洞傳輸層/上電極15的下方。 接下來,說明太陽電池模組10的製作流程。The flexible substrate 11 is located under the transparent conductive layer 12 . The transparent conductive layer 12 is located below the electron transport layer 13 . The electron transport layer 13 is located below the active layer 14 . The active layer 14 is located below the hole transport layer/top electrode 15 . Next, the manufacturing flow of the solar cell module 10 will be described.

基材表面處理:使用軟性基材11,並於其上以雷射剝除製程規畫分出單電池區域。接著,利用異丙醇與丙酮擦拭清除軟性基材11的表面髒污及灰塵。然後,使用紫外光-臭氧清洗機去除表面的汙染物,以增進透明導電層12與電子傳輸層13對於軟性基材11之附著性。Substrate surface treatment: use a soft substrate 11, and plan to separate single cell areas on it by laser lift-off process planning. Next, use isopropanol and acetone to wipe and remove the dirt and dust on the surface of the flexible substrate 11 . Then, a UV-ozone cleaning machine is used to remove surface pollutants, so as to improve the adhesion of the transparent conductive layer 12 and the electron transport layer 13 to the soft substrate 11 .

電子傳輸層及主動層塗佈:於表面處理完之軟性基材11上,依序塗佈電子傳輸層13及主動層14,並於每層膜層塗佈完成後,以熱處理方式使其乾燥,避免膜層之間相互影響。Electron transport layer and active layer coating: On the surface-treated flexible substrate 11, coat the electron transport layer 13 and the active layer 14 in sequence, and after coating each layer, dry it by heat treatment , to avoid mutual influence between layers.

蒸鍍電洞傳輸層與上電極:完成主動層14塗佈後的太陽電池模組10,貼好預先製作的遮罩(mask)以定義出太陽電池模組10中各元件的位置,並放置於蒸鍍機的腔體中抽真空,等待腔體內壓力達到設定值以下時進行蒸鍍,藉由調整電流來改變鍍率以滿足適合的膜層均勻性。待厚度達到需求時,即完成蒸鍍電洞傳輸層/上電極15的製作。Evaporating the hole transport layer and the upper electrode: the solar cell module 10 after the coating of the active layer 14 is completed, and the prefabricated mask (mask) is attached to define the position of each element in the solar cell module 10, and placed Vacuum the chamber of the vapor deposition machine, and wait until the pressure in the chamber reaches below the set value for vapor deposition, and change the plating rate by adjusting the current to meet the appropriate uniformity of the film layer. When the thickness reaches the requirement, the fabrication of the vapor-deposited hole transport layer/top electrode 15 is completed.

請參照第1B圖至第1G圖,為本發明實施例之太陽電池模組封裝結構示意圖。如第1B圖與第1C圖所示,提供第一阻絕層20與第二阻絕層22。第一阻絕層20具有第一表面20a與相對於第一表面20a的第二表面20b。第二阻絕層22具有第一表面22a與相對於第一表面22a的第二表面22b。Please refer to FIG. 1B to FIG. 1G , which are schematic diagrams of the packaging structure of the solar cell module according to the embodiment of the present invention. As shown in FIG. 1B and FIG. 1C , a first barrier layer 20 and a second barrier layer 22 are provided. The first barrier layer 20 has a first surface 20a and a second surface 20b opposite to the first surface 20a. The second barrier layer 22 has a first surface 22a and a second surface 22b opposite to the first surface 22a.

將第一黏著層30形成於第一阻絕層20的第二表面20b。將第二黏著層32形成於第二阻絕層22的第一表面22a。第一黏著層30以轉印方式形成於第一阻絕層20的第二表面20b。第二黏著層32以轉印方式形成於第二阻絕層22的第一表面22a。實際上,第一黏著層30與第二黏著層32可以例如是壓敏膠(Pressure Sensitive Adhesive,PSA)。The first adhesive layer 30 is formed on the second surface 20 b of the first barrier layer 20 . The second adhesive layer 32 is formed on the first surface 22 a of the second barrier layer 22 . The first adhesive layer 30 is formed on the second surface 20b of the first barrier layer 20 by transfer printing. The second adhesive layer 32 is formed on the first surface 22a of the second barrier layer 22 by transfer printing. In fact, the first adhesive layer 30 and the second adhesive layer 32 can be, for example, pressure sensitive adhesive (PSA).

值得說明的是,轉印過程中需注意第一黏著層30與第一阻絕層20之間避免產生氣泡。因為氣泡中含有水氣及氧氣,會造成太陽電池模組10劣化,影響其壽命。同樣的,需注意第二黏著層32與第二阻絕層22之間避免產生氣泡,因為氣泡中含有水氣及氧氣,會造成太陽電池模組10劣化,影響其壽命。It is worth noting that during the transfer process, attention should be paid to avoid air bubbles between the first adhesive layer 30 and the first barrier layer 20 . Because the air bubbles contain water vapor and oxygen, the solar cell module 10 will be deteriorated and its service life will be affected. Likewise, attention should be paid to avoid air bubbles between the second adhesive layer 32 and the second barrier layer 22 , because the air bubbles contain moisture and oxygen, which will cause deterioration of the solar cell module 10 and affect its lifespan.

另外,第一黏著層30與第二黏著層32為無溶劑的黏著劑。因此,第一黏著層30與第二黏著層32不會與第一阻絕層20、第二阻絕層22產生反應,故不會影響太陽電池模組10的效率與壽命。第一阻絕層20、第一黏著層30、第二黏著層32與第二阻絕層22具有透光性及可彎曲的特性,故不會衍生出降低光穿透度與可彎折性的問題。In addition, the first adhesive layer 30 and the second adhesive layer 32 are solvent-free adhesives. Therefore, the first adhesive layer 30 and the second adhesive layer 32 will not react with the first barrier layer 20 and the second barrier layer 22 , so the efficiency and service life of the solar cell module 10 will not be affected. The first barrier layer 20, the first adhesive layer 30, the second adhesive layer 32, and the second barrier layer 22 have the characteristics of light transmission and flexibility, so there will be no problems of reducing light penetration and bendability. .

如第1C圖與第1D圖所示,將太陽電池模組10設置於第一黏著層30與第二黏著層32之間。第一黏著層30與第二黏著層32結合之後成為第三黏著層34。第一黏著層30、第二黏著層32與第三黏著層34為相同材質。如第1D圖所示,在本發明一些實施例中,為了提高封裝品質,可將第一阻絕層20、第三黏著層34、太陽電池模組10與第二阻絕層22進行真空烘烤,以降低第一阻絕層20、第三黏著層34與第二阻絕層22的殘餘的水氧含量。真空烘烤的條件可以是攝氏100度C~110度C,時間為7小時~9小時以上。接著,停止真空烘烤並自然降溫至常溫。As shown in FIG. 1C and FIG. 1D , the solar cell module 10 is disposed between the first adhesive layer 30 and the second adhesive layer 32 . The first adhesive layer 30 is combined with the second adhesive layer 32 to form a third adhesive layer 34 . The first adhesive layer 30 , the second adhesive layer 32 and the third adhesive layer 34 are made of the same material. As shown in FIG. 1D, in some embodiments of the present invention, in order to improve the packaging quality, the first barrier layer 20, the third adhesive layer 34, the solar cell module 10 and the second barrier layer 22 can be vacuum baked, In order to reduce the residual water and oxygen content of the first barrier layer 20 , the third adhesive layer 34 and the second barrier layer 22 . The condition of vacuum baking can be 100°C~110°C, and the time is more than 7 hours~9 hours. Then, stop the vacuum baking and cool down to normal temperature naturally.

如第1D圖所示,第一阻絕層20、第三黏著層34、太陽電池模組10與第二阻絕層22以一熱壓合方式彼此結合。如第1E圖所示,於第一阻絕層20、第三黏著層34、太陽電池模組10與第二阻絕層22的一端形成貫孔40。As shown in FIG. 1D , the first barrier layer 20 , the third adhesive layer 34 , the solar cell module 10 and the second barrier layer 22 are bonded to each other in a thermocompression bonding manner. As shown in FIG. 1E , a through hole 40 is formed at one end of the first barrier layer 20 , the third adhesive layer 34 , the solar cell module 10 and the second barrier layer 22 .

如第1F圖所示,埋設電極54於貫孔40內,且電極54之一端突出於第一阻絕層20之第一表面20a,以形成電極接觸點50。電極54之另一端突出於第二阻絕層22之第二表面22b,以形成電極接觸點52。實際上,電極接觸點50與電極接觸點52可以例如是鈕扣釘,或其他具導電材質的鎖固件。如第1G圖所示,將填補膠60包覆於電極接觸點50與電極接觸點52。實際上,填補膠60可以例如是界面接著劑、光固接著劑或紫外線固化膠。As shown in FIG. 1F , the electrode 54 is embedded in the through hole 40 , and one end of the electrode 54 protrudes from the first surface 20 a of the first barrier layer 20 to form the electrode contact point 50 . The other end of the electrode 54 protrudes from the second surface 22 b of the second barrier layer 22 to form an electrode contact point 52 . In fact, the electrode contact points 50 and the electrode contact points 52 can be, for example, button nails or other fasteners with conductive materials. As shown in FIG. 1G , the filling glue 60 is coated on the electrode contact point 50 and the electrode contact point 52 . Actually, the filling glue 60 can be, for example, an interface adhesive, a light-curable adhesive or an ultraviolet-curable glue.

值得說明的是,由於電極接觸點50、電極接觸點52裸露與外部接觸,將導致水氧入侵的可能性,進而造成太陽電池模組10。故本發明實施例透過填補膠60包覆電極接觸點50、電極接觸點52,來有效阻隔水氧入侵途徑。It is worth noting that, since the electrode contact points 50 and the electrode contact points 52 are exposed to contact with the outside, it will lead to the possibility of water and oxygen intrusion, and further damage the solar cell module 10 . Therefore, the embodiment of the present invention covers the electrode contact point 50 and the electrode contact point 52 with the filling glue 60 to effectively block the intrusion of water and oxygen.

請參照第2A圖與第2B圖,為本發明實施例之封裝方法流程圖。如第2A圖所示,首先,步驟S200,提供分別具有第一表面與相對於第一表面的第二表面之第一阻絕層20與第二阻絕層22。Please refer to FIG. 2A and FIG. 2B , which are flow charts of the packaging method of the embodiment of the present invention. As shown in FIG. 2A , first, step S200 , providing a first barrier layer 20 and a second barrier layer 22 respectively having a first surface and a second surface opposite to the first surface.

步驟S210,形成第一黏著層30於第一阻絕層20的第二表面20b。 步驟S220,形成第二黏著層32於第二阻絕層22的第一表面22a。另外,步驟S210與步驟220並無先後順序。在一些實施例中,步驟S210與步驟220可以同時進行。換句話說,驟S210與步驟220可合併為一個步驟。Step S210 , forming a first adhesive layer 30 on the second surface 20 b of the first barrier layer 20 . Step S220 , forming a second adhesive layer 32 on the first surface 22 a of the second barrier layer 22 . In addition, there is no sequence between step S210 and step 220 . In some embodiments, step S210 and step 220 may be performed simultaneously. In other words, step S210 and step S220 can be combined into one step.

步驟S230,設置一太陽電池模組10於第一黏著層30與第二黏著層32之間。步驟S240,真空烘烤第一阻絕層20、第一黏著層30、太陽電池模組10、第二黏著層32與第二阻絕層22。在一些實施例中,可以省略步驟S240。Step S230 , disposing a solar cell module 10 between the first adhesive layer 30 and the second adhesive layer 32 . Step S240 , vacuum baking the first barrier layer 20 , the first adhesive layer 30 , the solar cell module 10 , the second adhesive layer 32 and the second barrier layer 22 . In some embodiments, step S240 may be omitted.

如第2B圖所示,步驟S250,以一熱壓合方式將第一阻絕層20、第一黏著層30、太陽電池模組10、第二黏著層32與第二阻絕層22彼此結合。步驟S260,於第一阻絕層20、第一黏著層30、太陽電池模組10、第二黏著層32與第二阻絕層22的一端形成有至少一貫孔40。As shown in FIG. 2B , in step S250 , the first barrier layer 20 , the first adhesive layer 30 , the solar cell module 10 , the second adhesive layer 32 and the second barrier layer 22 are bonded together in a thermocompression bonding manner. In step S260 , at least one through hole 40 is formed on the first barrier layer 20 , the first adhesive layer 30 , the solar cell module 10 , the second adhesive layer 32 and one end of the second barrier layer 22 .

步驟S270,埋設一電極54於至少一貫孔40內,且電極54之一端突出於第一阻絕層20之第一表面20a,以形成一電極接觸點50。步驟S280,包覆一填補膠60於電極接觸點50。Step S270 , embedding an electrode 54 in at least one through hole 40 , and one end of the electrode 54 protrudes from the first surface 20 a of the first barrier layer 20 to form an electrode contact point 50 . Step S280 , coating a filling glue 60 on the electrode contact point 50 .

請參照第3圖,係為本發明實施例與習知技術之效率與時間的實驗結果示意圖。如第3圖所示,橫軸為時間,縱軸為效率值。濕熱加速測試的條件為溫度攝氏65度C,濕度為65%。Please refer to FIG. 3 , which is a schematic diagram of the experimental results of the efficiency and time of the embodiment of the present invention and the conventional technology. As shown in Figure 3, the horizontal axis is time and the vertical axis is efficiency value. The conditions of the accelerated damp heat test are a temperature of 65 degrees Celsius and a humidity of 65%.

第一組太陽電池模組100:無封裝結構(即僅有太陽電池模組10)。第二組太陽電池模組110:無封裝結構(即僅有太陽電池模組10)。第三組太陽電池模組120:有封裝結構(即包含第一阻絕層20、第一黏著層30、太陽電池模組10、第二黏著層32與第二阻絕層22),但無填補膠60包覆於電極接觸點50、電極接觸點52。第四組太陽電池模組130:有封裝結構(同第三組太陽電池模組120的描述內容),且有填補膠60包覆於電極接觸點50、電極接觸點52。第五組太陽電池模組140:有封裝結構(同第三組太陽電池模組120的描述內容),且有填補膠60包覆於電極接觸點50、電極接觸點52。The first group of solar cell modules 100: no encapsulation structure (that is, only the solar cell modules 10). The second group of solar cell modules 110: no encapsulation structure (that is, only the solar cell modules 10). The third group of solar cell modules 120: there is an encapsulation structure (that is, including the first barrier layer 20, the first adhesive layer 30, the solar cell module 10, the second adhesive layer 32 and the second barrier layer 22), but no filling glue 60 covers the electrode contact point 50 and the electrode contact point 52 . The fourth group of solar cell modules 130 : has a packaging structure (same as the description of the third group of solar cell modules 120 ), and has filling glue 60 covering the electrode contact points 50 and electrode contact points 52 . The fifth group of solar cell modules 140 : has a packaging structure (same as the description of the third group of solar cell modules 120 ), and has filling glue 60 covering the electrode contact points 50 and electrode contact points 52 .

一般來說 ,會以加速測試方式來驗證,再以適當的比例推估其真實壽命。於濕熱加速測試進行至200小時的時候,第一組太陽電池模組100與第二組太陽電池模組110的效率值已掉至初始值的80%,而第三組太陽電池模組120的效率值大約為初始值的85%,而第四組太陽電池模組130與第五組太陽電池模組140的效率值仍維持在初始值的90%以上。Generally speaking, it will be verified by accelerated testing, and then its real life will be estimated with an appropriate ratio. When the damp heat accelerated test was carried out to 200 hours, the efficiency values of the first group of solar cell modules 100 and the second group of solar cell modules 110 had dropped to 80% of the initial values, while the efficiency values of the third group of solar cell modules 120 The efficiency value is about 85% of the initial value, while the efficiency values of the fourth solar cell module group 130 and the fifth solar cell module group 140 are still above 90% of the initial value.

於濕熱加速測試進行至500小時的時候,第一組太陽電池模組100與第二組太陽電池模組200的效率值已掉到初始值的60%以下。第三組太陽電池模組120的效率值大約為初始值的75%,而第四組太陽電池模組130與第五組太陽電池模組140的效率值仍維持在初始值的90%以上。由前述內容可知,於濕熱加速測試進行至500小時後,第四組太陽電池模組130與第五組太陽電池模組140仍擁用有良好的壽命。When the accelerated damp heat test is performed for 500 hours, the efficiencies of the first group of solar cell modules 100 and the second group of solar cell modules 200 have dropped below 60% of the initial values. The efficiency of the third group of solar cell modules 120 is about 75% of the initial value, while the efficiency values of the fourth group of solar cell modules 130 and the fifth group of solar cell modules 140 are still above 90% of the initial value. It can be seen from the foregoing that, after the accelerated humidity test has been performed for 500 hours, the fourth set of solar battery modules 130 and the fifth set of solar battery modules 140 still have a good service life.

於濕熱加速測試進行至1000小時的時候,第一組太陽電池模組100與第二組太陽電池模組200的效率值已掉到初始值的50%以下。第三組太陽電池模組120的效率值大約為初始值的60%,而第四組太陽電池模組130與第五組太陽電池模組140的效率值仍維持在初始值的90%以上。When the accelerated humidity test lasted for 1000 hours, the efficiencies of the first group of solar cell modules 100 and the second group of solar cell modules 200 had dropped below 50% of the initial values. The efficiency of the third group of solar cell modules 120 is about 60% of the initial value, while the efficiency values of the fourth group of solar cell modules 130 and the fifth group of solar cell modules 140 are still above 90% of the initial value.

於濕熱加速測試進行至1500小時之後,第四組太陽電池模組130與第五組太陽電池模組140的效率值大約為初始值的60%,顯見此時環境中的水氧在長時間後已突破填補膠60,且各組太陽電池模組的效率值逐漸一致。若以推算方式估計採用本發明實施例的封裝結構,可使太陽電池模組10的壽命提升一倍以上(例如,從3年大幅提升至6年以上)。After 1500 hours of the accelerated damp heat test, the efficiency values of the fourth group of solar cell modules 130 and the fifth group of solar cell modules 140 are about 60% of the initial values. The filling glue 60 has been broken through, and the efficiency values of each group of solar cell modules are gradually consistent. If the encapsulation structure of the embodiment of the present invention is used, the lifespan of the solar cell module 10 can be more than doubled (for example, greatly increased from 3 years to more than 6 years).

綜上所述,本發明之用於軟性有機太陽電池模組的封裝結構及其封裝方法,透過真空烘烤以降低各膜層殘餘的水氧含量,且於電極接觸點包覆填補膠有效阻隔水氧入侵的可能性。藉此,可大幅提升軟性有機太陽電池模組的壽命。To sum up, the packaging structure and packaging method for flexible organic solar cell modules of the present invention reduce the residual water and oxygen content of each film layer through vacuum baking, and cover the electrode contact points with filling glue to effectively block Possibility of water oxygen intrusion. Thereby, the service life of the flexible organic solar cell module can be greatly improved.

根據本發明實施例之第一黏著層與第二黏著層為無溶劑的黏著劑。因此,第一黏著層與第二黏著層不會與第一阻絕層、第二阻絕層產生反應,故不會影響軟性有機太陽電池模組的效率與壽命。According to the embodiment of the present invention, the first adhesive layer and the second adhesive layer are solvent-free adhesives. Therefore, the first adhesive layer and the second adhesive layer will not react with the first barrier layer and the second barrier layer, so the efficiency and service life of the flexible organic solar cell module will not be affected.

根據本發明實施例之第一阻絕層、第一黏著層、第二黏著層與第二阻絕層具有高透光性及可彎曲的特性,故不會產生習知技術中降低光穿透度與可彎折性的問題。According to the embodiment of the present invention, the first barrier layer, the first adhesive layer, the second adhesive layer and the second barrier layer have high light transmittance and bendable properties, so there will be no decrease in light transmittance and The problem of bendability.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

10:太陽電池模組 11:軟性基材 12:透明導電層 13:電子傳輸層 14:主動層 15:電洞傳輸層/上電極 20:第一阻絕層 20a、22a:第一表面 20b、22b:第二表面 22:第二阻絕層 30:第一黏著層 32:第二黏著層 34:第三黏著層 40:貫孔 50、52:電極接觸點 54:電極 60:填補膠 100:第一組太陽電池模組 110:第二組太陽電池模組 120:第三組太陽電池模組 130:第四組太陽電池模組 140:第五組太陽電池模組 S200~S280:步驟 10:Solar battery module 11: Soft substrate 12: Transparent conductive layer 13: Electron transport layer 14:Active layer 15: Hole transport layer/top electrode 20: The first barrier layer 20a, 22a: first surface 20b, 22b: second surface 22: Second barrier layer 30: The first adhesive layer 32: Second adhesive layer 34: The third adhesive layer 40: through hole 50, 52: electrode contact point 54: electrode 60: filling glue 100: The first set of solar cell modules 110: The second group of solar cell modules 120: The third group of solar cell modules 130: The fourth group of solar cell modules 140: The fifth group of solar cell modules S200~S280: steps

第1A圖為本發明實施例之太陽電池模組結構示意圖。 第1B圖至第1G圖為本發明實施例之太陽電池模組封裝結構示意圖。 第2A圖與第2B圖為本發明實施例之封裝方法流程圖。 第3圖為本發明實施例與習知技術之效率與時間的實驗結果示意圖。 FIG. 1A is a schematic structural diagram of a solar cell module according to an embodiment of the present invention. FIG. 1B to FIG. 1G are schematic diagrams of the package structure of the solar cell module according to the embodiment of the present invention. FIG. 2A and FIG. 2B are flow charts of a packaging method according to an embodiment of the present invention. Fig. 3 is a schematic diagram of the experimental results of the efficiency and time of the embodiment of the present invention and the conventional technology.

10:太陽電池模組 10:Solar battery module

11:軟性基材 11: Soft substrate

12:透明導電層 12: Transparent conductive layer

13:電子傳輸層 13: Electron transport layer

14:主動層 14:Active layer

15:電洞傳輸層/上電極 15: Hole transport layer/top electrode

20:第一阻絕層 20: The first barrier layer

20a:第一表面 20a: first surface

22:第二阻絕層 22: Second barrier layer

22b:第二表面 22b: second surface

34:第三黏著層 34: The third adhesive layer

50、52:電極接觸點 50, 52: electrode contact points

54:電極 54: electrode

60:填補膠 60: filling glue

Claims (4)

一種用於軟性有機太陽電池模組的封裝結構,包含:一第一阻絕層,具有一第一表面與相對於該第一表面的一第二表面;一第一黏著層,形成於該第一阻絕層的該第二表面;一第二阻絕層,具有一第一表面與相對於該第一表面的一第二表面;一第二黏著層,形成於該第二阻絕層的該第一表面;及一太陽電池模組,設置於該第一黏著層與該第二黏著層之間;其中該第一阻絕層、該第一黏著層、該太陽電池模組、該第二黏著層與該第二阻絕層以攝氏100度C~110度C,以及時間為7小時~9小時以上的條件進行真空烘烤,再以一熱壓合方式彼此結合;其中該第一阻絕層、該第一黏著層、該太陽電池模組、該第二黏著層與該第二阻絕層的一端形成有至少一貫孔,而該至少一貫孔內埋設有一電極,且該電極之一端突出於該第一阻絕層之該第一表面,該電極之另一端突出於該第二阻絕層之該第二表面,以分別形成一電極接觸點;及其中一填補膠包覆於該電極接觸點。 A packaging structure for a flexible organic solar cell module, comprising: a first barrier layer having a first surface and a second surface opposite to the first surface; a first adhesive layer formed on the first The second surface of the barrier layer; a second barrier layer having a first surface and a second surface opposite to the first surface; a second adhesive layer formed on the first surface of the second barrier layer ; and a solar cell module, disposed between the first adhesive layer and the second adhesive layer; wherein the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer and the The second barrier layer is vacuum-baked at 100°C to 110°C for 7 hours to 9 hours or more, and then combined with each other in a heat-compression method; wherein the first barrier layer, the first At least one through hole is formed at one end of the adhesive layer, the solar cell module, the second adhesive layer and the second barrier layer, and an electrode is embedded in the at least one through hole, and one end of the electrode protrudes from the first barrier layer On the first surface, the other end of the electrode protrudes from the second surface of the second barrier layer to respectively form an electrode contact point; and wherein a filling glue covers the electrode contact point. 如請求項1所述之用於軟性有機太陽電池模組的封裝結構,其中該第一黏著層與該第二黏著層包覆該太陽電池模組。 The encapsulation structure for a flexible organic solar cell module according to claim 1, wherein the first adhesive layer and the second adhesive layer cover the solar cell module. 如請求項1所述之用於軟性有機太陽電池模組的封裝結構,其中該第一黏著層與該第二黏著層為壓敏膠。 The encapsulation structure for a flexible organic solar cell module according to claim 1, wherein the first adhesive layer and the second adhesive layer are pressure-sensitive adhesives. 一種用於軟性有機太陽電池模組的封裝方法,包含有下列步驟:提供分別具有一第一表面與相對於該第一表面的一第二表面之一第一阻絕層與一第二阻絕層;形成一第一黏著層於該第一阻絕層的該第二表面;形成一第二黏著層於該第二阻絕層的該第一表面; 設置一太陽電池模組於該第一黏著層與該第二黏著層之間;以攝氏100度C~110度C,以及時間為7小時~9小時以上的條件進行真空烘烤該第一阻絕層、該第一黏著層、該太陽電池模組、該第二黏著層與該第二阻絕層;以一熱壓合方式將該第一阻絕層、該第一黏著層、該太陽電池模組、該第二黏著層與該第二阻絕層彼此結合;於該第一阻絕層、該第一黏著層、該太陽電池模組、該第二黏著層與該第二阻絕層的一端形成有至少一貫孔;埋設一電極於該至少一貫孔內,且該電極之一端突出於第一阻絕層之該第一表面,該電極之另一端突出於第二阻絕層之該第二表面,以分別形成一電極接觸點;及包覆一填補膠於該電極接觸點。 A packaging method for a flexible organic solar cell module, comprising the steps of: providing a first barrier layer and a second barrier layer respectively having a first surface and a second surface opposite to the first surface; forming a first adhesive layer on the second surface of the first barrier layer; forming a second adhesive layer on the first surface of the second barrier layer; Set a solar cell module between the first adhesive layer and the second adhesive layer; vacuum bake the first barrier at 100°C to 110°C for 7 hours to 9 hours or more layer, the first adhesive layer, the solar cell module, the second adhesive layer, and the second barrier layer; the first barrier layer, the first adhesive layer, and the solar cell module are thermally bonded , the second adhesive layer and the second barrier layer are combined with each other; at least one end of the first barrier layer, the first adhesive layer, the solar cell module, the second adhesive layer and the second barrier layer is formed A through hole; an electrode is buried in the at least one through hole, and one end of the electrode protrudes from the first surface of the first barrier layer, and the other end of the electrode protrudes from the second surface of the second barrier layer to form an electrode contact point; and coating a filling glue on the electrode contact point.
TW110130422A 2021-08-18 2021-08-18 Packaging structure for flexible organic solar cell module and packaging method thereof TWI784672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110130422A TWI784672B (en) 2021-08-18 2021-08-18 Packaging structure for flexible organic solar cell module and packaging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110130422A TWI784672B (en) 2021-08-18 2021-08-18 Packaging structure for flexible organic solar cell module and packaging method thereof

Publications (2)

Publication Number Publication Date
TWI784672B true TWI784672B (en) 2022-11-21
TW202310482A TW202310482A (en) 2023-03-01

Family

ID=85794600

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110130422A TWI784672B (en) 2021-08-18 2021-08-18 Packaging structure for flexible organic solar cell module and packaging method thereof

Country Status (1)

Country Link
TW (1) TWI784672B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380670A1 (en) * 2013-03-07 2015-12-31 Rohm Co., Ltd. Organic thin film photovoltaic device, fabrication method thereof, and electronic apparatus
CN107431132A (en) * 2015-03-27 2017-12-01 三菱化学株式会社 Organic thin film solar cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150380670A1 (en) * 2013-03-07 2015-12-31 Rohm Co., Ltd. Organic thin film photovoltaic device, fabrication method thereof, and electronic apparatus
CN107431132A (en) * 2015-03-27 2017-12-01 三菱化学株式会社 Organic thin film solar cell module

Also Published As

Publication number Publication date
TW202310482A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
US8638032B2 (en) Organic optoelectronic device coated with a multilayer encapsulation structure and a method for encapsulating said device
TWI384583B (en) Diffusion barrier layer and method for manufacturing a diffusion barrier layer
JP4856313B2 (en) Environmental barrier material for organic light emitting device and method of manufacturing the same
US9172057B2 (en) Encapsulation structure for an opto-electronic component
EP1524708A2 (en) Environmental barrier material and methods of making.
CN108539022B (en) Low-damage perovskite solar cell and packaging method thereof
JP5575882B2 (en) Airtight electrical package
CN108987602B (en) Packaging structure of organic electroluminescent device and manufacturing method
KR20110055568A (en) Radiation-emitting device and method for producing a radiation-emitting device
WO2020206980A1 (en) Flexible oled display apparatus and preparation method therefor
US20140210112A1 (en) Encapsulation structure for an optoelectronic component and method for encapsulating an optoelectronic component
WO2021088256A1 (en) Preparation of ultra-thin flexible organic electronic device, integral packaging structure design, and preparation process
WO2019071736A1 (en) Oled display and manufacturing method therefor
WO2020220523A1 (en) Organic light-emitting diode display device and manufacturing method thereof
US10454065B1 (en) OLED device encapsulating method and structure, OLED device, and display screen
TWI784672B (en) Packaging structure for flexible organic solar cell module and packaging method thereof
CN102842683A (en) Organic electroluminescence device and manufacturing method thereof
WO2011114860A1 (en) Light emitting device
CN108807579A (en) Film encapsulation method and device, thin-film package system, solar cell
TW200427017A (en) Package method of electronic devices
KR101372636B1 (en) Encapsulating method for electronic device and encapsulated electronic device
US20140076393A1 (en) Flexible solar cell and manufacturing method thereof
TW202044602A (en) Curved structure with solar cell and packaging method thereof
WO2022218089A1 (en) Perovskite solar cell and preparation method therefor, and electrical device
WO2023190007A1 (en) Flexible perovskite solar cell and manufacturing method thereof