TWI782575B - Memory device and method of manufacturing the same - Google Patents

Memory device and method of manufacturing the same Download PDF

Info

Publication number
TWI782575B
TWI782575B TW110121431A TW110121431A TWI782575B TW I782575 B TWI782575 B TW I782575B TW 110121431 A TW110121431 A TW 110121431A TW 110121431 A TW110121431 A TW 110121431A TW I782575 B TWI782575 B TW I782575B
Authority
TW
Taiwan
Prior art keywords
layers
layer
channel
contact
forming
Prior art date
Application number
TW110121431A
Other languages
Chinese (zh)
Other versions
TW202249242A (en
Inventor
達 陳
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110121431A priority Critical patent/TWI782575B/en
Application granted granted Critical
Publication of TWI782575B publication Critical patent/TWI782575B/en
Publication of TW202249242A publication Critical patent/TW202249242A/en

Links

Images

Landscapes

  • Debugging And Monitoring (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)

Abstract

Provided is a memory device including a stack structure, a plurality of channel layers, a source line, a bit line, a switching layer, and a dielectric pillar. The stack structure has a plurality of dielectric layers and a plurality of conductive layers stacked alternately. The channel layers are respectively embedded in the conductive layer. The source line penetrates through the stack structure to be electrically connected to the channel layers at first sides of the channel layers. The bit line penetrates through the stack structure to be coupled to the channel layers at second sides of the channel layers. The switching layer wraps the bit line to contact the channel layers at the second sides of the channel layers. The dielectric pillar penetrates through the channel layers to divide each channel layer into a doughnut shape. A method of manufacturing a memory device is also provided.

Description

記憶元件及其製造方法 Memory element and manufacturing method thereof

本發明是有關於一種記憶元件及其製造方法。 The invention relates to a memory element and a manufacturing method thereof.

隨著半導體技術的進步,各類電子產品皆朝向高速、高效能、且輕薄短小的趨勢發展,而在這趨勢之下,對於更高儲存能力之記憶體的需求也隨之增加。因此,記憶體的設計也已朝向具有高積集度及高密度的三維記憶體結構發展。 With the advancement of semiconductor technology, all kinds of electronic products are developing towards high speed, high performance, and thin, light and compact. Under this trend, the demand for memory with higher storage capacity is also increasing. Therefore, the design of memory has also been developed towards a three-dimensional memory structure with high integration and high density.

本發明提供一種記憶元件及製造方法,其將同一水平處的閘極環繞多個記憶胞,以使多個記憶胞共享同一閘極電壓,進而簡化閘極佈線布局。 The invention provides a memory element and a manufacturing method. The gates at the same level surround multiple memory cells, so that the multiple memory cells share the same gate voltage, thereby simplifying the gate wiring layout.

本發明提供一種記憶元件及製造方法,其可通過增加通道層的在垂直方向上的厚度來增加記憶胞的電流。在此情況下,本發明可有效地利用晶片在水平方向上的面積,以提升記憶元件的積集度,進而有利於晶片微型化。 The invention provides a memory element and a manufacturing method, which can increase the current of the memory cell by increasing the thickness of the channel layer in the vertical direction. In this case, the present invention can effectively utilize the area of the wafer in the horizontal direction to increase the integration of memory elements, thereby facilitating the miniaturization of the wafer.

本發明提供一種記憶元件包括:堆疊結構、多個通道層、源極線、位元線、切換層以及介電柱。堆疊結構具有多個介電層與多個導體層交替堆疊。多個通道層分別內埋在所述多個導體層中。源極線貫穿所述堆疊結構,以在所述多個通道層的第一側與所述多個通道層電性連接。位元線貫穿所述堆疊結構,以在所述多個通道層的第二側與所述多個通道層耦接。切換層包覆所述位元線,以在所述多個通道層的所述第二側與所述多個通道層接觸。介電柱貫穿所述多個通道層,以將每一個通道層分割成甜甜圈形狀。 The invention provides a memory element including: a stack structure, multiple channel layers, source lines, bit lines, switching layers and dielectric pillars. The stack structure has a plurality of dielectric layers and a plurality of conductor layers stacked alternately. A plurality of channel layers are respectively embedded in the plurality of conductor layers. The source line runs through the stack structure to be electrically connected to the plurality of channel layers at the first side of the plurality of channel layers. The bit line runs through the stack structure to be coupled with the plurality of channel layers at the second side of the plurality of channel layers. A switching layer covers the bit lines to contact the plurality of channel layers at the second side of the plurality of channel layers. A dielectric post runs through the plurality of channel layers to segment each channel layer into a donut shape.

本發明提供一種記憶元件的製造方法,包括:形成具有多個介電層與多個導體層交替堆疊的堆疊結構;在所述堆疊結構中形成第一開口,以貫穿所述堆疊結構;橫向凹蝕外露於所述第一開口的所述多個導體層,以形成多個第一凹陷;在外露於所述多個第一凹陷的所述多個導體層的側壁上形成閘介電層;在所述多個第一凹陷中分別形成多個通道層;在所述第一開口中形成介電柱,以與所述多個通道層接觸;在所述多個通道層的第一側處形成貫穿所述堆疊結構的源極線;在所述多個通道層的第二側處形成貫穿所述堆疊結構的位元線;以及形成包覆所述位元線的切換層。 The present invention provides a method for manufacturing a memory element, comprising: forming a stack structure having a plurality of dielectric layers and a plurality of conductor layers alternately stacked; forming a first opening in the stack structure to penetrate through the stack structure; etching the plurality of conductive layers exposed to the first openings to form a plurality of first recesses; forming a gate dielectric layer on sidewalls of the plurality of conductive layers exposed to the plurality of first recesses; A plurality of channel layers are respectively formed in the plurality of first recesses; a dielectric column is formed in the first opening to contact the plurality of channel layers; formed at a first side of the plurality of channel layers A source line penetrating through the stack structure; a bit line penetrating the stack structure is formed at a second side of the plurality of channel layers; and a switching layer is formed covering the bit line.

1、2:記憶元件 1, 2: memory components

10、12、14、16、18、20、22、24:開口 10, 12, 14, 16, 18, 20, 22, 24: opening

11、17、19、21:凹陷 11, 17, 19, 21: Depression

24s:內表面 24s: inner surface

102:堆疊結構 102:Stack structure

104:介電層 104: Dielectric layer

104s、104s1、104s2、106s、117s、119s、120s、121s:側壁 104s, 104s1, 104s2, 106s, 117s, 119s, 120s, 121s: side wall

106:導體層 106: conductor layer

108:閘介電層 108: gate dielectric layer

110:通道材料層 110: channel material layer

111:介電柱 111: Dielectric column

112、112a、112b、114、114a、114b:隔離結構 112, 112a, 112b, 114, 114a, 114b: isolation structures

117:第一接觸層 117: first contact layer

119:第二接觸層 119: second contact layer

120:通道層 120: Channel layer

120t:厚度 120t: Thickness

121:電極層 121: electrode layer

122:源極線 122: source line

124:切換層 124: switch layer

126:位元線 126: bit line

MC:記憶胞 MC: memory cell

S1:第一側 S1: first side

S2:第二側 S2: second side

圖1A至圖1S是依照本發明第一實施例的一種記憶元件的製造流程的平面示意圖。 1A to 1S are schematic plan views of a manufacturing process of a memory device according to a first embodiment of the present invention.

圖2A至圖2S是依照本發明第一實施例的一種記憶元件的製造流程的剖面示意圖。 2A to 2S are schematic cross-sectional views of a manufacturing process of a memory device according to the first embodiment of the present invention.

圖3是圖1S的記憶胞的立體示意圖。 FIG. 3 is a schematic perspective view of the memory cell in FIG. 1S .

圖4是依照本發明第二實施例的一種記憶元件的剖面示意圖。 4 is a schematic cross-sectional view of a memory device according to a second embodiment of the present invention.

參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度會為了清楚起見而放大。相同或相似之標號表示相同或相似之元件,以下段落將不再一一贅述。 The present invention will be described more fully with reference to the drawings of this embodiment. However, the present invention can also be embodied in various forms and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the drawings may be exaggerated for clarity. The same or similar symbols indicate the same or similar elements, and the following paragraphs will not repeat them one by one.

圖1A至圖1S是依照本發明第一實施例的一種記憶元件的製造流程的平面示意圖。圖2A至圖2S是依照本發明第一實施例的一種記憶元件的製造流程的剖面示意圖。在以下實施例中,圖1A至圖1S分別是沿著圖2A至圖2S的線I-I所截取的平面示意圖。為了簡潔起見,僅在圖2A中繪示出線I-I,而省略繪示在圖2B至圖2S中。 1A to 1S are schematic plan views of a manufacturing process of a memory device according to a first embodiment of the present invention. 2A to 2S are schematic cross-sectional views of a manufacturing process of a memory device according to the first embodiment of the present invention. In the following embodiments, FIG. 1A to FIG. 1S are schematic plan views taken along line I-I of FIG. 2A to FIG. 2S . For the sake of brevity, only the line I-I is shown in FIG. 2A , and is omitted in FIG. 2B to FIG. 2S .

首先,請參照圖1A與圖2A,形成具有多個介電層104與多個導體層106交替堆疊的堆疊結構102。在一些實施例中,介電層104的材料包括介電材料,例如是氧化矽、氮化矽、氮氧化 矽或其組合。導體層106的材料包括摻雜多晶矽、未摻雜多晶矽或其組合。在本實施例中,介電層104可以是氧化矽層,而導體層106可以是重摻雜P型(P+)多晶矽層。雖然圖2A僅繪示出3個介電層104與2個導體層106,但本發明不以此為限。在其他實施例中,介電層104與導體層106的數量可依需求來調整。 First, referring to FIG. 1A and FIG. 2A , a stacked structure 102 having a plurality of dielectric layers 104 and a plurality of conductive layers 106 stacked alternately is formed. In some embodiments, the material of the dielectric layer 104 includes a dielectric material, such as silicon oxide, silicon nitride, oxynitride Silicon or combinations thereof. The material of the conductive layer 106 includes doped polysilicon, undoped polysilicon or a combination thereof. In this embodiment, the dielectric layer 104 may be a silicon oxide layer, and the conductive layer 106 may be a heavily doped P-type (P+) polysilicon layer. Although FIG. 2A only shows three dielectric layers 104 and two conductive layers 106 , the present invention is not limited thereto. In other embodiments, the numbers of the dielectric layers 104 and the conductive layers 106 can be adjusted according to requirements.

請參照圖1B與圖2B,在堆疊結構102中形成多個開口10,以貫穿堆疊結構102。 Referring to FIG. 1B and FIG. 2B , a plurality of openings 10 are formed in the stack structure 102 to penetrate the stack structure 102 .

請參照圖1C與圖2C,進行第一蝕刻製程,橫向凹蝕外露於開口10(即第一開口)的導體層106,由此形成多個凹陷11(即第一凹陷)。在一些實施例中,第一蝕刻製程包括使用合適的蝕刻劑的濕式蝕刻製程,以選擇性地蝕刻導體層106。舉例來說,當介電層104為氧化矽層且導體層106為P型多晶矽層時,可使用含有氯(chlorine)的蝕刻劑。在此情況下,導體層106的側壁106s從介電層104的側壁104s凹入,使得凹陷11形成在相鄰介電層104之間。 Referring to FIG. 1C and FIG. 2C , a first etching process is performed to laterally etch back the conductive layer 106 exposed in the opening 10 (ie, the first opening), thereby forming a plurality of depressions 11 (ie, the first depression). In some embodiments, the first etching process includes a wet etching process using a suitable etchant to selectively etch the conductor layer 106 . For example, when the dielectric layer 104 is a silicon oxide layer and the conductive layer 106 is a P-type polysilicon layer, an etchant containing chlorine can be used. In this case, the sidewall 106s of the conductor layer 106 is recessed from the sidewall 104s of the dielectric layer 104 such that the recess 11 is formed between adjacent dielectric layers 104 .

請參照圖1D與圖2D,進行熱氧化製程,以在外露於凹陷11的導體層106的側壁106s上形成閘介電層108。在此情況下,如圖1D所示,閘介電層108橫向環繞由凹陷11與開口10所構成的複合開口。在一些實施例中,閘介電層108可以是氧化矽層。 Referring to FIG. 1D and FIG. 2D , a thermal oxidation process is performed to form a gate dielectric layer 108 on the sidewall 106 s of the conductive layer 106 exposed in the recess 11 . In this case, as shown in FIG. 1D , the gate dielectric layer 108 laterally surrounds the composite opening formed by the recess 11 and the opening 10 . In some embodiments, the gate dielectric layer 108 may be a silicon oxide layer.

請參照圖1E與圖2E,形成通道材料層110,以填入凹陷11與開口10中。在一些實施例中,通道材料層110包括多晶矽、磊晶矽、銦鎵鋅氧化物(IGZO)或其組合。在本實施例中,通道 材料層110可以是輕摻雜P型(P-)多晶矽,其摻雜濃度小於導體層106(P+多晶矽層)的摻雜濃度。也就是說,通道材料層110與導體層106可具有相同導電型。 Referring to FIG. 1E and FIG. 2E , a channel material layer 110 is formed to fill in the recess 11 and the opening 10 . In some embodiments, the channel material layer 110 includes polysilicon, epitaxial silicon, indium gallium zinc oxide (IGZO) or a combination thereof. In this example, the channel The material layer 110 may be lightly doped P-type (P−) polysilicon, whose doping concentration is lower than that of the conductive layer 106 (P+ polysilicon layer). That is to say, the channel material layer 110 and the conductor layer 106 may have the same conductivity type.

請參照圖1F與圖2F,移除介電層104的側壁104s上的過量通道材料層110,以在凹陷11中分別形成多個通道層120。在此情況下,如圖2F所示,通道層120的側壁120s可對齊介電層104的側壁104s。但本發明不以此為限,在其他實施例中,通道層120的側壁120s亦可稍微凹陷於介電層104的側壁104s。 Referring to FIG. 1F and FIG. 2F , the excess channel material layer 110 on the sidewall 104 s of the dielectric layer 104 is removed to form a plurality of channel layers 120 in the recesses 11 . In this case, as shown in FIG. 2F , the sidewalls 120 s of the channel layer 120 may be aligned with the sidewalls 104 s of the dielectric layer 104 . However, the present invention is not limited thereto. In other embodiments, the sidewall 120s of the channel layer 120 may also be slightly recessed from the sidewall 104s of the dielectric layer 104 .

請參照圖1G與圖2G,在開口10中形成介電柱111,以與具有甜甜圈形狀的通道層120接觸,使得介電柱111被通道層120與介電層104圍繞。介電柱111可與介電層104具有相同或不同介電材料。 Referring to FIG. 1G and FIG. 2G , a dielectric column 111 is formed in the opening 10 to contact the donut-shaped channel layer 120 , so that the dielectric column 111 is surrounded by the channel layer 120 and the dielectric layer 104 . The dielectric pillar 111 may have the same or different dielectric material from the dielectric layer 104 .

請參照圖1H與圖2H,在通道層120的第一側S1處形成貫穿堆疊結構102的開口12,並在通道層120的第二側S2處形成貫穿堆疊結構102的開口14。通道層120的第一側S1相對於通道層120的第二側S2。具體來說,閘介電層108可視為形成開口12、14的停止層。因此,通道層120的第一側S1可突出並延伸至開口12,而通道層120的第二側S2可突出並延伸至開口14中。 Referring to FIG. 1H and FIG. 2H , an opening 12 penetrating through the stack structure 102 is formed at the first side S1 of the channel layer 120 , and an opening 14 penetrating through the stack structure 102 is formed at the second side S2 of the channel layer 120 . The first side S1 of the channel layer 120 is opposite to the second side S2 of the channel layer 120 . Specifically, the gate dielectric layer 108 can be regarded as a stop layer for forming the openings 12 , 14 . Accordingly, the first side S1 of the channel layer 120 may protrude and extend into the opening 12 , and the second side S2 of the channel layer 120 may protrude and extend into the opening 14 .

請參照圖1I與圖2I,將隔離材料分別填入開口12與開口14中,以在通道層120的第一側S1處形成隔離結構112並在通道層120的第二側S2處形成隔離結構114。在此情況下,隔離結構112、114分別貫穿堆疊結構102,以與通道層120接觸。在 本實施例中,隔離結構112、114用以電性隔離同一水平處的通道層120。在一些實施例中,隔離材料包括介電材料,例如是氧化矽、氮化矽、氮氧化矽或其組合。 Referring to FIG. 1I and FIG. 2I, the isolation material is filled into the opening 12 and the opening 14 respectively to form the isolation structure 112 at the first side S1 of the channel layer 120 and to form the isolation structure at the second side S2 of the channel layer 120. 114. In this case, the isolation structures 112 and 114 respectively penetrate through the stack structure 102 to be in contact with the channel layer 120 . exist In this embodiment, the isolation structures 112 and 114 are used to electrically isolate the channel layer 120 at the same level. In some embodiments, the isolation material includes a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride or a combination thereof.

請參照圖1J與圖2J,在通道層120的第一側S1處形成貫穿隔離結構112的開口16(即第二開口),並在通道層120的第二側S2處形成貫穿隔離結構114的開口18(即第三開口)。具體來說,通道層120的第一側S1處的部分閘介電層108可被進一步地移除,以使開口16接觸通道層120的第一側S1。另一方面,通道層120的第二側S2處的部分閘介電層108可被進一步地移除,以使開口18接觸通道層120的第二側S2。此外,每一個開口16和18被隔離結構112a、114a以及通道層120圍繞,且在形成開口16、18之後,每一個隔離結構112a與每一個隔離結構114a變成了「I」字型。 1J and FIG. 2J, an opening 16 (that is, a second opening) penetrating the isolation structure 112 is formed at the first side S1 of the channel layer 120, and an opening 16 penetrating the isolation structure 114 is formed at the second side S2 of the channel layer 120. Opening 18 (ie the third opening). Specifically, part of the gate dielectric layer 108 at the first side S1 of the channel layer 120 may be further removed, so that the opening 16 contacts the first side S1 of the channel layer 120 . On the other hand, part of the gate dielectric layer 108 at the second side S2 of the channel layer 120 may be further removed so that the opening 18 contacts the second side S2 of the channel layer 120 . In addition, each of the openings 16 and 18 is surrounded by the isolation structures 112a, 114a and the channel layer 120, and after the openings 16, 18 are formed, each of the isolation structures 112a and each of the isolation structures 114a becomes an "I" shape.

請參照圖1K與圖2K,進行第二蝕刻製程,以橫向凹蝕外露於開口16的通道層120的第一側S1的一部分,由此形成與開口16連通的多個凹陷17(即第二凹陷),並橫向凹蝕外露於開口18的通道層120的第二側S2的一部分,由此形成與開口18連通的多個凹陷19(即第三凹陷)。在一些實施例中,第二蝕刻製程包括使用合適的蝕刻劑的濕式蝕刻製程,以選擇性地蝕刻通道層120。舉例來說,當介電層104與隔離結構112a、114a為氧化矽層且通道層120為P-多晶矽層時,可使用含有氯的蝕刻劑。 1K and FIG. 2K, a second etching process is performed to laterally etch back a part of the first side S1 of the channel layer 120 exposed to the opening 16, thereby forming a plurality of depressions 17 communicating with the opening 16 (ie, the second depressions), and laterally etch back a portion of the second side S2 of the channel layer 120 exposed to the openings 18, thereby forming a plurality of depressions 19 (ie, third depressions) communicating with the openings 18 . In some embodiments, the second etching process includes a wet etching process using a suitable etchant to selectively etch the channel layer 120 . For example, when the dielectric layer 104 and the isolation structures 112 a and 114 a are silicon oxide layers and the channel layer 120 is a P-polysilicon layer, an etchant containing chlorine may be used.

請參照圖1L與圖2L,在凹陷17中分別形成多個第一接 觸層117,並在凹陷19中分別形成多個第二接觸層119。在一些實施例中,第一接觸層117與第二接觸層119可通過形成接觸材料層以填入凹陷17、19並覆蓋介電層104的側壁104s,接著移除介電層104的側壁104s上的過量接觸材料層來形成。在本實施例中,接觸材料層可以是重摻雜N型(N+)多晶矽層。也就是說,第一接觸層117與第二接觸層119具有相同導電型,而與通道層120(或導體層106)具有不同導電型。在形成第一接觸層117與第二接觸層119之後,如圖2L所示,第一接觸層117的側壁117s可對齊介電層104的側壁104s1,而第二接觸層119的側壁119s可對齊介電層104的側壁104s2。但本發明不以此為限,在其他實施例中,第一接觸層117的側壁117s可稍微凹陷於介電層104的側壁104s1,而第二接觸層119的側壁119s亦可稍微凹陷於介電層104的側壁104s2。在本實施例中,第一接觸層117與第二接觸層119可在同一步驟中形成。 Please refer to FIG. 1L and FIG. 2L, a plurality of first contacts are respectively formed in the recesses 17. contact layer 117, and form a plurality of second contact layers 119 in the recesses 19, respectively. In some embodiments, the first contact layer 117 and the second contact layer 119 can be formed by forming a contact material layer to fill the recesses 17, 19 and cover the sidewall 104s of the dielectric layer 104, and then remove the sidewall 104s of the dielectric layer 104. The excess contact material layer on the top is formed. In this embodiment, the contact material layer may be a heavily doped N-type (N+) polysilicon layer. That is to say, the first contact layer 117 has the same conductivity type as the second contact layer 119 , but has a different conductivity type from the channel layer 120 (or the conductor layer 106 ). After forming the first contact layer 117 and the second contact layer 119, as shown in FIG. The sidewall 104s2 of the dielectric layer 104 . But the present invention is not limited thereto. In other embodiments, the sidewall 117s of the first contact layer 117 can be slightly recessed in the sidewall 104s1 of the dielectric layer 104, and the sidewall 119s of the second contact layer 119 can also be slightly recessed in the intermediate layer. The sidewall 104s2 of the electrical layer 104 . In this embodiment, the first contact layer 117 and the second contact layer 119 can be formed in the same step.

請參照圖1M與圖2M,將隔離材料分別填入開口16、18中,使得每一個第一接觸層117與每一個第二接觸層119皆被介電層104、通道層120以及隔離結構112a、114a中的一者圍繞。在一些實施例中,隔離材料包括介電材料,例如是氧化矽、氮化矽、氮氧化矽或其組合。在本實施例中,隔離材料可與隔離結構112a、114a以及閘介電層108具有相同材料,故在圖1M與圖2M中繪示為相同膜層。 Referring to FIG. 1M and FIG. 2M, the isolation materials are respectively filled into the openings 16 and 18, so that each first contact layer 117 and each second contact layer 119 are covered by the dielectric layer 104, the channel layer 120 and the isolation structure 112a. , 114a surrounded by one. In some embodiments, the isolation material includes a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride or a combination thereof. In this embodiment, the isolation material can have the same material as the isolation structures 112a, 114a and the gate dielectric layer 108, so they are shown as the same film layer in FIG. 1M and FIG. 2M.

請參照圖1N與圖2N,在第二接觸層119的外側(側壁) 119s處形成貫穿隔離結構114b(或112b)的開口20(即第四開口)。在此情況下,如圖2N所示,開口20暴露出第二接觸層119的外側119s,且開口20被隔離結構114b(或112b)圍繞,其中在開口20形成之後,隔離結構114b(或112b)變成了「U」字型。 Please refer to FIG. 1N and FIG. 2N, on the outside (sidewall) of the second contact layer 119 An opening 20 (ie, a fourth opening) passing through the isolation structure 114b (or 112b) is formed at 119s. In this case, as shown in FIG. 2N, the opening 20 exposes the outer side 119s of the second contact layer 119, and the opening 20 is surrounded by the isolation structure 114b (or 112b), wherein after the opening 20 is formed, the isolation structure 114b (or 112b ) becomes a "U" shape.

請參照圖1O與圖2O,進行第三蝕刻製程,以橫向凹蝕外露於開口20的部分第二接觸層119,由此形成與開口20連通的多個凹陷21(即第四凹陷)。在一些實施例中,第三蝕刻製程包括使用合適的蝕刻劑的濕式蝕刻製程,以選擇性地蝕刻第二接觸層119。舉例來說,當介電層104與隔離結構112b、114b為氧化矽層且第二接觸層119為N+多晶矽層時,可使用含有氯的蝕刻劑。 Referring to FIG. 1O and FIG. 2O , a third etching process is performed to laterally etch back the portion of the second contact layer 119 exposed to the opening 20 , thereby forming a plurality of depressions 21 (ie, fourth depressions) communicating with the opening 20 . In some embodiments, the third etching process includes a wet etching process using a suitable etchant to selectively etch the second contact layer 119 . For example, when the dielectric layer 104 and the isolation structures 112 b and 114 b are silicon oxide layers and the second contact layer 119 is an N+ polysilicon layer, an etchant containing chlorine may be used.

請參照圖1P與圖2P,在凹陷21中分別形成多個電極層121。在一些實施例中,電極層121可通過利用例如化學氣相沉積法(CVD)形成電極材料層(例如是TiN層)以填入凹陷21,並覆蓋介電層104的側壁104s2,接著移除介電層104的側壁104s2上的過量電極材料層來形成。在此情況下,如圖2P所示,電極層121的側壁121s可對齊介電層104的側壁104s2。但本發明不以此為限,在其他實施例中,電極層121的側壁121s亦可稍微凹陷於介電層104的側壁104s2。 Referring to FIG. 1P and FIG. 2P , a plurality of electrode layers 121 are respectively formed in the recesses 21 . In some embodiments, the electrode layer 121 can be formed by using, for example, chemical vapor deposition (CVD) to form an electrode material layer (such as a TiN layer) to fill the recess 21 and cover the sidewall 104s2 of the dielectric layer 104, and then removed. The excess electrode material layer on the sidewall 104s2 of the dielectric layer 104 is formed. In this case, as shown in FIG. 2P , the sidewall 121s of the electrode layer 121 can be aligned with the sidewall 104s2 of the dielectric layer 104 . However, the present invention is not limited thereto. In other embodiments, the sidewall 121s of the electrode layer 121 may also be slightly recessed from the sidewall 104s2 of the dielectric layer 104 .

請參照圖1Q與圖2Q,將隔離材料填入開口20中,使得電極層121被介電層104、第二接觸層119以及隔離結構112b、114b圍繞。在一些實施例中,隔離材料包括介電材料,例如是氧化矽、氮化矽、氮氧化矽或其組合。在本實施例中,隔離材料可 與隔離結構112b、114b具有相同材料,故在圖1Q與圖2Q中繪示為相同膜層。 1Q and FIG. 2Q, the isolation material is filled into the opening 20, so that the electrode layer 121 is surrounded by the dielectric layer 104, the second contact layer 119 and the isolation structures 112b, 114b. In some embodiments, the isolation material includes a dielectric material such as silicon oxide, silicon nitride, silicon oxynitride or a combination thereof. In this embodiment, the isolation material can be It has the same material as the isolation structures 112b and 114b, so it is shown as the same film layer in FIG. 1Q and FIG. 2Q.

請參照圖1R與圖2R,在第一接觸層117的外側(側壁)117s處形成貫穿隔離結構112b(或114b)的開口22(即第五開口)。接著,在開口22中填入源極線材料(例如是具有TiN襯層的W),以形成接觸第一接觸層117的源極線122。 Referring to FIG. 1R and FIG. 2R , an opening 22 (ie, a fifth opening) penetrating the isolation structure 112 b (or 114 b ) is formed at the outer side (sidewall) 117 s of the first contact layer 117 . Next, a source line material (such as W with a TiN liner layer) is filled in the opening 22 to form a source line 122 contacting the first contact layer 117 .

請參照圖1S與圖2S,在電極層121的外側(側壁)121s處形成貫穿隔離結構114b(或112b)的開口24(即第六開口)。接著,在開口24的內表面24s上形成切換層124,以接觸電極層121。然後,在開口24中填入位元線材料(例如是Ti等合適的導電材料),以形成被切換層124所包覆的位元線126,由此完成記憶元件1。 Referring to FIG. 1S and FIG. 2S , an opening 24 (ie, a sixth opening) penetrating through the isolation structure 114 b (or 112 b ) is formed at the outer side (sidewall) 121 s of the electrode layer 121 . Next, the switching layer 124 is formed on the inner surface 24 s of the opening 24 to contact the electrode layer 121 . Then, a bit line material (for example, a suitable conductive material such as Ti) is filled in the opening 24 to form a bit line 126 covered by the switching layer 124 , thereby completing the memory element 1 .

請參照圖1S與圖2S,本揭露提供一種記憶元件1包括:堆疊結構102、多個通道層120、源極線122、位元線126、切換層124以及介電柱111。堆疊結構102具有多個介電層104與多個導體層106交替堆疊。通道層120分別內埋在導體層106中。源極線122貫穿堆疊結構102,以在通道層120的第一側S1與通道層120電性連接。位元線126貫穿堆疊結構102,以在通道層120的第二側S2與通道層120耦接。切換層124包覆位元線126,以在通道層120的所述第二側S2與通道層120接觸。介電柱111貫穿通道層120,以將每一個通道層120分割成甜甜圈形狀。 Referring to FIG. 1S and FIG. 2S , the present disclosure provides a memory device 1 comprising: a stack structure 102 , a plurality of channel layers 120 , source lines 122 , bit lines 126 , switching layers 124 and dielectric pillars 111 . The stack structure 102 has a plurality of dielectric layers 104 and a plurality of conductive layers 106 stacked alternately. The channel layers 120 are respectively embedded in the conductor layers 106 . The source line 122 runs through the stack structure 102 to be electrically connected to the channel layer 120 at the first side S1 of the channel layer 120 . The bit line 126 runs through the stack structure 102 to be coupled to the channel layer 120 at the second side S2 of the channel layer 120 . The switching layer 124 covers the bit line 126 to be in contact with the channel layer 120 at the second side S2 of the channel layer 120 . The dielectric pillars 111 penetrate through the channel layers 120 to divide each channel layer 120 into a donut shape.

在一些實施例中,切換層124可包括一層或多於一層。 位元線126可包括一層或多於一層。 In some embodiments, switching layer 124 may include one or more than one layer. Bitline 126 may include one layer or more than one layer.

在一些實施例中,切換層124的材料包括可變電阻材料、相變化材料、鐵電材料、電容材料或其組合。也就是說,取決於切換層124的材料,記憶元件1可以是電阻式隨機存取記憶體(resistive random access memory,RRAM)、相變隨機存取記憶體(phase change random access memory,PCRAM)、鐵電隨機存取記憶體(ferroelectric random access memory,FeRAM)、動態隨機存取記憶體(dynamic random access memory,DRAM)或其組合。具體來說,記憶胞MC可包括通道層120與其耦接的部分源極線122以及部分位元線126。當記憶元件1為RRAM時,記憶胞MC可包括1電晶體1電阻器(1T1R)的配置。如圖1S所示,1電晶體(1T)包括:用以當作源極的第一接觸層117、用以當作汲極的第二接觸層119以及用以當作閘極或字元線的導體層106。1電阻器(1R)則是包括:用以當作可變電阻層的切換層124,其可通過改變外加偏壓的方式改變電阻的電阻值,使元件處於高電阻態(High resistance state)或低電阻態(Low resistance state),並由此判讀數位訊號的0或1。切換層124可包括用以調節帶電物質(例如離子、電子、電洞)的移動的子層,且該子層支持實際上電阻變化結構,例如燈絲。在一些實施例中,位元線126可包含與切換層124接觸的子層,而該子層用以當作帶電物質的儲存庫(reservoir)。在其他實施例中,整個位元線126可視為儲存庫。在一些實施例中,如圖1S所示,一個記憶胞MC的源極線122與 相鄰記憶胞MC的位元線126配置在同一隔離結構112b或隔離結構114b中。換言之,隔離結構112、114可用以電性隔離同一水平處的記憶胞MC,以防止潛行電流(sneak current)或是其他記憶胞干擾現象。 In some embodiments, the material of the switching layer 124 includes a variable resistance material, a phase change material, a ferroelectric material, a capacitive material or a combination thereof. That is, depending on the material of the switching layer 124, the memory element 1 can be a resistive random access memory (resistive random access memory, RRAM), a phase change random access memory (phase change random access memory, PCRAM), Ferroelectric random access memory (FeRAM), dynamic random access memory (dynamic random access memory, DRAM) or a combination thereof. Specifically, the memory cell MC may include a portion of the source line 122 and a portion of the bit line 126 coupled to the channel layer 120 . When the memory element 1 is an RRAM, the memory cell MC may include a 1-transistor-1-resistor (1T1R) configuration. As shown in FIG. 1S, a 1-transistor (1T) includes: a first contact layer 117 used as a source, a second contact layer 119 used as a drain, and a gate or a word line Conductor layer 106. 1 resistor (1R) includes: a switching layer 124 used as a variable resistance layer, which can change the resistance value of the resistor by changing the applied bias voltage, so that the element is in a high resistance state ( High resistance state) or low resistance state (Low resistance state), and thus judge 0 or 1 of the digital signal. The switching layer 124 may include sub-layers for regulating the movement of charged species (eg, ions, electrons, holes), and the sub-layers support the actual resistance change structure, such as a filament. In some embodiments, the bit line 126 may include a sub-layer in contact with the switching layer 124, and the sub-layer serves as a reservoir for charged species. In other embodiments, the entire bit line 126 may be considered a repository. In some embodiments, as shown in FIG. 1S, the source line 122 of a memory cell MC is connected to The bit lines 126 of adjacent memory cells MC are configured in the same isolation structure 112b or isolation structure 114b. In other words, the isolation structures 112 and 114 can be used to electrically isolate the memory cells MC at the same level to prevent sneak current or other memory cell interference phenomena.

圖3是圖1S的記憶胞的立體示意圖。 FIG. 3 is a schematic perspective view of the memory cell in FIG. 1S .

如圖3所示,本發明實施例可通過增加通道層120的在垂直方向上的厚度120t來增加記憶胞MC的電流。也就是說,當通道層120的厚度120t愈厚,記憶胞MC的電流也隨之增加。在此情況下,本發明實施例可有效地利用晶片在水平方向上的面積,以提升記憶元件1的積集度,進而有利於晶片微型化。另外,電極層121亦可不內埋在第二接觸層119,而是配置在切換層124與通道層120之間以及切換層124與第二接觸層119之間,如圖3所示。 As shown in FIG. 3 , the embodiment of the present invention can increase the current of the memory cell MC by increasing the thickness 120 t of the channel layer 120 in the vertical direction. That is to say, when the thickness 120t of the channel layer 120 is thicker, the current of the memory cell MC also increases accordingly. In this case, the embodiment of the present invention can effectively utilize the area of the wafer in the horizontal direction to increase the density of the memory element 1 , thereby facilitating the miniaturization of the wafer. In addition, the electrode layer 121 may not be buried in the second contact layer 119 , but disposed between the switching layer 124 and the channel layer 120 and between the switching layer 124 and the second contact layer 119 , as shown in FIG. 3 .

圖4是依照本發明第二實施例的一種記憶元件的剖面示意圖。 4 is a schematic cross-sectional view of a memory device according to a second embodiment of the present invention.

如圖4所示,第二實施例之記憶元件2的導體層106(即閘極或字元線)水平環繞多個記憶胞MC,使得多個記憶胞MC共享同一閘極電壓。在此情況下,可簡化在同一水平處的閘極的佈線布局,以減少記憶元件的製造步驟與製造成本。 As shown in FIG. 4 , the conductive layer 106 (ie gate or word line) of the memory device 2 in the second embodiment surrounds multiple memory cells MC horizontally, so that multiple memory cells MC share the same gate voltage. In this case, the wiring layout of the gate electrodes at the same level can be simplified to reduce the manufacturing steps and manufacturing cost of the memory element.

1:記憶元件 1: memory element

24:開口 24: opening

24s:內表面 24s: inner surface

106:導體層 106: conductor layer

108:閘介電層 108: gate dielectric layer

111:介電柱 111: Dielectric column

112b、114b:隔離結構 112b, 114b: isolation structure

117:第一接觸層 117: first contact layer

119:第二接觸層 119: second contact layer

120:通道層 120: Channel layer

121:電極層 121: electrode layer

122:源極線 122: source line

124:切換層 124: switch layer

126:位元線 126: bit line

MC:記憶胞 MC: memory cell

S1:第一側 S1: first side

S2:第二側 S2: second side

Claims (12)

一種記憶元件,包括:堆疊結構,具有多個介電層與多個導體層交替堆疊;多個通道層,分別內埋在所述多個導體層中;源極線,貫穿所述堆疊結構,以在所述多個通道層的第一側與所述多個通道層電性連接;位元線,貫穿所述堆疊結構,以在所述多個通道層的第二側與所述多個通道層耦接;切換層,包覆所述位元線,以在所述多個通道層的所述第二側與所述多個通道層接觸,其中所述切換層配置在所述位元線與所述多個通道層之間,以於結構上分隔所述位元線與所述多個通道層;以及介電柱,貫穿所述多個通道層,以將每一個通道層分割成甜甜圈形狀。 A memory element, comprising: a stack structure, with a plurality of dielectric layers and a plurality of conductor layers stacked alternately; a plurality of channel layers, respectively embedded in the plurality of conductor layers; a source line running through the stack structure, to be electrically connected to the plurality of channel layers on the first side of the plurality of channel layers; the bit line runs through the stack structure to be connected to the plurality of channel layers on the second side of the plurality of channel layers The channel layer is coupled; the switching layer wraps the bit line to be in contact with the plurality of channel layers on the second side of the plurality of channel layers, wherein the switching layer is configured on the bit line wires and the plurality of channel layers to structurally separate the bit lines from the plurality of channel layers; and dielectric pillars penetrating the plurality of channel layers to divide each channel layer into donut shape. 如請求項1所述的記憶元件,更包括:閘介電層,配置在所述多個導體層與所述多個通道層之間;多個第一接觸層,分別內埋在所述多個通道層的所述第一側內,以與所述源極線接觸;多個第二接觸層,分別內埋在所述多個通道層的所述第二側內,以與所述切換層接觸;以及多個電極層,分別內埋在所述多個第二接觸層中,以與所述切換層接觸。 The memory element according to claim 1, further comprising: a gate dielectric layer disposed between the plurality of conductor layers and the plurality of channel layers; a plurality of first contact layers respectively embedded in the plurality of within the first side of each channel layer to be in contact with the source line; a plurality of second contact layers are respectively embedded in the second side of the plurality of channel layers to be in contact with the switch a layer contact; and a plurality of electrode layers respectively embedded in the plurality of second contact layers to be in contact with the switching layer. 如請求項2所述的記憶元件,其中所述多個第一接觸層與所述多個第二接觸層具有相同導電型,而所述多個通道層與所述多個第一接觸層具有不同導電型。 The memory element according to claim 2, wherein the plurality of first contact layers and the plurality of second contact layers have the same conductivity type, and the plurality of channel layers have the same conductivity type as the plurality of first contact layers different conductivity types. 如請求項1所述的記憶元件,其中所述多個通道層與所述多個導體層具有相同導電型,且所述多個通道層的摻雜濃度小於所述多個導體層的摻雜濃度。 The memory element according to claim 1, wherein the multiple channel layers have the same conductivity type as the multiple conductor layers, and the doping concentration of the multiple channel layers is less than the doping concentration of the multiple conductor layers concentration. 如請求項1所述的記憶元件,其中所述多個通道層中的一者與其耦接的部分所述源極線以及部分所述位元線構成記憶胞,而所述多個導體層中的一者水平環繞多個記憶胞,使得所述多個記憶胞共享同一閘極電壓。 The memory element according to claim 1, wherein a part of the source line and a part of the bit line coupled to one of the plurality of channel layers constitute a memory cell, and the plurality of conductor layers One of the memory cells horizontally surrounds the plurality of memory cells, so that the plurality of memory cells share the same gate voltage. 一種記憶元件的製造方法,包括:形成具有多個介電層與多個導體層交替堆疊的堆疊結構;在所述堆疊結構中形成第一開口,以貫穿所述堆疊結構;橫向凹蝕外露於所述第一開口的所述多個導體層,以形成多個第一凹陷;在外露於所述多個第一凹陷的所述多個導體層的側壁上形成閘介電層;在所述多個第一凹陷中分別形成多個通道層;在所述第一開口中形成介電柱,以與所述多個通道層接觸;在所述多個通道層的第一側處形成貫穿所述堆疊結構的源極線;在所述多個通道層的第二側處形成貫穿所述堆疊結構的位元 線;以及形成包覆所述位元線的切換層。 A method for manufacturing a memory element, comprising: forming a stack structure having a plurality of dielectric layers and a plurality of conductor layers alternately stacked; forming a first opening in the stack structure to penetrate through the stack structure; The plurality of conductor layers of the first opening to form a plurality of first recesses; forming a gate dielectric layer on the sidewalls of the plurality of conductor layers exposed to the plurality of first recesses; A plurality of channel layers are respectively formed in the plurality of first depressions; a dielectric column is formed in the first opening to contact the plurality of channel layers; A source line of a stack structure; forming a bit through the stack structure at the second side of the plurality of channel layers line; and forming a switching layer enclosing the bit line. 如請求項6所述的記憶元件的製造方法,其中在形成所述源極線之前,所述製造方法更包括:在所述多個通道層的所述第一側處形成貫穿所述堆疊結構的第二開口;在所述多個通道層的所述第二側處形成貫穿所述堆疊結構的第三開口;橫向凹蝕外露於所述第二開口的所述多個通道層,以形成多個第二凹陷;橫向凹蝕外露於所述第三開口的所述多個通道層,以形成多個第三凹陷;在所述多個第二凹陷中分別形成多個第一接觸層;以及在所述多個第三凹陷中分別形成多個第二接觸層。 The manufacturing method of the memory element according to claim 6, wherein before forming the source line, the manufacturing method further includes: forming a penetrating stack structure at the first side of the plurality of channel layers second openings of the plurality of channel layers; forming a third opening through the stacked structure at the second side of the plurality of channel layers; laterally recessing the plurality of channel layers exposed to the second openings to form a plurality of second depressions; laterally recessing the plurality of channel layers exposed to the third opening to form a plurality of third depressions; forming a plurality of first contact layers in the plurality of second depressions; and forming a plurality of second contact layers in the plurality of third recesses, respectively. 如請求項7所述的記憶元件的製造方法,其中所述多個第一接觸層與所述多個第二接觸層在同一步驟中形成。 The method for manufacturing a memory element as claimed in claim 7, wherein the plurality of first contact layers and the plurality of second contact layers are formed in the same step. 如請求項7所述的記憶元件的製造方法,其中在形成所述多個第一接觸層與所述多個第二接觸層之後,所述製造方法更包括:在所述多個第二接觸層的外側處形成貫穿所述堆疊結構的第四開口;橫向凹蝕外露於所述第四開口的所述多個第二接觸層,以形 成多個第四凹陷;以及在所述多個第四凹陷中分別形成多個電極層。 The manufacturing method of the memory element according to claim 7, wherein after forming the plurality of first contact layers and the plurality of second contact layers, the manufacturing method further includes: A fourth opening through the stack structure is formed at the outer side of the layer; the plurality of second contact layers exposed to the fourth opening are etched laterally to form forming a plurality of fourth recesses; and forming a plurality of electrode layers in the plurality of fourth recesses, respectively. 如請求項9所述的記憶元件的製造方法,其中在形成所述多個電極層之後,所述製造方法更包括:在所述多個第一接觸層的外側處形成貫穿所述堆疊結構的第五開口;以及在所述第五開口中填入源極線材料,以形成接觸所述多個第一接觸層的所述源極線。 The manufacturing method of the memory element according to claim 9, wherein after forming the plurality of electrode layers, the manufacturing method further includes: forming a hole penetrating through the stacked structure at the outer sides of the plurality of first contact layers a fifth opening; and filling the fifth opening with a source line material to form the source line contacting the plurality of first contact layers. 如請求項10所述的記憶元件的製造方法,其中在形成所述源極線之後,所述製造方法更包括:在所述多個電極層的外側處形成貫穿所述堆疊結構的第六開口;在所述第六開口的側壁上形成所述切換層,以接觸所述多個電極層;以及在所述第六開口中填入位元線材料,以使所述切換層包覆所述位元線。 The method for manufacturing a memory element according to claim 10, wherein after forming the source line, the manufacturing method further includes: forming a sixth opening through the stacked structure at the outer side of the plurality of electrode layers ; forming the switching layer on the sidewall of the sixth opening to contact the plurality of electrode layers; and filling bit line material in the sixth opening, so that the switching layer covers the bit line. 如請求項6所述的記憶元件的製造方法,其中在形成所述介電柱之後,所述製造方法更包括:在所述多個通道層的所述第一側處與所述第二側處分別形成貫穿所述堆疊結構的隔離結構,其中所述源極線與所述位元線配置在所述隔離結構中。 The manufacturing method of the memory element according to claim 6, wherein after forming the dielectric pillar, the manufacturing method further includes: separating the first side and the second side of the plurality of channel layers An isolation structure is formed through the stack structure, wherein the source line and the bit line are disposed in the isolation structure.
TW110121431A 2021-06-11 2021-06-11 Memory device and method of manufacturing the same TWI782575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110121431A TWI782575B (en) 2021-06-11 2021-06-11 Memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110121431A TWI782575B (en) 2021-06-11 2021-06-11 Memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI782575B true TWI782575B (en) 2022-11-01
TW202249242A TW202249242A (en) 2022-12-16

Family

ID=85793607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110121431A TWI782575B (en) 2021-06-11 2021-06-11 Memory device and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI782575B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201034169A (en) * 2009-03-03 2010-09-16 Macronix Int Co Ltd Integrated circuit self aligned 3D memory array and manufacturing method
CN104124257A (en) * 2013-04-25 2014-10-29 爱思开海力士有限公司 3D variable resistance memory device and method of manufacturing the same
CN111863829A (en) * 2019-04-26 2020-10-30 三星电子株式会社 Semiconductor memory device including variable resistance layer
TW202111925A (en) * 2019-09-09 2021-03-16 旺宏電子股份有限公司 3d flash memory, control circuit, method of forming a gate stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201034169A (en) * 2009-03-03 2010-09-16 Macronix Int Co Ltd Integrated circuit self aligned 3D memory array and manufacturing method
CN104124257A (en) * 2013-04-25 2014-10-29 爱思开海力士有限公司 3D variable resistance memory device and method of manufacturing the same
CN111863829A (en) * 2019-04-26 2020-10-30 三星电子株式会社 Semiconductor memory device including variable resistance layer
TW202111925A (en) * 2019-09-09 2021-03-16 旺宏電子股份有限公司 3d flash memory, control circuit, method of forming a gate stack

Also Published As

Publication number Publication date
TW202249242A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
TWI774549B (en) Memory arrays comprising vertically-alternating tiers of insulative material and memory cells
KR102471277B1 (en) Semiconductor device having gate insulating layer
US11233059B2 (en) Construction of integrated circuitry, DRAM circuitry, a method of forming a conductive line construction, a method of forming memory circuitry, and a method of forming DRAM circuitry
KR20210077098A (en) Semiconductor memory device and method for manufacturing the same
WO2023103182A1 (en) Memory cell, and memory and manufacturing method therefor
JP2012039077A (en) Semiconductor device and method of manufacturing the same
KR20220153308A (en) Semiconductor memory devices
KR20220148366A (en) Semiconductor Device
US10978554B2 (en) Elevationally-elongated conductive structure of integrated circuitry, method of forming an array of capacitors, method of forming DRAM circuitry, and method of forming an elevationally-elongated conductive structure of integrated circuitry
KR102657082B1 (en) Semiconductor memory device
US10770465B1 (en) Method used in forming integrated circuitry
TWI782575B (en) Memory device and method of manufacturing the same
WO2014126214A1 (en) Semiconductor device
KR20230107960A (en) Semiconductor device
US11785869B2 (en) Memory device and method of manufacturing the same
US20080087926A1 (en) Ferroelectric random access memory and methods of fabricating the same
CN115581073A (en) Memory element and method for manufacturing the same
US20240276704A1 (en) Method for forming semiconductor memory device
CN218069852U (en) Semiconductor memory device with a plurality of memory cells
US20230320080A1 (en) Semiconductor memory device
CN113097381B (en) Resistive memory device and method of manufacturing the same
JP2010161372A (en) Memory device and method of manufacturing same
US20240306371A1 (en) Semiconductor memory device
KR20230163317A (en) Semiconductor device
JP2013232447A (en) Semiconductor device and method of manufacturing the same