TWI781427B - Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor - Google Patents

Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor Download PDF

Info

Publication number
TWI781427B
TWI781427B TW109125457A TW109125457A TWI781427B TW I781427 B TWI781427 B TW I781427B TW 109125457 A TW109125457 A TW 109125457A TW 109125457 A TW109125457 A TW 109125457A TW I781427 B TWI781427 B TW I781427B
Authority
TW
Taiwan
Prior art keywords
hours
nickel
rich
composite material
lncm811
Prior art date
Application number
TW109125457A
Other languages
Chinese (zh)
Other versions
TW202205719A (en
Inventor
楊純誠
吳宜萱
蒂貝塔 特朗
巴布勒 拉克什米普里亞 穆蘇瓦迪
朱利亞 雅庫瑪
Original Assignee
明志科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 明志科技大學 filed Critical 明志科技大學
Priority to TW109125457A priority Critical patent/TWI781427B/en
Publication of TW202205719A publication Critical patent/TW202205719A/en
Application granted granted Critical
Publication of TWI781427B publication Critical patent/TWI781427B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本發明利用新型的連續式泰勒流動反應器(TFR)製備高克電容量、高循環穩定性之用於鋰離子二次電池之富鎳的鋰鎳鈷錳氧化物與鋰鎳鈷錳鋁氧化物正極複合材料,其二次粒子具有橢圓形的形貌,且一次粒子在晶面族{010}平面上具有奈米級的花瓣狀結構;此外,亦藉由原位合成鉬酸鋰(Li2MoO4)包覆富鎳鋰鎳鈷錳氧化物正極複合材料,使其於高電壓下皆能夠表現出較低的Li+/Ni2+陽離子混合度、較高的材料結構穩定性以及改善其電池的電化學性能。據此,本發明之富鎳鋰鎳鈷錳氧化物正極複合材料所組成電池之電化學性能明顯優於市售富鎳鋰鎳鈷錳氧化物的電池。 The invention utilizes a novel continuous Taylor flow reactor (TFR) to prepare nickel-rich lithium-nickel-cobalt-manganese oxide and lithium-nickel-cobalt-manganese-aluminum oxide for lithium-ion secondary batteries with high gram capacity and high cycle stability. Positive electrode composite material, its secondary particles have an elliptical shape, and the primary particles have a nano-scale petal-like structure on the crystal face group {010} plane; in addition, by in-situ synthesis of lithium molybdate (Li 2 MoO 4 ) coated nickel-rich lithium-nickel-cobalt-manganese oxide positive electrode composite material can exhibit lower Li + /Ni 2+ cation mixing degree, higher material structural stability and improved its Electrochemical performance of the battery. Accordingly, the electrochemical performance of the battery composed of the nickel-rich lithium-nickel-cobalt-manganese oxide cathode composite material of the present invention is obviously better than that of commercially available nickel-rich lithium-nickel-cobalt-manganese oxide batteries.

Description

利用連續式泰勒流動反應器製備富鎳氫氧化物前驅物與富鎳正極複合材料之製備方法 Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor

本發明係關於一種富鎳氫氧化物前驅物與富鎳正極複合材料之製備方法,特別關於一種利用連續式泰勒流動反應器製備鎳鈷錳、鎳鈷錳鋁氫氧化物前驅物與富鎳正極複合材料之製備方法。 The present invention relates to a preparation method of a nickel-rich hydroxide precursor and a nickel-rich positive electrode composite material, in particular to a method for preparing nickel-cobalt-manganese, nickel-cobalt-manganese-aluminum hydroxide precursors and nickel-rich positive electrodes using a continuous Taylor flow reactor Preparation method of composite material.

富鎳三元或四元正極材料具有較高之克電容量(Specific capacity>170mAh/g)及低成本,故其逐漸被應用於鋰離子電池;其中,富鎳的LiNi1-x-yCoxAlyO2(LNCA)及LiNi1-x-yCoxMnyO2(LNCM)(x+y

Figure 109125457-A0101-12-0001-62
0.4)為最具前景之下世代正極材料,惟其仍具部分缺點,如較差之循環壽命等,而限制其等在鋰離子電池中之應用。 Nickel-rich ternary or quaternary cathode materials have high gram capacity (Specific capacity>170mAh/g) and low cost, so they are gradually being used in lithium-ion batteries; among them, nickel-rich LiNi 1-xy Co x Al y O 2 (LNCA) and LiNi 1-xy Co x Mn y O 2 (LNCM)(x+y
Figure 109125457-A0101-12-0001-62
0.4) is the most promising cathode material of the next generation, but it still has some shortcomings, such as poor cycle life, which limits its application in lithium-ion batteries.

為了提高富鎳三元或四元材料的循環穩定性,許多學者已進行多種嘗試。儘管元素摻雜(例如:Al、Nb或Zr)及表面改質(例如:Y3O3、CeO2或甲矽烷基官能團)可改善富鎳三元或四元正極材料之電化學性能,惟其氧化物包覆層材料亦將是Li+離子的絕緣體。理想的包覆層需在確保高Li+離子傳導性之同時亦能夠發揮獨特的作用。最近,一些研究人員將注意力轉移到正極材料的內部結構上,主要係藉由改變前驅物之形態及調整其 製備方法達成,例如三維啞鈴狀結構之NCM正極複合材料之製備,該材料顯示出優異的首次放電克電容量及電流速率性能;或多孔的NCM正極複合材料之合成,其具有分層的奈米片狀結構,並於20C之高速率下具有137.7mAh/g的克電容量;此外,亦有團隊藉由連續式攪拌反應器(CSTR)中進行共沉澱的方式,調整球形顆粒外表面的Al分佈,以製備出具有濃度梯度結構的NCA正極複合材料,該種材料在0.1C下循環100次後仍可保有93.6%的電容維持率(Capacity retention,CR)。另外,文獻中亦有報導在CSTR中通過共沉澱法形成的全梯度結構的高鎳NCM正極複合材料,用以改善電池的循環穩定性及循環壽命。 In order to improve the cycle stability of nickel-rich ternary or quaternary materials, many scholars have made various attempts. Although element doping (such as: Al, Nb or Zr) and surface modification (such as: Y 3 O 3 , CeO 2 or silyl functional groups) can improve the electrochemical performance of Ni-rich ternary or quaternary cathode materials, but their The oxide cladding material will also be an insulator for Li + ions. An ideal cladding layer should play a unique role while ensuring high Li + ion conductivity. Recently, some researchers have turned their attention to the internal structure of cathode materials, mainly by changing the shape of precursors and adjusting their preparation methods, such as the preparation of NCM cathode composite materials with a three-dimensional dumbbell-like structure, which shows Excellent first discharge gram capacity and current rate performance; or the synthesis of porous NCM cathode composite material with layered nanosheet structure and a gram capacity of 137.7mAh/g at a high rate of 20C; In addition, there is also a team that adjusts the distribution of Al on the outer surface of spherical particles by co-precipitation in a continuous stirred reactor (CSTR) to prepare an NCA cathode composite material with a concentration gradient structure. After 100 cycles, 93.6% of the capacity retention rate (Capacity retention, CR) can still be maintained. In addition, it is also reported in the literature that the high-nickel NCM cathode composite material with a full gradient structure formed by coprecipitation in CSTR is used to improve the cycle stability and cycle life of the battery.

然而,對於兼具有高放電克電容量、高電容維持率及優異循環穩定性及循環壽命之富鎳三元及四元正極複合材料的製備技術仍有待改進。 However, the preparation technology of nickel-rich ternary and quaternary cathode composite materials with high discharge capacity, high capacity retention rate, excellent cycle stability and cycle life still needs to be improved.

【先前技術文獻】 中國公開CN108511709A號公報 [Prior technical literature] Chinese publication CN108511709A bulletin

有鑑於此,本發明之主要目的在於提供一種正極複合材料之製備方法,其首先利用新型連續式泰勒流動反應器製備富鎳氫氧化物前驅物材料,藉由不同之實驗參數製備出具較優異晶體結構之前驅物材料,接著,進一步將製備出之前驅物材料製備為正極複合材料;此外,在製備正極複合材料之步驟中,更透過在前驅物材料上原位合成一層包覆材料,以製備 出具有提高晶體結構穩定性及改善電化學性能之正極複合材料,其應用於鋰離子電池時有顯著優異之充/放電循環穩定性,特別係於高充電電壓(大於4.3V)下。 In view of this, the main purpose of the present invention is to provide a method for preparing positive electrode composite materials. Firstly, a novel continuous Taylor flow reactor is used to prepare nickel-rich hydroxide precursor materials, and different experimental parameters are used to prepare better crystals. Structure the precursor material, and then further prepare the prepared precursor material into a positive electrode composite material; in addition, in the step of preparing the positive electrode composite material, a layer of coating material is synthesized in situ on the precursor material to prepare A cathode composite material with enhanced crystal structure stability and improved electrochemical performance has been developed, which has significantly excellent charge/discharge cycle stability when applied to lithium-ion batteries, especially at high charge voltages (greater than 4.3V).

本發明首先提供一種富鎳氫氧化物(M(OH)2,M=Ni、Co、Mn及/或Al)前驅物材料之製備方法,該製備方法係於新型連續式泰勒流動反應器中使用共沉澱法。在泰勒渦流中,當內圓柱體旋轉時,具有不同半徑的兩個同軸圓柱體之間的間隙會產生軸向周期性的流體運動,泰勒流在內筒的某個轉速之上(泰勒數以上)產生,並產生強而均勻的徑向混合,軸向分散小;因此,在新型連續式泰勒流動反應器中所製備出之產物將較傳統連續式攪拌槽反應器所製備之產物具有較佳之表面型態。此外,本發明並透過優化製備參數,合成具較優異晶體結構之富鎳氫氧化物前驅物材料。 The present invention firstly provides a preparation method of a nickel-rich hydroxide (M(OH) 2 , M=Ni, Co, Mn and/or Al) precursor material, which is used in a novel continuous Taylor flow reactor coprecipitation method. In a Taylor vortex, when the inner cylinder rotates, the gap between two coaxial cylinders with different radii will generate axial periodic fluid motion, and the Taylor flow is above a certain rotational speed of the inner cylinder (above the Taylor number ) and produces strong and uniform radial mixing with small axial dispersion; therefore, the products prepared in the new continuous Taylor flow reactor will have better performance than those prepared in the traditional continuous stirred tank reactor Surface type. In addition, the present invention synthesizes a nickel-rich hydroxide precursor material with a better crystal structure by optimizing the preparation parameters.

據此,本發明提供一種富鎳氫氧化物(M(OH)2,M=Ni、Co、Mn及/或Al)前驅物材料之製備方法,其包含下述步驟: Accordingly, the present invention provides a method for preparing a nickel-rich hydroxide (M(OH) 2 , M=Ni, Co, Mn and/or Al) precursor material, which comprises the following steps:

(a)將金屬離子源、氫氧化鈉及氨水於50℃至80℃之加熱條件下同時加入至連續式泰勒流動反應器之反應室,控制pH值為10至12,反應器轉速為500rpm至1000rpm,進料速度為2.23ml/min,反應時間為5小時至50小時,進行共沉澱法之連續性生產製備; (a) Add the metal ion source, sodium hydroxide and ammonia water to the reaction chamber of the continuous Taylor flow reactor at the same time under the heating condition of 50°C to 80°C, control the pH value to 10 to 12, and the reactor speed to 500rpm to 1000rpm, the feed rate is 2.23ml/min, the reaction time is 5 hours to 50 hours, and the continuous production and preparation of coprecipitation method is carried out;

(b)將步驟(a)反應後之沉澱物進行過濾,並以乙醇及去離子水洗滌; (b) filter the precipitate after step (a) reaction, and wash with ethanol and deionized water;

(c)將步驟(b)洗滌後之沉澱物置於烘箱乾燥,前述乾燥之溫度為80℃至120℃,時間為12小時至36小時; (c) drying the precipitate washed in step (b) in an oven, the drying temperature is 80°C to 120°C, and the time is 12 hours to 36 hours;

其中,步驟(a)之金屬離子源包含鎳源、鈷源、錳源及/或鋁源。 Wherein, the metal ion source in step (a) includes nickel source, cobalt source, manganese source and/or aluminum source.

進一步地,步驟(a)之鎳源為選自硫酸鎳、草酸鎳、醋酸鎳、硝酸鎳、氯化鎳及氫氧化鎳所成群中之至少一種。 Further, the nickel source in step (a) is at least one selected from the group consisting of nickel sulfate, nickel oxalate, nickel acetate, nickel nitrate, nickel chloride and nickel hydroxide.

進一步地,步驟(a)之鈷源為選自硫酸鈷、草酸鈷、碳酸鈷、醋酸鈷、硝酸鈷、氯化鈷及氫氧化鈷所成群中之至少一種。 Further, the cobalt source in step (a) is at least one selected from the group consisting of cobalt sulfate, cobalt oxalate, cobalt carbonate, cobalt acetate, cobalt nitrate, cobalt chloride and cobalt hydroxide.

進一步地,步驟(a)之錳源為選自草酸錳、碳酸錳、檸檬酸錳、硫酸錳、醋酸錳、硝酸錳、磷酸錳、電解二氧化錳及氧化錳(α-MnO2、β-MnO2、γ-MnO2、Mn2O3,、Mn3O4)所成群中之至少一種。 Further, the source of manganese in step (a) is selected from manganese oxalate, manganese carbonate, manganese citrate, manganese sulfate, manganese acetate, manganese nitrate, manganese phosphate, electrolytic manganese dioxide and manganese oxide (α-MnO 2 , β- At least one of the group consisting of MnO 2 , γ-MnO 2 , Mn 2 O 3 , and Mn 3 O 4 ).

進一步地,步驟(a)之鋁源為選自草酸鋁、碳酸鋁、硫酸鋁、醋酸鋁、硝酸鋁及磷酸鋁所成群中之至少一種。 Further, the aluminum source in step (a) is at least one selected from the group consisting of aluminum oxalate, aluminum carbonate, aluminum sulfate, aluminum acetate, aluminum nitrate and aluminum phosphate.

進一步地,步驟(a)之金屬離子源濃度範圍為1.0M至2.2M之硫酸金屬鹽水溶液,較佳為2.0M之硫酸金屬鹽水溶液。 Further, the concentration of the metal ion source in step (a) ranges from 1.0M to 2.2M metal sulfate salt solution, preferably 2.0M metal sulfate salt solution.

進一步地,步驟(a)中,氨水之濃度範圍為2.0M至8.0M,較佳為2.5M或7.2M,以用作螯合劑;加熱條件為60℃,pH值為11,反應器轉速為600rpm。 Further, in step (a), the concentration range of ammonia water is 2.0M to 8.0M, preferably 2.5M or 7.2M, so as to be used as a chelating agent; the heating condition is 60°C, the pH value is 11, and the reactor speed is 600rpm.

進一步地,步驟(a)中,反應時間為20小時至45小時。 Further, in step (a), the reaction time is 20 hours to 45 hours.

進一步地,步驟(c)中,乾燥之溫度為100℃,時間為24小時。 Further, in step (c), the drying temperature is 100° C. and the drying time is 24 hours.

本發明亦進一步將所合成之富鎳氫氧化物前驅物材料製備為富鎳氧化物正極複合材料,其包含下述步驟: The present invention further prepares the synthesized nickel-rich hydroxide precursor material into a nickel-rich oxide cathode composite material, which includes the following steps:

(a)將富鎳氫氧化物前驅物材料與鋰源於甲醇溶劑中藉由球磨機進行研磨混合;其中, (a) Grinding and mixing the nickel-rich hydroxide precursor material and lithium in a methanol solvent by means of a ball mill; wherein,

球磨機之研磨混合條件為轉速100rpm至200rpm,研磨時間5小時至 10小時,樣品及球之重量比例為1:1至1:10; The grinding and mixing conditions of the ball mill are 100rpm to 200rpm, and the grinding time is 5 hours to 10 hours, the weight ratio of sample and ball is 1:1 to 1:10;

(b)將步驟(a)混合後之混合物於空氣或純氧氣氛之高溫爐中進行三階段之鍛燒熱處理。 (b) The mixture after step (a) is subjected to a three-stage calcining heat treatment in a high-temperature furnace in an air or pure oxygen atmosphere.

進一步地,鋰源為選自氫氧化鋰、硝酸鋰、醋酸鋰、氯化鋰、磷酸氫鋰、磷酸鋰及碳酸鋰所成群中之至少一種。 Further, the lithium source is at least one selected from the group consisting of lithium hydroxide, lithium nitrate, lithium acetate, lithium chloride, lithium hydrogen phosphate, lithium phosphate and lithium carbonate.

進一步地,鋰源為LiOH.H2O,且富鎳氫氧化物前驅物材料與LiOH.H2O之摩爾比為1:1.05至1:1.25,較佳為1:1.05。 Further, the lithium source is LiOH. H 2 O, and nickel-rich hydroxide precursor material and LiOH. The molar ratio of H 2 O is 1:1.05 to 1:1.25, preferably 1:1.05.

進一步地,步驟(a)中,球磨機之研磨混合條件為轉速100rpm,研磨時間5小時,樣品及球之重量比例為1:1。 Further, in step (a), the grinding and mixing conditions of the ball mill are 100 rpm, the grinding time is 5 hours, and the weight ratio of the sample to the ball is 1:1.

進一步地,步驟(b)中,鍛燒熱處理之條件為:第一階段於150℃、2小時;第二階段於400℃至600℃、6小時,較佳為450℃至550℃、6小時;第三階段於750℃至900℃、10小時至25小時,較佳為800℃至850℃、12小時至20小時;分別進行鍛燒熱處理,前述三個階段之升溫速率皆為1℃/min至10℃/min,較佳為2℃/min。 Further, in step (b), the conditions of calcining heat treatment are: the first stage is at 150°C for 2 hours; the second stage is at 400°C to 600°C for 6 hours, preferably 450°C to 550°C for 6 hours ; The third stage is at 750°C to 900°C, 10 hours to 25 hours, preferably 800°C to 850°C, 12 hours to 20 hours; calcining heat treatment is carried out separately, and the heating rate of the above three stages is 1°C/ min to 10°C/min, preferably 2°C/min.

此外,本發明亦可在所製備之富鎳氫氧化物前驅物上原位合成形成一層包覆材料,例如可為Li2MoO4導離子層,並合成為表面經包覆處理之正極複合材料。Mo6+離子之均勻分佈,使其沿晶體之c軸膨脹,高溫鍛燒後在合成後的鋰鎳鈷錳氧化物與Li2MoO4包覆層之間產生牢固的鍵結。該電極材料顯示出增強的晶體結構穩定性以及改善的電化學性能,尤其是在高充電電壓(大於4.3V)。 In addition, the present invention can also in-situ synthesize a layer of coating material on the prepared nickel-rich hydroxide precursor, for example, it can be an ion-conducting layer of Li 2 MoO 4 , and synthesize it into a positive electrode composite material with a coated surface. . The uniform distribution of Mo 6+ ions makes it expand along the c-axis of the crystal, and after high-temperature calcination, a strong bond is formed between the synthesized lithium nickel cobalt manganese oxide and the Li 2 MoO 4 cladding layer. The electrode material shows enhanced crystal structure stability and improved electrochemical performance, especially at high charging voltages (greater than 4.3 V).

據此,本發明進一步提供一種表面經包覆處理之富鎳氧化物正極複合材料之製備方法,其包含下述步驟: Accordingly, the present invention further provides a method for preparing a nickel-rich oxide cathode composite material whose surface has been coated, which comprises the following steps:

(a)將包覆材料與富鎳氫氧化物前驅物材料充分混合;其中,包覆材料為Li-Nafion、Li2MoO4、Li4SiO4及3D-多孔碳材所成群中之至少一種,且該包覆材料之包覆量為前述富鎳氫氧化物前驅物材料之0.1wt.%至5wt.%,較佳為0.5wt.%至2wt.%; (a) Fully mix the coating material with the nickel-rich hydroxide precursor material; wherein, the coating material is at least one of the group consisting of Li-Nafion, Li 2 MoO 4 , Li 4 SiO 4 and 3D-porous carbon material One, and the coating amount of the coating material is 0.1wt.% to 5wt.% of the aforementioned nickel-rich hydroxide precursor material, preferably 0.5wt.% to 2wt.%;

(b)將步驟(a)混合後之混合物於球磨機中研磨混合; (b) Grinding and mixing the mixed mixture in step (a) in a ball mill;

(c)將步驟(b)研磨後之混合物於空氣或純氧氣氛之高溫爐中進行三階段之鍛燒熱處理。 (c) The ground mixture in step (b) is subjected to a three-stage calcining heat treatment in a high-temperature furnace in an air or pure oxygen atmosphere.

進一步地,步驟(a)中,包覆材料為Li2MoO4,藉由將富鎳氫氧化物前驅物材料、相對於富鎳氫氧化物前驅物材料為2wt.%之鉬酸銨與LiOH.H2O充分混合以完成步驟(a)。 Further, in step (a), the cladding material is Li 2 MoO 4 , by combining the nickel-rich hydroxide precursor material, 2wt.% ammonium molybdate and LiOH relative to the nickel-rich hydroxide precursor material . The H2O was mixed well to complete step (a).

進一步地,步驟(c)中,鍛燒熱處理之條件為:第一階段於150℃、2小時;第二階段於400℃至600℃、6小時,較佳為450℃至550℃、6小時;第三階段於750℃至900℃、10小時至25小時,較佳為800℃至850℃、12小時至20小時;分別進行鍛燒熱處理,前述三個階段之升溫速率皆為1℃/min至10℃/min,較佳為2℃/min。 Further, in step (c), the conditions of calcining heat treatment are: the first stage is at 150°C for 2 hours; the second stage is at 400°C to 600°C for 6 hours, preferably 450°C to 550°C for 6 hours ; The third stage is at 750°C to 900°C, 10 hours to 25 hours, preferably 800°C to 850°C, 12 hours to 20 hours; calcining heat treatment is carried out separately, and the heating rate of the above three stages is 1°C/ min to 10°C/min, preferably 2°C/min.

本發明亦提供一種鋰離子電池,其使用鋰金屬作為負極,活性材料、導電劑與黏合劑之組成物於集電層(鋁箔)上作為正極;其中, The present invention also provides a lithium ion battery, which uses lithium metal as the negative electrode, and the active material, the conductive agent and the composition of the binder are used as the positive electrode on the current collecting layer (aluminum foil); wherein,

該活性材料係藉由本發明所提供之富鎳氧化物正極複合材料之製備方法所製備而得。 The active material is prepared by the method for preparing the nickel-rich oxide cathode composite material provided by the present invention.

藉由本發明之富鎳氫氧化物(M(OH)2,M=Ni、Co、Mn及/ 或Al)前驅物材料之製備方法,同時對材料製備參數進行高度控制,並進一步製備出富鎳氧化物(LiMO2,M=Ni,Co,Mn及/或Al)正極複合材料,其一次粒子在晶面族{010}平面上具有奈米級之花瓣狀結構,二次粒子具有橢圓形形貌,其所組成電池具備有相當高的克電容量及長期充/放電循環穩定性。 With the preparation method of the nickel-rich hydroxide (M(OH) 2 , M=Ni, Co, Mn and/or Al) precursor material of the present invention, the material preparation parameters are highly controlled at the same time, and the nickel-rich Oxide (LiMO 2 , M=Ni, Co, Mn and/or Al) positive electrode composite material, the primary particle has a nano-scale petal-like structure on the crystal face group {010} plane, and the secondary particle has an elliptical shape In terms of appearance, the battery composed of it has a relatively high gram capacity and long-term charge/discharge cycle stability.

此外,本發明亦藉由原位合成Li2MoO4來包覆富鎳正極複合材料,由於Li2MoO4的離子導體效應,原位合成Li2MoO4包覆富鎳正極複合材料分別於2.5V至4.3V甚至於4.5V高電壓之條件下,皆能夠表現出較低之Li+/Ni2+陽離子混合度、較高之材料結構穩定性以及改善其電池之電化學性能,其電化學性能明顯優於市售之富鎳氧化物電池。 In addition, the present invention also coats the nickel-rich cathode composite material by in-situ synthesis of Li 2 MoO 4 . Due to the ion conductor effect of Li 2 MoO 4 , the in-situ synthesis of Li 2 MoO 4 coats the nickel-rich cathode composite material at 2.5 Under the condition of V to 4.3V or even 4.5V high voltage, it can show lower Li + /Ni 2+ cation mixing degree, higher material structure stability and improve the electrochemical performance of its battery. The performance is significantly better than that of commercially available nickel-rich oxide batteries.

【圖1】Ni0.6Co0.2Mn0.2(OH)2合成之批次#1於反應時間分別為(a)20小時,(b)30小時,(c)40小時及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒之SEM圖像。 [Figure 1] Batch #1 of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 was reacted after the reaction time was (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours SEM image of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles produced.

【圖2】Ni0.6Co0.2Mn0.2(OH)2合成之批次#2於反應時間分別為(a)16小時,(b)20小時,(c)30小時及(d)40小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒之SEM圖像。 [Figure 2] Batch #2 of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 was reacted after reaction times of (a) 16 hours, (b) 20 hours, (c) 30 hours and (d) 40 hours SEM image of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles produced.

【圖3】Ni0.6Co0.2Mn0.2(OH)2合成之批次#1於反應時間分別為(a)20小時,(b)30小時,(c)40小時及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2粉末之XRD分析結果。 [Figure 3] Batch #1 synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 was reacted after reaction times of (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours XRD analysis results of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder.

【圖4】Ni0.6Co0.2Mn0.2(OH)2合成之批次#2於反應時間分別為(a)16小時, (b)30小時,(c)40小時及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2粉末之XRD分析結果。 [Figure 4] Batch #2 synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 reacted after reaction times of (a) 16 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours XRD analysis results of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder.

【圖5】Ni0.6Co0.2Mn0.2(OH)2合成之批次#1於反應時間分別為(a)20小時,(b)30小時,(c)40小時及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒之雷射粒徑分析圖。 [Figure 5] Batch #1 synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 was reacted after reaction times of (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours Laser particle size analysis diagram of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles.

【圖6】Ni0.6Co0.2Mn0.2(OH)2合成之批次#2於反應時間分別為(a)20小時,(b)30小時,(c)40小時及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒之雷射粒徑分析圖。 [Figure 6] Batch #2 synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 reacted after reaction times of (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours Laser particle size analysis diagram of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles.

【圖7】比較Ni0.6Co0.2Mn0.2(OH)2合成之批次#1和#2Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物之雷射粒徑分析結果,其反應時間分別為:(a)20小時,(b)30小時,(c)40小時及(d)45小時。 [Figure 7] Comparison of the laser particle size analysis results of batches #1 and #2Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursors synthesized from Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 , the reaction times were respectively For: (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours.

【圖8】Ni0.6Co0.2Mn0.2(OH)2合成之批次#1(圖8(a)、(b))與批次#2(圖8(c)、(d))經過鍛燒後LNCM622之SEM圖像。 [Figure 8] Batch #1 (Figure 8(a), (b)) and Batch #2 (Figure 8(c), (d)) synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 after calcining SEM image of the rear LNCM622.

【圖9】Ni0.6Co0.2Mn0.2(OH)2合成之批次#1(圖9(a))與批次#2(圖9(b))經過鍛燒後LNCM622之XRD分析結果。 [Fig. 9] XRD analysis results of LNCM622 after calcination of batch #1 (Fig. 9(a)) and batch #2 (Fig. 9(b)) synthesized by Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 .

【圖10】Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物之製備設備與其產物表面形貌圖。 [Figure 10] The preparation equipment of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor and the surface morphology of the product.

【圖11】(a)為Ni0.8Co0.1Mn0.1(OH)2分別於900、800及600rpm不同轉速下之粒徑分佈;(b)-(d)為Ni0.8Co0.1Mn0.1(OH)2分別於(b)900、(c)800及(d)600rpm不同轉速下之SEM圖像。 [Figure 11] (a) is the particle size distribution of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 at different speeds of 900, 800 and 600 rpm; (b)-(d) are Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 SEM images at (b) 900, (c) 800 and (d) 600 rpm at different speeds.

【圖12】(a)為Ni0.8Co0.1Mn0.1(OH)2於600rpm轉速、不同反應時間之粒徑分布;(b)-(d)為Ni0.8Co0.1Mn0.1(OH)2於600rpm轉速下,分別於(b)5小時、(c)10 小時、(d)15小時、(e)20小時及(f)40小時條件之SEM圖像。 [Figure 12] (a) is the particle size distribution of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 at 600rpm and different reaction times; (b)-(d) is Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 at 600rpm The SEM images of (b) 5 hours, (c) 10 hours, (d) 15 hours, (e) 20 hours and (f) 40 hours respectively under the rotating speed.

【圖13】(a)為分別於900、800及600rpm不同轉速條件下之自製Ni0.8Co0.1Mn0.1(OH)2與市售Ni0.8Co0.1Mn0.1(OH)2的XRD圖譜;(b)為兩樣品各峰值之相對強度比較直方圖;(c)為市售Ni0.8Co0.1Mn0.1(OH)2之SEM圖像;(d)為以600rpm之轉速下製備之自製Ni0.8Co0.1Mn0.1(OH)2之SEM圖像。 [Figure 13] (a) is the XRD pattern of self-made Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 and commercially available Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 at different speeds of 900, 800 and 600rpm respectively; (b ) is the relative intensity comparison histogram of each peak of the two samples; (c) is the SEM image of commercially available Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ; (d) is the self-made Ni 0.8 Co 0.1 prepared at 600rpm SEM image of Mn 0.1 (OH) 2 .

【圖14】(a)為鍛燒前後以傳統之CSTR所製備出LNCM811產物之SEM表面形貌;(b)為鍛燒前後自製LNCM811產物之SEM表面型態。 [Figure 14] (a) is the SEM surface morphology of the LNCM811 product prepared by traditional CSTR before and after calcination; (b) is the SEM surface morphology of the self-made LNCM811 product before and after calcination.

【圖15】(a)-(e)為LNCM811正極複合材料之EDS Mapping圖譜分析:(a)Ni、(b)Co、(c)Mn、(d)O、(e)C;(f)為LNCM811正極複合材料之Ni、Co與Mn元素的EDS圖譜與原子百分比。 [Figure 15] (a)-(e) is the EDS Mapping spectrum analysis of LNCM811 cathode composite material: (a) Ni, (b) Co, (c) Mn, (d) O, (e) C; (f) It is the EDS spectrum and atomic percentage of Ni, Co and Mn elements of LNCM811 cathode composite material.

【圖16】(a)為市售LNCM811與本發明所自製LNCM811之XRD圖譜;(b)為市售LNCM811與本發明所自製LNCM811之FT-IR光譜分析結果。 [Figure 16] (a) is the XRD patterns of commercially available LNCM811 and LNCM811 produced by the present invention; (b) is the FT-IR spectrum analysis results of commercially available LNCM811 and LNCM811 produced by the present invention.

【圖17】(a)為Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物之SEM表面形貌;(b)-(d)為於不同第三階段鍛燒條件下所製備出LNCMA之SEM表面形貌:(b)750℃、15小時,(c)800℃、15小時及(d)800℃、20小時。 [Figure 17] (a) is the SEM surface morphology of Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursor; (b)-(d) are prepared under different third-stage calcination conditions SEM surface morphology of LNCMA: (b) 750°C, 15 hours, (c) 800°C, 15 hours and (d) 800°C, 20 hours.

【圖18】Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物於不同第三階段鍛燒條件下所製備出LNCMA之XRD分析結果。 [Figure 18] XRD analysis results of LNCMA prepared from Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursors under different third-stage calcination conditions.

【圖19】批次#1的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為17mA/g(0.1C)時之充電/放電曲線圖。 [Figure 19] Charge/discharge curves of batteries composed of LNCM622 electrodes of batch #1 at (a) 2.8-4.3V and (b) 2.8-4.5V respectively, when the current rate is 17mA/g (0.1C) picture.

【圖20】批次#2的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為17mA/g(0.1C)時之充電/放電曲線圖。 [Figure 20] Charge/discharge curves of batteries composed of LNCM622 electrodes of batch #2 at (a) 2.8-4.3V and (b) 2.8-4.5V respectively, when the current rate is 17mA/g (0.1C) picture.

【圖21】批次#1與#2的LNCM622電極所組成電池,於電流速率為17 mA/g(0.1C)、5次循環下,分別於(a)2.8至4.3V與2.8至4.5V間比較5個循環的放電克電容量。 [Figure 21] The battery composed of the LNCM622 electrodes of batches #1 and #2, at a current rate of 17 Under mA/g (0.1C), 5 cycles, compare the discharge gram capacity of 5 cycles between (a) 2.8 to 4.3V and 2.8 to 4.5V.

【圖22】批次#1的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時之充電/放電曲線圖。 [Fig. 22] Charge/discharge curves of the battery composed of LNCM622 electrodes of batch #1 at (a) 2.8-4.3V and (b) 2.8-4.5V, and the current rate is 0.2C-10C.

【圖23】批次#2的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時之充電/放電曲線圖。 [Fig. 23] The charging/discharging curves of batteries composed of LNCM622 electrodes of batch #2 at (a) 2.8-4.3V and (b) 2.8-4.5V, and the current rate is 0.2C-10C.

【圖24】批次#1與#2的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時之電流速率能力比較圖。 [Figure 24] Comparison of the current rate capabilities of batteries composed of batches #1 and #2 of LNCM622 electrodes at (a) 2.8-4.3V and (b) 2.8-4.5V, when the current rate is 0.2C-10C picture.

【圖25】批次#1與#2的LNCM622電極所組成電池,於1C速率、2.8-4.3V範圍下之循環性能圖。 [Fig. 25] The cycle performance diagram of the battery composed of the LNCM622 electrodes of batches #1 and #2 at a rate of 1C and a range of 2.8-4.3V.

【圖26】批次#1與#2的LNCM622電極所組成電池,於1C速率、2.8-4.5V範圍下之循環性能圖。 [Fig. 26] The cycle performance diagram of the battery composed of the LNCM622 electrodes of batches #1 and #2 at a rate of 1C and a range of 2.8-4.5V.

【圖27】(a)-(b)為於(a)0.1C、(b)1C電流速率之市售LNCM811及本發明所自製LNCM811正極複合材料所組成之電池,於2.5-4.3V電壓範圍下之循環性能比較;(c)-(d)為(c)市售LNCM811及(d)本發明所自製LNCM811正極複合材料所組成之電池,於1C速率、2.5-4.3V電壓範圍之充放/電循環曲線比較。 [Figure 27] (a)-(b) is a battery composed of commercially available LNCM811 at (a) 0.1C, (b) 1C current rate and the self-made LNCM811 positive electrode composite material of the present invention, in the voltage range of 2.5-4.3V The cycle performance comparison below; (c)-(d) is the battery composed of (c) commercially available LNCM811 and (d) the self-made LNCM811 positive electrode composite material of the present invention, charged and discharged at 1C rate and 2.5-4.3V voltage range / Electric cycle curve comparison.

【圖28】(a)-(b)為(a)自製LNCM811及(b)自製Li2MoO4包覆LNCM811正極複合材料所組成之電池,於1C速率下、100次循環的充/放電曲線圖;(c)為比較市售LNCM811、自製LNCM811以及自製Li2MoO4包覆LNCM811之正極複合材料所組成的電池,於1C速率、100次循環之穩定性;(d)為比較市售LNCM811、自製LNCM811以及自製Li2MoO4包覆LNCM811之正極複合材料 所組成之電池的電流速率能力比較。 [Figure 28] (a)-(b) are the charge/discharge curves of the battery composed of (a) self-made LNCM811 and (b) self-made Li 2 MoO 4 coated LNCM811 cathode composite material at 1C rate and 100 cycles Figure; (c) compares the stability of batteries composed of commercially available LNCM811, self-made LNCM811 and self-made Li 2 MoO 4 coated LNCM811 cathode composite materials at 1C rate and 100 cycles; (d) compares the stability of commercially available LNCM811 , self-made LNCM811 and self-made Li 2 MoO 4 coated LNCM811 positive electrode composite materials for the comparison of current rate capability.

【圖29】(a)為比較LNCM811及Li2MoO4包覆LNCM811之正極複合材料所組成之電池,於1C速率下經過100次循環後之Nyquist圖形;(b)為兩電池相對應ω-1/2 vs Z’之關係圖。 [Figure 29] (a) is a comparison of the Nyquist graphs of batteries composed of LNCM811 and Li 2 MoO 4 coated LNCM811 cathode composite materials after 100 cycles at 1C rate; (b) is the corresponding ω - 1/2 vs Z' diagram.

【圖30】鍛燒條件為800℃、20小時之LNCMA正極複合材料所組成之電池,於2.8-4.3V、0.1C速率下、3次循環之充/放電曲線圖。 [Fig. 30] Charge/discharge curves of 3 cycles at 2.8-4.3V, 0.1C rate, for a battery composed of LNCMA cathode composite material calcined at 800°C for 20 hours.

【圖31】鍛燒條件為800℃、20小時之LNCMA正極複合材料所組成之電池,於2.8-4.3V下,0.2C-10C之電流速率能力比較。 [Figure 31] Comparison of the current rate capability of 0.2C-10C at 2.8-4.3V for batteries composed of LNCMA positive electrode composite materials calcined at 800°C for 20 hours.

【圖32】鍛燒溫度為800℃、時間分別是15小時與20小時之LNCMA正極複合材料所組成之電池,於2.8-4.3V下,(a)不同電流速率能力比較;(b)1C/1C速率、100次循環下之循環性能比較。 [Figure 32] Batteries composed of LNCMA positive electrode composite materials with a calcination temperature of 800°C and a firing time of 15 hours and 20 hours respectively, at 2.8-4.3V, (a) Comparison of different current rate capabilities; (b) 1C/ 1C rate, cycle performance comparison under 100 cycles.

以下藉由示例性實施方式說明本發明之製備步驟、產物鑑定方式與結果,及所製備電池之性能測試。應注意,下述示例性實施方式僅用以說明本發明,而非用以限制本發明之範圍。 The preparation steps, product identification methods and results of the present invention, and the performance test of the prepared battery are described below by means of exemplary embodiments. It should be noted that the following exemplary embodiments are only used to illustrate the present invention, but not to limit the scope of the present invention.

首先,製備富鎳氫氧化物前驅物(M(OH)2,M=Ni,Co,Mn及/或Al)。於下述實施方式中,本發明分別製備鎳鈷錳氫氧化物Ni0.6Co0.2Mn0.2(OH)2、Ni0.8Co0.1Mn0.1(OH)2,及鎳鈷錳鋁氫氧化物Ni0.9Co0.04Mn0.03Al0.03(OH)2First, a nickel-rich hydroxide precursor (M(OH) 2 , M=Ni, Co, Mn and/or Al) is prepared. In the following embodiments, the present invention prepares nickel cobalt manganese hydroxide Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 , Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 , and nickel cobalt manganese aluminum hydroxide Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 .

【Ni0.6Co0.2Mn0.2(OH)2【Ni 0.6 Co 0.2 Mn 0.2 (OH) 2

使用連續式泰勒流動反應器(Taylor flow reactor,TFR; LCTR®-tera 3100,Laminar Co.,Ltd,Korea)透過共沉澱法製備Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物。以2M硫酸金屬鹽水溶液,即硫酸鎳(NiSO4.6H2O,98%,Alfa Aesar)、硫酸鈷(CoSO4.7H2O,99%,VetecTM)以及硫酸錳(MnSO4.H2O,98%,J.T.Baker®)作為金屬離子來源,且其比例為Ni2+:Co2+:Mn2+=6:2:2。另,以4M之氫氧化鈉溶液(NaOH,98%,UR)作為沉澱劑,氨水(NH3.H2O,28-30%,J.T.Baker®)作為螯合劑;其中,如表1所示,於此實施方式中,採用7.5M及2.5M此二種不同濃度之氨水,分別合成出不同批次之產物,批次#1使用7.5M之氨水,批次#2使用2.5M之氨水,並於後續之鑑定分析步驟中將比較此二種不同氨水濃度所合成產物之性能優劣。將前述反應物在60℃條件下同時加入至反應室中,其中沉澱劑與螯合劑之劑量可依不同原料比例之劑量做適當之配置。接著藉由pH控制系統維持pH值在11.0,並控制該反應器的轉速固定為600rpm。連續生產的褐色沉澱產物使用去離子水及99%之乙醇清洗數次,以除去殘留之離子(Na+、SO4 2-及其他離子)。最後,經過濾並在100℃、24小時乾燥後,即可獲得Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物。 A continuous Taylor flow reactor (Taylor flow reactor, TFR; LCTR ® -tera 3100, Laminar Co., Ltd, Korea) was used to prepare the Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor by coprecipitation. With 2M metal sulfate solution, nickel sulfate (NiSO 4 .6H 2 O, 98%, Alfa Aesar), cobalt sulfate (CoSO 4 .7H 2 O, 99%, Vetec TM ) and manganese sulfate (MnSO 4 .H 2 O, 98%, JTBaker ® ) as a source of metal ions, and its ratio is Ni 2+ : Co 2+ : Mn 2+ =6:2:2. In addition, 4M sodium hydroxide solution (NaOH, 98%, UR) was used as a precipitating agent, and ammonia water (NH 3 .H 2 O, 28-30%, JTBaker ® ) was used as a chelating agent; among them, as shown in Table 1, In this embodiment, two different concentrations of ammonia water of 7.5M and 2.5M are used to synthesize different batches of products. Batch #1 uses 7.5M ammonia water, batch #2 uses 2.5M ammonia water, and In the subsequent identification and analysis steps, the performance of the synthesized products with these two different ammonia concentrations will be compared. Add the aforementioned reactants into the reaction chamber at the same time at 60°C, and the doses of the precipitating agent and the chelating agent can be properly configured according to the doses of different raw material ratios. Then the pH value was maintained at 11.0 by the pH control system, and the rotational speed of the reactor was controlled to be fixed at 600 rpm. The continuously produced brown precipitated product was washed several times with deionized water and 99% ethanol to remove residual ions (Na + , SO 4 2- and other ions). Finally, after filtering and drying at 100° C. for 24 hours, the Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor can be obtained.

Figure 109125457-A0101-12-0012-1
Figure 109125457-A0101-12-0012-1

【Ni0.8Co0.1Mn0.1(OH)2【Ni 0.8 Co 0.1 Mn 0.1 (OH) 2

使用連續式泰勒流動反應器(TFR)透過共沉澱法製備Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物。首先,將化學計量混合2M的NiSO4.6H2O、CoSO4.7H2O與MnSO4.H2O水溶液利用幫浦連續打入TFR中。同時亦將4M之NaOH沉澱劑及所需要NH3.H2O螯合劑溶液的量添加到反應器中。表2列出此共沉澱過程的詳細參數。當反應完成後,將沉澱物進行過濾並用去離子水及99%之乙醇洗滌數次,用以除去殘留的離子。最後將沉澱物置於烘箱中以100℃乾燥24小時。 Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursors were prepared by co-precipitation method using continuous Taylor flow reactor (TFR). First, mix 2M NiSO 4 stoichiometrically. 6H 2 O, CoSO 4 . 7H 2 O and MnSO 4 . The H 2 O aqueous solution is injected continuously into the TFR by a pump. At the same time, 4M NaOH precipitation agent and the required NH 3 . The amount of H2O chelator solution was added to the reactor. Table 2 lists the detailed parameters of this coprecipitation process. After the reaction was completed, the precipitate was filtered and washed several times with deionized water and 99% ethanol to remove residual ions. Finally, the precipitate was dried in an oven at 100° C. for 24 hours.

Figure 109125457-A0101-12-0013-2
Figure 109125457-A0101-12-0013-2

【Ni0.9Co0.04Mn0.03Al0.03(OH)2【Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2

使用連續式泰勒流動反應器(TFR)透過共沉澱法鍛燒製備Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物。首先,將化學計量混合2M的NiSO4.6H2O、CoSO4.7H2O、MnSO4.H2O與Al2(SO4)3.6H2O水溶液利用幫浦連續打入TFR中。同時亦將4M之NaOH沉澱劑及所需要NH3.H2O螯合劑溶液 的量添加到反應器中。表3列出此共沉澱過程的詳細參數。當反應完成後,將沉澱物進行過濾並用去離子水及99%之乙醇洗滌數次,用以除去殘留的離子。最後將沉澱物置於烘箱中以100℃乾燥24小時。 Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursors were prepared by co-precipitation calcination in a continuous Taylor flow reactor (TFR). First, mix 2M NiSO 4 stoichiometrically. 6H 2 O, CoSO 4 . 7H 2 O, MnSO 4 . H 2 O and Al 2 (SO 4 ) 3 . The 6H 2 O aqueous solution is injected into the TFR continuously by a pump. At the same time, 4M NaOH precipitation agent and the required NH 3 . The amount of H2O chelator solution was added to the reactor. Table 3 lists the detailed parameters of this coprecipitation process. After the reaction was completed, the precipitate was filtered and washed several times with deionized water and 99% ethanol to remove residual ions. Finally, the precipitate was dried in an oven at 100° C. for 24 hours.

Figure 109125457-A0101-12-0014-3
Figure 109125457-A0101-12-0014-3

接著,將製備之富鎳氫氧化物前驅物進一步合成為正極複合材料;其中,將Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物合成之正極複合材料命名為LNCM622粉末,將Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物合成之正極複合材料命名為LNCM811粉末,將Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物合成之正極複合材料命名為LNCMA粉末。以下對合成步驟與參數進行詳細說明。 Next, the prepared nickel-rich hydroxide precursor was further synthesized into a positive electrode composite material; among them, the positive electrode composite material synthesized from the Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor was named LNCM622 powder, and the Ni 0.8 The positive electrode composite material synthesized by Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor is named LNCM811 powder, and the positive electrode composite material synthesized by Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursor is named LNCMA powder . The synthesis steps and parameters are described in detail below.

【LNCM622粉末製備】 【LNCM622 powder preparation】

將Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物利用球磨機(Planetary Mill PULVERISETTE 5 classic line,Fritsch,Germany)使用聚氨酯(Polyurethane,PU)球與5%過量的LiOH.H2O在99%甲醇溶劑中進行研磨混 合,其中,Ni0.6Co0.2Mn0.2(OH)2與LiOH.H2O之比例為1:1.05,球磨機轉速為100rpm,研磨時間為5小時,樣品與球之重量比例為1:1;此處,5%過量的鋰係用於補償後續鍛燒過程中鋰因為高溫蒸發而造成的損失。接著,將該混合物進行乾燥。接著、將該混合物在純氧氣氛的管狀爐中分別於150℃、2小時,450℃、6小時,850℃加熱15小時進行鍛燒熱處理;該鍛燒過程的參數如下表4。將鍛燒後之產物命名為LNCM622粉末。 The Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor was used in a ball mill (Planetary Mill PULVERISETTE 5 classic line, Fritsch, Germany) using polyurethane (Polyurethane, PU) balls and 5% excess LiOH. Grinding and mixing H 2 O in 99% methanol solvent, among them, Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 and LiOH. The ratio of H 2 O is 1:1.05, the speed of the ball mill is 100rpm, the grinding time is 5 hours, and the weight ratio of the sample to the ball is 1:1; here, 5% excess lithium is used to compensate for the lithium in the subsequent calcination process Losses due to high temperature evaporation. Next, the mixture is dried. Next, heat the mixture at 150° C. for 2 hours, 450° C. for 6 hours, and 850° C. for 15 hours in a tubular furnace in a pure oxygen atmosphere for calcination heat treatment; the parameters of the calcination process are as follows in Table 4. The calcined product is named LNCM622 powder.

Figure 109125457-A0101-12-0015-4
Figure 109125457-A0101-12-0015-4

【LNCM811粉末製備】 【LNCM811 powder preparation】

將Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物利用球磨機使用瑪瑙(Agate)球與5%過量的LiOH.H2O在99%甲醇溶劑中進行徹底研磨,其中,Ni0.8Co0.1Mn0.1(OH)2與LiOH.H2O之比例為1:1.05,球磨機轉速為100rpm,研磨時間為5小時,樣品與球之重量比例為1:1。接著,將該混合物在純氧的管狀爐中分別於150℃、2小時,500℃、6小時以及830℃、12小時條件進行鍛燒熱處理;該鍛燒過程的參數如下表5。將鍛燒後之產物命名為LNCM811粉末。 The Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor using a ball mill using agate (Agate) balls and 5% excess LiOH. H 2 O was thoroughly ground in 99% methanol solvent, among them, Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 and LiOH. The ratio of H 2 O is 1:1.05, the rotational speed of the ball mill is 100 rpm, the grinding time is 5 hours, and the weight ratio of the sample to the ball is 1:1. Next, the mixture was calcined and heat-treated in a pure oxygen tubular furnace at 150°C for 2 hours, 500°C for 6 hours and 830°C for 12 hours; the parameters of the calcining process are shown in Table 5. The calcined product was named LNCM811 powder.

Figure 109125457-A0101-12-0015-5
Figure 109125457-A0101-12-0015-5

Figure 109125457-A0101-12-0016-6
Figure 109125457-A0101-12-0016-6

此外,為合成原位包覆之正極複合材料,即將Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物進行包覆處理,亦可將鉬酸銨(ammonium molybdate,(NH4)6Mo7O24)及所需LiOH.H2O的量先混合形成Li2MoO4,接著將Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物與Li2MoO4於球磨機中以瑪瑙球進行研磨混合,球磨機轉速為100rpm,研磨時間為5小時,樣品與球之重量比例為1:1,其中Li2MoO4相對於Ni0.8Co0.1Mn0.1(OH)2為2wt.%;並於前述鍛燒條件下進行鍛燒。合成之產物即為表面經修飾處理之Li2MoO4包覆LNCM811。 In addition, in order to synthesize in-situ coated positive electrode composite materials, the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor is coated, and ammonium molybdate (ammonium molybdate, (NH 4 ) 6 Mo 7 O 24 ) and the required LiOH. The amount of H 2 O is first mixed to form Li 2 MoO 4 , then the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor and Li 2 MoO 4 are ground and mixed in a ball mill with agate balls, and the ball mill speed is 100rpm. The grinding time is 5 hours, the weight ratio of the sample to the ball is 1:1, and Li 2 MoO 4 is 2wt.% relative to Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 ; and the calcination is carried out under the aforementioned calcination conditions. The synthesized product is Li 2 MoO 4 coated LNCM811 whose surface has been modified.

【LNCMA粉末製備】 【LNCMA powder preparation】

將Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物利用球磨機使用聚氨酯球與5%過量的LiOH在甲醇99%溶劑中進行研磨混合,球磨機轉速為100rpm,研磨時間為5小時,樣品與球之重量比例為1:1,其中,Ni0.9Co0.04Mn0.03Al0.03(OH)2與LiOH.H2O之比例為1:1.05;此處,5%過量的鋰係用於補償後續鍛燒過程中鋰因為高溫蒸發而造成的損失。將該混合物進行乾燥。接著、將該混合物在純氧氣氛的管狀爐中分別於150℃、2小時,550℃、6小時,800℃加熱20小時進行鍛燒熱處理;該鍛燒過程的參數如下表6。將鍛燒後之產物命名為LNCMA粉末。 The Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursor was ground and mixed with polyurethane balls and 5% excess LiOH in a methanol 99% solvent using a ball mill. The ball mill speed was 100 rpm and the milling time was 5 hours. The weight ratio of sample and ball is 1:1, among them, Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 and LiOH. The ratio of H 2 O is 1:1.05; here, 5% excess lithium is used to compensate the loss of lithium due to high temperature evaporation during the subsequent calcination process. The mixture is dried. Next, the mixture was heated in a tubular furnace in a pure oxygen atmosphere at 150° C. for 2 hours, 550° C. for 6 hours, and 800° C. for 20 hours for calcination heat treatment; the parameters of the calcination process are as follows in Table 6. The calcined product is named as LNCMA powder.

表6:合成LNCMA粉末之鍛燒參數

Figure 109125457-A0101-12-0017-7
Table 6: Calcination parameters for the synthesis of LNCMA powders
Figure 109125457-A0101-12-0017-7

接著,對製備成之各氫氧化物前驅物及正極複合材料進行材料分析與鑑定。使用CuKα5之X光粉末繞射儀(XRD,Bruker D2 PHASER,德國,λ=0.1534753nm,30kV,10mA)鑑定材料的晶體結構,並以0.02°/sec之速率在2θ為10°至70°之範圍內收集該訊號。使用TOPAS軟體(4.2版)進行Rietveld精修(Rietveld refinement)粉末材料的晶格參數。 Next, material analysis and identification were performed on the prepared hydroxide precursors and cathode composite materials. Use CuKα5 X-ray powder diffractometer (XRD, Bruker D2 PHASER, Germany, λ=0.1534753nm, 30kV, 10mA) to identify the crystal structure of the material, and at a rate of 0.02°/sec between 2θ of 10° to 70° Collect the signal within the range. Rietveld refinement of lattice parameters of powder materials was performed using TOPAS software (version 4.2).

此外,亦透過場發射掃描電子顯微鏡(FE-SEM,JEOL JSM-7610F Plus,Japan)對粉末材料的表面形貌及微觀結構進行量測與分析;並藉由X光能量散射光譜儀(EDS,Oxford X-MaxN,UK)分析材料元素的組成與其比例。 In addition, the surface morphology and microstructure of powder materials were also measured and analyzed by field emission scanning electron microscopy (FE-SEM, JEOL JSM-7610F Plus, Japan); and X-ray energy scattering spectrometer (EDS, Oxford X-MaxN, UK) analyzes the composition and proportion of material elements.

【材料分析】 【Materials Analysis】

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物】 【Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor】

首先針對Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物,在不同氨水添加濃度下所合成兩批次之產物,即批次#1(氨水濃度為7.5M)及批次#2(氨水濃度為2.5M),分別進行材料分析,以檢視其表面形貌與晶體結構。 Firstly, for the Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor, two batches of products were synthesized at different concentrations of ammonia water, namely batch #1 (the concentration of ammonia water was 7.5M) and batch #2 ( The concentration of ammonia water is 2.5M), and the material analysis is carried out separately to examine its surface morphology and crystal structure.

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物表面形貌-批次#1】 【Surface Morphology of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 Hydroxide Precursor - Batch #1】

圖1為批次#1在反應時間分別為(a)20小時,(b)30小時,(c)40小時以及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒的SEM圖像。在反應過程中,Ni0.6Co0.2Mn0.2(OH)2之一次粒子將漸漸團聚為二次粒子。從圖1可看 出,當增加反應時間時,原本小且不規則的二次粒子(直徑約為5μm)變成大的球形顆粒(直徑約為7μm)。圖1(a)從開始到20小時後,顆粒形狀呈現團聚之形貌;而經過30小時後,顆粒形狀開始轉變成球形及橢圓形。 Figure 1 shows the reaction time of batch #1 to form Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles after reaction time of (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours SEM images. During the reaction process, the primary particles of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 will gradually agglomerate into secondary particles. It can be seen from Figure 1 that when the reaction time is increased, the original small and irregular secondary particles (about 5 μm in diameter) become large spherical particles (about 7 μm in diameter). Figure 1(a) From the beginning to 20 hours, the shape of the particles showed an agglomerated appearance; and after 30 hours, the shape of the particles began to transform into spherical and elliptical.

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物表面形貌-批次#2】 【Surface Morphology of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 Hydroxide Precursor - Batch #2】

圖2為批次#2在反應時間分別為(a)16小時,(b)20小時,(c)30小時,以及(d)40小時後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒的SEM圖像。如圖2所示,當將氨水的濃度降低至2.5M時,與氨水濃度為7.5M相比,會較早形成二次粒子;例如,在經過16小時後,前驅物的二次粒子已經形成球形並增加該粒徑大小(直徑約為7μm),且當繼續延長反應時間至40小時,其粒徑將持續成長至約9μm。主要原因可能係由於銨離子與金屬離子結合形成金屬-銨複合物,而後方生成金屬氫氧化物。因此,當減少氨水之螯合反應時,金屬離子具有更容易提供晶體生長的空間,從而促進晶體的團聚。據此,當隨著進料到反應器中的氨水隨著時間增加,其顆粒也隨之變大。 Figure 2 shows that batch #2 reacted to form Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles after reaction times of (a) 16 hours, (b) 20 hours, (c) 30 hours, and (d) 40 hours SEM image of . As shown in Figure 2, when the ammonia concentration is reduced to 2.5M, secondary particles are formed earlier compared to 7.5M ammonia concentration; for example, after 16 hours, the secondary particles of the precursor have formed The spherical shape increases the particle size (diameter is about 7 μm), and when the reaction time is continued to be extended to 40 hours, the particle size will continue to grow to about 9 μm. The main reason may be due to the combination of ammonium ions and metal ions to form metal-ammonium complexes, which then generate metal hydroxides. Therefore, when the chelation reaction of ammonia water is reduced, metal ions are more likely to provide space for crystal growth, thereby promoting the agglomeration of crystals. Accordingly, when the ammonia water fed into the reactor increases with time, its particles also become larger.

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物晶體結構(批次#1)】 【Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor crystal structure (batch #1)】

圖3為批次#1在反應時間分別為(a)20小時,(b)30小時,(c)40小時以及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2粉末的XRD分析結果。在圖3中,批次#1的XRD圖形顯示出Ni0.6Co0.2Mn0.2(OH)2粉末的XRD圖形幾乎與典型M(OH)2(M=Ni,Co,Mn)的晶體結構一致,顯示製備之成功。 Figure 3 shows that batch #1 reacted to form Ni 0.6 Co 0.2 Mn 0 . 2 (OH) 2 after the reaction time was (a) 20 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours. XRD analysis result of powder. In Figure 3, the XRD pattern of Batch #1 shows that the XRD pattern of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder is almost consistent with the crystal structure of typical M(OH) 2 (M=Ni,Co,Mn), Indicates the success of the preparation.

此外,藉由增加反應時間,與圖3(a)相比,圖3(b)-(d)中的2θ約為19。處之第一個(003)峰值位移至較小的角度且有較高的強度,此可能係由於形成更完整的層狀結構所致。 In addition, by increasing the reaction time, the 2θ in Fig. 3(b)-(d) is about 19 compared with Fig. 3(a). Here the first (003) peak is shifted to a smaller angle and has a higher intensity, which may be due to the formation of a more complete layered structure.

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物晶體結構(批次#2)】 【Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor crystal structure (batch #2)】

圖4為批次#2在反應時間分別為(a)16小時,(b)30小時,(c)40小時以及(d)45小時後反應生成Ni0.6Co0.2Mn0.2(OH)2粉末的XRD分析結果。在圖4中,批次#2的XRD圖形顯示出Ni0.6Co0.2Mn0.2(OH)2粉末的XRD圖形亦幾乎與典型M(OH)2(M=Ni,Co,Mn)的晶體結構一致。此外,藉由增加反應時間,圖4(a)-(d)中第一個(003)峰在2θ約為19°附近之位置相當一致,且隨著反應時間增加該峰值的強度變更高。與圖3相比,圖4中所有峰的位置幾乎都沒有移動,這意味著氫氧化物前驅物的晶體結構從16小時起即已經非常穩定。 Fig. 4 shows that the reaction time of batch #2 is respectively (a) 16 hours, (b) 30 hours, (c) 40 hours and (d) 45 hours and then reacts to generate Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder XRD analysis results. In Figure 4, the XRD pattern of Batch #2 shows that the XRD pattern of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 powder is also almost consistent with the crystal structure of typical M(OH) 2 (M=Ni,Co,Mn) . In addition, by increasing the reaction time, the first (003) peak in Figure 4(a)-(d) is quite consistent at a position around 2θ of about 19°, and the intensity of this peak becomes higher as the reaction time increases. Compared with Fig. 3, the positions of all peaks in Fig. 4 hardly shifted, which means that the crystal structure of the hydroxide precursor has been very stable since 16 hours.

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物顆粒尺寸】 [Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursor particle size]

圖5及圖6分別為批次#1及批次#2在不同反應時間後反應生成Ni0.6Co0.2Mn0.2(OH)2顆粒的雷射粒徑分析圖。其結果顯示,當氨水螯合劑的濃度從7.5M降低至2.5M時,相較兩者產物的二次粒子之平均粒徑(D50,D50定義為大於總粒徑數50%的粒徑尺寸)從約為6μm增加到8μm。此結果亦如下表7及表8所示。 5 and 6 are the laser particle size analysis diagrams of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 particles produced by the reaction of batch #1 and batch #2 after different reaction times, respectively. The results show that when the concentration of the ammonia chelating agent is reduced from 7.5M to 2.5M, compared with the average particle diameter of the secondary particles of the two products ( D50 , D50 is defined as the particle diameter greater than 50% of the total particle diameter number size) increased from about 6 μm to 8 μm. The results are also shown in Table 7 and Table 8 below.

Figure 109125457-A0101-12-0019-8
Figure 109125457-A0101-12-0019-8

表8:批次#2 Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物的顆粒大小

Figure 109125457-A0101-12-0020-9
Table 8: Particle Sizes of Batch #2 Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 Hydroxide Precursor
Figure 109125457-A0101-12-0020-9

【Ni0.6Co0.2Mn0.2(OH)2氫氧化物前驅物的顆粒比較】 [Comparison of particles of Ni 0.6 Co 0.2 Mn 0.2 (OH) 2 hydroxide precursors]

批次#1與批次#2氫氧化物前驅物的二次粒子粒徑與反應時間關係圖如圖7所示。其中,批次#1剛開始隨時間增加,其粒徑也隨之增加,直到反應時間40小時後粒徑大小趨於穩定;然而,批次#2從20小時到45小時的粒徑大小變化不大。 The relationship between the secondary particle size and the reaction time of batch #1 and batch #2 hydroxide precursors is shown in Figure 7. Among them, batch #1 just started to increase with time, and its particle size also increased, until the particle size stabilized after 40 hours of reaction time; however, the particle size of batch #2 changed from 20 hours to 45 hours not big.

【LNCM622粉末表面形貌】 【Surface Morphology of LNCM622 Powder】

接著,進行LNCM622之分析。圖8為批次#1(圖8(a)、(b))與批次#2(圖8(c)、(d))所合成出之LNCM622經過鍛燒後的SEM圖像。如圖8所示,LNCM622的產物幾乎呈現橢圓形,並且沒有破裂的情況。然亦可觀察到,批次#2的一次粒子粒徑小於批次#1,其二次粒子粒徑則大於批次#1。可以理解,當前驅物材料之一次粒子粒徑較小、二次粒子粒徑較大,意味著該前驅物材料係由較多且較小之一次粒子團聚為二次粒子,則其將具有更多緊密排列之孔洞,該多孔緊密排列之微孔洞結構在電化學充/放電過程中,可促使更多且更快的鋰離子進/出擴散效果,從而促進較優異之電性表現。亦即,在本實施型態中,批次#2之結構優於批次#1。 Next, the analysis of LNCM622 was carried out. Fig. 8 is the SEM image of LNCM622 synthesized from batch #1 (Fig. 8(a), (b)) and batch #2 (Fig. 8(c), (d)) after calcination. As shown in Fig. 8, the product of LNCM622 is almost elliptical and has no cracks. However, it can also be observed that the particle size of the primary particles of batch #2 is smaller than that of batch #1, and the particle size of the secondary particles is larger than that of batch #1. It can be understood that the primary particle size of the precursor material is smaller and the secondary particle size is larger, which means that the precursor material is agglomerated from more and smaller primary particles into secondary particles, and it will have more More closely arranged pores, the porous and closely arranged micropore structure can promote more and faster diffusion of lithium ions in/out during the electrochemical charge/discharge process, thereby promoting better electrical performance. That is, in this embodiment, the structure of batch #2 is better than that of batch #1.

【LNCM622粉末晶體結構】 【LNCM622 powder crystal structure】

圖9顯示出批次#1與批次#2兩個樣品的XRD圖譜,所有峰符合層狀α-NaFeO2結構的結果,並且沒有其他相態或雜質的繞射峰出現。並且由圖9與下表9中觀察到晶面(108/110)清楚的分峰效果,且c/a值均高於4.9,這意味著兩個樣品均具有明確的層狀結構。 Figure 9 shows the XRD patterns of two samples of batch #1 and batch #2, all peaks are consistent with the results of the layered α-NaFeO 2 structure, and no diffraction peaks of other phases or impurities appear. And it is observed from Figure 9 and Table 9 below that the crystal plane (108/110) has a clear peak splitting effect, and the c/a values are higher than 4.9, which means that both samples have a clear layered structure.

Figure 109125457-A0101-12-0021-10
Figure 109125457-A0101-12-0021-10

接著分析Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物與其所進一步合成之LNCM811之表面形貌與晶體結構;在此實施方式中,進一步控制與比較在不同實驗參數下,例如反應器轉速、在球磨機中以瑪瑙球進行研磨混合、pH範圍及鍛燒溫度等,合成出之產物之形貌與結構優劣,以獲得最佳反應條件。除此之外,更進一步比較市售之Ni0.8Co0.1Mn0.1(OH)2、LNCM811,以及本發明所製備之Ni0.8Co0.1Mn0.1(OH)2、LNCM811,與傳統連續式攪拌槽反應器所製備出之LNCM811,各產物之形貌與結構優劣。 Then analyze the surface morphology and crystal structure of the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor and the further synthesized LNCM811; in this embodiment, further control and comparison under different experimental parameters, such as the reactor Speed, grinding and mixing with agate balls in the ball mill, pH range and calcination temperature, etc., the shape and structure of the synthesized product are good or bad, so as to obtain the best reaction conditions. In addition, further compare the commercially available Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 , LNCM811, and the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 , LNCM811 prepared by the present invention, and the traditional continuous stirred tank reaction LNCM811 prepared by the device, the morphology and structure of each product are good or bad.

【Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物表面形貌與晶粒尺寸】 【Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor surface morphology and grain size】

首先,圖10為Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物之表面形貌圖;如圖10所示,利用連續式泰勒流動反應器採用共沉澱方法合成Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物,能夠成功地擴大共沉澱-鍛燒兩步驟合成的規模,即到每批次生產0.5kg(約3升金屬鹽水溶液)。 First, Figure 10 is the surface morphology of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor; as shown in Figure 10, Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursors, enabling successful scale-up of the co-precipitation-calcination two-step synthesis, i.e. to 0.5 kg per batch (approximately 3 liters of metal salt aqueous solution).

圖11(a)顯示出在不同反應器轉速(600、800、900rpm)下Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物粉體的粒徑分布。該旋轉速度增加粒子間(粒子/粒子相互作用)及粒子內(粒子與泰勒流壁相互作用)之碰撞,此種機制作用下能夠形成均質的粒子與控制粒子的尺寸。例如,將旋轉速度從600、800增加到900rpm,粒徑將分別減小至8.3μm,5.2μm和3.2μm。圖11(b)顯示Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物粉體在經900rpm轉速下處理後,其二次粒子為不規則的團聚。圖11(c)顯示在800rpm旋轉速度下,二次粒子聚成不對稱的橢圓形顆粒。另外,圖11(d)顯示在600rpm旋轉速度下,該粉體由一次粒子均勻且密集地聚成規則橢圓形狀的二次粒子。因此,使用600rpm的轉速可以獲得規則形狀的二次粒子,該條件也是氫氧化物前驅物共沉澱製備的最佳結果。 Figure 11(a) shows the particle size distribution of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor powder at different reactor rotation speeds (600, 800, 900 rpm). This rotational speed increases the collisions between particles (particle/particle interaction) and within particles (particles interacting with Taylor flow walls), a mechanism that enables the formation of homogeneous particles and the control of particle size. For example, increasing the rotation speed from 600, 800 to 900 rpm, the particle size will decrease to 8.3 μm, 5.2 μm and 3.2 μm, respectively. Fig. 11(b) shows that the secondary particles of the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor powder are irregularly agglomerated after being treated at 900 rpm. Fig. 11(c) shows that at a rotation speed of 800 rpm, the secondary particles aggregated into asymmetric elliptical particles. In addition, Fig. 11(d) shows that at a rotation speed of 600rpm, the powder is uniformly and densely aggregated into regular elliptical secondary particles from the primary particles. Therefore, regular-shaped secondary particles can be obtained using a rotational speed of 600 rpm, which is also the best result for the co-precipitation preparation of hydroxide precursors.

此外,為了解連續式泰勒流動反應器中氫氧化物前驅物在600rpm轉速下的晶體生長機制,藉由SEM分析其等於不同共沉澱反應階段的成長形態,其結果如圖12所示;其中,粒徑通過D50計算。圖12(a)顯示出在不同的共沉澱的反應時間內Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物的粒徑變化;圖12(b)之SEM圖像顯示,在反應時間開始時(5小時)產生了許多不規則的團聚物,粒徑為4.5μm;圖12(c)顯示,當反應時間約為10小時,聚成體開始破裂,同時產生部分由幾個六角形一次粒子組成小的二次粒子(尺寸 約為6.5μm);粒徑為7.03μm的估計持續反應時間為15小時(圖12(d))。在20小時的反應階段,一次粒子形成緊密的排列,且該顆粒均勻地聚成規則橢圓形的二次粒子,如圖12(e)所示,該粒徑為8.35μm。當反應時間達40小時,其粒徑大小約為8.39μm(如圖12(f)所示)。 In addition, in order to understand the crystal growth mechanism of the hydroxide precursor at 600rpm in the continuous Taylor flow reactor, the growth morphology of different co-precipitation reaction stages was analyzed by SEM, and the results are shown in Figure 12; among them, Particle size is calculated by D50 . Figure 12(a) shows the particle size change of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursors during different coprecipitation reaction times; At the beginning (5 hours), many irregular aggregates were produced, with a particle size of 4.5 μm; Figure 12(c) shows that when the reaction time was about 10 hours, the aggregates began to break down, and at the same time, some hexagonal aggregates were formed. The primary particles consisted of small secondary particles (approximately 6.5 μm in size); the estimated duration of the reaction was 15 hours for a particle size of 7.03 μm ( FIG. 12( d )). During the 20-hour reaction stage, the primary particles formed a close arrangement, and the particles uniformly aggregated into regular elliptical secondary particles, as shown in Figure 12(e), with a particle size of 8.35 μm. When the reaction time reaches 40 hours, the particle size is about 8.39 μm (as shown in Figure 12(f)).

【Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物晶體結構】 【Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor crystal structure】

藉由XRD技術鑑定Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物粉末之晶相及純度。其中,Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物XRD圖譜的主峰與具有六方結構的純β-Ni(OH)2的層狀晶體結構非常吻合(a=3.207Å,c=4.688Å)。 The crystal phase and purity of the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor powder were identified by XRD technology. Among them, the main peaks of the XRD pattern of the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor are in good agreement with the layered crystal structure of pure β-Ni(OH) 2 with a hexagonal structure (a = 3.207 Å, c = 4.688 Å).

如圖13(a)所示,比較市售Ni0.8Co0.1Mn0.1(OH)2(三元材料前驅物,優必克科技股份有限公司,台灣)和本發明所製備Ni0.8Co0.1Mn0.1(OH)2在不同的轉速(900、800、600rpm)下的XRD圖譜,發現皆沒有雜相峰的存在,此表示上述氫氧化物前驅物皆屬於純相的Ni0.8Co0.1Mn0.1(OH)2層狀晶體結構。其中值得注意的是,本發明所自製Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物的(101)峰的強度比(001)峰的強度更強;此外,如圖13(b)所示,市售Ni0.8Co0.1Mn0.1(OH)2的(101)峰的強度低於本發明所製備Ni0.8Co0.1Mn0.1(OH)2的強度,該結果說明本發明所製備氫氧化物前驅物晶體結構沿c軸方向有利地生長,從而導致{010}的面的曝光高。圖13(c)的SEM圖像中顯示出市售的氫氧化物前驅物粉體看起來像是大小差異較大的球形二次粒子,較小的顆粒約2~3μm;而圖13(d)中本發明所製備Ni0.8Co0.1Mn0.1(OH)2氫氧化物前驅物則是具有大小較為均勻分布的橢圓形二次粒子,顯示其結構生成較為穩定。 As shown in Figure 13(a), comparing the commercially available Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 (ternary material precursor, Ubike Technology Co., Ltd., Taiwan) and the prepared Ni 0.8 Co 0.1 Mn 0.1 The XRD pattern of (OH) 2 at different rotational speeds (900, 800, 600rpm) shows that there is no heterophase peak, which means that the above-mentioned hydroxide precursors belong to the pure phase Ni 0.8 Co 0.1 Mn 0.1 (OH ) 2 layered crystal structure. It is worth noting that the intensity of the (101) peak of the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor produced by the present invention is stronger than that of the (001) peak; in addition, as shown in Figure 13(b) As shown, the intensity of the (101) peak of commercially available Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 is lower than that of Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 prepared by the present invention. The precursor crystal structure grows favorably along the c-axis direction, resulting in high exposure of the {010} facets. The SEM image of Figure 13(c) shows that the commercially available hydroxide precursor powder looks like spherical secondary particles with large size differences, and the smaller particles are about 2~3μm; while Figure 13(d ) in the Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 hydroxide precursor prepared by the present invention has elliptical secondary particles with relatively uniform size distribution, showing that its structure is relatively stable.

【LNCM811粉末之表面形貌】 【Surface morphology of LNCM811 powder】

比較傳統連續式攪拌槽反應器(continuous stirring tank reactor,CSTR)所製備出的LNCM811以及本發明所製備LNCM811的表面形態,如圖14所示。CSTR所製備出的LNCM811顆粒於鍛燒前後的表面形態如圖14(a)所示,其一次粒子較小,且孔洞結構較少;相對地,本發明所製備LNCM811粉末材料具有花瓣(petal)狀的一次粒子,其孔洞結構較為密集排列(表面積及孔徑由BET測量結果估算分別為0.27m2/g和11.33nm),如圖14(b)所示,此多孔緊密排列的微小孔洞結構在電化學充/放電過程中,可以促使更多、更快的鋰離子進/出擴散效果。 Compare the surface morphology of LNCM811 prepared by a traditional continuous stirring tank reactor (CSTR) and the LNCM811 prepared by the present invention, as shown in FIG. 14 . The surface morphology of the LNCM811 particles prepared by CSTR before and after calcination is shown in Figure 14(a), the primary particles are smaller and the pore structure is less; in contrast, the LNCM811 powder material prepared by the present invention has petals (petal) shaped primary particles, the pore structure is relatively densely arranged (the surface area and pore size are estimated to be 0.27m 2 /g and 11.33nm from the BET measurement results, respectively), as shown in Figure 14(b), the porous densely arranged micro-pore structure is in During the electrochemical charge/discharge process, it can promote more and faster lithium ion in/out diffusion effect.

除此之外,進一步利用EDS Mapping分析LNCM811粉末材料,其結果如圖15所示,其中(a)Ni、(b)Co、(c)Mn、(d)O以及部分(e)C元素的EDS Mapping呈現均勻分佈在整個球形中,再次顯示其結構之完整性;此外,圖15(f)為EDS光譜分析圖,可以初步確認鎳鈷錳主要元素的組成比例,其值接近80:10:10。 In addition, the LNCM811 powder material was further analyzed by EDS Mapping, and the results are shown in Figure 15, in which (a) Ni, (b) Co, (c) Mn, (d) O and some (e) C elements EDS Mapping is evenly distributed throughout the sphere, again showing the integrity of its structure; in addition, Figure 15(f) is an EDS spectrum analysis diagram, which can preliminarily confirm the composition ratio of the main elements of nickel, cobalt and manganese, and its value is close to 80:10: 10.

【LNCM811粉末之晶體結構】 【Crystal structure of LNCM811 powder】

經鍛燒後,市售與本發明所製備之LNCM811粉末均具有六角形α-NaFeO2的層狀結構,空間群(space group)為R-3m,如圖16(a)所示,且沒有雜相的純晶體結構;其中,006/012及018/110兩峰的分峰清晰,表示其為有序的層狀結構。此外,透過Rietveld精算以獲得更準確的結構細節資訊,其相關的分析結果如下表10所示。由該表顯示出本發明所製備之LNCM811正極複合材料比起市售LNCM811的產品(LiNiCoMnO2鋰鎳鈷錳氧化物三元材料,優必克科技股份有限公司,台灣)具有更高的峰強度比(即R值,R =I003/I104),此結果可能源自於較低的陽離子混合度(cation mixing,即Li+/Ni2+)。 After calcination, both commercially available and prepared LNCM811 powders in the present invention have a hexagonal α-NaFeO 2 layered structure, and the space group (space group) is R-3m, as shown in Figure 16 (a), and there is no The pure crystal structure of the heterogeneous phase; among them, the two peaks of 006/012 and 018/110 are clearly separated, indicating that it is an ordered layered structure. In addition, Rietveld actuarial calculations are used to obtain more accurate structural details, and the relevant analysis results are shown in Table 10 below. The table shows that the LNCM811 cathode composite material prepared by the present invention has a higher peak intensity than the commercially available LNCM811 product (LiNiCoMnO 2 lithium nickel cobalt manganese oxide ternary material, Youbike Technology Co., Ltd., Taiwan) Ratio (ie R value, R =I003/I104), this result may be derived from a lower degree of cation mixing (ie Li + /Ni 2+ ).

Figure 109125457-A0101-12-0025-11
Figure 109125457-A0101-12-0025-11

【LNCM811粉末之FT-IR鑑定】 【FT-IR identification of LNCM811 powder】

為了解經儲放後之材料表面的雜質生成情況,將市售與本發明所製備之LNCM811材料置於空氣中存儲30天後,再進行FT-IR鑑定;如圖16(b)所示,顯然地,對於市售的材料,分別在1754cm-1、2836-2935cm-1以及在3200-3600cm-1處都存在較強的吸收峰;然而,本發明所製備LNCM811材料在3200-3600cm-1處為較弱的吸收峰。根據文獻的報導,在3200-3600cm-1處的譜帶被認為是正極複合材料中LiOH對O-H的拉伸振動。Li2CO3中C-O的對稱拉伸振動在1754cm-1處的吸收峰,而在2836-2935cm-1中的吸收峰歸於市售LNCM811的殘留物所形成的C-H。與商業產品相比,即使在儲存30天後,本發明所製備之LNCM811材料在其表面上仍顯示為較少的雜質生成。 In order to understand the generation of impurities on the surface of the material after storage, the commercially available and prepared LNCM811 material of the present invention was stored in the air for 30 days, and then FT-IR identification was carried out; as shown in Figure 16(b), Obviously, for commercially available materials, there are strong absorption peaks at 1754cm -1 , 2836-2935cm -1 and 3200-3600cm -1 respectively; however, the LNCM811 material prepared by the present invention has is a weak absorption peak. According to literature reports, the band at 3200-3600 cm -1 is considered to be the stretching vibration of LiOH to OH in the cathode composite. The absorption peak at 1754 cm- 1 of the symmetric stretching vibration of CO in Li2CO3 is attributed to the CH formed from the residue of commercially available LNCM811 at 2836-2935 cm -1 . Compared to the commercial product, the LNCM811 material prepared by the present invention showed less impurity formation on its surface even after 30 days of storage.

接著,亦分析LNCMA於不同鍛燒條件下之表面形貌與晶體結構,以檢視其不同鍛燒條件下合成產物之優劣。 Then, the surface morphology and crystal structure of LNCMA under different calcination conditions were also analyzed to examine the pros and cons of the synthesized products under different calcination conditions.

【LNCMA之表面形貌】 【Surface Topography of LNCMA】

圖17(a)顯示出Ni0.9Co0.04Mn0.03Al0.03(OH)2氫氧化物前驅物的表面形貌,其為類似針狀結構一次粒子聚成球體的二次粒子;另外,在不同 溫度及時間條件下鍛燒後的LNCMA的形態,其中可觀察到,LNCMA於750℃下鍛燒後(圖17(b))之顆粒團聚,且一次粒子沒有完全形成,顯示該鍛燒溫度不足以形成顆粒狀。相對地,如圖17(c)、圖17(d)所示,隨著鍛燒溫度升高,構成微米二次粒子的一次粒子的晶粒呈現增大的趨勢,該結果與後續之XRD分析結果一致。 Figure 17(a) shows the surface morphology of the Ni 0.9 Co 0.04 Mn 0.03 Al 0.03 (OH) 2 hydroxide precursor, which is a secondary particle similar to the needle-like structure of the primary particle agglomerated into a sphere; in addition, at different temperatures Morphology of LNCMA calcined under the conditions of time and time, it can be observed that the particles of LNCMA after calcining at 750°C (Fig. Granular form. In contrast, as shown in Figure 17(c) and Figure 17(d), as the calcination temperature increases, the grains of the primary particles constituting the micron secondary particles tend to increase. This result is consistent with the subsequent XRD analysis The results were consistent.

【LNCMA之晶體結構】 【Crystal structure of LNCMA】

圖18顯示在不同的鍛燒溫度(750℃與800℃)下製備完成之LNCMA的XRD圖譜;其中,所有樣品的峰皆可以對應至R-3m空間群的六角形α-NaFeO2層狀結構,而沒有其他雜相產生。由LNCMA於800℃下鍛燒後樣品的XRD圖譜中,除了(003)峰值較高外,可以觀察到(006)/(102)及(108)/(110)峰的分峰清晰,而LNCMA於750℃下鍛燒後樣品的圖譜則不明顯,顯示750℃相對低的鍛燒溫度,不利於製備成LNCMA層狀結構的高結晶度。另外,鍛燒時間亦係影響LNCMA性能之另一個重要因素(例如:LNCMA於800℃下鍛燒、鍛燒時間為15小時與20小時兩個時間的比較),此兩種樣品皆屬於LiNiO2的層狀結構,並且找不到其他雜質相。進一步地,兩種樣品中(006)/(102)及(108)/(110)之明顯分峰情況,可說明LNCMA材料之層狀結構發展良好。 Figure 18 shows the XRD patterns of LNCMA prepared at different calcination temperatures (750°C and 800°C); among them, the peaks of all samples can correspond to the hexagonal α-NaFeO 2 layered structure of the R-3m space group , without any other impurity. In the XRD pattern of the sample calcined at 800 °C by LNCMA, in addition to the higher peak of (003), it can be observed that the peaks of (006)/(102) and (108)/(110) are clearly separated, while LNCMA The spectrum of the sample after calcination at 750°C is not obvious, showing that the relatively low calcination temperature of 750°C is not conducive to the high crystallinity of the LNCMA layered structure. In addition, the calcination time is another important factor affecting the performance of LNCMA (for example: LNCMA is calcined at 800°C, the calcination time is 15 hours and 20 hours comparison), both samples belong to LiNiO 2 layered structure, and no other impurity phases could be found. Furthermore, the obvious peak separation of (006)/(102) and (108)/(110) in the two samples can indicate that the layered structure of the LNCMA material is well developed.

接著,將上述製備成之各正極複合材料粉末製備成電極及組裝成電池,並進一步進行各項性能之評價。 Next, each positive electrode composite material powder prepared above was prepared into an electrode and assembled into a battery, and various performances were further evaluated.

【正極片之製備】 【Preparation of positive electrode sheet】

分別以LNCM622、LCNM811或LNCMA為活性材料,與作為導電劑之super P導電碳黑及作為黏合劑之聚偏二氟乙烯(PVDF)以8:1: 1(wt.%)的重量比於N-甲基吡咯烷酮(NMP)溶劑中進行分散混合,以製備成正極電極的漿料,並將混合所得的漿料包覆在鋁箔(集電層)上以形成電極片;接著將包覆後之電極片置於60℃的烘箱中進行乾燥12小時,以去除NMP溶劑,並於120℃的烘箱中乾燥1小時,以去除水分及濕氣;最後再將乾燥電極片裁切成直徑1.3公分的圓形片,其中電極圓片面積約為1.33cm2Use LNCM622, LCNM811 or LNCMA as the active material, and super P conductive carbon black as the conductive agent and polyvinylidene fluoride (PVDF) as the binder in a weight ratio of 8:1:1 (wt.%) to N - Dispersing and mixing in a methylpyrrolidone (NMP) solvent to prepare a positive electrode slurry, and coat the mixed slurry on an aluminum foil (collector layer) to form an electrode sheet; then wrap the coated Dry the electrode sheet in an oven at 60°C for 12 hours to remove the NMP solvent, and dry it in an oven at 120°C for 1 hour to remove moisture and moisture; finally cut the dried electrode sheet into 1.3 cm in diameter A circular sheet, wherein the area of the electrode disk is about 1.33cm 2 .

【鈕釦型電池製作】 【Production of button battery】

將乾燥過的正極(工作電極)極片在充填的氬氣的手套箱(1TS100-1,德國MBRAUN UniLab-B,H2O及O2<0.5ppm)中組裝成CR2032鈕釦型電池;其中,以鋰金屬箔當作負極,市售之聚乙烯微孔膜(PE,HiporeTM,厚度約為16μm,日本旭化成有限公司/Asahi Kasei Corp.,Ltd.)作為隔離膜(Separator),1M LiPF6溶解在碳酸亞乙酯(EC)碳酸二亞乙酯(DEC)(v/v=1:1)中作為電解液。此外,於本發明中,將組裝之電池表示為「正極//負極」;例如,當以LNCM622為正極、鋰金屬箔為負極時,將組裝而成之電池表示為「LNCM622//Li電池」。 The dried positive electrode (working electrode) pole piece is assembled into a CR2032 button cell in an argon-filled glove box (1TS100-1, Germany MBRAUN UniLab-B, H 2 O and O 2 <0.5ppm); , with lithium metal foil as the negative electrode, commercially available polyethylene microporous membrane (PE, Hipore TM , thickness about 16 μm, Japan Asahi Kasei Corp., Ltd.) as the separator (Separator), 1M LiPF 6 was dissolved in ethylene carbonate (EC) and diethylene carbonate (DEC) (v/v=1:1) as electrolyte. In addition, in the present invention, the assembled battery is expressed as "positive electrode//negative electrode"; for example, when LNCM622 is used as the positive electrode and lithium metal foil is used as the negative electrode, the assembled battery is expressed as "LNCM622//Li battery" .

【電化學測試】 【Electrochemical test】

將組裝完成的電池先靜置24小時,使電解液充分浸濕隔離膜與電極,而後於室溫(25℃)下,根據所需之電流速率(1C分別為170mA/g(LNCM622)與200mA/g(LNCM811及LNCMA)),分別於2.8-4.3V及/或2.8-4.5V(vs.Li/Li+)之截止電壓間進行恆電流充/放電循環測試。 Let the assembled battery stand for 24 hours to fully wet the separator and electrodes with the electrolyte, and then at room temperature (25°C), according to the required current rate (1C is 170mA/g (LNCM622) and 200mA respectively) /g (LNCM811 and LNCMA)), the constant current charge/discharge cycle test was performed between the cut-off voltages of 2.8-4.3V and/or 2.8-4.5V (vs. Li/Li + ), respectively.

使用PGSTAT-302N恆電位/恆電流工作站(荷蘭Metrohm Autolab B.V.),在10-2-106Hz之頻率範圍內,以5mV的AC振幅進行電池之電化學阻抗圖譜(Electrochemical impedance spectroscopy,EIS)測量。 Using PGSTAT-302N potentiostatic/constant current workstation (Metrohm Autolab BV, Netherlands), within the frequency range of 10 -2 -10 6 Hz, the electrochemical impedance spectroscopy (EIS) of the battery was measured with an AC amplitude of 5mV .

以下,同樣地,針對不同合成條件下所合成出之各產物,組裝成電池後進行分析,以檢視不同合成條件下合成產物之性能差異,包含LNCM811電極經Li2MoO4包覆與否之電性表現結果差異分析,同時亦與市售電池進行比較。 In the following, similarly, each product synthesized under different synthesis conditions will be analyzed after being assembled into a battery to examine the performance difference of the synthesized products under different synthesis conditions, including whether the LNCM811 electrode is coated with Li 2 MoO 4 or not. Analysis of differences in performance results, and comparison with commercially available batteries.

【LNCM622//Li電池電性分析】 【LNCM622//Li battery electrical analysis】

【於0.1C/0.1C之充/放電】 【Charge/discharge at 0.1C/0.1C】

【批次#1之LNCM622】 Lot #1 of LNCM622】

圖19為批次#1的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V截止電壓範圍下,電流速率為0.1C(17mA/g)時之充電/放電曲線圖;另,其性能分別如下表11及12所示。 Figure 19 shows the charging/charging rate at a current rate of 0.1C (17mA/g) for batteries composed of LNCM622 electrodes of batch #1 under the cut-off voltage ranges of (a) 2.8-4.3V and (b) 2.8-4.5V, respectively. Discharge curve; In addition, its performance is shown in Table 11 and Table 12 below.

Figure 109125457-A0101-12-0028-12
Figure 109125457-A0101-12-0028-12

表12、批次#1之LNCM622電極所組成電池,在2.8-4.5V下,0.1C速率的電化學性能。

Figure 109125457-A0101-12-0029-13
Table 12. The electrochemical performance of the battery composed of LNCM622 electrodes of batch #1 at 2.8-4.5V at a rate of 0.1C.
Figure 109125457-A0101-12-0029-13

【批次#2之LNCM622】 Lot #2 of LNCM622】

圖20為批次#2的LNCM622電極所組成電池,分別於(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為17mA/g(0.1C)時之充電/放電曲線圖;另,其性能分別如下表13及14所示。 Figure 20 is the battery composed of LNCM622 electrodes of batch #2, at (a) 2.8-4.3V and (b) 2.8-4.5V respectively, the charge/discharge curve at the current rate of 17mA/g (0.1C) ; In addition, its performance is shown in Table 13 and 14 below respectively.

Figure 109125457-A0101-12-0029-14
Figure 109125457-A0101-12-0029-14

表14、批次#2之LNCM622電極所組成電池,在2.8-4.5V下,0.1C速率 的電化學性能。

Figure 109125457-A0101-12-0030-15
Table 14. The electrochemical performance of the battery composed of LNCM622 electrodes of batch #2 at 2.8-4.5V at a rate of 0.1C.
Figure 109125457-A0101-12-0030-15

圖21為批次#1與#2的LNCM622電極所組成電池,在電流速率為17mA/g(0.1C)、5次循環下,分別在(a)2.8至4.3V與(b)2.8至4.5V間,比較5次循環的克電容量。相較於批次#1所組成的電池,批次#2電池在兩種不同截止電壓下,其5次循環的克電容量值皆較高且皆較為穩定。 Figure 21 shows the battery composed of LNCM622 electrodes of batches #1 and #2. Under the current rate of 17mA/g (0.1C) and 5 cycles, the voltages of (a) 2.8 to 4.3V and (b) 2.8 to 4.5V respectively Between V, compare the gram capacitance of 5 cycles. Compared with the battery composed of batch #1, the battery of batch #2 has a higher and more stable gram capacity value for 5 cycles under two different cut-off voltages.

在LNCM622電極所組成電池的性能比較中,批次#2的電極材料比批次#1的材料具有更高的電容維持能力,在截止電壓分別為2.8-4.3V和2.8-4.5V都具有較高的克電容量與較佳的電流速率能力,此結果符合如前述對於材料鑑定結果,包含一次與二次粒子粒徑大小之分析。 In the comparison of the performance of batteries composed of LNCM622 electrodes, the electrode material of batch #2 has a higher capacity to maintain the capacity than the material of batch #1, and has a higher cut-off voltage of 2.8-4.3V and 2.8-4.5V, respectively. High gram capacitance and better current rate capability, this result is in line with the aforementioned material identification results, including the analysis of primary and secondary particle size.

【於0.2C-10C之充/放電】 【Charge/discharge at 0.2C-10C】

【批次#1之LNCM622電極】 Lot #1 LNCM622 electrodes】

圖22為批次#1的LNCM622電極所組成電池,分別在(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時的充電/放電曲線圖;另,下表15及16為其電流速率能力比較。 Fig. 22 is the charging/discharging curves of batteries composed of LNCM622 electrodes of batch #1 at (a) 2.8-4.3V and (b) 2.8-4.5V respectively, when the current rate is 0.2C-10C; in addition, Tables 15 and 16 below compare their current rate capabilities.

Figure 109125457-A0101-12-0031-16
Figure 109125457-A0101-12-0031-16

Figure 109125457-A0101-12-0031-17
Figure 109125457-A0101-12-0031-17

【批次#2之LNCM622電極】 Lot #2 LNCM622 electrodes】

圖23為批次#2的LNCM622電極所組成電池,分別在(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時的充電/放電曲線圖;另,下表17及18為其電流速率能力比較。 Fig. 23 is the charging/discharging curves of batteries composed of LNCM622 electrodes of batch #2 at (a) 2.8-4.3V and (b) 2.8-4.5V respectively, when the current rate is 0.2C-10C; in addition, Tables 17 and 18 below compare their current rate capabilities.

Figure 109125457-A0101-12-0032-18
Figure 109125457-A0101-12-0032-18

Figure 109125457-A0101-12-0032-19
Figure 109125457-A0101-12-0032-19

Figure 109125457-A0101-12-0033-20
Figure 109125457-A0101-12-0033-20

圖24為批次#1與#2的LNCM622電極所組成電池,分別在(a)2.8-4.3V與(b)2.8-4.5V下,電流速率為0.2C-10C時的電流速率能力比較圖;另,下表19及20為其等之電容維持率比較表。 Figure 24 is a comparison chart of the current rate capability when the current rate is 0.2C-10C under the conditions of (a) 2.8-4.3V and (b) 2.8-4.5V respectively, which are composed of LNCM622 electrodes of batches #1 and #2 ; In addition, the following tables 19 and 20 are comparison tables of capacitance maintenance ratios.

Figure 109125457-A0101-12-0033-21
Figure 109125457-A0101-12-0033-21

Figure 109125457-A0101-12-0033-22
Figure 109125457-A0101-12-0033-22

Figure 109125457-A0101-12-0034-23
Figure 109125457-A0101-12-0034-23

【1C/1C下之充/放電】 【Charge/discharge at 1C/1C】

批次#2在不同截止電壓下、1C/1C充/放電速率、經100次充/放電循環後的容量維持率分別為84.4%和88.0%,皆高於批次#1(75.6%和81.2%),再次驗證前述對於材料鑑定分析結果之一致性。圖25及26為批次#1與#2的LNCM622電極所組成電池,在1C/1C充/放電速率下的充/放電循環性能圖;另,下表21及22為其等之充/放電循環性能指標比較。 Batch #2 had higher cut-off voltages, 1C/1C charge/discharge rates, and capacity retention after 100 charge/discharge cycles of 84.4% and 88.0%, respectively, which were higher than those of batch #1 (75.6% and 81.2 %), to verify again the consistency of the aforementioned analysis results for material identification. Figures 25 and 26 are the charge/discharge cycle performance diagrams of batteries composed of LNCM622 electrodes of batch #1 and #2 at a charge/discharge rate of 1C/1C; in addition, the following tables 21 and 22 are the charge/discharge of the same Comparison of cycle performance indicators.

Figure 109125457-A0101-12-0034-24
Figure 109125457-A0101-12-0034-24

Figure 109125457-A0101-12-0035-25
Figure 109125457-A0101-12-0035-25

【LNCM811//Li電池電性分析】 【LNCM811//Li battery electrical analysis】

【市售LNCM811及本發明所製備之LNCM811】 [Commercially available LNCM811 and LNCM811 prepared by the present invention]

圖27(a)比較市售LNCM811及本發明所製備之LNCM811的正極複合材料所組成電池,在0.1C/0.1C充/放電速率下經30次充/放電後的循環性能。其中,本發明所製備之LNCM811的電池電容維持率為91.25%,平均庫侖效率為94.62%;然而,市售LNCM811電池的電容維持率僅有87.70%,而平均庫侖效率則為92.04%。此外,圖27(b)比較市售LNCM811及本發明所製備之LNCM811所組成電池,在1C/1C充/放電速率、2.5-4.3V電壓範圍內進行100次長期循環的穩定性測試,其結果顯示出本發明所製備之LNCM811電池的電容維持率約為85.48%,而平均庫侖效率約為98.79%;然而,市售LNCM811於100次循環後顯示出僅有68.70%的電容維持率,而平均庫侖效率約為98.78%。圖27(c)及(d)分別顯示出市售LNCM811及本發明所製備之 LNCM811於1C/1C充/放電速率下、第1次至100次充/放電循環的充電/放電曲線圖。市售LNCM811電極所組成電池的第1次與100次放電克電容量分別為165.4mAh/g和123.7mAh/g(圖27(c));本發明所製備之LNCM811電極所組成電池之第1次與100次放電克電容量分別為162.4mAh/g和138.9mAh/g(圖27(d)),儘管市售LNCM811電池的首次克電容量略高於本發明所製備的電池,然而在經過第100次循環後,本發明所製備之LNCM811則顯示出更高的放電克電容量(與市售LNCM811電極所組成電池相比多出其之12.3%=((138.9-123.7)/123.7)×100%)。 Figure 27(a) compares the cycle performance of batteries made of commercially available LNCM811 and LNCM811 prepared by the present invention after 30 charge/discharge cycles at a charge/discharge rate of 0.1C/0.1C. Among them, the battery capacity retention rate of the LNCM811 prepared by the present invention is 91.25%, and the average Coulombic efficiency is 94.62%. However, the capacity retention rate of the commercially available LNCM811 battery is only 87.70%, while the average Coulombic efficiency is 92.04%. In addition, Figure 27(b) compares the commercially available LNCM811 and the battery composed of LNCM811 prepared by the present invention. The stability test of 100 long-term cycles is carried out at 1C/1C charge/discharge rate and 2.5-4.3V voltage range. The results It shows that the capacity retention rate of the LNCM811 battery prepared by the present invention is about 85.48%, and the average Coulombic efficiency is about 98.79%; however, the commercially available LNCM811 only shows a capacity retention rate of 68.70% after 100 cycles, while the average Coulombic efficiency is about 98.78%. Figure 27 (c) and (d) show commercially available LNCM811 and the prepared LNCM811 of the present invention respectively Charge/discharge curves of LNCM811 at 1C/1C charge/discharge rate from the first to 100th charge/discharge cycle. The first and 100th discharge gram capacities of commercially available LNCM811 electrodes are 165.4mAh/g and 123.7mAh/g respectively (Fig. 27(c)); The first and 100th discharge gram capacities are 162.4mAh/g and 138.9mAh/g respectively (Fig. 27(d)). Although the first gram capacity of the commercially available LNCM811 battery is slightly higher than that of the battery prepared by the present invention, after After the 100th cycle, the LNCM811 prepared by the present invention showed a higher discharge gram capacity (12.3% more than the battery composed of commercially available LNCM811 electrodes=((138.9-123.7)/123.7)× 100%).

【本發明所製備之LNCM811及Li2MoO4包覆LNCM811】 [LNCM811 prepared by the present invention and Li 2 MoO 4 coated LNCM811]

本發明亦於所製備之LNCM811正極複合材料上原位(in-situ)包覆上一層Li2MoO4(即LMO@LNCM811),此Li2MoO4層作為離子之導體(Ionic conductor),使得更多的Li+離子擴散至LNCM811主體材料進行反應,如圖28(a)及(b)所示,比較自製LNCM811及2wt.% Li2MoO4包覆LNCM811正極複合材料所組成電池於1C速率、2.5至4.3V電壓範圍內、100次充/放電循環之曲線圖。此外,亦比較市售LNCM811、自製LNCM811及自製2wt.% Li2MoO4包覆LNCM811所組成三種電池於1C速率、2.5至4.3V電壓範圍內、100次充/放電循環之電容維持率,其值分別為68.7%、85.5%與94.0%,如圖28(c)。在2.5至4.3V電壓範圍內,分別以0.2C、0.5C、1C、3C、5C與10C電流速率進行上述三種電池的電流速率能力的測試與比較,如圖28(d)所示,與市售LNCM811與未經包覆修飾之自製LNCM811正極複合材料相比,2wt.% Li2MoO4包覆LNCM811所組成電池顯示出最佳的放電克電容量。為了清楚地比較三種電池的電流速率能力,亦比較於不同速率相對於在 0.2C速率時之電容維持率,如表23所示。值得注意的是,2wt.% Li2MoO4包覆LNCM811所組成電池相較於其他兩種電池具有最佳的電容維持率,特別是在10C高速率下,其放電克容量為151.6mAh/g,該速率下之電容維持率為77.6%,遠高於市售LNCM811(放電克容量為121.1mAh/g,電容維持率為62.7%)。 The present invention also coats a layer of Li 2 MoO 4 (i.e. LMO@LNCM811) on the LNCM811 positive electrode composite prepared in situ (in-situ), and this Li 2 MoO 4 layer acts as an ion conductor (Ionic conductor), making More Li + ions diffuse to the LNCM811 host material to react, as shown in Figure 28(a) and (b), comparing the battery composed of self-made LNCM811 and 2wt.% Li 2 MoO 4 coated LNCM811 cathode composite material at 1C rate , 2.5 to 4.3V voltage range, 100 charge / discharge cycle curves. In addition, the capacity retention rate of three batteries composed of commercially available LNCM811, self-made LNCM811 and self-made 2wt.% Li 2 MoO 4 coated LNCM811 were compared at 1C rate, voltage range from 2.5 to 4.3V, and 100 charge/discharge cycles. The values are 68.7%, 85.5% and 94.0%, respectively, as shown in Figure 28(c). In the voltage range of 2.5 to 4.3V, the current rate capabilities of the above three batteries were tested and compared at current rates of 0.2C, 0.5C, 1C, 3C, 5C and 10C, as shown in Figure 28(d). Compared with the self-made LNCM811 cathode composite material without coating and modification, the battery composed of 2wt.% Li 2 MoO 4 coated LNCM811 showed the best discharge gram capacity. In order to clearly compare the current rate capabilities of the three batteries, the capacity retention rate at the 0.2C rate at different rates is also compared, as shown in Table 23. It is worth noting that the battery composed of 2wt.% Li 2 MoO 4 coated LNCM811 has the best capacity retention rate compared with the other two batteries, especially at a high rate of 10C, its discharge capacity is 151.6mAh/g , The capacitance retention rate at this rate is 77.6%, which is much higher than that of the commercially available LNCM811 (the discharge gram capacity is 121.1mAh/g, and the capacitance retention rate is 62.7%).

Figure 109125457-A0101-12-0037-26
Figure 109125457-A0101-12-0037-26

【電化學阻抗分析】 【Electrochemical Impedance Analysis】

藉由電化學阻抗圖譜(EIS)分析發生於電極/電解質界面之電化學反應過程。圖29(a)中顯示LNCM811及2wt.% Li2MoO4包覆LNCM811正極複合材料所組成電池於1C、100次循環後之Nyquist圖,圖29(b)並顯示其對應之ω-1/2 vs Z’(Ω)關係圖;其中,中頻區域之半圓與電極/電解質界面之電 荷轉移阻抗以及界面電容有關。低頻區域(Warburg阻抗)中的斜線與通過固體電極的鋰離子擴散阻抗相關。圖29(a)插圖中所示之等效電路用於模擬及分析各阻抗數值。此外,Rs代表電解質溶液的阻抗、Rct為電荷轉移阻抗、CPE為電極/電解液電雙層的電容值,Rt為整體阻抗,而Zw為Warburg的阻抗。表24列出相應之參數擬合值,其中2wt.% Li2MoO4包覆LNCM811正極所組成電池之Rct值較未經包覆修飾之LNCM811正極所組成電池低(即816.5<988.9Ω)。此結果可證明包覆改質之Li2MoO4可以有效降低電極與電解液界面之電荷轉移阻抗。同樣地,2wt.% Li2MoO4包覆LNCM811的電池之Li+離子擴散係數約為DLi+:1.30×10-10cm2/s,遠高於未經包覆修飾之LNCM811的電池(DLi+:2.69×10-11cm2/s),此結果可證明Li2MoO4離子導體層不僅提高LNCM811電極之離子導電率,亦隔絕電極與電解質之間的接觸而降低產生副反應之機率。 The electrochemical reaction process at the electrode/electrolyte interface was analyzed by electrochemical impedance spectroscopy (EIS). Figure 29(a) shows the Nyquist diagram of the battery composed of LNCM811 and 2wt.% Li 2 MoO 4 coated LNCM811 cathode composite material at 1C, after 100 cycles, and Figure 29(b) shows the corresponding ω -1/ 2 vs Z'(Ω) relationship diagram; where the semicircle in the intermediate frequency region is related to the charge transfer impedance and interface capacitance of the electrode/electrolyte interface. The sloped line in the low frequency region (Warburg impedance) is related to the lithium ion diffusion impedance through the solid electrode. The equivalent circuit shown in the inset of Fig. 29(a) was used to simulate and analyze various impedance values. In addition, R s represents the impedance of the electrolyte solution, R ct is the charge transfer impedance, CPE is the capacitance value of the electrode/electrolyte double layer, R t is the overall impedance, and Zw is the Warburg impedance. Table 24 lists the fitting values of the corresponding parameters, among which the R ct value of the battery composed of the LNCM811 positive electrode coated with 2wt.% Li 2 MoO 4 is lower than that of the battery composed of the non-coated LNCM811 positive electrode (ie 816.5<988.9Ω) . This result proves that the coated modified Li 2 MoO 4 can effectively reduce the charge transfer resistance at the electrode-electrolyte interface. Similarly, the Li + ion diffusion coefficient of the 2wt.% Li 2 MoO 4 coated LNCM811 battery is about D Li+ : 1.30×10 -10 cm 2 /s, which is much higher than that of the uncoated modified LNCM811 battery (D Li+ : 2.69×10 -11 cm 2 /s), this result proves that the Li 2 MoO 4 ionic conductor layer not only improves the ionic conductivity of the LNCM811 electrode, but also isolates the contact between the electrode and the electrolyte to reduce the probability of side reactions.

Figure 109125457-A0101-12-0038-27
Figure 109125457-A0101-12-0038-27

【LNCMA//Li電池電性分析】 【LNCMA//Li battery electrical analysis】

以下比較不同鍛燒條件下,LNCMA正極複合材料組成電池之電流速率能力與循環性能測試。從總體上看,樣品LNCMA於800℃、20小時之鍛燒條件下,在所有樣品中具有較好的克電容量和循環穩定性,其於0.1C時之首次充電/放電克電容量分別為225.8mAh/g與197.1mAh/g(首次庫侖效率=87.29%),如圖30所示。在0.2C-10C不同放電電流速率能力測試中,如圖31所示,1C相對於0.2C時的電容維持率約77.03%(即取第2次循環時的克電容量的比值,Qsp@1C:142.5mAh/g/Qsp@0.2C:184.9mAh/g)。圖32顯示出在相同鍛燒溫度(800℃)條件下,鍛燒時間為20小時之LNCMA電池在1C之首次與100次充/放電循環之克電容量皆較鍛燒時間為15小時之LNCMA電池為高,該結果顯示在溫度800℃、時間20小時的鍛燒條件為最適合LNCMA合成製備的條件。 The following is a comparison of the current rate capability and cycle performance test of the battery composed of the LNCMA cathode composite material under different calcination conditions. In general, the sample LNCMA has better gram capacitance and cycle stability among all samples under the calcination conditions of 800°C and 20 hours, and its first charge/discharge gram capacitance at 0.1C is 225.8mAh/g and 197.1mAh/g (first coulombic efficiency = 87.29%), as shown in Figure 30. In the 0.2C-10C different discharge current rate capability test, as shown in Figure 31, the capacitance retention rate of 1C relative to 0.2C is about 77.03% (that is, the ratio of the gram capacitance at the second cycle, Q sp@ 1C : 142.5mAh/g/Q sp@0.2C : 184.9mAh/g). Figure 32 shows that under the same calcination temperature (800°C), the gram capacity of the LNCMA battery with a calcination time of 20 hours at 1C for the first time and 100 charge/discharge cycles is higher than that of an LNCMA battery with a calcination time of 15 hours The battery is high, and the results show that the calcination conditions at a temperature of 800°C and a time of 20 hours are the most suitable conditions for the synthesis and preparation of LNCMA.

Figure 109125457-A0101-12-0039-28
Figure 109125457-A0101-12-0039-28

表26、鍛燒條件為800℃、20小時之LNCMA正極複合材料所組成的電 池,在2.8-4.3V下,0.2-10C的速率能力比較。

Figure 109125457-A0101-12-0040-29
Table 26. Comparison of rate capability at 0.2-10C at 2.8-4.3V for batteries composed of LNCMA cathode composite materials calcined at 800°C for 20 hours.
Figure 109125457-A0101-12-0040-29

據此,藉由本發明之製備方法製備富鎳氫氧化物前驅物及富鎳氧化物正極複合材料,其電性表現較傳統CSTR所製備及市售之富鎳氧化 物正極材料皆具有較佳之電容維持率及顯著優異之電性表現;同時,本發明亦於氫氧化物前驅物表面原位包覆Li+離子傳導層,以提高鋰離子導電率之同時,亦隔絕正極與電解質之間直接接觸而降低產生副反應之機率,從而增進其電性表現。另,本發明亦透過優化製備參數,找出並驗證最佳之合成製備條件。 Accordingly, the nickel-rich hydroxide precursor and the nickel-rich oxide cathode composite material prepared by the preparation method of the present invention have better electrical performance than the nickel-rich oxide cathode materials prepared by traditional CSTR and commercially available. Retention rate and significantly excellent electrical performance; at the same time, the present invention also coats the Li + ion conductive layer on the surface of the hydroxide precursor in situ to improve the conductivity of lithium ions while also isolating the direct contact between the positive electrode and the electrolyte And reduce the probability of side reactions, thereby improving its electrical performance. In addition, the present invention also finds and verifies the best synthesis and preparation conditions by optimizing the preparation parameters.

Claims (5)

一種富鎳氧化物正極複合材料之製備方法,其特徵係包含下述步驟:(a)將富鎳氫氧化物前驅物材料與LiOH.H2O以摩爾比為1:1.05至1:1.25於甲醇溶劑中藉由球磨機進行研磨混合;其中,前述球磨機之研磨混合條件為轉速100rpm至200rpm,研磨時間5小時至10小時,樣品及球之重量比例為1:1至1:10;(b)將步驟(a)混合後之混合物於空氣或純氧氣氛之高溫爐中進行三階段之鍛燒熱處理;其中,前述步驟(b)中,鍛燒熱處理之條件為:第一階段於150℃、2小時,第二階段於400℃至600℃、6小時,第三階段於750℃至900℃、10小時至25小時,分別進行鍛燒熱處理,前述三個階段之升溫速率皆為1℃/min至10℃/min;其中,前述富鎳氫氧化物前驅物材料之製備方法包含下述步驟:(i)將金屬離子源、氫氧化鈉及氨水於50℃至80℃之加熱條件下同時加入至連續式泰勒流動反應器之反應室,控制pH值為10至12,反應器轉速為500rpm至1000rpm,進料速度為2.23ml/min,反應時間為5小時至50小時,且不為5小時,進行共沉澱法之連續性生產製備;(ii)將步驟(i)反應後之沉澱物進行過濾,並以乙醇及去離子水洗滌;(iii)將步驟(ii)洗滌後之沉澱物置於烘箱乾燥,前述乾燥之溫度為80℃至120℃,時間為12小時至36小時;其中,前述步驟(i)之金屬離子源為硫酸鎳、硫酸鈷及硫酸錳。 A method for preparing a nickel-rich oxide cathode composite material is characterized by the following steps: (a) the nickel-rich hydroxide precursor material and LiOH. H 2 O is ground and mixed in a methanol solvent with a molar ratio of 1:1.05 to 1:1.25 by a ball mill; wherein, the grinding and mixing conditions of the aforementioned ball mill are 100 rpm to 200 rpm, and the grinding time is 5 hours to 10 hours. Samples and balls The weight ratio is 1:1 to 1:10; (b) The mixture mixed in step (a) is subjected to three-stage calcination heat treatment in a high-temperature furnace with air or pure oxygen atmosphere; wherein, in the aforementioned step (b) The conditions of calcining heat treatment are: the first stage is at 150°C for 2 hours, the second stage is at 400°C to 600°C for 6 hours, and the third stage is at 750°C to 900°C for 10 hours to 25 hours. For heat treatment, the heating rate of the above three stages is 1°C/min to 10°C/min; wherein, the preparation method of the nickel-rich hydroxide precursor material includes the following steps: (i) metal ion source, hydrogen Sodium oxide and ammonia water are simultaneously added to the reaction chamber of the continuous Taylor flow reactor under the heating condition of 50°C to 80°C, the pH value is controlled to be 10 to 12, the reactor speed is 500rpm to 1000rpm, and the feed rate is 2.23ml/ min, the reaction time is 5 hours to 50 hours, and not 5 hours, the continuous production and preparation of coprecipitation method; (ii) filter the precipitate after the reaction of step (i), and ethanol and deionized water Washing; (iii) placing the precipitate after washing in step (ii) in an oven to dry, the temperature of the aforementioned drying is 80°C to 120°C, and the time is 12 hours to 36 hours; wherein, the metal ion source of the aforementioned step (i) is Nickel sulfate, cobalt sulfate and manganese sulfate. 一種表面經包覆處理之富鎳氧化物正極複合材料之製備方法,其特徵係包含下述步驟:(a)將包覆材料與富鎳氫氧化物前驅物材料充分混合;其中,包覆材料為Li2MoO4,該包覆材料之包覆量為前述富鎳氫氧化物前驅物材料之0.1wt.%至5wt.%;(b)將步驟(a)混合後之混合物於球磨機中研磨混合;其中,前述球磨機之研磨混合條件為轉速100rpm至200rpm,研磨時間5小時至10小時,前述步驟(a)混合後之混合物及球之重量比例為1:1至1:10;(c)將步驟(b)研磨後之混合物於空氣或純氧氣氛之高溫爐中進行三階段之鍛燒熱處理;其中,前述步驟(c)中,鍛燒熱處理之條件為:第一階段於150℃、2小時,第二階段於400℃至600℃、6小時,第三階段於750℃至900℃、10小時至25小時,分別進行鍛燒熱處理,前述三個階段之升溫速率皆為1℃/min至10℃/min;其中,前述富鎳氫氧化物前驅物材料之製備方法包含下述步驟:(i)將金屬離子源、氫氧化鈉及氨水於50℃至80℃之加熱條件下同時加入至連續式泰勒流動反應器之反應室,控制pH值為10至12,反應器轉速為500rpm至1000rpm,進料速度為2.23ml/min,反應時間為5小時至50小時,且不為5小時,進行共沉澱法之連續性生產製備;(ii)將步驟(i)反應後之沉澱物進行過濾,並以乙醇及去離子水洗滌;(iii)將步驟(ii)洗滌後之沉澱物置於烘箱乾燥,前述乾燥之溫度為80° C至120℃,時間為12小時至36小時;其中,前述步驟(i)之金屬離子源為硫酸鎳、硫酸鈷及硫酸錳。 A method for preparing a nickel-rich oxide cathode composite material whose surface has been coated, which is characterized by comprising the following steps: (a) fully mixing the coating material with the nickel-rich hydroxide precursor material; wherein the coating material Li 2 MoO 4 , the coating amount of the coating material is 0.1wt.% to 5wt.% of the aforementioned nickel-rich hydroxide precursor material; (b) Grinding the mixed mixture in step (a) in a ball mill Mixing; wherein, the grinding and mixing conditions of the aforementioned ball mill are 100 rpm to 200 rpm, the grinding time is 5 hours to 10 hours, and the weight ratio of the mixed mixture and the balls in the aforementioned step (a) is 1:1 to 1:10; (c) The ground mixture in step (b) is subjected to a three-stage calcination heat treatment in a high-temperature furnace in an air or pure oxygen atmosphere; wherein, in the aforementioned step (c), the conditions for calcination heat treatment are: the first stage is at 150°C, 2 hours, the second stage is at 400°C to 600°C, 6 hours, the third stage is at 750°C to 900°C, 10 hours to 25 hours, respectively, for calcination heat treatment, the heating rate of the above three stages is 1°C/ min to 10°C/min; wherein, the preparation method of the aforementioned nickel-rich hydroxide precursor material comprises the following steps: (i) simultaneously heating the metal ion source, sodium hydroxide and ammonia water at 50°C to 80°C Add to the reaction chamber of the continuous Taylor flow reactor, control the pH value of 10 to 12, the reactor speed is 500rpm to 1000rpm, the feed rate is 2.23ml/min, the reaction time is 5 hours to 50 hours, and not 5 hours, carry out the continuous production preparation of co-precipitation method; (ii) filter the precipitate after step (i) reaction, and wash with ethanol and deionized water; (iii) place the precipitate after step (ii) washing Drying in an oven, the aforementioned drying temperature is 80 ° C to 120 ° C, and the time is 12 hours to 36 hours; wherein, the metal ion source of the aforementioned step (i) is nickel sulfate, cobalt sulfate and manganese sulfate. 如申請專利範圍第1項所記載之富鎳氧化物正極複合材料之製備方法,其中,前述金屬離子源之濃度範圍為1.0M至2.2M之硫酸鎳、硫酸鈷及硫酸錳水溶液。 The preparation method of the nickel-rich oxide positive electrode composite material as described in item 1 of the scope of the patent application, wherein the concentration range of the aforementioned metal ion source is an aqueous solution of nickel sulfate, cobalt sulfate and manganese sulfate in the range of 1.0M to 2.2M. 如申請專利範圍第1項所記載之富鎳氧化物正極複合材料之製備方法,其中,前述步驟(i)中,氨水之濃度範圍為2.0M至8.0M。 The preparation method of the nickel-rich oxide cathode composite material as described in item 1 of the scope of the patent application, wherein, in the aforementioned step (i), the concentration of ammonia water is in the range of 2.0M to 8.0M. 一種鋰離子電池,其使用鋰金屬作為負極,活性材料、導電劑與黏合劑之組成物於集電層上作為正極,其特徵係前述活性材料係藉由如申請專利範圍第1或2項所記載之富鎳氧化物正極複合材料之製備方法所製備而得。 A lithium ion battery, which uses lithium metal as the negative electrode, and the composition of the active material, the conductive agent and the binder is used as the positive electrode on the current collecting layer. It is prepared by the preparation method of the nickel-rich oxide cathode composite material.
TW109125457A 2020-07-28 2020-07-28 Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor TWI781427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109125457A TWI781427B (en) 2020-07-28 2020-07-28 Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109125457A TWI781427B (en) 2020-07-28 2020-07-28 Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor

Publications (2)

Publication Number Publication Date
TW202205719A TW202205719A (en) 2022-02-01
TWI781427B true TWI781427B (en) 2022-10-21

Family

ID=81323501

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125457A TWI781427B (en) 2020-07-28 2020-07-28 Preparation method of nickel-rich hydroxide precursor and nickel-rich cathode composite material using continuous Taylor flow reactor

Country Status (1)

Country Link
TW (1) TWI781427B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103825A (en) * 2014-08-06 2014-10-15 于英超 Rich lithium ternary lithium ion battery cathode materials and production method thereof
CN107871863A (en) * 2017-10-24 2018-04-03 陈训财 A kind of method for continuously, quickly preparing nickelic nickel-cobalt-manganese ternary material precursor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103825A (en) * 2014-08-06 2014-10-15 于英超 Rich lithium ternary lithium ion battery cathode materials and production method thereof
CN107871863A (en) * 2017-10-24 2018-04-03 陈训财 A kind of method for continuously, quickly preparing nickelic nickel-cobalt-manganese ternary material precursor

Also Published As

Publication number Publication date
TW202205719A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
US7384706B2 (en) Lithium-nickel-cobalt-maganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these
CN110690416B (en) High-nickel ternary positive electrode material for lithium secondary battery and preparation method thereof
JP7094248B2 (en) A lithium secondary battery containing a nickel-based active material precursor for a lithium secondary battery, a manufacturing method thereof, a nickel-based active material for a lithium secondary battery formed from the precursor, and a positive electrode containing the same.
Xu et al. A comparative study of crystalline and amorphous Li0. 5La0. 5TiO3 as surface coating layers to enhance the electrochemical performance of LiNi0. 815Co0. 15Al0. 035O2 cathode
CN108123115B (en) O2 configuration lithium battery positive electrode material and preparation method thereof
Xiang et al. Controlled synthesis of nickel-rich layered oxide cathodes with preferentially exposed {010} active facets for high rate and long cycling stable lithium-ion batteries
Vu et al. Properties of LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a high energy cathode material for lithium-ion batteries
JP2019186221A (en) Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP7267504B2 (en) Cobalt-free layered positive electrode material and manufacturing method thereof, lithium ion battery
CN110226251A (en) Nickel hydroxide active material presoma and preparation method thereof, nickel hydroxide active material and lithium secondary battery
JPWO2002086993A1 (en) Positive electrode active material and method for producing the same, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN109461928A (en) A kind of high-energy density polynary positive pole material and preparation method thereof
WO2018012385A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, transition metal hydroxide precursor, method for producing transition metal hydroxide precursor, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and electricity storage device
JP7296044B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7172301B2 (en) Transition metal composite hydroxide, method for producing transition metal composite hydroxide, lithium transition metal composite oxide active material, and lithium ion secondary battery
CN110863245A (en) Ternary cathode material, preparation method thereof, lithium ion battery and electric automobile
CN111777103B (en) Method for preparing nickel-cobalt lithium aluminate anode material
CN105576236A (en) Lithium ion battery 442 ternary anode modified material and preparing method thereof
Wu et al. Tuning (003) interplanar space by boric acid co-sintering to enhance Li+ storage and transfer in Li (Ni0. 8Co0. 1Mn0. 1) O2 cathode
JP6274536B2 (en) Method for producing mixed active material for lithium secondary battery, method for producing electrode for lithium secondary battery, and method for producing lithium secondary battery
WO2018012384A1 (en) Lithium-transition-metal composite oxide, transition metal hydroxide precursor, method for manufacturing transition metal hydroxide precursor, method for manufacturing lithium-transition-metal composite oxide, positive-electrode active material for nonaqueous-electrolyte secondary cell, electrode for nonaqueous-electrolyte secondary cell, nonaqueous-electrolyte secondary cell, and power storage device
WO2022047832A1 (en) Method for preparing material having composition gradient characteristic, and application in battery
Hu et al. Insight into the evolution of precursor and electrochemical performance of Ni-rich cathode modulated by ammonia during hydroxide precipitation
JP2018073752A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
Tian et al. Effects of sintering time on the performance of LiNi1/3Co1/3Mn1/3O2 synthesized by high temperature ball milling method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent