TWI780703B - Four-ports power converter - Google Patents

Four-ports power converter Download PDF

Info

Publication number
TWI780703B
TWI780703B TW110117170A TW110117170A TWI780703B TW I780703 B TWI780703 B TW I780703B TW 110117170 A TW110117170 A TW 110117170A TW 110117170 A TW110117170 A TW 110117170A TW I780703 B TWI780703 B TW I780703B
Authority
TW
Taiwan
Prior art keywords
resonant converter
current path
bridge
bidirectional full
power
Prior art date
Application number
TW110117170A
Other languages
Chinese (zh)
Other versions
TW202245390A (en
Inventor
張永農
吳彥勇
賀家凱
顏義和
吳森統
鄭宏良
詹舜宇
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW110117170A priority Critical patent/TWI780703B/en
Application granted granted Critical
Publication of TWI780703B publication Critical patent/TWI780703B/en
Publication of TW202245390A publication Critical patent/TW202245390A/en

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)
  • Amplifiers (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A four-ports power converter are connected to a solar cell, battery, a DC power network and a car-charging port. The four-ports power converter use a bi-directional bridge switching circuit CL3C to be a transformer and a CLLC resonant circuit to solve voltage boosting issue. Two inductors are used to achieve a zero-voltage switching and zero current switching results to reduce the power lose and circuit efficiency.

Description

四埠電能轉換器 Four Port Power Converter

本發明涉及一種電能轉換器,且特別是一種四埠電能轉換器,其中所述四埠電能轉換器的四個埠分別電性連接太陽能電源、電池電源、直流電網與車充埠。 The present invention relates to a power converter, and in particular to a four-port power converter, wherein the four ports of the four-port power converter are respectively electrically connected to a solar power source, a battery power source, a DC power grid, and a car charging port.

近年來,各國政府與環保團體不斷地提倡綠能,以減少溫室效應。因此,太陽能電源也大量地佈設於各處,並與直流電網進行連接。然而,太陽能電源的發電功率受到天氣影響而較不穩定,因此,在適當的時刻,直流電網需要將供電電源由太陽能電源切換電池電源。直流電網、太陽能電源與電池電源之間是透過電能轉換器進行電性連接,並實現上述的切換。 In recent years, governments and environmental protection groups of various countries have continuously advocated green energy to reduce the greenhouse effect. Therefore, a large number of solar power sources are also deployed everywhere and connected to the DC power grid. However, the power generated by the solar power is unstable due to the influence of the weather. Therefore, at an appropriate moment, the DC power grid needs to switch the power supply from the solar power to the battery power. The DC power grid, the solar power supply and the battery power supply are electrically connected through a power converter, and the above-mentioned switching is realized.

再者,為了使電動車的普及,充電樁必須大量地佈設於各處,已對電動車充電。因此,產生了透過電能轉換器提供供應電源給車充埠的需求。另一方面,太陽能電源要達到較佳的發電功率,需要進一步控制電能轉換器之開關的工作週期,以避免發電效率不佳。綜上所述,現有的電能轉換器仍有進一步改良的空間。 Furthermore, in order to popularize electric vehicles, a large number of charging piles must be arranged everywhere to charge electric vehicles. Therefore, there is a need to provide power supply to the car charging port through a power converter. On the other hand, in order to achieve better power generation by solar power, it is necessary to further control the duty cycle of the switch of the power converter to avoid poor power generation efficiency. To sum up, there is still room for further improvement of the existing power converters.

為達到上述創作目的,本發明提供一種四埠電能轉換器,包括:雙向全橋CL3C諧振轉換器、車充埠、輸入電容、輸出電容、第一感應耦合電感、 第二感應耦合電感、隔離電容、第一二極體與第二二極體;其中所述雙向全橋CL3C諧振轉換器的一次側的第二與第三輸入/輸出節點透過所述第一感應耦合電感與所述第一二極體電性耦接一太陽能電源,所述雙向CL3C諧振轉換器的一次側的第四輸入/輸出節點電性連接接地電壓,且所述雙向CL3C諧振轉換器的一次側的第一輸入/輸出節點電性連接所述輸入電容與電池電源,其中所述電池電源與所述輸入電容彼此並聯;所述雙向CL3C諧振轉換器的二次側的第六與第七輸入/輸出節點透過所述第二感應耦合電感與所述第二二極體電性耦接所述車充埠,所述隔離電容與串聯的所述第二二極體與所述車充埠並聯,所述雙向CL3C諧振轉換器的二次側的第八輸入/輸出節點電性連接所述接地電壓,且所述雙向CL3C諧振轉換器的二次側的第五輸入/輸出節點電性連接輸出所述電容與直流電網,所述電直流電網與所述輸出電容彼此並聯;所述第一二極體的輸入端與輸出端分別電性連接所述太陽能電源與所述第一耦合感應電感,以及所述第二二極體的輸入端與輸出端分別電性連接所述第二耦合感應電感與所述車充埠。。 In order to achieve the above creation purpose, the present invention provides a four-port power converter, including: a bidirectional full-bridge CL 3 C resonant converter, a car charging port, an input capacitor, an output capacitor, a first inductively coupled inductor, a second inductively coupled inductor, An isolation capacitor, a first diode and a second diode; wherein the second and third input/output nodes of the primary side of the bidirectional full-bridge CL 3 C resonant converter communicate with the first inductive coupling inductor through the first inductive coupling inductor The first diode is electrically coupled to a solar power source, the fourth input/output node of the primary side of the bidirectional CL 3 C resonant converter is electrically connected to ground voltage, and the bidirectional CL 3 C resonant converter The first input/output node on the primary side is electrically connected to the input capacitor and the battery power supply, wherein the battery power supply and the input capacitor are connected in parallel with each other; the sixth and second terminals of the bidirectional CL 3 C resonant converter The seventh input/output node is electrically coupled to the car charging port through the second inductive coupling inductor and the second diode, and the isolation capacitor is connected in series with the second diode and the car The ports are connected in parallel, the eighth input/output node of the secondary side of the bidirectional CL 3 C resonant converter is electrically connected to the ground voltage, and the fifth input of the secondary side of the bidirectional CL 3 C resonant converter The /output node is electrically connected to output the capacitor and the DC grid, and the DC grid and the output capacitor are connected in parallel; the input end and the output end of the first diode are respectively electrically connected to the solar power supply and the DC power grid. The first coupling induction inductor, and the input end and output end of the second diode are respectively electrically connected to the second coupling induction inductor and the car charging port. .

簡單地說,本發明實施例提供一種四埠電能轉換器,其能夠用於切換轉換電池電源、太陽能電源與直流電網對車充埠之間的電流路徑,以實現綠能的有效利用。 Briefly, the embodiment of the present invention provides a four-port power converter, which can be used to switch and convert current paths between battery power, solar power, and a DC grid to a vehicle charging port, so as to realize effective utilization of green energy.

1:四埠電能轉換器 1: Four-port power converter

11:電壓感測模塊 11: Voltage sensing module

111~114:電壓感測器 111~114: Voltage sensor

12:控制器 12: Controller

13:驅動電路 13: Drive circuit

14:雙向全橋CL3C諧振轉換器 14: Bidirectional full bridge CL 3 C resonant converter

15:車充埠 15: Car charging port

Q1~Q8:開關 Q1~Q8: switch

C1~C8:電容 C1~C8: capacitance

D1~D8:二極體 D1~D8: Diodes

D9:第一二極體 D9: The first diode

D10:第二二極體 D10: second diode

V1~V3:電壓 V1~V3: Voltage

N1:第一輸入/輸出節點 N1: first input/output node

N2:第二輸入/輸出節點 N2: Second input/output node

N3:第三輸入/輸出節點 N3: The third input/output node

N4:第四輸入/輸出節點 N4: Fourth input/output node

N5:第五輸入/輸出節點 N5: fifth input/output node

N6:第六輸入/輸出節點 N6: sixth input/output node

N7:第七輸入/輸出節點 N7: seventh input/output node

N8:第八輸入/輸出節點 N8: Eighth input/output node

NP、NS:線圈匝數 NP, NS: Coil turns

Lr1、Lr2:諧振電感 Lr1, Lr2: Resonant inductance

Lm:磁激電感 Lm: magnetically excited inductance

Cr1、Cr2:諧振電容 Cr1, Cr2: resonant capacitor

CI:隔離電容 CI: isolation capacitance

CIN:輸入電容 CIN: input capacitance

COUT:輸出電容 COUT: output capacitance

LCOUP1、LCOUP2:感應耦合電感 LCOUP1, LCOUP2: Inductively coupled inductors

WC:線圈 WC: Coil

201~205、211~215、221:曲線 201~205, 211~215, 221: curve

S301~S311:步驟 S301~S311: steps

第1圖是本發明實施例的四埠電能轉換器之電路圖。 Fig. 1 is a circuit diagram of a four-port power converter according to an embodiment of the present invention.

第2圖是本發明實施例的太陽能電源在不同日照度下的電流-電壓曲線與功率-電壓曲線的示意圖。 Fig. 2 is a schematic diagram of the current-voltage curve and the power-voltage curve of the solar power supply according to the embodiment of the present invention under different illuminance.

第3圖是本發明實施例之最大功率追蹤方法的流程圖。 FIG. 3 is a flow chart of the maximum power tracking method according to the embodiment of the present invention.

請參照本發明第1圖,第1圖是本發明實施例的四埠電能轉換器之電路圖。本發明實施例提供一種四埠電能轉換器1,其中所述四埠電能轉換器1的四個埠分別電性連接太陽能電源(即,電壓V2)、電池電源(即,電壓V1)、直流電網(即,電壓V3)與車充埠15。所述四埠電能轉換器1包括電壓感應模塊11、控制器12、驅動電路13、雙向全橋CLLLC(以下稱CL3C)諧振轉換器14、車充埠15、輸入電容CIN、輸出電容COUT、第一感應耦合電感LCOUP1、第二感應耦合電感LCOUP2、隔離電容CI、第一二極體D9與第二二極體D10。 Please refer to Figure 1 of the present invention, which is a circuit diagram of a four-port power converter according to an embodiment of the present invention. An embodiment of the present invention provides a four-port power converter 1, wherein the four ports of the four-port power converter 1 are respectively electrically connected to a solar power source (ie, voltage V2), a battery power source (ie, voltage V1), and a DC power grid. (that is, the voltage V3 ) and the car charging port 15 . The four-port power converter 1 includes a voltage sensing module 11, a controller 12, a drive circuit 13, a bidirectional full-bridge CLLLC (hereinafter referred to as CL 3 C) resonant converter 14, a car charging port 15, an input capacitor CIN, and an output capacitor COUT , the first inductively coupled inductor LCOUP1 , the second inductively coupled inductor LCOUP2 , the isolation capacitor CI, the first diode D9 and the second diode D10 .

雙向CL3C諧振轉換器14的一次側的第二輸入/輸出節點N2、第三輸入/輸出節點N3透過第一感應耦合電感LCOUP1與第一二極體D9電性耦接太陽能電源,雙向CL3C諧振轉換器的一次側的第四輸入/輸出節點N4電性連接接地電壓,且雙向CL3C諧振轉換器的一次側的第一輸入/輸出節點N1電性連接輸入電容CIN與電池電源,其中電池電源與輸入電容CIN彼此並聯。雙向CL3C諧振轉換器的二次側的第六輸入/輸出節點N6、第七輸入/輸出節點N7透過第二感應耦合電感LCOUP2與第二二極體D10電性耦接車充埠15,隔離電容CI與串聯的第二二極體D10與車充埠15並聯,雙向CL3C諧振轉換器的二次側的第八輸入/輸出節點N8電性連接接地電壓,且雙向CL3C諧振轉換器的二次側的第五輸入/輸出節點N5電性連接輸出電容COUT與直流電網,其中電直流電網與輸出電容COUT彼此並聯。電壓感應模塊11電性連接控制器12與雙向CL3C諧振轉換器14,以及驅動電路13電性連接控制器12與雙向CL3C諧振轉換器14。第一二極體D9的輸入端與輸出端分別電性連接太陽能電源與第一耦合感應電感LCOUP1,以及第二二極體D10的輸入端與輸出端分別電性連接第二耦合感應電感LCOUP2與車充埠15。 The second input/output node N2 and the third input/output node N3 of the primary side of the bidirectional CL 3 C resonant converter 14 are electrically coupled to the solar power source through the first inductive coupling inductor LCOUP1 and the first diode D9, and the bidirectional CL The fourth input/output node N4 on the primary side of the 3 C resonant converter is electrically connected to the ground voltage, and the first input/output node N1 on the primary side of the bidirectional CL 3 C resonant converter is electrically connected to the input capacitor CIN and the battery power supply , where the battery supply and the input capacitor CIN are connected in parallel with each other. The sixth input/output node N6 and the seventh input/output node N7 of the secondary side of the bidirectional CL 3 C resonant converter are electrically coupled to the car charging port 15 through the second inductive coupling inductor LCOUP2 and the second diode D10, The isolation capacitor CI and the second diode D10 in series are connected in parallel with the car charging port 15, the eighth input/output node N8 on the secondary side of the bidirectional CL 3 C resonant converter is electrically connected to the ground voltage, and the bidirectional CL 3 C resonant The fifth input/output node N5 on the secondary side of the converter is electrically connected to the output capacitor COUT and the DC grid, wherein the DC grid and the output capacitor COUT are connected in parallel. The voltage sensing module 11 is electrically connected to the controller 12 and the bidirectional CL 3 C resonant converter 14 , and the driving circuit 13 is electrically connected to the controller 12 and the bidirectional CL 3 C resonant converter 14 . The input end and output end of the first diode D9 are electrically connected to the solar power source and the first coupling inductance LCOUP1 respectively, and the input end and output end of the second diode D10 are respectively electrically connected to the second coupling inductance LCOUP2 and Car charging port 15.

雙向全橋CL3C諧振轉換器14作為轉換級,此雙向CL3C諧振轉換器14如同雙向CLLC諧振轉換器,能解決雙向LLC諧振轉換器反向無法升壓之問題,並且透過第一耦合感應電感LCOUP1、第二耦合感應電感LCOUP2的使用, 在雙向模式操作下亦可同時達成開關零電壓切換(zero voltage switching)與整流側零電流切換(zero current switching),以減少功率損失與提升電路效率。雙向全橋CL3C諧振轉換器14的第二輸入/輸出節點N2、第七輸入/輸出N7的電壓以及電壓V1、V2、V3會被電壓感應模塊11所感應,控制器12根據雙向全橋CL3C諧振轉換器14的第二輸入/輸出節點N2的電壓、第二二極體D10之輸入端上的電壓以及電壓V1、V2、V3產生控制信號給驅動電路13,以及驅動電路13根據控制信號產生驅動電壓控制雙向全橋CL3C諧振轉換器14的電流路徑,使得四埠電能轉換器1能夠操作於不同的模式下。 The bidirectional full-bridge CL 3 C resonant converter 14 is used as the conversion stage. This bidirectional CL 3 C resonant converter 14 is like a bidirectional CLLC resonant converter, which can solve the problem that the reverse direction of the bidirectional LLC resonant converter cannot be boosted, and through the first coupling The use of the induction inductor LCOUP1 and the second coupling induction inductor LCOUP2 can simultaneously achieve zero voltage switching of the switch (zero voltage switching) and zero current switching of the rectifier side (zero current switching) in the bidirectional mode operation, so as to reduce power loss and improve the circuit efficiency. The voltages of the second input/output node N2, the seventh input/output N7 and the voltages V1, V2, and V3 of the bidirectional full-bridge CL 3 C resonant converter 14 are sensed by the voltage sensing module 11, and the controller 12 according to the bidirectional full-bridge The voltage of the second input/output node N2 of the CL 3 C resonant converter 14, the voltage on the input end of the second diode D10 and the voltages V1, V2, V3 generate control signals to the driving circuit 13, and the driving circuit 13 generates control signals according to The control signal generates a driving voltage to control the current path of the bidirectional full-bridge CL 3 C resonant converter 14 , so that the four-port power converter 1 can operate in different modes.

進一步地,電壓感應模塊11包括四個電壓感測器111~114。電壓感測器111偵測電池電源的電壓V1與太陽能電源的電壓V2,以獲取電池電源與太陽能電源之間的電壓差V2-V1,並傳送電壓差給控制器12。電壓感測器112偵測第二輸入/輸出節點N2的電壓與太陽能電源的電壓V2,以獲取第二輸入/輸出節點N2與太陽能電源的電壓差,並傳送電壓差給控制器12。電壓感測器113及114偵測第二二極體D10之輸入端上的電壓與直流電網的電壓V3,以獲取第二二極體D10之輸入端與直流電網的電壓差,並傳送電壓差給控制器12。電壓感應模塊11的實現方式並非用於限制本發明,例如電壓感測器113及114可以用同一個電壓感測器來實現,以減少電路面積。 Further, the voltage sensing module 11 includes four voltage sensors 111 - 114 . The voltage sensor 111 detects the voltage V1 of the battery power source and the voltage V2 of the solar power source to obtain a voltage difference V2 − V1 between the battery power source and the solar power source, and transmits the voltage difference to the controller 12 . The voltage sensor 112 detects the voltage of the second input/output node N2 and the voltage V2 of the solar power source to obtain a voltage difference between the second input/output node N2 and the solar power source, and transmits the voltage difference to the controller 12 . The voltage sensors 113 and 114 detect the voltage on the input end of the second diode D10 and the voltage V3 of the DC power grid to obtain the voltage difference between the input end of the second diode D10 and the DC power grid, and transmit the voltage difference to the controller 12. The implementation of the voltage sensing module 11 is not intended to limit the present invention. For example, the voltage sensors 113 and 114 can be implemented with the same voltage sensor to reduce the circuit area.

四埠電能轉換器1具有複數個模式。在第一模式下,雙向全橋CL3C諧振轉換器14一次側呈現斷路,直流電網無法透過感應線圈WC提供感應電流給電池電源,且電池電源與太陽能電源之間不存在著電流路徑;雙向全橋CL3C諧振轉換器14的二次測是導通的,且提供了直流電網用於提供電源給車充埠15的電流路徑。在此請注意,透過第二感應耦合電感LCOUP2的使用,於第一模式下,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 The four-port power converter 1 has a plurality of modes. In the first mode, the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 is disconnected, the DC power grid cannot provide induced current to the battery power supply through the induction coil WC, and there is no current path between the battery power supply and the solar power supply; bidirectional The secondary side of the full-bridge CL 3 C resonant converter 14 is turned on and provides a current path for the DC grid to provide power to the car charging port 15 . Please note here that through the use of the second inductive coupling inductor LCOUP2, in the first mode, the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a step-down current path to meet the charging The voltage specifications of piles.

在第二模式下,雙向全橋CL3C諧振轉換器14的一次側與二次側都有導通,雙向全橋CL3C諧振轉換器14的二次側提供了直流電網用於提供電源給車充埠15的電流路徑,以及雙向全橋CL3C諧振轉換器14的一次側僅提供了直流電網透過感應線圈WC產生感應電流對電池電源進行充電的電流路徑,而關閉了太陽能電池提供電源的電流路徑。在此請注意,透過第二感應耦合電感LCOUP2的使用,於第二模式下,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 In the second mode, both the primary side and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 are turned on, and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 provides a DC grid for supplying power to The current path of the car charging port 15 and the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 only provide a current path for the DC power grid to generate an induced current through the induction coil WC to charge the battery power supply, and the solar battery is turned off to provide power the current path. Please note here that through the use of the second inductive coupling inductor LCOUP2, in the second mode, the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a step-down current path to meet the charging The voltage specifications of piles.

在第三模式下,雙向全橋CL3C諧振轉換器14的一次側與二次側都有導通,雙向全橋CL3C諧振轉換器14的一次側提供太陽能電源對電池電源進行充電的電流路徑,以及雙向全橋CL3C諧振轉換器14的二次側僅提供了太陽能電源透過感應線圈WC產生感應電流以提供電源給車充埠15的電流路徑,而關閉了直流電網提供電源的電流路徑。在此請注意,透過第一感應耦合電感LCOUP1、第二感應耦合電感LCOUP2的使用,於第三模式下,雙向全橋CL3C諧振轉換器14之一次側提供的電流路徑會是一個升壓的電流路徑以符合電池電源的電壓規格規範,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 In the third mode, both the primary side and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 are turned on, and the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 provides the solar power to charge the battery power. path, and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 only provides the current path for the solar power to generate induced current through the induction coil WC to provide power to the car charging port 15, and closes the current for the DC grid to provide power path. Please note here that through the use of the first inductively coupled inductor LCOUP1 and the second inductively coupled inductor LCOUP2, in the third mode, the current path provided by the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a boost The current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 is a step-down current path to meet the voltage specification of the charging pile.

在第四模式下,雙向全橋CL3C諧振轉換器14的一次側與二次側都有導通,雙向全橋CL3C諧振轉換器14的一次側不提供太陽能電源對電池電源充電的電流路徑,但提供了太陽能電源通過感應線圈WC提供感應電流到二次側的電流路徑,以及雙向全橋CL3C諧振轉換器14的二次側提供了感應電流流到車充埠15的電流路徑,但不提供感應電流流到直流電網的電流路徑。在此請注意,透過第二感應耦合電感LCOUP2的使用,於第四模式下,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 In the fourth mode, both the primary side and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 are turned on, and the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 does not provide the solar power to charge the battery power. path, but the solar power supply provides a current path for the induced current to the secondary side through the induction coil WC, and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 provides a current path for the induced current to flow to the car charging port 15 , but does not provide a current path for the induced current to flow to the DC grid. Please note here that through the use of the second inductive coupling inductor LCOUP2, in the fourth mode, the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a step-down current path to meet the charging The voltage specifications of piles.

在第五模式下,雙向全橋CL3C諧振轉換器14的一次側與二次側都有導通,雙向全橋CL3C諧振轉換器14的一次側提供太陽能電源與電池電源於感應線圈WC產生感應電流的電流路徑,以及雙向全橋CL3C諧振轉換器14的二次側提供了感應電流流到車充埠15的電流路徑,但不提供感應電流流到直流電網的電流路徑。在此請注意,透過第一感應耦合電感LCOUP1、第二感應耦合電感LCOUP2的使用,於第五模式下,雙向全橋CL3C諧振轉換器14之一次側提供的電流路徑會是一個升壓的電流路徑以符合電池電源的電壓規格規範,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 In the fifth mode, both the primary side and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 are turned on, and the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 provides solar power and battery power to the induction coil WC The current path for generating the induced current and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 provide a current path for the induced current to flow to the car charging port 15 , but do not provide a current path for the induced current to flow to the DC power grid. Please note here that through the use of the first inductively coupled inductor LCOUP1 and the second inductively coupled inductor LCOUP2, in the fifth mode, the current path provided by the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a step-up voltage The current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 is a step-down current path to meet the voltage specification of the charging pile.

在第六模式下,雙向全橋CL3C諧振轉換器14的一次側與二次側都有導通,雙向全橋CL3C諧振轉換器14的一次側提供太陽能電源於感應線圈WC產生感應電流的電流路徑,以及雙向全橋CL3C諧振轉換器14的二次側提供了感應電流流到車充埠15的電流路徑,但不提供感應電流流到直流電網的電流路徑。在此請注意,透過第二感應耦合電感LCOUP2的使用,於第六模式下,雙向全橋CL3C諧振轉換器14之二次側提供的電流路徑會是一個降壓的電流路徑以符合充電樁的電壓規格規範。 In the sixth mode, both the primary side and the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 are turned on, and the primary side of the bidirectional full-bridge CL 3 C resonant converter 14 provides solar power to generate an induced current in the induction coil WC The current path of the bidirectional full-bridge CL 3 C resonant converter 14 provides a current path for the induced current to flow to the car charging port 15, but does not provide a current path for the induced current to flow to the DC power grid. Please note here that through the use of the second inductive coupling inductor LCOUP2, in the sixth mode, the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter 14 will be a step-down current path to meet the charging The voltage specifications of piles.

需要注意的是,當工作週期比大於0.5時,利用耦合電感電流的特性,控制器12轉換一、二次側間的電流,使雙向全橋CL3C諧振轉換器14的開關達到零電壓切換的功效。再者,透過控制器12的控制,車充埠15具有定電流-定電壓(CC-CV)的充電效果。甚至,在使用到太陽能電源供電的模式(前述第三模式、第四模式與第五模式)下,控制器12還執行最大功率追蹤的演算法,以控制雙向全橋CL3C諧振轉換器14的工作週期。如此,太陽能電源可以有效進行太陽能發電,使得發電效率最佳化。執行最大功率追蹤的演算法之細節將於後面詳細描述,於此先略過。 It should be noted that when the duty cycle ratio is greater than 0.5, the controller 12 converts the current between the primary and secondary sides by using the characteristics of the coupled inductor current, so that the switch of the bidirectional full-bridge CL 3 C resonant converter 14 achieves zero-voltage switching effect. Furthermore, through the control of the controller 12, the car charging port 15 has a constant current-constant voltage (CC-CV) charging effect. Even, in the mode of using solar energy power supply (the aforementioned third mode, fourth mode and fifth mode), the controller 12 also executes the maximum power tracking algorithm to control the bidirectional full-bridge CL 3 C resonant converter 14 working cycle. In this way, the solar power source can effectively generate solar power, so that the power generation efficiency is optimized. The details of the algorithm for performing MPPT will be described in detail later, and are omitted here.

請繼續參照第1圖,雙向全橋CL3C諧振轉換器14包括多個開關Q1~Q8、多個二極體D1~D8、多個電容C1~C8、磁激電感Lm、線圈WC、諧振電容Cr1、Cr2與諧振電感Lr1、Lr2。線圈WC一次側與二次側的匝數分別為NP與NS,以及開關Q1~Q8可以為NMOS電晶體。磁激電感Lm與線圈WC的一次側並聯,磁激電感Lm的一端透過串聯的諧振電容Cr1與諧振電感Lr1電性連接第二輸入/輸出節點N2,以及磁激電感Lm的另一端電性連接第三輸入/輸出節點N3。 Please continue to refer to Figure 1. The bidirectional full-bridge CL 3 C resonant converter 14 includes multiple switches Q1~Q8, multiple diodes D1~D8, multiple capacitors C1~C8, magnetically excited inductor Lm, coil WC, and resonance Capacitors Cr1, Cr2 and resonant inductors Lr1, Lr2. The turns of the primary side and the secondary side of the coil WC are NP and NS respectively, and the switches Q1-Q8 may be NMOS transistors. The magnetically excited inductor Lm is connected in parallel with the primary side of the coil WC, one end of the magnetically excited inductor Lm is electrically connected to the second input/output node N2 through the series resonant capacitor Cr1 and the resonant inductor Lr1, and the other end of the magnetically excited inductor Lm is electrically connected A third input/output node N3.

第一輸入/輸出節點N1電性連接開關Q1、Q3的第一端、電容C1、C3的第一端與二極體D1、D3的輸出端。第二輸入/輸出節點N2電性連接開關Q1的第二端、電容C1的第二端、二極體D1的輸入端、開關Q2的第一端、電容C2的第一端、二極體D2的輸出端、第一耦合感應電感LCOUP1的一端與諧振電容Cr1的一端。第三輸入/輸出節點N3電性連接開關Q3的第二端、電容C3的第二端、二極體D3的輸入端、開關Q4的第一端、電容C4的第一端、二極體D4的輸出端、第一耦合感應電感LCOUP1的另一端與線圈WC一次側的一端。第四輸入/輸出節點N4電性連接開關Q2、Q4的第二端、電容C2、C4的第二端與二極體D2、D4的輸入端。 The first input/output node N1 is electrically connected to the first ends of the switches Q1, Q3, the first ends of the capacitors C1, C3, and the output ends of the diodes D1, D3. The second input/output node N2 is electrically connected to the second end of the switch Q1, the second end of the capacitor C1, the input end of the diode D1, the first end of the switch Q2, the first end of the capacitor C2, and the diode D2 The output terminal of the first coupled inductive inductor LCOUP1 and one terminal of the resonant capacitor Cr1. The third input/output node N3 is electrically connected to the second end of the switch Q3, the second end of the capacitor C3, the input end of the diode D3, the first end of the switch Q4, the first end of the capacitor C4, and the diode D4 The output end of the first coupled inductance LCOUP1 and the other end of the primary side of the coil WC. The fourth input/output node N4 is electrically connected to the second terminals of the switches Q2 and Q4, the second terminals of the capacitors C2 and C4, and the input terminals of the diodes D2 and D4.

第五輸入/輸出節點N5電性連接開關Q5、Q7的第一端、電容C5、C7的第一端與二極體D5、D7的輸出端。第六輸入/輸出節點N6電性連接開關Q5的第二端、電容C5的第二端、二極體D5的輸入端、開關Q6的第一端、電容C6的第一端、二極體D6的輸出端、第二耦合感應電感LCOUP2的一端與諧振電容Cr2的一端。第七輸入/輸出節點N7電性連接開關Q7的第二端、電容C7的第二端、二極體D7的輸入端、開關Q8的第一端、電容C8的第一端、二極體D8的輸出端、第二耦合感應電感LCOUP2的另一端與線圈WC二次側的一端。第四輸入/輸出節點N4電性連接開關Q6、Q8的第二端、電容C6、C8的第二端與二極體D6、D8的輸入端。 The fifth input/output node N5 is electrically connected to the first ends of the switches Q5, Q7, the first ends of the capacitors C5, C7, and the output ends of the diodes D5, D7. The sixth input/output node N6 is electrically connected to the second end of the switch Q5, the second end of the capacitor C5, the input end of the diode D5, the first end of the switch Q6, the first end of the capacitor C6, and the diode D6 The output terminal of the second coupled inductive inductor LCOUP2 and one terminal of the resonant capacitor Cr2. The seventh input/output node N7 is electrically connected to the second terminal of the switch Q7, the second terminal of the capacitor C7, the input terminal of the diode D7, the first terminal of the switch Q8, the first terminal of the capacitor C8, and the diode D8 The output end of the second coupling inductance LCOUP2 and the other end of the secondary side of the coil WC. The fourth input/output node N4 is electrically connected to the second terminals of the switches Q6, Q8, the second terminals of the capacitors C6, C8, and the input terminals of the diodes D6, D8.

接著,請參照第2圖與第3圖,第2圖是本發明實施例的太陽能電源在不同日照度下的電流-電壓曲線與功率-電壓曲線的示意圖,以及第3圖是本發明實施例之最大功率追蹤方法的流程圖。於第2圖中,於日照度G1至G5下,太陽能電源的電流-電壓曲線分別為曲線201、202、204、205與203,以及太陽能電源的功率-電壓曲線分別為曲線211、212、213、215與215。因此,較佳的追蹤曲線可以畫出如同曲線221。 Next, please refer to Fig. 2 and Fig. 3, Fig. 2 is a schematic diagram of the current-voltage curve and power-voltage curve of the solar power supply of the embodiment of the present invention under different illuminance, and Fig. 3 is the embodiment of the present invention Flowchart of the maximum power tracking method. In Figure 2 , under the sunshine intensity G1 to G5, the current-voltage curves of the solar power supply are curves 201, 202, 204, 205 and 203 respectively, and the power-voltage curves of the solar power supply are curves 211 and 212 respectively , 213, 215 and 215. Therefore, a better tracking curve can be drawn as curve 221 .

根據上述曲線221,最大功率追蹤方法設計如同第3圖。在步驟S301,讀取前一次太陽能電源的電壓V2、電流I2與功率P2。在步驟S302,讀取當前太陽能電源的電壓V2、電流I2與功率P2。在步驟S303,判斷當前太陽能電源的功率P2是否大於前一次太陽能電源的功率P2,若是,則執行步驟S304,否則則執行步驟S307。在步驟S304,判斷當前太陽能電源的電壓V2是否大於前一次太陽能電源的電壓V2,若是,則執行步驟S306,否則則執行步驟S305。在步驟S307,判斷當前太陽能電源的功率P2是否小於前一次太陽能電源的功率P2,若是,則執行步驟S311,否則則執行步驟S310。在步驟S311,判斷當前太陽能電源的電壓V2是否大於前一次太陽能電源的電壓V2,若是,則執行步驟S309,否則則執行步驟S308。在步驟S304與S309,增加工作週期。在步驟S305與S308,減少工作週期。在步驟S310,量測新的太陽能電源的電壓V2、電流I2與功率P2,並更新當前的太陽能電源的電壓V2、電流I2與功率P2。 According to the above curve 221, the MPPT method is designed as shown in Fig. 3 . In step S301 , the voltage V2 , current I2 and power P2 of the previous solar power supply are read. In step S302, the current voltage V2, current I2 and power P2 of the solar power source are read. In step S303, it is judged whether the power P2 of the current solar power source is greater than the power P2 of the previous solar power source, if yes, execute step S304, otherwise execute step S307. In step S304, it is determined whether the current voltage V2 of the solar power source is greater than the previous voltage V2 of the solar power source, if yes, execute step S306, otherwise execute step S305. In step S307, it is judged whether the power P2 of the current solar power source is smaller than the power P2 of the previous solar power source, if yes, execute step S311, otherwise execute step S310. In step S311, it is determined whether the current voltage V2 of the solar power source is greater than the previous voltage V2 of the solar power source, if yes, execute step S309, otherwise execute step S308. In steps S304 and S309, the duty cycle is increased. In steps S305 and S308, the duty cycle is reduced. In step S310 , measure the voltage V2 , current I2 and power P2 of the new solar power source, and update the current voltage V2 , current I2 and power P2 of the solar power source.

綜合以上所述,本發明實施例的四埠電能轉換器能用於切換轉換電池電源、太陽能電源與直流電網對車充埠之間的電流路徑,以實現綠能的有效利用。再者,本發明實施例的四埠電能轉換器具有低功率損耗、發電效率佳與架構簡單等優點。 Based on the above, the four-port power converter of the embodiment of the present invention can be used to switch and convert the current path between the battery power source, the solar power source, and the DC grid to the car charging port, so as to realize the effective utilization of green energy. Furthermore, the four-port power converter of the embodiment of the present invention has the advantages of low power loss, good power generation efficiency and simple structure.

以上所述僅為本發明的較佳實施例而已,並非用以限定本發明主張的權利範圍,凡其它未脫離本發明所揭示的精神所完成的等效改變或修飾,均應包括在本發明的申請專利範圍內。 The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the scope of rights claimed by the present invention. All other equivalent changes or modifications that do not deviate from the spirit disclosed in the present invention should be included in the present invention. within the scope of the patent application.

1:四埠電能轉換器 1: Four-port power converter

11:電壓感測模塊 11: Voltage sensing module

111~114:電壓感測器 111~114: Voltage sensor

12:控制器 12: Controller

13:驅動電路 13: Drive circuit

14:雙向全橋CL3C諧振轉換器 14: Bidirectional full bridge CL 3 C resonant converter

15:車充埠 15: Car charging port

Q1~Q8:開關 Q1~Q8: switch

C1~C8:電容 C1~C8: capacitance

D1~D8:二極體 D1~D8: Diodes

D9:第一二極體 D9: The first diode

D10:第二二極體 D10: second diode

V1~V3:電壓 V1~V3: Voltage

N1:第一輸入/輸出節點 N1: first input/output node

N2:第二輸入/輸出節點 N2: Second input/output node

N3:第三輸入/輸出節點 N3: The third input/output node

N4:第四輸入/輸出節點 N4: Fourth input/output node

N5:第五輸入/輸出節點 N5: fifth input/output node

N6:第六輸入/輸出節點 N6: sixth input/output node

N7:第七輸入/輸出節點 N7: seventh input/output node

N8:第八輸入/輸出節點 N8: Eighth input/output node

NP、NS:線圈匝數 NP, NS: Coil turns

Lr1、Lr2:諧振電感 Lr1, Lr2: Resonant inductance

Lm:磁激電感 Lm: magnetically excited inductance

Cr1、Cr2:諧振電容 Cr1, Cr2: resonant capacitor

CI:隔離電容 CI: isolation capacitance

CIN:輸入電容 CIN: input capacitance

COUT:輸出電容 COUT: output capacitance

WC:線圈 WC: Coil

LCOUP1:第一感應耦合電感 LCOUP1: The first inductively coupled inductor

LCOUP2:第二感應耦合電感 LCOUP2: The second inductive coupling inductor

Claims (10)

一種四埠電能轉換器,包括:雙向全橋CL3C諧振轉換器、車充埠、輸入電容、輸出電容、第一感應耦合電感、第二感應耦合電感、隔離電容、第一二極體與第二二極體;其中所述雙向全橋CL3C諧振轉換器的一次側的第二與第三輸入/輸出節點透過所述第一感應耦合電感與所述第一二極體電性耦接一太陽能電源,所述雙向CL3C諧振轉換器的一次側的第四輸入/輸出節點電性連接接地電壓,且所述雙向CL3C諧振轉換器的一次側的第一輸入/輸出節點電性連接所述輸入電容與電池電源,其中所述電池電源與所述輸入電容彼此並聯;所述雙向CL3C諧振轉換器的二次側的第六與第七輸入/輸出節點透過所述第二感應耦合電感與所述第二二極體電性耦接所述車充埠,所述隔離電容與串聯的所述第二二極體與所述車充埠並聯,所述雙向CL3C諧振轉換器的二次側的第八輸入/輸出節點電性連接所述接地電壓,且所述雙向CL3C諧振轉換器的二次側的第五輸入/輸出節點電性連接輸出所述電容與直流電網,所述電直流電網與所述輸出電容彼此並聯;所述第一二極體的輸入端與輸出端分別電性連接所述太陽能電源與所述第一耦合感應電感,以及所述第二二極體的輸入端與輸出端分別電性連接所述第二耦合感應電感與所述車充埠。 A four-port power converter, including: a bidirectional full-bridge CL 3 C resonant converter, a car charging port, an input capacitor, an output capacitor, a first inductively coupled inductor, a second inductively coupled inductor, an isolation capacitor, a first diode and second diode; wherein the second and third input/output nodes of the primary side of the bidirectional full-bridge CL 3 C resonant converter are electrically coupled to the first diode through the first inductive coupling inductor connected to a solar power source, the fourth input/output node on the primary side of the bidirectional CL 3 C resonant converter is electrically connected to ground voltage, and the first input/output node on the primary side of the bidirectional CL 3 C resonant converter electrically connecting the input capacitor and a battery power source, wherein the battery power source and the input capacitor are connected in parallel; the sixth and seventh input/output nodes of the secondary side of the bidirectional CL 3 C resonant converter pass through the The second inductive coupling inductor and the second diode are electrically coupled to the car charging port, the isolation capacitor and the second diode in series are connected in parallel with the car charging port, and the bidirectional CL 3 The eighth input/output node on the secondary side of the C resonant converter is electrically connected to the ground voltage, and the fifth input/output node on the secondary side of the bidirectional CL 3 C resonant converter is electrically connected to output the A capacitor and a DC grid, the DC grid and the output capacitor are connected in parallel; the input end and the output end of the first diode are respectively electrically connected to the solar power supply and the first coupling induction inductor, and the The input end and the output end of the second diode are electrically connected to the second coupling inductance and the car charging port respectively. 如請求項1所述之四埠電能轉換器,更包括:電壓感測模塊、控制器與驅動電路;其中所述電壓感測模塊用於感測所述四埠電能轉換器之多個電壓,並使所述控制器產生多個控制信號控制驅動電路產生用於驅動所述雙向全橋CL3C諧振轉換器之多個開關的多個驅動電壓。 The four-port power converter as described in claim 1 further includes: a voltage sensing module, a controller, and a driving circuit; wherein the voltage sensing module is used to sense multiple voltages of the four-port power converter, And make the controller generate multiple control signals to control the drive circuit to generate multiple drive voltages for driving multiple switches of the bidirectional full-bridge CL 3 C resonant converter. 如請求項2所述之四埠電能轉換器,其中所述控制器更執行最大功率追蹤的演算法,以控制所述雙向全橋CL3C諧振轉換器的工作週期。 The four-port power converter as claimed in claim 2, wherein the controller further executes a maximum power tracking algorithm to control the duty cycle of the bidirectional full-bridge CL 3 C resonant converter. 如請求項3所述之四埠電能轉換器,其中在第一模式下,所述雙向全橋CL3C諧振轉換器的一次側呈現斷路,所述直流電網無法透過所述雙向全橋CL3C諧振轉換器的感應線圈提供感應電流給所述電池電源,且所述電池電源與所述太陽能電源之間不存在著電流路徑;所述雙向全橋CL3C諧振轉換器的二次測是導通的,且提供了所述直流電網用於提供電源給所述車充埠的電流路徑,其中透過所述第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the first mode, the primary side of the bidirectional full bridge CL 3 C resonant converter is disconnected, and the DC grid cannot pass through the bidirectional full bridge CL 3 The induction coil of the C resonant converter provides an induced current to the battery power supply, and there is no current path between the battery power supply and the solar power supply; the secondary measurement of the bidirectional full-bridge CL 3 C resonant converter is is turned on, and provides the current path of the DC power grid for providing power to the car charging port, wherein through the action of the second inductively coupled inductor, the secondary of the bidirectional full-bridge CL 3 C resonant converter The current path provided by the side is a step-down current path. 如請求項3所述之四埠電能轉換器,其中在第二模式下,所述雙向全橋CL3C諧振轉換器的一次側與二次側都有導通,所述雙向全橋CL3C諧振轉換器的二次側提供了所述直流電網用於提供電源給所述車充埠的電流路徑,以及所述雙向全橋CL3C諧振轉換器的一次側僅提供了所述直流電網透過所述雙向全橋CL3C諧振轉換器的感應線圈產生感應電流對所述電池電源進行充電的電流路徑,而關閉了所述太陽能電池提供電源的電流路徑,其中透過所述第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the second mode, both the primary side and the secondary side of the bidirectional full bridge CL 3 C resonant converter are turned on, and the bidirectional full bridge CL 3 C The secondary side of the resonant converter provides a current path for the DC grid to provide power to the car charging port, and the primary side of the bidirectional full bridge CL 3 C resonant converter only provides the DC grid through The induction coil of the bidirectional full-bridge CL 3 C resonant converter generates an induced current to charge the battery power supply, and closes the current path for the solar battery to provide power, wherein the second inductive coupling inductor The function of the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter is a step-down current path. 如請求項3所述之四埠電能轉換器,其中在第三模式下,所述雙向全橋CL3C諧振轉換器的一次側與二次側都有導通,所述雙向全橋CL3C諧振轉換器的一次側提供所述太陽能電源對所述電池電源進行充電的電流路徑,以及所述雙向全橋CL3C諧振轉換器的二次側僅提供了所述太陽能電源透過所述雙向全橋CL3C諧振轉換器的感應線圈產生感應電流以提供電源給所述車充埠的電流路徑,而關閉了所述直流電網提供電源的電流路徑,其中透過所述第一與第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之一次側提供的電流 路徑是一個升壓的電流路徑,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the third mode, both the primary side and the secondary side of the bidirectional full bridge CL 3 C resonant converter are turned on, and the bidirectional full bridge CL 3 C The primary side of the resonant converter provides the current path for the solar power to charge the battery power, and the secondary side of the bidirectional full bridge CL 3 C resonant converter only provides the solar power through the bidirectional full bridge. The induction coil of the bridge CL 3 C resonant converter generates an induction current to provide power to the current path of the car charging port, and closes the current path of the DC grid to provide power, wherein through the first and second inductive coupling The role of the inductance, the current path provided by the primary side of the bidirectional full bridge CL 3 C resonant converter is a boosted current path, the current path provided by the secondary side of the bidirectional full bridge CL 3 C resonant converter is a step-down current path. 如請求項3所述之四埠電能轉換器,其中在第四模式下,所述雙向全橋CL3C諧振轉換器的一次側與二次側都有導通,所述雙向全橋CL3C諧振轉換器的一次側不提供所述太陽能電源對所述電池電源充電的電流路徑,但提供了太所述陽能電源通過所述雙向全橋CL3C諧振轉換器的感應線圈WC提供感應電流到二次側的電流路徑,以及所述雙向全橋CL3C諧振轉換器的二次側提供了所述感應電流流到所述車充埠的電流路徑,但不提供所述感應電流流到所述直流電網的電流路徑,其中透過所述第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the fourth mode, both the primary side and the secondary side of the bidirectional full bridge CL 3 C resonant converter are turned on, and the bidirectional full bridge CL 3 C The primary side of the resonant converter does not provide a current path for the solar power to charge the battery power, but the solar power provides an induced current through the induction coil WC of the bidirectional full-bridge CL 3 C resonant converter. The current path to the secondary side, and the secondary side of the bidirectional full bridge CL 3 C resonant converter provides a current path for the induced current to flow to the car charging port, but does not provide a current path for the induced current to flow to the charging port. In the current path of the DC power grid, through the action of the second inductively coupled inductor, the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter is a step-down current path. 如請求項3所述之四埠電能轉換器,其中在第五模式下,所述雙向全橋CL3C諧振轉換器的一次側與二次側都有導通,所述雙向全橋CL3C諧振轉換器的一次側提供所述太陽能電源與所述電池電源於所述雙向全橋CL3C諧振轉換器的感應線圈產生感應電流的電流路徑,以及所述雙向全橋CL3C諧振轉換器的二次側提供了所述感應電流流到所述車充埠的電流路徑,但不提供所述感應電流流到所述直流電網的電流路徑,其中透過所述第一與第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之一次側提供的電流路徑是一個升壓的電流路徑,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the fifth mode, both the primary side and the secondary side of the bidirectional full bridge CL 3 C resonant converter are turned on, and the bidirectional full bridge CL 3 C The primary side of the resonant converter provides a current path for the solar power source and the battery power source to generate an induced current in the induction coil of the bidirectional full bridge CL 3 C resonant converter, and the bidirectional full bridge CL 3 C resonant converter The secondary side provides a current path for the induced current to flow to the car charging port, but does not provide a current path for the induced current to flow to the DC grid, wherein the first and second inductive coupling inductors function, the current path provided by the primary side of the bidirectional full-bridge CL 3 C resonant converter is a boosted current path, and the current path provided by the secondary side of the bidirectional full-bridge CL 3 C resonant converter is a step-down current path. 如請求項3所述之四埠電能轉換器,其中在第六模式下,所述雙向全橋CL3C諧振轉換器的一次側與二次側都有導通,所述雙向全橋CL3C諧振轉換器的一次側提供所述太陽能電源於所述感應線圈產生感應電流的電流路徑,以及所述雙向全橋CL3C諧振轉換器的二次側提供了所述感應電流流到所述車充埠的電流路徑,但不提供所述感應電流流到所述直流電網的電流路徑,其 中透過所述第二感應耦合電感的作用,所述雙向全橋CL3C諧振轉換器之二次側提供的電流路徑是一個降壓的電流路徑。 The four-port power converter as described in claim 3, wherein in the sixth mode, both the primary side and the secondary side of the bidirectional full bridge CL 3 C resonant converter are turned on, and the bidirectional full bridge CL 3 C The primary side of the resonant converter provides a current path for the solar power source to generate an induced current in the induction coil, and the secondary side of the bidirectional full-bridge CL 3 C resonant converter provides the induced current to flow to the vehicle The current path of the charging port, but does not provide the current path for the induced current to flow to the DC grid, wherein through the effect of the second inductively coupled inductor, the secondary side of the bidirectional full-bridge CL 3 C resonant converter The current path provided is a step-down current path. 如請求項2所述之四埠電能轉換器,其中在當前的所述太陽能電源的功率不等於前一次的所述太陽能電源的功率,增加或減少所述雙向全橋CL3C諧振轉換器的工作週期。 The four-port power converter as described in claim 2, wherein the current power of the solar power source is not equal to the power of the previous solar power source, increasing or decreasing the power of the bidirectional full-bridge CL 3 C resonant converter Working period.
TW110117170A 2021-05-12 2021-05-12 Four-ports power converter TWI780703B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110117170A TWI780703B (en) 2021-05-12 2021-05-12 Four-ports power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110117170A TWI780703B (en) 2021-05-12 2021-05-12 Four-ports power converter

Publications (2)

Publication Number Publication Date
TWI780703B true TWI780703B (en) 2022-10-11
TW202245390A TW202245390A (en) 2022-11-16

Family

ID=85475911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117170A TWI780703B (en) 2021-05-12 2021-05-12 Four-ports power converter

Country Status (1)

Country Link
TW (1) TWI780703B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713763A (en) * 2005-09-21 2007-04-01 Lin Hui Ching A bidirectional DC/DC converter for fuel cell electric vehicle driving system
CN104022675A (en) * 2014-05-29 2014-09-03 燕山大学 Single-stage bidirectional isolation AC-DC converter
CN107310409A (en) * 2017-05-10 2017-11-03 浙江大学 A kind of switching of bidirectional electric automobile charger and control method
US20180152095A1 (en) * 2015-07-01 2018-05-31 Hella Corporate Center Usa, Inc. Electric power conversion apparatus
WO2019199964A1 (en) * 2018-04-10 2019-10-17 University Of Maryland College Park Vehicle on-board charger for bi-directional charging of low/high voltage batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200713763A (en) * 2005-09-21 2007-04-01 Lin Hui Ching A bidirectional DC/DC converter for fuel cell electric vehicle driving system
CN104022675A (en) * 2014-05-29 2014-09-03 燕山大学 Single-stage bidirectional isolation AC-DC converter
US20180152095A1 (en) * 2015-07-01 2018-05-31 Hella Corporate Center Usa, Inc. Electric power conversion apparatus
CN107310409A (en) * 2017-05-10 2017-11-03 浙江大学 A kind of switching of bidirectional electric automobile charger and control method
WO2019199964A1 (en) * 2018-04-10 2019-10-17 University Of Maryland College Park Vehicle on-board charger for bi-directional charging of low/high voltage batteries

Also Published As

Publication number Publication date
TW202245390A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
CN105429313B (en) A kind of control method of the changeable radio energy transmission system of resonance compensation topology
CN101835317B (en) Fly-back street lamp illumination LED constant-current driving power supply with intelligent dimming function
US9231488B2 (en) Power converter and method for controlling the same
KR101632243B1 (en) Bidirectional dc/dc converter
US8493753B2 (en) Photovoltaic powered system
WO2015180290A1 (en) Switch power source and method for controlling switch power source
CN111740509B (en) Wireless charging method and system based on voltage regulation control
KR102136564B1 (en) Power supply apparatus and driving method thereof
CN111654116B (en) High-gain constant-voltage constant-current output electric field coupling wireless power transmission system
CN201690655U (en) Flyback road lamp illuminating LED constant-current driving power supply with intelligent dimming function
CN103427656A (en) Staggered parallel flyback LED driving power supply and PFM (pulse width modulation) control circuit thereof
CN105529925B (en) Boost based on switched inductors
CN106026657A (en) Non-isolated high-gain DC-DC boost converter
TW202007064A (en) Bidirectional DC-DC converter
CN111431415B (en) High-boost isolated DC converter with parallel input and series output
CN107919797A (en) The fuel cell efficient voltage boosting dc converter of wide input range crisscross parallel type
CN106535387A (en) High-power factor isolated type electrolytic capacitor-free LED driving power source
Zeng et al. A soft-switched four-port DC-DC converter for renewable energy integration
CN111740510B (en) Wireless charging method and system based on phase-shift adjustment control
CN107276393B (en) High-voltage power supply circuit
TWI780703B (en) Four-ports power converter
CN114825663B (en) SP type double-output independently adjustable wireless power transmission system and control method thereof
CN203435182U (en) Staggered parallel flyback LED driving power supply and PFM control circuit thereof
CN209250496U (en) Bidirectional, dc conversion circuit
CN110729913B (en) Single-stage high-gain five-switch Boost type inverter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent