TWI779627B - Semiconductor structure and method of fabricating the same - Google Patents

Semiconductor structure and method of fabricating the same Download PDF

Info

Publication number
TWI779627B
TWI779627B TW110118940A TW110118940A TWI779627B TW I779627 B TWI779627 B TW I779627B TW 110118940 A TW110118940 A TW 110118940A TW 110118940 A TW110118940 A TW 110118940A TW I779627 B TWI779627 B TW I779627B
Authority
TW
Taiwan
Prior art keywords
trench
width
forming
semiconductor structure
substrate
Prior art date
Application number
TW110118940A
Other languages
Chinese (zh)
Other versions
TW202247418A (en
Inventor
賴振益
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Priority to TW110118940A priority Critical patent/TWI779627B/en
Priority to CN202110702607.4A priority patent/CN115394777A/en
Application granted granted Critical
Publication of TWI779627B publication Critical patent/TWI779627B/en
Publication of TW202247418A publication Critical patent/TW202247418A/en

Links

Images

Abstract

A semiconductor structure includes a substrate with an isolation area and an active area, and a word-line structure. The word-line structure includes a first section formed in and surrounded by the isolation area of the substrate, and a second section formed in the active area of the substrate. A width of the second section is larger than a width of the first section.

Description

半導體結構與其形成方法Semiconductor structures and methods of forming them

本揭示案是關於半導體結構與其形成方法,尤其是動態隨機存取記憶體的字元線結構。This disclosure relates to semiconductor structures and methods of forming them, especially word line structures for DRAMs.

隨著科技進步,動態隨機存取記憶體(dynamic random access memory, DRAM)變得更加高度整合,並藉由DRAM內的半導體結構之間距(pitch)的縮短提升了DRAM效能。由於尺寸的縮小,除了使製程上的難度提升之外,亦使半導體結構內部的各個元件因距離太過接近而易發生漏電現象。With the advancement of technology, dynamic random access memory (DRAM) has become more highly integrated, and the performance of DRAM has been improved by shortening the pitch between semiconductor structures in DRAM. Due to the shrinking of the size, in addition to increasing the difficulty of the manufacturing process, the components in the semiconductor structure are also prone to leakage due to too close distances.

因此,如何減少漏電現象以提升半導體結構的製程良率成為一個重要的課題。Therefore, how to reduce the leakage phenomenon to improve the process yield of the semiconductor structure has become an important issue.

根據本揭示案的一些實施例,一種半導體結構包括具有隔離區域和主動區域的基材,以及字元線結構。字元線結構包括第一部分和第二部分。第一部分形成於基材的隔離區域內,其中隔離區域包圍第一部分。第二部分形成於基材的主動區域內,其中第二部分的寬度大於第一部分的寬度。According to some embodiments of the present disclosure, a semiconductor structure includes a substrate having isolation regions and active regions, and a word line structure. The word line structure includes a first part and a second part. The first portion is formed in the isolation area of the substrate, wherein the isolation area surrounds the first portion. The second portion is formed in the active area of the substrate, wherein the width of the second portion is greater than that of the first portion.

在一些實施例中,半導體結構的第二部分的寬度較第一部分的寬度寬約1奈米至約3奈米。In some embodiments, the width of the second portion of the semiconductor structure is about 1 nm to about 3 nm wider than the width of the first portion.

根據本揭示案的一些實施例,一種半導體結構包括具有隔離區域和主動區域的基材,以及數個字元線結構,其中每一個字元線結構延伸通過隔離區域和主動區域。位於隔離區域內的相鄰的字元線結構之間的橫向距離為第一長度,位於主動區域內的相鄰的字元線結構之間的橫向距離為第二長度,其中第一長度大於第二長度。According to some embodiments of the present disclosure, a semiconductor structure includes a substrate having an isolation region and an active region, and a plurality of wordline structures, wherein each wordline structure extends through the isolation region and the active region. The lateral distance between adjacent word line structures located in the isolation area is a first length, and the lateral distance between adjacent word line structures located in the active area is a second length, wherein the first length is greater than the first length Two lengths.

在一些實施例中,半導體結構的第一長度大於第二長度約1奈米至約3奈米。In some embodiments, the first length of the semiconductor structure is greater than the second length by about 1 nm to about 3 nm.

根據本揭示案的一些實施例,一種形成半導體結構的方法包括接收基材、形成隔離區域和主動區域在基材內、形成溝槽在基材內,其中溝槽為線性形狀並延伸通過基材的隔離區域和基材的該主動區域。溝槽包括位於該隔離區域內的第一部分溝槽和位於主動區域內的第二部分溝槽。形成半導體結構的方法亦包括在形成溝槽之後,增加第二部分溝槽之寬度。形成半導體結構的方法亦包括形成介電層在溝槽的內表面上、形成導電層在溝槽內且介電層包覆導電層、以及形成覆蓋層在該溝槽內並堆疊在該導電層上。According to some embodiments of the present disclosure, a method of forming a semiconductor structure includes receiving a substrate, forming isolation regions and active regions in the substrate, forming trenches in the substrate, wherein the trenches are linear in shape and extend through the substrate the isolation region and the active region of the substrate. The trench includes a first partial trench located in the isolation area and a second partial trench located in the active area. The method of forming the semiconductor structure also includes increasing the width of the second portion of the trench after forming the trench. The method of forming a semiconductor structure also includes forming a dielectric layer on the inner surface of the trench, forming a conductive layer in the trench and the dielectric layer covers the conductive layer, and forming a capping layer in the trench and stacked on the conductive layer superior.

在一些實施例中,形成半導體結構的方法中增加第二部分溝槽之寬度的增加量為約1奈米至約3奈米。In some embodiments, the method of forming the semiconductor structure increases the width of the second portion of the trench by about 1 nm to about 3 nm.

本揭示案是關於半導體結構與其形成的方法。每一字元線結構中的各個部分依據其所在的位置而具有不同的寬度。位於隔離區域的部分字元線結構具有較小寬度,從而增加字元線結構與相鄰元件的距離,使得隔離區域能提供較好的電性阻隔而減少半導體結構產生漏電之現象。同時,位於主動區域的部分字元線結構保有較大寬度,以提供足夠的通道面積而保持半導體結構的效能。The present disclosure relates to semiconductor structures and methods of forming them. Various parts in each word line structure have different widths according to their positions. Part of the word line structure located in the isolation region has a smaller width, so as to increase the distance between the word line structure and adjacent elements, so that the isolation region can provide better electrical isolation and reduce leakage of the semiconductor structure. At the same time, part of the word line structure located in the active region has a larger width to provide sufficient channel area and maintain the performance of the semiconductor structure.

當一個元件被稱為「在…上」時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為「直接在」另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙「及/或」包含了列出的關聯項目中的一個或多個的任何組合。When an element is referred to as being "on", it can generally mean that the element is directly on other elements, or there may be other elements present in between. Conversely, when an element is said to be "directly on" another element, it cannot have other elements in between. As used herein, the word "and/or" includes any combination of one or more of the associated listed items.

在本揭示案中,使用第一、第二與第三等等之詞彙,是用於描述各種元件、組件、區域、層與/或區塊是可以被理解的。但是這些元件、組件、區域、層與/或區塊不應該被這些術語所限制。這些詞彙只限於用來辨別單一元件、組件、區域、層與/或區塊。因此,在下文中的一第一元件、組件、區域、層與/或區塊也可被稱為第二元件、組件、區域、層與/或區塊,而不脫離本揭示案的本意。In the present disclosure, terms such as first, second and third are used to describe various elements, components, regions, layers and/or blocks to be understood. But these elements, components, regions, layers and/or blocks should not be limited by these terms. These terms are limited to identifying a single element, component, region, layer and/or block. Therefore, a first element, component, region, layer and/or block hereinafter may also be referred to as a second element, component, region, layer and/or block without departing from the original meaning of the present disclosure.

關於本揭示案中所使用之「約」一般通常係指數值之誤差或範圍約百分之二十以內,較好地是約百分之十以內,而更佳地則是約百分五之以內。文中若無明確說明,其所提及的數值皆視作為近似值,即如「約」所表示的誤差或範圍。As used in this disclosure, "about" generally means within about 20 percent, preferably within about 10 percent, and more preferably about 5 percent, of the error or range of the value of the index within. If there is no explicit statement in the text, the values mentioned are regarded as approximate values, that is, the error or range indicated by "approximately".

請參閱第1圖,第1圖根據本揭示案的一些實施例繪示半導體結構100之配置圖。半導體結構100可包括數個字元線(word line)結構110沿第一方向D1延伸,並且相鄰的字元線結構110以等距離沿第二方向D2排列相隔開。數個位元線(bit line)結構120沿第二方向D2延伸,並且配置在字元線結構110之上與字元線結構110交錯。同樣地,相鄰的位元線結構120以等距離沿第一方向D1相隔開並彼此平行。Please refer to FIG. 1 , which illustrates a configuration diagram of a semiconductor structure 100 according to some embodiments of the present disclosure. The semiconductor structure 100 may include a plurality of word line structures 110 extending along the first direction D1, and adjacent word line structures 110 are arranged at equal distances and separated from each other along the second direction D2. A plurality of bit line structures 120 extend along the second direction D2 and are arranged on the word line structures 110 to intersect with the word line structures 110 . Likewise, adjacent bit line structures 120 are equidistant apart along the first direction D1 and parallel to each other.

半導體結構100包括主動區域(active area)130和隔離區域140,其中主動區域130具有一短軸和一長軸。在一些實施例中,主動區域130的長軸沿第三方向D3延伸,其中第三方向與第二方向D2夾一角度θ。主動區域130之外的範圍為隔離區域140。The semiconductor structure 100 includes an active area 130 and an isolation area 140 , wherein the active area 130 has a short axis and a long axis. In some embodiments, the long axis of the active region 130 extends along a third direction D3, wherein the third direction forms an angle θ with the second direction D2. The area outside the active area 130 is the isolation area 140 .

位元線結構120可以透過直接接觸件(direct contact)150與主動區域130相連。每一個主動區域130可電性連接一個直接接觸件150。除此之外,數個接觸件160形成在主動區域130的長軸兩端,並介於兩兩相鄰的字元線結構110之間。在一些實施例中,接觸件160沿第一方向D1彼此隔開。接觸件160可電性連接儲存節點/電容器(未繪示)的下電極至相對應的主動區域130。如第1圖所示之實施例中,單個主動區域130可電性連接兩個接觸件160。The bit line structure 120 can be connected to the active area 130 through a direct contact 150 . Each active area 130 is electrically connected to a direct contact 150 . In addition, a plurality of contacts 160 are formed at both ends of the long axis of the active region 130 and between two adjacent word line structures 110 . In some embodiments, the contacts 160 are spaced apart from each other along the first direction D1. The contact 160 can electrically connect the lower electrode of the storage node/capacitor (not shown) to the corresponding active region 130 . In the embodiment shown in FIG. 1 , a single active region 130 can electrically connect two contacts 160 .

根據本揭示案的一些實施例,半導體結構100的每一個字元線結構110為沿第一方向D1延伸的線性形狀,並通過隔離區域140和主動區域130。因此,每一個字元線結構110可包括兩個部分,第一部分110A為形成於隔離區域140內的字元線結構110,以及第二部分110B為形成於主動區域130內的字元線結構110。在如第1圖所示之實施例中,每一個字元線結構110中的第一部分110A和第二部分110B可分別具有不同的寬度,其寬度大小取決於字元線結構110中各個部分所在之區域。According to some embodiments of the present disclosure, each word line structure 110 of the semiconductor structure 100 has a linear shape extending along the first direction D1 and passes through the isolation region 140 and the active region 130 . Therefore, each word line structure 110 may include two parts, the first part 110A is the word line structure 110 formed in the isolation region 140 , and the second part 110B is the word line structure 110 formed in the active region 130 . In the embodiment shown in FIG. 1, the first part 110A and the second part 110B in each word line structure 110 can have different widths respectively, and the width depends on where each part in the word line structure 110 is located. area.

詳細而言,形成於隔離區域140內的字元線結構110(即,字元線結構110的第一部分110A)具有第一寬度W1,形成於主動區域130內的字元線結構110(即,字元線結構110的第二部分110B)具有第二寬度W2,其中第一寬度W1異於第二寬度W2。在一些實施例中,第二寬度W2大於第一寬度W1,並且第二寬度W2較第一寬度W1寬約1.0奈米至約3.0奈米,例如1.0、1.5、2.0、2.5或3.0奈米。在一些實施例中,第二寬度W2可比第一寬度W1寬約2.0奈米。In detail, the word line structure 110 formed in the isolation region 140 (ie, the first portion 110A of the word line structure 110 ) has a first width W1, and the word line structure 110 formed in the active region 130 (ie, The second portion 110B) of the word line structure 110 has a second width W2, wherein the first width W1 is different from the second width W2. In some embodiments, the second width W2 is greater than the first width W1, and the second width W2 is wider than the first width W1 by about 1.0 nm to about 3.0 nm, such as 1.0, 1.5, 2.0, 2.5 or 3.0 nm. In some embodiments, the second width W2 may be wider than the first width W1 by about 2.0 nm.

從另一觀點來看,當每一個字元線結構110中的各個部分具有不同寬度時,字元線結構110中的各部分距離相鄰元件(例如,另一個字元線結構110)的長度亦有所差異。如第1圖所示,相鄰的第一部分110A(即,位於隔離區域140中的兩個相鄰的字元線結構110)之間的橫向距離(例如,沿第二方向D2的距離)為第一長度L1,在同一主動區域130內相鄰的第二部分110B (即,位於同一主動區域130內的兩個相鄰的字元線結構110)之間的橫向距離為第二長度L2。由於每一個字元線結構110中的各個部分具有不同寬度而使第一長度L1異於第二長度L2。在一些實施例中,第一長度L1大於第二長度L2,並且第一長度L1大於第二長度L2約1.0奈米至約3.0奈米,例如1.0、1.5、2.0、2.5或3.0奈米。在一些實施例中,第一長度L1可大於第二長度L2約2.0奈米。From another point of view, when the various parts in each word line structure 110 have different widths, the length of each part in the word line structure 110 from the adjacent element (for example, another word line structure 110) There are also differences. As shown in FIG. 1, the lateral distance (eg, the distance along the second direction D2) between adjacent first portions 110A (ie, two adjacent word line structures 110 located in the isolation region 140) is The first length L1, the lateral distance between adjacent second portions 110B in the same active region 130 (ie, two adjacent word line structures 110 in the same active region 130 ) is the second length L2. The first length L1 is different from the second length L2 due to the different widths of parts in each word line structure 110 . In some embodiments, the first length L1 is greater than the second length L2, and the first length L1 is greater than the second length L2 by about 1.0 nm to about 3.0 nm, such as 1.0, 1.5, 2.0, 2.5 or 3.0 nm. In some embodiments, the first length L1 may be greater than the second length L2 by about 2.0 nm.

同樣地,如第1圖所示,第一部分110A(即,位於隔離區域140中的字元線結構110)與第二部分110B(即,位於主動區域130中的字元線結構110)之間的橫向距離(例如,沿第二方向D2的距離)為第三長度L3,在不同主動區域130內相鄰的第二部分110B(即,位於不同主動區域130內的兩個相鄰的字元線結構110)之間的橫向距離為第四長度L4,其中第四長度L4實質上等於第二長度L2。由於每一個字元線結構110中的各部分具有不同寬度而使第三長度L3大於第四長度L4,並且第三長度L3大於第四長度L4約0.5奈米至約1.5奈米。在一些實施例中,第三長度L3可大於第四長度L4寬約1.0奈米。總括來說,在第一圖所示的實施例中,第一長度L1>第三長度L3>第二長度L2=第四長度L4。Likewise, as shown in FIG. 1 , between the first part 110A (that is, the word line structure 110 located in the isolation region 140 ) and the second part 110B (that is, the word line structure 110 located in the active region 130 ) The lateral distance (for example, the distance along the second direction D2) is the third length L3, and the adjacent second parts 110B in different active regions 130 (that is, two adjacent characters located in different active regions 130 The lateral distance between the wire structures 110) is a fourth length L4, wherein the fourth length L4 is substantially equal to the second length L2. The third length L3 is greater than the fourth length L4 due to the different widths of the portions in each word line structure 110 , and the third length L3 is greater than the fourth length L4 by about 0.5 nm to about 1.5 nm. In some embodiments, the third length L3 may be wider than the fourth length L4 by about 1.0 nm. In summary, in the embodiment shown in the first figure, the first length L1>the third length L3>the second length L2=the fourth length L4.

字元線結構110的第一部分110A和第二部分110B可分別具有不同的寬度導致字元線結構110中的第一部分110A和第二部分110B距離周圍元件的長度亦有所差異,從而可能進一步影響字元線結構110與周圍元件的電性阻隔效果。這是因為當隔離區域140包括介電材料時,字元線結構110和周圍元件的間隔長度可與介在字元線結構110和周圍元件之間的隔離區域140之厚度成正相關,進而影響字元線結構110和周圍元件之間的電性阻隔效果。因此,對於第一部分110A(即,位在隔離區域140中的字元線結構110)而言,具有較小的寬度的第一部分110A與周圍元件產生較大的間隔長度,並提升介於第一部分110A和周圍元件的隔離區域140之厚度,進而提高隔離區域的電性阻隔。The first portion 110A and the second portion 110B of the word line structure 110 may have different widths respectively, so that the lengths of the first portion 110A and the second portion 110B in the word line structure 110 from the surrounding elements are also different, which may further affect The electrical isolation effect between the word line structure 110 and surrounding components. This is because when the isolation region 140 includes a dielectric material, the distance between the word line structure 110 and the surrounding elements can be positively correlated with the thickness of the isolation region 140 between the word line structure 110 and the surrounding elements, thereby affecting the character The electrical barrier effect between the wire structure 110 and surrounding elements. Therefore, for the first part 110A (that is, the word line structure 110 located in the isolation region 140), the first part 110A with a smaller width produces a larger separation length with the surrounding elements, and improves the distance between the first part 110A and the surrounding elements. 110A and the thickness of the isolation region 140 of the surrounding components, thereby improving the electrical isolation of the isolation region.

請參閱第2圖,第2圖根據本揭示案的一些實施例繪示半導體結構100沿第1圖剖線A-A之截面圖。詳細而言,剖線A-A平行於第三方向D3。半導體結構100包括基材200,其中基材200具有主動區域130以及將主動區域130隔開的數個隔離區域140。基材200可進一步進行離子佈植製程以摻雜N型或P型摻雜物至基材200中。在一些實施例中,藉由摻雜N型或P型摻雜物至基材200的主動區域130中可形成源極/汲極區132。Please refer to FIG. 2 . FIG. 2 shows a cross-sectional view of the semiconductor structure 100 along line A-A in FIG. 1 according to some embodiments of the present disclosure. In detail, the section line A-A is parallel to the third direction D3. The semiconductor structure 100 includes a substrate 200 , wherein the substrate 200 has an active region 130 and a plurality of isolation regions 140 separating the active region 130 . The substrate 200 can be further subjected to an ion implantation process to dope N-type or P-type dopants into the substrate 200 . In some embodiments, the source/drain regions 132 can be formed by doping N-type or P-type dopants into the active region 130 of the substrate 200 .

如第2圖所示,半導體結構100的數個字元線結構110形成在基材200內,其中字元線結構110具有介電層112、導電層114和覆蓋層116。As shown in FIG. 2 , several word line structures 110 of the semiconductor structure 100 are formed in the substrate 200 , wherein the word line structures 110 have a dielectric layer 112 , a conductive layer 114 and a capping layer 116 .

在第2圖所示之截面圖中,繪示出三個字元線結構110,其中一個字元線結構110是在隔離區域140的第一部分110A,另兩個字元線結構110是在主動區域130的第二部分110B。如第2圖所示,第一部分110A具有第三寬度W3,第二部分110B具有第四寬度W4,其中第三寬度W3基本上相似於第一寬度W1而第四寬度W4基本上相似於第二寬度W2。進一步說明,第一寬度W1/第二寬度W2(沿第二方向D2)為第三寬度W3/第四寬度W4(沿第三方向D3)乘上cosθ。因此,原先第一寬度W1與第二寬度W2的關係可應用於第三寬度W3和第四寬度W4。舉例來說,在第二寬度W2大於第一寬度W1之實施例中,第三寬度W3可保持大於第四寬度W4的關係,並且寬度增加量可由前述的cosθ來進行換算。In the cross-sectional view shown in FIG. 2, three word line structures 110 are shown, one word line structure 110 is in the first part 110A of the isolation region 140, and the other two word line structures 110 are in the active The second portion 110B of the region 130 . As shown in FIG. 2, the first portion 110A has a third width W3, and the second portion 110B has a fourth width W4, wherein the third width W3 is substantially similar to the first width W1 and the fourth width W4 is substantially similar to the second width W4. Width W2. To further illustrate, the first width W1/second width W2 (along the second direction D2) is the third width W3/fourth width W4 (along the third direction D3) multiplied by cosθ. Therefore, the original relationship between the first width W1 and the second width W2 can be applied to the third width W3 and the fourth width W4. For example, in the embodiment where the second width W2 is greater than the first width W1, the third width W3 can maintain a relationship greater than the fourth width W4, and the width increase can be converted by the aforementioned cosθ.

應理解的是,第2圖繪出的字元線結構110的數量(三個)僅作為範例而非限制。實際上,字元線結構110的數量可基於產品設計和製程條件而調整。It should be understood that the number (three) of the word line structures 110 shown in FIG. 2 is only an example and not a limitation. Actually, the number of word line structures 110 can be adjusted based on product design and process conditions.

繼續參閱第2圖,基材200上方可依次設置為第一層間介電層220和第二層間介電層240。在一些實施例中,位元線結構120設置在第二層間介電層240中,而直接接觸件150設置於第一層間介電層220中,位元線結構120電性連接直接接觸件150。因此,位元線結構120可透過直接接觸件150電性連接基材200的主動區域130。Continuing to refer to FIG. 2 , a first interlayer dielectric layer 220 and a second interlayer dielectric layer 240 may be sequentially disposed on the substrate 200 . In some embodiments, the bit line structure 120 is disposed in the second interlayer dielectric layer 240, and the direct contact 150 is disposed in the first interlayer dielectric layer 220, and the bit line structure 120 is electrically connected to the direct contact. 150. Therefore, the bit line structure 120 can be electrically connected to the active region 130 of the substrate 200 through the direct contact 150 .

半導體結構100的接觸件160可包括第一接觸插塞162和第二接觸插塞164,其中第二接觸插塞164位於第一接觸插塞162上方,並且彼此電性連接。第二接觸插塞164透過第一接觸插塞162,可電性連接儲存節點/電容器(未繪示)的下電極至對應的主動區域130。在一些實施例中,第一接觸插塞162為埋入式接觸件(buried contact)。在一些實施例中,第二接觸插塞164為著陸墊(landing pad)。The contact 160 of the semiconductor structure 100 may include a first contact plug 162 and a second contact plug 164 , wherein the second contact plug 164 is located above the first contact plug 162 and electrically connected to each other. The second contact plug 164 can electrically connect the lower electrode of the storage node/capacitor (not shown) to the corresponding active region 130 through the first contact plug 162 . In some embodiments, the first contact plug 162 is a buried contact. In some embodiments, the second contact plug 164 is a landing pad.

在第2圖中,第一部分110A與第一接觸插塞162之間為距離S。由於第一部分110A具有較小的第三寬度W3,使得介於第一部分110A和第一接觸插塞162之間的隔離區域140的材料之厚度(實質上等於距離S)可以提供足夠的電性阻隔,以避免第一部分110A與第一接觸插塞162之間產生漏電。除此之外,具有較小第三寬度W3的第一部分110A亦可在後續製程中提供較多容錯空間,例如形成第一接觸插塞162的對位誤差。在一些實施例中,第一部分110A與第一接觸插塞162之間為距離S至少大於約2奈米。In FIG. 2 , the distance S is between the first portion 110A and the first contact plug 162 . Since the first portion 110A has a smaller third width W3, the thickness of the material of the isolation region 140 between the first portion 110A and the first contact plug 162 (substantially equal to the distance S) can provide sufficient electrical barrier , so as to avoid electric leakage between the first portion 110A and the first contact plug 162 . In addition, the first portion 110A with the smaller third width W3 can also provide more room for error tolerance in subsequent processes, such as the alignment error of forming the first contact plug 162 . In some embodiments, the distance S between the first portion 110A and the first contact plug 162 is at least greater than about 2 nm.

第1圖和第2圖僅作為例示性說明,圖示中所呈現的結構、形貌、或配置不應為本揭示案之限制。Figures 1 and 2 are for illustrative purposes only, and the structures, shapes, or configurations presented in the figures should not limit the present disclosure.

第3圖、第4B圖、第5圖、第6B圖、第7B圖、和第8圖至第10圖根據本揭示案的一些實施例繪示形成半導體結構100的各製程階段之截面圖,以及第4A圖、第6A圖、和第7A圖根據本揭示案的一些實施例繪示形成半導體結構100的各製程階段之配置圖。3, 4B, 5, 6B, 7B, and 8-10 illustrate cross-sectional views of various process stages of forming a semiconductor structure 100 according to some embodiments of the present disclosure, And Figures 4A, 6A, and 7A depict configurations of various process stages for forming semiconductor structure 100 according to some embodiments of the present disclosure.

應注意的是,當第3圖、第4A圖、第4B圖、第5圖、第6A圖、第6B圖、第7A圖、第7B圖、和第8圖至第10圖繪示或描述成一系列的操作或事件時,這些操作或事件的描述順序不應受到限制。例如,部分操作或事件可採取與本揭示案不同的順序、部分操作或事件可同時發生、部分操作或事件可以不須採用、及/或部分操作或事件可重複進行。並且,實際的製程可能須在形成半導體結構100之前、過程中、或之後進行額外的操作步驟以完整形成半導體結構100。因此,本揭示案可能將簡短地說明其中一些額外的操作步驟。再者,除非額外說明,否則第3圖、第4A圖、第4B圖、第5圖、第6A圖、第6B圖、第7A圖、第7B圖、和第8圖至第10圖談論到的相同的說明可直接應用至其他圖片上。It should be noted that when Fig. 3, Fig. 4A, Fig. 4B, Fig. 5, Fig. 6A, Fig. 6B, Fig. 7A, Fig. 7B, and Fig. 8 to Fig. 10 depict or describe When forming a sequence of operations or events, the order in which these operations or events are described should not be restricted. For example, some operations or events may be undertaken in a different order than in the present disclosure, some operations or events may occur concurrently, some operations or events may not be required, and/or some operations or events may be repeated. Moreover, the actual process may require additional steps before, during, or after forming the semiconductor structure 100 to completely form the semiconductor structure 100 . Therefore, this disclosure may briefly illustrate some of these additional operational steps. Furthermore, unless otherwise stated, Figures 3, 4A, 4B, 5, 6A, 6B, 7A, 7B, and 8-10 refer to The same instructions for , can be directly applied to other pictures.

請參閱第3圖,第3圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之截面圖。首先,接收一基材200。基材200為半導體材料,可包括矽,例如結晶矽、多晶矽、或無晶矽。基材200可包括元素半導體,例如鍺(Ge) 。基材200可包括合金半導體,例如矽鍺(SiGe)、碳化矽磷(SiPC)、磷化砷化鎵(GaAsP)、砷化鋁銦(AlInAs)、砷化鋁鎵(AlGaAs)、砷化鎵銦鎵(GaInAs)、磷化鎵銦(GaInP)、鎵銦磷化物(GaInAsP)、或其他合適的材料。基材200可包括化合物半導體,例如碳化矽(SiC)、磷化矽(SiP)、砷化鎵(GaAs) 、磷化鎵(GaP)、磷化銦(InP)、砷化銦(InAs)、銻化銦(InSb)、氧化鋅(ZnO)、硒化鋅(ZnSe)、硫化鋅(ZnS)、碲化鋅(ZnTe),硒化鎘(CdSe)、硫化鎘(CdS)、碲化鎘(CdTe)、或其他合適的材料。Please refer to FIG. 3 , which illustrates a cross-sectional view of one of the process stages of forming the semiconductor structure 100 according to some embodiments of the present disclosure. First, a substrate 200 is received. The substrate 200 is a semiconductor material, which may include silicon, such as crystalline silicon, polycrystalline silicon, or amorphous silicon. Substrate 200 may include an elemental semiconductor, such as germanium (Ge). The substrate 200 may include alloy semiconductors such as silicon germanium (SiGe), silicon carbide phosphide (SiPC), gallium arsenide phosphide (GaAsP), aluminum indium arsenide (AlInAs), aluminum gallium arsenide (AlGaAs), gallium arsenide Indium gallium (GaInAs), gallium indium phosphide (GaInP), gallium indium phosphide (GaInAsP), or other suitable materials. The substrate 200 may include compound semiconductors such as silicon carbide (SiC), silicon phosphide (SiP), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), Indium antimonide (InSb), zinc oxide (ZnO), zinc selenide (ZnSe), zinc sulfide (ZnS), zinc telluride (ZnTe), cadmium selenide (CdSe), cadmium sulfide (CdS), cadmium telluride ( CdTe), or other suitable materials.

除此之外,基材200可以是絕緣體上半導體(semiconductor-on-insulator)基材,例如絕緣體上矽(silicon-on-insulator, SOI)基材或是絕緣體上鍺(germanium-on-insulator, GeOI)基材。絕緣體上半導體基材可由氧佈植分離(separation by implantation of oxygen)技術、晶圓鍵合(wafer bonding)技術、其他合適的技術,或上述之組合製成。In addition, the substrate 200 may be a semiconductor-on-insulator (semiconductor-on-insulator) substrate, such as a silicon-on-insulator (SOI) substrate or germanium-on-insulator (germanium-on-insulator, GeOI) substrate. The semiconductor-on-insulator substrate can be made by separation by implantation of oxygen technology, wafer bonding technology, other suitable technologies, or a combination of the above.

請參閱第4A圖和第4B圖,第4A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之配置圖,第4B圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之第4A圖剖線A-A之截面圖。如第4A圖和第4B圖所示,形成隔離區域140在基材200內。隔離區域140的材料可包括氧化矽(silicon oxide)、氮化矽(silicon nitride)、和氮氧化矽(silicon oxynitride)以上三者中的至少一者。隔離區域140可為單層或多層結構。舉例來說,隔離區域140可包括氧化矽和氮化矽。在一些實施例中,可藉由淺溝渠絕緣(shallow trench isolation, STI)製程形成隔離區域140。在形成隔離區域140之後,位於隔離區域140周圍並且自基材200延伸出來的半導體材料可作為主動區域130,其中隔離區域140分隔主動區域130。Please refer to FIG. 4A and FIG. 4B. FIG. 4A shows a configuration diagram of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. A cross-sectional view of the semiconductor structure 100 along line A-A in FIG. 4A at one of the process stages. As shown in FIGS. 4A and 4B , an isolation region 140 is formed within the substrate 200 . The material of the isolation region 140 may include at least one of silicon oxide, silicon nitride, and silicon oxynitride. The isolation region 140 may be a single-layer or multi-layer structure. For example, the isolation region 140 may include silicon oxide and silicon nitride. In some embodiments, the isolation region 140 may be formed by a shallow trench isolation (STI) process. After the isolation region 140 is formed, the semiconductor material located around the isolation region 140 and extending from the substrate 200 can serve as the active region 130 , wherein the isolation region 140 separates the active region 130 .

請參閱第5圖,第5圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之截面圖。可進一步對基材200執行離子佈植製程以摻雜N型或P型摻雜物至基材200內。在一些實施例中,藉由摻雜N型或P型摻雜物至基材200中可形成源極/汲極區132在主動區域130中。N型摻雜物可包括磷(phosphorus)或砷(arsenic)。P型摻雜物可包括硼(boron)、或二氟化硼(boron fluoride)。Please refer to FIG. 5 , which illustrates a cross-sectional view of one of the process stages of forming the semiconductor structure 100 according to some embodiments of the present disclosure. An ion implantation process may be further performed on the substrate 200 to dope N-type or P-type dopants into the substrate 200 . In some embodiments, source/drain regions 132 can be formed in the active region 130 by doping N-type or P-type dopants into the substrate 200 . N-type dopants may include phosphorus or arsenic. The P-type dopant may include boron or boron fluoride.

請參閱第6A圖和第6B圖,第6A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之配置圖,第6B圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之第6A圖剖線A-A之截面圖。如第6A圖和第6B圖所示,形成溝槽600在基材200內。溝槽600為線性形狀並且延伸通過隔離區域140和主動區域130。因此,每一個溝槽600可包括第一部分溝槽600A和第二部分溝槽600B:第一部分溝槽600A是位在隔離區域140的溝槽600,以及第二部分溝槽600B是位在主動區域130的溝槽600。Please refer to FIG. 6A and FIG. 6B. FIG. 6A shows a configuration diagram of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. A cross-sectional view of the line A-A in FIG. 6A of one of the process stages of the semiconductor structure 100 . As shown in FIGS. 6A and 6B , trenches 600 are formed in the substrate 200 . The trench 600 has a linear shape and extends through the isolation region 140 and the active region 130 . Therefore, each trench 600 may include a first partial trench 600A and a second partial trench 600B: the first partial trench 600A is the trench 600 located in the isolation region 140, and the second partial trench 600B is located in the active region 130 grooves 600 .

在一些實施例中,第一部分溝槽600A和第二部分溝槽600B實質上相同,差異僅在於所處之區域(隔離區域140和主動區域130)。因此,第一部分溝槽600A和第二部分溝槽600B可具有相同的寬度,例如第一寬度W1。換句話說,第6A圖和第6B圖所示的溝槽600可具有均一的第一寬度W1。In some embodiments, the first part of the trench 600A and the second part of the trench 600B are substantially the same, and the only difference lies in the regions where they are located (the isolation region 140 and the active region 130 ). Therefore, the first partial trench 600A and the second partial trench 600B may have the same width, eg, the first width W1. In other words, the trench 600 shown in FIG. 6A and FIG. 6B may have a uniform first width W1.

在第6B圖所示之實施例中,溝槽600的形成包括在基材200上形成圖案化遮罩620(未繪示於第6A圖),接著使用適當之蝕刻製程,例如乾式蝕刻製程或濕式蝕刻製程,以蝕刻基材200而形成溝槽600,其中形成的溝槽600具有第一寬度W1。在一些實施例中,圖案化遮罩620可包括氧化矽、氮化矽、氮氧化矽、其他合適的材料、或上述之組合。In the embodiment shown in FIG. 6B, the formation of the trench 600 includes forming a patterned mask 620 (not shown in FIG. 6A) on the substrate 200, followed by an appropriate etching process, such as a dry etching process or The wet etching process is used to etch the substrate 200 to form the trench 600, wherein the formed trench 600 has a first width W1. In some embodiments, the patterned mask 620 may include silicon oxide, silicon nitride, silicon oxynitride, other suitable materials, or combinations thereof.

具有第一寬度W1的溝槽600在後續製程中可定義出位於隔離區域140的字元線結構110(即,第一部分110A)的寬度。如前文所述,當第一部分110A具有較小寬度時,可增加字元線結構110與相鄰元件之間的距離,進而使隔離區域140能提供較好的電性阻隔。因此,第一寬度W1可根據於產品設計和製程條件而定。The trench 600 with the first width W1 can define the width of the word line structure 110 (ie, the first portion 110A) located in the isolation region 140 in subsequent processes. As mentioned above, when the first portion 110A has a smaller width, the distance between the word line structure 110 and adjacent devices can be increased, so that the isolation region 140 can provide better electrical isolation. Therefore, the first width W1 can be determined according to product design and process conditions.

第6B圖以及下文的第7B圖和第8圖至第10圖繪示了三個溝槽600,其中一個溝槽600是在隔離區域140的第一部分溝槽600A,另兩個溝槽600是在主動區域130的第二部分溝槽600B。因截面圖為單一切面,在閱讀第6B圖、第7B圖和第8圖至第10圖之截面圖時應留意實際上每一溝槽600可同時具有第一部分溝槽600A和第二部分溝槽600B,如第6A圖和第7A圖所示。FIG. 6B and the following FIG. 7B and FIG. 8 to FIG. 10 depict three trenches 600, wherein one trench 600 is the first part trench 600A in the isolation region 140, and the other two trenches 600 are In the second portion of the trench 600B of the active region 130 . Because the cross-sectional view is a single cut plane, when reading the cross-sectional views of Figures 6B, 7B, and 8 to 10, it should be noted that in fact, each groove 600 can have the first part of the groove 600A and the second part at the same time. The groove 600B is shown in FIG. 6A and FIG. 7A.

請參閱第7A圖和第7B圖,第7A圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之配置圖,第7B圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之第7A圖剖線A-A之截面圖。如第7A圖和第7B圖所示,在形成溝槽600之後,增加第二部分溝槽600B(即,位於主動區域130內的溝槽600)之寬度。在一些實施例中,第一部分溝槽600A可維持於第一寬度W1,第二部分溝槽600B則可具有第二寬度W2。Please refer to FIG. 7A and FIG. 7B. FIG. 7A shows a configuration diagram of one of the process stages of forming semiconductor structure 100 according to some embodiments of the present disclosure, and FIG. A cross-sectional view of the semiconductor structure 100 along the line A-A in FIG. 7A at one of the process stages. As shown in FIGS. 7A and 7B , after forming the trench 600 , the width of the second portion of the trench 600B (ie, the trench 600 located in the active region 130 ) is increased. In some embodiments, the first part of the trench 600A can maintain the first width W1, and the second part of the trench 600B can have the second width W2.

在一些實施例中,第二部分溝槽600B從第一寬度W1增加至第二寬度W2,其中第二寬度W2比第一寬度W1寬約1.0奈米至約3.0奈米,例如1.0、1.5、2.0、2.5或3.0奈米。換句話說,第二部分溝槽600B之寬度的增加量為約1.0奈米至約3.0奈米,例如1.0、1.5、2.0、2.5或3.0奈米。在一些實施例中,第二部分溝槽600B之寬度的增加量為約2.0奈米。In some embodiments, the second partial trench 600B increases from the first width W1 to the second width W2, wherein the second width W2 is wider than the first width W1 by about 1.0 nm to about 3.0 nm, such as 1.0, 1.5, 2.0, 2.5 or 3.0 nm. In other words, the increase of the width of the second portion of the trench 600B is about 1.0 nm to about 3.0 nm, such as 1.0, 1.5, 2.0, 2.5 or 3.0 nm. In some embodiments, the increase in width of the second portion of the trench 600B is about 2.0 nm.

藉由選擇性地增加第二部分溝槽600B的寬度,使字元線結構110位於主動區域130可具有較大寬度。具有第二寬度W2的第二部分溝槽600B在後續製程中可定義出位於主動區域130的字元線結構110(即,第二部分110B),而不影響到隔離區域140的字元線結構110(即,第一部分110A)的第一寬度W1。藉此,半導體結構100仍可提供足夠的通道面積以保持半導體結構100的效能。By selectively increasing the width of the second portion of the trench 600B, the word line structure 110 located in the active region 130 can have a larger width. The second part of the trench 600B having the second width W2 can define the word line structure 110 in the active region 130 (ie, the second part 110B) in subsequent processes without affecting the word line structure in the isolation region 140 110 (ie, the first portion 110A) has a first width W1. Accordingly, the semiconductor structure 100 can still provide sufficient channel area to maintain the performance of the semiconductor structure 100 .

增加第二部分溝槽600B之寬度包括使用蝕刻製程。在使用蝕刻製程之實施例中,可藉由進行選擇性蝕刻使蝕刻製程對主動區域130的材料之移除速率大於對隔離區域140的材料之移除速率。在一些實施例中,於選擇性蝕刻製程中,主動區域130的材料對隔離區域140的材料之蝕刻選擇比至少大於約5。在一實施例中,蝕刻製程為等向性(isotropic)蝕刻。Increasing the width of the second portion of the trench 600B includes using an etching process. In an embodiment using an etching process, the etching process may remove material from the active region 130 at a rate greater than that from the isolation region 140 by performing selective etching. In some embodiments, during the selective etching process, the etching selectivity ratio of the material of the active region 130 to the material of the isolation region 140 is at least greater than about 5. In one embodiment, the etching process is isotropic etching.

當主動區域130的材料包括矽而隔離區域140的材料包括氧化矽時,蝕刻製程可使用氣體,其中氣體可包括含氮氣體、含氟氣體、其他合適的氣體、和上述之組合。含氮氣體可包括氨或三氟化氮,但本揭示案不限於此。含氟氣體可包括氟化氫或三氟化氮,但不揭示案不限於此。When the material of the active region 130 includes silicon and the material of the isolation region 140 includes silicon oxide, the etching process may use gases, wherein the gases may include nitrogen-containing gases, fluorine-containing gases, other suitable gases, and combinations thereof. The nitrogen-containing gas may include ammonia or nitrogen trifluoride, but the disclosure is not limited thereto. The fluorine-containing gas may include hydrogen fluoride or nitrogen trifluoride, but the disclosure is not limited thereto.

蝕刻製程可搭配使用電漿。藉由調整電漿之操作參數,電漿與蝕刻製程中使用的氣體交互作用而產生自由基(radical)狀態之蝕刻劑。在一些實施例中,電漿產生氫的自由基作為蝕刻劑。在一些實施例中,電漿產生氟的自由基作為蝕刻劑。接著,將電漿與自由基狀態之蝕刻劑分離。 在一些實施例中,可藉由帶電光柵(未繪出)其阻止來自電漿的帶電離子的運動,並允許不帶電粒子(例如,自由基狀態之蝕刻劑)穿過帶電光柵。舉例而言,帶電光柵可藉由排斥或吸引帶電離子來防止帶電離子(例如,帶正電離子或帶負電離子)穿過。任何元件可分離電漿和自由基狀態之蝕刻劑皆可適用於本揭示案。The etching process can be combined with the use of plasma. By adjusting the operating parameters of the plasma, the plasma interacts with the gas used in the etching process to generate an etchant in a radical state. In some embodiments, the plasma generates hydrogen radicals as an etchant. In some embodiments, the plasma generates fluorine radicals as an etchant. Next, the plasma is separated from the etchant in a free radical state. In some embodiments, a charged grating (not shown) may be used to block the movement of charged ions from the plasma and allow uncharged particles (eg, etchant in a free radical state) to pass through the charged grating. For example, a charged grating can prevent the passage of charged ions (eg, positively charged ions or negatively charged ions) by repelling or attracting charged ions. Any etchant that can separate the plasmonic and radical states of a device is suitable for use in the present disclosure.

接下來,自由基狀態之蝕刻劑可擴散至第二部分溝槽600B內並可與主動區域130的材料進行反應。藉由自由基狀態之蝕刻劑,蝕刻製程中主動區域130的材料對隔離區域140的材料之蝕刻選擇比可有所提升,以減少蝕刻過程中對隔離區域140的材料之損耗。在一些實施例中,隔離區域140的材料於蝕刻製程中的厚度損耗量少於約0.2奈米。除此之外,使用自由基狀態之蝕刻劑的蝕刻製程為等向性蝕刻。Next, the etchant in the free radical state can diffuse into the second partial trench 600B and react with the material of the active region 130 . Using the etchant in the free radical state, the etching selectivity of the material of the active region 130 to the material of the isolation region 140 during the etching process can be improved, so as to reduce the loss of the material of the isolation region 140 during the etching process. In some embodiments, the thickness loss of the material of the isolation region 140 during the etching process is less than about 0.2 nm. In addition, the etching process using the etchant in the free radical state is isotropic etching.

在一些實施例中,在第二部分溝槽600B的寬度增加之後,圖案化遮罩620的一部分700可能會懸突在第二部分溝槽600B的開口,如第7B圖所示。圖案化遮罩620的一部分700懸突在第二部分溝槽600B的開口之長度700L可取決於第二部分溝槽600B之寬度的增加量。在一些實施例中,長度700L可為約0.5奈米和約1.5奈米的範圍之間。在一些實施例中,長度700L可為約1.0奈米。在另一些實施例中,在第二部分溝槽600B的寬度增加之前,可先自基材200上移除圖案化遮罩620。In some embodiments, after the width of the second partial trench 600B is increased, a portion 700 of the patterned mask 620 may overhang the opening of the second partial trench 600B, as shown in FIG. 7B . The length 700L of the portion 700 of the patterned mask 620 overhanging the opening of the second partial trench 600B may depend on an increase in the width of the second partial trench 600B. In some embodiments, length 700L may range between about 0.5 nanometers and about 1.5 nanometers. In some embodiments, length 700L may be about 1.0 nanometers. In other embodiments, the patterned mask 620 may be removed from the substrate 200 before the width of the second portion of the trench 600B is increased.

請參閱第8圖,第8圖根據本揭示案的一些實施例繪示形成第2圖的半導體結構100的其中一個製程階段之截面圖。如第8圖所示,形成介電層112在溝槽600(包括第一部分溝槽600A和第二部分溝槽600B)的內表面600S上。在一些實施例中,介電層112可保形地覆蓋溝槽600的內表面600S。介電層112由任何合適的介電材料形成,介電材料可包括氧化矽、氮化矽、氮氧化矽、高介電常數材料(例如,氧化鉿(HfO 2)、氧化鋯(ZrO 2)、或五氧化二鉭(Ta 2O 5))中的至少一種。介電層112可以是單層或是多層結構。舉例來說,具有雙層結構的介電層112可包括氧化矽和氮化矽,但本揭露並不限於此。形成介電層112在溝槽600的內表面600S上的方法可包括使用CVD製程、ALD製程、氧電漿氧化(oxygen plasma oxidation)製程、熱氧化(thermal oxidation)製程、其他合適的技術、或上述之組合。 Please refer to FIG. 8 , which illustrates a cross-sectional view of one of the process stages of forming the semiconductor structure 100 of FIG. 2 according to some embodiments of the present disclosure. As shown in FIG. 8 , a dielectric layer 112 is formed on the inner surface 600S of the trench 600 (including the first partial trench 600A and the second partial trench 600B). In some embodiments, the dielectric layer 112 may conformally cover the inner surface 600S of the trench 600 . The dielectric layer 112 is formed of any suitable dielectric material, and the dielectric material may include silicon oxide, silicon nitride, silicon oxynitride, high dielectric constant materials (eg, hafnium oxide (HfO 2 ), zirconium oxide (ZrO 2 ) , or at least one of tantalum pentoxide (Ta 2 O 5 )). The dielectric layer 112 can be a single layer or a multi-layer structure. For example, the dielectric layer 112 having a double-layer structure may include silicon oxide and silicon nitride, but the disclosure is not limited thereto. The method of forming the dielectric layer 112 on the inner surface 600S of the trench 600 may include using CVD process, ALD process, oxygen plasma oxidation (oxygen plasma oxidation) process, thermal oxidation (thermal oxidation) process, other suitable techniques, or combination of the above.

請參閱第9圖,第9圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之截面圖。如第9圖所示,形成導電層114在溝槽600內,其中該介電層112包覆該導電層114。導電層114所在位置和源極/汲極區132至少一部分地重疊。換言之,源極/汲極區132設置於導電層114相對的兩側。導電層114可以是半導體、金屬、金屬氮化物、金屬矽化物、其他合適的導電材料、或上述之組合。舉例來說,導電層114可包括摻雜的多晶矽、鈦(Ti)、鎢(W)、鉭(Ta)、氮化鈦(TiN)、氮化鎢(WN)、氮化鉭(TaN)、氮化鈦矽(TiSiN)、氮化鉭矽(TaSiN)、氮化鎢矽(WSiN)、其他合適的導電材料、或上述之組合。Please refer to FIG. 9, which illustrates a cross-sectional view of one of the process stages of forming the semiconductor structure 100 according to some embodiments of the present disclosure. As shown in FIG. 9 , a conductive layer 114 is formed in the trench 600 , wherein the dielectric layer 112 covers the conductive layer 114 . The location of the conductive layer 114 at least partially overlaps with the source/drain region 132 . In other words, the source/drain regions 132 are disposed on opposite sides of the conductive layer 114 . The conductive layer 114 may be semiconductor, metal, metal nitride, metal silicide, other suitable conductive materials, or a combination thereof. For example, the conductive layer 114 may include doped polysilicon, titanium (Ti), tungsten (W), tantalum (Ta), titanium nitride (TiN), tungsten nitride (WN), tantalum nitride (TaN), Titanium silicon nitride (TiSiN), tantalum silicon nitride (TaSiN), tungsten silicon nitride (WSiN), other suitable conductive materials, or combinations thereof.

請參閱第10圖,第10圖根據本揭示案的一些實施例繪示形成半導體結構100的其中一個製程階段之截面圖。如第10圖所示,形成覆蓋層116在溝槽600內並堆疊在導電層114上。覆蓋層116的材料可包括氧化矽、氮化矽、氮氧化矽。在一些實施例中,覆蓋層116的材料包括氮化矽。Please refer to FIG. 10 , which illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure 100 according to some embodiments of the present disclosure. As shown in FIG. 10 , a capping layer 116 is formed within the trench 600 and stacked on the conductive layer 114 . The material of the capping layer 116 may include silicon oxide, silicon nitride, silicon oxynitride. In some embodiments, the material of the capping layer 116 includes silicon nitride.

於第10圖之後,半導體結構100的字元線結構110已完成,字元線結構110包括位於隔離區域140的第一部分110A和位於主動區域130的第二部分110B。接續可進行習知之製程技術來形成如第2圖所示之半導體結構100。After FIG. 10 , the word line structure 110 of the semiconductor structure 100 is completed. The word line structure 110 includes a first portion 110A located in the isolation region 140 and a second portion 110B located in the active region 130 . The semiconductor structure 100 shown in FIG. 2 can then be formed by performing conventional manufacturing techniques.

本揭示案是關於半導體結構與其形成的方法。每一字元線結構的各部分依據其所在的位置而具有不同的寬度,字元線結構的各部分所具有的不同寬度能提供不同的功能,從而提升半導體結構的製程良率。位於隔離區域的部分字元線結構具有較小寬度,從而增加字元線結構與相鄰元件的距離,使得隔離區域能提供較好的電性阻隔而降低半導體結構產生漏電之疑慮。同時,位於主動區域的部分字元線結構保有較大寬度,從而提供足夠的通道面積而保持半導體結構的效能。The present disclosure relates to semiconductor structures and methods of forming them. Each part of each word line structure has different widths according to its location, and the different widths of each part of the word line structure can provide different functions, thereby improving the process yield of the semiconductor structure. Part of the word line structure in the isolation region has a smaller width, thereby increasing the distance between the word line structure and adjacent devices, so that the isolation region can provide better electrical isolation and reduce the possibility of leakage in the semiconductor structure. At the same time, part of the word line structure located in the active area maintains a larger width, thereby providing sufficient channel area and maintaining the performance of the semiconductor structure.

以上概略說明了本揭示案數個實施例的特徵,使所屬技術領域內具有通常知識者對於本揭示案可更為容易理解。任何所屬技術領域內具有通常知識者應瞭解到本說明書可輕易作為其他結構或製程的變更或設計基礎,以進行相同於本揭示案實施例的目的及/或獲得相同的優點。任何所屬技術領域內具有通常知識者亦可理解與上述等同的結構並未脫離本揭示案之精神及保護範圍內,且可在不脫離本揭示案之精神及範圍內,可作更動、替代與修改。The features of several embodiments of the present disclosure are briefly described above, so that those skilled in the art can understand the present disclosure more easily. Those skilled in the art should understand that this specification can be easily used as a basis for other structural or process changes or designs to achieve the same purpose and/or obtain the same advantages as the embodiments of the present disclosure. Anyone with ordinary knowledge in the technical field can also understand that the structure equivalent to the above does not depart from the spirit and protection scope of the disclosure, and can be modified, substituted and Revise.

100:半導體結構 110:字元線結構 110A:第一部分 110B:第二部分 112:介電層 114:導電層 116:覆蓋層 120:位元線結構 130:主動區域 132:源極/汲極區 140:隔離區域 150:直接接觸件 160:接觸件 162:第一接觸插塞 164:第二接觸插塞 200:基材 220:第一層間介電層 240:第二層間介電層 600:溝槽 600A:第一部分溝槽 600B:第二部分溝槽 600S:內表面 620:圖案化遮罩 700:部分 700L:長度 A-A:線 D1:第一方向 D2:第二方向 D3:第三方向 L1:第一長度 L2:第二長度 L3:第三長度 L4:第四長度 W1:第一寬度 W2:第二寬度 W3:第三寬度 W4:第四寬度 S:距離 θ:角度 100: Semiconductor Structures 110: Character line structure 110A: Part I 110B: Part Two 112: dielectric layer 114: conductive layer 116: Overlay 120: bit line structure 130: active area 132: source/drain region 140: Isolation area 150: direct contact 160: contact piece 162: first contact plug 164: second contact plug 200: Substrate 220: the first interlayer dielectric layer 240: the second interlayer dielectric layer 600: Groove 600A: first part groove 600B: Second part groove 600S: inner surface 620: Patterned mask 700: part 700L: Length A-A: line D1: the first direction D2: Second direction D3: Third direction L1: first length L2: second length L3: third length L4: fourth length W1: first width W2: second width W3: third width W4: fourth width S: Distance θ: angle

閱讀以下實施例時搭配附圖以清楚理解本揭示案的觀點。應注意的是,根據業界的標準做法,各種特徵並未按照比例繪製。事實上,為了能清楚地討論,各種特徵的尺寸可能任意地放大或縮小。 第1圖根據本揭示案的一些實施例繪示半導體結構之配置圖。 第2圖根據本揭示案的一些實施例繪示半導體結構沿第1圖剖線A-A之截面圖。 第3圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之截面圖。 第4A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之配置圖。 第4B圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之第4A圖剖線A-A之截面圖。 第5圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之截面圖。 第6A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之配置圖。 第6B圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之第6A圖剖線A-A之截面圖。 第7A圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之配置圖。 第7B圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之第7A圖剖線A-A之截面圖。 第8圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之截面圖。 第9圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之截面圖。 第10圖根據本揭示案的一些實施例繪示形成半導體結構的其中一個製程階段之截面圖。 The following embodiments are read together with the accompanying drawings to clearly understand the viewpoints of the present disclosure. It should be noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily expanded or reduced for clarity of discussion. FIG. 1 illustrates a configuration diagram of a semiconductor structure according to some embodiments of the present disclosure. FIG. 2 shows a cross-sectional view of a semiconductor structure along line A-A of FIG. 1, according to some embodiments of the present disclosure. FIG. 3 illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. FIG. 4A illustrates a configuration diagram of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. 4B illustrates a cross-sectional view along line A-A of FIG. 4A during one of the process stages of forming a semiconductor structure, according to some embodiments of the present disclosure. FIG. 5 illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. FIG. 6A illustrates a configuration diagram of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. FIG. 6B illustrates a cross-sectional view along line A-A of FIG. 6A during one of the process stages of forming a semiconductor structure, according to some embodiments of the present disclosure. FIG. 7A illustrates a configuration diagram of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. 7B illustrates a cross-sectional view along line A-A of FIG. 7A during one of the process stages of forming a semiconductor structure, according to some embodiments of the present disclosure. FIG. 8 illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. FIG. 9 illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure. FIG. 10 illustrates a cross-sectional view of one of the process stages of forming a semiconductor structure according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

100:半導體結構 100: Semiconductor Structures

110:字元線結構 110: Character line structure

110A:第一部分 110A: Part I

110B:第二部分 110B: Part Two

120:位元線結構 120: bit line structure

130:主動區域 130: active area

150:直接接觸件 150: direct contact

160:接觸件 160: contact piece

A-A:線 A-A: line

D1:第一方向 D1: the first direction

D2:第二方向 D2: Second direction

D3:第三方向 D3: Third direction

L1:第一長度 L1: first length

L2:第二長度 L2: second length

L3:第三長度 L3: third length

L4:第四長度 L4: fourth length

W1:第一寬度 W1: first width

W2:第二寬度 W2: second width

θ:角度 θ: angle

Claims (6)

一種形成半導體結構的方法,包括:接收一基材;形成一隔離區域和一主動區域在該基材內;形成一溝槽在該基材內,該溝槽為線性形狀並延伸通過該基材的該隔離區域和該基材的該主動區域,該溝槽包括一第一部分溝槽和一第二部分溝槽,其中該第一部分溝槽位於該隔離區域而該第二部分溝槽位於該主動區域;在形成該溝槽之後,藉由乾式蝕刻製程增加該第二部分溝槽之寬度,其中乾式蝕刻製程包括使用一氣體與一電漿,該氣體與該電漿彼此作用而產生一自由基狀態的蝕刻劑,以及將該電漿與該自由基狀態的蝕刻劑分離使得該自由基狀態的蝕刻劑擴散至該溝槽內;形成一介電層在該溝槽的內表面上;形成一導電層在該溝槽內,其中該介電層包覆該導電層;以及形成一覆蓋層在該溝槽內並堆疊在該導電層上。 A method of forming a semiconductor structure, comprising: receiving a substrate; forming an isolation region and an active region in the substrate; forming a trench in the substrate, the trench being linear in shape and extending through the substrate The isolation region and the active region of the substrate, the trench includes a first part of the trench and a second part of the trench, wherein the first part of the trench is located in the isolation region and the second part of the trench is located in the active region; after forming the trench, increasing the width of the second portion of the trench by a dry etching process, wherein the dry etching process includes using a gas and a plasma, the gas and the plasma interact to generate a free radical The etchant in the state, and the plasma is separated from the etchant in the free radical state so that the etchant in the free radical state diffuses into the trench; a dielectric layer is formed on the inner surface of the trench; a A conductive layer is in the trench, wherein the dielectric layer covers the conductive layer; and a covering layer is formed in the trench and stacked on the conductive layer. 如請求項1所述之形成半導體結構的方法,其中增加該第二部分溝槽之寬度的增加量為1奈米至3奈米。 The method for forming a semiconductor structure as claimed in claim 1, wherein increasing the width of the second part of the trench is 1 nm to 3 nm. 如請求項1所述之形成半導體結構的方法,其中該自由基狀態的蝕刻劑蝕刻該主動區域的材料比蝕刻 該隔離區域的材料之蝕刻選擇比至少大於5。 The method for forming a semiconductor structure as claimed in claim 1, wherein the etchant in the free radical state etches the material of the active region more than etching The etching selectivity ratio of the material of the isolation region is at least greater than 5. 如請求項1所述之形成半導體結構的方法,其中該氣體包括氨。 The method of forming a semiconductor structure as claimed in claim 1, wherein the gas comprises ammonia. 如請求項1所述之形成半導體結構的方法,其中該氣體包括三氟化氮。 The method of forming a semiconductor structure as claimed in claim 1, wherein the gas comprises nitrogen trifluoride. 如請求項1所述之形成半導體結構的方法,其中該自由基狀態的蝕刻劑包括氫的自由基或氟的自由基。 The method of forming a semiconductor structure as claimed in claim 1, wherein the etchant in a free radical state includes hydrogen free radicals or fluorine free radicals.
TW110118940A 2021-05-25 2021-05-25 Semiconductor structure and method of fabricating the same TWI779627B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110118940A TWI779627B (en) 2021-05-25 2021-05-25 Semiconductor structure and method of fabricating the same
CN202110702607.4A CN115394777A (en) 2021-05-25 2021-06-24 Semiconductor structure and forming method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110118940A TWI779627B (en) 2021-05-25 2021-05-25 Semiconductor structure and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI779627B true TWI779627B (en) 2022-10-01
TW202247418A TW202247418A (en) 2022-12-01

Family

ID=84113829

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118940A TWI779627B (en) 2021-05-25 2021-05-25 Semiconductor structure and method of fabricating the same

Country Status (2)

Country Link
CN (1) CN115394777A (en)
TW (1) TWI779627B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729515A (en) * 2006-01-23 2007-08-01 Hynix Semiconductor Inc Semiconductor device and method for fabricating the same
TW200814141A (en) * 2006-09-08 2008-03-16 Hynix Semiconductor Inc Semiconductor device with a bulb-type recess gate
CN111223862A (en) * 2018-11-26 2020-06-02 三星电子株式会社 Semiconductor device and method of manufacturing the same
CN111640750A (en) * 2019-11-21 2020-09-08 福建省晋华集成电路有限公司 Memory and forming method thereof
TW202034495A (en) * 2019-03-12 2020-09-16 華邦電子股份有限公司 Buried word line structure
TW202118013A (en) * 2019-10-23 2021-05-01 南亞科技股份有限公司 Semiconductor structure and fabrication method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200729515A (en) * 2006-01-23 2007-08-01 Hynix Semiconductor Inc Semiconductor device and method for fabricating the same
TW200814141A (en) * 2006-09-08 2008-03-16 Hynix Semiconductor Inc Semiconductor device with a bulb-type recess gate
CN111223862A (en) * 2018-11-26 2020-06-02 三星电子株式会社 Semiconductor device and method of manufacturing the same
TW202034495A (en) * 2019-03-12 2020-09-16 華邦電子股份有限公司 Buried word line structure
TW202118013A (en) * 2019-10-23 2021-05-01 南亞科技股份有限公司 Semiconductor structure and fabrication method thereof
CN111640750A (en) * 2019-11-21 2020-09-08 福建省晋华集成电路有限公司 Memory and forming method thereof

Also Published As

Publication number Publication date
CN115394777A (en) 2022-11-25
TW202247418A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI723288B (en) Semiconductor device and methods of forming same
TWI618242B (en) Semiconductor device and method for forming the same
US10242990B2 (en) Structure featuring ferroelectric capacitance in interconnect level for steep sub-threshold complementary metal oxide semiconductor transistors
US9356027B1 (en) Dual work function integration for stacked FinFET
TW201913817A (en) Semiconductor structure and method of forming same
TWI643252B (en) Method for forming semiconductor devices
CN112563266A (en) Semiconductor device with a plurality of semiconductor chips
TWI787773B (en) Integrated circuit structure and method for forming semiconductor device
TWI751611B (en) Integrated circuit device and method of forming the same
TW202131389A (en) Semiconductor structure and method forming the same
US20220085026A1 (en) Semiconductor devices
TWI690055B (en) Memory device and method for fabricating the same
TWI779627B (en) Semiconductor structure and method of fabricating the same
TWI774346B (en) Integrated circuit structure and method of forming the same
US20210359094A1 (en) Semiconductor structure and method for forming same
TW202201630A (en) Semiconductor structure
TW202230611A (en) Semiconductor device and method for forming the same
TWI779629B (en) Semiconductor structure and method of fabricating the same
TW202109635A (en) Method of forming semiconductor device
US11502169B2 (en) Nanosheet semiconductor devices with n/p boundary structure
KR102605396B1 (en) Ferroelectric device and method of fabricating the same
TWI735954B (en) Semiconductor evice and forming method thereof
TWI795774B (en) Gapfill structure and manufacturing methods thereof
TWI807706B (en) Semiconductor device and method of manufacturing same
US20220359736A1 (en) Forming 3D Transistors Using 2D Van Der WAALS Materials

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent