TWI778542B - Resonance control device and resonance control method thereof - Google Patents

Resonance control device and resonance control method thereof Download PDF

Info

Publication number
TWI778542B
TWI778542B TW110108529A TW110108529A TWI778542B TW I778542 B TWI778542 B TW I778542B TW 110108529 A TW110108529 A TW 110108529A TW 110108529 A TW110108529 A TW 110108529A TW I778542 B TWI778542 B TW I778542B
Authority
TW
Taiwan
Prior art keywords
voltage
frequency
parameter
modulation signal
output
Prior art date
Application number
TW110108529A
Other languages
Chinese (zh)
Other versions
TW202236788A (en
Inventor
盧信宏
黃柏翰
Original Assignee
大陸商明緯(廣州)電子有限公司
明緯企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商明緯(廣州)電子有限公司, 明緯企業股份有限公司 filed Critical 大陸商明緯(廣州)電子有限公司
Priority to TW110108529A priority Critical patent/TWI778542B/en
Publication of TW202236788A publication Critical patent/TW202236788A/en
Application granted granted Critical
Publication of TWI778542B publication Critical patent/TWI778542B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本發明係揭露一種諧振控制裝置及其諧振控制方法,諧振控制裝置包含一迴授控制器與一處理器。迴授控制器接收一參考電壓與一輸出電壓,並利用參考電壓對輸出電壓進行電壓補償,以產生一控制參數。處理器接收控制參數,以據此與切換參數產生脈波調變訊號,以驅動諧振轉換器調整輸出電壓。每一脈波調變訊號具有最大頻率與最小頻率,最大頻率對應切換參數。在控制參數大於或等於切換參數時,脈波調變訊號根據控制參數與切換參數調整頻率,或控制諧振轉換器在脈波調變訊號之每一週期內以固定時間運作,以避免諧振轉換器之切換損耗。The invention discloses a resonance control device and a resonance control method thereof. The resonance control device includes a feedback controller and a processor. The feedback controller receives a reference voltage and an output voltage, and uses the reference voltage to perform voltage compensation on the output voltage to generate a control parameter. The processor receives the control parameter, and generates a pulse modulation signal according to the control parameter and the switching parameter, so as to drive the resonant converter to adjust the output voltage. Each pulse modulation signal has a maximum frequency and a minimum frequency, and the maximum frequency corresponds to the switching parameter. When the control parameter is greater than or equal to the switching parameter, the frequency of the pulse modulation signal is adjusted according to the control parameter and the switching parameter, or the resonant converter is controlled to operate at a fixed time in each cycle of the pulse modulation signal, so as to avoid the resonant converter switching loss.

Description

諧振控制裝置及其諧振控制方法Resonance control device and resonance control method thereof

本發明係關於一種諧振控制技術,且特別關於一種諧振控制裝置及其諧振控制方法。The present invention relates to a resonance control technology, and in particular, to a resonance control device and a resonance control method thereof.

近幾年各式電子產品皆朝向精密與小型化的方向發展,傳統的電能轉換器不論在體積與效率上皆無法滿足現今的需求,電能轉換器被要求提高功率密度(Power Density),故1970 年代功率半導體技術成熟時,切換式電源才廣泛應用在電源上,因此現今高效率的切換式電源供應器(Switch Mode Power Supply, SMPS)為產業在電源設計方面的重點。In recent years, all kinds of electronic products are developing in the direction of precision and miniaturization. Traditional power converters cannot meet today's needs in terms of volume and efficiency. Power converters are required to increase power density (Power Density). In the 1990s, when power semiconductor technology matured, switching power supplies were widely used in power supplies. Therefore, high-efficiency Switch Mode Power Supply (SMPS) is now the focus of the industry in power supply design.

切換式電源供應器會採用半橋式諧振轉換器或全橋式諧振轉換器。請參閱第1圖與第2圖,由於半橋式諧振轉換器與全橋式諧振轉換器之操作類似,故以半橋式諧振轉換器1為例,其大體皆設成如第1圖所示,包含一訊號控制器10、一第一電子開關11、一第二電子開關12、一諧振槽13與一變壓器14,其中第一電子開關11與第二電子開關12皆為N通道金氧半場效電晶體。理論上,訊號控制器10產生二脈波調變訊號,以控制第一電子開關11與第二電子開關12為交替式切換,即當第一電子開關11導通時,第二電子開關12關閉,使能量從高電壓端VH儲存於諧振槽13中,當第一電子開關11關閉時,第二電子開關12導通,使能量從諧振槽13中,釋放於低電壓端VL。變壓器18接收諧振槽13之能量,以將轉換成一輸出電壓Vo,並施加輸出電壓Vo在負載15上,以產生一輸出電流Io。輸出電壓Vo與輸出電流Io形成一輸出功率W。訊號控制器10根據輸出功率W執行脈波寬度調變(PWM)模式或脈波頻率調變(PFM)模式。在脈波寬度調變模式時,脈波調變訊號為脈波寬度調變訊號。在脈波頻率調變模式時,脈波調變訊號為脈波頻率調變訊號。在脈波寬度調變模式時,脈波寬度調變訊號之責任週期D從一臨界值d開始增加,直到責任週期D為0.5為止。在脈波頻率調變模式時,脈波頻率調變訊號之責任週期D為0.5。在脈波頻率調變模式時,脈波頻率調變訊號之頻率F隨輸出功率W遞減而遞增,脈波頻率調變訊號之頻率F從最小頻率f1開始遞增,直到頻率F等於最大頻率f2為止。在脈波寬度調變模式時,脈波寬度調變訊號之頻率F等於最大頻率f2。若此半橋式諧振轉換器1欲操作在輸出電壓Vo之下限範圍,則脈波寬度調變訊號之頻率F必須提高,以維持輸出電壓Vo。脈波寬度調變模式與脈波頻率調變模式可改善輕載效率,降低諧振轉換器1啟動時的諧振電流。然而,由於訊號控制器10之硬體特性導致脈波調變訊號之頻率F不能無限制提高,因此以脈波寬度調變模式來達到如同提升頻率F的效果,但此輸出電壓Vo之下限範圍仍然不夠低,使此半橋式諧振轉換器1不適合應用在輸出電壓Vo操作在寬廣範圍的場合上。再者,脈波寬度調變模式處在高頻狀態,所以切換損失較大,雜訊較高。Switching power supplies use either half-bridge resonant converters or full-bridge resonant converters. Please refer to FIG. 1 and FIG. 2. Since the operation of the half-bridge resonant converter is similar to that of the full-bridge resonant converter, the half-bridge resonant converter 1 is taken as an example, which is generally set as shown in FIG. 1. As shown, it includes a signal controller 10, a first electronic switch 11, a second electronic switch 12, a resonant tank 13 and a transformer 14, wherein the first electronic switch 11 and the second electronic switch 12 are both N-channel metal oxide Half Field Effect Transistor. Theoretically, the signal controller 10 generates a two-pulse modulation signal to control the first electronic switch 11 and the second electronic switch 12 to switch alternately, that is, when the first electronic switch 11 is turned on, the second electronic switch 12 is turned off, The energy is stored in the resonance tank 13 from the high voltage terminal VH. When the first electronic switch 11 is turned off, the second electronic switch 12 is turned on, so that the energy is released from the resonance tank 13 to the low voltage terminal VL. The transformer 18 receives the energy of the resonant tank 13 to convert it into an output voltage Vo, and applies the output voltage Vo to the load 15 to generate an output current Io. The output voltage Vo and the output current Io form an output power W. The signal controller 10 executes a pulse width modulation (PWM) mode or a pulse frequency modulation (PFM) mode according to the output power W. In the PWM mode, the PWM signal is a PWM signal. In the pulse frequency modulation mode, the pulse frequency modulation signal is a pulse frequency modulation signal. In the PWM mode, the duty cycle D of the PWM signal starts to increase from a threshold value d until the duty cycle D is 0.5. In the pulse frequency modulation mode, the duty cycle D of the pulse frequency modulation signal is 0.5. In the PWM mode, the frequency F of the PWM signal increases as the output power W decreases, and the frequency F of the PWM signal increases from the minimum frequency f1 until the frequency F is equal to the maximum frequency f2 . In the PWM mode, the frequency F of the PWM signal is equal to the maximum frequency f2. If the half-bridge resonant converter 1 is to operate in the lower limit range of the output voltage Vo, the frequency F of the PWM signal must be increased to maintain the output voltage Vo. The pulse width modulation mode and the pulse frequency modulation mode can improve the light-load efficiency and reduce the resonant current when the resonant converter 1 starts up. However, due to the hardware characteristics of the signal controller 10, the frequency F of the PWM signal cannot be increased indefinitely, so the PWM mode is used to achieve the same effect as increasing the frequency F, but the lower limit range of the output voltage Vo is Still not low enough to make the half-bridge resonant converter 1 unsuitable for applications where the output voltage Vo operates in a wide range. Furthermore, the PWM mode is in a high frequency state, so the switching loss is large and the noise is high.

因此,本發明係在針對上述的困擾,提出一種諧振控制裝置及其諧振控制方法,以解決習知所產生的問題。Therefore, the present invention provides a resonance control device and a resonance control method thereof to solve the problems caused by the prior art in view of the above-mentioned problems.

本發明提供一種諧振控制裝置及其諧振控制方法,其係改善諧振轉換器之輕載效率、降低啟動(start-up)諧振電流、降低切換損失與雜訊、提高諧振轉換器之輸出電壓的下限範圍與擴大此輸出電壓之操作範圍。The present invention provides a resonance control device and a resonance control method thereof, which improve the light-load efficiency of a resonant converter, reduce the start-up resonant current, reduce switching loss and noise, and increase the lower limit of the output voltage of the resonant converter range and expand the operating range of this output voltage.

在本發明之一實施例中,一種諧振控制裝置包含一迴授控制器與一處理器。迴授控制器耦接一諧振轉換器之輸出端,輸出端耦接一負載,負載上有一輸出電壓,其中迴授控制器用於接收一參考電壓與輸出電壓,並利用參考電壓對輸出電壓進行電壓補償,以產生一控制參數。處理器耦接迴授控制器與諧振轉換器,並預設一切換參數,處理器用於接收控制參數,以據此與切換參數產生脈波調變訊號,並藉脈波調變訊號驅動諧振轉換器調整輸出電壓,脈波調變訊號具有最大頻率與最小頻率,最大頻率對應切換參數。在控制參數大於或等於切換參數時,脈波調變訊號為脈波頻率調變訊號。在控制參數小於切換參數時,脈波調變訊號控制諧振轉換器在脈波調變訊號之每一週期內以固定時間運作。In one embodiment of the present invention, a resonance control device includes a feedback controller and a processor. The feedback controller is coupled to an output terminal of a resonant converter, the output terminal is coupled to a load, and an output voltage is applied to the load, wherein the feedback controller is used for receiving a reference voltage and the output voltage, and using the reference voltage to perform voltage on the output voltage compensation to generate a control parameter. The processor is coupled to the feedback controller and the resonant converter, and presets a switching parameter, the processor is used for receiving the control parameter, and generates a pulse modulation signal according to the switching parameter, and drives the resonant conversion by the pulse modulation signal The output voltage is adjusted by the controller. The pulse modulation signal has a maximum frequency and a minimum frequency, and the maximum frequency corresponds to the switching parameter. When the control parameter is greater than or equal to the switching parameter, the pulse wave modulation signal is a pulse frequency modulation signal. When the control parameter is less than the switching parameter, the pulse modulation signal controls the resonant converter to operate for a fixed time in each cycle of the pulse modulation signal.

在本發明之一實施例中,脈波頻率調變訊號之責任週期為0.5。In an embodiment of the present invention, the duty cycle of the pulse frequency modulation signal is 0.5.

在本發明之一實施例中,輸出電壓施加該負載以產生一輸出電流,輸出電流與輸出電壓形成一輸出功率,脈波頻率調變訊號之頻率線性反比於輸出功率。In an embodiment of the present invention, the output voltage is applied to the load to generate an output current, the output current and the output voltage form an output power, and the frequency of the PWM signal is linearly inversely proportional to the output power.

在本發明之一實施例中,輸出電壓施加負載以產生一輸出電流,輸出電流與輸出電壓形成一輸出功率。在控制參數小於切換參數時,脈波調變訊號之頻率線性正比於輸出功率。In one embodiment of the present invention, the output voltage is applied to the load to generate an output current, and the output current and the output voltage form an output power. When the control parameter is smaller than the switching parameter, the frequency of the PWM signal is linearly proportional to the output power.

在本發明之一實施例中,在控制參數小於切換參數時,脈波調變訊號之責任週期線性正比於輸出功率,且責任週期之最大值為0.5,責任週期之最小值等於固定時間乘以最小頻率,最小值小於0.5。In one embodiment of the present invention, when the control parameter is less than the switching parameter, the duty cycle of the pulse modulation signal is linearly proportional to the output power, the maximum duty cycle is 0.5, and the minimum duty cycle is equal to the fixed time multiplied by Minimum frequency, the minimum value is less than 0.5.

在本發明之一實施例中,切換參數等於最大頻率,且迴授控制器包含一減法器、一電壓補償器與一數位壓控振盪器。減法器耦接輸出端,其中減法器用於接收參考電壓與輸出電壓,將參考電壓減去輸出電壓,以得到一差異電壓。電壓補償器耦接減法器,其中電壓補償器用於接收差異電壓,且對其進行電壓補償,以產生一電壓參數。數位壓控振盪器耦接電壓補償器與處理器,其中數位壓控振盪器用於接收電壓參數,並根據電壓參數、最大頻率與最小頻率產生作為控制參數之一控制頻率。In an embodiment of the present invention, the switching parameter is equal to the maximum frequency, and the feedback controller includes a subtractor, a voltage compensator and a digital voltage controlled oscillator. The subtractor is coupled to the output terminal, wherein the subtractor is used for receiving the reference voltage and the output voltage, and subtracting the output voltage from the reference voltage to obtain a difference voltage. The voltage compensator is coupled to the subtractor, wherein the voltage compensator is used for receiving the difference voltage and performing voltage compensation on it to generate a voltage parameter. The digital voltage controlled oscillator is coupled to the voltage compensator and the processor, wherein the digital voltage controlled oscillator is used for receiving the voltage parameter, and generating a control frequency as one of the control parameters according to the voltage parameter, the maximum frequency and the minimum frequency.

在本發明之一實施例中,控制頻率以Fc表示,Fc=(F min-F max)×P+ F max,F min為最小頻率,F max為最大頻率,P為電壓參數。 In an embodiment of the present invention, the control frequency is represented by Fc, Fc=( Fmin - Fmax )×P+ Fmax , Fmin is the minimum frequency, Fmax is the maximum frequency, and P is a voltage parameter.

在本發明之一實施例中,電壓補償器為比例積分微分控制器(PID controller)或比例積分控制器(PI controller)。In an embodiment of the present invention, the voltage compensator is a proportional-integral-derivative controller (PID controller) or a proportional-integral controller (PI controller).

在本發明之一實施例中,諧振轉換器為全橋式諧振轉換器(full-bridge resonate converter)或半橋式諧振轉換器(half-bridge resonate converter)。In an embodiment of the present invention, the resonant converter is a full-bridge resonate converter or a half-bridge resonate converter.

在本發明之一實施例中,最小頻率與該最大頻率由該諧振轉換器之諧振槽所決定,該諧振槽由一諧振電感(Resonating Inductor)

Figure 02_image001
、一激磁電感(Magnetizing Inductor)
Figure 02_image003
與一諧振電容(Resonating Capacitor)
Figure 02_image005
串聯而成,最小頻率大於
Figure 02_image007
,且小於
Figure 02_image009
,最大頻率大於
Figure 02_image011
。 In an embodiment of the present invention, the minimum frequency and the maximum frequency are determined by a resonant tank of the resonant converter, and the resonant tank is composed of a resonating inductor (Resonating Inductor)
Figure 02_image001
, a magnetizing inductor (Magnetizing Inductor)
Figure 02_image003
with a Resonating Capacitor
Figure 02_image005
connected in series, the minimum frequency is greater than
Figure 02_image007
, and less than
Figure 02_image009
, the maximum frequency is greater than
Figure 02_image011
.

在本發明之一實施例中,一種諧振控制方法控制一諧振轉換器,諧振轉換器耦接一負載,負載上有一輸出電壓,諧振控制方法包含下列步驟:接收一參考電壓與輸出電壓,並利用參考電壓對輸出電壓進行電壓補償,以產生一控制參數;以及接收控制參數,並判斷控制參數是否小於一切換參數:若是,根據控制參數與切換參數產生脈波調變訊號,以藉此控制諧振轉換器在脈波調變訊號之每一週期內以固定時間運作,進而調整輸出電壓;以及若否,根據控制參數與切換參數產生脈波頻率調變訊號,以藉此驅動諧振轉換器調整輸出電壓;其中脈波頻率調變訊號與脈波調變訊號具有最大頻率與最小頻率,最大頻率對應切換參數。In one embodiment of the present invention, a resonant control method controls a resonant converter, the resonant converter is coupled to a load, and the load has an output voltage, and the resonant control method includes the following steps: receiving a reference voltage and an output voltage, and utilizing The reference voltage performs voltage compensation on the output voltage to generate a control parameter; and receives the control parameter, and determines whether the control parameter is less than a switching parameter: if yes, generates a pulse modulation signal according to the control parameter and the switching parameter, so as to control the resonance The converter operates at a fixed time in each cycle of the pulse modulation signal to adjust the output voltage; and if not, generates a pulse frequency modulation signal according to the control parameter and the switching parameter, so as to drive the resonant converter to adjust the output Voltage; wherein the pulse frequency modulation signal and the pulse wave modulation signal have a maximum frequency and a minimum frequency, and the maximum frequency corresponds to the switching parameter.

在本發明之一實施例中,脈波頻率調變訊號之責任週期為0.5。In an embodiment of the present invention, the duty cycle of the pulse frequency modulation signal is 0.5.

在本發明之一實施例中,輸出電壓施加負載以產生一輸出電流,輸出電流與輸出電壓形成一輸出功率,脈波頻率調變訊號之頻率線性反比於輸出功率。In an embodiment of the present invention, the output voltage is applied to a load to generate an output current, the output current and the output voltage form an output power, and the frequency of the PWM signal is linearly inversely proportional to the output power.

在本發明之一實施例中,輸出電壓施加負載以產生一輸出電流,輸出電流與輸出電壓形成一輸出功率。在控制參數小於切換參數時,脈波調變訊號之頻率線性正比於輸出功率。In one embodiment of the present invention, the output voltage is applied to the load to generate an output current, and the output current and the output voltage form an output power. When the control parameter is smaller than the switching parameter, the frequency of the PWM signal is linearly proportional to the output power.

在本發明之一實施例中,在控制參數小於切換參數時,脈波調變訊號之責任週期線性正比於輸出功率,且責任週期之最大值為0.5,責任週期之最小值等於固定時間乘以最小頻率,最小值小於0.5。In one embodiment of the present invention, when the control parameter is less than the switching parameter, the duty cycle of the pulse modulation signal is linearly proportional to the output power, the maximum duty cycle is 0.5, and the minimum duty cycle is equal to the fixed time multiplied by Minimum frequency, the minimum value is less than 0.5.

在本發明之一實施例中,切換參數等於最大頻率,且在接收參考電壓與輸出電壓,並利用參考電壓對輸出電壓進行電壓補償,以產生控制參數之步驟,包含下列步驟:接收參考電壓與輸出電壓,將參考電壓減去輸出電壓,以得到一差異電壓;接收差異電壓,且對其進行電壓補償,以產生一電壓參數;以及接收電壓參數,並根據電壓參數、最大頻率與最小頻率產生作為控制參數之一控制頻率。In one embodiment of the present invention, the switching parameter is equal to the maximum frequency, and the step of receiving the reference voltage and the output voltage, and using the reference voltage to perform voltage compensation on the output voltage to generate the control parameter includes the following steps: receiving the reference voltage and output voltage, subtract the output voltage from the reference voltage to obtain a differential voltage; receive the differential voltage and perform voltage compensation on it to generate a voltage parameter; and receive the voltage parameter and generate according to the voltage parameter, the maximum frequency and the minimum frequency Control the frequency as one of the control parameters.

在本發明之一實施例中,控制頻率以Fc表示,Fc=(F min-F max)×P+ F max,F min為最小頻率,F max為最大頻率,P為電壓參數。 In an embodiment of the present invention, the control frequency is represented by Fc, Fc=( Fmin - Fmax )×P+ Fmax , Fmin is the minimum frequency, Fmax is the maximum frequency, and P is a voltage parameter.

在本發明之一實施例中,最小頻率與最大頻率由諧振轉換器之諧振槽所決定,諧振槽由一諧振電感(Resonating Inductor)

Figure 02_image001
、一激磁電感(Magnetizing Inductor)
Figure 02_image003
與一諧振電容(Resonating Capacitor)
Figure 02_image005
串聯而成,最小頻率大於
Figure 02_image007
,且小於
Figure 02_image009
,最大頻率大於
Figure 02_image011
。 In an embodiment of the present invention, the minimum frequency and the maximum frequency are determined by the resonant tank of the resonant converter, and the resonant tank is determined by a resonating inductor (Resonating Inductor)
Figure 02_image001
, a magnetizing inductor (Magnetizing Inductor)
Figure 02_image003
with a Resonating Capacitor
Figure 02_image005
connected in series, the minimum frequency is greater than
Figure 02_image007
, and less than
Figure 02_image009
, the maximum frequency is greater than
Figure 02_image011
.

基於上述,諧振控制裝置及其諧振控制方法在不增加硬體成本之前提下,設定一切換參數,並根據切換參數進行恆定導通時間(constant on-time, COT)調變模式或脈波頻率調變模式,以改善諧振轉換器之輕載效率、降低啟動諧振電流、降低切換損失與雜訊、提高諧振轉換器之輸出電壓的下限範圍與擴大此輸出電壓之操作範圍。此外,數位壓控振盪器產生控制頻率,使其與電壓參數呈線性反比,以提升控制參數之變化量的穩定性。Based on the above, the resonance control device and the resonance control method thereof can set a switching parameter and perform a constant on-time (COT) modulation mode or a pulse frequency modulation mode according to the switching parameter without increasing the hardware cost. Change the mode to improve the light-load efficiency of the resonant converter, reduce the start-up resonant current, reduce the switching loss and noise, increase the lower limit range of the output voltage of the resonant converter, and expand the operating range of the output voltage. In addition, the digital voltage-controlled oscillator generates the control frequency, which is linearly inversely proportional to the voltage parameter, so as to improve the stability of the variation of the control parameter.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:Hereby, in order to make your examiners have a further understanding and understanding of the structural features of the present invention and the effects achieved, I would like to assist with the preferred embodiment drawings and coordinate detailed descriptions, and the descriptions are as follows:

本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。Embodiments of the present invention will be further explained with the help of the related drawings below. Wherever possible, in the drawings and the description, the same reference numbers refer to the same or similar components. In the drawings, shapes and thicknesses may be exaggerated for simplicity and convenience. It should be understood that the elements not particularly shown in the drawings or described in the specification have forms known to those of ordinary skill in the art. Those skilled in the art can make various changes and modifications based on the content of the present invention.

當一個元件被稱為『在…上』時,它可泛指該元件直接在其他元件上,也可以是有其他元件存在於兩者之中。相反地,當一個元件被稱為『直接在』另一元件,它是不能有其他元件存在於兩者之中間。如本文所用,詞彙『及/或』包含了列出的關聯項目中的一個或多個的任何組合。When an element is referred to as being "on", it can generally mean that the element is directly on the other element or that the other element is present in both. Conversely, when an element is said to be "directly on" another element, it cannot have the other element intervening. As used herein, the term "and/or" includes any combination of one or more of the associated listed items.

於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。The following description of "one embodiment" or "an embodiment" refers to a particular element, structure or feature associated with at least one embodiment. Thus, the appearances of "one embodiment" or "an embodiment" in various places below are not directed to the same embodiment. Furthermore, the specific components, structures and features in one or more embodiments may be combined in a suitable manner.

揭露特別以下述例子加以描述,這些例子僅係用以舉例說明而已,因為對於熟習此技藝者而言,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。在通篇說明書與申請專利範圍中,除非內容清楚指定,否則「一」以及「該」的意義包含這一類敘述包括「一或至少一」該元件或成分。此外,如本揭露所用,除非從特定上下文明顯可見將複數個排除在外,否則單數冠詞亦包括複數個元件或成分的敘述。而且,應用在此描述中與下述之全部申請專利範圍中時,除非內容清楚指定,否則「在其中」的意思可包含「在其中」與「在其上」。在通篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供從業人員(practitioner)在有關本揭露之描述上額外的引導。在通篇說明書之任何地方之例子,包含在此所討論之任何用詞之例子的使用,僅係用以舉例說明,當然不限制本揭露或任何例示用詞之範圍與意義。同樣地,本揭露並不限於此說明書中所提出之各種實施例。The disclosure is specifically described with the following examples, which are only for illustration, because for those skilled in the art, various changes and modifications can be made without departing from the spirit and scope of the present disclosure. The scope of protection of the disclosed contents shall be determined by the scope of the appended patent application. Throughout the specification and claims, unless the content clearly dictates otherwise, the meanings of "a" and "the" include that such recitations include "one or at least one" of the element or ingredient. Furthermore, as used in this disclosure, a singular article also includes the recitation of a plurality of elements or components unless the exclusion of the plural is obvious from the specific context. Also, as used in this description and throughout the claims below, the meaning of "in" may include "in" and "on" unless the content clearly dictates otherwise. Terms used throughout the specification and the scope of the patent application, unless otherwise specified, generally have the ordinary meaning of each term used in the field, in the content disclosed herein and in the specific content. Certain terms used to describe the present disclosure are discussed below or elsewhere in this specification to provide practitioners with additional guidance in describing the present disclosure. Examples anywhere throughout the specification, including the use of examples of any terms discussed herein, are by way of illustration only, and of course do not limit the scope and meaning of the disclosure or any exemplified terms. Likewise, the present disclosure is not limited to the various embodiments set forth in this specification.

此外,若使用「電(性)耦接」或「電(性)耦接」一詞在此係包含任何直接及間接的電氣耦接手段。舉例而言,若文中描述一第一裝置電性耦接於一第二裝置,則代表該第一裝置可直接耦接於該第二裝置,或透過其他裝置或耦接手段間接地耦接至該第二裝置。另外,若描述關於電訊號之傳輸、提供,熟習此技藝者應該可了解電訊號之傳遞過程中可能伴隨衰減或其他非理想性之變化,但電訊號傳輸或提供之來源與接收端若無特別敘明,實質上應視為同一訊號。舉例而言,若由電子電路之端點A傳輸(或提供)電訊號S給電子電路之端點B,其中可能經過一電晶體開關之源汲極兩端及/或可能之雜散電容而產生電壓降,但此設計之目的若非刻意使用傳輸(或提供)時產生之衰減或其他非理想性之變化而達到某些特定的技術效果,電訊號S在電子電路之端點A與端點B應可視為實質上為同一訊號。Furthermore, if the term "electrically (physically) coupled" or "electrically (physically) coupled" is used herein, it includes any means of direct and indirect electrical coupling. For example, if it is described in the text that a first device is electrically coupled to a second device, it means that the first device can be directly coupled to the second device, or indirectly coupled to the second device through other devices or coupling means the second device. In addition, if the transmission and provision of electrical signals are described, those skilled in the art should understand that the transmission of electrical signals may be accompanied by attenuation or other non-ideal changes. In fact, it should be regarded as the same signal. For example, if the electrical signal S is transmitted (or provided) from the terminal A of the electronic circuit to the terminal B of the electronic circuit, it may pass through the source and drain terminals of a transistor switch and/or possible stray capacitance. A voltage drop is generated, but the purpose of this design is not to deliberately use the attenuation or other non-ideal changes generated during transmission (or supply) to achieve some specific technical effects. The electrical signal S is at the terminal A and the terminal of the electronic circuit. B should be regarded as substantially the same signal.

可了解如在此所使用的用詞「包含(comprising)」、「包含(including)」、「具有(having)」、「含有(containing)」、「包含(involving)」等等,為開放性的(open-ended),即意指包含但不限於。另外,本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制發明作之申請專利範圍。It is to be understood that the terms "comprising", "including", "having", "containing", "involving" and the like as used herein are open-ended open-ended, which means including but not limited to. In addition, any embodiment of the present invention or the scope of the claims is not required to achieve all of the objects or advantages or features disclosed herein. In addition, the abstract part and the title are only used to assist the search of patent documents, not to limit the scope of the invention.

第3圖為本發明之第一實施例之諧振控制裝置與諧振轉換器之電路示意圖。第4圖為本發明之一實施例之脈波調變訊號之責任週期與頻率相對輸出功率之曲線圖。第5圖為本發明之一實施例之於脈衝頻率調變模式之脈波調變訊號之波形圖。第6圖為本發明之一實施例之於恆定導通時間模式之脈波調變訊號之波形圖。請參閱第3圖與第4圖,以下介紹本發明之第一實施例之諧振控制裝置2。諧振控制裝置2包含一迴授控制器20與一處理器21。迴授控制器20耦接一諧振轉換器3之輸出端,此輸出端耦接一負載4,負載4上有一輸出電壓V,輸出電壓V施加負載4以產生一輸出電流I,輸出電流I與輸出電壓V形成一輸出功率W。諧振轉換器3可為全橋式諧振轉換器(full-bridge resonate converter)或半橋式諧振轉換器(half-bridge resonate converter)。迴授控制器20用於接收一參考電壓S與輸出電壓V,並利用參考電壓S對輸出電壓V進行電壓補償,以產生一控制參數C。處理器21耦接迴授控制器20與諧振轉換器3,並預設一切換參數。處理器21用於接收控制參數C,以據此與切換參數產生脈波調變訊號P與P’,並藉脈波調變訊號P與P’驅動諧振轉換器3調整輸出電壓V。脈波調變訊號P與P’具有以F max表示之最大頻率與以F min表示之最小頻率,最大頻率F max對應切換參數。在控制參數C大於或等於切換參數時,脈波調變訊號P與P’為脈波頻率調變訊號,使諧振轉換器3執行脈波頻率調變(PFM)模式。在控制參數C小於切換參數時,脈波調變訊號P與P’控制諧振轉換器3在脈波調變訊號P與P’之每一週期內以固定時間運作,使諧振轉換器3執行恆定導通時間(COT)模式。 FIG. 3 is a schematic circuit diagram of the resonance control device and the resonance converter according to the first embodiment of the present invention. FIG. 4 is a graph showing the duty cycle and frequency of the pulse modulation signal relative to the output power according to an embodiment of the present invention. FIG. 5 is a waveform diagram of a pulse modulation signal in a pulse frequency modulation mode according to an embodiment of the present invention. FIG. 6 is a waveform diagram of a pulse modulation signal in a constant on-time mode according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 4 , the following describes the resonance control device 2 according to the first embodiment of the present invention. The resonance control device 2 includes a feedback controller 20 and a processor 21 . The feedback controller 20 is coupled to an output terminal of a resonant converter 3, the output terminal is coupled to a load 4, and an output voltage V is applied to the load 4. The output voltage V is applied to the load 4 to generate an output current I, and the output current I is equal to The output voltage V forms an output power W. The resonant converter 3 may be a full-bridge resonate converter or a half-bridge resonate converter. The feedback controller 20 is used for receiving a reference voltage S and the output voltage V, and using the reference voltage S to perform voltage compensation on the output voltage V to generate a control parameter C. The processor 21 is coupled to the feedback controller 20 and the resonant converter 3, and presets a switching parameter. The processor 21 is used for receiving the control parameter C, to generate pulse modulation signals P and P' according to the switching parameter and to drive the resonant converter 3 to adjust the output voltage V by the pulse modulation signals P and P'. The pulse modulation signals P and P' have a maximum frequency represented by F max and a minimum frequency represented by F min , and the maximum frequency F max corresponds to a switching parameter. When the control parameter C is greater than or equal to the switching parameter, the pulse modulation signals P and P' are pulse frequency modulation signals, so that the resonant converter 3 performs a pulse frequency modulation (PFM) mode. When the control parameter C is smaller than the switching parameter, the pulse modulation signals P and P' control the resonant converter 3 to operate for a fixed time during each cycle of the pulse modulation signals P and P', so that the resonant converter 3 performs constant On-time (COT) mode.

在本發明之某些實施例中,諧振轉換器3可包含一電子開關組30、一諧振槽31與一變壓器32。電子開關組30耦接處理器21與諧振槽31,諧振槽31耦接變壓器32之一次側,變壓器32之二次側作為諧振轉換器3之輸出端。電子開關組30用於接收脈波調變訊號P與P’,以藉此透過諧振槽31驅動變壓器32,進而改變輸出電壓V。舉例來說,最小頻率F min與最大頻率F max由諧振轉換器3之諧振槽31所決定,諧振槽31由一諧振電感(Resonating Inductor)

Figure 02_image001
、一激磁電感(Magnetizing Inductor)
Figure 02_image003
與一諧振電容(Resonating Capacitor)
Figure 02_image005
串聯而成,最小頻率F min大於
Figure 02_image007
,且小於
Figure 02_image009
,最大頻率F max大於
Figure 02_image011
。 In some embodiments of the present invention, the resonant converter 3 may include an electronic switch group 30 , a resonant tank 31 and a transformer 32 . The electronic switch group 30 is coupled to the processor 21 and the resonant tank 31 . The resonant tank 31 is coupled to the primary side of the transformer 32 , and the secondary side of the transformer 32 serves as the output end of the resonant converter 3 . The electronic switch group 30 is used for receiving the pulse modulation signals P and P', so as to drive the transformer 32 through the resonant tank 31, thereby changing the output voltage V. As shown in FIG. For example, the minimum frequency F min and the maximum frequency F max are determined by the resonant tank 31 of the resonant converter 3 , and the resonant tank 31 is determined by a resonating inductor (Resonating Inductor)
Figure 02_image001
, a magnetizing inductor (Magnetizing Inductor)
Figure 02_image003
with a Resonating Capacitor
Figure 02_image005
connected in series, the minimum frequency F min is greater than
Figure 02_image007
, and less than
Figure 02_image009
, the maximum frequency F max is greater than
Figure 02_image011
.

如第3圖、第4圖、第5圖與第6圖所示,脈波頻率調變訊號之責任週期可固定為0.5,脈波頻率調變訊號之頻率F線性反比於輸出功率W。頻率F之最大值為最大頻率F max,頻率F之最小值為最小頻率F min。二脈波頻率調變訊號並未同時具有高準位電壓,以避免燒毀電路。若脈波頻率調變訊號之頻率F小於最小頻率F min,則脈波頻率調變訊號具有責任週期D之最小值M。在控制參數C小於切換參數時,脈波調變訊號P與P’之頻率F可線性正比於輸出功率W,且脈波調變訊號P與P’之頻率F的最大值與最小值分別為最大頻率F max與最小頻率F min。在控制參數C小於切換參數時,脈波調變訊號P與P’之責任週期D線性正比於輸出功率W,且責任週期D之最大值為0.5,責任週期D之最小值M等於諧振轉換器3所運作的固定時間T乘以最小頻率F min,且責任週期D之最小值M小於0.5。一般來說,此固定時間T為諧振轉換器3運作的最短時段,並由諧振轉換器3之硬體所決定。在COT模式中,固定諧振轉換器3所運作的時間,並改變頻率F,以得到可變的責任週期D。如第6圖所示,脈波調變訊號P’之相位落後脈波調變訊號P之相位180度,脈波調變訊號P與P’亦並未同時具有高準位電壓,以避免燒毀電路。諧振控制裝置在不增加硬體成本之前提下,設定切換參數,並根據切換參數進行恆定導通時間調變模式或脈波頻率調變模式,以改善諧振轉換器3之輕載效率、降低啟動諧振電流與降低切換損失與雜訊。此外,恆定導通時間調變模式能延伸脈波寬度調變模式所無法涵蓋的輸出電壓或輸出電流之範圍。因此,諧振控制裝置2能提高諧振轉換器3之輸出電壓的下限範圍與擴大此輸出電壓之操作範圍,並減少執行叢集模式(burst mode)的次數。 As shown in Figure 3, Figure 4, Figure 5 and Figure 6, the duty cycle of the PWM signal can be fixed at 0.5, and the frequency F of the PWM signal is linearly inversely proportional to the output power W. The maximum value of the frequency F is the maximum frequency F max , and the minimum value of the frequency F is the minimum frequency F min . The two PWM signals do not have a high level voltage at the same time to avoid burning the circuit. If the frequency F of the pulse frequency modulation signal is less than the minimum frequency F min , the pulse frequency modulation signal has the minimum value M of the duty cycle D. When the control parameter C is less than the switching parameter, the frequencies F of the pulse modulation signals P and P' can be linearly proportional to the output power W, and the maximum and minimum values of the frequencies F of the pulse modulation signals P and P' are respectively Maximum frequency F max and minimum frequency F min . When the control parameter C is less than the switching parameter, the duty cycle D of the pulse modulation signals P and P' is linearly proportional to the output power W, and the maximum value of the duty cycle D is 0.5, and the minimum value M of the duty cycle D is equal to the resonant converter 3. The operating fixed time T is multiplied by the minimum frequency Fmin , and the minimum value M of the duty cycle D is less than 0.5. Generally speaking, the fixed time T is the shortest period in which the resonant converter 3 operates, and is determined by the hardware of the resonant converter 3 . In the COT mode, the operating time of the resonant converter 3 is fixed and the frequency F is changed to obtain a variable duty period D. As shown in Figure 6, the phase of the pulse modulation signal P' lags behind the phase of the pulse modulation signal P by 180 degrees, and the pulse modulation signals P and P' do not have high-level voltages at the same time to avoid burnout circuit. On the premise of not increasing the hardware cost, the resonance control device sets the switching parameters, and performs constant on-time modulation mode or pulse frequency modulation mode according to the switching parameters, so as to improve the light-load efficiency of the resonant converter 3 and reduce the start-up resonance current and reduce switching losses and noise. In addition, the constant on-time modulation mode can extend the range of output voltage or output current that the PWM mode cannot cover. Therefore, the resonance control device 2 can increase the lower limit range of the output voltage of the resonant converter 3 and expand the operation range of the output voltage, and reduce the number of times of executing the burst mode.

第7圖為本發明之一實施例之諧振控制方法之流程圖。請參閱第3圖與第7圖,以下介紹本發明之一實施例之諧振控制裝置2之諧振控制方法。首先,如步驟S10所示,迴授控制器20接收參考電壓S與輸出電壓V,並利用參考電壓S對輸出電壓V進行電壓補償,以產生控制參數C。如步驟S12所示,處理器21接收控制參數C,並判斷控制參數C是否小於切換參數。若是,則如步驟S14所示,處理器21根據控制參數C與切換參數產生脈波調變訊號P與P’,以藉此控制諧振轉換器3在脈波調變訊號P或P’之每一週期內以固定時間運作,進而調整輸出電壓V。若否,則如步驟S16所示,處理器21根據控制參數C與切換參數產生脈波頻率調變訊號,以藉此驅動諧振轉換器3調整輸出電壓V。FIG. 7 is a flowchart of a resonance control method according to an embodiment of the present invention. Please refer to FIG. 3 and FIG. 7 , the following describes the resonance control method of the resonance control device 2 according to an embodiment of the present invention. First, as shown in step S10, the feedback controller 20 receives the reference voltage S and the output voltage V, and uses the reference voltage S to perform voltage compensation on the output voltage V to generate the control parameter C. As shown in step S12, the processor 21 receives the control parameter C, and determines whether the control parameter C is smaller than the switching parameter. If so, as shown in step S14, the processor 21 generates the pulse modulation signals P and P' according to the control parameter C and the switching parameter, so as to control the resonant converter 3 at each pulse modulation signal P or P'. It operates at a fixed time in one cycle to adjust the output voltage V. If not, as shown in step S16, the processor 21 generates a pulse frequency modulation signal according to the control parameter C and the switching parameter, so as to drive the resonant converter 3 to adjust the output voltage V thereby.

請參閱第3圖與第4圖。當負載4變輕時,控制參數C變小。當控制參數C小於切換參數時,處理器21產生脈波調變訊號P與P’,以藉此控制諧振轉換器3在脈波調變訊號P或P’之每一週期內以固定時間運作,進而調整輸出電壓V。脈波調變訊號P與P’之責任週期D與頻率F取決於輸出功率W。當負載4變重時,控制參數C變大。當控制參數C大於或等於切換參數時,處理器21根據控制參數C與切換參數產生脈波頻率調變訊號,以藉此驅動諧振轉換器3調整輸出電壓V。脈波頻率調變訊號之頻率F取決於輸出功率W,且脈波頻率調變訊號之責任週期D固定在0.5。此外,亦可變動參考電壓S以產生脈波調變訊號P與P’或脈波頻率調變訊號。當參考電壓S降低,且輸出電壓V尚未變動時,控制參數C變小。當控制參數C小於切換參數時,處理器21產生脈波調變訊號P與P’,以藉此控制諧振轉換器3在脈波調變訊號P或P’之每一週期內以固定時間運作,進而調整輸出電壓V。脈波調變訊號P與P’之責任週期D與頻率F取決於輸出功率W。當參考電壓S提升,且輸出電壓V尚未變動時,控制參數C變大。當控制參數C大於或等於切換參數時,處理器21根據控制參數C與切換參數產生脈波頻率調變訊號,以藉此驅動諧振轉換器3調整輸出電壓V。脈波頻率調變訊號之頻率F取決於輸出功率W,且脈波頻率調變訊號之責任週期D固定在0.5。See Figures 3 and 4. When the load 4 becomes lighter, the control parameter C becomes smaller. When the control parameter C is smaller than the switching parameter, the processor 21 generates the pulse modulation signals P and P', thereby controlling the resonant converter 3 to operate for a fixed time in each cycle of the pulse modulation signal P or P' , and then adjust the output voltage V. The duty cycle D and frequency F of the pulse modulation signals P and P' depend on the output power W. When the load 4 becomes heavier, the control parameter C becomes larger. When the control parameter C is greater than or equal to the switching parameter, the processor 21 generates a pulse frequency modulation signal according to the control parameter C and the switching parameter, so as to drive the resonant converter 3 to adjust the output voltage V thereby. The frequency F of the PWM signal depends on the output power W, and the duty cycle D of the PWM signal is fixed at 0.5. In addition, the reference voltage S can also be varied to generate the pulse modulation signals P and P' or the pulse frequency modulation signal. When the reference voltage S decreases and the output voltage V has not changed, the control parameter C becomes smaller. When the control parameter C is smaller than the switching parameter, the processor 21 generates the pulse modulation signals P and P', thereby controlling the resonant converter 3 to operate for a fixed time in each cycle of the pulse modulation signal P or P' , and then adjust the output voltage V. The duty cycle D and frequency F of the pulse modulation signals P and P' depend on the output power W. When the reference voltage S increases and the output voltage V has not changed, the control parameter C becomes larger. When the control parameter C is greater than or equal to the switching parameter, the processor 21 generates a pulse frequency modulation signal according to the control parameter C and the switching parameter, so as to drive the resonant converter 3 to adjust the output voltage V thereby. The frequency F of the PWM signal depends on the output power W, and the duty cycle D of the PWM signal is fixed at 0.5.

第8圖為本發明之第二實施例之諧振控制裝置與諧振轉換器之電路示意圖。第9圖為本發明之一實施例之產生控制參數之流程圖。請參閱第8圖與第9圖,以下介紹本發明之第二實施例之諧振控制裝置2。第二實施例與第一實施例差別在於迴授控制器20、切換參數與控制參數C,其餘技術特徵與第一實施例相同,於此不再贅述。在第二實施例中,切換參數等於最大頻率F max,且迴授控制器20包含一減法器200、一電壓補償器201與一數位壓控振盪器202。電壓補償器201耦接減法器200與數位壓控振盪器202,數位壓控振盪器202耦接處理器21。以下介紹本發明之一實施例之產生控制參數之流程。首先,如步驟S100所示,減法器200接收參考電壓S與輸出電壓V,將參考電壓S減去輸出電壓V,以得到一差異電壓VD。接著,如步驟S101所示,電壓補償器201接收差異電壓VD,且對其進行電壓補償,以產生一電壓參數VP。電壓參數VP是跟電壓有關的係數,但沒有單位。最後,如步驟S102所示,數位壓控振盪器202接收電壓參數VP,並根據電壓參數VP、最大頻率F max與最小頻率F min產生作為控制參數C之一控制頻率。在本發明之某些實施例中,控制頻率以Fc表示,Fc=(F min-F max)×P+ F max,P為電壓參數。由於控制頻率與電壓參數呈線性反比關係,故能提升控制參數C之變化量的穩定性。 FIG. 8 is a schematic circuit diagram of the resonance control device and the resonance converter according to the second embodiment of the present invention. FIG. 9 is a flow chart of generating control parameters according to an embodiment of the present invention. Please refer to FIG. 8 and FIG. 9 , the following describes the resonance control device 2 according to the second embodiment of the present invention. The difference between the second embodiment and the first embodiment lies in the feedback controller 20 , the switching parameter and the control parameter C, and other technical features are the same as those in the first embodiment, which will not be repeated here. In the second embodiment, the switching parameter is equal to the maximum frequency F max , and the feedback controller 20 includes a subtractor 200 , a voltage compensator 201 and a digital voltage controlled oscillator 202 . The voltage compensator 201 is coupled to the subtractor 200 and the digital voltage controlled oscillator 202 , and the digital voltage controlled oscillator 202 is coupled to the processor 21 . The following describes the process of generating control parameters according to an embodiment of the present invention. First, as shown in step S100, the subtractor 200 receives the reference voltage S and the output voltage V, and subtracts the output voltage V from the reference voltage S to obtain a difference voltage VD. Next, as shown in step S101, the voltage compensator 201 receives the difference voltage VD and performs voltage compensation on it to generate a voltage parameter VP. The voltage parameter VP is a coefficient related to voltage, but has no unit. Finally, as shown in step S102, the digital voltage controlled oscillator 202 receives the voltage parameter VP, and generates a control frequency as one of the control parameters C according to the voltage parameter VP, the maximum frequency F max and the minimum frequency F min . In some embodiments of the present invention, the control frequency is represented by Fc, Fc=( Fmin - Fmax )×P+ Fmax , and P is a voltage parameter. Since the control frequency and the voltage parameter have a linear inverse proportional relationship, the stability of the variation of the control parameter C can be improved.

根據上述實施例,諧振控制裝置及其諧振控制方法在不增加硬體成本之前提下,設定一切換參數,並根據切換參數進行恆定導通時間調變模式或脈波頻率調變模式,以改善諧振轉換器之輕載效率、降低啟動諧振電流、降低切換損失與雜訊、提高諧振轉換器之輸出電壓的下限範圍與擴大此輸出電壓之操作範圍。此外,數位壓控振盪器產生控制頻率,使其與電壓參數呈線性反比,以提升控制參數之變化量的穩定性。According to the above-mentioned embodiments, the resonance control device and the resonance control method thereof can set a switching parameter and perform a constant on-time modulation mode or a pulse frequency modulation mode according to the switching parameter to improve the resonance without increasing the hardware cost. The light load efficiency of the converter is reduced, the start-up resonant current is reduced, the switching loss and noise are reduced, the lower limit range of the output voltage of the resonant converter is improved, and the operating range of the output voltage is enlarged. In addition, the digital voltage-controlled oscillator generates the control frequency, which is linearly inversely proportional to the voltage parameter, so as to improve the stability of the variation of the control parameter.

以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above description is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Therefore, all changes and modifications made in accordance with the shape, structure, feature and spirit described in the scope of the patent application of the present invention are equivalent. , shall be included in the scope of the patent application of the present invention.

1…諧振轉換器 10…訊號控制器 11…第一電子開關 12…第二電子開關 13…諧振槽 14…變壓器 15…負載 2…諧振控制裝置 20…迴授控制器 200…減法器 201…電壓補償器 202…數位壓控振盪器 21…處理器 3…諧振轉換器 30…電子開關組 31…諧振槽 32…變壓器 4…負載 VH…高壓端 VL…低電壓端 Vo…輸出電壓 Io…輸出電流 D…責任週期 d…臨界值 F…頻率 W…輸出功率 f1…最小頻率 f2…最大頻率 V…輸出電壓 I…輸出電流 S…參考電壓 C…控制參數 P與P’… 脈波調變訊號 F max…最大頻率 F min…最小頻率 M…最小值 T…固定時間

Figure 02_image001
…諧振電感
Figure 02_image003
…激磁電感
Figure 02_image005
…諧振電容 S10、S12、S14、S16、S100、S101、S102…步驟 1...resonant converter 10...signal controller 11...first electronic switch 12...second electronic switch 13...resonant tank 14...transformer 15...load 2...resonance control device 20...feedback controller 200...subtractor 201...voltage Compensator 202...Digital Voltage Controlled Oscillator 21...Processor 3...Resonant Converter 30...Electronic Switch Group 31...Resonant Tank 32...Transformer 4...Load VH...High Voltage Terminal VL...Low Voltage Terminal Vo...Output Voltage Io...Output Current D...responsibility period d...critical value F...frequency W...output power f1...minimum frequency f2...maximum frequency V...output voltage I...output current S...reference voltage C...control parameters P and P'...pulse modulation signal F max ...maximum frequency F min... minimum frequency M...minimum T...fixed time
Figure 02_image001
…resonant inductance
Figure 02_image003
…magnetizing inductance
Figure 02_image005
...resonant capacitors S10, S12, S14, S16, S100, S101, S102...steps

第1圖為先前技術之諧振轉換器之電路示意圖。 第2圖為先前技術之脈波調變訊號之責任週期與頻率相對輸出功率之曲線圖。 第3圖為本發明之第一實施例之諧振控制裝置與諧振轉換器之電路示意圖。 第4圖為本發明之一實施例之脈波調變訊號之責任週期與頻率相對輸出功率之曲線圖。 第5圖為本發明之一實施例之於脈衝頻率調變模式之脈波調變訊號之波形圖。 第6圖為本發明之一實施例之於恆定導通時間模式之脈波調變訊號之波形圖。 第7圖為本發明之一實施例之諧振控制方法之流程圖。 第8圖為本發明之第二實施例之諧振控制裝置與諧振轉換器之電路示意圖。 第9圖為本發明之一實施例之產生控制參數之流程圖。 FIG. 1 is a schematic circuit diagram of a resonant converter of the prior art. FIG. 2 is a graph of the duty cycle and frequency of the prior art pulse modulation signal versus output power. FIG. 3 is a schematic circuit diagram of the resonance control device and the resonance converter according to the first embodiment of the present invention. FIG. 4 is a graph showing the duty cycle and frequency of the pulse modulation signal relative to the output power according to an embodiment of the present invention. FIG. 5 is a waveform diagram of a pulse modulation signal in a pulse frequency modulation mode according to an embodiment of the present invention. FIG. 6 is a waveform diagram of a pulse modulation signal in a constant on-time mode according to an embodiment of the present invention. FIG. 7 is a flowchart of a resonance control method according to an embodiment of the present invention. FIG. 8 is a schematic circuit diagram of the resonance control device and the resonance converter according to the second embodiment of the present invention. FIG. 9 is a flow chart of generating control parameters according to an embodiment of the present invention.

D…責任週期 W…輸出功率 F max…最大頻率 F min…最小頻率 M…最小值 F…頻率 D... duty cycle W... output power F max ... maximum frequency F min... minimum frequency M... minimum value F... frequency

Claims (16)

一種諧振控制裝置,包含:一迴授控制器,耦接一諧振轉換器之輸出端,該輸出端耦接一負載,該負載上有一輸出電壓,其中該迴授控制器用於接收一參考電壓與該輸出電壓,並利用該參考電壓對該輸出電壓進行電壓補償,以產生一控制參數;以及一處理器,耦接該迴授控制器與該諧振轉換器,並預設一切換參數,該處理器用於接收該控制參數,以據此與該切換參數產生脈波調變訊號,並藉該脈波調變訊號驅動該諧振轉換器調整該輸出電壓,該脈波調變訊號具有最大頻率與最小頻率,該最大頻率對應該切換參數,在該控制參數大於或等於該切換參數時,該脈波調變訊號為脈波頻率調變訊號,在該控制參數小於該切換參數時,該脈波調變訊號控制該諧振轉換器在該脈波調變訊號之每一週期內以固定時間運作;其中該輸出電壓施加該負載以產生一輸出電流,該輸出電流與該輸出電壓形成一輸出功率,在該控制參數小於該切換參數時,該脈波調變訊號之頻率線性正比於該輸出功率。 A resonance control device, comprising: a feedback controller, coupled to an output end of a resonance converter, the output end is coupled to a load, the load has an output voltage, wherein the feedback controller is used for receiving a reference voltage and The output voltage is voltage compensated by the reference voltage to generate a control parameter; and a processor is coupled to the feedback controller and the resonant converter, and presets a switching parameter, the processing The controller is used for receiving the control parameter to generate a pulse modulation signal according to the switching parameter, and to drive the resonant converter to adjust the output voltage by the pulse modulation signal. The pulse modulation signal has a maximum frequency and a minimum frequency Frequency, the maximum frequency corresponds to the switching parameter, when the control parameter is greater than or equal to the switching parameter, the pulse modulation signal is a pulse frequency modulation signal, when the control parameter is less than the switching parameter, the pulse modulation The variable signal controls the resonant converter to operate at a fixed time in each cycle of the pulse modulation signal; wherein the output voltage is applied to the load to generate an output current, and the output current and the output voltage form an output power, which is When the control parameter is smaller than the switching parameter, the frequency of the pulse modulation signal is linearly proportional to the output power. 如請求項1所述之諧振控制裝置,其中該脈波頻率調變訊號之責任週期為0.5。 The resonance control device as claimed in claim 1, wherein the duty cycle of the pulse frequency modulation signal is 0.5. 如請求項2所述之諧振控制裝置,其中該脈波頻率調變訊號之頻率線性反比於該輸出功率。 The resonance control device of claim 2, wherein the frequency of the pulse frequency modulation signal is linearly inversely proportional to the output power. 如請求項1所述之諧振控制裝置,其中該控制參數小於該切換參數時,該脈波調變訊號之責任週期線性正比於該輸出功率,且該責任週期之最大值為0.5,該責任週期之最小值等於該固定時間乘以 該最小頻率,該最小值小於0.5。 The resonance control device according to claim 1, wherein when the control parameter is less than the switching parameter, the duty cycle of the pulse modulation signal is linearly proportional to the output power, and the maximum value of the duty cycle is 0.5, and the duty cycle The minimum value is equal to the fixed time multiplied by The minimum frequency, the minimum value is less than 0.5. 如請求項1所述之諧振控制裝置,其中該切換參數等於該最大頻率,且該迴授控制器包含:一減法器,耦接該輸出端,其中該減法器用於接收該參考電壓與該輸出電壓,將該參考電壓減去該輸出電壓,以得到一差異電壓;一電壓補償器,耦接該減法器,其中該電壓補償器用於接收該差異電壓,且對其進行電壓補償,以產生一電壓參數;以及一數位壓控振盪器,其係耦接該電壓補償器與該處理器,其中該數位壓控振盪器用於接收該電壓參數,並根據該電壓參數、該最大頻率與該最小頻率產生作為該控制參數之一控制頻率。 The resonance control device of claim 1, wherein the switching parameter is equal to the maximum frequency, and the feedback controller comprises: a subtractor coupled to the output, wherein the subtractor is used for receiving the reference voltage and the output voltage, the reference voltage is subtracted from the output voltage to obtain a difference voltage; a voltage compensator is coupled to the subtractor, wherein the voltage compensator is used for receiving the difference voltage and performing voltage compensation on it to generate a voltage compensator voltage parameters; and a digital voltage-controlled oscillator coupled to the voltage compensator and the processor, wherein the digital voltage-controlled oscillator is used for receiving the voltage parameters, and according to the voltage parameters, the maximum frequency and the minimum Frequency generation controls the frequency as one of the control parameters. 如請求項5所述之諧振控制裝置,其中該控制頻率以Fc表示,Fc=(Fmin-Fmax)×P+Fmax,Fmin為該最小頻率,Fmax為該最大頻率,P為該電壓參數。 The resonance control device according to claim 5, wherein the control frequency is represented by Fc, Fc=( Fmin - Fmax )×P+ Fmax , Fmin is the minimum frequency, Fmax is the maximum frequency, and P is the the voltage parameter. 如請求項5所述之諧振控制裝置,其中該電壓補償器為比例積分微分控制器(PID controller)或比例積分控制器(PI controller)。 The resonance control device of claim 5, wherein the voltage compensator is a PID controller or a PI controller. 如請求項1所述之諧振控制裝置,其中該諧振轉換器為全橋式諧振轉換器(full-bridge resonate converter)或半橋式諧振轉換器(half-bridge resonate converter)。 The resonance control device of claim 1, wherein the resonant converter is a full-bridge resonate converter or a half-bridge resonate converter. 如請求項1所述之諧振控制裝置,其中該最小頻率與該最大頻率由該諧振轉換器之諧振槽所決定,該諧振槽由一諧振電感(Resonating Inductor)L R 、一激磁電感(Magnetizing Inductor)L M 與一諧振電容(Resonating Capacitor)C R 串聯而成,該最小頻率大於
Figure 110108529-A0305-02-0018-2
,且小於
Figure 110108529-A0305-02-0018-19
,該最大頻率大於
Figure 110108529-A0305-02-0018-4
The resonance control device of claim 1, wherein the minimum frequency and the maximum frequency are determined by a resonant tank of the resonant converter, and the resonant tank is composed of a resonating inductor LR , a magnetizing inductor ) L M is formed in series with a resonating capacitor (Resonating Capacitor) C R , the minimum frequency is greater than
Figure 110108529-A0305-02-0018-2
, and less than
Figure 110108529-A0305-02-0018-19
, the maximum frequency is greater than
Figure 110108529-A0305-02-0018-4
一種諧振控制方法,其係控制一諧振轉換器,該諧振轉換器耦接一負載,該負載上有一輸出電壓,該諧振控制方法包含下列步驟:接收一參考電壓與該輸出電壓,並利用該參考電壓對該輸出電壓進行電壓補償,以產生一控制參數;以及接收該控制參數,並判斷該控制參數是否小於一切換參數:若是,根據該控制參數與該切換參數產生脈波調變訊號,以藉此控制該諧振轉換器在該脈波調變訊號之每一週期內以固定時間運作,進而調整該輸出電壓;以及若否,根據該控制參數與該切換參數產生脈波頻率調變訊號,以藉此驅動該諧振轉換器調整該輸出電壓;其中該脈波頻率調變訊號與該脈波調變訊號具有最大頻率與最小頻率,該最大頻率對應該切換參數;其中該輸出電壓施加該負載以產生一輸出電流,該輸出電流與該輸出電壓形成一輸出功率,在該控制參數小於該切換參數時,該脈波調變訊號之頻率線性正比於該輸出功率。 A resonance control method, which controls a resonance converter, the resonance converter is coupled to a load, the load has an output voltage, the resonance control method comprises the following steps: receiving a reference voltage and the output voltage, and using the reference voltage The output voltage is voltage compensated to generate a control parameter; and the control parameter is received, and it is judged whether the control parameter is less than a switching parameter; if so, a pulse wave modulation signal is generated according to the control parameter and the switching parameter to Thereby, the resonant converter is controlled to operate at a fixed time in each cycle of the pulse modulation signal, so as to adjust the output voltage; and if not, a pulse frequency modulation signal is generated according to the control parameter and the switching parameter, thereby driving the resonant converter to adjust the output voltage; wherein the pulse frequency modulation signal and the pulse modulation signal have a maximum frequency and a minimum frequency, and the maximum frequency corresponds to the switching parameter; wherein the output voltage applies the load In order to generate an output current, the output current and the output voltage form an output power. When the control parameter is less than the switching parameter, the frequency of the pulse modulation signal is linearly proportional to the output power. 如請求項10所述之諧振控制方法,其中該脈波頻率調變訊號之責任週期為0.5。 The resonance control method as claimed in claim 10, wherein the duty cycle of the pulse frequency modulation signal is 0.5. 如請求項10所述之諧振控制方法,其中該脈波頻率調變訊號之頻率線性反比於該輸出功率。 The resonance control method of claim 10, wherein the frequency of the pulse frequency modulation signal is linearly inversely proportional to the output power. 如請求項10所述之諧振控制方法,其中該控制參數小於該切 換參數時,該脈波調變訊號之責任週期線性正比於該輸出功率,且該責任週期之最大值為0.5,該責任週期之最小值等於該固定時間乘以該最小頻率,該最小值小於0.5。 The resonance control method of claim 10, wherein the control parameter is less than the cutoff When changing parameters, the duty cycle of the pulse modulation signal is linearly proportional to the output power, and the maximum duty cycle is 0.5, the minimum duty cycle is equal to the fixed time multiplied by the minimum frequency, and the minimum value is less than 0.5. 如請求項10所述之諧振控制方法,其中該切換參數等於該最大頻率,且接收該參考電壓與該輸出電壓,並利用該參考電壓對該輸出電壓進行電壓補償,以產生該控制參數之步驟,包含下列步驟:接收該參考電壓與該輸出電壓,將該參考電壓減去該輸出電壓,以得到一差異電壓;接收該差異電壓,且對其進行電壓補償,以產生一電壓參數;以及接收該電壓參數,並根據該電壓參數、該最大頻率與該最小頻率產生作為該控制參數之一控制頻率。 The resonance control method of claim 10, wherein the switching parameter is equal to the maximum frequency, and the reference voltage and the output voltage are received, and the reference voltage is used to perform voltage compensation on the output voltage to generate the control parameter , comprising the following steps: receiving the reference voltage and the output voltage, subtracting the output voltage from the reference voltage to obtain a difference voltage; receiving the difference voltage and performing voltage compensation on it to generate a voltage parameter; and receiving The voltage parameter is generated according to the voltage parameter, the maximum frequency and the minimum frequency as one of the control parameters. 如請求項14所述之諧振控制方法,其中該控制頻率以Fc表示,Fc=(Fmin-Fmax)×P+Fmax,Fmin為該最小頻率,Fmax為該最大頻率,P為該電壓參數。 The resonance control method according to claim 14, wherein the control frequency is represented by Fc, Fc=( Fmin - Fmax )×P+ Fmax , Fmin is the minimum frequency, Fmax is the maximum frequency, and P is the the voltage parameter. 如請求項10所述之諧振控制方法,其中該最小頻率與該最大頻率由該諧振轉換器之諧振槽所決定,該諧振槽由一諧振電感(Resonating Inductor)L R 、一激磁電感(Magnetizing Inductor)L M 與一諧振電容(Resonating Capacitor)C R 串聯而成,該最小頻率大於
Figure 110108529-A0305-02-0019-6
,且小於
Figure 110108529-A0305-02-0019-7
,該最大頻率大於
Figure 110108529-A0305-02-0019-8
The resonance control method of claim 10, wherein the minimum frequency and the maximum frequency are determined by a resonant tank of the resonant converter, and the resonant tank is composed of a resonating inductor LR , a magnetizing inductor ) L M is formed in series with a resonating capacitor (Resonating Capacitor) C R , the minimum frequency is greater than
Figure 110108529-A0305-02-0019-6
, and less than
Figure 110108529-A0305-02-0019-7
, the maximum frequency is greater than
Figure 110108529-A0305-02-0019-8
TW110108529A 2021-03-10 2021-03-10 Resonance control device and resonance control method thereof TWI778542B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110108529A TWI778542B (en) 2021-03-10 2021-03-10 Resonance control device and resonance control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110108529A TWI778542B (en) 2021-03-10 2021-03-10 Resonance control device and resonance control method thereof

Publications (2)

Publication Number Publication Date
TW202236788A TW202236788A (en) 2022-09-16
TWI778542B true TWI778542B (en) 2022-09-21

Family

ID=84957220

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110108529A TWI778542B (en) 2021-03-10 2021-03-10 Resonance control device and resonance control method thereof

Country Status (1)

Country Link
TW (1) TWI778542B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200707889A (en) * 2005-08-11 2007-02-16 Beyond Innovation Tech Co Ltd Resonant DC/AC inverter
TW201824725A (en) * 2016-12-21 2018-07-01 明緯(廣州)電子有限公司 Resonance control device and resonance control method thereof including an output voltage compensating step, an output voltage adjusting step, and a lower limit range increasing step for the output voltage
US20190326812A1 (en) * 2018-04-24 2019-10-24 Shanghai Tuituo Technology Co., Ltd Pfwm control method for power supply
US20200195161A1 (en) * 2018-12-13 2020-06-18 Power Integrations, Inc. Controller with limit control to change switching period or switching frequency of power converter and methods thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200707889A (en) * 2005-08-11 2007-02-16 Beyond Innovation Tech Co Ltd Resonant DC/AC inverter
TW201824725A (en) * 2016-12-21 2018-07-01 明緯(廣州)電子有限公司 Resonance control device and resonance control method thereof including an output voltage compensating step, an output voltage adjusting step, and a lower limit range increasing step for the output voltage
US20190326812A1 (en) * 2018-04-24 2019-10-24 Shanghai Tuituo Technology Co., Ltd Pfwm control method for power supply
US20200195161A1 (en) * 2018-12-13 2020-06-18 Power Integrations, Inc. Controller with limit control to change switching period or switching frequency of power converter and methods thereof

Also Published As

Publication number Publication date
TW202236788A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
TWI436569B (en) Method and apparatus for regulating gain within a resonant converter
US8525428B2 (en) Power supply apparatus and method for a backlight system
JP5050874B2 (en) Switching power supply
WO2014034530A1 (en) Switching power supply apparatus
CN107820669B (en) Double-bridge DC/DC power converter
US10020749B2 (en) Power conversion unit
WO2014046215A1 (en) Switching-mode power supply device
KR101245520B1 (en) Symmetric and Bidirectional Resonant Converter
TW201509105A (en) Power converter and method for stabling the voltage gain
Ekhtiari et al. State-of-the-art piezoelectric transformer-based switch mode power supplies
TWI459698B (en) Frequency-conversion mode converter and regulated method thereof
WO2018157796A1 (en) Resonant converter
JP2013236428A (en) Dc conversion device
US9960689B1 (en) Resonant control device and resonant control method thereof
Wei et al. Control strategies overview for LLC resonant converter with fixed frequency operation
CN1191643C (en) Pulse-position-modulation driving for piezoelectric transformers
TWI617125B (en) Resonance control device and resonance control method thereof
TWI778542B (en) Resonance control device and resonance control method thereof
Tseng et al. Design and hardware implementation for a full-bridge phase-shift PWM DC/DC converter system with FPGA-based PI gain-scheduling control
JP6141908B2 (en) Current resonance type DC-DC converter
KR20150047648A (en) ZVZCS Switching Converter Using Auto-Transformer
US11658579B2 (en) Resonant control device and resonant control method thereof
KR102306880B1 (en) High efficiency isolated pfc converter
KR20170104434A (en) Resonance-type dc-dc converter
Nelson et al. Hybrid control for high efficiency LLC resonant converter

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent