TWI777513B - Memory device and fabricating method thereof - Google Patents

Memory device and fabricating method thereof Download PDF

Info

Publication number
TWI777513B
TWI777513B TW110114686A TW110114686A TWI777513B TW I777513 B TWI777513 B TW I777513B TW 110114686 A TW110114686 A TW 110114686A TW 110114686 A TW110114686 A TW 110114686A TW I777513 B TWI777513 B TW I777513B
Authority
TW
Taiwan
Prior art keywords
selector
source
layer
metal layer
drain
Prior art date
Application number
TW110114686A
Other languages
Chinese (zh)
Other versions
TW202143472A (en
Inventor
後藤賢一
禮修 馬
林仲德
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202143472A publication Critical patent/TW202143472A/en
Application granted granted Critical
Publication of TWI777513B publication Critical patent/TWI777513B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more electrodes, e.g. transistor-like devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Semiconductor Memories (AREA)
  • Massaging Devices (AREA)
  • Vehicle Body Suspensions (AREA)
  • Electrotherapy Devices (AREA)

Abstract

The present disclosure, in some embodiments, relates to a memory device. In some embodiments, the memory device comprises a substrate and an interconnect structure disposed over the substrate. The interconnect structure comprises stacked interconnect metal layers disposed within stacked interlayer dielectric (ILD) layers. A memory cell is disposed between an upper interconnect metal layer and an intermediate interconnect metal layer. A selecting transistor is connected to the memory cell and disposed between the intermediate interconnect metal layer and a lower interconnect metal layer. By placing the selecting transistor within the back-end interconnect structure between two interconnect metal layers, front-end space is saved, and more integration flexibility is provided.

Description

記憶體裝置及其製造方法Memory device and method of manufacturing the same

本揭露係有關於一種記憶體裝置,特別係有關於具有後段製程電晶體的一種記憶體裝置。The present disclosure relates to a memory device, and more particularly, to a memory device having a back-end process transistor.

時至今日,許多現代化的電子裝置包含有配置來儲存資料的電子記憶體。電子記憶體可為揮發性記憶體或是非揮發性(non-volatile)記憶體。揮發性記憶體在被供電時儲存資料,而非揮發性記憶體則是能夠在移除電源後儲存資料。電阻式隨機存取記憶體(resistive random-access memory)是備受期待之下一代非揮發性記憶體技術的候選者。這是因為電阻式隨機存取記憶體提供了許多優點,包括快速的寫入時間、高耐用性、低功耗、以及對來自輻射的傷害的低敏感性。Today, many modern electronic devices contain electronic memory configured to store data. Electronic memory can be volatile memory or non-volatile memory. Volatile memory stores data when power is supplied, while non-volatile memory stores data when power is removed. Resistive random-access memory is a highly anticipated candidate for next-generation non-volatile memory technology. This is because resistive random access memory offers many advantages, including fast write times, high endurance, low power consumption, and low susceptibility to damage from radiation.

本揭露實施例提供一種記憶體裝置。上述記憶體裝置包括一基板以及設置於上述基板上方的互連結構。互連結構包括設置於複數堆疊層間介電(ILD)層中的複數堆疊互連金屬層。堆疊互連金屬層包括一者設置於另一者上方的下方互連金屬層、中間互連金屬層、以及上方互連金屬層。記憶體單元被設置於上方互連金屬層與中間互連金屬層之間。選擇電晶體連接至記憶體單元,且被設置於中間互連金屬層與下方互連金屬層之間。選擇電晶體包括設置於選擇器通道層上的第一選擇器源極/汲極區域以及第二選擇器源極/汲極區域。第一選擇器源極/汲極區域與第二選擇器源極/汲極區域藉由側壁間隔物分隔。Embodiments of the present disclosure provide a memory device. The above-mentioned memory device includes a substrate and an interconnection structure disposed above the substrate. The interconnect structure includes a plurality of stacked interconnect metal layers disposed in a plurality of stacked interlayer dielectric (ILD) layers. The stacked interconnect metal layers include a lower interconnect metal layer, an intermediate interconnect metal layer, and an upper interconnect metal layer disposed one over the other. The memory cells are disposed between the upper interconnect metal layer and the middle interconnect metal layer. The selection transistor is connected to the memory cell and is disposed between the middle interconnect metal layer and the lower interconnect metal layer. The selection transistor includes a first selector source/drain region and a second selector source/drain region disposed on the selector channel layer. The first selector source/drain region and the second selector source/drain region are separated by sidewall spacers.

本揭露實施例提供一種記憶體裝置。上述記憶體裝置包括一基板以及設置於上述基板上方的互連結構。互連結構包括一者堆疊於另一者上方且設置於層間介電(ILD)層之中的複數互連金屬層。複數記憶體單元被設置於互連結構中,且排列於列與行的陣列中。複數選擇電晶體對應地連接至記憶體單元。複數選擇電晶體設置於互連結構之中、互連結構的下方互連金屬層與上方互連金屬層之間。Embodiments of the present disclosure provide a memory device. The above-mentioned memory device includes a substrate and an interconnection structure disposed above the substrate. The interconnect structure includes a plurality of interconnect metal layers stacked one above the other and disposed in an interlayer dielectric (ILD) layer. A plurality of memory cells are arranged in an interconnect structure and arranged in an array of columns and rows. The plurality of selection transistors are correspondingly connected to the memory cells. The complex selection transistors are disposed in the interconnection structure and between the lower interconnection metal layer and the upper interconnection metal layer of the interconnection structure.

本揭露實施例提供一種記憶體裝置的製造方法。上述製造方法包括在一基板上方形成被下方層間介電(ILD)層所圍繞的下方互連金屬層,以及在下方互連金屬層上形成複數選擇電晶體。上述製造方法更包括在複數選擇電晶體上形成中間互連金屬層,以及在中間互連金屬層上形成複數記憶體單元。上述製造方法更包括在複數記憶體單元上形成一上方互連金屬層。Embodiments of the present disclosure provide a method for manufacturing a memory device. The above-described fabrication method includes forming a lower interconnect metal layer over a substrate surrounded by an underlying interlayer dielectric (ILD) layer, and forming a plurality of selection transistors on the lower interconnect metal layer. The above manufacturing method further includes forming an intermediate interconnection metal layer on the complex selection transistor, and forming a plurality of memory cells on the intermediate interconnection metal layer. The above manufacturing method further includes forming an upper interconnect metal layer on the plurality of memory cells.

以下之揭露提供許多不同實施例或範例,用以實施本揭露之不同特徵。本揭露之各部件及排列方式,其特定範例敘述於下以簡化說明。理所當然的,這些範例並非用以限制本揭露。舉例來說,若敘述中有著第一特徵成形於第二特徵之上或上方,其可能包含第一特徵與第二特徵以直接接觸成形之實施例,亦可能包含有附加特徵形成於第一特徵與第二特徵之間,而使第一特徵與第二特徵間並非直接接觸之實施例。此外,本揭露可在多種範例中重複參考數字及/或字母。該重複之目的係為簡化及清晰易懂,且本身並不規定所討論之多種實施例及/或配置間之關係。The following disclosure provides many different embodiments or examples for implementing various features of the present disclosure. Specific examples of the various components and arrangements of the present disclosure are described below to simplify the description. Of course, these examples are not intended to limit the present disclosure. For example, where the description has a first feature formed on or over a second feature, it may include embodiments where the first feature and the second feature are formed in direct contact, and may also include additional features formed on the first feature between the first feature and the second feature without direct contact between the first feature and the second feature. Furthermore, the present disclosure may repeat reference numerals and/or letters in various instances. This repetition is for simplicity and clarity, and does not in itself prescribe the relationship between the various embodiments and/or configurations discussed.

進一步來說,本揭露可能會使用空間相對術語,例如「在…下方」、「下方」、「低於」、「在…上方」、「高於」及類似詞彙,以便於敘述圖式中一個元件或特徵與其他元件或特徵間之關係。除了圖式所描繪之方位外,空間相對術語亦欲涵蓋使用中或操作中之裝置其不同方位。設備可能會被轉向不同方位(旋轉90度或其他方位),而此處所使用之空間相對術語則可相應地進行解讀。Further, the present disclosure may use spatially relative terms such as "below," "below," "below," "above," "above," and the like to facilitate describing one of the drawings The relationship of an element or feature to other elements or features. In addition to the orientation depicted in the drawings, spatially relative terms are intended to encompass different orientations of the device in use or operation. The device may be turned in different orientations (rotated 90 degrees or otherwise) and the spatially relative terms used herein should be interpreted accordingly.

半導體工業藉由,舉例來說,減少最小特徵尺寸及/或使電子裝置彼此間更加靠近,來持續改善各種電子裝置(例如:電晶體、二極體、電阻器、電容器等)的積體密度,如此可允許更多的組件被整合到給定的面積中。隨著製造節點的不斷微縮,前段製程(front-end-of-line, FEOL)電晶體成為驅動高密度非揮發性記憶體(non-volatile memory, NVM)的主要瓶頸,其中NVM例如磁阻式隨機存取記憶體(magnetoresistive random access memory, MRAM)裝置。MRAM的操作需要高寫入電流(例如:大於200微安培(µA)/微米(µm))。獲得這種高寫入電流的一種方法是放大電晶體的尺寸,或是為一個記憶體元件採用複數電晶體。舉例來說,一些被提出來的概念將兩個或更多個的電晶體用於一個記憶體元件,以期具有足夠的驅動電流。這些方法對FEOL面積造成很大的損失。The semiconductor industry continues to improve the bulk density of various electronic devices (eg, transistors, diodes, resistors, capacitors, etc.) by, for example, reducing minimum feature size and/or bringing electronic devices closer together , which allows more components to be integrated into a given area. As manufacturing nodes continue to shrink, front-end-of-line (FEOL) transistors have become the main bottleneck for driving high-density non-volatile memory (NVM), such as magnetoresistive Random access memory (magnetoresistive random access memory, MRAM) device. The operation of MRAM requires high write currents (eg, greater than 200 microamps (µA)/micrometer (µm)). One way to achieve this high write current is to enlarge the size of the transistors, or to use multiple transistors for a memory element. For example, some proposed concepts use two or more transistors for a memory element in order to have sufficient drive current. These methods cause a large loss of FEOL area.

鑑於上述內容,本揭露係有關於用作記憶體裝置之選擇電晶體的後段製程(BEOL)電晶體以及相關的製造方法,以實現高密度非揮發性記憶體裝置。在一些實施例中,記憶體裝置包括基板。後段互連結構(back-end interconnect structure)被設置在基板上方,且包括一者堆疊在另一者上方的複數互連金屬層。記憶體單元(cell)被設置在上方互連金屬層與中間互連金屬層之間。選擇電晶體(selecting transistor)被設置在中間互連金屬層與下方互連金屬層之間。藉由將選擇電晶體設置在後段互連結構之中以及兩個互連金屬層之間,前端空間可被釋放,並提供更大的整合靈活性。In view of the foregoing, the present disclosure relates to back-end-of-line (BEOL) transistors for use as select transistors in memory devices and related fabrication methods to realize high-density non-volatile memory devices. In some embodiments, the memory device includes a substrate. A back-end interconnect structure is disposed over the substrate and includes a plurality of interconnect metal layers stacked one over the other. Memory cells are disposed between the upper interconnect metal layer and the middle interconnect metal layer. A selecting transistor is disposed between the middle interconnect metal layer and the underlying interconnect metal layer. By placing the select transistor in the back-end interconnect structure and between the two interconnect metal layers, front-end space can be freed up and greater integration flexibility is provided.

在一些進一步的實施例中,選擇電晶體為平面電晶體。選擇電晶體的選擇器(selector)閘極電極可被設置於下方互連金屬層上,並電性耦接(electrically couple)至下方互連金屬層。選擇器通道層被設置於選擇器閘極電極上方。選擇器源極/汲極層被設置於選擇器通道層上。選擇器源極/汲極層包括由側壁間隔物所分隔的第一選擇器源極/汲極區域與第二選擇器源極/汲極區域。通道層直接位於側壁間隔物下方的一部分被用作選擇電晶體的通道區。因此,側壁間隔物的寬度定義了選擇電晶體的通道長度。在一些實施例中,通道層包括氧化半導體(oxide semiconductor, OS)材料。舉例來說,通道層可由氧化銦鎵鋅(indium gallium zinc oxide, IGZO)製成。OS材料通道區提供超低漏電電流(ION /IOFF > 1013 ),且可用於製造與BEOL相容之用於記憶體裝置的電晶體。在一些實施例中,選擇器源極/汲極區域可具有各種形狀。舉例來說,第二選擇器源極/汲極區域可為圓形、正方形、單鰭、多鰭、橢圓形或其他適用形狀。側壁間隔物圍繞第二選擇器源極/汲極區域,且第一選擇器源極/汲極區域包圍側壁間隔物的外圍。In some further embodiments, the selection transistor is a planar transistor. A selector gate electrode of the select transistor may be disposed on the lower interconnect metal layer and electrically coupled to the lower interconnect metal layer. A selector channel layer is disposed over the selector gate electrode. The selector source/drain layer is disposed on the selector channel layer. The selector source/drain layer includes a first selector source/drain region and a second selector source/drain region separated by sidewall spacers. A portion of the channel layer directly below the sidewall spacers is used as a channel region for the select transistor. Thus, the width of the sidewall spacers defines the channel length of the select transistor. In some embodiments, the channel layer includes an oxide semiconductor (OS) material. For example, the channel layer may be made of indium gallium zinc oxide (IGZO). The OS material channel region provides ultra-low leakage current (I ON /I OFF > 10 13 ) and can be used to fabricate BEOL compatible transistors for memory devices. In some embodiments, the selector source/drain regions may have various shapes. For example, the second selector source/drain regions may be circular, square, single fin, multi-fin, oval, or other suitable shapes. The sidewall spacers surround the second selector source/drain regions, and the first selector source/drain regions surround the periphery of the sidewall spacers.

並且在一些實施例中,記憶體單元包括由資料儲存結構所分隔的底部電極與頂部電極。選擇電晶體可經由中間互連金屬層連接至記憶體單元的底部電極。儲存結構與頂部電極在底部電極上方堆疊。在一些實施例中,資料儲存結構為磁穿隧接面(magnetic tunnel junction, MTJ)或是自旋閥(spin-valve)。在這種案例中,記憶體單元被稱為磁記憶體單元,且由這種記憶體單元的陣列所製成的記憶體裝置被稱為MRAM裝置。在一些替代性實施例中,資料儲存結構為金屬-絕緣體-金屬(metal-insulator- metal, MIM)堆疊,且記憶體單元可為電阻記憶體單元。用於資料儲存結構的其他結構及/或用於記憶體單元的其他記憶體單元類型也是可以接受的。And in some embodiments, the memory cell includes a bottom electrode and a top electrode separated by a data storage structure. The select transistor may be connected to the bottom electrode of the memory cell via an intermediate interconnect metal layer. The storage structure is stacked with the top electrode over the bottom electrode. In some embodiments, the data storage structure is a magnetic tunnel junction (MTJ) or a spin-valve. In this case, the memory cells are referred to as magnetic memory cells, and memory devices made from arrays of such memory cells are referred to as MRAM devices. In some alternative embodiments, the data storage structure is a metal-insulator-metal (MIM) stack, and the memory cells may be resistive memory cells. Other structures for data storage structures and/or other memory cell types for memory cells are also acceptable.

第1圖顯示包含選擇電晶體118之記憶體裝置100的一些實施例的截面圖。在一些實施例中,記憶體裝置100包括設置於互連結構104之中的記憶體單元108,其中互連結構104位於基板102上方。互連結構104包括設置於堆疊之層間介電(inter-level dielectric, ILD)層之中的堆疊之互連金屬層。在一些實施例中,堆疊之ILD層包括設置於記憶體單元108與基板102之間的下方ILD層104L,以及圍繞(surround)記憶體單元108的上方ILD層104U。下方ILD層104L及上方ILD層104U的每一者可包括一或多個介電層。在一些實施例中,堆疊之互連金屬層包括下方互連金屬層130、堆疊於下方互連金屬層130上方的中間互連金屬層106、以及設置於中間互連金屬層106上方的上方互連金屬層116。FIG. 1 shows a cross-sectional view of some embodiments of a memory device 100 including a select transistor 118 . In some embodiments, memory device 100 includes memory cells 108 disposed within interconnect structure 104 , where interconnect structure 104 is located over substrate 102 . The interconnect structure 104 includes stacked interconnect metal layers disposed in inter-level dielectric (ILD) layers between the stacks. In some embodiments, the stacked ILD layers include a lower ILD layer 104L disposed between the memory cells 108 and the substrate 102 , and an upper ILD layer 104U surrounding the memory cells 108 . Each of the lower ILD layer 104L and the upper ILD layer 104U may include one or more dielectric layers. In some embodiments, the stacked interconnect metal layers include a lower interconnect metal layer 130 , a middle interconnect metal layer 106 stacked over the lower interconnect metal layer 130 , and an upper interconnect layer disposed above the middle interconnect metal layer 106 . The metal layer 116 is connected.

記憶體單元108可包括底部電極110、設置在底部電極110上方的資料儲存結構112、以及設置在資料儲存結構112上方的頂部電極114。上方互連金屬層116延伸穿過上方ILD層104U以抵達頂部電極114上。在一些實施例中,底部電極110及頂部電極114可包括氮化鉭、氮化鈦、鉭、鈦、鉑、鎳、鉿、鋯、釕、銥等。在一些實施例中,資料儲存結構112為磁穿隧接面(MTJ)或自旋閥。在此等案例中,記憶體單元108被稱為磁記憶體單元,而由這種記憶體單元108的陣列所製成的記憶體裝置100被稱為磁阻式隨機存取記憶體(MRAM)裝置。在此等實施例中,資料儲存結構112可包括磁穿隧接面、鐵電電容器或接面等。在一些替代性實施例中,資料儲存結構112為金屬-絕緣體-金屬(MIM)堆疊,且記憶體單元108可為電阻記憶體單元。在此等案例中,記憶體單元108被稱為電阻記憶體單元,而由這種記憶體單元108的陣列所製成的記憶體裝置100被稱為RRAM裝置。在此等實施例中,資料儲存結構112包括高k值介電材料,例如二氧化鉿(HfO2 )、二氧化鋯(ZrO2 )、氧化鋁(Al2 O3 )、五氧化鉭(Ta2 O5 )、氧化鉿鋁(HfAlO)、氧化鉿鋯(HfZrO)等。用於資料儲存結構112的其他結構及/或用於記憶體單元108的其他記憶體單元類型也是可以接受的。The memory cell 108 may include a bottom electrode 110 , a data storage structure 112 disposed over the bottom electrode 110 , and a top electrode 114 disposed over the data storage structure 112 . The upper interconnect metal layer 116 extends through the upper ILD layer 104U to reach the top electrode 114 . In some embodiments, the bottom electrode 110 and the top electrode 114 may include tantalum nitride, titanium nitride, tantalum, titanium, platinum, nickel, hafnium, zirconium, ruthenium, iridium, and the like. In some embodiments, the data storage structure 112 is a magnetic tunnel junction (MTJ) or a spin valve. In these cases, memory cells 108 are referred to as magnetic memory cells, and memory devices 100 made from arrays of such memory cells 108 are referred to as magnetoresistive random access memory (MRAM) device. In such embodiments, the data storage structure 112 may include a magnetic tunnel junction, a ferroelectric capacitor or junction, or the like. In some alternative embodiments, the data storage structures 112 are metal-insulator-metal (MIM) stacks, and the memory cells 108 may be resistive memory cells. In these cases, memory cells 108 are referred to as resistive memory cells, and memory devices 100 made from arrays of such memory cells 108 are referred to as RRAM devices. In these embodiments, the data storage structure 112 includes a high-k dielectric material, such as hafnium dioxide (HfO 2 ), zirconium dioxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), tantalum pentoxide (Ta 2 O 5 ), hafnium aluminum oxide (HfAlO), hafnium zirconium oxide (HfZrO), etc. Other structures for data storage structure 112 and/or other memory cell types for memory cells 108 are also acceptable.

在一些實施例中,選擇電晶體118經由中間互連金屬層106電性耦接(electrically couple)至記憶體單元108的底部電極110。在一些實施例中,源極/汲極層134設置於中間互連金屬層106的下方。源極/汲極層134包括被側壁間隔物128所分隔的第一選擇器源極/汲極區域120與第二選擇器源極/汲極區域122。選擇器通道層126被設置於源極/汲極層134下方。選擇器閘極介電層132被設置於選擇器通道層126的下方,並分隔選擇器閘極電極124與選擇器通道層126。選擇器閘極電極124可被設置在下方互連金屬層130上,且被下方ILD層104L所圍繞。在操作期間,源極-汲極電壓被施加在第一選擇器源極/汲極區域120與第二選擇器源極/汲極區域122之間。閘極-源極電壓被施加在選擇器閘極電極124與第一選擇器源極/汲極區域120之間。若閘極-源極電壓足夠,則選擇器通道層126中的通道路徑被導通(turn-on),連接第一選擇器源極/汲極區域120以及第二選擇器源極/汲極區域122。側壁間隔物128的寬度定義了選擇電晶體118在選擇器通道層126中直接位於側壁間隔物128下方的通道長度Lc。側壁間隔物128與第二選擇器源極/汲極區域122之間的界面周長,定義了選擇電晶體118的通道寬度。In some embodiments, the select transistor 118 is electrically coupled to the bottom electrode 110 of the memory cell 108 via the intermediate interconnect metal layer 106 . In some embodiments, the source/drain layer 134 is disposed below the intermediate interconnect metal layer 106 . The source/drain layer 134 includes a first selector source/drain region 120 and a second selector source/drain region 122 separated by sidewall spacers 128 . The selector channel layer 126 is disposed below the source/drain layer 134 . The selector gate dielectric layer 132 is disposed below the selector channel layer 126 and separates the selector gate electrode 124 from the selector channel layer 126 . The selector gate electrode 124 may be disposed on the underlying interconnect metal layer 130 and surrounded by the underlying ILD layer 104L. During operation, a source-drain voltage is applied between the first selector source/drain region 120 and the second selector source/drain region 122 . A gate-source voltage is applied between the selector gate electrode 124 and the first selector source/drain region 120 . If the gate-source voltage is sufficient, the channel path in the selector channel layer 126 is turned-on, connecting the first selector source/drain region 120 and the second selector source/drain region 122. The width of the sidewall spacer 128 defines the channel length Lc of the select transistor 118 in the selector channel layer 126 directly below the sidewall spacer 128 . The perimeter of the interface between the sidewall spacer 128 and the second selector source/drain region 122 defines the channel width of the select transistor 118 .

在一些實施例中,第一選擇器源極/汲極區域120以及第二選擇器源極/汲極區域122包括被摻雜的半導體材料(例如:p摻雜或n摻雜的多晶矽)及/或氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、銅(Cu)、或其他CMOS接點(contact)金屬。第一選擇器源極/汲極區域120以及第二選擇器源極/汲極區域122的每一者所具有的厚度,可處於自約10nm(奈米)至約50nm的範圍中。在一些實施例中,側壁間隔物128可為單層的非導電材料。在一些替代性實施例中,側壁間隔物128可包括多層相同或不同的材料,共同地將第二選擇器源極/汲極區域122與第一選擇器源極/汲極區域120隔絕。舉例來說,側壁間隔物128可包括介電材料或多重介電材料,例如二氧化矽、氮化矽等。側壁間隔物128所具有的厚度,可處於自約5nm至約30nm的範圍中。在一些實施例中,選擇器通道層126包括氧化半導體(oxide semiconductor, OS)材料。舉例來說,通道層可由諸如氧化銦鎵鋅(IGZO)、氧化銦鋅(indium zinc oxide, IZO)、氧化銦錫或氧化銦鈦(indium tin oxide or indium titanium oxide, ITO)、或是另一種氧化半導體材料所製成。選擇器通道層126所具有的厚度,可處於自約3nm至約50nm的範圍中,或是自約5nm至約30nm的範圍中。OS材料通道區域提供超低的漏電,且可被用於製造相容於BEOL之用於記憶體裝置的電晶體。在一些實施例中,選擇器閘極介電層132包括氧化鋁(Al2 O3 )、氧化鉿(HfO2 )、氧化鉭(Ta2 O5 )、氧化鋯(ZrO2 )、氧化鈦(TiO2 )、氧化鍶鈦(SrTiO3 )、或是其他高k值介電材料等。選擇器閘極介電層132所具有的厚度,可處於自約1nm至約15nm的範圍中,或是自約1nm至約5nm的範圍中。藉由將選擇電晶體放置於後段製程的互連結構之中、兩個互連金屬層之間,前段製程可用於新穎的邏輯功能,並提供更大的整合靈活性。In some embodiments, the first selector source/drain region 120 and the second selector source/drain region 122 include a doped semiconductor material (eg, p-doped or n-doped polysilicon) and /or titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), copper (Cu), or other CMOS contact metals. Each of the first selector source/drain region 120 and the second selector source/drain region 122 may have a thickness in a range from about 10 nm (nanometers) to about 50 nm. In some embodiments, sidewall spacers 128 may be a single layer of non-conductive material. In some alternative embodiments, the sidewall spacers 128 may comprise multiple layers of the same or different materials that collectively isolate the second selector source/drain regions 122 from the first selector source/drain regions 120 . For example, the sidewall spacers 128 may include a dielectric material or multiple dielectric materials, such as silicon dioxide, silicon nitride, and the like. The sidewall spacers 128 may have a thickness ranging from about 5 nm to about 30 nm. In some embodiments, the selector channel layer 126 includes an oxide semiconductor (OS) material. For example, the channel layer can be made of materials such as indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium tin oxide or indium titanium oxide (ITO), or another Made of oxide semiconductor materials. The selector channel layer 126 may have a thickness in the range from about 3 nm to about 50 nm, or in the range from about 5 nm to about 30 nm. The OS material channel region provides ultra-low leakage and can be used to fabricate BEOL compatible transistors for memory devices. In some embodiments, the selector gate dielectric layer 132 includes aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), titanium oxide ( TiO 2 ), strontium titanium oxide (SrTiO 3 ), or other high-k dielectric materials, etc. The selector gate dielectric layer 132 may have a thickness in a range from about 1 nm to about 15 nm, or in a range from about 1 nm to about 5 nm. By placing the select transistor in the interconnect structure of the back end process, between two interconnect metal layers, the front end process can be used for novel logic functions and provide greater integration flexibility.

第2圖根據一些附加實施例,更詳細地顯示了包含選擇電晶體118之記憶體裝置200的截面圖。在一些實施例中,邏輯裝置202被設置在基板102之中。邏輯裝置202可包括電晶體裝置(例如:金屬氧化物半導體場效電晶體(MOSFET)裝置、雙極性接面電晶體(BJT)等)。互連結構104被設置於邏輯裝置202與基板102上方。互連結構104包括複數堆疊的ILD層104a、104b、104c、104d及104e(104a-104e),橫向地圍繞複數互連金屬層,這些互連金屬層被配置以提供電性連接。在一些實施例中,互連金屬層可包括著陸(land)於邏輯裝置202上的導電接點204,以及包括設置於導電接點204上方且被複數堆疊的ILD層104a-104e所圍繞的互連線路206a-206c與互連通孔。FIG. 2 shows a cross-sectional view of a memory device 200 including a select transistor 118 in greater detail, according to some additional embodiments. In some embodiments, logic device 202 is disposed within substrate 102 . The logic device 202 may include a transistor device (eg, a metal oxide semiconductor field effect transistor (MOSFET) device, a bipolar junction transistor (BJT), etc.). The interconnect structure 104 is disposed over the logic device 202 and the substrate 102 . The interconnect structure 104 includes a plurality of stacked ILD layers 104a, 104b, 104c, 104d, and 104e (104a-104e) laterally surrounding a plurality of interconnect metal layers configured to provide electrical connections. In some embodiments, the interconnect metal layer may include a conductive contact 204 that lands on the logic device 202 and includes an interconnect disposed over the conductive contact 204 and surrounded by a plurality of stacked ILD layers 104a-104e Connect lines 206a-206c and interconnect vias.

在一些實施例中,第一互連線路206a(亦稱為互連線路206a)被設置在第一ILD層104a(亦稱為ILD層104a)上方的第二ILD層104b(亦稱為ILD層104b)之中。第一互連線路206a可用作記憶體裝置200的字元線。選擇電晶體118包括選擇器閘極電極124,選擇器閘極電極124堆疊於第一互連線路206a上,且被配置以控制電流經由選擇器通道層126在第一選擇器源極/汲極區域120與第二選擇器源極/汲極區域122之間流動。在一些實施例中,選擇器閘極電極124可包括與第一互連線路206a相同的導電材料,且與第一互連線路206a之間可為無縫的(seamless)。或者,選擇器閘極電極124可包括與第一互連線路206a不同的導電材料。選擇器閘極介電層132可被設置在選擇器閘極電極124與選擇器通道層之間。In some embodiments, a first interconnect 206a (also referred to as interconnect 206a) is disposed over a second ILD layer 104b (also referred to as ILD layer) over first ILD layer 104a (also referred to as ILD layer 104a) 104b). The first interconnection line 206a may be used as a word line of the memory device 200 . Select transistor 118 includes selector gate electrode 124 stacked on first interconnect 206a and configured to control current flow at first selector source/drain via selector channel layer 126 flow between region 120 and second selector source/drain region 122 . In some embodiments, the selector gate electrode 124 may comprise the same conductive material as the first interconnect line 206a, and may be seamless with the first interconnect line 206a. Alternatively, the selector gate electrode 124 may include a different conductive material than the first interconnection line 206a. A selector gate dielectric layer 132 may be disposed between the selector gate electrode 124 and the selector channel layer.

在一些實施例中,第一選擇器源極/汲極區域120及第二選擇器源極/汲極區域122被設置於選擇器通道層126上,並藉由側壁間隔物128彼此分隔。側壁間隔物128可包圍(enclose)第二選擇器源極/汲極區域122的外側側壁。第一選擇器源極/汲極區域120可包圍側壁間隔物128的外側側壁,並且可被第三ILD層104c(亦稱為ILD層104c)所圍繞。在一些實施例中,介電層222被設置於第一選擇器源極/汲極區域120及第三ILD層104c上,並圍繞側壁間隔物128或第二選擇器源極/汲極區域122。在一些實施例中,側壁間隔物128覆蓋第二選擇器源極/汲極區域122的側壁表面。第一選擇器源極/汲極區域120與介電層222可共同覆蓋側壁間隔物128的外側側壁。在一些實施例中,介電層222可包括介電材料,例如二氧化矽、氮化矽等。介電層222的厚度所具有的厚度可處於約1nm至約5nm的範圍內。In some embodiments, the first selector source/drain region 120 and the second selector source/drain region 122 are disposed on the selector channel layer 126 and are separated from each other by sidewall spacers 128 . The sidewall spacers 128 may enclose the outer sidewalls of the second selector source/drain regions 122 . The first selector source/drain regions 120 may surround the outer sidewalls of the sidewall spacers 128 and may be surrounded by the third ILD layer 104c (also referred to as the ILD layer 104c). In some embodiments, a dielectric layer 222 is disposed on the first selector source/drain regions 120 and the third ILD layer 104c and surrounds the sidewall spacers 128 or the second selector source/drain regions 122 . In some embodiments, sidewall spacers 128 cover sidewall surfaces of the second selector source/drain regions 122 . The first selector source/drain regions 120 and the dielectric layer 222 may collectively cover the outer sidewalls of the sidewall spacers 128 . In some embodiments, the dielectric layer 222 may include a dielectric material such as silicon dioxide, silicon nitride, or the like. The thickness of the dielectric layer 222 may have a thickness in the range of about 1 nm to about 5 nm.

在一些實施例中,第一選擇器源極/汲極區域120耦接至源極線(source line)SL。第二選擇器源極/汲極區域122經由第二互連線路206b(亦稱為互連線路206b)耦接至記憶體單元108,其中第二互連線路206b被第四ILD層104d(亦稱為ILD層104d)所圍繞。第二互連線路206b可被設置在第一選擇器源極/汲極區域120上方,並藉由介電層222與第一選擇器源極/汲極區域120分隔。In some embodiments, the first selector source/drain region 120 is coupled to a source line SL. The second selector source/drain region 122 is coupled to the memory cell 108 via the second interconnect 206b (also referred to as the interconnect 206b), which is connected by the fourth ILD layer 104d (also referred to as the interconnect 206b). Surrounded by the so-called ILD layer 104d). The second interconnection line 206b may be disposed over the first selector source/drain region 120 and separated from the first selector source/drain region 120 by the dielectric layer 222 .

在一些實施例中,下方絕緣結構210被設置在第四ILD層104d上方。下方絕緣結構210包括定義了延伸穿過下方絕緣結構210的開口的側壁。在各種實施例中,下方絕緣結構210可包括一或多個氮化矽、二氧化矽、碳化矽等。底部電極通孔212被設置於下方絕緣結構210的開口中,並著陸在第二互連線路206b上。記憶體單元108被設置在底部電極通孔212上。在一些實施例中,記憶體單元108包括底部電極110,底部電極110藉由資料儲存結構112與頂部電極114分隔。在一些實施例中,硬遮罩層216可被設置在頂部電極114上。側壁間隔物218可被設置在頂部電極114及硬遮罩層216的兩側(opposing side)上。在一些實施例中,硬遮罩層216可包括金屬(例如:鈦、鉭等)及/或介電質(例如:氮化物、碳化物等)。在一些實施例中,側壁間隔物218可包括氧化物(例如:富矽氧化物(silicon rich oxide))、氮化物(例如:氮化矽)、碳化物(例如:碳化矽)等。In some embodiments, the lower insulating structure 210 is disposed over the fourth ILD layer 104d. The lower insulating structure 210 includes sidewalls that define openings extending through the lower insulating structure 210 . In various embodiments, the underlying insulating structure 210 may include one or more of silicon nitride, silicon dioxide, silicon carbide, or the like. Bottom electrode vias 212 are disposed in the openings of the underlying insulating structure 210 and land on the second interconnection line 206b. The memory cells 108 are disposed on the bottom electrode vias 212 . In some embodiments, the memory cell 108 includes a bottom electrode 110 separated from the top electrode 114 by a data storage structure 112 . In some embodiments, a hard mask layer 216 may be disposed on top electrode 114 . Sidewall spacers 218 may be disposed on the opposing sides of the top electrode 114 and the hard mask layer 216 . In some embodiments, the hard mask layer 216 may include metals (eg, titanium, tantalum, etc.) and/or dielectrics (eg, nitrides, carbides, etc.). In some embodiments, the sidewall spacers 218 may include oxides (eg, silicon rich oxide), nitrides (eg, silicon nitride), carbides (eg, silicon carbide), and the like.

在一些實施例中,上方絕緣結構220被設置於記憶體單元108上方與下方絕緣結構210上。上方絕緣結構220自直接位於記憶體單元108上方的第一位置,連續延伸到毗鄰於下方絕緣結構210之上方表面的第二位置。上方絕緣結構220將記憶體單元108與第五ILD層104e(亦稱為ILD層104e)分隔。上方絕緣結構220可包括一或多個介電材料,例如氮化矽、二氧化矽、碳化矽等。在一些實施例中,上方互連金屬層116延伸穿過第五ILD層104e以電性接觸頂部電極114。上方互連金屬層116可包括穿過硬遮罩層216與上方絕緣結構220設置的頂部電極通孔214,以及包括連接到頂部電極通孔214的第三互連線路206c(亦稱為互連線路206c)。第三互連線路206c可用作記憶體裝置200的位元線。In some embodiments, the upper insulating structure 220 is disposed above the memory cell 108 and on the lower insulating structure 210 . The upper insulating structure 220 extends continuously from a first position directly above the memory cell 108 to a second position adjacent to the upper surface of the lower insulating structure 210 . The upper insulating structure 220 separates the memory cells 108 from the fifth ILD layer 104e (also referred to as the ILD layer 104e). The upper insulating structure 220 may include one or more dielectric materials, such as silicon nitride, silicon dioxide, silicon carbide, and the like. In some embodiments, the upper interconnect metal layer 116 extends through the fifth ILD layer 104e to electrically contact the top electrode 114 . The upper interconnect metal layer 116 may include a top electrode via 214 disposed through the hard mask layer 216 and the upper insulating structure 220, and a third interconnect line 206c (also referred to as an interconnect line) connected to the top electrode via 214. 206c). The third interconnection line 206c may be used as a bit line of the memory device 200 .

在操作期間,訊號(例如:電壓及/或電流)可被選擇性地施加到字元線WL、源極線SL及位元線BL,以自記憶體單元108讀取資料以及將資料寫入記憶體單元108。During operation, signals (eg, voltages and/or currents) may be selectively applied to word lines WL, source lines SL, and bit lines BL to read data from and write data to memory cells 108 memory unit 108 .

第3圖根據一些附加實施例,顯示包含選擇電晶體118之記憶體裝置300的截面圖。記憶體裝置300包括基板102,基板102包含記憶體區域302及邏輯區域304。邏輯區域304可包括設置在基板102之中的邏輯裝置306。舉例來說,邏輯裝置306可包括電晶體,電晶體包括第一源極/汲極區域306a、藉由通道區域而與第一源極/汲極區域306a分隔的第二源極/汲極區域306b、以及設置在通道區域上方的閘極結構306c。導電接點204可著陸在第一源極/汲極區域306a或第二源極/汲極區域306b上。相似地,另一個邏輯裝置202可被設置在記憶體區域302中的基板102之中。在一些替代性實施例中,邏輯裝置202、306可為鰭式場效電晶體(FinFET)裝置、奈米線(nanowire)裝置、或是其他閘極全環(gate-all-arround, GAA)裝置。因此,藉由利用BEOL選擇電晶體,提供了更大的整合靈活性。3 shows a cross-sectional view of a memory device 300 including select transistor 118, according to some additional embodiments. The memory device 300 includes a substrate 102 including a memory region 302 and a logic region 304 . Logic region 304 may include logic devices 306 disposed within substrate 102 . For example, the logic device 306 may include a transistor including a first source/drain region 306a, a second source/drain region separated from the first source/drain region 306a by a channel region 306b, and a gate structure 306c disposed above the channel region. The conductive contact 204 may land on the first source/drain region 306a or the second source/drain region 306b. Similarly, another logic device 202 may be disposed in the substrate 102 in the memory area 302 . In some alternative embodiments, the logic devices 202, 306 may be fin field effect transistor (FinFET) devices, nanowire devices, or other gate-all-arround (GAA) devices . Thus, by utilizing BEOL to select transistors, greater integration flexibility is provided.

互連結構104被設置在基板102上方,並覆蓋邏輯裝置202、306。互連結構104包括一者堆疊在另一者上方的複數金屬層,且包括堆疊的互連線路206a-206e以及設置在堆疊的ILD層104a-104f之中的金屬通孔208a-208e。在一些實施例中,複數堆疊的ILD層104a-104f可包括一或多個下列材料:二氧化矽、氟矽酸鹽(fluorosilicate)玻璃、矽酸鹽玻璃(例如:硼磷酸鹽矽酸鹽玻璃(borophosphate silicate glass, BSG)、磷矽酸鹽玻璃(phosphosilicate glass, PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass, BPSG)、氟矽酸鹽玻璃(fluorosilicate glass, FSG)、未摻雜之矽酸鹽玻璃(USG))等。在一些實施例中,相鄰的ILD層104a-104f可由蝕刻停止層(未圖示)所分隔,蝕刻停止層包括氮化物、碳化物等。自靠近基板的下方位置朝遠離基板的上方位置的複數金屬層,在工業上被以數字的方式稱為M0、M1、M2、M3...。M0是指最接近基板的金屬層,且包括經由導電接點204電性耦接至邏輯裝置之主動區的金屬線。M1(未圖示)是指堆疊在金屬層M0上方的下一個金屬層,金屬層M1所包括的金屬線經由金屬通孔電性耦接到金屬層M0的金屬線。相似地,Mn+1是指堆疊在下方之金屬層Mn上的下一個金屬層,且金屬層Mn+1所包括的金屬線經由金屬通孔電性耦接至下方之金屬層Mn的金屬線,其中n為正整數。需強調的是,儘管下文給定了一些特定的金屬層編號,例如M6、M7、M8、M9、M10等,但這些特定編號並非用於限制性的目的,且各種金屬層可被用於不同的應用。The interconnect structure 104 is disposed over the substrate 102 and covers the logic devices 202 , 306 . The interconnect structure 104 includes a plurality of metal layers stacked one over the other, and includes stacked interconnect lines 206a-206e and metal vias 208a-208e disposed in the stacked ILD layers 104a-104f. In some embodiments, the plurality of stacked ILD layers 104a-104f may include one or more of the following materials: silica, fluorosilicate glass, silicate glass (eg, borophosphate silicate glass) borophosphate silicate glass (BSG), phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorosilicate glass (FSG), undoped silicon Acid glass (USG)) and so on. In some embodiments, adjacent ILD layers 104a-104f may be separated by an etch stop layer (not shown) including nitrides, carbides, and the like. A plurality of metal layers from a lower position close to the substrate to an upper position away from the substrate are referred to numerically as M0, M1, M2, M3 . . . in the industry. M0 refers to the metal layer closest to the substrate, and includes metal lines that are electrically coupled to the active region of the logic device via the conductive contacts 204 . M1 (not shown) refers to the next metal layer stacked above the metal layer M0 , and the metal lines included in the metal layer M1 are electrically coupled to the metal lines of the metal layer M0 through metal vias. Similarly, Mn+1 refers to the next metal layer stacked on the underlying metal layer Mn, and the metal lines included in the metal layer Mn+1 are electrically coupled to the metal lines of the underlying metal layer Mn through metal vias , where n is a positive integer. It should be emphasized that although some specific metal layer numbers are given below, such as M6, M7, M8, M9, M10, etc., these specific numbers are not for limiting purposes, and various metal layers can be used for different Applications.

記憶體單元108被設置在上方互連金屬層116與中間互連金屬層106之間,例如如第3圖所示之金屬層M10與金屬層M8之間。在一些實施例中,記憶體單元108被插入(insert)中間互連金屬層106與上方互連金屬層116之間(例如:金屬層M8與M10之間)的一或多個互連金屬層(例如:金屬層M9)之中。記憶體單元108可包括底部電極110,底部電極110藉由資料儲存結構112與頂部電極114分隔。硬遮罩層216可被設置在頂部電極114上。側壁間隔物218可被設置在頂部電極114與硬遮罩層216的兩側上。在一些實施例中,選擇電晶體118連接至記憶體單元108的底部電極110。選擇電晶體118被設置在中間互連金屬層106與下方互連金屬層130之間,例如如第3圖所示之金屬層M8與金屬層M6之間。The memory cell 108 is disposed between the upper interconnection metal layer 116 and the middle interconnection metal layer 106 , eg, between the metal layer M10 and the metal layer M8 as shown in FIG. 3 . In some embodiments, memory cell 108 is inserted into one or more interconnect metal layers between intermediate interconnect metal layer 106 and upper interconnect metal layer 116 (eg, between metal layers M8 and M10 ). (eg: metal layer M9). The memory cell 108 may include a bottom electrode 110 separated from the top electrode 114 by a data storage structure 112 . A hard mask layer 216 may be disposed on the top electrode 114 . Sidewall spacers 218 may be disposed on both sides of the top electrode 114 and the hard mask layer 216 . In some embodiments, the select transistor 118 is connected to the bottom electrode 110 of the memory cell 108 . The select transistor 118 is disposed between the middle interconnect metal layer 106 and the lower interconnect metal layer 130 , eg, between the metal layer M8 and the metal layer M6 as shown in FIG. 3 .

在一些實施例中,選擇電晶體118被插入中間互連金屬層106與下方互連金屬層130之間(例如:金屬層M8與M6之間)的一或多個互連金屬層(例如:金屬層M7)之中。選擇電晶體118的選擇器閘極電極124被設置於介電層之中,並電性耦接到下方互連金屬層130。選擇器閘極介電層132以及選擇器通道層126可被設置記憶體區域302中的選擇器閘極電極124與周圍的介電層上。第一選擇器源極/汲極區域120以及第二選擇器源極/汲極區域122可被設置於記憶體區域302中的選擇器通道層126上,並藉由側壁間隔物128彼此分隔。在一些實施例中,第一選擇器源極/汲極區域120耦接至源極線SL。第二選擇器源極/汲極區域122經由被一或多個ILD層所圍繞的一或多個互連線路206c以及一或多個互連通孔208c(或稱金屬通孔208c)耦接至記憶體單元108。In some embodiments, select transistor 118 is interposed between one or more interconnect metal layers (eg, between metal layers M8 and M6) between intermediate interconnect metal layer 106 and underlying interconnect metal layer 130 (eg, between metal layers M8 and M6). in the metal layer M7). The selector gate electrode 124 of the select transistor 118 is disposed in the dielectric layer and is electrically coupled to the underlying interconnect metal layer 130 . The selector gate dielectric layer 132 and the selector channel layer 126 may be disposed on the selector gate electrode 124 and surrounding dielectric layers in the memory region 302 . The first selector source/drain region 120 and the second selector source/drain region 122 may be disposed on the selector channel layer 126 in the memory region 302 and separated from each other by sidewall spacers 128 . In some embodiments, the first selector source/drain region 120 is coupled to the source line SL. The second selector source/drain regions 122 are coupled via one or more interconnect lines 206c and one or more interconnect vias 208c (or metal vias 208c) surrounded by one or more ILD layers to memory cell 108 .

如上所述,選擇電晶體118以及記憶體單元108可被靈活地擺放在各種金屬層之中。在一些實施例中,選擇電晶體118位於金屬層M4(亦稱為第四互連金屬層)上方,且因此至少四個互連金屬層(金屬層M1、M2、M3、M4)被設置在選擇器閘極電極124與基板102之間。根據選路(routing)需求,與上方金屬層相比,互連結構104在下方金屬層中具有更密集的金屬線以及更小的尺寸。若選擇電晶體118位在低於第四互連金屬層M4的金屬層中,則將消耗寶貴的選路面積。在第四互連金屬層M4上方,可參考選路需求以決定選擇電晶體118的確切位置,並因而提供設計上的靈活性。As mentioned above, the selection transistor 118 and the memory cell 108 can be flexibly placed in various metal layers. In some embodiments, select transistor 118 is located over metal layer M4 (also referred to as the fourth interconnect metal layer), and thus at least four interconnect metal layers (metal layers M1, M2, M3, M4) are disposed on between the selector gate electrode 124 and the substrate 102 . According to routing requirements, the interconnect structure 104 has denser metal lines and smaller dimensions in the lower metal layer compared to the upper metal layer. If the select transistor 118 is located in a metal layer lower than the fourth interconnect metal layer M4, precious routing area will be consumed. Above the fourth interconnect metal layer M4, the exact location of the selection transistor 118 can be determined with reference to routing requirements, thereby providing design flexibility.

第4圖顯示具有複數記憶體單位(unit)C11-C33之記憶體陣列400的一部分的方塊圖。記憶體單位C11-C33在記憶體陣列400之中以列(row)及/或行(column)排列。記憶體陣列包括複數選擇電晶體118,對應地連接至複數記憶體單元108。在一些實施例中,與第1圖、第2圖及第3圖有關之所揭露的裝置結構,可被結合為記憶體陣列400之個別的記憶體單位C11-C33的一些實施例。複數選擇電晶體118被設置在互連結構中、互連結構的下方互連金屬層與上方互連金屬層之間。Figure 4 shows a block diagram of a portion of a memory array 400 having a plurality of memory units C11-C33. The memory cells C11 - C33 are arranged in rows and/or columns in the memory array 400 . The memory array includes plural select transistors 118 , which are correspondingly connected to plural memory cells 108 . In some embodiments, the device structures disclosed in relation to FIGS. 1 , 2 and 3 may be combined into some embodiments of the individual memory cells C11 - C33 of the memory array 400 . A complex selection transistor 118 is disposed in the interconnect structure between a lower interconnect metal layer and an upper interconnect metal layer of the interconnect structure.

儘管記憶體陣列400被顯示為具有3個列以及3個行,但記憶體陣列400可具有任何數量的列以及任何數量的行。記憶體單位C11-C33的每一者,可包括耦接至選擇電晶體118的記憶體單元108。選擇電晶體118被配置以選擇性地提供對所選擇之記憶體單元108的存取,同時禁止漏電電流穿過未選擇之記憶體單元。Although memory array 400 is shown as having 3 columns and 3 rows, memory array 400 may have any number of columns and any number of rows. Each of memory cells C11 - C33 may include memory cell 108 coupled to select transistor 118 . Select transistor 118 is configured to selectively provide access to selected memory cells 108 while inhibiting leakage current through unselected memory cells.

可經由位元線BL1 -BL3 、字元線WL1 -WL3 、以及源極線SL1 -SL3 控制記憶體單元C11-C33。字元線WL1 -WL3 可被用於操作對應記憶體單元C11-C33的選擇電晶體118。當用於一記憶體單元108的選擇電晶體118被導通時,電壓可被施加至該記憶體單元。位元線解碼器(decoder)119向其中一個位元線BL1 -BL3 施加讀取電壓或寫入電壓。字元線解碼器127向其中一個字元線WL1 -WL3 施加另一個電壓,這導通了用於對應的列中的記憶體單元C11-C33的選擇電晶體118。這些操作一起使得讀取電壓或寫入電壓被施加到記憶體單元C11-C33中之所選擇的記憶體單元。Memory cells C11-C33 may be controlled via bit lines BL 1 -BL 3 , word lines WL 1 -WL 3 , and source lines SL 1 -SL 3 . Word lines WL1 - WL3 may be used to operate select transistors 118 of corresponding memory cells C11-C33. When the select transistor 118 for a memory cell 108 is turned on, a voltage can be applied to that memory cell. A bit line decoder (decoder) 119 applies a read voltage or a write voltage to one of the bit lines BL 1 -BL 3 . The word line decoder 127 applies another voltage to one of the word lines WL1 - WL3, which turns on the select transistors 118 for the memory cells C11-C33 in the corresponding column. Together, these operations cause a read voltage or a write voltage to be applied to selected ones of memory cells C11-C33.

向所選擇的記憶體單元108施加電壓產生一電流。在讀取操作期間,感測放大器(sense amplifier)117基於該電流判斷所選擇之記憶體單元的程式(programming)狀態。感測放大器117可連接至源極線SL1 -SL3 。或者,感測放大器117可連接至位元線BL1 -BL3 。感測放大器117可基於該電流判斷記憶體單元108的程式狀態。在一些實施例中,感測放大器117藉由將該電流與一或多個參考電流進行比較,以判斷記憶體單元108的程式狀態。感測放大器117可將程式狀態的判斷傳送到I/O緩衝器(buffer),I/O緩衝器可耦接至驅動電路以實施寫入以及寫入驗證(write verify)操作。驅動電路被配置以選擇要施加到所選擇之記憶體單元以進行讀取、寫入和寫入驗證操作的一電壓。Applying a voltage to the selected memory cell 108 generates a current. During a read operation, a sense amplifier 117 determines the programming state of the selected memory cell based on the current. The sense amplifier 117 may be connected to the source lines SL 1 -SL 3 . Alternatively, sense amplifier 117 may be connected to bit lines BL 1 -BL 3 . The sense amplifier 117 can determine the program state of the memory cell 108 based on the current. In some embodiments, the sense amplifier 117 determines the program state of the memory cell 108 by comparing the current with one or more reference currents. The sense amplifier 117 can transmit the judgment of the program status to the I/O buffer, which can be coupled to the driving circuit to perform write and write verify operations. The driver circuit is configured to select a voltage to be applied to selected memory cells for read, write and write verify operations.

應理解的是,該電壓的意義是跨越記憶體單元108之電位差(potential difference)的絕對值。對於記憶體陣列400,向選定之記憶體器單元施加一電壓代表操作字元線WL1 -WL3 以導通對應該記憶體器單元的選擇電晶體118,以及使用驅動電路使對應該單元的源極線SL1 -SL3 與位元線BL1 -BL3 之間的電位差的絕對值的大小等於該電壓。在一些實施例中,向記憶體單元施加一電壓是藉由下列方法完成:耦接對應的位元線BL1 -BL3 至該電壓,同時將對應的源極線SL1 -SL3 維持在接地電位(ground potential)。另外,源極線SL1 -SL3 可保持在其他電位,且位元線BL1 -BL3 與源極線SL1 -SL3 的角色可以翻轉。It should be understood that the meaning of this voltage is the absolute value of the potential difference across the memory cell 108 . For the memory array 400, applying a voltage to the selected memory cell represents operating word lines WL1 - WL3 to turn on the select transistor 118 corresponding to the memory cell, and using the driver circuit to enable the source of the corresponding cell The magnitude of the absolute value of the potential difference between the pole lines SL1 - SL3 and the bit lines BL1 - BL3 is equal to this voltage. In some embodiments, applying a voltage to a memory cell is accomplished by coupling the corresponding bit lines BL 1 -BL 3 to the voltage while maintaining the corresponding source lines SL 1 -SL 3 at ground potential. In addition, the source lines SL1 - SL3 can be kept at other potentials, and the roles of the bit lines BL1 - BL3 and the source lines SL1 - SL3 can be reversed.

第5圖根據一些實施例,顯示沿著列方向之第4圖的記憶體陣列400的截面圖500。舉例來說,第5圖所示之記憶體單位可為第4圖的記憶體單位C11、C12及C13。除了與第1圖、第2圖及第3圖有關之所揭露的裝置結構,如第4圖及第5圖所示,在一些實施例中,一列中的記憶體單位(例如:記憶體單位C11、C12及C13)可共享一共同位元線BL1 ,共同位元線BL1 經由個別之頂部電極通孔214連接至個別的記憶體單元108。FIG. 5 shows a cross-sectional view 500 of the memory array 400 of FIG. 4 along a column direction, according to some embodiments. For example, the memory units shown in FIG. 5 may be memory units C11 , C12 and C13 in FIG. 4 . In addition to the device structures disclosed in relation to Figures 1, 2, and 3, as shown in Figures 4 and 5, in some embodiments, memory units in a row (eg, memory units C11, C12, and C13) may share a common bit line BL 1 , which is connected to individual memory cells 108 through individual top electrode vias 214 .

第6圖根據一些實施例,顯示沿著行方向之第4圖的記憶體陣列400的截面圖600。舉例來說,第6圖所示之記憶體單位可為第4圖的記憶體單位C11、C21及C31。除了與第1圖、第2圖及第3圖有關之所揭露的裝置結構,如第4圖及第6圖所示,在一些實施例中,一行中的記憶體單位(例如:記憶體單位C11、C21及C31)可共享一閘極電極或具有個別的閘極電極,閘極電極連接至一共同字元線WL1 ,共同字元線WL1 經由個別之選擇器閘極電極124連接至個別的選擇器電晶體118。FIG. 6 shows a cross-sectional view 600 of the memory array 400 of FIG. 4 along a row direction, according to some embodiments. For example, the memory units shown in FIG. 6 may be memory units C11 , C21 , and C31 in FIG. 4 . In addition to the device structures disclosed in relation to Figures 1, 2, and 3, as shown in Figures 4 and 6, in some embodiments, memory units in a row (eg, memory units C11, C21, and C31) may share a gate electrode or have individual gate electrodes, the gate electrodes are connected to a common word line WL 1 , and the common word line WL 1 is connected to the Individual selector transistors 118 .

第7A圖至第7D圖係根據一些實施例所示,顯示了對應之選擇電晶體118的第4圖之記憶體陣列400的俯視圖700a- 700d。如第7A圖至第7D圖所示,第一選擇器源極/汲極區域120與第二選擇器源極/汲極區域122可具有各種形狀。舉例來說,第二選擇器源極/汲極區域122可為由側壁間隔物128所包圍之分離的島狀。側壁間隔物128可具有分離的環狀。第一選擇器源極/汲極區域120包圍側壁間隔物128的外圍。在此等實施例中,側壁間隔物128的寬度定義了選擇電晶體118的通道長度,而第二選擇器源極/汲極區域122的周長定義了選擇電晶體118的通道寬度。作為範例,通道長度Lc可處於約5nm至約30nm的範圍中。通道寬度可處於約50nm至約500nm的範圍中。所產生的汲極-源極電流可達到的範圍,處於約50µA至約100µA。FIGS. 7A-7D show top views 700a-700d of the memory array 400 of FIG. 4 corresponding to select transistors 118, according to some embodiments. As shown in FIGS. 7A to 7D , the first selector source/drain regions 120 and the second selector source/drain regions 122 may have various shapes. For example, the second selector source/drain regions 122 may be in the shape of separate islands surrounded by sidewall spacers 128 . The sidewall spacers 128 may have separate annular shapes. The first selector source/drain regions 120 surround the periphery of the sidewall spacers 128 . In these embodiments, the width of the sidewall spacers 128 defines the channel length of the select transistor 118 and the perimeter of the second selector source/drain region 122 defines the channel width of the select transistor 118 . As an example, the channel length Lc may be in the range of about 5 nm to about 30 nm. The channel width may be in the range of about 50 nm to about 500 nm. The resulting drain-source current can range from about 50µA to about 100µA.

在一些實施例中,第二選擇器源極/汲極區域122可具有中心對稱的形狀,例如如第7A圖所示的圓形、正方形或其他正多邊形(orthopolygon)。在一些替代性實施例中,第二選擇器源極/汲極區域122可具有軸對稱(axial symmetrical)的形狀,在共享之第一選擇器源極/汲極區域120的長度方向上比在共享之第一選擇器源極/汲極區域120的寬度方向上更長,如此一來,可藉由設置較長的第二選擇器源極/汲極區域122的長度以擴大第二選擇器源極/汲極區域122的面積。此等第二選擇器源極/汲極區域122的範例,包括如第7B圖所示之橢圓形或是如第7C圖所示之矩形。在一些進一步的替代性實施例中,第二選擇器源極/汲極區域122可包括複數鰭片,以進一步擴大第二選擇器源極/汲極區域122的周長,意即選擇電晶體118的通道寬度。如此一來,選擇電晶體的汲極電流可進一步增加。第7D圖顯示具有兩個矩形鰭片的第二選擇器源極/汲極區域122,以作為那些實施例的範例。未顯示於圖式的其他適用形狀(例如:正方形、複數圓形鰭片等)也是可以接受的。In some embodiments, the second selector source/drain region 122 may have a center-symmetric shape, such as a circle, a square, or other orthopolygon as shown in FIG. 7A . In some alternative embodiments, the second selector source/drain regions 122 may have an axially symmetrical shape that is longer than the shared first selector source/drain regions 120 in the length direction The shared first selector source/drain region 120 is longer in the width direction, so that the second selector can be enlarged by setting the length of the second selector source/drain region 122 longer The area of the source/drain region 122 . Examples of these second selector source/drain regions 122 include an oval shape as shown in FIG. 7B or a rectangle shape as shown in FIG. 7C. In some further alternative embodiments, the second selector source/drain region 122 may include a plurality of fins to further enlarge the perimeter of the second selector source/drain region 122 , ie select transistors 118 channel width. In this way, the drain current of the select transistor can be further increased. Figure 7D shows a second selector source/drain region 122 with two rectangular fins as an example of those embodiments. Other suitable shapes not shown in the drawings (eg, square, plural circular fins, etc.) are also acceptable.

第8圖至第17圖顯示製造包含BEOL選擇電晶體之記憶體裝置的方法的一些實施例的截面圖800-1700。儘管第8圖至第17圖所述係有關於方法,但應理解的是,第8圖至第17圖所揭露的結構並不限於此方法,取而代之的是,可單獨作為獨立於此方法的結構。8-17 show cross-sectional views 800-1700 of some embodiments of a method of fabricating a memory device including a BEOL selection transistor. Although Figures 8 to 17 are described in relation to the method, it should be understood that the structures disclosed in Figures 8 to 17 are not limited to this method, but can instead be used independently of this method. structure.

如第8圖之截面圖800所示,提供基板102。在各種實施例中,基板102可為任何類型的半導體主體(例如:矽、矽鍺(SiGe)、絕緣層上矽(SOI)等),例如半導體晶圓及/或晶圓上的一或多個晶粒(die),還有與其相關之任何其他類型的半導體及/或磊晶層。基板102包括記憶體區域302以及邏輯區域304。在一些實施例中,邏輯裝置306被形成在基板102之中。邏輯裝置306可被形成在記憶體區域302或邏輯區域304中。邏輯裝置306可包括電晶體,藉由在基板102上方沉積與圖案化閘極介電薄膜以及閘極電極薄膜以形成閘極介電質與閘極電極來形成。隨後可對基板102執行佈植(implant),以在基板102之中、閘極電極的兩側形成源極區域與汲極區域。As shown in cross-sectional view 800 of FIG. 8, a substrate 102 is provided. In various embodiments, the substrate 102 may be any type of semiconductor body (eg, silicon, silicon germanium (SiGe), silicon-on-insulator (SOI), etc.), such as a semiconductor wafer and/or one or more on-wafer A die, and any other type of semiconductor and/or epitaxial layer associated therewith. The substrate 102 includes a memory area 302 and a logic area 304 . In some embodiments, logic device 306 is formed in substrate 102 . Logic device 306 may be formed in memory area 302 or logic area 304 . The logic device 306 may include a transistor formed by depositing and patterning a gate dielectric film and a gate electrode film over the substrate 102 to form a gate dielectric and gate electrode. An implant may then be performed on the substrate 102 to form source and drain regions in the substrate 102 on both sides of the gate electrode.

在一些實施例中,一或多個下方互連金屬層可被形成於一或多個下方ILD層之中,其中一或多個下方ILD層被形成於邏輯裝置306與基板102上方。在一些實施例中,一或多個下方互連金屬層可包括形成在第一ILD層104a中的導電接點204、形成在第二ILD層104b中的第一互連線路206a與第一互連通孔208a(亦稱為金屬通孔208a)、以及堆疊在它們上方的更多互連線路與通孔(未圖示)。可藉由下列方法形成一或多個下方互連金屬層:在基板102上方重複形成下方ILD層(例如:氧化物、低k值介電質、超低k值介電質)、選擇性蝕刻下方ILD層以在下方ILD層中定義通孔孔洞及/或溝槽、在通孔孔洞及/或溝槽中形成導電材料(例如:銅、鋁等)、以及執行平坦化製程(例如:化學機械研磨(chemical mechanical planarization)製程)以自下方ILD層上方移除多餘的導電材料。第8圖中所示的導電接點204、互連線路206a/206b、以及互連通孔208a被繪製以用於說明之目的,且在不同的應用中,可調整記憶體區域302或是邏輯區域304以具有更多或更少層的互連線路、通孔及下方ILD層。In some embodiments, one or more lower interconnect metal layers may be formed in one or more lower ILD layers, where the one or more lower ILD layers are formed over logic device 306 and substrate 102 . In some embodiments, the one or more underlying interconnect metal layers may include conductive contacts 204 formed in the first ILD layer 104a, first interconnect lines 206a formed in the second ILD layer 104b, and first interconnect lines 206a formed in the second ILD layer 104b. Vias 208a (also referred to as metal vias 208a), and more interconnects and vias (not shown) stacked above them. One or more underlying interconnect metal layers may be formed by repeated formation of underlying ILD layers (eg, oxides, low-k dielectrics, ultra-low-k dielectrics) over substrate 102, selective etching The underlying ILD layer to define via holes and/or trenches in the underlying ILD layer, to form conductive materials (eg, copper, aluminum, etc.) in the via holes and/or trenches, and to perform planarization processes (eg, chemical chemical mechanical planarization process) to remove excess conductive material from above the underlying ILD layer. The conductive contacts 204, interconnect lines 206a/206b, and interconnect vias 208a shown in FIG. 8 are drawn for illustration purposes, and in different applications, the memory region 302 or logic can be adjusted Region 304 has more or fewer layers of interconnect lines, vias and underlying ILD layers.

如第9圖之截面圖900所示,選擇器閘極電極124被形成在第二ILD層104b之中。可藉由下列方法形成選擇器閘極電極124:選擇性蝕刻第二ILD層104b以在第二ILD層104b中定義溝槽、在溝槽中形成導電材料(例如:鎢、銅、鋁等)、以及執行平坦化製程(例如:化學機械研磨製程)以自第二ILD層104b上方移除多餘的導電材料。在一些實施例中,形成選擇器閘極電極124的導電材料與第一互連線路206a以及第一互連通孔208a相同。在一些替代性實施例中,形成選擇器閘極電極124的導電材料與第一互連線路206a以及第一互連通孔208a不同。在一些實施例中,選擇器閘極電極124由沉積製程與緊接在後的平坦化製程(例如:化學機械研磨製程)所形成,且所具有的厚度可處於約5nm至約20nm的範圍中。As shown in the cross-sectional view 900 of FIG. 9, the selector gate electrode 124 is formed in the second ILD layer 104b. The selector gate electrode 124 may be formed by selectively etching the second ILD layer 104b to define trenches in the second ILD layer 104b, forming a conductive material (eg, tungsten, copper, aluminum, etc.) in the trenches , and performing a planarization process (eg, a chemical mechanical polishing process) to remove excess conductive material from above the second ILD layer 104b. In some embodiments, the conductive material forming the selector gate electrode 124 is the same as the first interconnect line 206a and the first interconnect via 208a. In some alternative embodiments, the conductive material forming the selector gate electrode 124 is different from the first interconnect line 206a and the first interconnect via 208a. In some embodiments, the selector gate electrode 124 is formed by a deposition process followed by a planarization process (eg, a chemical mechanical polishing process), and may have a thickness in the range of about 5 nm to about 20 nm .

如第10圖之截面圖1000所示,選擇器閘極介電層132與選擇器通道層126被形成在選擇器閘極電極124與第二ILD層104b上。在一些實施例中,選擇器閘極介電層132與選擇器通道層126分別藉由沉積技術(例如:原子層沉積(atomic layer deposition, ALD))形成。選擇器閘極介電層132所具有的厚度可處於約1nm至約15nm的範圍中。選擇器通道層126所具有的厚度可處於約3nm至約50nm的範圍中。在一些實施例中,選擇器閘極介電層132包括氧化鋁(Al2 O3 )、氧化鉿(HfO2 )、氧化鉭(Ta2 O5 )、氧化鋯(ZrO2 )、氧化鈦(TiO2 )、氧化鍶鈦(SrTiO3 )、或是其他高k值介電材料等。在一些實施例中,選擇器通道層126包括氧化半導體(OS)材料。舉例來說,通道層可由下列材料製成:氧化銦鎵鋅(IGZO)、氧化銦鋅(IZO)、氧化銦錫或氧化銦鈦(ITO)、或是另一種氧化半導體材料。As shown in cross-sectional view 1000 of FIG. 10, selector gate dielectric layer 132 and selector channel layer 126 are formed on selector gate electrode 124 and second ILD layer 104b. In some embodiments, the selector gate dielectric layer 132 and the selector channel layer 126 are formed by deposition techniques (eg, atomic layer deposition (ALD)), respectively. The selector gate dielectric layer 132 may have a thickness in the range of about 1 nm to about 15 nm. The selector channel layer 126 may have a thickness in the range of about 3 nm to about 50 nm. In some embodiments, the selector gate dielectric layer 132 includes aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), zirconium oxide (ZrO 2 ), titanium oxide ( TiO 2 ), strontium titanium oxide (SrTiO 3 ), or other high-k dielectric materials, etc. In some embodiments, the selector channel layer 126 includes an oxide semiconductor (OS) material. For example, the channel layer may be made of indium gallium zinc oxide (IGZO), indium zinc oxide (IZO), indium tin oxide or indium titanium oxide (ITO), or another oxide semiconductor material.

如第11圖之截面圖1100所示,第三ILD層104c被形成在選擇器通道層126上,且第一選擇器源極/汲極層120’被形成在第三ILD層104c之中。在一些實施例中,由俯視圖來看,第一選擇器源極/汲極層120’被形成為與選擇器閘極電極124垂直交叉的複數平行線。選擇器閘極電極124與第一選擇器源極/汲極層120’之圖案的範例可在第7A圖至第7D圖中找到。在一些實施例中,藉由沉積製程與緊接在後的圖案化製程形成第一選擇器源極/汲極層120’。第一選擇器源極/汲極層120’所具有的厚度可處於約10nm至約50nm的範圍中。在一些實施例中,第一選擇器源極/汲極層120’可由下列材料形成:氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、銅(Cu)、或是其他CMOS接點金屬及/或摻雜之半導體材料(例如:p摻雜或n摻雜的多晶矽)。As shown in cross-sectional view 1100 of FIG. 11, a third ILD layer 104c is formed on the selector channel layer 126, and a first selector source/drain layer 120' is formed in the third ILD layer 104c. In some embodiments, the first selector source/drain layer 120' is formed as a plurality of parallel lines perpendicularly intersecting the selector gate electrodes 124 from a top view. Examples of the pattern of the selector gate electrode 124 and the first selector source/drain layer 120' can be found in FIGS. 7A-7D. In some embodiments, the first selector source/drain layer 120' is formed by a deposition process followed by a patterning process. The first selector source/drain layer 120' may have a thickness in the range of about 10 nm to about 50 nm. In some embodiments, the first selector source/drain layer 120' may be formed of titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), copper (Cu), or others CMOS contact metal and/or doped semiconductor material (eg p-doped or n-doped polysilicon).

如第12圖之截面圖1200所示,第一選擇器源/汲極層120’被圖案化以形成穿過第一選擇器源極/汲極層120’的開口1202,且留下剩餘部分作為第一選擇器源極/汲極區域120。可藉由選擇性蝕刻製程形成開口1202,選擇性蝕刻製程蝕刻穿過第一選擇器源極/汲極層120’並止於選擇器通道層126上。As shown in cross-sectional view 1200 of FIG. 12, the first selector source/drain layer 120' is patterned to form openings 1202 through the first selector source/drain layer 120', leaving the remainder as the first selector source/drain region 120 . The openings 1202 may be formed by a selective etch process that etches through the first selector source/drain layer 120' and ends on the selector channel layer 126.

在一些實施例中,在形成開口1202之前,介電層222被形成在第一選擇器源極/汲極層120’以及第三ILD層104c上。介電層222可被圖案化,並可用作用於形成開口1202的硬遮罩。介電層222可藉由沉積製程與緊接在後的平坦化製程(例如:化學機械研磨製程)形成,且可包括諸如二氧化矽的氧化材料。在一些實施例中,介電層222所具有的厚度可處於約1nm至約5nm的範圍中。In some embodiments, a dielectric layer 222 is formed on the first selector source/drain layer 120' and the third ILD layer 104c prior to forming the opening 1202. Dielectric layer 222 can be patterned and can be used as a hard mask for forming openings 1202 . The dielectric layer 222 may be formed by a deposition process followed by a planarization process (eg, a chemical mechanical polishing process), and may include an oxide material such as silicon dioxide. In some embodiments, the dielectric layer 222 may have a thickness in the range of about 1 nm to about 5 nm.

如第13圖之截面圖1300所示,側壁間隔物128被沿著開口1202的側壁形成。在一些實施例中,側壁間隔物128藉由下列方法形成:沉積順應性(conformal)的介電層,緊接著執行蝕刻製程以曝露選擇器通道層126。在一些實施例中,蝕刻製程可為或可包括非等向性(anisotropic)蝕刻(例如:垂直乾式蝕刻),非等向性蝕刻移除順應性之介電層包括覆蓋選擇器通道層126的部分的橫向部分,同時留下順應性之介電層在開口1202的側壁上的垂直部分。在一些替代性實施例中,順應性之介電層覆蓋選擇器通道層126的橫向部分被移除,順應性之介電層的一些橫向部分被保留以用於最終裝置結構。側壁間隔物128可由介電材料形成,例如二氧化矽、氮化矽等。在一些實施例中,側壁間隔物128所具有的厚度可處於約5nm至約30nm的範圍中。隨著側壁間隔物128的厚度進一步地降低,例如小於5nm或3nm的範圍,可能會引來源極/汲極漏電。隨著側壁間隔物128的厚度進一步地增加,例如大於30nm,驅動電流會降低,並因此降低電晶體性能。As shown in cross-sectional view 1300 of FIG. 13 , sidewall spacers 128 are formed along the sidewalls of opening 1202 . In some embodiments, sidewall spacers 128 are formed by depositing a conformal dielectric layer followed by an etch process to expose selector channel layer 126 . In some embodiments, the etching process may be or may include an anisotropic etching (eg, vertical dry etching) that removes the compliant dielectric layer including overlying the selector channel layer 126 part of the lateral part, while leaving the vertical part of the compliant dielectric layer on the sidewalls of the opening 1202. In some alternative embodiments, lateral portions of the compliant dielectric layer covering the selector channel layer 126 are removed, and some lateral portions of the compliant dielectric layer are retained for the final device structure. Sidewall spacers 128 may be formed of dielectric materials such as silicon dioxide, silicon nitride, and the like. In some embodiments, the sidewall spacers 128 may have a thickness in the range of about 5 nm to about 30 nm. As the thickness of the sidewall spacers 128 is further reduced, eg, in the range of less than 5 nm or 3 nm, source/drain leakage may be induced. As the thickness of the sidewall spacers 128 is further increased, eg, greater than 30 nm, the drive current may decrease, and thus the transistor performance.

如第14圖之截面圖1400所示,第二選擇器源極/汲極區域122被形成在開口1202中。在一些實施例中,第二選擇器源極/汲極區域122藉由下列方法形成:在開口1202中沉積導電材料,接著執行平坦化製程以移除開口1202外部的多餘部分。第二選擇器源極/汲極區域122可具有與側壁間隔物128及/或介電層222之頂部表面共面(coplanar)的頂部表面。在一些實施例中,側壁間隔物128覆蓋第二選擇器源極/汲極區域122的側壁表面。第一選擇器源極/汲極區域120與介電層222可共同覆蓋側壁間隔物128的外側側壁。在一些實施例中,第二選擇器源極/汲極區域122所具有的厚度可處於約10nm至約50nm的範圍中。第二選擇器源極/汲極區域122的厚度,可等於或大於第一選擇器源極/汲極區域120的厚度。在一些實施例中,第二選擇器源極/汲極區域122可由下列材料形成:氮化鈦(TiN)、氮化鉭(TaN)、鎢(W)、銅(Cu)、或是其他CMOS接點金屬及/或摻雜之半導體材料(例如:p摻雜或n摻雜的多晶矽)。As shown in cross-sectional view 1400 of FIG. 14 , second selector source/drain regions 122 are formed in openings 1202 . In some embodiments, the second selector source/drain regions 122 are formed by depositing a conductive material in the openings 1202 and then performing a planarization process to remove excess portions outside the openings 1202 . The second selector source/drain regions 122 may have top surfaces that are coplanar with the top surfaces of the sidewall spacers 128 and/or the dielectric layer 222 . In some embodiments, sidewall spacers 128 cover sidewall surfaces of the second selector source/drain regions 122 . The first selector source/drain regions 120 and the dielectric layer 222 may collectively cover the outer sidewalls of the sidewall spacers 128 . In some embodiments, the second selector source/drain regions 122 may have a thickness in the range of about 10 nm to about 50 nm. The thickness of the second selector source/drain region 122 may be equal to or greater than the thickness of the first selector source/drain region 120 . In some embodiments, the second selector source/drain region 122 may be formed of the following materials: titanium nitride (TiN), tantalum nitride (TaN), tungsten (W), copper (Cu), or other CMOS Contact metal and/or doped semiconductor material (eg p-doped or n-doped polysilicon).

如第15圖之截面圖1500所示,第四ILD層104d被形成在第一選擇器源極/汲極區域120以及第二選擇器源極/汲極區域122上方,且中間互連金屬層被形成並電性耦接至第二選擇器源極/汲極區域122。舉例來說,第二互連通孔208b(亦稱為金屬通孔208b)可被形成為穿過第四ILD層104d並抵達第二選擇器源極/汲極區域122上,以及第二互連線路206b可被形成於第四ILD層104d內的第二互連通孔208b上。在一些實施例中,藉由沉積製程形成第四ILD層104d,接著執行圖案化製程來形成通孔及溝槽,以用於後續之中間互連金屬層的形成。接著,可在通孔及溝槽中沉積第二互連通孔208b與第二互連線路206b,並隨後執行平坦化製程(例如:化學機械研磨製程)。As shown in the cross-sectional view 1500 of FIG. 15, the fourth ILD layer 104d is formed over the first selector source/drain region 120 and the second selector source/drain region 122, with an intermediate interconnect metal layer is formed and electrically coupled to the second selector source/drain region 122 . For example, a second interconnect via 208b (also referred to as a metal via 208b) may be formed through the fourth ILD layer 104d and onto the second selector source/drain region 122, and the second interconnect The connection lines 206b may be formed on the second interconnect vias 208b in the fourth ILD layer 104d. In some embodiments, the fourth ILD layer 104d is formed by a deposition process, followed by a patterning process to form vias and trenches for subsequent formation of the intermediate interconnect metal layer. Next, second interconnect vias 208b and second interconnect lines 206b may be deposited in the vias and trenches, followed by a planarization process (eg, a chemical mechanical polishing process).

如第16圖之截面圖1600所示,下方絕緣結構210被形成在第二互連線路206b與第四ILD層104d上方。在一些實施例中,下方絕緣結構210包括複數不同的堆疊的介電材料。作為範例,下方絕緣結構210可包括富矽氧化物、碳化矽、氮化矽等。在一些實施例中,可藉由一或多種沉積製程(例如:物理氣相沉積(physical vapor deposition, PVD)製程、化學氣相沉積(chemical vapor deposition, CVD)製程、電漿增強型CVD(plasma enhanced CVD, PE-CVD)製程等)形成下方絕緣結構210。在一些實施例中,下方絕緣結構210被選擇性地蝕刻以定義開口,該開口延伸穿過下方絕緣結構210並曝露中間互連金屬層的上方表面。底部電極通孔212可被形成在該開口之中。As shown in the cross-sectional view 1600 of FIG. 16, the lower insulating structure 210 is formed over the second interconnection line 206b and the fourth ILD layer 104d. In some embodiments, the underlying insulating structure 210 includes a plurality of different stacked dielectric materials. As an example, the underlying insulating structure 210 may include silicon-rich oxide, silicon carbide, silicon nitride, or the like. In some embodiments, one or more deposition processes (eg, physical vapor deposition (PVD) process, chemical vapor deposition (CVD) process, plasma-enhanced CVD (plasma-enhanced CVD) process can be used. Enhanced CVD, PE-CVD) process, etc.) to form the lower insulating structure 210 . In some embodiments, the lower insulating structure 210 is selectively etched to define an opening that extends through the lower insulating structure 210 and exposes the upper surface of the intermediate interconnect metal layer. Bottom electrode vias 212 may be formed in the opening.

如第17圖之截面圖1700所示,記憶體裝置堆疊於下方絕緣結構210上方被形成及圖案化,以形成記憶體單元108。記憶體裝置堆疊由複數不同的沉積製程形成,例如CVD、PE-CVD、濺鍍(sputtering)、ALD等。記憶體裝置堆疊由一或多個圖案化製程圖案化。在一些實施例中,執行第一圖案化製程以定義頂部電極114以及資料儲存結構112,還有相應的硬遮罩層216。在各種實施例中,硬遮罩層216可包括金屬(例如:鈦、氮化鈦、鉭等)及/或介電材料(例如:氮化矽、碳化矽等)。接著,可沿著資料儲存結構112、頂部電極114以及硬遮罩層216的側壁形成側壁間隔物218。在各種實施例中,側壁間隔物218可包括氮化矽、二氧化矽、氮氧化矽、及/或相似的材料。在一些實施例中,可藉由在基板102上方形成間隔物層來形成側壁間隔物218。側壁間隔物層隨後被曝露於蝕刻劑(例如:乾式蝕刻劑)中,蝕刻劑自水平表面移除側壁間隔物層。自水平表面移除側壁間隔物層留下了側壁間隔物層沿著資料儲存結構112、頂部電極114與硬遮罩層216之兩側側壁的一部分,以作為側壁間隔物218。接著,對底部金屬層執行第二圖案化製程,以定義未被硬遮罩層216與側壁間隔物218所覆蓋的底部電極110。As shown in cross-sectional view 1700 of FIG. 17 , the memory device stack is formed and patterned over underlying insulating structure 210 to form memory cell 108 . Memory device stacks are formed by a number of different deposition processes, such as CVD, PE-CVD, sputtering, ALD, and the like. The memory device stack is patterned by one or more patterning processes. In some embodiments, a first patterning process is performed to define the top electrode 114 and the data storage structure 112 , as well as the corresponding hard mask layer 216 . In various embodiments, the hard mask layer 216 may include metals (eg, titanium, titanium nitride, tantalum, etc.) and/or dielectric materials (eg, silicon nitride, silicon carbide, etc.). Next, sidewall spacers 218 may be formed along the sidewalls of the data storage structure 112 , the top electrode 114 , and the hard mask layer 216 . In various embodiments, sidewall spacers 218 may include silicon nitride, silicon dioxide, silicon oxynitride, and/or similar materials. In some embodiments, sidewall spacers 218 may be formed by forming a spacer layer over substrate 102 . The sidewall spacer layer is then exposed to an etchant (eg, dry etchant) that removes the sidewall spacer layer from the horizontal surface. Removing the sidewall spacer layer from the horizontal surface leaves a portion of the sidewall spacer layer along both sidewalls of the data storage structure 112 , the top electrode 114 and the hard mask layer 216 as sidewall spacers 218 . Next, a second patterning process is performed on the bottom metal layer to define the bottom electrode 110 not covered by the hard mask layer 216 and the sidewall spacers 218 .

如第18圖之截面圖1800所示,上方絕緣結構220被形成於記憶體單元108上方。在一些實施例中,可使用一或多個沉積技術(例如:PVD、CVD、PE-CVD、ALD、濺鍍等)形成上方絕緣結構220。在各種實施例中,上方絕緣結構220可包括一或多個碳化矽、正矽酸乙酯(tetraethyl orthosilicate, TEOS)等。上方ILD層104U被形成在上方絕緣結構220上方,作為基板102上方之互連結構104的一部分。在一些實施例中,可藉由沉積製程(例如:PVD、CVD、PE-CVD、ALD等)形成上方ILD層104U。在各種實施例中,上方ILD層104U可包括一或多個下列材料:二氧化矽、碳摻雜之二氧化矽、氮氧化矽、BSG、PSG、BPSG、FSG、USG、多孔(porous)介電材料等。接著,在上方ILD層104U中形成第三互連通孔208c (亦稱為金屬通孔208c、互連通孔208c)以及第三互連線路206c。在記憶體區域302中,第三互連通孔208c與第三互連線路206c可被形成在記憶體單元108之頂部上的上方ILD層104U之中,以曝露頂部電極114的上方表面。在邏輯區域304中,第三互連通孔208c與第三互連線路206c可自上方ILD層104U的頂部表面延伸,以垂直地經過記憶體單元108,且進一步延伸穿過上方絕緣結構220和下絕緣結構210,並抵達下方互連金屬層。As shown in cross-sectional view 1800 of FIG. 18 , upper insulating structure 220 is formed over memory cell 108 . In some embodiments, the upper insulating structure 220 may be formed using one or more deposition techniques (eg, PVD, CVD, PE-CVD, ALD, sputtering, etc.). In various embodiments, the upper insulating structure 220 may include one or more of silicon carbide, tetraethyl orthosilicate (TEOS), or the like. The upper ILD layer 104U is formed over the upper insulating structure 220 as part of the interconnect structure 104 over the substrate 102 . In some embodiments, the upper ILD layer 104U may be formed by a deposition process (eg, PVD, CVD, PE-CVD, ALD, etc.). In various embodiments, the upper ILD layer 104U may include one or more of the following materials: silicon dioxide, carbon-doped silicon dioxide, silicon oxynitride, BSG, PSG, BPSG, FSG, USG, porous dielectric electrical materials, etc. Next, third interconnect vias 208c (also referred to as metal vias 208c, interconnect vias 208c) and third interconnect lines 206c are formed in the upper ILD layer 104U. In the memory region 302 , third interconnect vias 208c and third interconnect lines 206c may be formed in the upper ILD layer 104U on top of the memory cells 108 to expose the upper surface of the top electrode 114 . In the logic region 304, the third interconnect vias 208c and the third interconnect lines 206c may extend from the top surface of the upper ILD layer 104U to pass vertically through the memory cells 108, and further extend through the upper insulating structure 220 and The lower insulating structure 210 reaches the lower interconnect metal layer.

第19圖顯示形成包含BEOL選擇電晶體之記憶體裝置的方法1900的一些實施例的流程圖。19 shows a flowchart of some embodiments of a method 1900 of forming a memory device including a BEOL select transistor.

儘管本文將方法1900繪製及描述為一系列的操作或事件,但應理解的是,這些操作或事件的圖示順序不應以限制性的方式來解釋。舉例來說,除了本文圖示及/或描述的那些操作或事件之外,某些操作能夠以不同的順序發生及/或與其他操作或事件同時發生。此外,實現本文所描述的一或多個態樣或是實施例可能不需要所有圖示的操作。進一步地,本文所描述的一或多個操作可在一或多個單獨的操作及/或階段中執行。Although method 1900 is depicted and described herein as a series of operations or events, it should be understood that the illustrated order of these operations or events should not be construed in a limiting fashion. For example, certain operations can occur in different orders and/or concurrently with other operations or events than those illustrated and/or described herein. Furthermore, all illustrated operations may not be required to implement one or more aspects or embodiments described herein. Further, one or more operations described herein may be performed in one or more separate operations and/or stages.

在操作1902中,準備一基板,且下方互連金屬層被形成在基板上方的下方層間介電(ILD)層之中。在一些實施例中,在形成下方互連金屬層之前,可在記憶體區域及/或邏輯區域中的基板內形成邏輯裝置。第8圖顯示對應操作1902的一些實施例的截面圖800。In operation 1902, a substrate is prepared and an underlying interconnect metal layer is formed in an underlying interlayer dielectric (ILD) layer over the substrate. In some embodiments, logic devices may be formed within the substrate in memory regions and/or logic regions prior to forming the underlying interconnect metal layer. FIG. 8 shows a cross-sectional view 800 corresponding to some embodiments of operation 1902 .

在操作1904中,BEOL選擇電晶體被形成在下方互連金屬層上方。在一些實施例中,可根據操作1906-1916形成選擇電晶體。In operation 1904, a BEOL select transistor is formed over the underlying interconnect metal layer. In some embodiments, select transistors may be formed according to operations 1906-1916.

在操作1906中,選擇器閘極電極被形成於下方互連金屬層上。第9圖顯示對應操作1906的一些實施例的截面圖900。In operation 1906, selector gate electrodes are formed on the underlying interconnect metal layer. FIG. 9 shows a cross-sectional view 900 corresponding to some embodiments of operation 1906 .

在操作1908中,選擇器通道層被形成於選擇器閘極電極上方。第10圖顯示對應操作1908的一些實施例的截面圖1000。In operation 1908, a selector channel layer is formed over the selector gate electrode. FIG. 10 shows a cross-sectional view 1000 corresponding to some embodiments of operation 1908 .

在操作1910中,第一選擇器源極/汲極區域被形成於選擇器通道層上方。第11圖顯示對應操作1910的一些實施例的截面圖1100。In operation 1910, first selector source/drain regions are formed over the selector channel layer. FIG. 11 shows a cross-sectional view 1100 corresponding to some embodiments of operation 1910 .

在操作1912中,虛擬(dummy)介電層被形成於第一選擇器源極/汲極區域上。第12圖顯示對應操作1912的一些實施例的截面圖1200。In operation 1912, a dummy dielectric layer is formed on the first selector source/drain regions. FIG. 12 shows a cross-sectional view 1200 corresponding to some embodiments of operation 1912 .

在操作1914中,沿著虛擬介電層與第一選擇器源極/汲極區域的開口形成側壁間隔物。第13圖顯示對應操作1914的一些實施例的截面圖1300。In operation 1914, sidewall spacers are formed along the openings of the dummy dielectric layer and the first selector source/drain regions. FIG. 13 shows a cross-sectional view 1300 corresponding to some embodiments of operation 1914 .

在操作1916中,第二選擇器源極/汲極區域被形成在開口之中,並藉由側壁間隔物與第一選擇器源極/汲極區域分隔。第14圖顯示對應操作1916的一些實施例的截面圖1400。In operation 1916, a second selector source/drain region is formed in the opening and separated from the first selector source/drain region by sidewall spacers. FIG. 14 shows a cross-sectional view 1400 corresponding to some embodiments of operation 1916 .

在操作1918中,中間互連金屬層被形成於BEOL選擇電晶體上方。第15圖顯示對應操作1918的一些實施例的截面圖1500。In operation 1918, an intermediate interconnect metal layer is formed over the BEOL select transistor. FIG. 15 shows a cross-sectional view 1500 corresponding to some embodiments of operation 1918 .

在操作1920中,記憶體單元被形成於中間互連金屬層上方。第16圖至第17圖顯示對應操作1920的一些實施例的截面圖1600-1700。In operation 1920, memory cells are formed over the intermediate interconnect metal layer. FIGS. 16-17 show cross-sectional views 1600 - 1700 corresponding to some embodiments of operation 1920 .

在操作1922中,上方互連金屬層被形成在記憶體單元上方。第18圖顯示對應操作1922的一些實施例的截面圖1800。In operation 1922, an upper interconnect metal layer is formed over the memory cells. FIG. 18 shows a cross-sectional view 1800 corresponding to some embodiments of operation 1922 .

因此,在一些實施例中,本揭露係有關於一種記憶體裝置(例如:MRAM或RRAM裝置),具有插入兩個BEOL互連金屬層之間的BEOL選擇電晶體層。Accordingly, in some embodiments, the present disclosure relates to a memory device (eg, an MRAM or RRAM device) having a BEOL select transistor layer interposed between two BEOL interconnect metal layers.

在一些實施例中,本揭露係有關於一種記憶體裝置。上述記憶體裝置包括一基板以及設置於上述基板上方的互連結構。互連結構包括設置於複數堆疊層間介電(ILD)層中的複數堆疊互連金屬層。記憶體單元被設置於上方互連金屬層與中間互連金屬層之間。選擇電晶體連接至記憶體單元,且被設置於中間互連金屬層與下方互連金屬層之間。選擇電晶體包括設置於選擇器通道層上的第一選擇器源極/汲極區域以及第二選擇器源極/汲極區域。第一選擇器源極/汲極區域與第二選擇器源極/汲極區域藉由側壁間隔物分隔。In some embodiments, the present disclosure relates to a memory device. The above-mentioned memory device includes a substrate and an interconnection structure disposed above the substrate. The interconnect structure includes a plurality of stacked interconnect metal layers disposed in a plurality of stacked interlayer dielectric (ILD) layers. The memory cells are disposed between the upper interconnect metal layer and the middle interconnect metal layer. The selection transistor is connected to the memory cell and is disposed between the middle interconnect metal layer and the lower interconnect metal layer. The selection transistor includes a first selector source/drain region and a second selector source/drain region disposed on the selector channel layer. The first selector source/drain region and the second selector source/drain region are separated by sidewall spacers.

在一或多個實施例中,側壁間隔物設置於第一選擇器源極/汲極區域與第二選擇器源極/汲極區域之間。在一或多個實施例中,選擇電晶體包括選擇器閘極電極以及選擇器閘極介電質,設置於下方互連金屬層與選擇器通道層之間。在一或多個實施例中,側壁間隔物具有環形形狀,且包圍第二選擇器源極/汲極區域。在一或多個實施例中,以俯視圖來看,第二選擇器源極/汲極區域具有圓形或橢圓形。在一或多個實施例中,以俯視圖來看,第二選擇器源極/汲極區域具有正方形或矩形,且被第一選擇器源極/汲極區域所圍繞。在一或多個實施例中,第二選擇器源極/汲極區域連接至中間互連金屬層。在一或多個實施例中,選擇器通道層包括氧化半導體材料。在一或多個實施例中,選擇器通道層由氧化銦鎵鋅(IGZO)所製成。在一或多個實施例中,記憶體單元包括設置於中間互連金屬層上的底部電極、設置於底部電極上方的資料儲存結構、以及設置於資料儲存結構上方的頂部電極。In one or more embodiments, sidewall spacers are disposed between the first selector source/drain region and the second selector source/drain region. In one or more embodiments, the select transistor includes a selector gate electrode and a selector gate dielectric disposed between the underlying interconnect metal layer and the selector channel layer. In one or more embodiments, the sidewall spacers have an annular shape and surround the second selector source/drain regions. In one or more embodiments, the second selector source/drain region has a circular or oval shape in a top view. In one or more embodiments, in a top view, the second selector source/drain region has a square or rectangular shape and is surrounded by the first selector source/drain region. In one or more embodiments, the second selector source/drain regions are connected to the intermediate interconnect metal layer. In one or more embodiments, the selector channel layer includes an oxide semiconductor material. In one or more embodiments, the selector channel layer is made of indium gallium zinc oxide (IGZO). In one or more embodiments, the memory cell includes a bottom electrode disposed on the intermediate interconnect metal layer, a data storage structure disposed over the bottom electrode, and a top electrode disposed over the data storage structure.

在其他實施例中,本揭露係有關於一種記憶體裝置。上述記憶體裝置包括一基板以及設置於上述基板上方的互連結構。互連結構包括一者堆疊於另一者上方且設置於層間介電(ILD)層之中的複數互連金屬層。複數記憶體單元被設置於互連結構中,且排列於列與行的陣列中。複數選擇電晶體對應地連接至記憶體單元。複數選擇電晶體設置於互連結構之中、互連結構的下方互連金屬層與上方互連金屬層之間。In other embodiments, the present disclosure relates to a memory device. The above-mentioned memory device includes a substrate and an interconnection structure disposed above the substrate. The interconnect structure includes a plurality of interconnect metal layers stacked one above the other and disposed in an interlayer dielectric (ILD) layer. A plurality of memory cells are arranged in an interconnect structure and arranged in an array of columns and rows. The plurality of selection transistors are correspondingly connected to the memory cells. The complex selection transistors are disposed in the interconnection structure and between the lower interconnection metal layer and the upper interconnection metal layer of the interconnection structure.

在一或多個實施例中,複數記憶體單元分別包括:底部電極;資料儲存結構,設置於上述底部電極上方;以及頂部電極,設置於上述資料儲存結構上方。其中複數記憶體單元的一列共享共同位元線,共同位元線連接至複數記憶體單元的上述列的頂部電極。在一或多個實施例中,複數選擇電晶體的上述列共享共同第一選擇器源極/汲極區域,且分別具有個別第二選擇器源極/汲極區域;以及個別第二選擇器源極/汲極區域是被共同第一選擇器源極/汲極區域所圍繞的島狀物。在一或多個實施例中,個別第二選擇器源極/汲極區域連接至對應的底部電極。在一或多個實施例中,個別第二選擇器源極/汲極區域藉由側壁間隔物與共同第一選擇器源極/汲極區域分隔。在一或多個實施例中,上述記憶體裝置更包括選擇器通道層,設置於共同第一選擇器源極/汲極區域、個別第二選擇器源極/汲極區域、以及側壁間隔物下方。在一或多個實施例中,複數選擇電晶體的一行共享共同閘極電極,或是具有連接至共同字元線的複數個別閘極電極。In one or more embodiments, the plurality of memory cells respectively include: a bottom electrode; a data storage structure disposed above the bottom electrode; and a top electrode disposed above the data storage structure. A column of the plurality of memory cells shares a common bit line, and the common bit line is connected to the top electrodes of the above-mentioned column of the plurality of memory cells. In one or more embodiments, the above-mentioned columns of plural select transistors share a common first selector source/drain region, and each have individual second selector source/drain regions; and individual second selectors The source/drain regions are islands surrounded by common first selector source/drain regions. In one or more embodiments, individual second selector source/drain regions are connected to corresponding bottom electrodes. In one or more embodiments, the individual second selector source/drain regions are separated from the common first selector source/drain region by sidewall spacers. In one or more embodiments, the above-described memory device further includes a selector channel layer disposed in a common first selector source/drain region, individual second selector source/drain regions, and sidewall spacers below. In one or more embodiments, a row of multiple select transistors shares a common gate electrode, or has a plurality of individual gate electrodes connected to a common word line.

在又一些實施例中,本揭露係有關於一種記憶體裝置的製造方法。上述製造方法包括在一基板上方形成被下方層間介電(ILD)層所圍繞的下方互連金屬層,以及在下方互連金屬層上形成複數選擇電晶體。上述製造方法更包括在複數選擇電晶體上形成中間互連金屬層,以及在中間互連金屬層上形成複數記憶體單元。上述製造方法更包括在複數記憶體單元上形成一上方互連金屬層。In still other embodiments, the present disclosure relates to a method of fabricating a memory device. The above-described fabrication method includes forming a lower interconnect metal layer over a substrate surrounded by an underlying interlayer dielectric (ILD) layer, and forming a plurality of selection transistors on the lower interconnect metal layer. The above manufacturing method further includes forming an intermediate interconnection metal layer on the complex selection transistor, and forming a plurality of memory cells on the intermediate interconnection metal layer. The above manufacturing method further includes forming an upper interconnect metal layer on the plurality of memory cells.

在一或多個實施例中,複數選擇電晶體中的一個選擇電晶體的形成包括:在下方層間介電層中形成選擇器閘極電極;在選擇器閘極電極與下方層間介電層上方形成選擇器通道層;在選擇器通道層上形成第一選擇器源極/汲極區域以及第二選擇器源極/汲極區域;以及在第二選擇器源極/汲極區域上形成中間互連金屬層。在一或多個實施例中,第一選擇器源極/汲極區域以及第二選擇器源極/汲極區域的形成包括:在選擇器通道層上形成第一選擇器源極/汲極層;形成穿過第一選擇器源極/汲極層的溝槽;沿著溝槽的側壁形成側壁間隔物;以及在溝槽中填充第二選擇器源極/汲極區域。In one or more embodiments, forming one of the plurality of select transistors includes: forming a selector gate electrode in an underlying interlayer dielectric layer; overlying the selector gate electrode and the underlying interlayer dielectric layer forming a selector channel layer; forming a first selector source/drain region and a second selector source/drain region on the selector channel layer; and forming a middle on the second selector source/drain region Interconnect metal layers. In one or more embodiments, the forming of the first selector source/drain region and the second selector source/drain region includes: forming the first selector source/drain on the selector channel layer layer; forming a trench through the first selector source/drain layer; forming sidewall spacers along sidewalls of the trench; and filling the trench with a second selector source/drain region.

前述內文概述多項實施例或範例之特徵,如此可使於本技術領域中具有通常知識者更佳地瞭解本揭露之態樣。本技術領域中具有通常知識者應當理解他們可輕易地以本揭露為基礎設計或修改其他製程及結構,以完成相同之目的及/或達到與本文介紹之實施例或範例相同之優點。本技術領域中具有通常知識者亦需理解,這些等效結構並未脫離本揭露之精神及範圍,且在不脫離本揭露之精神及範圍之情況下,可對本揭露進行各種改變、置換以及變更。The foregoing description summarizes the features of various embodiments or examples so that aspects of the present disclosure may be better understood by those of ordinary skill in the art. Those skilled in the art should appreciate that they can readily use the present disclosure as a basis to design or modify other processes and structures to accomplish the same purposes and/or achieve the same advantages as the embodiments or examples described herein. Those skilled in the art should also understand that these equivalent structures do not depart from the spirit and scope of the present disclosure, and various changes, substitutions and alterations may be made to the present disclosure without departing from the spirit and scope of the present disclosure. .

100:記憶體裝置 102:基板 104:互連結構 104L:下方ILD層 104U:上方ILD層 106:中間互連金屬層 108:記憶體單元 110:底部電極 112:資料儲存結構 114:頂部電極 116:上方互連金屬層 118:選擇電晶體 120:第一選擇器源極/汲極區域 122:第二選擇器源極/汲極區域 124:選擇器閘極電極 126:選擇器通道層 128:側壁間隔物 130:下方互連金屬層 132:選擇器閘極介電層 134:源極/汲極層 Lc:通道長度 104a~104e:ILD層 202:邏輯裝置 204:金屬通孔 206a~206c:互連線路 210:下方絕緣結構 212:底部電極通孔 214:頂部電極通孔 216:硬遮罩層 218:側壁間隔物 220:上方絕緣結構 222:介電層 BL:位元線 SL:源極線 WL:字元線 104f:ILD層 208a~208e:金屬通孔 300:記憶體裝置 302:記憶體區域 304:邏輯區域 306:邏輯裝置 306a:第一源極/汲極區域 306b:第二源極/汲極區域 306c:閘極結構 M0:金屬層 M6~M10:金屬層 400:記憶體陣列 117:感測放大器 119:位元線解碼器 127:字元線解碼器 C11~C33:記憶體單位 BL1 ~BL3 :位元線 SL1 ~SL3 :源極線 WL1 ~WL3 :字元線 500:截面圖 600:截面圖 700a~700d:俯視圖 800~1100:截面圖 120’:第一選擇器源極/汲極層 1200~1800:截面圖 1900:方法 1902~1922:操作100: memory device 102: substrate 104: interconnect structure 104L: lower ILD layer 104U: upper ILD layer 106: middle interconnect metal layer 108: memory cell 110: bottom electrode 112: data storage structure 114: top electrode 116: upper interconnect metal layer 118: select transistor 120: first selector source/drain region 122: second selector source/drain region 124: selector gate electrode 126: selector channel layer 128: sidewall Spacer 130: Lower Interconnect Metal Layer 132: Selector Gate Dielectric Layer 134: Source/Drain Layer Lc: Channel Lengths 104a-104e: ILD Layer 202: Logic Device 204: Metal Vias 206a-206c: Interconnect Connection line 210: bottom insulating structure 212: bottom electrode via 214: top electrode via 216: hard mask layer 218: sidewall spacer 220: upper insulating structure 222: dielectric layer BL: bit line SL: source line WL: word line 104f: ILD layers 208a~208e: metal via 300: memory device 302: memory region 304: logic region 306: logic device 306a: first source/drain region 306b: second source /drain region 306c: gate structure M0: metal layer M6~M10: metal layer 400: memory array 117: sense amplifier 119: bit line decoder 127: word line decoder C11~C33: memory unit BL 1 ~BL 3 : Bit lines SL 1 ~SL 3 : Source lines WL 1 ~WL 3 : Word lines 500 : Cross-sectional views 600 : Cross-sectional views 700 a ~ 700 d : Top views 800 ~ 1100 : Cross-sectional views 120 ′: Section A selector source/drain layer 1200-1800: cross section 1900: method 1902-1922: operation

本揭露之態樣自後續實施方式及附圖可更佳理解。須強調的是,依據產業之標準作法,各種特徵並未按比例繪製。事實上,各種特徵之尺寸可能任意增加或減少以清楚論述。 第1圖顯示記憶體裝置之一些實施例的截面圖,上述記憶體裝置包括後段製程(back-end-of- line, BEOL)選擇電晶體。 第2圖顯示記憶體裝置之一些附加實施例的截面圖,上述記憶體裝置包括BEOL選擇電晶體。 第3圖顯示記憶體裝置之一些附加實施例的截面圖,上述記憶體裝置包括BEOL選擇電晶體。 第4圖顯示具有複數記憶體單位之記憶體陣列的一部分的一些實施例的方塊圖。 第5圖係根據一些實施例所示,沿著列方向之第4圖的記憶體陣列的一些實施例的截面圖。 第6圖係根據一些實施例所示,沿著行方向之第4圖的記憶體陣列的一些實施例的截面圖。 第7A圖至第7D圖顯示了圖示對應之選擇電晶體的第4圖之記憶體陣列的一些實施例的俯視圖。 第8圖至第18圖顯示形成包含BEOL選擇電晶體之記憶體裝置的方法的一些實施例的截面圖。 第19圖顯示形成包含BEOL選擇電晶體之記憶體裝置的方法的一些實施例的流程圖。Aspects of the present disclosure can be better understood from the subsequent embodiments and accompanying drawings. It is emphasized that, in accordance with standard industry practice, the various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 shows a cross-sectional view of some embodiments of a memory device including a back-end-of-line (BEOL) select transistor. Figure 2 shows a cross-sectional view of some additional embodiments of memory devices that include BEOL select transistors. Figure 3 shows a cross-sectional view of some additional embodiments of memory devices that include BEOL select transistors. Figure 4 shows a block diagram of some embodiments of a portion of a memory array having a plurality of memory units. 5 is a cross-sectional view of some embodiments of the memory array of FIG. 4 along a column direction, according to some embodiments. 6 is a cross-sectional view of some embodiments of the memory array of FIG. 4 along a row direction, according to some embodiments. Figures 7A-7D show top views of some embodiments of the memory array of Figure 4 illustrating corresponding select transistors. 8-18 show cross-sectional views of some embodiments of a method of forming a memory device including a BEOL select transistor. 19 shows a flowchart of some embodiments of a method of forming a memory device including a BEOL select transistor.

100:記憶體裝置100: Memory device

102:基板102: Substrate

104:互連結構104: Interconnect Structure

104L:下方ILD層104L: ILD layer below

104U:上方ILD層104U: Upper ILD layer

106:中間互連金屬層106: Intermediate interconnect metal layer

108:記憶體單元108: Memory unit

110:底部電極110: Bottom electrode

112:資料儲存結構112: Data storage structure

114:頂部電極114: Top electrode

116:上方互連金屬層116: upper interconnect metal layer

118:選擇電晶體118: select transistor

120:第一選擇器源極/汲極區域120: first selector source/drain region

122:第二選擇器源極/汲極區域122: Second selector source/drain region

124:選擇器閘極電極124: Selector gate electrode

126:選擇器通道層126: Selector channel layer

128:側壁間隔物128: Sidewall Spacers

130:下方互連金屬層130: Bottom interconnect metal layer

132:選擇器閘極介電層132: Selector gate dielectric layer

134:源極/汲極層134: source/drain layer

Lc:通道長度Lc: channel length

Claims (8)

一種記憶體裝置,包括:一基板;一互連結構,設置於上述基板上方,上述互連結構包括設置於複數堆疊層間介電層中的複數堆疊互連金屬層,上述堆疊互連金屬層包括一者設置於另一者上方的一下方互連金屬層、一中間互連金屬層、以及一上方互連金屬層;一記憶體單元,設置於上述上方互連金屬層與上述中間互連金屬層之間;以及一選擇電晶體,連接至上述記憶體單元,且被設置於上述中間互連金屬層與上述下方互連金屬層之間,其中上述選擇電晶體包括:一選擇器通道層;一第一選擇器源極/汲極區域以及一第二選擇器源極/汲極區域,設置於上述選擇器通道層上;以及一側壁間隔物,設置於上述第一選擇器源極/汲極區域與上述第二選擇器源極/汲極區域之間,且分隔上述第一選擇器源極/汲極區域與上述第二選擇器源極/汲極區域。 A memory device includes: a substrate; an interconnection structure disposed above the substrate, the interconnection structure comprising a plurality of stacked interconnection metal layers disposed in a plurality of stacked interlayer dielectric layers, the stacked interconnection metal layers comprising One is disposed on a lower interconnection metal layer, a middle interconnection metal layer, and an upper interconnection metal layer above the other; a memory cell is disposed on the upper interconnection metal layer and the middle interconnection metal layer between the layers; and a selection transistor connected to the memory unit and disposed between the middle interconnection metal layer and the lower interconnection metal layer, wherein the selection transistor includes: a selector channel layer; A first selector source/drain region and a second selector source/drain region disposed on the selector channel layer; and a sidewall spacer disposed on the first selector source/drain between the first selector source/drain area and the second selector source/drain area, and separate the first selector source/drain area from the second selector source/drain area. 如請求項1之記憶體裝置,其中上述側壁間隔物具有環形形狀,且包圍上述第二選擇器源極/汲極區域。 The memory device of claim 1, wherein the sidewall spacer has an annular shape and surrounds the second selector source/drain region. 如請求項1之記憶體裝置,其中以俯視圖來看,上述第二選擇器源極/汲極區域具有圓形、橢圓形、正方形或矩形,且被上述第一選擇器源極/汲極區域所圍繞。 The memory device of claim 1, wherein the second selector source/drain region has a circular, oval, square or rectangular shape in a plan view, and is surrounded by the first selector source/drain region surrounded by. 如請求項1之記憶體裝置,其中上述記憶體單元包括設置於上述 中間互連金屬層上的一底部電極、設置於上述底部電極上方的一資料儲存結構、以及設置於上述資料儲存結構上方的一頂部電極。 The memory device of claim 1, wherein the memory unit comprises a A bottom electrode on the intermediate interconnection metal layer, a data storage structure disposed above the bottom electrode, and a top electrode disposed above the data storage structure. 一種記憶體裝置,包括:一基板;一互連結構,設置於上述基板上方,上述互連結構包括一者堆疊於另一者上方且設置於一層間介電層之中的複數互連金屬層;複數記憶體單元,設置於上述互連結構中,且排列於列與行的一陣列中;以及複數選擇電晶體,對應地連接至上述記憶體單元,其中上述選擇電晶體設置於上述互連結構之中、上述互連結構的一下方互連金屬層與一上方互連金屬層之間;其中上述選擇電晶體的一列共享一共同第一選擇器源極/汲極區域,且分別具有一個別第二選擇器源極/汲極區域,並且上述個別第二選擇器源極/汲極區域藉由一側壁間隔物與上述共同第一選擇器源極/汲極區域分隔。 A memory device includes: a substrate; an interconnect structure disposed above the substrate, the interconnect structure including a plurality of interconnect metal layers stacked one above the other and disposed in an interlayer dielectric layer a plurality of memory cells, arranged in the above-mentioned interconnect structure, and arranged in an array of columns and rows; and a plurality of selection transistors, correspondingly connected to the above-mentioned memory cells, wherein the above-mentioned selection transistors are arranged in the above-mentioned interconnection In the structure, between a lower interconnect metal layer and an upper interconnect metal layer of the interconnect structure; wherein a row of the select transistors share a common first selector source/drain region, and each has a Individual second selector source/drain regions, and the individual second selector source/drain regions are separated from the common first selector source/drain region by a sidewall spacer. 如請求項5之記憶體裝置,其中上述記憶體單元分別包括:一底部電極;一資料儲存結構,設置於上述底部電極上方;以及一頂部電極,設置於上述資料儲存結構上方;其中上述記憶體單元的上述列共享一共同位元線,上述共同位元線連接至上述記憶體單元的上述列的上述頂部電極。 The memory device of claim 5, wherein the memory cells respectively comprise: a bottom electrode; a data storage structure disposed above the bottom electrode; and a top electrode disposed above the data storage structure; wherein the memory The columns of cells share a common bit line connected to the top electrodes of the columns of the memory cells. 如請求項5之記憶體裝置,其中上述個別第二選擇器源極/汲極區域是被上述共同第一選擇器源極/汲極 區域所圍繞的島狀物。 The memory device of claim 5, wherein said individual second selector source/drain regions are separated by said common first selector source/drain The island that the area surrounds. 一種記憶體裝置的製造方法,上述製造方法包括:在一基板上方形成被一下方層間介電層所圍繞的一下方互連金屬層;在上述下方互連金屬層上形成複數選擇電晶體;在上述選擇電晶體上形成一中間互連金屬層;在上述中間互連金屬層上形成複數記憶體單元;以及在上述記憶體單元上形成一上方互連金屬層;其中上述選擇電晶體中的一個選擇電晶體的形成包括:在上述下方層間介電層中形成一選擇器閘極電極;在上述選擇器閘極電極與上述下方層間介電層上方形成一選擇器通道層;在上述選擇器通道層上形成一第一選擇器源極/汲極區域以及一第二選擇器源極/汲極區域;以及在上述第二選擇器源極/汲極區域上形成上述中間互連金屬層;其中上述第一選擇器源極/汲極區域以及上述第二選擇器源極/汲極區域的形成包括:在上述選擇器通道層上形成一第一選擇器源極/汲極層;形成穿過上述第一選擇器源極/汲極層的一溝槽;沿著上述溝槽的側壁形成一側壁間隔物;以及在上述溝槽中填充上述第二選擇器源極/汲極區域。A manufacturing method of a memory device, the manufacturing method comprising: forming a lower interconnection metal layer surrounded by a lower interlayer dielectric layer above a substrate; forming a plurality of selective transistors on the lower interconnection metal layer; forming an intermediate interconnection metal layer on the above-mentioned selection transistor; forming a plurality of memory cells on the above-mentioned intermediate interconnection metal layer; and forming an upper interconnection metal layer on the above-mentioned memory cells; wherein one of the above-mentioned selection transistors The formation of the selection transistor includes: forming a selector gate electrode in the lower interlayer dielectric layer; forming a selector channel layer above the selector gate electrode and the lower interlayer dielectric layer; forming a selector channel layer on the selector channel A first selector source/drain area and a second selector source/drain area are formed on the layer; and the above-mentioned intermediate interconnection metal layer is formed on the above-mentioned second selector source/drain area; wherein The formation of the above-mentioned first selector source/drain region and the above-mentioned second selector source/drain region includes: forming a first selector source/drain layer on the above-mentioned selector channel layer; a trench in the first selector source/drain layer; forming a sidewall spacer along sidewalls of the trench; and filling the second selector source/drain region in the trench.
TW110114686A 2020-04-30 2021-04-23 Memory device and fabricating method thereof TWI777513B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063017731P 2020-04-30 2020-04-30
US63/017,731 2020-04-30
US17/078,583 2020-10-23
US17/078,583 US11309353B2 (en) 2020-04-30 2020-10-23 Spacer-defined back-end transistor as memory selector

Publications (2)

Publication Number Publication Date
TW202143472A TW202143472A (en) 2021-11-16
TWI777513B true TWI777513B (en) 2022-09-11

Family

ID=76811198

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110114686A TWI777513B (en) 2020-04-30 2021-04-23 Memory device and fabricating method thereof

Country Status (5)

Country Link
US (2) US11309353B2 (en)
KR (1) KR102481748B1 (en)
CN (1) CN113140588B (en)
DE (1) DE102020128421A1 (en)
TW (1) TWI777513B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019104255B4 (en) * 2018-08-29 2023-03-16 Taiwan Semiconductor Manufacturing Co. Ltd. Memory structure with FeRAM device and method for its production as well as an integrated chip with a first FeRAM cell and a second FeRAM cell
US10930333B2 (en) * 2018-08-29 2021-02-23 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded ferroelectric memory cell
US12002884B2 (en) * 2021-07-08 2024-06-04 Taiwan Semiconductor Manufacturing Company Limited Dual gate vertical thin film transistors and methods for forming the same
US11839071B2 (en) * 2021-07-22 2023-12-05 Taiwan Semiconductor Manufacturing Company Limited Vertical access transistors and methods for forming the same
TWI769031B (en) * 2021-07-29 2022-06-21 力晶積成電子製造股份有限公司 Ferroelectric memory structure
US11626558B2 (en) 2021-09-01 2023-04-11 Changxin Memory Technologies, Inc. Semiconductor structure and manufacturing method thereof, and memory
CN115843184A (en) * 2021-09-01 2023-03-24 长鑫存储技术有限公司 Semiconductor structure, manufacturing method thereof and memory
US20230189533A1 (en) 2021-12-09 2023-06-15 Taiwan Semiconductor Manufacturing Company Limited Self-aligned multilayer spacer matrix for high-density transistor arrays and methods for forming the same
CN115096965B (en) * 2022-05-31 2023-09-08 上海交通大学 Thin film transistor type biochemical sensing microarray chip and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709285A (en) * 2006-12-28 2012-10-03 马维尔国际贸易有限公司 Geometry of mos device with low on-resistance
CN102769018A (en) * 2011-05-04 2012-11-07 海力士半导体有限公司 Nonvolatile memory device
CN105280225A (en) * 2014-05-28 2016-01-27 意法半导体(鲁塞)公司 Method for programming a non-volatile memory cell comprising a shared select transistor gate
CN109983594A (en) * 2016-12-27 2019-07-05 英特尔公司 Monolithic integrated optical circuit with a plurality of types of embedded non-volatile memory devices
TW202002177A (en) * 2018-06-29 2020-01-01 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices having shielding layer and fabricating method thereof
TW202010020A (en) * 2018-08-14 2020-03-01 南韓商三星電子股份有限公司 Semiconductor device and method of manufacturing the same
TW202015183A (en) * 2014-01-10 2020-04-16 日商東芝記憶體股份有限公司 Semiconductor memory device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140054975A (en) 2012-10-30 2014-05-09 에스케이하이닉스 주식회사 Variable resistance memory device
US9312306B2 (en) 2013-09-03 2016-04-12 Kabushiki Kaisha Toshiba Nonvolatile memory device and method of manufacturing the same
US9112148B2 (en) * 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
JP2015141726A (en) 2014-01-28 2015-08-03 株式会社東芝 Semiconductor storage device
US9882125B2 (en) * 2015-02-11 2018-01-30 Globalfoundries Singapore Pte. Ltd. Selector device for a non-volatile memory cell
US9818935B2 (en) * 2015-06-25 2017-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Techniques for MRAM MTJ top electrode connection
US10068945B2 (en) * 2015-09-30 2018-09-04 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure integrated with magnetic tunneling junction and manufacturing method thereof
US10355203B2 (en) * 2016-03-14 2019-07-16 Toshiba Memory Corporation Semiconductor memory device with variable resistance elements
US10164181B2 (en) * 2017-04-18 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Sidewall protection of memory cell
US10158072B1 (en) * 2017-05-31 2018-12-18 Taiwan Semiconductor Manufacturing Co., Ltd. Step height reduction of memory element
US10497436B2 (en) * 2017-11-27 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Memory device and fabrication thereof
JP2019161106A (en) * 2018-03-15 2019-09-19 東芝メモリ株式会社 Method for manufacturing semiconductor storage device
US11329047B2 (en) * 2018-04-18 2022-05-10 Intel Corporation Thin-film transistor embedded dynamic random-access memory with shallow bitline
US10522740B2 (en) * 2018-05-29 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Techniques for MRAM MTJ top electrode to metal layer interface including spacer
US11189659B2 (en) * 2018-08-29 2021-11-30 Taiwan Semiconductor Manufacturing Company, Ltd. Techniques for MRAM MTJ top electrode to via interface

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709285A (en) * 2006-12-28 2012-10-03 马维尔国际贸易有限公司 Geometry of mos device with low on-resistance
CN102769018A (en) * 2011-05-04 2012-11-07 海力士半导体有限公司 Nonvolatile memory device
TW202015183A (en) * 2014-01-10 2020-04-16 日商東芝記憶體股份有限公司 Semiconductor memory device
CN105280225A (en) * 2014-05-28 2016-01-27 意法半导体(鲁塞)公司 Method for programming a non-volatile memory cell comprising a shared select transistor gate
CN109983594A (en) * 2016-12-27 2019-07-05 英特尔公司 Monolithic integrated optical circuit with a plurality of types of embedded non-volatile memory devices
TW202002177A (en) * 2018-06-29 2020-01-01 大陸商長江存儲科技有限責任公司 Three-dimensional memory devices having shielding layer and fabricating method thereof
TW202010020A (en) * 2018-08-14 2020-03-01 南韓商三星電子股份有限公司 Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
KR102481748B1 (en) 2022-12-26
US20210343787A1 (en) 2021-11-04
DE102020128421A1 (en) 2021-11-04
CN113140588A (en) 2021-07-20
TW202143472A (en) 2021-11-16
US20220246678A1 (en) 2022-08-04
US11309353B2 (en) 2022-04-19
KR20210134482A (en) 2021-11-10
CN113140588B (en) 2024-09-13

Similar Documents

Publication Publication Date Title
TWI777513B (en) Memory device and fabricating method thereof
US20210159237A1 (en) Semiconductor memory device including a substrate, various interconnections, semiconductor member, charge storage member and a conductive member
TWI763355B (en) Memory device and method of forming the same
TWI656528B (en) Memory circuit and method of forming same
TW201914069A (en) Memory circuit and method of forming memory circuit
US11133044B2 (en) Interleaved routing for MRAM cell selection
US20130137237A1 (en) Semiconductor memory device and method of manufacturing the same
US12041793B2 (en) Hybrid memory device and method of forming the same
US11716855B2 (en) Three-dimensional memory device and method
CN113437079A (en) Memory device and method of manufacturing the same
CN113517294A (en) Semiconductor device and method of forming the same
CN112670314A (en) Integrated chip and forming method thereof
TW202303949A (en) Memory device and method of forming the same
CN113782669A (en) Memory device and method of manufacturing the same
TW202245218A (en) Memory device and method of forming the same
US10515997B2 (en) Memory device and method for manufacturing the same
US20230157032A1 (en) Bit-line resistance reduction
TWI850770B (en) Integrated chip structure and forming method thereof
TWI836265B (en) Integrated chip and method for forming the same
TWI789603B (en) Integrated chip and method for forming the same
US20230027039A1 (en) Three-Dimensional Memory Device and Method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent