TWI777430B - Light-field virtual and mixed reality system having foveated projection - Google Patents

Light-field virtual and mixed reality system having foveated projection Download PDF

Info

Publication number
TWI777430B
TWI777430B TW110107338A TW110107338A TWI777430B TW I777430 B TWI777430 B TW I777430B TW 110107338 A TW110107338 A TW 110107338A TW 110107338 A TW110107338 A TW 110107338A TW I777430 B TWI777430 B TW I777430B
Authority
TW
Taiwan
Prior art keywords
light field
light
image
optical
plane
Prior art date
Application number
TW110107338A
Other languages
Chinese (zh)
Other versions
TW202235955A (en
Inventor
托瑪士 斯盧卡
Original Assignee
瑞士商見真實股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞士商見真實股份有限公司 filed Critical 瑞士商見真實股份有限公司
Priority to TW110107338A priority Critical patent/TWI777430B/en
Application granted granted Critical
Publication of TWI777430B publication Critical patent/TWI777430B/en
Publication of TW202235955A publication Critical patent/TW202235955A/en

Links

Images

Landscapes

  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Holo Graphy (AREA)

Abstract

The present disclosure concerns a light-field projection system, comprising a pin-light array generating an incident light-field illuminating an optical light modulator for modulating the incident light-field and projecting a plurality of modulated light-field components along a projection axis; a first optical element configured for forming first pin-light images in a first pin-light plane and modulator images in a modulator image plane; and a second optical element defining an eye-box region and for forming second pin-light images in a second pin-light plane within the eye-box; the first and second pin-light planes and the modulator image plane being substantially perpendicular to the projection axis; the system further comprising at least one optical device at the first pin-light plane and being configured for interacting with at least one of the modulated light-field components, spatially shifting the modulated light-field components in the modulator image plane. The light-field projection allows for foveated projection.

Description

具有注視點投影之光場虛擬及混合實境系統Light field virtual and mixed reality system with foveated projection

本揭示係有關於近眼光場虛擬及混合實境系統且特別有關於具有注視點投影之近眼光場虛擬及混合實境系統。The present disclosure relates to near-eye light field virtual and mixed reality systems and in particular to near eye light field virtual and mixed reality systems with foveated projection.

人眼具有非常寬之視野(FOV)。人眼個別地具有一大約135°之水平FOV及一稍微超過180°之垂直FOV。FOV可涵蓋一區塊而非一單一焦點。在虛擬實境(VR)及/或混合實境裝置中,一大FOV對產生一沈浸式似實物體驗是重要的。較寬FOV亦為許多其他光學裝置提供較佳感測器涵蓋範圍及通達性。The human eye has a very wide field of view (FOV). The human eye individually has a horizontal FOV of about 135° and a vertical FOV of slightly over 180°. FOV can cover a block rather than a single focus. In virtual reality (VR) and/or mixed reality devices, a large FOV is important to produce an immersive physical-like experience. The wider FOV also provides better sensor coverage and accessibility for many other optical devices.

虛擬或混合實境裝置必須提供大約400 000 000像素以便用規則分布之像素涵蓋這FOV來滿足眼睛之最高解析度。Virtual or mixed reality devices must provide approximately 400 million pixels to cover this FOV with regularly distributed pixels to satisfy the highest resolution of the eye.

但是,一眼睛之解析度並非均一地分布。它只在環繞其中央窩之大約20° FOV中具有高解析度。涵蓋20° FOV之一超高畫質顯示(1920×1080)已在中央窩到達視網膜解析度。眼睛解析度隨著遠離中央窩而逐漸降低。全部FOV(在中央窩外側)可被與該中央窩內側之大約相同資訊量涵蓋,使所需像素之總數為大約4 000 000。However, the resolution of an eye is not uniformly distributed. It has high resolution only in about 20° FOV around its fovea. One of the ultra-high-quality displays (1920×1080) covering 20° FOV has reached retinal resolution in the fovea. Eye resolution gradually decreases away from the fovea. The entire FOV (outside the fovea) can be covered by about the same amount of information as the inside of the fovea, making the total number of pixels required about 4 000 000.

所謂注視點成像及投影被加入虛擬及混合實境頭戴裝置以便精確地利用這人類視覺之特性。但這仍藉由平面影像來實施。光場裝置對於注視點投影仍沒有任何解決方法。So-called foveated imaging and projection are added to virtual and mixed reality headsets to precisely exploit this feature of human vision. But this is still implemented with flat images. The light field device still doesn't have any solution for foveated projection.

文獻US20190324272揭示一三維(3D)影像顯示設備。該設備包括:複數光源;一空間調光器,其組配成依據3D影像資訊來調變來自該等複數光源之光;及一聚焦光學系統,其組配成聚焦由該空間調光器形成之一影像在一焦面上。該等複數光源可配置成使得分別地對應該等複數光源之多數焦點形成在靠近一使用者之一瞳孔的焦面上。Document US20190324272 discloses a three-dimensional (3D) image display device. The apparatus includes: a plurality of light sources; a spatial dimmer configured to modulate light from the plurality of light sources according to 3D image information; and a focusing optical system configured to focus formed by the spatial dimmer One of the images is on a focal plane. The plurality of light sources may be configured such that a plurality of foci respectively corresponding to the plurality of light sources are formed on a focal plane close to a pupil of a user.

本揭示係有關一光場投影系統,其包含:一點光陣列,其包含複數點光且產生照明一光學調光器之一入射光場,該光學調光器係用於調變該入射光場且沿著一投影軸投影複數調變光場分量;一第一光學元件,其組配成用於形成一第一點光平面中之第一點光影像及一調變器影像平面中之調變器影像;及一第二光學元件,其界定一視區(eye box)區域且組配成用於在該視區內形成一第二點光平面中之第二點光影像;其中該等第一與第二點光平面及該調變器影像平面係與該投影軸實質地垂直且其中該調變器影像平面係在該等第一光學元件與第二光學元件之間;且其中該系統更包含至少一光學裝置,該至少一光學裝置係在該第一點光平面且組配成折射該等調變光場分量中之至少一者,以使該調變器影像平面中之該調變器影像空間地位移。The present disclosure relates to a light field projection system, which includes: a point light array, which includes a plurality of point lights and generates an incident light field for illuminating an optical dimmer, the optical dimmer for modulating the incident light field and projecting the complex modulated light field components along a projection axis; a first optical element configured to form a first point light image in a first point light plane and a tone in the modulator image plane a transformer image; and a second optical element defining an eye box area and configured to form a second point light image in a second point light plane within the eye box; wherein the first and second point light planes and the modulator image plane are substantially perpendicular to the projection axis and wherein the modulator image plane is between the first and second optical elements; and wherein the The system further includes at least one optical device in the first point light plane and configured to refract at least one of the modulated light field components such that the modulator image plane in the The modulator image is spatially displaced.

該光場投影系統可對任何人、動物或一相機之眼睛提供虛擬及混合實境體驗。該光場投影系統之一使用者可體驗實境及虛擬3D場景之擬真混合。該光場投影系統適用於在舒適地進行正確眼睛視力調節之情形下傳遞3D虛擬及擴增實境資訊。The light field projection system can provide virtual and mixed reality experiences to the eyes of any person, animal or a camera. A user of the light field projection system can experience a realistic mix of real and virtual 3D scenes. The light field projection system is suitable for delivering 3D virtual and augmented reality information while comfortably performing correct eye vision adjustment.

該光場投影系統可包含一眼球追蹤及轉向裝置。該眼球追蹤及轉向裝置可用於決定一觀看者注視的地方以藉此決定該中央窩區域與該投影影像相關的地方。The light field projection system may include an eye tracking and steering device. The eye tracking and steering device can be used to determine where a viewer is looking to thereby determine where the foveal region is relative to the projected image.

該光場投影系統可用於注視點投影。詳而言之,該光場投影系統可產生光場,該光場提供在一窄視野(FOV)中之較高角解析度影像及用於寬FOV之低角解析度影像。該光場投影系統藉由大幅減少周邊視界(被該中央窩凝視之區域外側)中的影像品質來減少成像工作負載。This light field projection system can be used for foveated projection. In detail, the light field projection system can generate a light field that provides higher angular resolution images in a narrow field of view (FOV) and lower angular resolution images for a wide FOV. The light field projection system reduces imaging workload by substantially reducing image quality in the peripheral field of view (outside the area stared by the fovea).

圖1a顯示包含一點光陣列10之一光場投影系統1,該點光陣列10產生照明一光學調光器20之一入射光場100,該光學調光器20係組配成用於調變該入射光場100且沿著一投影軸170投影複數調變光場分量110。該系統1更包含一第一點光光學元件70,該第一點光光學元件70係組配成用於形成第一點光平面30中之一第一點光影像31,且該第一點光平面30係與該投影軸170實質地垂直。該第一點光光學元件70可包含一成像透鏡。該系統1更包含一第二光學元件40,該第二光學元件40界定一視區(eye box)區域121且組配成用於在該視區121內形成一第二點光平面124中之第二點光影像120。該第二點光平面124與該投影軸170實質地垂直。該第二點光平面124可對應該視區121內之一虛擬影像孔或一出射瞳,該出射瞳124包含複數第二點光影像120(在圖2a中顯示三個第二點光影像120)。Figure 1a shows a light field projection system 1 comprising a spot light array 10 that generates an incident light field 100 that illuminates an optical dimmer 20 configured for modulating The incident light field 100 projects the complex modulated light field component 110 along a projection axis 170 . The system 1 further includes a first spot light optical element 70, the first spot light optical element 70 is configured to form a first spot light image 31 in the first spot light plane 30, and the first spot light The light plane 30 is substantially perpendicular to the projection axis 170 . The first spot light optical element 70 may include an imaging lens. The system 1 further includes a second optical element 40 that defines an eye box area 121 and is configured to form a second spot light plane 124 in the eye box 121 . The second point light image 120 . The second spot light plane 124 is substantially perpendicular to the projection axis 170 . The second point light plane 124 may correspond to a virtual image aperture or an exit pupil in the viewing area 121, and the exit pupil 124 includes a plurality of second point light images 120 (three second point light images 120 are shown in FIG. 2a ). ).

任選地,該光場投影系統1可包含一調變光學元件32,該調變光學元件32係組配成用於形成一調變器影像平面115中的該光學調光器20之調變器影像114,該調變器影像平面115亦與該投影軸170實質地垂直。該調變器影像平面115係藉由該第二光學元件40投影在遠離該視區區域121之一距離D處。該距離D可為在該視區區域121之任一側沿著該投影軸170之無窮遠或任何距離。在沿著該投影軸170之無窮遠或任何距離的該距離D通常在一觀看者之視力調節範圍外。Optionally, the light field projection system 1 may include a modulating optical element 32 configured to form a modulation of the optical dimmer 20 in a modulator image plane 115 The modulator image 114 , the modulator image plane 115 is also substantially perpendicular to the projection axis 170 . The modulator image plane 115 is projected at a distance D away from the viewing area 121 by the second optical element 40 . The distance D can be infinity or any distance along the projection axis 170 on either side of the viewport area 121 . The distance D at infinity or any distance along the projection axis 170 is generally outside the accommodating range of a viewer's vision.

或者,該調變器影像平面115可藉由具有對應光功率之第一點光光學元件70或藉由將該第一點光光學元件70放在沿著該投影軸170之一不同距離處來產生。Alternatively, the modulator image plane 115 may be formed by a first spotlight optical element 70 having a corresponding optical power or by placing the first spotlight optical element 70 at a different distance along the projection axis 170 produce.

該第二光學元件40可包含一目鏡。該目鏡40可包含光學元件,例如:凸透鏡、鏡子、曲面鏡、半透明鏡或透鏡組、鏡子或半透明鏡且可組配成將該等調變器影像平面115放在遠離該視區區域121之一影像距離D處。該距離D可設定為在該視區區域121之任一側沿著該投影軸170之無窮遠或任何距離。The second optical element 40 may include an eyepiece. The eyepiece 40 may include optical elements such as convex lenses, mirrors, curved mirrors, semi-transparent mirrors or lens groups, mirrors or semi-transparent mirrors and may be configured to place the modulator image plane 115 away from the viewing area area One of the 121 images is at a distance D. The distance D can be set to infinity or any distance along the projection axis 170 on either side of the viewport area 121 .

該光場投影系統1可包含設置在該第一點光平面30之一傅立葉濾光片34。吾人注意到該傅立葉濾光片34不必精確地放在該光學調光器20之傅立葉平面中。對各視點而言,該傅立葉濾光片34可組配成由在該光學調光器20上反射及繞射之該等調變光場分量110移除一個繞射分量以外之全部調變光場分量。在此,該用語「視點」對應一個調變光場分量110。The light field projection system 1 may comprise a Fourier filter 34 disposed in the first point light plane 30 . We note that the Fourier filter 34 does not have to be placed exactly in the Fourier plane of the optical dimmer 20 . For each viewpoint, the Fourier filter 34 can be configured to remove all but one diffracted modulated light from the modulated light field components 110 reflected and diffracted on the optical dimmer 20 field component. Here, the term "viewpoint" corresponds to one modulated light field component 110 .

該傅立葉濾光片34可包含至少一成像透鏡,該至少一成像透鏡產生該調變光場分量110之影像平面。該傅立葉濾光片34可包含一針孔陣列,該針孔陣列係由例如一光學非透明及非半透明板或其他濾光圖案形成。該傅立葉濾光片34亦可配置成一反射模式,其中該等針孔或其他濾光圖案用微鏡替代。該傅立葉濾光片34產生一經調變及過濾之虛擬光場112。在此,該視點對應通過一個針孔之一個光場分量110。The Fourier filter 34 may include at least one imaging lens that generates an image plane of the modulated light field component 110 . The Fourier filter 34 may include an array of pinholes formed from, for example, an optically non-transparent and non-translucent plate or other filter pattern. The Fourier filter 34 can also be configured in a reflective mode in which the pinholes or other filtering patterns are replaced by micromirrors. The Fourier filter 34 produces a modulated and filtered virtual light field 112 . Here, the viewpoint corresponds to a light field component 110 passing through a pinhole.

該光場投影系統1係預定成供一觀看者配戴以供虛擬及混合實境應用。該光場投影系統可組配成使得,當該觀看者配戴它時,該視區121及該出射瞳124係在該觀看者眼睛90內。該第二光學元件40朝向該觀看者眼睛90之瞳孔130發射該等調變光場分量110,使得該等調變光場分量110投影在視網膜92上。The light field projection system 1 is intended to be worn by a viewer for virtual and mixed reality applications. The light field projection system can be configured such that the viewing area 121 and the exit pupil 124 are within the viewer's eye 90 when the viewer wears it. The second optical element 40 emits the modulated light field components 110 towards the pupil 130 of the viewer's eye 90 such that the modulated light field components 110 are projected on the retina 92 .

來自各所示調變光場分量110之雙線係用以說明必須考慮之真實系統的邊界。該點光陣列10及該傅立葉濾光片34都有孔。該光學調光器20之影像必須加以處理使得來自各像素之光用大致準直窄光束朝向該視區121(且因此朝向該觀看者眼睛90)投影(最好是該光可稍微收歛至在該視區121後方遠處之一點使得觀看者眼睛90無法聚焦在該視區上且因此在該觀看者之視力調節範圍中的全部影像看起來相似)。The double line from each of the shown modulated light field components 110 is used to illustrate the boundaries of the real system that must be considered. Both the spot light array 10 and the Fourier filter 34 have holes. The image of the optical dimmer 20 must be processed so that the light from each pixel is projected towards the viewing zone 121 (and thus towards the viewer's eye 90 ) with a generally collimated narrow beam (preferably the light can be slightly converged to the A point far behind the viewing zone 121 is such that the viewer's eyes 90 cannot focus on the viewing zone and thus all images in the viewer's accommodative range look similar).

圖1b顯示對一觀看者配戴該光場投影系統1時之三個第二點光影像120而言,當該觀看者眼睛90聚焦在無窮遠時之該光學調光器20的投影影像140。1b shows the projected images 140 of the optical dimmer 20 when the viewer's eyes 90 are focused at infinity for three second point light images 120 when the viewer wears the light field projection system 1 .

圖1c顯示當該觀看者眼睛90聚焦在比無窮遠近處時的投影影像140。在此,對三個第二點光影像120之各第二點光影像而言,該觀看者看見三個投影影像141、142、143,其中該等三個投影影像141、142、143稍微相對位移。Figure 1c shows the projected image 140 when the viewer's eyes 90 are focused closer than infinity. Here, for each of the three second point light images 120, the viewer sees three projected images 141, 142, 143, wherein the three projected images 141, 142, 143 are slightly opposite displacement.

圖2a顯示依據一實施例之光場投影系統1。該光場投影系統1更包含在該第一點光平面30之至少一光學裝置60。該光學裝置60係組配成用於與該等調變光場分量110中之至少一者互動。更詳而言之,該光學元件包含一折射稜鏡60,該折射稜鏡60係組配成折射該調變光場分量110中之一者使得該調變器影像114在其調變器影像平面115中空間地位移。該調變器影像114在該調變器影像平面115中之空間位移係由白色三角形表示。該等非位移調變器影像114係由黑色三角形表示。相對未使用該稜鏡60之調變器影像平面115,該折射稜鏡60未改變沿著該投影軸170之該調變器影像114的位置。其餘光學件(第一與第二光學元件70、40及調變光學元件32)亦未改變被該折射稜鏡60折射之調變光場分量110的調變器影像114的位置。Figure 2a shows a light field projection system 1 according to an embodiment. The light field projection system 1 further includes at least one optical device 60 on the first point light plane 30 . The optical device 60 is configured to interact with at least one of the modulated light field components 110 . More specifically, the optical element includes a refraction element 60 configured to refract one of the modulated light field components 110 such that the modulator image 114 is in its modulator image Displaced spatially in plane 115 . The spatial displacement of the modulator image 114 in the modulator image plane 115 is represented by white triangles. The non-shift modulator images 114 are represented by black triangles. Relative to the modulator image plane 115 where the lens 60 is not used, the refractive lens 60 does not change the position of the modulator image 114 along the projection axis 170 . The remaining optical elements (the first and second optical elements 70 , 40 and the modulating optical element 32 ) also do not change the position of the modulator image 114 of the modulated light field component 110 refracted by the refracting element 60 .

通過該折射稜鏡60之一調變光場分量110的一配置顯示在圖2d中。該折射角θ D可定義為由該入射調變光場分量110a至離開該折射稜鏡60之出射調變光場分量110b的角度。該折射角θ D取決於該折射稜鏡60之入射面611與出射面間之方位差,或圖2d中之頂角θ a。可考慮該折射稜鏡60之其他組態。例如,該折射稜鏡60形狀可包括具有相等底角之均一三角形稜鏡或可用一繞射光柵替代。 A configuration for modulating the light field component 110 by one of the refracting poles 60 is shown in Figure 2d. The refraction angle θ D can be defined as the angle from the incident modulated light field component 110 a to the outgoing modulated light field component 110 b leaving the refraction lens 60 . The refraction angle θ D depends on the azimuth difference between the incident surface 611 and the exit surface of the refraction lens 60 , or the vertex angle θ a in FIG. 2d . Other configurations of the refraction element 60 are contemplated. For example, the shape of the refracting prism 60 may comprise a uniform triangular prism with equal base angles or may be replaced by a diffraction grating.

圖2b顯示當該觀看者眼睛90聚焦在無窮遠時之該光學調光器20的投影影像,即一觀看者配戴該光場投影系統1時之該等第二點光影像120。若某人稱該等第二點光影像120(及該第一點光平面30中之第一點光影像31)為「視點」,則由該等視點,該觀看者看見對應該觀看者之FOV的投影影像140之一拼湊影像(在一平面中)。更詳而言之,該觀看者看見:一非位移投影影像141,其對應該等非位移調變光場分量110中之一者;及一位移投影影像143,其對應在該調變器影像平面115中被該折射稜鏡60空間地位移且被該目鏡40投影至遠離該出射瞳124之一距離D的該等調變器影像114。FIG. 2b shows the projected images of the optical dimmer 20 when the viewer's eyes 90 are focused at infinity, ie, the second point light images 120 when a viewer wears the light field projection system 1 . If someone calls the second point light images 120 (and the first point light images 31 in the first point light plane 30) "viewpoints", then from these viewpoints, the viewer sees the FOV corresponding to the viewer One of the projected images 140 of the patch image (in a plane). More specifically, the viewer sees: a non-shifted projection image 141 corresponding to one of the non-shifted modulated light field components 110; and a shifted projection image 143 corresponding to the modulator image The modulator images 114 in plane 115 are spatially displaced by the refraction lens 60 and projected by the eyepiece 40 to a distance D away from the exit pupil 124 .

圖2c顯示當該觀看者眼睛90聚焦在比無窮遠近處時的投影影像140。相對對應該等非位移調變光場分量110之調變器影像114的投影影像141、142,對應於被該折射稜鏡60在該調變器影像平面115中空間地位移之該調變器影像114的該位移投影影像143具有較大位移。Figure 2c shows the projected image 140 when the viewer's eyes 90 are focused closer than infinity. The projected images 141 , 142 of the modulator image 114 corresponding to the equally non-displaced modulated light field component 110 correspond to the modulator spatially displaced in the modulator image plane 115 by the refraction element 60 The displacement projection image 143 of the image 114 has a larger displacement.

在圖3a中,顯示包含二折射稜鏡60之光場投影系統1,其中各折射稜鏡60係組配成使該等調變光場分量110中之一者折射一預定角度。圖3b與3c比較聚焦在無窮遠(圖3b)之觀看者看見及聚焦在比無窮遠近之一距離(圖3c)的觀看者看見的該非位移投影影像142與該等位移投影影像141、143。In FIG. 3a, a light field projection system 1 is shown comprising two refraction elements 60, wherein each refraction element 60 is configured to refract one of the modulating light field components 110 by a predetermined angle. Figures 3b and 3c compare the non-displaced projection image 142 and the displacement projection images 141, 143 seen by a viewer focused on infinity (Figure 3b) and by a viewer focused at a distance closer to infinity (Figure 3c).

該等二折射調變光場分量110之空間位移係由白色三角形顯示,而該等非折射調變光場分量110之該調變器影像平面115中的位置係由黑色三角形表示。The spatial displacement of the birefringent modulated light field components 110 is shown by white triangles, and the positions of the non-refractive modulated light field components 110 in the modulator image plane 115 are shown by black triangles.

該光場投影系統1可包含二或二個以上折射稜鏡60以便折射複數調變光場分量110。The light field projection system 1 may include two or more refracting elements 60 to refract the complex modulated light field component 110 .

圖4a與4b顯示該光學裝置之橫截面圖,該光學裝置包含包括複數折射稜鏡60之一陣列160。例如,該陣列160可為一微稜鏡陣列。Figures 4a and 4b show cross-sectional views of the optical device comprising an array 160 comprising complex refractive spheres 60. For example, the array 160 can be a microchip array.

該陣列160可組配成使得各折射稜鏡60與一個調變光場分量110互動。該陣列160可更組配成使得各折射稜鏡60與一個以上調變光場分量110互動,或使得多數稜鏡60對多數光場分量110實行相同光學轉換。The array 160 may be configured such that each refractive element 60 interacts with a modulated light field component 110 . The array 160 can be further configured such that each refraction element 60 interacts with more than one modulated light field component 110 , or such that a plurality of elements 60 perform the same optical transformation on a plurality of light field components 110 .

在一態樣中,該陣列160係組配成使得該陣列160之不同折射稜鏡60具有不同頂角θ a。在圖4a與4b之例子中,該頂角θ a由該陣列160之中心增加至周邊,使得該等調變光場分量110用由該陣列160之中心朝向周邊增加的折射角θ D折射。在該陣列160中之該等折射稜鏡60可具有其他組態。例如,該等折射稜鏡60之頂角θ a可由該陣列160之中心減少至周邊或對該陣列160中之全部折射稜鏡60而言可實質相同。 In one aspect, the array 160 is configured such that different refractive poles 60 of the array 160 have different apex angles θ a . 4a and 4b, the apex angle θ a increases from the center of the array 160 to the periphery, so that the modulated light field components 110 are refracted with a refraction angle θ D that increases from the center of the array 160 toward the periphery. The refractive spheres 60 in the array 160 may have other configurations. For example, the apex angle θ a of the refraction elements 60 may be reduced from the center of the array 160 to the periphery or may be substantially the same for all the refraction elements 60 in the array 160 .

在一態樣中,該陣列160包含至少一中性光學元件61。與該中性光學元件61互動之該調變光場分量110未空間地位移該調變器影像平面115。與該中性光學元件61互動的該調變光場分量110之調變器影像114亦未相對該調變器影像平面115沿著該投影軸170位移。In one aspect, the array 160 includes at least one neutral optical element 61 . The modulated light field component 110 interacting with the neutral optical element 61 does not spatially displace the modulator image plane 115 . The modulator image 114 of the modulated light field component 110 interacting with the neutral optical element 61 is also not displaced relative to the modulator image plane 115 along the projection axis 170 .

該中性光學元件61可包含一平面透鏡。在圖4a中,該陣列160包含在該陣列160之中心的一中性光學元件61。在圖4b之例子中,該陣列160由該陣列160之中心至周邊交替地包含折射稜鏡60及中性光學元件61。該陣列之中心係由一中性光學元件61形成。該傅立葉濾光片34亦顯示在圖4a與4b中。The neutral optical element 61 may include a flat lens. In Figure 4a, the array 160 includes a neutral optical element 61 at the center of the array 160. In the example of FIG. 4 b , the array 160 alternately includes a refractive element 60 and a neutral optical element 61 from the center to the periphery of the array 160 . The center of the array is formed by a neutral optical element 61 . The Fourier filter 34 is also shown in Figures 4a and 4b.

圖5a顯示圖3之光場投影系統1的一特定組態,其中二調變光場分量110被該稜鏡陣列160折射成使得它們未在該觀看者之FOV中重疊,而是產生空間分開影像141與143之一拼湊影像。圖5b顯示聚焦在無窮遠之觀看者看見的非位移影像142及位移影像141、143且圖5c顯示聚焦在比無窮遠近之一距離之觀看者看見的非位移影像142及位移影像141、143。它們與其他視點之部份重疊構成一光場,而周邊被通過其個別視點之單一影像涵蓋。Fig. 5a shows a specific configuration of the light field projection system 1 of Fig. 3, in which the bi-modulated light field components 110 are refracted by the halide array 160 such that they do not overlap in the viewer's FOV, but instead create a spatial separation One of the images 141 and 143 makes up the image. Figure 5b shows the non-shifted image 142 and the shifted images 141, 143 seen by a viewer focused at infinity and Figure 5c shows the non-shifted image 142 and shifted images 141, 143 seen by a viewer focused at a distance closer to infinity. They partially overlap with other viewpoints to form a light field, while the periphery is covered by a single image passing through their individual viewpoints.

圖6a顯示包含偏移透鏡64之光場投影系統1,且該等偏移透鏡64與該等調變光場分量110互動。各偏移透鏡64係組配成使得該調變光場分量110在該調變器影像平面115中空間地位移且使得該調變光場分量110之調變器影像114相對該調變器影像平面115沿著該投影軸170位移。在圖6a中,該等黑色三角形顯示該等折射調變光場分量110未在該調變器影像平面115中空間地位移,但是該等對應調變器影像114沿著該投影軸170位移至在該調變器影像平面115中之非折射調變光場分量110的調變器影像平面115左邊。FIG. 6a shows a light field projection system 1 comprising offset lenses 64 interacting with the modulated light field components 110 . Each offset lens 64 is configured such that the modulating light field component 110 is spatially displaced in the modulator image plane 115 and that the modulator image 114 of the modulating light field component 110 is relative to the modulator image The plane 115 is displaced along the projection axis 170 . In Figure 6a, the black triangles show that the refractive modulated light field components 110 are not spatially displaced in the modulator image plane 115, but the corresponding modulator images 114 are displaced along the projection axis 170 to To the left of the modulator image plane 115 of the non-refractive modulated light field component 110 in the modulator image plane 115 .

該偏移透鏡64可由與一折射稜鏡組合之一成像透鏡透鏡形成。The offset lens 64 may be formed from an imaging lens lens in combination with a refractive lens.

在圖6a中,在該第一點光平面30之周邊的二偏移透鏡64可由一相同成像透鏡之切出部份形成,且與在該第一點光平面30之中心的偏移透鏡64不同。通過該等二周邊偏移透鏡64之調變光場分量110可因此產生調變器影像114,該等調變器影像114係相對該調變器影像平面115且相對由通過該中心偏移透鏡64之調變光場分量110產生的調變器影像114的位置沿著該投影軸170位移。In FIG. 6a, the two offset lenses 64 at the periphery of the first point light plane 30 can be formed by a cut-out portion of the same imaging lens, and the offset lens 64 at the center of the first point light plane 30 is formed by different. Modulating light field components 110 through the two peripheral offset lenses 64 can thus produce modulator images 114 that are relative to the modulator image plane 115 and relative to the modulator image plane 115 that passes through the central offset lenses The position of the modulator image 114 produced by the modulated light field component 110 of 64 is shifted along the projection axis 170 .

圖6b顯示聚焦在無窮遠之觀看者看見的非位移影像141及位移影像143。圖6c顯示聚焦在比無窮遠近之一距離之觀看者看見的非位移影像142及位移影像141、143。在這組態中,該系統1藉由使用二不同基準深度平面顯示該調變光場分量110,藉此該系統以類似具有一基準深度平面之系統的相同方式產生全範圍之深度。在此,該用語「基準深度平面」對應該觀看者看見之該光學調光器20的一影像平面。在圖6a至6c中,依據該偏移透鏡64被該等調變光場分量110橫斷,該等偏移透鏡64使一觀看者看見該光學調光器20 SLM之不同影像平面(或基準深度平面)中的影像。具有至少一另一基準深度平面可用於在遠離該視區區域121的不同影像距離D顯示該影像之其他部份以外的高空間頻率影像或如文字之傳統平面內容。該不同影像距離D可為大約50 cm。另一基準深度平面可更用於在無窮遠等之場景的非光場部份。Figure 6b shows the non-shifted image 141 and the shifted image 143 seen by a viewer focused on infinity. Figure 6c shows the non-displaced image 142 and the displaced images 141, 143 as seen by a viewer focused at a distance closer than infinity. In this configuration, the system 1 displays the modulated light field component 110 by using two different reference depth planes, whereby the system produces a full range of depths in the same manner as systems with a reference depth plane. Here, the term "reference depth plane" corresponds to an image plane of the optical dimmer 20 as seen by the viewer. In Figures 6a-6c, the offset lenses 64 allow a viewer to see different image planes (or fiducials) of the optical dimmer 20 SLM in accordance with the offset lens 64 being traversed by the modulated light field components 110 image in the depth plane). Having at least one other reference depth plane can be used to display high spatial frequency images or traditional plane content such as text at different image distances D away from the viewing area 121 , other than other parts of the image. The different image distance D may be about 50 cm. Another reference depth plane can be used more for the non-light field portion of the scene at infinity etc.

該系統1可在特定深度提供較佳解析度影像或它可作為只具有數個不同深度之一體積影像的投影器來使用,例如一平面螢幕較近且第二個較遠或一平面螢幕及一光場之組合。The system 1 can provide better resolution images at specific depths or it can be used as a projector with only one volumetric image at several different depths, such as one flat screen closer and a second farther or a flat screen and A combination of light fields.

圖7顯示包含一陣列160之光學裝置的橫截面圖,且該陣列160包括複數偏移透鏡64。在一可能變化例中,包含偏移透鏡64之陣列160可由環形成,該等環係由不同影像透鏡切出且組合在一起並且同心。或者,包含偏移透鏡64之陣列160可由方塊形成,該等方塊係由一影像透鏡切出以便產生不同同心影像透鏡部份之一陣列,其中數個不一定對稱地分布之部份係相同初始影像透鏡的一部份,且該等同心透鏡之軸與全部光學系統之軸一致。FIG. 7 shows a cross-sectional view of an optical device including an array 160 including complex offset lenses 64 . In a possible variation, the array 160 including the offset lenses 64 may be formed from rings that are cut out of different imaging lenses and grouped together and concentric. Alternatively, the array 160 including the offset lenses 64 may be formed from blocks cut out from an image lens to create an array of different concentric image lens portions, where several portions that are not necessarily symmetrically distributed have the same initial A part of the image lens, and the axis of the isocentric lens is consistent with the axis of the entire optical system.

在一態樣中,包含偏移透鏡64之陣列160更包含類似圖4a與4b所示之微稜鏡陣列的一或數個中性光學元件61。In one aspect, the array 160 including the offset lenses 64 further includes one or more neutral optical elements 61 similar to the microarrays shown in Figures 4a and 4b.

例如,若該等調變光場分量110透過包含偏移透鏡64之陣列160同時地投影,該等對應調變器影像114可形成在沿著該投影軸170之不同光學距離。該等調變光場分量110亦被使該調變器影像平面115中之調變器影像114空間地位移的偏移透鏡64折射。因此,包含該偏移透鏡64之陣列160的光場投影系統1在沿著該投影軸170之不同光學距離且在該調變器影像平面115中之不同位置產生影像。For example, if the modulated light field components 110 are projected simultaneously through an array 160 including offset lenses 64 , the corresponding modulator images 114 may be formed at different optical distances along the projection axis 170 . The modulated light field components 110 are also refracted by the offset lens 64 which spatially displaces the modulator image 114 in the modulator image plane 115. Thus, the light field projection system 1 comprising the array 160 of offset lenses 64 produces images at different optical distances along the projection axis 170 and at different locations in the modulator image plane 115 .

在一態樣中,包含偏移透鏡64之陣列160可更包含一或數個折射稜鏡60。In one aspect, the array 160 including the offset lenses 64 may further include one or more refractive lenses 60 .

在圖8a所示之另一實施例中,該光場投影系統1包含至少一成像透鏡63,該至少一成像透鏡63係組配成使通過該等成像透鏡63之調變光場分量110的調變器影像114沿著該投影軸170相對該調變器影像平面115位移。該成像透鏡63未實質空間地位移該調變器影像平面115中之調變光場分量110。這可由相對未通過該成像透鏡63之調變光場分量110的非位移調變器影像114(黑色三角形),該調變器影像114沿著通過該成像透鏡63之調變光場分量110之投影軸170的位移位置(白色三角形)看見。In another embodiment shown in FIG. 8 a , the light field projection system 1 includes at least one imaging lens 63 , and the at least one imaging lens 63 is configured to make the modulated light field components 110 passing through the imaging lenses 63 . The modulator image 114 is displaced relative to the modulator image plane 115 along the projection axis 170 . The imaging lens 63 does not substantially spatially displace the modulated light field component 110 in the modulator image plane 115 . This can be achieved by a non-displaced modulator image 114 (black triangle) relative to the modulated light field component 110 that does not pass through the imaging lens 63, the modulator image 114 along the path of the modulated light field component 110 passing through the imaging lens 63 The displacement position (white triangle) of the projection axis 170 is seen.

與該折射稜鏡60不同,該成像透鏡63(及該偏移透鏡64)改變該調變光場分量110光束之聚散度。該折射稜鏡60未改變該調變光場分量110光束之聚散度(它保持準直),而該成像透鏡產生收歛(或發散)調變光場分量110光束。因此該成像透鏡63改變沿著該投影軸170之該調變器影像114的光學位置。Unlike the refraction lens 60, the imaging lens 63 (and the shift lens 64) change the vergence of the modulated light field component 110 beam. The refracting element 60 does not change the vergence of the modulated light field component 110 beam (it remains collimated), while the imaging lens produces a convergent (or diverging) modulated light field component 110 beam. The imaging lens 63 thus changes the optical position of the modulator image 114 along the projection axis 170 .

這在該傅立葉濾光片中之點光及孔具有相當大直徑(例如大於1 mm)時產生作用。因此可依據該影像分量通過哪一個透鏡,在不同光學距離顯示影像。This works when the spot lights and holes in the Fourier filter have relatively large diameters (eg greater than 1 mm). Therefore, images can be displayed at different optical distances depending on which lens the image component passes through.

圖8b顯示聚焦在無窮遠之觀看者看見的影像143、142、141。圖8c顯示聚焦在比無窮遠近之一距離的觀看者看見的影像143、142、141。除了其明顯空間位移以外,依據各子影像之光學距離,該等影像143、142、141亦會模糊或銳利化。在此,該用語「子影像」對應於一個視點之一調變光場分量110。因為小調變光場分量110及該針孔使場之深度為小,所以該子影像可被視為在焦點上。但是,事實上,各視點亦具有特別在該調變光場分量110及該針孔不夠小時產生作用之自己的光學距離。因此,子影像之各者的光學距離可改變。Figure 8b shows images 143, 142, 141 as seen by a viewer focused on infinity. Figure 8c shows the images 143, 142, 141 seen by a viewer focused at a distance closer than infinity. In addition to their apparent spatial displacement, these images 143, 142, 141 are also blurred or sharpened depending on the optical distance of each sub-image. Here, the term "sub-image" corresponds to a modulated light field component 110 for a viewpoint. The sub-image can be considered to be in focus because the minor dimming field component 110 and the pinhole make the depth of field small. However, in fact, each viewpoint also has its own optical distance that works especially when the modulated light field component 110 and the pinhole are not small enough. Thus, the optical distance of each of the sub-images may vary.

圖9顯示包含一陣列160之光學裝置的橫截面圖,且該陣列160包括複數成像透鏡63。在一可能變化例中,包含成像透鏡64之陣列160可更包含一或數個中性光學元件61。FIG. 9 shows a cross-sectional view of an optical device including an array 160 including a plurality of imaging lenses 63 . In a possible variation, the array 160 including the imaging lens 64 may further include one or more neutral optical elements 61 .

在一態樣中,該光場投影系統1可單獨地或組合地包含該折射稜鏡60、該中性光學元件61、該成像透鏡63及該偏移透鏡64中之任一或複數者。當然,為獲得該等調變光場分量110在調變器影像平面115中之空間位移,該光場投影系統1必須包含至少一折射稜鏡60或一偏移透鏡64。In one aspect, the light field projection system 1 may include any one or a plurality of the refractive lens 60 , the neutral optical element 61 , the imaging lens 63 and the offset lens 64 , alone or in combination. Of course, in order to obtain the spatial displacement of the modulated light field components 110 in the modulator image plane 115 , the light field projection system 1 must include at least one refraction lens 60 or an offset lens 64 .

在一實施例中,該陣列160係組配成與該等調變光場分量110之各調變光場分量互動。In one embodiment, the array 160 is configured to interact with each modulated light field component of the modulated light field components 110 .

在一態樣中,一個調變光場分量110通過該陣列160之一光學裝置60、61、63、64。In one aspect, a modulated optical field component 110 passes through an optical device 60 , 61 , 63 , 64 of the array 160 .

圖10顯示該點光陣列10之一可能實施例,該點光陣列10包含含有100個點光101之一陣列。該等點光101可同時地發光使得該等調變光場分量110同時地投影。或者,該等點光101可依序地發光使得該等調變光場分量110依序地投影。後者選項係藉由主動點光101a及被動點光101b顯示在圖10中。該等主動點光101a投影照明該光學調光器20之入射光場100以便沿著一投影軸170投影對應調變光場分量110。在圖10中,數字1至8表示該針孔點光陣列10中之不同點光101的一可能發光順序。亦可考慮其他發光順序。FIG. 10 shows a possible embodiment of the spot light array 10 comprising an array of 100 spot lights 101 . The point lights 101 can emit light simultaneously so that the modulated light field components 110 are projected simultaneously. Alternatively, the point lights 101 may emit light sequentially so that the modulated light field components 110 are projected sequentially. The latter option is shown in Figure 10 by means of an active spotlight 101a and a passive spotlight 101b. The active spot lights 101a project to illuminate the incident light field 100 of the optical dimmer 20 so as to project the corresponding modulated light field components 110 along a projection axis 170 . In FIG. 10 , numerals 1 to 8 indicate a possible lighting sequence of the different spot lights 101 in the pinhole spot light array 10 . Other lighting sequences are also contemplated.

圖11顯示使用光場投影系統1之一觀看者看到之投影調變器影像114的一拼湊影像,該光場投影系統1包含在該第一點光平面30之微稜鏡陣列160及含有九個點光101之一點光陣列10。該矩形之外周邊對應於該投影影像144之大小,且該投影影像144之大小對應於該觀看者之FOV(在一平面中)。全部九個調變器影像114(視點)在該投影影像之一中心區域145重疊。越遠離該中心區域145,該等調變器影像114之重疊越少。在角落只有一個調變器影像114。因此,該中心區域145對應於具有高光場及色彩解析度之一窄FOV且該周邊區域對應於具有較低光場(深度)及色彩解析度之一較寬FOV。換言之,該中心區域145對應於具有高光場及色彩解析度之一注視點區域。該光場投影系統1可因此提供窄FOV中之高光場及色彩解析度及大FOV中之低解析度。FIG. 11 shows a patchwork image of the projected modulator image 114 as seen by a viewer using a light field projection system 1 including a microarray 160 in the first point light plane 30 and including One of the nine spot lights 101 is the spot light array 10 . The outer perimeter of the rectangle corresponds to the size of the projected image 144, and the size of the projected image 144 corresponds to the viewer's FOV (in a plane). All nine modulator images 114 (viewpoints) overlap in a central area 145 of one of the projected images. The further away from the central region 145, the less the modulator images 114 overlap. There is only one modulator image 114 in the corner. Thus, the central region 145 corresponds to a narrow FOV with high light field and color resolution and the peripheral region corresponds to a wider FOV with lower light field (depth) and color resolution. In other words, the central area 145 corresponds to a gaze point area with a high light field and color resolution. The light field projection system 1 can thus provide high light field and color resolution in a narrow FOV and low resolution in a large FOV.

圖12顯示使用光場投影系統1之一觀看者看到之投影調變器影像114的一拼湊影像,該光場投影系統1包含在該第一點光平面30之微稜鏡陣列160及含有25個點光101之一點光陣列10。與圖11相同之推論成立,同時顯示更真實之更高解析度系統的情形。FIG. 12 shows a patchwork image of the projected modulator image 114 as seen by a viewer using a light field projection system 1 including a microarray 160 at the first point light plane 30 and including One of the 25 spot lights 101 is the spot light array 10 . The same inferences as in Figure 11 hold, while showing a more realistic situation for a higher resolution system.

圖13顯示藉由折射稜鏡60分配使得該中心區域145產生多分量光場(包含複數調變器影像114)同時該周邊被8個獨立位移調變器影像114涵蓋之投影調變器影像114的另一拼湊影像例。FIG. 13 shows the projection modulator image 114 with the center region 145 generating a multi-component light field (including the complex modulator image 114 ) through the distribution of the refracting pole 60 while the periphery is covered by 8 independent displacement modulator images 114 Another example of a patchwork image.

圖14顯示投影調變器影像114的另一拼湊影像例,其中該等調變光場分量110係透過該陣列160同時地投影以產生具有低角、色彩及深度解析度之寬FOV周邊影像,而該中心區域145產生高解析度多分量光場(包含複數調變器影像114)。Figure 14 shows another example of a patched image of the projected modulator image 114, wherein the modulated light field components 110 are projected simultaneously through the array 160 to produce a wide FOV peripheral image with low angle, color and depth resolution, The central region 145 produces a high-resolution multi-component light field (including the complex modulator image 114).

在一實施例中,該光場投影系統1包含一眼球追蹤及投影轉向裝置。該眼球追蹤及投影轉向裝置可用於決定一觀看者注視的地方以藉此決定該中央窩區域與該投影影像144相關的地方。在此,該中央窩區域對應該投影影像144之中心區域145。In one embodiment, the light field projection system 1 includes an eye tracking and projection steering device. The eye tracking and projection steering device can be used to determine where a viewer is looking to thereby determine where the foveal region is relative to the projected image 144 . Here, the foveal region corresponds to the central region 145 of the projected image 144 .

應了解的是本發明不限於上述示範實施例且其他實施例亦可在申請專利範圍之範疇內。It should be understood that the present invention is not limited to the above-described exemplary embodiments and that other embodiments are also within the scope of the claimed patent application.

該光學調光器20可包含一空間光調變器(SLM),例如一透射空間光調變器或一反射空間光調變器。該SLM可包含:例如一液晶覆矽(LCoS)或一鐵電液晶覆矽(FLCoS)之一快速反射SLM、一數位微鏡裝置(DMD)或其他適當調變器。The optical dimmer 20 may include a spatial light modulator (SLM), such as a transmissive spatial light modulator or a reflective spatial light modulator. The SLM may comprise: a fast reflection SLM such as a liquid crystal on silicon (LCoS) or a ferroelectric liquid crystal on silicon (FLCoS), a digital micromirror device (DMD), or other suitable modulators.

該光場投影系統1可包含一準直或部份準直透鏡50。該點光陣列10顯示通過該準直或部份準直透鏡50之該光學調光器20。該準直或部份準直透鏡50可包含具有與一準直或部份準直透鏡相同之功能的反射或全像元件。The light field projection system 1 may include a collimating or partially collimating lens 50 . The spot light array 10 shows the optical dimmer 20 through the collimating or partially collimating lens 50 . The collimating or partially collimating lens 50 may comprise a reflective or holographic element having the same function as a collimating or partially collimating lens.

圖15顯示依據另一組態之光場投影系統1,藉此該準直或部份準直透鏡50及該第一點光光學元件70可為放在一反射空間光調變器20之表面上的相同光學元件。FIG. 15 shows a light field projection system 1 according to another configuration whereby the collimating or partially collimating lens 50 and the first point light optical element 70 may be placed on the surface of a reflective spatial light modulator 20 the same optics on the .

圖16顯示依據再一組態之光場投影系統1,藉此該準直或部份準直透鏡50及該第一點光光學元件70係放在一反射空間光調變器20之表面上的相同光學元件。此外,該點光陣列10與該第一點光平面30中之光學裝置60、61、63、64一致。若存在該傅立葉濾光片34,該點光陣列10亦可與該濾光片一致。在該組態中,該點光陣列10應包含讓該等調變光場分量110通過該點光陣列10且到達該調變光學元件32的孔(通孔)。FIG. 16 shows a light field projection system 1 according to yet another configuration whereby the collimating or partially collimating lens 50 and the first point light optical element 70 are placed on the surface of a reflective spatial light modulator 20 of the same optics. In addition, the spot light array 10 is consistent with the optical devices 60 , 61 , 63 , 64 in the first spot light plane 30 . If the Fourier filter 34 is present, the spot light array 10 can also conform to the filter. In this configuration, the spot light array 10 should include holes (through holes) that allow the modulating light field components 110 to pass through the spot light array 10 and reach the modulating optical element 32 .

圖17顯示依據又一組態之光場投影系統1,藉此該第二光學元件40包含一配合器。該配合器40係組配成用於反射來自該調變光學元件32之調變光場分量110及用於在該視區121內形成該第二點光平面124中之第二點光影像120。該配合器40可包含:提供在一固定焦面中之影像的具有全像光柵之波導(一波導之堆疊物可用於提供多數焦面)、包括一全像圖案之一全向反射器、具有一分光器或一橢圓配合器之一圓頂形半透明鏡。該配合器40可更包含一半透明第一元件,該半透明第一元件包括具有一凹且橢圓形之一第一反射表面。該配合器40可更包含一大致曲面。該配合器40可包含不同或相同傾斜鏡之陣列。FIG. 17 shows the light field projection system 1 according to yet another configuration, whereby the second optical element 40 includes a matcher. The matcher 40 is configured to reflect the modulated light field component 110 from the modulating optical element 32 and to form the second spot light image 120 in the second spot light plane 124 in the viewing area 121 . The matcher 40 may include: a waveguide with a holographic grating that provides an image in a fixed focal plane (a stack of waveguides can be used to provide a plurality of focal planes), an omnidirectional reflector including a holographic pattern, a A beamsplitter or an elliptical matcher with a dome-shaped semi-transparent mirror. The adapter 40 may further include a translucent first element including a first reflective surface having a concave and elliptical shape. The adapter 40 may further include a substantially curved surface. The matcher 40 may comprise an array of different or identical tilt mirrors.

該配合器可更組配成用於由真實世界朝向該視區發射自然光,使得投影虛擬光場及自然光都透過該配合器投影在該視區區域121內。The coordinator can be further configured to emit natural light from the real world toward the viewing area, so that both the projected virtual light field and the natural light are projected in the viewing area area 121 through the coordinator.

1:光場投影系統 10:點光陣列 20:光學調光器 30:第一點光平面 31:第一點光影像 32:調變光學元件 34:傅立葉濾光片 40:第二光學元件;目鏡;配合器 50:準直或部份準直透鏡 60:光學裝置;折射稜鏡 61:中性光學元件 63:成像透鏡 64:偏移透鏡 70:第一(點光)光學元件 90:觀看者眼睛 92:視網膜 100:入射光場 101:點光 101a:主動點光 101b:被動點光 110:調變光場分量 110a:入射調變光場分量 110b:出射調變光場分量 112:虛擬光場 114:調變器影像 115:調變器影像平面 120:第二點光影像 121:視區(區域) 124:第二點光平面;出射瞳 130:瞳孔 140,141,142,143,144:投影影像 145:中心區域 160:陣列 170:投影軸 611:入射面 D:距離 θ a:頂角 θ D:折射角 1: light field projection system 10: point light array 20: optical dimmer 30: first point light plane 31: first point light image 32: modulating optical element 34: Fourier filter 40: second optical element; Eyepieces; Fittings 50: Collimating or Partially Collimating Lenses 60: Optical Devices; Refractive Lenses 61: Neutral Optical Elements 63: Imaging Lenses 64: Offset Lenses 70: First (Point Light) Optical Elements 90: Viewing Subject's eye 92: retina 100: incident light field 101: spot light 101a: active spot light 101b: passive spot light 110: modulated light field component 110a: incoming modulated light field component 110b: outgoing modulated light field component 112: virtual Light field 114: Modulator image 115: Modulator image plane 120: Second point light image 121: View area (region) 124: Second point light plane; Exit pupil 130: Pupil 140, 141, 142, 143, 144: Projection image 145: Center area 160: Array 170: Projection axis 611: Incident plane D: Distance θ a : Apex angle θ D : Refraction angle

本發明藉助為舉例而提供且由該等圖顯示之一實施例的說明可更佳地了解,其中: 圖1a顯示一光場投影系統,其包含投影調變光場分量之一光學調光器; 圖1b與1c顯示當一觀看者之眼睛聚焦在無窮遠(圖1b)及在比無窮遠近處(圖1c)時,一觀看者看見的該光學調光器之投影影像; 圖2a顯示依據一實施例之光場投影系統,其包含與該等調變光場分量中之至少一者互動的一折射稜鏡; 圖2b與2c顯示當一觀看者之眼睛聚焦在無窮遠(圖2b)及在比無窮遠近處(圖2c)時,圖2a之系統之光學調光器的投影影像; 圖2d顯示通過該折射稜鏡之一調變光場分量的一配置; 圖3a顯示依據一實施例之光場投影系統,其包含複數折射稜鏡; 圖3b與3c顯示當一觀看者之眼睛聚焦在無窮遠(圖3b)及在比無窮遠近處(圖3c)時,圖3a之系統之光學調光器的投影影像; 圖4a與4b顯示依據一實施例之光學裝置,其包含複數折射稜鏡之一陣列(圖4a)及複數折射稜鏡及中性光學元件之一陣列(圖4b); 圖5a至c顯示依據一實施例之圖3a之光場投影系統的一特定組態(圖5a),其產生觀看者聚焦在無窮遠(圖5b)及在比無窮遠近處(圖5c)時看見之空間分開影像的一拼湊影像; 圖6a顯示依據一實施例之光場投影系統,其包含與該等調變光場分量中之至少一者互動的偏移透鏡; 圖6b與6c顯示當一觀看者之眼睛聚焦在無窮遠(圖6b)及在比無窮遠近處(圖6c)時,圖6a之系統之光學調光器的投影影像; 圖7顯示依據一實施例之光學裝置,其包含複數偏移透鏡之一陣列; 圖8a顯示依據一實施例之光場投影系統,其包含與該等調變光場分量中之至少一者互動的成像透鏡; 圖8b與8c顯示當一觀看者之眼睛聚焦在無窮遠(圖8b)及在比無窮遠近處(圖8c)時,圖8a之系統之光學調光器的投影影像; 圖9顯示依據一實施例之光學裝置,其包含複數成像透鏡之一陣列; 圖10顯示一點光陣列,其包含點光之一陣列; 圖11顯示一觀看者使用該光場投影系統看見之投影第二點光影像的一拼湊影像,該光場投影系統包含折射稜鏡及含有九個點光之點光陣列; 圖12顯示當該點光陣列包含25個點光時之投影第二點光影像的一拼湊影像; 圖13顯示投影第二點光影像之另一拼湊影像例; 圖14顯示投影第二點光影像之再一拼湊影像例; 圖15顯示依據另一組態之光場投影系統; 圖16顯示依據再一組態之光場投影系統; 圖17顯示依據又一組態之光場投影系統。 The present invention may be better understood with the aid of the description of an embodiment provided by way of example and shown by these figures, wherein: Figure 1a shows a light field projection system including an optical dimmer that projects modulates the light field component; Figures 1b and 1c show projected images of the optical dimmer seen by a viewer when the viewer's eyes are focused at infinity (Figure 1b) and closer to infinity (Figure 1c); FIG. 2a shows a light field projection system including a refractive element interacting with at least one of the modulated light field components, according to an embodiment; Figures 2b and 2c show projected images of the optical dimmer of the system of Figure 2a when a viewer's eyes are focused at infinity (Figure 2b) and closer than infinity (Figure 2c); Figure 2d shows a configuration for modulating light field components through one of the refraction spheres; FIG. 3a shows a light field projection system including a complex refractive element according to an embodiment; Figures 3b and 3c show projected images of the optical dimmer of the system of Figure 3a when a viewer's eyes are focused at infinity (Figure 3b) and closer to infinity (Figure 3c); Figures 4a and 4b show an optical device comprising an array of complex refracting elements (Fig. 4a) and an array of complex refracting elements and neutral optical elements (Fig. 4b) according to an embodiment; Figures 5a-c show a particular configuration of the light field projection system of Figure 3a (Figure 5a), which results in a viewer focusing at infinity (Figure 5b) and closer than infinity (Figure 5c), according to an embodiment A patchwork image of separate images in the space of seeing; Figure 6a shows a light field projection system including an offset lens interacting with at least one of the modulating light field components, according to an embodiment; Figures 6b and 6c show projected images of the optical dimmer of the system of Figure 6a when a viewer's eyes are focused at infinity (Figure 6b) and closer than infinity (Figure 6c); 7 shows an optical device comprising an array of complex offset lenses, according to an embodiment; 8a shows a light field projection system including an imaging lens that interacts with at least one of the modulated light field components, according to an embodiment; Figures 8b and 8c show projected images of the optical dimmer of the system of Figure 8a when a viewer's eyes are focused at infinity (Figure 8b) and closer than infinity (Figure 8c); 9 shows an optical device comprising an array of imaging lenses in accordance with an embodiment; Figure 10 shows a point light array comprising an array of point lights; FIG. 11 shows a patched image of a projected second point light image seen by a viewer using the light field projection system including a refractor and a point light array containing nine point lights; FIG. 12 shows a patched image of the projected second spotlight image when the spotlight array includes 25 spotlights; FIG. 13 shows another example of a patched image of projecting the second point light image; FIG. 14 shows yet another example of a patched image of projecting the second point light image; Figure 15 shows a light field projection system according to another configuration; 16 shows a light field projection system according to yet another configuration; Figure 17 shows a light field projection system according to yet another configuration.

1:光場投影系統 1: Light field projection system

10:點光陣列 10: Point light array

20:光學調光器 20: Optical Dimmer

30:第一點光平面 30: The first point light plane

32:調變光學元件 32: Modulating optics

40:第二光學元件;目鏡 40: Second Optical Element; Eyepiece

50:準直或部份準直透鏡 50: collimating or partially collimating lens

60:光學裝置;折射稜鏡 60: Optical device; Refraction lens

70:第一(點光)光學元件 70: First (point light) optics

90:觀看者眼睛 90: Viewer Eyes

92:視網膜 92: Retina

100:入射光場 100: Incident light field

110:調變光場分量 110: Modulate light field components

112:虛擬光場 112: Virtual Light Field

114:調變器影像 114: Modulator image

115:調變器影像平面 115: Modulator image plane

120:第二點光影像 120: Second point light image

121:視區(區域) 121: Viewport (area)

124:第二點光平面;出射瞳 124: second point light plane; exit pupil

130:瞳孔 130: Pupil

170:投影軸 170: Projection axis

Claims (16)

一種光場投影系統,其包含:一點光陣列,其包含複數點光且產生照明一光學調光器之一入射光場,該光學調光器係組配成用於調變該入射光場且沿著一投影軸投射複數個調變光場分量;一第一光學元件,其組配成用於形成一第一點光平面中之第一點光影像及一調變器影像平面中之調變器影像;及一第二光學元件,其界定一視區(eye box)區域且組配成用於在該視區內形成一第二點光平面中之第二點光影像;其中該等第一與第二點光平面及該調變器影像平面係與該投影軸實質地垂直且其中該調變器影像平面係在該等第一光學元件與第二光學元件之間;該系統更包含至少一光學裝置,該至少一光學裝置係在該第一點光平面處且組配成折射該等調變光場分量中之至少一者,以使對應該等調變光場分量中之該至少一者的該調變器影像在該調變器影像平面中空間地位移。 A light field projection system, comprising: a point light array comprising a plurality of point lights and generating an incident light field for illuminating an optical dimmer, the optical dimmer configured to modulate the incident light field and A plurality of modulated light field components are projected along a projection axis; a first optical element is configured to form a first point light image in a first point light plane and a tone in the modulator image plane a transformer image; and a second optical element defining an eye box area and configured to form a second point light image in a second point light plane within the eye box; wherein the The first and second point light planes and the modulator image plane are substantially perpendicular to the projection axis and wherein the modulator image plane is between the first optical elements and the second optical elements; the system further Including at least one optical device, the at least one optical device is at the first point light plane and is configured to refract at least one of the modulated light field components so that one of the modulated light field components corresponds to The modulator image of the at least one is spatially displaced in the modulator image plane. 如請求項1之系統,其中該光學裝置包含至少一折射稜鏡,該至少一折射稜鏡係組配成使該等調變光場分量中之該至少一者折射一預定角度。 The system of claim 1, wherein the optical device comprises at least one refractive element configured to refract the at least one of the modulating light field components by a predetermined angle. 如請求項1或2之系統,其中該光學裝置包含至少一偏移透鏡,該至少一偏移透鏡係組配成使得該等調變光場分量中之該至少一者在該調變器影像平面中空間地位移;且使得該等調變光場分量中之該至少一者的該調變器影像相對該調變器影像平面沿著該投影軸位移。 The system of claim 1 or 2, wherein the optical device comprises at least one offset lens, the at least one offset lens configured such that the at least one of the modulated light field components is in the modulator image spatially displaced in a plane; and causing the modulator image of the at least one of the modulated light field components to be displaced relative to the modulator image plane along the projection axis. 如請求項2之系統,其中該光學裝置更包含至少一成像透鏡,該至少一成像透鏡係組配成使該等調變光場分量中之該至少一者的該調變器影像相對該調變器影像平面沿著該投影軸位移。 The system of claim 2, wherein the optical device further comprises at least one imaging lens, the at least one imaging lens being configured to cause the modulator image of the at least one of the modulated light field components to be relative to the modulation The transformer image plane is displaced along the projection axis. 如請求項2之系統,其中該光學裝置更包含至少一中性光學元件,該至少一中性光學元件與至少一調變光場分量互動使得該調變光場分量未被光學地修改。 The system of claim 2, wherein the optical device further comprises at least one neutral optical element that interacts with at least one modulating light field component such that the modulating light field component is not optically modified. 如請求項1或2之系統,其中該至少一光學裝置包含配置成一陣列之複數光學裝置,且各光學裝置與至少一調變光場分量互動。 2. The system of claim 1 or 2, wherein the at least one optical device comprises a plurality of optical devices arranged in an array, and each optical device interacts with at least one modulated light field component. 如請求項6之系統,其中該陣列包含複數折射稜鏡。 The system of claim 6, wherein the array comprises complex refractive spheres. 如請求項6之系統,其中該陣列包含一或複數偏移透鏡。 The system of claim 6, wherein the array includes one or more offset lenses. 如請求項7之系統,其中該等複數光學裝置係配置成使該等調變光場分量折射不同預定角度。 7. The system of claim 7, wherein the complex optical devices are configured to refract the modulating light field components by different predetermined angles. 如請求項9之系統,其中該等調變光場分量係藉由從該陣列之中心朝向周邊增加預定角度來折射。 The system of claim 9, wherein the modulated light field components are refracted by increasing predetermined angles from the center of the array toward the periphery. 如請求項7之系統,其中該陣列包含至少一中性光學元件及/或至少一成像透鏡。 The system of claim 7, wherein the array includes at least one neutral optical element and/or at least one imaging lens. 如請求項6之系統,其中該陣列係組配成與該等調變光場分量之各調變光場分量互動。 The system of claim 6, wherein the array is configured to interact with each modulated light field component of the modulated light field components. 如請求項1或2之系統,其中該等複數調變光場分量同時地投影。 The system of claim 1 or 2, wherein the complex modulated light field components are projected simultaneously. 如請求項1或2之系統,其中該等複數調變光場分量依序地投影。 The system of claim 1 or 2, wherein the complex modulated light field components are projected sequentially. 如請求項1或2之系統,更包含一眼球追蹤及轉向裝置,該眼球追蹤及轉向裝置係組配成決定該調變器影像平面中之該空間位移。 The system of claim 1 or 2, further comprising an eye tracking and steering device configured to determine the spatial displacement in the modulator image plane. 如請求項1或2之系統,其中該第一光學元件包含:一第一點光光學元件,其組配成用於形成該第一點光平面中之該第一點光影像;及一調變光學元件,其組配成用於形成該調變器影像平面中之調變器影像。 The system of claim 1 or 2, wherein the first optical element comprises: a first point light optical element configured to form the first point light image in the first point light plane; and a tuning A variable optical element configured to form a modulator image in the modulator image plane.
TW110107338A 2021-03-02 2021-03-02 Light-field virtual and mixed reality system having foveated projection TWI777430B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110107338A TWI777430B (en) 2021-03-02 2021-03-02 Light-field virtual and mixed reality system having foveated projection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110107338A TWI777430B (en) 2021-03-02 2021-03-02 Light-field virtual and mixed reality system having foveated projection

Publications (2)

Publication Number Publication Date
TWI777430B true TWI777430B (en) 2022-09-11
TW202235955A TW202235955A (en) 2022-09-16

Family

ID=84957185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110107338A TWI777430B (en) 2021-03-02 2021-03-02 Light-field virtual and mixed reality system having foveated projection

Country Status (1)

Country Link
TW (1) TWI777430B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289970A1 (en) * 2008-01-29 2010-11-18 Brother Kogyo Kabushiki Kaisha Image display device using variable-focus lens at conjugate image plane
CN108072976A (en) * 2016-11-10 2018-05-25 三星电子株式会社 For providing the holographic display device of the watch window of extension
TW201908811A (en) * 2017-05-29 2019-03-01 以色列商愛威願景有限公司 Image projection system
US20190324272A1 (en) * 2018-04-24 2019-10-24 Samsung Electronics Co., Ltd. 3-dimensional image display apparatus and method of providing expanded viewing window

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100289970A1 (en) * 2008-01-29 2010-11-18 Brother Kogyo Kabushiki Kaisha Image display device using variable-focus lens at conjugate image plane
CN108072976A (en) * 2016-11-10 2018-05-25 三星电子株式会社 For providing the holographic display device of the watch window of extension
TW201908811A (en) * 2017-05-29 2019-03-01 以色列商愛威願景有限公司 Image projection system
US20190324272A1 (en) * 2018-04-24 2019-10-24 Samsung Electronics Co., Ltd. 3-dimensional image display apparatus and method of providing expanded viewing window

Also Published As

Publication number Publication date
TW202235955A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
JP7311581B2 (en) A near-eye sequential light field projector with correct monocular depth cues
CN108700751B (en) Head mounted display for generating holographic images using spatial light modulator
US11774835B2 (en) Light-field virtual and mixed reality system having foveated projection
JP7320057B2 (en) A Lightfield Mixed Reality System with Correct Monocular Depth Cues for Observers
JP2017528741A (en) Display device
JP2022529402A (en) Holographic head-up display device
JP6459262B2 (en) Head mounted display
TWI227808B (en) 3-D image display unit
JP2023551206A (en) High resolution light field projection device
US10728534B2 (en) Volumetric display system and method of displaying three-dimensional image
TWI777430B (en) Light-field virtual and mixed reality system having foveated projection
JP2019056937A (en) Head-mounted display
WO2021149511A1 (en) Image display device
Zhang Design and Prototyping of Wide Field of View Occlusion-capable Optical See-through Augmented Reality Displays by Using Paired Conical Reflectors
JP2021117480A (en) Image display device
KR20070004573A (en) Optical arragements for head mounted displays

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent