TWI777281B - 間接加熱式陰極離子源及靶支持器 - Google Patents

間接加熱式陰極離子源及靶支持器 Download PDF

Info

Publication number
TWI777281B
TWI777281B TW109137852A TW109137852A TWI777281B TW I777281 B TWI777281 B TW I777281B TW 109137852 A TW109137852 A TW 109137852A TW 109137852 A TW109137852 A TW 109137852A TW I777281 B TWI777281 B TW I777281B
Authority
TW
Taiwan
Prior art keywords
crucible
hollow interior
ion source
porous
arc chamber
Prior art date
Application number
TW109137852A
Other languages
English (en)
Other versions
TW202119452A (zh
Inventor
格拉漢 萊特
丹尼爾 艾凡瑞朵
沙顏士 P 佩特爾
丹尼爾 R 泰格爾
Original Assignee
美商應用材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商應用材料股份有限公司 filed Critical 美商應用材料股份有限公司
Publication of TW202119452A publication Critical patent/TW202119452A/zh
Application granted granted Critical
Publication of TWI777281B publication Critical patent/TWI777281B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/20Ion sources; Ion guns using particle beam bombardment, e.g. ionisers
    • H01J27/205Ion sources; Ion guns using particle beam bombardment, e.g. ionisers with electrons, e.g. electron impact ionisation, electron attachment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3432Target-material dispenser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3435Target holders (includes backing plates and endblocks)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

本發明公開一種具有可插式靶支持器的離子源,可插式 靶支持器用於容放固態摻雜材料。具體而言,公開一種間接加熱式陰極離子源及靶支持器。可插式靶支持器包括中空內部,固態摻雜材料設置到中空內部中。靶支持器在第一端處具有多孔表面,來自固態摻雜材料的蒸氣可穿過多孔表面進入電弧室。多孔表面阻止液體或熔融的摻雜材料傳遞到電弧室中。靶支持器也被構造成使得當中空內部內的摻雜材料已被消耗時可為靶支持器重新填充摻雜材料。多孔表面可為穿孔坩堝的一部分、穿孔固持蓋帽的一部分或多孔插入件。

Description

間接加熱式陰極離子源及靶支持器
本公開的實施例涉及一種離子源及一種靶支持器,且更確切來說涉及一種用於容放固態摻雜材料的靶支持器。
各種類型的離子源均可用於形成在半導體處理設備中使用的離子。舉例來說,間接加熱式陰極(indirectly heated cathode,IHC)離子源通過向設置在陰極後方的細絲供應電流來操作。細絲發射熱離子電子,所述熱離子電子朝向陰極加速且對所述陰極進行加熱,繼而使得陰極將電子發射到離子源的電弧室中。陰極設置在電弧室的一端處。推斥極可設置在電弧室的與所述陰極相對的一端處。可對陰極及推斥極加偏壓以推斥電子,從而朝向電弧室的中心往回引導所述電子。在一些實施例中,使用磁場來進一步將電子約束在電弧室內。使用多個側來連接電弧室的兩端。
沿著這些側中的一者靠近電弧室的中心設置提取孔口,可通過所述提取孔口提取在電弧室中形成的離子。
在某些實施例中,可期望利用呈固態形式的材料作為摻 雜物種。然而,存在與針對間接加熱式陰極離子源使用固態摻雜材料相關聯的問題。舉例來說,在間接加熱式陰極離子源的高溫環境中,金屬濺鍍靶易於熔融、滴落,且隨著液體金屬流淌並彙集在電弧室中一般來說會使電弧室劣化並破壞弧室。因此,含有所關注摻雜劑的陶瓷普遍用作固態摻雜材料,原因在於陶瓷具有較高的熔融溫度。然而,這些陶瓷材料通常所產生的所關注摻雜劑的射束電流較少。如果金屬濺鍍靶可在熔融時維持其形狀而不會滴落或變形,則可實現摻雜劑射束電流的明顯增大。
因此,可與具有低熔融溫度的固態摻雜材料(例如,某些金屬)一起使用的靶支持器將是有益的。此外,如果離子源不被固態摻雜材料污染,則將是有利的。另外,如果可在不使用固態材料的情況下將電弧室用於進行其他製程,則將是有利的。
本發明公開一種具有可插式靶支持器的離子源,可插式靶支持器用於容放固態摻雜材料。可插式靶支持器包括中空內部,固態摻雜材料設置到中空內部中。靶支持器在第一端處具有多孔表面,來自固態摻雜材料的蒸氣可穿過多孔表面進入電弧室。多孔表面阻止液體或熔融的摻雜材料傳遞到電弧室中。靶支持器也被構造成使得當中空內部內的摻雜材料已被消耗時可為靶支持器重新填充摻雜材料。多孔表面可為穿孔坩堝的一部分、穿孔固持蓋帽的一部分或多孔插入件。
根據一個實施例,公開一種間接加熱式陰極離子源。所述離子源包括:電弧室,包括多個壁;間接加熱式陰極,設置在所述電弧室中;以及靶支持器,用於容放固態摻雜劑,其中所述靶支持器包括:坩堝,具有適於容放所述固態摻雜劑的中空內部、第一端及第二端,其中所述第一端包括多孔表面,以使得來自固態摻雜材料的蒸氣可從所述中空內部穿過所述多孔表面而傳遞到所述電弧室。在一些實施例中,所述第二端是封閉的。在某些另外的實施例中,坩堝的內表面朝向所述第一端傾斜,以使得鄰近所述第一端處的內徑大於鄰近所述第二端處的內徑。在某些另外的實施例中,所述離子源還包括多孔插入件及固持蓋帽,所述固持蓋帽靠近所述第一端設置且附接到所述坩堝以將所述多孔插入件固持在所述中空內部內,其中所述固持蓋帽包括敞開的面且所述多孔插入件用作所述多孔表面。在某些另外的實施例中,所述離子源還包括靠近所述第一端設置的穿孔固持蓋帽,其中所述穿孔固持蓋帽附接到坩堝且用作所述多孔表面。在某些實施例中,所述離子源包括孔及端塞,所述孔位於所述第二端處,所述端塞插入到位於所述第二端處的所述孔中。在某些另外的實施例中,所述孔是螺絲孔(tapped hole)且所述端塞的外表面帶螺紋,以使得所述端塞旋擰到所述第二端中。在某些另外的實施例中,所述離子源還包括設置在所述中空內部中的多孔插入件,其中凸緣設置在所述第一端處且朝向坩堝的中心軸線突起,以使得所述凸緣將所述多孔插入件固持在所述坩堝的所述中空內部中且所述多孔 插入件用作所述多孔表面。在某些另外的實施例中,所述第一端包括封閉的面,所述封閉的面包括多個開口,其中所述封閉的面用作所述多孔表面。在一些實施例中,所述離子源還包括:致動器,用於將所述靶支持器移入及移出所述電弧室;靶基座,附接到所述致動器,其中所述靶基座的外表面帶螺紋;以及固持緊固件,旋擰到所述靶基座上,其中所述固持緊固件將所述坩堝保持成抵靠所述靶基座。
根據另一實施例,公開一種與離子源一起使用的靶支持器。所述靶支持器包括:坩堝,形成為具有中空內部、第一端及第二端的圓柱體,其中所述第一端包括多孔表面且所述第二端包括螺絲孔,且其中固態摻雜材料被配置成設置在所述中空內部中,其中來自所述固態摻雜材料的蒸氣可從所述中空內部穿過所述多孔表面;以及端塞,在外表面上帶螺紋以旋擰到所述螺絲孔中。在某些實施例中,所述靶支持器包括設置在所述中空內部中的多孔插入件,且其中所述坩堝的所述第一端包括朝向所述圓柱體的中心軸線突起的凸緣,其中所述凸緣固持所述多孔插入件且在所述第一端處界定開口,且所述多孔插入件用作所述多孔表面。在某些實施例中,所述多孔插入件的外徑大於所述開口的內徑。在其他實施例中,所述第一端包括具有多個開口的封閉的面,其中所述封閉的面用作所述多孔表面。
根據另一實施例,公開一種與離子源一起使用的靶支持器。所述靶支持器包括:坩堝,形成為具有中空內部、第一端及 第二端的圓柱體,其中所述第二端是封閉的,且其中固態摻雜材料被配置成設置在所述中空內部中,且其中靠近所述第一端設置有多孔表面,其中來自所述固態摻雜材料的蒸氣可從所述中空內部穿過所述多孔表面;以及固持蓋帽,靠近所述第一端設置。在某些實施例中,所述坩堝的外表面在靠近所述第一端處帶螺紋,且所述固持蓋帽旋擰到所述坩堝的所述第一端上。在某些實施例中,所述靶支持器包括設置在所述中空內部中的多孔插入件,且其中所述固持蓋帽包括敞開的面及凸緣,所述凸緣在所述固持蓋帽的前邊緣處朝向所述坩堝的中心軸線突起,從而形成開口,其中所述固持蓋帽的所述開口的內徑小於所述多孔插入件的外徑以固持所述多孔插入件。在某些實施例中,所述固持蓋帽包括具有多個開口的封閉的面,其中所述封閉的面用作所述多孔表面。在某些實施例中,所述坩堝的內表面朝向所述第一端傾斜,以使得所述中空內部在鄰近所述第二端處的內徑小於所述中空內部在鄰近所述第一端處的內徑。
10:間接加熱式陰極離子源
100:電弧室
101:壁
103:提取板
104、301、401:第一端
105、302、402:第二端
106:氣體入口
110:陰極
111:偏壓電源
115:陰極偏壓電源
120:推斥極
123:推斥極偏壓電源
140:提取孔口
160:細絲
165:細絲電源
180:控制器
190:靶支持器
191:中空內部
195:摻雜材料/固態摻雜劑
200:致動器
210:支撐件
300:坩堝
303、403:孔
304、341、351:凸緣
305:中心軸線
306、410:開口
309、321:突起
310:多孔插入件
320:端塞
330:靶基座
340:固持緊固件
350:固持蓋帽
400:穿孔坩堝
405:封閉的面
450:穿孔固持蓋帽
X、Y、Z:方向
為更好地理解本公開,參考附圖,所述附圖併入本案供參考且在附圖中:圖1是根據一個實施例的具有可插式靶支持器的間接加熱式陰極(IHC)離子源。
圖2是可插式靶支持器已縮回的圖1所示間接加熱式陰極離 子源。
圖3示出根據一個實施例的靶支持器。
圖4示出根據另一實施例的靶支持器。
圖5示出根據第三實施例的靶支持器。
圖6示出根據第四實施例的靶支持器。
圖7示出圖5到圖6所示靶支持器的開口的兩個可能的配置。
如上文所述,具有低熔點的固態摻雜材料往往會變成液體而滴落,且當所述液體流淌並彙集在電弧室中時使電弧室劣化。
圖1示出具有靶支持器的間接加熱式陰極離子源10,所述間接加熱式陰極離子源10能克服這些問題。間接加熱式陰極離子源10包括電弧室100,電弧室100包括相對的兩端及連接到這兩端的壁101。電弧室100的壁101可由導電材料構造而成且可彼此電連通。在一些實施例中,靠近壁101中的一者或多者可設置有襯層。在電弧室100中在電弧室100的第一端104處設置陰極110。在陰極110後方設置細絲160。細絲160與細絲電源165連通。細絲電源165被配置成使電流穿過細絲160,以使得細絲160發射熱離子電子。陰極偏壓電源115相對於陰極110而對細絲160施加負偏壓,以使這些熱離子電子從細絲160朝向陰極110加速,且在這些熱離子撞擊陰極110的後表面時對陰極110進行加熱。陰極偏壓電源115可對細絲160施加偏壓,以使得細絲160具有 例如比陰極110的電壓負200V到1500V之間的電壓。然後,陰極110在其前表面上將熱離子電子發射到電弧室100中。
因此,細絲電源165向細絲160供應電流。陰極偏壓電源115對細絲160施加偏壓以使得細絲160具有比陰極110更負的值,以使得從細絲160朝向陰極110吸引電子。在某些實施例中,可例如由偏壓電源111相對於電弧室100對陰極110施加偏壓。在其他實施例中,陰極110可電連接到電弧室100,以與電弧室100的壁101處於相同的電壓下。在這些實施例中,可不採用偏壓電源111且陰極110可電連接到電弧室100的壁101。在某些實施例中,電弧室100連接到電接地。
在與第一端104相對的第二端105上可設置有推斥極120。可通過推斥極偏壓電源123相對於電弧室100對推斥極120施加偏壓。在其他實施例中,推斥極120可電連接到電弧室100,以與電弧室100的壁101處於相同的電壓下。在這些實施例中,可不採用推斥極偏壓電源123,且推斥極120可電連接到電弧室100的壁101。在另外的其他實施例中,不採用推斥極120。
陰極110及推斥極120各自由導電材料(例如,金屬或石墨)製成。
在某些實施例中,在電弧室100中產生磁場。此磁場旨在沿著一個方向約束電子。所述磁場通常平行於從第一端104到第二端105的壁101。舉例來說,電子可被約束在與從陰極110到推斥極120的方向(即Y方向)平行的柱中。因此,電子不會經 受任何電磁力而在Y方向上移動。然而,電子在其他方向上的移動可能會經受電磁力。
電弧室100的一側(被稱為提取板103)上可設置有提取孔口140。在圖1中,提取孔口140設置在與Y-Z平面(垂直於頁面)平行的一側上。此外,間接加熱式陰極離子源10也包括氣體入口106,可通過氣體入口106將要被離子化的氣體引入到電弧室100。
在某些實施例中,可在電弧室100的相應的相對壁101上設置第一電極及第二電極,以使得所述第一電極及所述第二電極在與提取板103相鄰的壁上位於電弧室100內。第一電極及第二電極可各自被相應的電源施加偏壓。在某些實施例中,第一電極及第二電極可與共同電源連通。然而,在其他實施例中,為使得調諧間接加熱式陰極離子源10的輸出的靈活性及能力達到最大,第一電極可與第一電極電源連通,且第二電極可與第二電極電源連通。
控制器180可與電源中的一者或多者連通,以使得可更改由這些電源所供應的電壓或電流。控制器180可包括處理單元,例如微控制器、個人計算機、專用控制器或另一適合的處理單元。控制器180還可包括非暫時性存儲元件,例如半導體存儲器、磁性存儲器或另一適合的存儲器。此非暫時性存儲元件可含有使得控制器180能夠執行本文中所述的功能的指令及其他數據。
間接加熱式陰極離子源10還包括靶支持器190,靶支持 器190可插入到電弧室100中及從電弧室100縮回。在圖1的實施例中,靶支持器190沿著電弧室100的壁101中的一者進入電弧室。在某些實施例中,靶支持器190可在第一端104與第二端105之間的中平面處進入電弧室100。在另一實施例中,靶支持器190可在與所述中平面不同的位點處進入電弧室100。在圖1中所示的實施例中,靶支持器190穿過與提取孔口140相對的側進入電弧室100。然而,在其他實施例中,靶支持器190可穿過與提取板103相鄰的側進入。
靶支持器190具有中空內部191,摻雜材料195可設置到中空內部191中。中空內部191可被界定為中空圓柱形坩堝的內部。
摻雜材料195(例如銦、鋁、銻或鎵)可設置在靶支持器190的中空內部191內。摻雜材料195在被放置在中空內部191中時可呈固態形式。摻雜材料195可呈材料塊、銼屑、刨花、球的形式或其他形狀。在某些實施例中,摻雜材料195可熔融且成為液體。
在操作期間,細絲電源165使電流穿過細絲160,此使得細絲160發射熱離子電子。這些電子撞擊可具有比細絲160更正的值的陰極110的後表面,從而使得陰極110受熱,此繼而使得陰極110將電子發射到電弧室100中。這些電子與通過氣體入口106饋送到電弧室100中的氣體的分子碰撞。可通過位於適合位點的氣體入口106將載體氣體(例如氬)或蝕刻氣體(例如氟)引 入到電弧室100中。來自陰極110的電子、氣體及正電勢的組合形成等離子體。在某些實施例中,電子及正離子可稍微受磁場約束。在某些實施例中,等離子體被約束成鄰近電弧室100的中心、靠近提取孔口140。化學蝕刻、升高的溫度或通過等離子體進行的濺鍍將摻雜材料195轉變成氣相且實現離子化。然後,可通過提取孔口140提取經離子化的原料材料並用於製備離子射束。
由於等離子體被維持在比靶支持器190更正的電壓下,因此朝向等離子體吸引從摻雜材料195濺鍍或以其他方式釋放的蒸氣、負離子及中性原子。
在某些實施例中,由於所述等離子體形成的熱量,摻雜材料195被加熱且氣化。然而,在其他實施例中,也可通過額外方式對摻雜材料195進行加熱。舉例來說,可在靶支持器190內設置加熱元件以進一步對摻雜材料195進行加熱。加熱元件可以是電阻加熱元件或一些其他類型的加熱器。
在某些實施例中,靶支持器190可由導電材料製成且可接地。在不同的實施例中,靶支持器190可由導電材料製成且可電浮置。在不同的實施例中,靶支持器190可由導電材料製成且可維持在與壁101或致動器200相同的電壓下。在其他實施例中,靶支持器190可由絕緣材料製成。
在又一實施例中,可相對於電弧室100對靶支持器190施加電偏壓。舉例來說,靶支持器190可由導電材料製成且可被獨立電源(未示出)施加偏壓以處於與壁101不同的電壓下。此 電壓可具有比施加到壁101的電壓更正的值或更負的值。如此一來,電偏壓可用於濺鍍摻雜材料195或用作對摻雜材料進行加熱的額外方式。
靶支持器190與致動器200的一端連通。致動器200的相對端可與支撐件210連通。在某些實施例中,此支撐件210可以是間接加熱式陰極離子源10的殼體。在某些實施例中,致動器200可能夠改變其總位移。舉例來說,致動器200可以是伸縮設計。
圖2示出其中致動器200位於縮回位置中的間接加熱式陰極離子源10。在此位置中,中空內部191完全位於電弧室100外部。在某些實施例中,當靶支持器190位於電弧室100外部時,摻雜材料195冷卻。如此一來,當致動器200位於縮回位置中時,摻雜材料195不會進入電弧室。
雖然圖1示出中空內部191完全位於電弧室100內且圖2示出中空內部191完全位於電弧室100外部,但可存在其他位置。通過控制靶支持器190插入到電弧室100中的距離,可控制靶支持器190的溫度及摻雜材料195的溫度。
這些因素可確定由摻雜材料195獲得的摻雜劑射束電流的量。此外,如果靶支持器190完全縮回,則摻雜劑射束電流可變為零。此使得能夠在間接加熱式陰極離子源10中使用其他摻雜物種而不會有任何交叉污染的風險。換句話說,當致動器200縮回時,可通過氣體入口106引入不同的摻雜物種並將所述不同的摻雜物種離子化,而設置在中空內部191中的摻雜材料195不會 造成污染。
在某些實施例中,可不將靶支持器190插入到電弧室100中,而是定位成足夠接近,以使得摻雜材料195被加熱且蒸氣進入電弧室100。舉例來說,靶支持器190可由具有高導熱性的材料製成。如此一來,如果靶支持器190接近電弧室100,則即使當靶支持器190縮回時(如圖2中所示),仍能將來自等離子體的熱量傳送到摻雜材料195且氣化的摻雜材料可進入電弧室100。
在此實施例中,可存在靶支持器190仍與電弧室100熱連通且摻雜材料195被氣化的第一縮回位置。還可存在靶支持器190移動遠離電弧室100以使得摻雜材料195不被氣化的第二縮回位置。在此第二縮回位置中,可將不同的摻雜劑引入到電弧室中,而不會有交叉污染的風險。
換句話說,在某些實施例中,靶支持器190可設置在至少三個不同位置中:第一位置,在所述第一位置處,中空內部191的至少一部分設置在電弧室100內;第二位置,在所述第二位置處,中空內部191設置在電弧室100外部;以及第三位置,在所述第三位置處,中空內部191設置在電弧室100外部但仍與電弧室100熱連通,以使得將摻雜材料195氣化。
圖3更詳細地示出靶支持器190的一個實施例。在此實施例中,靶支持器190包括坩堝300。坩堝300可以是在第一端301上具有敞開的面且在第二端302上具有孔303的中空圓柱體。第一端301處的敞開的面可具有凸緣304,凸緣304朝向圓柱體的 中心軸線305延伸。因此,第一端301上的開口306可由於凸緣304而小於中空圓柱體的內徑。開口306的直徑也可小於第二端302上的孔303的直徑。坩堝300可由石墨、耐火材料、氧化鋁、碳化物或另一適合的材料構造而成。
可呈圓盤形狀的多孔插入件310穿過第二端302上的孔303插入到坩堝300的內部中。多孔插入件310的外徑可與坩堝300的內徑近似相同,且大於開口306的直徑。在某些實施例中,坩堝300的內徑可略小於多孔插入件310的外徑以形成干涉配合。在一些實施例中,多孔插入件310的外徑可比開口306的直徑大0.1英寸。因此,一旦多孔插入件310插入,則通過凸緣304將多孔插入件310保持在適當地方,以使得多孔插入件310無法通過開口306移除或掉落。多孔插入件310可以是石墨泡沫、石墨或耐火網格、碳化矽、氧化鋁泡沫或另一適合的材料。可選擇孔隙大小及孔隙率以在阻擋液體流過多孔插入件310的同時使得蒸氣能夠通過。已發現,例如液體鋁等液體金屬具有極高的表面張力。因此,雖然來自熔融的鋁的蒸氣能夠穿過多孔插入件310,但液體材料由於表面張力而無法穿過多孔插入件310。
坩堝300的第二端302上安裝有端塞320。在某些實施例中,孔303可以是螺絲孔且端塞320可帶螺紋,以使得端塞320旋擰到坩堝300的第二端302中。端塞320可由石墨或另一適合的材料構造而成。端塞320用於防止液體材料通過孔303離開且使得能夠重新填充坩堝300。
靶支持器190還可包括靶基座330。靶基座330可附接到致動器200。靶基座330借助固持緊固件340附裝到坩堝。舉例來說,在一個實施例中,端塞320的一部分具有比坩堝300的外徑大的直徑。如此一來,當將端塞320旋擰到坩堝的第二端302中時,端塞320的一部分從中心軸線向外延伸得比坩堝300遠,從而形成突起321。
在另一實施例中,坩堝300具有沿著坩堝300的外徑而靠近第二端302的突起。
可使用固持緊固件340將坩堝300固定到靶基座330。固持緊固件340可以是環形狀且在其內表面上帶螺紋。此外,固持緊固件340具有凸緣341,凸緣341具有比突起321小的直徑。因此,然後可將固持緊固件340安裝在坩堝300的第一端301之上。可將固持緊固件340旋擰到靶基座330上,靶基座330可在其外表面上帶螺紋。繼續旋轉固持緊固件340,直到凸緣341接觸突起321為止。此壓力將坩堝300附接到靶基座330。
在此實施例中,可如下將摻雜材料195插入到靶支持器190中。首先,將多孔插入件310插入到坩堝300的第二端302中的孔303中。多孔插入件310穿過坩堝300的內部移動,以使得多孔插入件310壓靠在凸緣304上。接下來,可通過第二端302中的孔303將摻雜材料195設置在坩堝300中。多孔插入件310的存在能夠將摻雜材料195保持在坩堝中且防止摻雜材料195穿過開口306。一旦已添加摻雜材料195,則可通過將端塞320旋擰 到第二端302中來封閉坩堝300。然後,將包括坩堝300、端塞320及多孔插入件310的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上滑動固持緊固件340且使固持緊固件340朝向第二端302移動,如此將固持緊固件340旋擰到靶基座330上。現在靶支持器190準備就緒。
因此,在此實施例中,坩堝300的第一端301包括敞開的面,其中多孔插入件310靠近敞開的面設置。此多孔插入件310用作可使蒸氣從中空內部傳遞到電弧室的多孔表面。第二端302包括孔303,以使得端塞320可以可移除地附裝到坩堝300。舉例來說,端塞320可旋擰到第二端302處的螺絲孔中。如此一來,在靶支持器190內的材料已被消耗之後,可重新裝滿固態摻雜劑195。換句話說,可通過擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下端塞320。然後,可將額外的摻雜材料195沉積在坩堝300中。
圖4示出根據另一實施例的靶支持器190。在此實施例中,坩堝的第二端302是封閉的,以使得僅第一端301是敞開的。坩堝300具有靠近第二端302的突起309。此突起309由固持緊固件340使用來將坩堝300附接到靶基座330。如上文所述,固持緊固件340可旋擰到靶基座330上。
在此實施例中,靠近坩堝300的第一端301設置有固持蓋帽350。固持蓋帽350是具有敞開的面的環形狀,固持蓋帽350 在其前邊緣上具有朝向所述環的中心突起的凸緣351。固持蓋帽350的內表面可帶螺紋。此外,在此實施例中,坩堝300的外表面在鄰近第一端301處也可帶螺紋。如此一來,固持蓋帽350可旋擰到坩堝300的第一端301上。
多孔插入件310穿過第一端301中的開口插入。舉例來說,多孔插入件310的直徑可具有與坩堝300的內徑大致相同的大小,但可大於固持蓋帽350的敞開的面在鄰近凸緣351處的內徑。在某些實施例中,坩堝300的內徑可略小於多孔插入件310的外徑以形成干涉配合。在一些實施例中,多孔插入件310的外徑可比敞開的面的內徑大0.1英寸。
因此,在此實施例中,第一端301既是多孔插入件310所位於的位點也是將固態摻雜材料添加到坩堝300的位點。具體來說,在此實施例中,可如下將摻雜材料195插入到靶支持器190中。首先,可通過第一端301將摻雜材料195沉積在坩堝300中。一旦已添加摻雜材料195,則可通過將多孔插入件310定位成鄰近第一端301的開口來封閉坩堝。然後,將固持蓋帽350旋擰到坩堝300的第一端上,從而將多孔插入件310保持在適當地方。然後,將包括坩堝300、固持蓋帽350及多孔插入件310的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上插入固持緊固件340並使固持緊固件340朝向第二端302滑動,如此將固持緊固件340旋擰到靶基座330上。現在靶支持器190準備就緒。
通過使用固持蓋帽350,可觸達坩堝的內部以在靶支持器 190內的材料已被消耗之後重新裝滿摻雜材料195。換句話說,可通過可選地擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下固持蓋帽350。然後,可將額外的摻雜材料195沉積在坩堝300中。
此外,如圖4中所示,坩堝300的內部表面可傾斜或可呈斜坡狀,以使得坩堝300在鄰近第一端301處的內徑大於在鄰近第二端302處的內徑。此使得摻雜材料能夠朝向坩堝的第一端301流動。此可用於提高摻雜材料的溫度以在鄰近多孔插入件310處增強蒸氣的形成。
圖3及圖4的實施例利用使蒸氣通過但不會使液體通過的多孔插入件310。換句話說,多孔插入件310用作設置在坩堝的第一端上的多孔表面且將坩堝300的中空內部與電弧室100分隔開。可使用其他方式來形成此多孔表面。
舉例來說,圖5示出其中不使用多孔插入件310的圖3所示靶支持器190的變化形式。而是,以穿孔坩堝400取代圖3的坩堝300。穿孔坩堝400可以是在第一端401上具有封閉的面405且在第二端402上具有孔403的中空圓柱體。封閉的面405可包括延伸穿過封閉的面405的多個開口410,從而使得穿孔坩堝400的內部能夠與穿孔坩堝400的外界連通。換句話說,穿孔坩堝400的封閉的面用作多孔表面。可選擇開口410的大小以使得液體摻雜劑的表面張力阻止液體穿過開口410但使得蒸氣能夠通過。穿孔坩堝400可由石墨、耐火材料、氧化鋁、碳化物或另一適合 的材料構造而成。
端塞320、靶基座330及固持緊固件340與上文關於圖3所述的內容相同。
在此實施例中,可如下將摻雜材料195插入到靶支持器190中。首先,可通過第二端402中的孔403將摻雜材料195設置在穿孔坩堝400中。第一端401處存在的封閉的面將摻雜材料195保持在穿孔坩堝400中。一旦已添加摻雜材料195,則可通過將端塞320旋擰到第二端402中來封閉穿孔坩堝400。然後,將包括穿孔坩堝400及端塞320的坩堝總成定位成抵靠靶基座330。在穿孔坩堝400的第一端401之上滑動固持緊固件340並使固持緊固件340朝向第二端402移動,如此將固持緊固件340旋擰到靶基座330上。現在靶支持器190準備就緒。
圖6示出其中不使用多孔插入件310的圖4所示靶支持器190的變化形式。而是,以穿孔固持蓋帽450取代圖4的固持蓋帽350。
在此實施例中,穿孔固持蓋帽450靠近坩堝300的第一端301設置。穿孔固持蓋帽450是具有封閉的面的圓柱體。所述封閉的面包括多個開口410。穿孔固持蓋帽450的圓柱形部分的內表面可帶螺紋。此外,在此實施例中,坩堝300的外表面在鄰近第一端301處也可帶螺紋。如此一來,穿孔固持蓋帽450可旋擰到坩堝300的第一端301上。
因此,在此實施例中,第一端301既是多孔表面所位於 的位點也是將固態摻雜材料添加到坩堝300的位點。具體來說,在此實施例中,可如下將摻雜材料195插入到靶支持器190中。首先,可通過第一端301將摻雜材料195沉積在坩堝300中。一旦已添加摻雜材料195,則可通過將穿孔固持蓋帽450旋擰到坩堝300的第一端上來封閉坩堝。然後,將包括坩堝300及穿孔固持蓋帽450的坩堝總成定位成抵靠靶基座330。在坩堝300的第一端301之上插入固持緊固件340並使固持緊固件340朝向第二端302滑動,如此將固持緊固件340旋擰到靶基座330上。現在靶支持器190準備就緒。
通過使用穿孔固持蓋帽450,可觸達坩堝的內部以在靶支持器190內的材料已被消耗之後重新裝滿摻雜材料195。換句話說,可通過可選地擰下固持緊固件340以將坩堝總成從靶基座330移除來將坩堝300重新裝滿。一旦此舉完成,則可從坩堝300擰下穿孔固持蓋帽450。然後,可將額外的摻雜材料195沉積在坩堝300中。
此外,如圖6中所示,坩堝300的內部表面可以是傾斜的或可呈斜坡狀,以使得坩堝300在鄰近第一端301處的內徑大於在鄰近第二端302處的內徑。此使得摻雜材料能夠朝向坩堝的第一端301流動。此可用於提高摻雜材料的溫度以在鄰近穿孔固持蓋帽450處增強蒸氣的形成。
穿孔固持蓋帽450中的開口及穿孔坩堝400中的開口可排列成多個配置。圖7示出開口410的兩個此種配置。本公開並 不僅限於這些實施例。
本申請中的上述實施例可具有諸多優點。坩堝被形成為中空圓柱體且因此保護摻雜材料免於直接面對灼熱的陰極。靶支持器還包括將坩堝的內部與外部環境分隔開的多孔表面。此多孔表面使得來自氣化的摻雜材料的蒸氣能夠從坩堝的內部傳遞到電弧室中。然而,由於熔融的摻雜材料的表面張力高,因此多孔表面阻止液體摻雜劑傳遞到電弧室中。另外,在一些實施例中,坩堝的內部表面朝向多孔表面傾斜,以如漏斗般朝向坩堝的更灼熱端輸送液體摻雜材料。此可增強摻雜材料的氣化。
另外,坩堝被設計成能重複使用。在一些實施例中,使用帶螺紋端塞來密封坩堝的第二端。可移除端塞以在期望時在坩堝內重新裝滿摻雜材料。在其他實施例中,可移除固持蓋帽以使得能夠重新裝滿摻雜材料。因此,靶支持器可重複使用多次。
本公開的範圍不受本文中所述的具體實施例限制。實際上,根據前述說明及附圖,對所屬領域的技術人員而言,除本文中所述的實施例及潤飾之外,本公開的其他各種實施例及對本公開的各種潤飾也將顯而易見。因此,這些其他實施例及潤飾皆旨在落於本公開的範圍內。此外,儘管本文中已出於特定目的在特定的環境中在特定實施方案的上下文中闡述了本公開,但所屬領域的技術人員應認識到,其有效性並不僅限於此且本公開可出於任何數目個目的而有益地實施在任何數目的環境中。因此,所附的發明申請專利範圍應根據本文所述的本發明的全部範疇及精神 來加以解釋。
10:間接加熱式陰極離子源
100:電弧室
101:壁
103:提取板
104:第一端
105:第二端
106:氣體入口
110:陰極
111:偏壓電源
115:陰極偏壓電源
120:推斥極
123:推斥極偏壓電源
140:提取孔口
160:細絲
165:細絲電源
180:控制器
190:靶支持器
191:中空內部
195:摻雜材料/固態摻雜劑
200:致動器
210:支撐件
X、Y、Z:方向

Claims (15)

  1. 一種間接加熱式陰極離子源,包括:電弧室,包括多個壁;間接加熱式陰極,設置在所述電弧室中;以及靶支持器,用於容放固態摻雜劑,其中所述靶支持器包括:坩堝,具有適於容放所述固態摻雜劑的中空內部、第一端及第二端,其中所述第一端包括多孔表面,以使得來自固態摻雜材料的蒸氣能夠從所述中空內部穿過所述多孔表面而傳遞到所述電弧室,所述多孔表面的第一側接觸所述坩堝的所述中空內部,且所述多孔表面的第二側接觸所述電弧室的內部。
  2. 如請求項1所述的間接加熱式陰極離子源,其中所述第二端是封閉的,且所述間接加熱式陰極離子源還包括多孔插入件及固持蓋帽,所述固持蓋帽靠近所述第一端設置且附接到所述坩堝以將所述多孔插入件固持在所述中空內部內,其中所述固持蓋帽包括敞開的面且所述多孔插入件用作所述多孔表面。
  3. 如請求項1所述的間接加熱式陰極離子源,其中所述第二端是封閉的,且所述間接加熱式陰極離子源還包括靠近所述第一端設置的穿孔固持蓋帽,其中所述穿孔固持蓋帽附接到所述坩堝且用作所述多孔表面。
  4. 如請求項1所述的間接加熱式陰極離子源,進一步包括孔及端塞,所述孔位於所述第二端處,所述端塞插入到位於所述第二端處的所述孔中。
  5. 如請求項4所述的間接加熱式陰極離子源,進一步包括設置在所述中空內部中的多孔插入件,其中凸緣設置在所述第一端處且朝向所述坩堝的中心軸線突起,以使得所述凸緣將所述多孔插入件固持在所述坩堝的所述中空內部中,且所述多孔插入件用作所述多孔表面。
  6. 如請求項4所述的間接加熱式陰極離子源,其中所述第一端包括封閉的面,所述封閉的面包括多個開口,其中所述封閉的面用作所述多孔表面。
  7. 如請求項1所述的間接加熱式陰極離子源,進一步包括:致動器,使所述靶支持器移入及移出所述電弧室;靶基座,附接到所述致動器,其中所述靶基座的外表面帶螺紋;以及固持緊固件,旋擰到所述靶基座上,其中所述固持緊固件將所述坩堝保持成抵靠所述靶基座。
  8. 一種離子源,包括:電弧室;靶支持器,包括:坩堝,形成為具有中空內部、第一端及第二端的圓柱體,其中所述第一端包括多孔表面且所述第二端包括螺絲孔,所述多孔表面的第一側接觸所述坩堝的所述中空內部,所述多孔表面的第二側接觸所述電弧室的內部,且其中固態摻雜材料被配置成設 置在所述中空內部中,其中來自所述固態摻雜材料的蒸氣能夠從所述中空內部穿過所述多孔表面;以及端塞,在外表面上帶螺紋以旋擰到所述螺絲孔中。
  9. 如請求項8所述的離子源,進一步包括設置在所述中空內部中的多孔插入件,且其中所述坩堝的所述第一端包括朝向所述圓柱體的中心軸線突起的凸緣,其中所述凸緣固持所述多孔插入件且在所述第一端處界定開口,且所述多孔插入件用作所述多孔表面。
  10. 如請求項8所述的離子源,其中所述第一端包括封閉的面,所述封閉的面具有多個開口,其中所述封閉的面用作所述多孔表面。
  11. 一種離子源,包括:電弧室;靶支持器,包括:坩堝,形成為具有中空內部、第一端及第二端的圓柱體,其中所述第二端是封閉的,且其中固態摻雜材料被配置成設置在所述中空內部中,且其中靠近所述第一端設置有多孔表面,所述多孔表面的第一側接觸所述坩堝的所述中空內部,所述多孔表面的第二側接觸所述電弧室的內部,其中來自所述固態摻雜材料的蒸氣能夠從所述中空內部穿過所述多孔表面;以及 固持蓋帽,靠近所述第一端設置。
  12. 如請求項11所述的離子源,其中所述坩堝的外表面在靠近所述第一端處帶螺紋,且所述固持蓋帽旋擰到所述坩堝的所述第一端上。
  13. 如請求項11所述的離子源,進一步包括設置在所述中空內部中的多孔插入件,且其中所述固持蓋帽包括敞開的面及凸緣,所述凸緣在所述固持蓋帽的前邊緣處朝向所述坩堝的中心軸線突起,從而形成開口,其中所述固持蓋帽的所述開口的內徑小於所述多孔插入件的外徑以固持所述多孔插入件。
  14. 如請求項11所述的離子源,其中所述固持蓋帽包括具有多個開口的封閉的面,其中所述封閉的面用作所述多孔表面。
  15. 如請求項11所述的離子源,其中所述坩堝的內表面朝向所述第一端傾斜,以使得所述中空內部在鄰近所述第二端處的內徑小於所述中空內部在鄰近所述第一端處的內徑。
TW109137852A 2019-11-07 2020-10-30 間接加熱式陰極離子源及靶支持器 TWI777281B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/676,996 US10957509B1 (en) 2019-11-07 2019-11-07 Insertable target holder for improved stability and performance for solid dopant materials
US16/676,996 2019-11-07

Publications (2)

Publication Number Publication Date
TW202119452A TW202119452A (zh) 2021-05-16
TWI777281B true TWI777281B (zh) 2022-09-11

Family

ID=74882572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137852A TWI777281B (zh) 2019-11-07 2020-10-30 間接加熱式陰極離子源及靶支持器

Country Status (6)

Country Link
US (1) US10957509B1 (zh)
JP (1) JP7407926B2 (zh)
KR (1) KR20220097931A (zh)
CN (1) CN114641843A (zh)
TW (1) TWI777281B (zh)
WO (1) WO2021091698A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11404254B2 (en) * 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials
US11170973B2 (en) 2019-10-09 2021-11-09 Applied Materials, Inc. Temperature control for insertable target holder for solid dopant materials
US11854760B2 (en) 2021-06-21 2023-12-26 Applied Materials, Inc. Crucible design for liquid metal in an ion source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048813A (en) * 1998-10-09 2000-04-11 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys
TW200733243A (en) * 2005-11-07 2007-09-01 Semequip Inc Dual mode ion source for ion implantation
US20120048723A1 (en) * 2010-08-24 2012-03-01 Varian Semiconductor Equipment Associates, Inc. Sputter target feed system
KR101638443B1 (ko) * 2015-01-28 2016-07-11 영남대학교 산학협력단 박막증착용 도가니, 이를 이용한 박막증착 방법 및 진공 증착 장치
US20180005793A1 (en) * 2016-06-30 2018-01-04 Varian Semiconductor Equipment Associates, Inc. Vaporizer For Ion Source
TW201937521A (zh) * 2017-12-12 2019-09-16 美商瓦里安半導體設備公司 離子源及間熱式陰極離子源

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404084A (en) 1965-10-20 1968-10-01 Gen Precision Systems Inc Apparatus for depositing ionized electron beam evaporated material on a negatively biased substrate
JPS6370649U (zh) * 1986-10-27 1988-05-12
US5089746A (en) 1989-02-14 1992-02-18 Varian Associates, Inc. Production of ion beams by chemically enhanced sputtering of solids
JPH089774B2 (ja) 1990-06-25 1996-01-31 三菱電機株式会社 薄膜形成装置
JPH0554809A (ja) 1991-08-22 1993-03-05 Nissin Electric Co Ltd ルツボ内蔵型シリコンイオン源
JPH0955169A (ja) * 1995-08-10 1997-02-25 Nissin Electric Co Ltd イオン源用試料蒸発源
US5977552A (en) * 1995-11-24 1999-11-02 Applied Materials, Inc. Boron ion sources for ion implantation apparatus
JP3048907B2 (ja) * 1995-11-29 2000-06-05 インターナショナル・ビジネス・マシーンズ・コーポレイション 高輝度点イオン源
US5733418A (en) 1996-05-07 1998-03-31 Pld Advanced Automation Systems, Inc. Sputtering method and apparatus
US6583544B1 (en) 2000-08-07 2003-06-24 Axcelis Technologies, Inc. Ion source having replaceable and sputterable solid source material
JP2002093333A (ja) * 2000-09-20 2002-03-29 New Japan Radio Co Ltd イオンビーム発生装置
US6661014B2 (en) 2001-03-13 2003-12-09 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for oxygen implantation
WO2005071133A2 (en) 2004-01-22 2005-08-04 Ionized Cluster Beam Technology Co., Ltd. Vacuum deposition method and sealed-type evaporation source apparatus for vacuum deposition
US7102139B2 (en) 2005-01-27 2006-09-05 Varian Semiconductor Equipment Associates, Inc. Source arc chamber for ion implanter having repeller electrode mounted to external insulator
GB0505856D0 (en) 2005-03-22 2005-04-27 Applied Materials Inc Cathode and counter-cathode arrangement in an ion source
KR100793366B1 (ko) 2006-07-04 2008-01-11 삼성에스디아이 주식회사 유기물 증착장치 및 그 증착방법
US7655932B2 (en) 2007-01-11 2010-02-02 Varian Semiconductor Equipment Associates, Inc. Techniques for providing ion source feed materials
US7700925B2 (en) 2007-12-28 2010-04-20 Varian Semiconductor Equipment Associates, Inc. Techniques for providing a multimode ion source
US8003954B2 (en) 2008-01-03 2011-08-23 Varian Semiconductor Equipment Associates, Inc. Gas delivery system for an ion source
TWI413149B (zh) 2008-01-22 2013-10-21 Semequip Inc 離子源氣體反應器及用於將氣體饋給材料轉化成不同分子或原子物種之方法
US8809800B2 (en) 2008-08-04 2014-08-19 Varian Semicoductor Equipment Associates, Inc. Ion source and a method for in-situ cleaning thereof
KR101209107B1 (ko) 2010-06-23 2012-12-06 (주)알파플러스 소스 튐 방지용 구조물을 구비한 증발원 장치
US8324592B2 (en) 2010-11-02 2012-12-04 Twin Creeks Technologies, Inc. Ion source and a method of generating an ion beam using an ion source
JP5317038B2 (ja) 2011-04-05 2013-10-16 日新イオン機器株式会社 イオン源及び反射電極構造体
US8937003B2 (en) 2011-09-16 2015-01-20 Varian Semiconductor Equipment Associates, Inc. Technique for ion implanting a target
US9093372B2 (en) 2012-03-30 2015-07-28 Varian Semiconductor Equipment Associates, Inc. Technique for processing a substrate
US9396902B2 (en) 2012-05-22 2016-07-19 Varian Semiconductor Equipment Associates, Inc. Gallium ION source and materials therefore
US8759788B1 (en) 2013-03-11 2014-06-24 Varian Semiconductor Equipment Associates, Inc. Ion source
JP6104461B2 (ja) 2013-05-02 2017-03-29 プラクスエア・テクノロジー・インコーポレイテッド 濃縮セレンイオン注入のための供給源および方法
US20150034837A1 (en) 2013-08-01 2015-02-05 Varian Semiconductor Equipment Associates, Inc. Lifetime ion source
US9287079B2 (en) 2014-07-02 2016-03-15 Varian Semiconductor Equipment Associates, Inc. Apparatus for dynamic temperature control of an ion source
GB2528141B (en) 2014-09-18 2016-10-05 Plasma App Ltd Virtual cathode deposition (VCD) for thin film manufacturing
CN107210749B (zh) * 2014-10-13 2021-03-19 亚利桑那州立大学董事会代表亚利桑那州立大学法人团体利益 用于二次离子质谱仪的一次铯离子源
JP6584927B2 (ja) 2015-11-13 2019-10-02 住友重機械イオンテクノロジー株式会社 イオン注入装置、およびイオン注入装置の制御方法
KR20180073766A (ko) 2016-12-22 2018-07-03 주식회사 선익시스템 도가니 분사노즐캡
US11404254B2 (en) 2018-09-19 2022-08-02 Varian Semiconductor Equipment Associates, Inc. Insertable target holder for solid dopant materials

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048813A (en) * 1998-10-09 2000-04-11 Cree, Inc. Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys
TW200733243A (en) * 2005-11-07 2007-09-01 Semequip Inc Dual mode ion source for ion implantation
US20120048723A1 (en) * 2010-08-24 2012-03-01 Varian Semiconductor Equipment Associates, Inc. Sputter target feed system
KR101638443B1 (ko) * 2015-01-28 2016-07-11 영남대학교 산학협력단 박막증착용 도가니, 이를 이용한 박막증착 방법 및 진공 증착 장치
US20180005793A1 (en) * 2016-06-30 2018-01-04 Varian Semiconductor Equipment Associates, Inc. Vaporizer For Ion Source
TW201937521A (zh) * 2017-12-12 2019-09-16 美商瓦里安半導體設備公司 離子源及間熱式陰極離子源

Also Published As

Publication number Publication date
KR20220097931A (ko) 2022-07-08
JP7407926B2 (ja) 2024-01-04
US10957509B1 (en) 2021-03-23
WO2021091698A1 (en) 2021-05-14
CN114641843A (zh) 2022-06-17
TW202119452A (zh) 2021-05-16
JP2023500912A (ja) 2023-01-11

Similar Documents

Publication Publication Date Title
TWI777281B (zh) 間接加熱式陰極離子源及靶支持器
TWI723506B (zh) 間接加熱式陰極離子源及將不同的摻雜物離子化的方法
TWI720372B (zh) 離子源及間熱式陰極離子源
JP7423763B2 (ja) 固体ドーパント材料用の挿入可能なターゲットホルダの温度制御
WO2022271347A1 (en) Crucible design for liquid metal in an ion source
JP7473672B2 (ja) イオン注入システムのための熱的に絶縁された捕捉フィーチャ
US11008649B2 (en) Advanced sputter targets for ion generation
US20230369008A1 (en) Hybrid ion source for aluminum ion generation using a target holder and a solid target
TWI844864B (zh) 用於產生包括金屬的離子束的離子源
US20230369006A1 (en) Hybrid ion source for aluminum ion generation using a target holder and organoaluminium compounds
JP2024523908A (ja) イオン源中の液体金属のためのるつぼの設計

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent