TWI777177B - 離心式純化平台及其使用方法 - Google Patents

離心式純化平台及其使用方法 Download PDF

Info

Publication number
TWI777177B
TWI777177B TW109120174A TW109120174A TWI777177B TW I777177 B TWI777177 B TW I777177B TW 109120174 A TW109120174 A TW 109120174A TW 109120174 A TW109120174 A TW 109120174A TW I777177 B TWI777177 B TW I777177B
Authority
TW
Taiwan
Prior art keywords
module
tank
eluent
sample
driving module
Prior art date
Application number
TW109120174A
Other languages
English (en)
Other versions
TW202200981A (zh
Inventor
施志欣
蔣奕敬
柯朝蕙
廖芷霆
Original Assignee
逢甲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 逢甲大學 filed Critical 逢甲大學
Priority to TW109120174A priority Critical patent/TWI777177B/zh
Priority to US17/342,539 priority patent/US20210387179A1/en
Publication of TW202200981A publication Critical patent/TW202200981A/zh
Application granted granted Critical
Publication of TWI777177B publication Critical patent/TWI777177B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5021Test tubes specially adapted for centrifugation purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/56Packing methods or coating methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6004Construction of the column end pieces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6052Construction of the column body
    • G01N30/606Construction of the column body with fluid access or exit ports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6091Cartridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/92Construction of the plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/20Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the sorbent material
    • B01D15/206Packing or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/048Function or devices integrated in the closure enabling gas exchange, e.g. vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/088Channel loops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N2030/381Flow patterns centrifugal chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8881Modular construction, specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N2030/903Plate chromatography, e.g. thin layer or paper chromatography centrifugal chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N35/00069Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides whereby the sample substrate is of the bio-disk type, i.e. having the format of an optical disk

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Centrifugal Separators (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Micromachines (AREA)

Abstract

在這項發明中,層析法被整合到離心平台上,以實現低成本的自動純化。與傳統層析方法不同,本發明中提出之一種離心式化合物純化及分離蒐集平台,主要利用馬達旋轉時,流體受到離心力驅動往外半徑流動,待分離樣本在流動的過程中與填充物反應,樣本在流動的過程中逐漸分離出不同極性的化合物,馬達能控制流體流速使碟片上之流體在微型管柱層析結構中達到純化並且完成後續完成分離及蒐集之動作。

Description

離心式純化平台及其使用方法
本發明提供一種離心式純化平台,主要利用馬達旋轉時,流體受到離心力驅動往外半徑流動,可用來純化、萃取有機合成、生化之樣本。
近年來微流體技術發展快速,為一種於微型化裝置上整合一個檢驗所需程序例如液體混合、分離、藥物反應…等的技術,其優點為僅需微量液體(微升級別)且裝置製成便宜,廣泛應用於生物細胞裂解、DNA檢測、人體醫學檢測上。根據上述若以微流體技術之基礎應用於生化分析檢測上,便可以建立一個檢驗時間短、樣本用量小、且造價便宜之生化分析檢測裝置,於產品化方面具有非常高之潛力。
然而,層析法仍是目前有機實驗室最常用於通過固定相和流動相分離混合物的常用技術。現有的層析(Chromatography)技術已經發展得相當完善,也有許多科學領域都運用了此技術,有機實驗室會利用管柱層析(Column chromatography)分離純化所合成出的有機化合物,生化實驗室則會利用管柱層析分離出所需要的蛋白質等產物,但由於現有的層析儀器體積量大,操作過程較為繁瑣,所消耗的試劑量也相當大且耗費的時間也相當冗長,通常需要大量的樣本體積(至少1毫升),實驗時間長且操作繁瑣。因此也有不少學者開始研究如何將層析技術與微流體技術結合,儘管有不少學者一同研究如何將層析和微流體兩門技術做為結合,由於材料上先天的限制導致純化有機化合物之微流體領域較難突破,所以目前層析純化技術大多仍使用傳統管柱層析方法.
本發明將微流體離心平台結合有機化合物之純化,達到縮小實驗平台、自動化取代人為檢測、降低試劑消耗量、操控性高、縮短時間等目的。未來將開創微流體離心平台之新領域。
為補足習知技術的不足,本發明提供一種離心式純化平台,主要包含:一微流體模組,該微流體模組包含一碟片與一微流體結構,該微流體結構更包含:至少一注入槽模組,設置於該碟片上;至少一分離管柱,設置於該碟片上且與該注入槽模組連接;至少一分配流道,設置於該碟片上且透過一連接通道模組與該分離管柱連接; 複數個蒐集槽,設置於該碟片上且各與該分配流道連接;一廢液槽,設置於該至少一分配流道的末端;該至少一分離管柱呈螺旋狀,該至少一分配流道呈螺旋狀或弧狀。
除上述以外,該離心式純化平台還包含:一驅動模組,該驅動模組上放置該微流體模組;一運算模組,該運算模組驅動該驅動模組;以及一檢測模組,分別與該微流體模組以及該驅動模組連接,由該檢測模組得到一檢測結果。
更進一步,本發明提供一種使用離心式純化平台的方法,提供請求項1所述的離心式純化平台,其步驟包含:(a1) 將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中; (a2) 將一樣本注入該注入槽模組,並由該驅動模組產生離心力將該樣本送入該分離管柱中; (a3) 將一沖提劑注入該注入槽模組,並由該驅動模組產生離心力將該沖提劑送入該分離管柱中; (a4) 進行一純化分離作業,該驅動模組控制轉速使該樣本及該沖提劑流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;以及 (a5) 使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
本發明更提供另一種使用離心式純化平台的使用方法,其中當該至少一注入槽模組更包含至少一暫止槽、至少一傾析槽以及至少一第二沖提劑槽且該至少一傾析槽透過一第一阻擋閥與該至少一第二沖提劑槽連接時,其步驟包含: (b1) 將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(b2) 將一樣本與至少一沖提劑分別注入該暫止槽與該至少一第二沖提劑槽,並由該驅動模組產生離心力將該樣本送入該分離管柱中,同時該至少一沖提劑因該第一阻擋閥而滯留在該至少一第二沖提劑槽; (b3)透過該驅動模組提高轉速使該至少一沖提劑克服第一阻擋閥進入該至少一傾析槽中,接著再急降轉速使該至少一沖提劑由該至少一傾析槽進入該暫止槽,最後提升轉速使該沖提劑再進入該分離管柱;(b4)進行一純化分離作業,該驅動模組控制轉速使該樣本及該沖提劑流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;以及(b5)使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
本發明更提供另一種使用離心式純化平台的使用方法,其中當該沖提劑有兩種時,其步驟包含:(c1) 將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(c2) 將一樣本、該第一沖提劑以及該第二沖提劑分別注入該暫止槽、該第一傾析槽以及該第二傾析槽,透過該驅動模組旋轉使該樣本送入該分離管柱並急降轉速將該第一沖提劑送入該第一暫止槽、將該第二沖提劑送入該第二暫止槽;(c3) 透過該驅動模組提高轉速使該第一沖提劑克服該第三阻擋閥進入該暫止槽、該第二沖提劑克服該第二阻擋閥進入該第一傾析槽;(c4) 透過該驅動模組降低轉速或改變旋轉方向使該第一沖提劑進入該分離管柱、該第二沖提劑進入該第一暫止槽;(c5) 透過該驅動模組提高轉速使該第二沖提劑克服該第二阻擋閥進入該暫止槽,接著再進入該分離管柱中;(c6) 進行一純化分離作業,該驅動模組控制轉速使該樣本、該第一沖提劑及該第二沖提劑流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;以及(c7) 使用該檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
本發明更提供另一種使用離心式純化平台的使用方法,其中當該連接通道模組為一第二連接通道(第二連接通道呈分岔狀)時,其步驟包含:(d1) 將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中; (d2) 將一樣本注入該注入槽模組,並由該驅動模組產生離心力將該樣本送入該分離管柱中; (d3) 將一沖提劑注入該注入槽模組,並由該驅動模組產生離心力將該沖提劑送入該分離管柱中;(d4) 於該分離管柱中進行一純化分離作業,該驅動模組控制轉速使該樣本、該沖提劑或其組合流過第二連接通道並藉由控制轉向流經該第一選擇通道來填充該複數個蒐集槽;(d5) 該驅動模組提高轉速及逆轉方向使剩餘的該樣本、該沖提劑或其組合流經該第二選擇通道並填入一廢液槽中;以及(d6) 使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
本發明更提供另一種使用離心式純化平台的使用方法,其中當每個該複數個蒐集槽上更設有一抽取槽且該抽取槽透過一第四阻擋閥連接每個該複數個蒐集槽時,其步驟包含:(e1) 將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中; (e2) 將一樣本注入該注入槽模組,並由該驅動模組產生離心力將該樣本送入該分離管柱中;(e3) 將一沖提劑注入該注入槽模組,並由該驅動模組產生離心力將該沖提劑送入該分離管柱中;(e4) 進行一純化分離作業,該驅動模組控制轉速使該樣本、該沖提劑或其組合流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;(e5) 該驅動模組提高轉速及逆轉方向使該複數個蒐集槽中的該樣本、該沖提劑或其組合突破該第四阻擋閥並流入該抽取槽中,以達到一斷流;以及(e6) 使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
以上對本發明的簡述,目的在於對本發明之數種面向和技術特徵作一基本說明。發明簡述並非對本發明的詳細表述,因此其目的不在特別列舉本發明的關鍵性或重要元件,也不是用來界定本發明的範圍,僅為以簡明的方式呈現本發明的數種概念而已。
為能瞭解本發明的技術特徵及實用功效,並可依照說明書的內容來實施,茲進一步以如圖式所示的較佳實施例,詳細說明如後:
本發明提供一種離心式純化平台1,請參照圖2,圖2為本發明較佳實施例之微流體模組2示意圖。在圖2的實施例中,提供了一種離心式純化平台1中的微流體模組2。本實施例中的微流體模組2包含一碟片20與一微流體結構200,該微流體結構200更包含至少一注入槽模組210、至少一分離管柱220、至少一分配流道230、複數個蒐集槽240、一廢液槽250以及至少一連接通道模組,其中該至少一分配流道230更設有至少一通氣孔2310。
更進一步來說,所述至少一注入槽模組210設置於該碟片20上。該至少一注入槽模組210設置於靠近碟片20旋轉重心的位置。在其中一實施例中,該每個注入槽模組210更可包含暫止槽2110、傾析槽2120以及第二沖提劑槽2130或其組合,且第二沖提劑槽2130透過第一阻擋閥2150a與傾析槽2120連接。而至少一分離管柱220則同樣設置於碟片20上並且與該注入槽模組210連接。接著,至少一分配流道230亦設置於碟片20上且與每個分離管柱220連接。其中,一廢液槽250設置於每個至少一分配流道230的末端,該分配流道230上更設置有至少一個通氣孔2310。而至少一連接通道模組連接至少一分離管柱220與至少一分配流道230。其中,該連接通道模組在不同的實施例當中可選用第一連接通道2210(可參照圖2)或第二連接通道2220(可參照圖10)的形式。其中,該第一連接通道2210呈單支狀;該第二連接通道2220呈分岔狀。最後,複數個蒐集槽240同樣設置於碟片20上且各與分配流道230連接。在其中一些實施例中,該複數個蒐集槽240上更設有抽取槽235,該抽取槽235透過第四阻擋閥237連接每個該複數個蒐集槽240。在本實施例中,分離管柱220呈螺旋狀,而分配流道230呈螺旋狀或弧狀。
請參照圖1,圖1為本發明較佳實施例之離心式純化平台1示意圖。在圖1的實施例中,提供了離心式純化平台1的完整架構。圖1中所示的離心式純化平台1除運用圖2中所述之微流體模組2之外,還包含驅動模組3、運算模組4以及檢測模組5。
具體來說,驅動模組3分別與該微流體模組2以及該檢測模組5連接,而運算模組4係用以驅動該驅動模組3。檢測模組5則分別與微流體模組2以及驅動模組3連接。並且,微流體模組2最後的檢測結果由該檢測模組5檢測而得之。在本實施例中,運用圖1中的離心式純化平台1時,係先將粉體藉由該驅動模組3填充至該分離管柱220。接著將欲檢測的樣本於該粉體填充後,載入該注入槽模組210中。最後將沖提劑於該樣本載入後注入該注入槽模組210中。
在本實施例中,該驅動模組3選用馬達。更進一步來說可以是伺服馬達等可程式化邏輯控制馬達。且該馬達為該運算模組4所驅動。本發明在其中一較佳實施例中,此運算模組4為電腦。除此之外,由於整個離心式純化平台1只需要一個單一馬達即可完成所有檢測操作,整體成本亦不高昂。在本實施例中,該粉體為矽膠。以固定質量之矽膠填充入該注入槽模組210中,再經由驅動模組3震盪使該矽膠粉體填入分離管柱220中。又,為了防止填充的矽膠從分離管柱220中掉落,在該分離管柱220尾端更設置有一阻擋模組9,該阻擋模組9可以是棉花塞或粒子塞。如以粒子塞的情況來說,可參照圖13,如圖13所示,本實施例之粒子塞主要由不同粒徑大小的粒子所組成,以 大至小的粒子依序填入分離管柱220尾端。而前述樣本為一或多種有機化合物之混合物,且經由本實施例之離心式純化平台1,純化分離出所需要的產物。
基於本實施例的結構和特別的微流體模組2,使用本實施例離心式純化平台1進行檢測時,所需的樣本體積可少於50微升(µL)。綜觀現有的層析技術通常都需要較大的樣本體積(至少1毫升)。因此相對於現有技術來說,本實施例中可大幅降低樣本的體積的需求;亦可以減少實驗時間並降低操作的繁瑣程度。
請參照圖3,本發明更提供另一種離心式純化平台1的較佳實施例,其中該注入槽模組210更包含一樣本槽210a與一第一沖提劑槽210b,且分別連接於分離管柱220。在本實施例中,由於在層析分離過程中,沖提劑本身的純度會影響層析分離效果,因此將注入槽模組210分別分成兩槽樣本槽210a與第一沖提劑槽210b的目的在於提高沖提劑的純度,避免樣本與沖提劑在未進入分離管柱220前即互相混合。更進一步地,將該樣本槽210a透過第二分離管柱220b與該分離管柱220相連接,且該第二分離管柱220b填充滿粉體如圖3所示。如此一來,使該樣本先從該樣本槽210a注入後,因為第二分離管柱220b有粉體的阻擋,而避免沖提劑從第一沖提劑槽210b注入後產生連通管現象,進而進入樣本槽210a,造成沖提劑的汙染。
請參照圖4、圖5與圖6,本發明更提供另一種離心式純化平台1的較佳實施例,其中該注入槽模組210更包含一暫止槽2110、一傾析槽2120以及一第二沖提劑槽2130,該第二沖提劑槽2130透過一第一阻擋閥2150a與該傾析槽2120連接。在本實施例中,首先將樣本6及沖提劑7a分別注入暫止槽2110及第二沖提劑槽2130中。在馬達開始旋轉後,樣本由該暫止槽2110進入該分離管柱220;提高轉速使沖提劑7a由該第二沖提劑槽2130通過該第一阻擋閥2150a的毛細管力進入該傾析槽2120中;待樣本完全進入分離管柱220後,快速降低馬達轉速使該沖提劑7a由傾析槽2120傾注至暫止槽2110,再提升轉速使沖提劑7a進入分離管柱220。該樣本6與沖提劑7a進入分離管柱220分離後,經由提高轉速通過該第一連接通道2210後進入分配流道230並依序進入該複數個蒐集槽240。更進一步地,請參照圖2,其中該分配流道230更設有至少一通氣孔2310,使該分離出的樣本6或沖提劑7a進入分配流道230後,能夠不滯留在分配流道230中且順暢流通在其中。
請參照圖7、圖8以及圖9,本發明提供另一種離心式純化平台1的實施例。在此實施例中,使用兩種沖提劑。相應該兩種沖提劑,更設置一第一傾析槽2120a與一第二傾析槽2120b,而該兩傾析槽上分別連通一第一暫止槽2110a及一第二暫止槽2110b。傾析槽數目及暫止槽數目可由沖提劑使用種類來做相應調整,本實施例僅舉兩種沖提劑的情況予以說明。詳細使用步驟將由下文續行說明。
請參照圖10、圖11以及圖12,本發明更提供另一種離心式純化平台1的實施例。其中,該連接通道模組為一第二連接通道2220,呈分岔狀,連接該分離管柱220與該分配流道230。分岔狀的第二連接通道2220包含第一選擇流道2220a或第二選擇流道2220b。該第一選擇流道2220a使液體導向連接有複數個蒐集槽240的分配流道230;該第二選擇流道2220b使液體導向連接有廢液槽250的分配流道230。又,其中該複數個蒐集槽240上更設有一抽取槽235,透過一第四阻擋閥237連接。該第四阻擋閥237的作用係與抽取槽235共構成為氣壓閥,以利液體在複數個蒐集槽240中達到依序填滿並分配完成的動作。在本實施例中,待複數個蒐集槽240填充完成時,可利用同時改變方向及提高轉速使分離的樣本自複數個蒐集槽240克服第四阻擋閥237和抽取槽235共構氣壓閥的壓力流入抽取槽235中。於提高轉速及逆轉的同時,殘留在分離管柱220中的沖提劑會流入第二選擇流道2220b,進而進入廢液槽250。更進一步來說,由於複數個蒐集槽240係與分配流道230連通,因此,透過第四阻擋閥237和抽取槽235共構為氣壓閥的設計,可以讓分離完成的樣本在逆轉兼提高轉速的同時,突破第四阻擋閥237和抽取槽235共構的氣壓閥。藉此,將原存於抽取槽235的空氣與複數個蒐集槽240產生氣液置換的效果。讓原存在複數個蒐集槽240和分配流道230間的水膜無法進而影響已分配到抽取槽235中的樣本,完成樣本純化後的分離。
最後,本實施例之檢測模組5使用包含光學檢測分析、核磁共振光譜分析、薄層層析分析以及氣相層析分析且不在上述此限。進一步言之,檢測模組5可以為分光光度計、核磁共振儀、薄層層析片以及氣相層析儀且不在上述此限,並根據數據,得出該檢測結果。
在本發明之較佳實施例中,更提供一種使用上述離心式純化平台1的方法,請參照圖14,其步驟包含:(a1) 將一粉體注入該注入槽模組210後透過該驅動模組3震盪,使該粉體填充至該分離管柱220中;(a2) 將一樣本注入該注入槽模組210,並由該驅動模組3產生離心力將該樣本送入該分離管柱220中;(a3) 將一沖提劑注入該注入槽模組210,並由該驅動模組3產生離心力將該沖提劑送入該分離管柱220中;(a4) 進行一純化分離作業,該驅動模組3控制轉速使該樣本及該沖提劑流過該連接通道模組進入該分配流道230中,並分配至該複數個蒐集槽240;以及(a5) 使用一檢測模組5作分析該複數個蒐集槽240中的該樣本,以產生一檢測結果。
在本實施例中,其中該分離管柱220為螺旋結構,而該分配流道230為螺旋或弧型結構,該螺旋結構為以固定點為圓心(本實施例為碟片20)逐漸增加圓的半徑大小由內往外所劃的一圓弧曲線所構成的結構,利用該螺旋結構來幫助離心作用,使用離心驅動力來進行該純化分離。
在本實施例的步驟(a)中,請參照圖14及圖2,以固定質量之粉體注入注入槽模組210中,再將該微流體模組2裝置於該驅動模組3上,並使用運算模組4所編寫之程式驅動驅動模組3來控制碟片20的轉速、轉向、轉動模式、震盪頻率…等,進行震盪。在圖2的實施例中,粉體可選用矽膠作為粉體材料,且不在此限制。在其中其他實施例中,該粉體材料可依照使用的不同管柱層析方式使用不同種分離管柱220與粉體材料,舉例而言,不同管柱層析方式的分離機制可分為吸附層析、分配層析、離子交換層析、凝膠層析、親和層析等類別。
震盪過程中,粉體會填入碟片20中的分離管柱220中。同樣地,在圖2的實施例中,使用之驅動模組3為馬達,並利用該馬達震盪填充該粉體。
在本實施例的步驟(a2)中,請參照圖2及圖14,分離管柱220填充完畢後,將定量之樣本注入碟片20中之注入槽模組210中,再將碟片20放置驅動模組3上,接著使用運算模組4驅動驅動模組3,使碟片20旋轉,並使樣本在碟片20中產生離心驅動力載入分離管柱220中。
在本實施例的步驟(a3)中,請參照圖2及圖14,待樣本都填充進分離管柱220後,將定量之沖提劑注入注入槽模組210中,再將碟片20放置驅動模組3上,接著使用運算模組4驅動驅動模組3,使碟片20旋轉,並使沖提劑在碟片20中產生離心驅動力載入分離管柱220中。在其中一實施例中,因不同的分離過程,分別依序使用不同比例成份的沖提劑以符合每個階段純化過程的需要,此時需要驅動模組3對於轉速的控制與碟片20設計,利用慣性力使各種液體達到自動分配及依序釋放的功能。
在本實施例的步驟(a4)中,請參照圖2及圖14,該純化分離作業為沖提劑進入分離管柱220中之後便開始帶動樣本的分離,分離的過程中需要流經分配流道230,分離完的液體依序流至外半徑的蒐集槽240,並且會一格一格地自動填充於該複數個蒐集槽240中。整個過程當中亦使用運算模組4驅動驅動模組3,並由該驅動模組3控制碟片20的旋轉與轉速。
在本實施例的步驟(a4)的純化分離過程中,請參照圖2及圖14,使用該驅動模組3的離心力使該樣本及該沖提劑於流道中流動產生液壓並有驅動力,該分離管柱220與該分配流道230透過一第一連接通道2210連接,當注入槽模組210中該樣本、該沖提劑或其組合流動接近於該分離管柱220的底部時,即該樣本、該沖提劑或其組合的液體體積剛好填充至該分離管柱220的底部,由於驅動力減少而促使流動自動停止,此時須藉由該驅動模組3使該樣本及該沖提劑流過該第一連接通道2210處以流入該分配流道230。
在本實施例的步驟(a5)中,請參照圖1及圖2,純化後的樣本完整填入蒐集槽240中之後,多餘的該沖提劑、該樣本或其組合可透過驅動模組3控制轉向流入廢液槽250中暫存,接著便能使用檢測模組5作分析,以產生檢測結果。在本實施例中,檢測技術可為光學檢測分析、核磁共振光譜分析、薄層層析分析以及氣相層析分析且不在上述此限。進一步言之,檢測模組5可以為分光光度計、核磁共振儀、薄層層析片以及氣相層析儀且不在上述此限,並根據數據,得出該檢測結果。在其中一實施例中,使用光學檢測分析時,該分光光度計透過與該蒐集槽240相對應連接的方式,再透過分別與該檢測模組5及該微流體模組2相連接的驅動模組3,來調整分光光度計探測點與該蒐集槽240的相對位置關係,分別測得每個蒐集槽240的吸光值,用此檢測結果來求得目標分離物的所在或是未知樣本的組成分析。其他檢測技術可比照上述方法來得出其相對應的檢測結果。
本發明更提供另一種離心式純化平台1使用方法的實施例,請參照圖10、圖11以及圖17,其中當該連接通道模組為一第二連接通道(第二連接通道呈分岔狀)時,其步驟包含:(d1) 將一粉體注入該注入槽模組210後透過該驅動模組3震盪,使該粉體填充至該分離管柱220中; (d2) 將一樣本注入該注入槽模組210,並由該驅動模組3產生離心力將該樣本送入該分離管柱220中; (d3) 將一沖提劑注入該注入槽模組210,並由該驅動模組3產生離心力將該沖提劑送入該分離管柱220中;(d4) 於該分離管柱220中進行一純化分離作業,該驅動模組3控制轉速使該樣本、該沖提劑或其組合流過該第二連接通道2220並藉由控制轉向流經該第一選擇通道來填充該複數個蒐集槽240;(d5) 該驅動模組3提高轉速及逆轉方向使剩餘的該樣本、該沖提劑或其組合流經該第二選擇通道並填入一廢液槽250中;以及(d6) 使用一檢測模組5作分析該複數個蒐集槽240中的該樣本,以產生一檢測結果。
請參照圖10以及圖11,在本實施例中,該連接通道模組為一第二連接通道2220,呈分岔狀,連接該分離管柱220與該分配流道230。與前述實施例不同的步驟(d4)中,利用該驅動模組3使該樣本、該沖提劑或其組合流過該第二連接通道2220,再利用調整驅動模組3的轉向來控制從分離管柱220流出的流體流向,流向分岔狀的第二連接通道2220中之第一選擇流道2220a或第二選擇流道2220b。於步驟(d4)中,透過該驅動模組3控制轉速使液體導向該第一選擇流道2220a並續流至連接有複數個蒐集槽240的分配流道230,並一一填充該複數個蒐集槽240;於步驟(d5)中,利用該驅動模組3同時提高轉速及逆轉,殘留在分離管柱220中的沖提劑會流入第二選擇流道2220b並使液體導向該第二選擇流道2220b連接有廢液槽250的分配流道230並填入該廢液槽250中。最後,如同前述實施例,進入步驟(d6)中進行檢測,得出檢測結果分析。
本發明更提供另一種使用離心式純化平台1的使用方法,請參照圖10、圖12以及圖18,其中當每個該複數個蒐集槽240上更設有一個抽取槽235且該抽取槽235透過一個第四阻擋閥237連接每個該複數個蒐集槽240時,其步驟包含:(e1) 將粉體注入該注入槽模組210後透過該驅動模組3震盪,使該粉體填充至該分離管柱220中; (e2) 將樣本注入該注入槽模組210,並由該驅動模組3產生離心力將該樣本送入該分離管柱220中;(e3) 將沖提劑注入該注入槽模組210,並由該驅動模組3產生離心力將該沖提劑送入該分離管柱220中;(e4) 進行純化分離作業,該驅動模組3控制轉速使該樣本、該沖提劑或其組合流過該連接通道模組進入該分配流道230中,並分配至該複數個蒐集槽240;(e5) 該驅動模組3提高轉速及逆轉方向使該複數個蒐集槽240中的該樣本、該沖提劑或其組合突破該第四阻擋閥237並流入該抽取槽235中,以達到斷流;以及(e6) 使用檢測模組5作分析該複數個蒐集槽240中的該樣本,以產生檢測結果。
在本實施例中,於步驟(e4)該純化分離作業後,多餘的該沖提劑、該樣本或其組合流入廢液槽250中。接著,執行與前述實施例不同的步驟(e5)中,請參照圖10及圖12,其中該複數個蒐集槽240上更設有抽取槽235,透過第四阻擋閥237相連接。該第四阻擋閥237的作用係與抽取槽235共構成為氣壓閥,以利液體在複數個蒐集槽240中達到依序填滿並分配完成的動作。在本實施例中,待複數個蒐集槽240填充完成時,可利用同時改變方向及提高轉速使分離的樣本填充複數個蒐集槽240後分別克服第四阻擋閥237和抽取槽235共構氣壓閥的壓力流入抽取槽235中,達到斷流且不回流入分配流道230的效果,降低與其他蒐集槽240內溶液混合的風險。於提高轉速及逆轉的同時,殘留在分離管柱220中的沖提劑會流入第二選擇流道2220b,進而進入廢液槽250。更進一步來說,請參照圖12,由於複數個蒐集槽240係與分配流道230連通,透過第四阻擋閥237和抽取槽235共構為氣壓閥的設計,可以讓分離完成的樣本在逆轉兼提高轉速的同時,突破第四阻擋閥237和抽取槽235共構的氣壓閥。藉此,將原存於抽取槽235的空氣與複數個蒐集槽240產生氣液置換的效果。讓原存在複數個蒐集槽240和分配流道230間的水膜無法進而影響已分配到抽取槽235中的樣本,完成樣本純化後的分離。若有需要取出蒐集槽240中的液體作檢測,可直接從抽取槽235中抽取分離好的液體。
本發明更提供另一種離心式純化平台1使用方法的實施例,請同時參照圖4、圖5、圖6及圖15,其中當每個該注入槽模組210更包含一個暫止槽2110、一個傾析槽2120以及一個第二沖提劑槽2130且該第二沖提劑槽2130透過一個第一阻擋閥2150a與該傾析槽2120連接,全部步驟包含:(b1) 將一粉體注入該注入槽模組210後透過該驅動模組3震盪,使該粉體填充至該分離管柱220中;(b2) 將一樣本6與至少一沖提劑7a分別注入該暫止槽2110與該至少一第二沖提劑槽2130,並由該驅動模組3產生離心力將該樣本6送入該分離管柱220中,同時該至少一沖提劑7a因該第一阻擋閥2150a而滯留在該至少一第二沖提劑槽2130; (b3)透過該驅動模組3提高轉速使該至少一沖提劑7a克服第一阻擋閥2150a進入該至少一傾析槽2120中,接著再急降轉速,或最佳為急降至零,使該至少一沖提劑7a由該至少一傾析槽2120進入該暫止槽2110,最後提升轉速使該沖提劑7a再進入該分離管柱220;(b4)進行一純化分離作業,該驅動模組3控制轉速使該樣本6及該沖提劑7a流經該連接通道模組進入該分配流道230中,並分配至該複數個蒐集槽240;以及(b5)使用一檢測模組5作分析該複數個蒐集槽240中的該樣本6,以產生一檢測結果。其中,執行該離心式純化平台1的步驟更包含第一自動化步驟:由步驟(b2)與步驟(b3)執行。
更進一步來說,圖15中所展示的第一自動化步驟係在本實施例圖6中,首先在步驟(b2)中,將樣本6注入暫止槽2110、沖提劑7a注入第二沖提劑槽2130。在驅動模組3開始旋轉後,樣本6由該暫止槽2110進入該分離管柱220,在此同時該沖提劑7a因為該第一阻擋閥2150a的毛細管壓力阻擋而留滯在第二沖提劑槽2130中;因此在步驟(b3)中,提高轉速使沖提劑7a由該第二沖提劑槽2130克服該第一阻擋閥2150a的毛細管壓而進入該傾析槽2120中;待樣本6完全進入分離管柱220後,快速降低馬達轉速,使該沖提劑7a靠著慣性力由傾析槽2120傾注至暫止槽2110,最後再提升轉速使沖提劑7a進入分離管柱220。該樣本6與沖提劑7a進入分離管柱220分離後,進行步驟(b4),請參照圖4,經由控制轉速通過該第一連接通道2210後進入分配流道230並依序進入該複數個蒐集槽240。步驟(b4)該純化分離作業後,多餘的該沖提劑7a、該樣本6或其組合流入廢液槽250中。最後進行步驟(b5),如同前述步驟(a5)。
除上述以外,本發明更提供另一種離心式純化平台1使用方法的實施例,請參照圖7、圖8、圖9以及圖16。其中當該沖提劑有兩種時,該注入槽模組210更包含暫止槽2110、第一暫止槽2110a、第一傾析槽2120a、第二暫止槽2110b、第二傾析槽2120b,則該離心式純化平台1的實施方法步驟包含:(c1) 將一粉體注入該注入槽模組210後透過該驅動模組3震盪,使該粉體填充至該分離管柱220中;(c2) 將一樣本6、該第一沖提劑7b以及該第二沖提劑8分別注入該暫止槽2110、該第一傾析槽2120a以及該第二傾析槽2120b,注入後該樣本6即填入該分離管柱220中並透過該驅動模組3產生離心力將該第一沖提劑7b送入該第一暫止槽2110a、將該第二沖提劑8送入該第二暫止槽2110b;(c3) 透過該驅動模組3提高轉速使該第一沖提劑7b克服該第二阻擋閥2150b進入該暫止槽2110、該第二沖提劑8克服該第三阻擋閥2150c進入該第一傾析槽2120a;(c4) 透過該驅動模組3降低轉速或改變旋轉方向使該第一沖提劑7b進入該分離管柱220、該第二沖提劑8進入該第一暫止槽2110a;(c5) 透過該驅動模組3提高轉速使該第二沖提劑8克服該第二阻擋閥2150b進入該暫止槽2110,接著再進入該分離管柱220中;(c6) 進行一純化分離作業,該驅動模組3控制轉速使該樣本6、該第一沖提劑7b及該第二沖提劑8流經該連接通道模組進入該分配流道230中,並分配至該複數個蒐集槽240;以及(c7) 使用該檢測模組5作分析該複數個蒐集槽240中的該樣本6,以產生一檢測結果。其中,執行該離心式純化平台1的步驟更包含第二自動化步驟:由步驟(c2)、步驟(c3)、步驟(c4)與步驟(c5)執行。
在本實施例中,請參照圖8及圖9,其中該第二自動化步驟包含:步驟(c2)中,將須填入該分離管柱220之該樣本6、第一沖提劑7b以及第二沖提劑8分別加入該暫止槽2110、第一傾析槽2120a以及第二傾析槽2120b之後,透過驅動模組3急降轉速,或最佳為急降至零,利用慣性力量來驅動該樣本6先填入該分離管柱220,同時該第一沖提劑7b進入該第一暫止槽2110a、該第二沖提劑8進入該第二暫止槽2110b,由於阻擋閥的設置使沖提劑皆留滯;步驟(c3)中,透過該驅動模組3調高轉速,使該第一沖提劑7b克服該第二阻擋閥2150b的毛細管壓由該第一暫止槽2110a進入該暫止槽2110、該第二沖提劑8克服該第三阻擋閥2150c的毛細管壓由該第二暫止槽2110b進入該第一傾析槽2120a;步驟(c4)中,透過該驅動模組3降低轉速或改變旋轉方向,使該第一沖提劑7b進入該分離管柱220的同時,該第二沖提劑8進入該第一暫止槽2110a;以及最後步驟(c5)中,透過該驅動模組3調高轉速,使該第二沖提劑8克服第二阻擋閥2150b的毛細管壓由該第一暫止槽2110a進入該暫止槽2110。與前述實施例步驟(b4)相同地執行步驟(c6)該純化分離作業後,多餘的該第一沖提劑7b、該第二沖提劑8、該樣本6或其組合流入廢液槽250中,並續行步驟(c7)中的檢測分析以得出檢測結果。
本發明使用如前述之離心式純化平台1的方法與樣態並不在上述的實施例所限,可根據使用需求調整注入槽模組210結構或數量。舉例而言,當使用沖提劑種類為N種時,該注入槽模組210更包含N個傾析槽以及N+1個暫止槽,使用之方式可根據前述實施例之步驟重複操作以達到多段液體釋放。
整體而言,在上述圖14到圖18中所示的離心式純化平台1之使用方法的實施例中,進行步驟(a1)、步驟(b1)、步驟(c1)、步驟(d1)以及步驟(e1)時,於將粉體加入分離管柱220後及樣本注入之前(即步驟(a2)、步驟(b2)、步驟(c2)、步驟(d2)以及步驟(e2)之前),可根據樣本的特性,例如極性大小等,來調整是否在注入樣本前先利用沖提劑注入分離管柱220中進行粉體的潤濕,以增加管柱層析分離的效果。進一步來說,在可能的實施例中,透過沖提劑事先注入使該粉體為濕潤狀態再注入樣本,以進行管柱層析分離為可行的方案;當然,在粉體注入分離管柱220後,在未有沖提劑事先注入的情形下直接注入樣本,使該粉體為乾燥狀態,亦可進行管柱層析分離的作業。無論粉體為乾燥狀態、濕潤狀態抑或其它因應樣本特性或性質進行的粉體狀態調整手段,應皆包含在本發明的範圍之內。
綜上,透過本實施例之離心式純化平台1及其使用方法,可以在1小時內完成樣本的純化過程。此外,樣本的需求量可少於50 微升(µL),並且可以容易地提取純化後的化合物。 此外,在本實施例中,可透過較小的粉體粒徑、較低粉體孔隙率、較長的分離管柱220和較低的圓盤轉速雖會來將分析時間延長,但更能使分離結果更好。
因此,本實施例所述之離心式純化平台1及其使用方法,相對於現有的管柱層析方法來說,儀器成本低、樣本和檢測液體用量少,並且具有快速且自動化檢驗流程,可自動地得分裝純化之分離物,不需人為收集。據此,本發明可望取代現有有機實驗室純化分離之實驗步驟,成為下一世代化合物純化分離平台,也能達到檢測水質、食安等日常生活項目。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及說明內容所作之簡單變化與修飾,皆仍屬本發明涵蓋之範圍內。
1:離心式純化平台 2:微流體模組 20:碟片 200:微流體結構 210:注入槽模組 210a:樣本槽 210b:第一沖提劑槽 2110:暫止槽 2110a:第一暫止槽 2110b:第二暫止槽 2120:傾析槽 2120a:第一傾析槽 2120b:第二傾析槽 2130:第二沖提劑槽 2150a:第一阻擋閥 2150b:第二阻擋閥 2150c:第三阻擋閥 220:分離管柱 220b:第二分離管柱 2210:第一連接通道 2220:第二連接通道 2220a:第一選擇流道 2220b:第二選擇流道 230:分配流道 2310:通氣孔 235:抽取槽 237:第四阻擋閥 240:蒐集槽 250:廢液槽 3:驅動模組 4:運算模組 5:檢測模組 6:樣本 7a:沖提劑 7b:第一沖提劑 8:第二沖提劑 9:阻擋模組 (a1)~(a5):步驟 (b1)~(b5):步驟 (c1)~(c7):步驟 (d1)~(d6):步驟 (e1)~(e6):步驟 第一自動化步驟 第二自動化步驟
圖1為本發明較佳實施例之離心式純化平台示意圖。 圖2為本發明較佳實施例之微流體模組示意圖。 圖3為本發明較佳實施例之注入槽模組示意圖。 圖4為本發明另一較佳實施例之微流體模組示意圖。 圖5為本發明另一較佳實施例之注入槽模組示意圖。 圖6為本發明另一較佳實施例之注入槽模組使用流程圖。 圖7為本發明又一較佳實施例之微流體模組示意圖。 圖8為本發明又一較佳實施例之注入槽模組示意圖 圖9為本發明又一較佳實施例之注入槽模組使用流程圖。 圖10為本發明再一較佳實施例之微流體模組示意圖。 圖11為本發明再一較佳實施例之第二連接通道示意圖。 圖12為本發明再一較佳實施例之蒐集槽、阻隔閥以及抽取槽示意圖。 圖13為本發明較佳實施例之粒子塞示意圖。 圖14為本發明較佳實施例離心式純化平台使用方法之流程圖。 圖15為本發明另一實施例之包含第一自動化步驟的使用離心式純化平台的方法之流程圖。 圖16為本發明另一實施例之包含第二自動化步驟的使用離心式純化平台的方法之流程圖。 圖17為本發明另一較佳實施例之使用離心式純化平台的方法之流程圖。 圖18為本發明另一較佳實施例之使用離心式純化平台的方法之流程圖。
2:微流體模組
20:碟片
200:微流體結構
210:注入槽模組
220:分離管柱
2210:第一連接通道
230:分配流道
2310:通氣孔
240:蒐集槽
250:廢液槽

Claims (13)

  1. 一種離心式純化平台,包含:一微流體模組,該微流體模組包含一碟片與一微流體結構,該微流體結構更包含:至少一注入槽模組,設置於該碟片上;至少一分離管柱,設置於該碟片上且與該注入槽模組連接;至少一分配流道,設置於該碟片上且透過一連接通道模組與該分離管柱連接;複數個蒐集槽,設置於該碟片上且各與該分配流道連接;一廢液槽,設置於該至少一分配流道的末端;一驅動模組,該驅動模組上放置該微流體模組;一運算模組,該運算模組驅動該驅動模組;以及一檢測模組,分別與該微流體模組以及該驅動模組連接;其中,該至少一分離管柱呈螺旋狀,該至少一分配流道呈螺旋狀或弧狀;其中,該分離管柱底端更設置有一阻擋模組;其中,每個該至少一注入槽模組包含至少一暫止槽、至少一傾析槽及至少一阻擋閥。
  2. 如請求項1所述的一種離心式純化平台,其中每個該至少一注入槽模組更包含至少一第二沖提劑槽,且該至少一傾析槽透過一第一阻擋閥與該至少一第二沖提劑槽連接。
  3. 如請求項1所述的一種離心式純化平台,其中該至少一暫止槽、該至少一傾析槽及該至少一阻擋閥係配置為:一暫止槽;一第一暫止槽,其中該第一暫止槽透過一第二阻擋閥與該暫止槽連接;一第二暫止槽;一第一傾析槽,該第一傾析槽透過一第三阻擋閥與該第二暫止槽連接且另一端與該第一暫止槽連通;以及一第二傾析槽,該第二傾析槽與該第二暫止槽連通。
  4. 如請求項1所述的一種離心式純化平台,其中該至少一分配流道更設有至少一通氣孔;該驅動模組包含至少一馬達;該運算模組包含至少一電腦。
  5. 如請求項1所述的一種離心式純化平台,其中該連接通道模組為一第一連接通道,該第一連接通道呈單支狀。
  6. 如請求項1所述的一種離心式純化平台,其中該連接通道模組為一第二連接通道,該第二連接通道呈分岔狀。
  7. 如請求項1所述的一種離心式純化平台,其中每個該複數個蒐集槽上更設有一抽取槽,該抽取槽透過一第四阻擋閥連接每個該複數個蒐集槽。
  8. 如請求項1所述的一種離心式純化平台,其中該檢測模組包含一分光光度計、一核磁共振光譜儀(Nuclear Magnetic Resonance,NMR)、一薄層層析(Thin Layer Chromatography,TLC)、一氣相層析儀(Gas Chromatography,GC)或其組合。
  9. 一種使用離心式純化平台的使用方法,提供請求項2所述的離心式純化平台,其步驟包含:(b1)將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(b32)將一樣本與至少一沖提劑分別注入該暫止槽與該至少一第二沖提劑槽,並由該驅動模組產生離心力將該樣本送入該分離管柱中,同時該至少一沖提劑因該第一阻擋閥而滯留在該至少一第二沖提劑槽;(b3)透過該驅動模組提高轉速使該至少一沖提劑克服第一阻擋閥進入該至少一傾析槽中,接著再急降轉速使該至少一沖提劑由該至少一傾析槽進入該暫止槽,最後提升轉速使該沖提劑再進入該分離管柱; (b4)進行一純化分離作業,該驅動模組控制轉速使該樣本及該沖提劑流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;以及(b5)使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
  10. 一種使用離心式純化平台的使用方法,提供請求項3所述的離心式純化平台,其步驟包含:(c1)將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(c2)將一樣本、該第一沖提劑以及該第二沖提劑分別注入該暫止槽、該第一傾析槽以及該第二傾析槽,透過該驅動模組旋轉使該樣本送入該分離管柱並急降轉速將該第一沖提劑送入該第一暫止槽、將該第二沖提劑送入該第二暫止槽;(c3)透過該驅動模組提高轉速使該第一沖提劑克服該第三阻擋閥進入該暫止槽、該第二沖提劑克服該第二阻擋閥進入該第一傾析槽;(c4)透過該驅動模組降低轉速或改變旋轉方向使該第一沖提劑進入該分離管柱、該第二沖提劑進入該第一暫止槽; (c5)透過該驅動模組提高轉速使該第二沖提劑克服該第二阻擋閥進入該暫止槽,接著再進入該分離管柱中;(c6)進行一純化分離作業,該驅動模組控制轉速使該樣本、該第一沖提劑及該第二沖提劑流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;以及(c7)使用該檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
  11. 一種使用離心式純化平台的使用方法,提供請求項6所述的離心式純化平台,其步驟包含:(d1)將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(d2)將一樣本注入該注入槽模組,並由該驅動模組產生離心力將該樣本送入該分離管柱中;(d3)將一沖提劑注入該注入槽模組,並由該驅動模組產生離心力將該沖提劑送入該分離管柱中;(d4)於該分離管柱中進行一純化分離作業,該驅動模組提高轉速使該樣本、該沖提劑或其組合流經第二連接通道並藉由控制轉向流經該第一選擇通道來填充該複數個蒐集槽; (d5)該驅動模組提高轉速及逆轉方向使剩餘的該樣本、該沖提劑或其組合流經該第二選擇通道並填入一廢液槽中;以及(d6)使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
  12. 一種離心式純化平台的使用方法,提供請求項7所述的離心式純化平台,其步驟包含:(e1)將一粉體注入該注入槽模組後透過該驅動模組震盪,使該粉體填充至該分離管柱中;(e2)將一樣本注入該注入槽模組,並由該驅動模組產生離心力將該樣本送入該分離管柱中;(e3)將一沖提劑注入該注入槽模組,並由該驅動模組產生離心力將該沖提劑送入該分離管柱中;(e4)進行一純化分離作業,該驅動模組控制轉速使該樣本、該沖提劑或其組合流經該連接通道模組進入該分配流道中,並分配至該複數個蒐集槽;(e5)該驅動模組提高轉速及逆轉方向使該複數個蒐集槽中的該樣本、該沖提劑或其組合突破該第四阻擋閥並流入該抽取槽中,以達到一斷流;以及 (e6)使用一檢測模組作分析該複數個蒐集槽中的該樣本,以產生一檢測結果。
  13. 如請求項9、10、11或12任一項所述的離心式純化平台的使用方法,在注入該粉體後,該分離管柱中的該粉體為乾燥狀態或濕潤狀態。
TW109120174A 2020-06-16 2020-06-16 離心式純化平台及其使用方法 TWI777177B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109120174A TWI777177B (zh) 2020-06-16 2020-06-16 離心式純化平台及其使用方法
US17/342,539 US20210387179A1 (en) 2020-06-16 2021-06-08 Centrifugal-driven microfluidic platform and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109120174A TWI777177B (zh) 2020-06-16 2020-06-16 離心式純化平台及其使用方法

Publications (2)

Publication Number Publication Date
TW202200981A TW202200981A (zh) 2022-01-01
TWI777177B true TWI777177B (zh) 2022-09-11

Family

ID=78824405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120174A TWI777177B (zh) 2020-06-16 2020-06-16 離心式純化平台及其使用方法

Country Status (2)

Country Link
US (1) US20210387179A1 (zh)
TW (1) TWI777177B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587394A (en) * 2019-09-26 2021-03-31 Edwards Ltd Packed tower
DE102022111890B3 (de) * 2022-05-12 2023-03-16 Dermagnostix GmbH Verfahren zur Deparaffinierung von Formalin-fixiertem Paraffin-eingebettetem Gewebe
TWI836451B (zh) * 2022-05-27 2024-03-21 健行學校財團法人健行科技大學 具流體樣本分選功能之碟盤結構及其分選方法
CN116400032A (zh) * 2022-12-14 2023-07-07 武汉新烽光电股份有限公司 一种微流控水质检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102362A1 (en) * 2003-09-01 2007-05-10 Kazuhiro Iida Chip
US20090104643A1 (en) * 2005-09-15 2009-04-23 Bartholomeusz Daniel A Bioluminescence-based sensor with centrifugal separation and enhanced light collection
TW201625922A (zh) * 2015-01-09 2016-07-16 台達電子工業股份有限公司 離心式流道裝置
TWI550274B (zh) * 2014-08-20 2016-09-21 紹興普施康生物科技有限公司 微流體檢驗裝置及其運作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101868961B1 (ko) * 2016-06-21 2018-06-19 울산과학기술원 미세 유체 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070102362A1 (en) * 2003-09-01 2007-05-10 Kazuhiro Iida Chip
US20090104643A1 (en) * 2005-09-15 2009-04-23 Bartholomeusz Daniel A Bioluminescence-based sensor with centrifugal separation and enhanced light collection
TWI550274B (zh) * 2014-08-20 2016-09-21 紹興普施康生物科技有限公司 微流體檢驗裝置及其運作方法
TW201625922A (zh) * 2015-01-09 2016-07-16 台達電子工業股份有限公司 離心式流道裝置

Also Published As

Publication number Publication date
TW202200981A (zh) 2022-01-01
US20210387179A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
TWI777177B (zh) 離心式純化平台及其使用方法
EP1007953B1 (en) Integrated microfluidic devices
EP1776585B1 (en) Immunoassay assembly and methods of use
US7135111B2 (en) Separation analyzer
US7384602B2 (en) Chemical analysis apparatus and genetic diagnostic apparatus
EP2225545B1 (en) Automated liquid handling device and associated assay unit
US10753915B2 (en) Methods for analysis of phase-I and phase-II metabolites and parent compounds without hydrolysis
de Castro et al. Lab-on-valve: a useful tool in biochemical analysis
EP1236039A1 (en) Apparatus and method for trapping bead based reagents within microfluidic analysis systems
Marshall et al. Zone fluidics in flow analysis: potentialities and applications
US20060263265A1 (en) Blood micro-separator
EP1536228A1 (en) Dual loop autosampling
KR102491723B1 (ko) 마이크로 유체 장치 및 핵산 분석 방법
JP2007232674A (ja) 遠心分離デバイス及び遠心分離方法
JPWO2019146734A1 (ja) 分離装置及び分離方法、分離デバイス、並びに検査装置及び検査方法
CN113649095A (zh) 一种用于核酸检测的高度集成式微流控芯片及使用方法
CN101206227A (zh) 一种微流控芯片中大体积进样方法及专用芯片
EP1503209A1 (en) Chemical analyzer and gene diagnosing apparatus
JP7464271B2 (ja) 分離装置及び分離方法、並びに検査装置及び検査方法
CN112180021B (zh) 液相色谱系统
Kinahan et al. Nucleic acid purification on a Lab-on-a-Disc with time-controlled incubation
CN117718088A (zh) 一种离心式微流控免疫检测芯片
WO2023202351A1 (zh) 一种按序加样装置及自动加样系统
Wells Sample preparation for mass spectrometry
CN117551540A (zh) 一种离心式微流控核酸分析芯片及核酸检测方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent