TWI775101B - Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia - Google Patents
Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia Download PDFInfo
- Publication number
- TWI775101B TWI775101B TW109121178A TW109121178A TWI775101B TW I775101 B TWI775101 B TW I775101B TW 109121178 A TW109121178 A TW 109121178A TW 109121178 A TW109121178 A TW 109121178A TW I775101 B TWI775101 B TW I775101B
- Authority
- TW
- Taiwan
- Prior art keywords
- emodin
- retinal
- ischemia
- retinal ischemia
- disease
- Prior art date
Links
Images
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本發明係關於大黃素用於製備治療視網膜缺血之藥物的用途。本發明更特別地係關於包含大黃素的組合物用於製備治療及/或預防視網膜缺血和與視網膜缺血相關的疾病、病況或病症之藥物的用途。 The present invention relates to the use of emodin for preparing medicine for treating retinal ischemia. The present invention more particularly relates to the use of a composition comprising emodin for the manufacture of a medicament for the treatment and/or prevention of retinal ischemia and diseases, conditions or disorders associated with retinal ischemia.
視網膜血管阻塞(視網膜中央動脈/靜脈阻塞及視網膜分支動脈/靜脈阻塞),青光眼性視神經病變(glaucomatous optic neuropathy),增生性糖尿病視網膜病變(proliferative diabetic retinopathy,DBR),和新生血管性老年有關黃斑部退化(neovascular age-related macular degeneration,AMD)以及視網膜發育異常都是與視網膜缺血相關的疾病。光學相干斷層掃描(OCT)證明的視網膜變薄和/或由於內部視網膜神經元死亡而導致視野改變時,可檢測到視網膜缺血。視網膜神經節細胞(RGC)。臨床上,當視網膜電圖(electroretinogram,ERG)的b波改變,光學相干斷層掃描(optical coherence tomography,OCT)所證實的視網膜變薄和/或由於因視網膜內部神經元(例如視網膜神經節細胞(retinal ganglion cells,RGCs))死亡而引 起的視野改變時,可檢測視網膜缺血。這些疾病影響了全世界數百萬人口,因此視網膜缺血的治療非常重要。因此建立了涉及誘導視網膜缺血的模型,該模型包括增加眼內壓(IOP)。利用這種方法,以研究各種訊息路徑相關的新型治療方法將是尋找合適的抗視網膜缺血的藥物的有用方法。 Retinal vascular occlusion (central retinal artery/vein occlusion and branch retinal artery/vein occlusion), glaucomatous optic neuropathy (glaucomatous optic neuropathy), proliferative diabetic retinopathy (DBR), and neovascular age-related macular Both neovascular age-related macular degeneration (AMD) and retinal dysplasia are diseases associated with retinal ischemia. Retinal ischemia can be detected when retinal thinning and/or visual field changes due to the death of internal retinal neurons are evidenced by optical coherence tomography (OCT). retinal ganglion cells (RGCs). Clinically, when b-wave changes in electroretinogram (ERG), retinal thinning as evidenced by optical coherence tomography (OCT) and/or due to intraretinal neurons (eg retinal ganglion cells ( retinal ganglion cells, RGCs)) die Retinal ischemia can be detected when visual field changes occur. These diseases affect millions of people worldwide, so the treatment of retinal ischemia is very important. A model involving the induction of retinal ischemia was therefore established, which model included increased intraocular pressure (IOP). Utilizing this approach to study novel therapeutic approaches related to various signaling pathways will be a useful approach to finding suitable anti-retinal ischemia drugs.
研究顯示,在正常氧的情況下,β-鏈蛋白(β-catenin)的訊息路徑會活化T細胞因子4(TCF-4)並促進細胞增殖。然而,在缺氧的情況下,β-鏈蛋白會促進缺氧誘導因子-1α(HIF-1α)的表現,眾所周知,缺氧誘導因子-1α(HIF-1α)隨後可提高血管內皮生長因子(VEGF)的水平。該事件繼而會使細胞週期停滯以適應缺氧。此外,根據報導,抑制β-鏈蛋白和/或血管內皮生長因子(VEGF)的蛋白表現可防止缺血所引起的血管通透性增加,該血管通透性增加與隨後的新血管形成,眼出血和/或囊樣黃斑水腫有關。 Studies have shown that under normoxia, the signaling pathway of β-catenin activates T cell factor 4 (TCF-4) and promotes cell proliferation. However, in the presence of hypoxia, β-catenin promotes the expression of hypoxia-inducible factor-1α (HIF-1α), which is known to subsequently increase vascular endothelial growth factor ( VEGF). This event in turn arrests the cell cycle to adapt to hypoxia. Furthermore, it has been reported that inhibition of the protein expression of β-catenin and/or vascular endothelial growth factor (VEGF) prevents ischemia-induced increases in vascular permeability that are associated with subsequent neovascularization, ocular Bleeding and/or cystoid macular edema.
大黃素(6-甲基-1,3,8-三羥基蒽醌;6-methyl-1,3,8-trihydroxyanthraquinone)是一種可從大黃(rhubarb)、鼠李(buckthorn)和日本虎杖(Japanese knotweed)中分離出來的化合物。大黃素已顯示出在各種條件下具有抑制發炎的潛力。例如,大黃素已被證明能減輕實驗性疾病模型的嚴重性,包括關節炎、肝損傷、動脈粥狀硬化、心肌缺血和癌症等。 Emodin (6-methyl-1,3,8-trihydroxyanthraquinone; 6-methyl-1,3,8-trihydroxyanthraquinone) is a source of rhubarb, buckthorn and Japanese knotweed (Japanese knotweed). Emodin has been shown to have the potential to inhibit inflammation under various conditions. For example, emodin has been shown to reduce the severity of experimental disease models, including arthritis, liver damage, atherosclerosis, myocardial ischemia and cancer.
本發明涉及一種對有需要的個體治療視網膜缺血或與視網 膜缺血相關的疾病、病況或病症的方法,包含施予該個體一有效劑量的大黃素或一包含大黃素的組合物。 The present invention relates to a method for treating retinal ischemia or retinal ischemia in an individual in need thereof. A method of a disease, condition or disorder associated with membrane ischemia comprising administering to the individual an effective dose of emodin or a composition comprising emodin.
在本發明中,使用動物模型來研究大黃素對視網膜缺血的保護作用。此外,本發明還研究大黃素治療視網膜缺血時,如何調控β-鏈蛋白的量。 In the present invention, an animal model was used to study the protective effect of emodin on retinal ischemia. In addition, the present invention also studies how to regulate the amount of β-catenin when emodin treats retinal ischemia.
本發明已經證實透過在缺血前及/或缺血後施用大黃素可以減輕因眼內壓(IOP)提高而導致的視網膜缺血性損傷。上述缺血引起的改變係透過視網膜電圖(ERG)、組織病理學(經甲苯酚紫染色的視網膜層的厚度)、螢光金反向免疫標記的視網膜神經節細胞(RGC)以及β-鏈蛋白(β-catenin)和血管內皮生長因子(VEGF)的蛋白表現量的測量等方法進行監測。在細胞存活率分析(MTT assay)中,氧葡萄糖剝奪(Oxygen Glucose Deprivation,OGD)前給予0.5μM大黃素(於大鼠玻璃體內等效注射20μM劑量的大黃素)顯著減輕OGD所誘導的細胞損傷。此外,在動物實驗中,在缺血前於玻璃體內注射20μM的大黃素顯著降低因視網膜缺血所引起的視網膜電圖(ERG)中b波振幅的降低。而缺血後的玻璃體內注射給藥組也顯著減輕該b波振幅的降低。當使用甲苯酚紫染色的視網膜厚度和/或逆行熒光金免疫標記的RGC密度時,也存在這種保護作用。另外,本發明已經證明視網膜缺血性損傷後的β-鏈蛋白/血管內皮生長因子(VEGF)的蛋白表現量顯著性升高。透過在缺血前給予大黃素進行預處理可顯著抑制這種升高的現象。上述發現意味著大黃素透過下調因缺血所導致β-鏈蛋白/血管內皮生長因子(VEGF)的上調而對視網膜缺血損傷的神經元(例如視網膜神經節細胞(RGC))具有保護作用。 The present inventors have demonstrated that retinal ischemic damage due to increased intraocular pressure (IOP) can be alleviated by administration of emodin before and/or after ischemia. The above ischemia-induced changes were detected by electroretinography (ERG), histopathology (thickness of retinal layers stained with cresyl violet), fluorescent gold reverse immunolabeled retinal ganglion cells (RGC), and β-chain The protein (β-catenin) and the expression of vascular endothelial growth factor (VEGF) were monitored by methods such as measurement of protein expression. In cell viability assay (MTT assay), administration of 0.5 μM emodin before Oxygen Glucose Deprivation (OGD) (intravitreal equivalent injection of 20 μM emodin in rats) significantly attenuated OGD-induced Cell damage. In addition, in animal experiments, intravitreal injection of 20 μM emodin before ischemia significantly reduced the decrease in b-wave amplitude in electroretinogram (ERG) caused by retinal ischemia. The post-ischemic intravitreal injection group also significantly alleviated the decrease in b-wave amplitude. This protection was also present when using cresyl violet-stained retinal thickness and/or retrograde fluorescent gold immunolabeled RGC density. In addition, the present invention has demonstrated that the protein expression level of β-catenin/vascular endothelial growth factor (VEGF) is significantly increased after retinal ischemic injury. This elevation was significantly suppressed by preconditioning with emodin before ischemia. The above findings imply that emodin has a protective effect on retinal ischemia-damaged neurons such as retinal ganglion cells (RGCs) by down-regulating ischemia-induced up-regulation of β-catenin/vascular endothelial growth factor (VEGF). .
在缺血(缺氧)的條件下,上調的HIF-1α蛋白與TCF-4競爭以結合細胞中β-鏈蛋白,一旦與HIF-1α結合,β-鏈蛋白將迅速從共同活化TCF-4的角色轉變為刺激HIF-1α介導的轉錄角色。在缺血條件下,提高HIF-1α介導的轉錄導致下游血管內皮生長因子(VEGF)的上調,並伴隨一系列可能的後遺症,包括黃斑水腫和/或眼部出血。本發明表明,大黃素對視網膜缺血性損傷具有改善作用,同時對於缺血誘導的β-鏈蛋白/血管內皮生長因子(VEGF)過量表現具有劑量依賴性和顯著性地(在20μM時)下調。因此,大黃素的保護機制似乎涉及其對β-鏈蛋白/血管內皮生長因子(VEGF)蛋白表現量的抑制,以及上述β-鏈蛋白共同活化的HIF-1α經介導轉錄程度的降低和接續的VEGF濃度的降低。所有這些發現和目前的蛋白質分析(圖5)都強烈支持大黃素具有抗缺血和保護性效應,是透過抑制缺血誘導的β-鏈蛋白(β-catenin)和血管內皮生長因子(VEGF)的過量表現而實現的(圖5)。這是具有重大臨床意義的,因其可以指出處理因視網膜缺血性疾病而在臨床上證實的併發症(例如黃斑水腫)的方法。這些疾病包括視網膜血管阻塞、增生性糖尿病性視網膜病變、新生血管性老年有關黃斑部病變、和可能的視網膜發育疾病(例如家族性滲出性玻璃體視網膜病變(FEVR)、柯氏症(Coat’s disease)、殘留型增殖性初級玻璃體症(Persistent Hyperplastic Primary Vitreous,PHPV)、諾里氏疾病(Norrie disease)或早產兒視網膜病變(Retinopathy of Prematurity,ROP))。 Under ischemic (hypoxic) conditions, up-regulated HIF-1α protein competes with TCF-4 for binding to β-catenin in cells, and once bound to HIF-1α, β-catenin will rapidly deactivate from co-activation of TCF-4 shifts its role to a role in stimulating HIF-1α-mediated transcription. Under ischemic conditions, increased HIF-1α-mediated transcription results in upregulation of downstream vascular endothelial growth factor (VEGF) with a range of possible sequelae, including macular edema and/or ocular hemorrhage. The present invention shows that emodin has an ameliorating effect on retinal ischemic damage, and at the same time dose-dependently and significantly (at 20 μM) ischemia-induced overexpression of β-catenin/vascular endothelial growth factor (VEGF) down. Thus, the protective mechanism of emodin appears to involve its inhibition of β-catenin/vascular endothelial growth factor (VEGF) protein expression, as well as a reduction in the degree of transcription and transcription mediated by HIF-1α co-activated by the aforementioned β-catenin proteins. A subsequent decrease in VEGF concentration. All these findings and the current protein analysis (Figure 5) strongly support the anti-ischemic and protective effects of emodin through inhibition of ischemia-induced β-catenin and vascular endothelial growth factor (VEGF) ) overexpression (Figure 5). This is of great clinical importance as it may point to a way to manage clinically proven complications from retinal ischemic disease such as macular edema. These include retinal vascular occlusion, proliferative diabetic retinopathy, neovascular age-related macular degeneration, and possible retinal developmental disorders (eg, familial exudative vitreoretinopathy (FEVR), Coat's disease, Persistent Hyperplastic Primary Vitreous (PHPV), Norrie disease or Retinopathy of Prematurity (ROP)).
因此,本發明提供一種治療有需要的個體中視網膜缺血或與視網膜缺血相關的疾病、病況或病症的方法,包含施予該個體一有效劑量的大黃素或一包含大黃素的組合物。本發明施予該個體的大黃素的有效劑量 可以是2至30μM;於一些實施例中,施予該個體的大黃素的有效劑量可以是4至20μM;於一實施例中,施予該個體的大黃素的有效劑量係選自4μM、10μM和20μM。於本發明之一實施例中,該大黃素係透過玻璃體內注射給藥。於本發明之另一實施例中,該大黃素係透過口服給藥。 Accordingly, the present invention provides a method of treating retinal ischemia or a disease, condition or disorder associated with retinal ischemia in an individual in need thereof, comprising administering to the individual an effective dose of emodin or a combination comprising emodin thing. The effective dose of emodin administered to the individual by the present invention can be 2 to 30 μM; in some embodiments, the effective dose of emodin administered to the individual can be 4 to 20 μM; in one embodiment, the effective dose of emodin administered to the individual is selected from 4 μM , 10 μM and 20 μM. In one embodiment of the present invention, the emodin is administered by intravitreal injection. In another embodiment of the present invention, the emodin is administered orally.
在一實施例中,該與視網膜缺血相關的疾病、病況或病症包含視網膜血管阻塞、青光眼性視神經病變、增生性糖尿病視網膜病變、新生血管性老年有關黃斑部退化(AMD)、家族性滲出性玻璃體視網膜病變(FEVR)、柯氏症(Coat’s disease)、殘留型增殖性初級玻璃體症(Persistent Hyperplastic Primary Vitreous,PHPV)、諾里氏疾病(norrie disease)或早產兒視網膜病變(Retinopathy of Prematurity,ROP)。在一較佳實施例中,該與視網膜缺血相關的疾病、病況或病症包含家族性滲出性玻璃體視網膜病變、柯氏症、殘留型增殖性初級玻璃體症和諾里氏疾病和早產兒視網膜病變。 In one embodiment, the disease, condition or disorder associated with retinal ischemia comprises retinal vascular occlusion, glaucomatous optic neuropathy, proliferative diabetic retinopathy, neovascular age-related macular degeneration (AMD), familial exudative Vitreoretinopathy (FEVR), Coat's disease, Persistent Hyperplastic Primary Vitreous (PHPV), Norrie disease, or Retinopathy of Prematurity (ROP) ). In a preferred embodiment, the disease, condition, or disorder associated with retinal ischemia comprises familial exudative vitreoretinopathy, Korotkick's disease, residual proliferative primary vitreous disease and Norrie's disease and retinopathy of prematurity .
在一實施例中,該個體是指哺乳動物,於一更佳實施例中,該個體是指人。 In one embodiment, the individual refers to a mammal, and in a more preferred embodiment, the individual refers to a human.
在一個實施例中,本發明的方法進一步包含向該個體施予藥學上可接受的佐劑、媒劑或載體。 In one embodiment, the methods of the present invention further comprise administering to the individual a pharmaceutically acceptable adjuvant, vehicle or carrier.
在一實施例中,該組合物是透過抑制視網膜缺血引起的β-鏈蛋白(β-catenin)和血管內皮生長因子(VEGF)的過量表現來治療視網膜缺血或與視網膜缺血相關的疾病、病況或病症。 In one embodiment, the composition is for the treatment of retinal ischemia or a disease associated with retinal ischemia by inhibiting the overexpression of β-catenin and vascular endothelial growth factor (VEGF) caused by retinal ischemia , condition or disease.
本發明還提供一種調節β-鏈蛋白(β-catenin)有益於治療或減輕疾病、病況或病症的嚴重性的方法,其包含向一患有該些疾病、病況或 病症的個體施予一有效治療劑量的大黃素或一包含大黃素的組合物。於一實施例中,本發明施予該個體的大黃素的有效劑量可以是2至30μM;於另一實施例中,施予該個體的大黃素的有效劑量可以是4至20μM;於一較佳實施例中,施予該個體的大黃素的有效劑量係選自4μM、10μM和20μM。於本發明之一實施例中,該大黃素係透過玻璃體內注射施予該個體。於本發明之另一實施例中,該大黃素係透過口服施予該個體。 The present invention also provides a method of modulating β-catenin for the benefit of treating or lessening the severity of a disease, condition or disorder, comprising treating a person suffering from the disease, condition or disorder. An individual with the disorder is administered a therapeutically effective dose of emodin or a composition comprising emodin. In one embodiment, the effective dose of emodin administered to the individual of the present invention may be 2 to 30 μM; in another embodiment, the effective dose of emodin administered to the individual may be 4 to 20 μM; In a preferred embodiment, the effective dose of emodin administered to the individual is selected from the group consisting of 4 μM, 10 μM and 20 μM. In one embodiment of the invention, the emodin is administered to the individual by intravitreal injection. In another embodiment of the present invention, the emodin is administered orally to the individual.
在一實施例中,該個體是指哺乳動物,於一更佳實施例中,該個體是指人。 In one embodiment, the individual refers to a mammal, and in a more preferred embodiment, the individual refers to a human.
在一實施例中,本發明的方法進一步包含向該個體施予藥學上可接受的佐劑、媒劑或載體。 In one embodiment, the methods of the present invention further comprise administering to the individual a pharmaceutically acceptable adjuvant, vehicle or carrier.
本發明進一步提供了一種保護一有需要的個體的細胞免受視網膜缺血引起的損傷的方法,該方法包括向該個體施予一有效劑量的大黃素或一包含大黃素的組合物,其中該細胞係選自雙極細胞(bipolar Cells)、穆勒細胞(Müller Cells)和膽鹼性無軸突細胞(cholinergic amacrine cells)。於一實施例中,本發明施予該個體的大黃素的有效劑量可以是2至30μM;於另一實施例中,施予該個體的大黃素的有效劑量可以是4至20μM;於一較佳實施例中,施予該個體的大黃素的有效劑量係選自4μM、10μM和20μM。於本發明之一實施例中,該大黃素係透過玻璃體內注射給藥。於本發明之另一實施例中,該大黃素係透過口服給藥。 The present invention further provides a method of protecting cells in an individual in need thereof from damage caused by retinal ischemia, the method comprising administering to the individual an effective dose of emodin or a composition comprising emodin, Wherein the cell line is selected from bipolar cells (bipolar Cells), Müller cells (Müller Cells) and cholinergic amacrine cells. In one embodiment, the effective dose of emodin administered to the individual of the present invention may be 2 to 30 μM; in another embodiment, the effective dose of emodin administered to the individual may be 4 to 20 μM; In a preferred embodiment, the effective dose of emodin administered to the individual is selected from the group consisting of 4 μM, 10 μM and 20 μM. In one embodiment of the present invention, the emodin is administered by intravitreal injection. In another embodiment of the present invention, the emodin is administered orally.
在一實施例中,該組合物是透過抑制視網膜缺血引起的β-鏈蛋白(β-catenin)和血管內皮生長因子(VEGF)的過量表現來保護該有需要的個體的細胞免受視網膜缺血引起的損傷。 In one embodiment, the composition protects cells in an individual in need thereof from retinal ischemia by inhibiting retinal ischemia-induced overexpression of β-catenin and vascular endothelial growth factor (VEGF). blood damage.
本發明提供一種組合物用於製備治療或預防一有需要的個體罹患視網膜缺血或與視網膜缺血相關的疾病、病況或病症之藥物的用途,其中該組合物包含一大黃素。 The present invention provides the use of a composition for the manufacture of a medicament for treating or preventing retinal ischemia or a disease, condition or disorder associated with retinal ischemia in an individual in need thereof, wherein the composition comprises emodin.
於本發明之一實施例中,該大黃素的有效劑量可以是2至30μM;於另一實施例中,該大黃素的有效劑量可以是4至20μM;於一較佳實施例中,該大黃素的有效劑量係選自4μM、10μM和20μM。於本發明之一實施例中,該大黃素係透過玻璃體內注射給藥。於本發明之另一實施例中,該大黃素係透過口服給藥。 In one embodiment of the present invention, the effective dose of emodin may be 2 to 30 μM; in another embodiment, the effective dose of emodin may be 4 to 20 μM; in a preferred embodiment, The effective dose of the emodin is selected from 4 μM, 10 μM and 20 μM. In one embodiment of the present invention, the emodin is administered by intravitreal injection. In another embodiment of the present invention, the emodin is administered orally.
於本發明中,大黃素的臨床重要性在於其可用於治療因視網膜缺血性疾病或因視網膜缺血而導致的明確相關併發症(例如黃斑水腫),即視網膜中央/分支血管阻塞、增生性糖尿病視網膜病變、新生血管性老年有關黃斑部退化(AMD)、和視網膜發育疾病(例如家族性滲出性玻璃體視網膜病變(FEVR)、柯氏症(Coat’s disease)、殘留型增殖性初級玻璃體症(Persistent Hyperplastic Primary Vitreous,PHPV)、諾里氏疾病(Norrie disease)或早產兒視網膜病變(Retinopathy of Prematurity,ROP)。 In the present invention, the clinical importance of emodin is that it can be used to treat retinal ischemic diseases or clearly associated complications (eg macular edema) due to retinal ischemia, namely central/branch retinal vessel occlusion, hyperplasia Diabetic retinopathy, neovascular age-related macular degeneration (AMD), and retinal developmental disorders such as familial exudative vitreoretinopathy (FEVR), Coat's disease, residual proliferative primary vitreous disease ( Persistent Hyperplastic Primary Vitreous (PHPV), Norrie disease or Retinopathy of Prematurity (ROP).
在一實施例中,該個體是指哺乳動物,於一更佳實施例中,該個體是指人。 In one embodiment, the individual refers to a mammal, and in a more preferred embodiment, the individual refers to a human.
在一個實施例中,本發明的方法進一步包含向該個體施予藥學上可接受的佐劑、媒劑或載體。 In one embodiment, the methods of the present invention further comprise administering to the individual a pharmaceutically acceptable adjuvant, vehicle or carrier.
本發明進一步提供一種組合物用於製備保護一有需要的個體的細胞免受視網膜缺血而導致的損傷的藥物之用途,其中該組合物包含一大黃素。 The present invention further provides the use of a composition for the manufacture of a medicament for protecting cells in an individual in need thereof from damage caused by retinal ischemia, wherein the composition comprises emodin.
於本發明之一實施例中,該細胞係選自雙極細胞(bipolar Cells)、穆勒細胞(Müller Cells)和膽鹼性無軸突細胞(cholinergic amacrine cells)。於本發明之一實施例中,該大黃素的有效劑量可以是2至30μM;於另一實施例中,該大黃素的有效劑量可以是4至20μM;於一較佳實施例中,該大黃素的有效劑量係選自4μM、10μM和20μM。於本發明之一實施例中,該大黃素係透過玻璃體內注射給藥。於本發明之另一實施例中,該大黃素係透過口服給藥。 In one embodiment of the present invention, the cell line is selected from bipolar cells, Müller cells and cholinergic amacrine cells. In one embodiment of the present invention, the effective dose of emodin may be 2 to 30 μM; in another embodiment, the effective dose of emodin may be 4 to 20 μM; in a preferred embodiment, The effective dose of the emodin is selected from 4 μM, 10 μM and 20 μM. In one embodiment of the present invention, the emodin is administered by intravitreal injection. In another embodiment of the present invention, the emodin is administered orally.
在一實施例中,該藥物是透過抑制視網膜缺血引起的β-鏈蛋白(β-catenin)和血管內皮生長因子(VEGF)的過量表現來治療或預防該有需要的個體罹患視網膜缺血或與視網膜缺血相關的疾病、病況或病症。 In one embodiment, the medicament treats or prevents retinal ischemia in the individual in need thereof by inhibiting the excessive expression of β-catenin (β-catenin) and vascular endothelial growth factor (VEGF) caused by retinal ischemia or A disease, condition or disorder associated with retinal ischemia.
縮寫:ERG:視網膜電圖;OCT:光學相干斷層掃描;RGC:視網膜神經節細胞;IOP:眼壓/眼內壓;HIOP:高眼壓/高眼內壓;TCF-4:T細胞因子-4(T-cell factor-4);HIF-1α:缺氧誘導因子-1α(Hypoxia-inducible factor-1α);OGD:氧葡萄糖剝奪;MTT:3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide);I/R:缺血加再灌注;Emo:大黃素;ARRIVE:動物研究:體內實驗報告(Animal Research:Reporting of In Vivo Experiments);ILM:內限膜(internal limiting membrane);RPE:視網膜色素上皮(retinal pigment epithelium);INL:內核層;SDS-PAGE:十二烷基硫酸鈉聚丙烯醯胺凝膠電泳;PVDF:聚偏二氟乙烯(polyvinylidene fluoride);P:機率;VEGF:血管內皮生長因子。 Abbreviations: ERG: electroretinogram; OCT: optical coherence tomography; RGC: retinal ganglion cells; IOP: intraocular pressure/intraocular pressure; HIOP: high intraocular pressure/high intraocular pressure; TCF-4: T-cytokine- 4(T-cell factor-4); HIF-1α: Hypoxia-inducible factor-1α (Hypoxia-inducible factor-1α); OGD: Oxygen glucose deprivation; MTT: 3-(4,5-dimethylthiazole-2) -yl)-2,5-diphenyltetrazolium bromide (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); I/R: ischemia plus reperfusion; Emo : Emodin; ARRIVE: Animal Research: Reporting of In Vivo Experiments; ILM: Internal limiting membrane; RPE: retinal pigment epithelium; INL: Inner nuclear layer ; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; PVDF: polyvinylidene fluoride; P: probability; VEGF: vascular endothelial growth factor.
圖1為使細胞存活率分析(MTT assay)定量分析了培養的RGC-5細胞株的存活率。各組的值是培養的RGC-5細胞的存活率相對於對照組的存活率之比,其中對照組的存活率設為100%。該研究包括四個組別,即對照組(正常;RGC-5細胞在含有媒劑的培養基中培養),OGD前媒劑組(OGD前用媒劑處理1小時),OGD前Emo 0.25μM組(OGD前用0.25μM大黃素處理1小時)和OGD前Emo 0.5μM組(OGD前用0.5μM大黃素處理1小時)。***表示正常對照組與OGD組有顯著差異(P<0.001)。†表示OGD前媒劑組與OGD前Emo 0.5μM組之間的顯著差異(P=0.04)。結果為平均值±標準誤差(n=5~6)。縮寫:RGC-5:視網膜神經節細胞-5;MTT:3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide);OGD:氧葡萄糖剝奪;Emo:大黃素。 FIG. 1 is a cell viability assay (MTT assay) to quantify the viability of cultured RGC-5 cell lines. The value of each group is the ratio of the survival rate of cultured RGC-5 cells to the survival rate of the control group, where the survival rate of the control group was set as 100%. The study included four groups, namely the control group (normal; RGC-5 cells were cultured in medium containing vehicle), the pre-OGD vehicle group (treated with vehicle for 1 hour before OGD), and the pre-OGD Emo 0.25 μM group (treated with 0.25 μM emodin for 1 hour before OGD) and Emo 0.5 μM group before OGD (treated with 0.5 μM emodin for 1 hour before OGD). *** indicates a significant difference between the normal control group and the OGD group ( P < 0.001). † Indicates a significant difference between the pre-OGD vehicle group and the pre-OGD Emo 0.5 μM group ( P =0.04). Results are mean±standard error (n=5~6). Abbreviations: RGC-5: retinal ganglion cell-5; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); OGD: oxyglucose deprivation; Emo: emodin.
圖2為視網膜電圖(ERG)b波的測量結果。圖2a為視網膜電流圖(ERG)b波的振幅。經缺血/再灌注(I/R)後,相較於假手術對照組的視網膜(Sham),在視網膜缺血前玻璃體內預先給予媒劑(Vehicle)組(媒劑+I/R)的ERG b波的振幅有實質的降低;在劑量依賴性方式下,預先在玻璃體內給予大黃素(Emodin)(劑量分別為4μM、10μM及20μM,即:Emo4+I/R、Emo10+I/R及Emo20+I/R)的組別中,改善了因缺血引起的ERG b波振幅降低,但媒劑組沒改善。缺血後於玻璃體內注射20μM的大黃素的組別(I/R+Emo20)也顯示有抗缺血的作用。圖2b為對視網膜電圖(ERG)中b波比率的分析結果,顯示大黃素在缺血前和缺血後給藥對缺血性視網膜的功效。與假手術對照組的ERG b波比率(Sham=0.82±0.14:標準化至1,n=7)相比,顯示媒劑+I/R組的b波比率顯著降低(***;P<0.001)。相較於 媒劑+I/R組(0.04±0.01,n=8),缺血前玻璃體內注射劑量效應大黃素的組別(Emo4+I/R=0.08±0.07,n=8、Emo10+I/R=0.64±0.28,n=4、及Emo20+I/R=0.99±0.18,n=4)都顯著減輕缺血性的損傷(†††;P<0.001;Emo10+I/R組及Emo20+I/R組)。而在缺血後於玻璃體內注射20μM大黃素(I/R+Emo20=0.24±0.09,n=9)也具有顯著的抗缺血作用(†††;P<0.001)。數據係括號內顯示之動物數量(n)的平均值±平均值標準誤差(SEM)。表3提供各組別名稱的縮寫。 Figure 2 shows the measurement results of electroretinogram (ERG) b waves. Figure 2a shows the amplitude of the b-wave of electroretinogram (ERG). After ischemia/reperfusion (I/R), compared with the retina of the sham-operated control group (Sham), the pre-intravitreal vehicle (Vehicle) group (Vehicle+I/R) was pre-administered with the retinal ischemia. The amplitude of the ERG b wave was substantially reduced; in a dose-dependent manner, Emodin (Emodin) was pre-administered in the vitreous (the doses were 4 μM, 10 μM and 20 μM, namely: Emo4+I/R, Emo10+I/ The reduction in ERG b-wave amplitude due to ischemia was improved in the R and Emo20+I/R) groups, but not in the vehicle group. The group (I/R+Emo20) injected with 20 μM of emodin intravitreal after ischemia also showed an anti-ischemic effect. Figure 2b is an analysis of b-wave ratios in electroretinogram (ERG) showing the efficacy of emodin pre- and post-ischemic administration on the ischemic retina. Compared to the ERG b-wave ratio in the sham control group (Sham=0.82±0.14: normalized to 1, n=7), the vehicle+I/R group showed a significantly lower b-wave ratio (***; P <0.001). ). Compared with the vehicle+I/R group (0.04±0.01, n=8), the pre-ischemic intravitreal injection dose-response emodin group (Emo4+I/R=0.08±0.07, n=8, Emo10 +I/R=0.64±0.28, n=4, and Emo20+I/R=0.99±0.18, n=4) significantly reduced ischemic injury (†††; P <0.001; Emo10+I/R) group and Emo20+I/R group). Intravitreal injection of 20 μM emodin after ischemia (I/R+Emo20=0.24±0.09, n=9) also had a significant anti-ischemic effect (†††; P < 0.001). Data are mean ± standard error of the mean (SEM) for the number of animals (n) shown in parentheses. Table 3 provides abbreviations for each group name.
圖3是計算經甲苯酚紫(cresyl violet)染色的視網膜厚度。圖3a至3f為具有相同的偏心率(eccentricity)經甲苯酚紫染色的視網膜切片。顯微影像顯示不同組別的整個視網膜(上排)或內層視網膜(下排)的厚度(μm)。圖3a、3b、3g及3h顯示,與對照組的視網膜厚度(假手術對照組:整個厚度=186.50±1.43;內層厚度=79.90±2.06)相比,媒劑+I/R組的整個視網膜或內層視網膜的厚度實質降低(整個厚度=71.80±1.08;內層厚度=20.97±0.85)。圖3c至3e、3g及3h顯示缺血前玻璃體內注射劑量效應大黃素(4μM時作用最小,Emo4+I/R組:整個厚度=87.40±0.60、內層厚度=38.60±1.01;其次為10μM;20μM時作用最大),並以顯著的方式減輕缺血導致的整個視網膜和內部視網膜厚度的降低(Emo10+I/R組:整個厚度=153.20±1.48、內層厚度=70.05±0.60;Emo20+I/R組:整個厚度=170.10±0.10、內層厚度=70.65±2.06)。圖3f、3g及3h顯示缺血後玻璃體內注射20μM的大黃素也顯著減輕因視網膜缺血而導致的整個視網膜和內層視網膜厚度的降低(I/R+Emo20:整個厚度=125.45±1.68,內層厚度=69.65±0.68)。圖3g及3h為整個視網膜或內層視網膜厚度的定量分析。*** 或†††/††表示與假手術對照組(Sham)或媒劑+I/R組相比具有顯著差異(P<0.001或P<0.001/P<0.01)。圖中所使用的縮寫如下:I/R:缺血加再灌注;ONL:外核層(outer nuclear layer);OPL:外叢狀層(outer plexiform layer);INL:內核層(inner nuclear layer);IPL:內叢狀層(innerplexiform layer);GCL:神經節細胞層(ganglion cell layer)。比例尺為50μm。結果為平均值±標準誤差。表4提供各組別名稱的縮寫。 Figure 3 is a calculation of retinal thickness stained with cresyl violet. Figures 3a to 3f are cresyl violet stained retinal sections with the same eccentricity. Microscopic images show the thickness (μm) of the whole retina (upper row) or inner retina (lower row) of different groups. Figures 3a, 3b, 3g and 3h show that the whole retina of the vehicle + I/R group was compared with the retinal thickness of the control group (sham control: whole thickness = 186.50 ± 1.43; inner layer thickness = 79.90 ± 2.06). or a substantial reduction in the thickness of the inner retina (whole thickness = 71.80 ± 1.08; inner thickness = 20.97 ± 0.85). Figures 3c to 3e, 3g and 3h show the dose-response of pre-ischemic intravitreal injection of emodin (the least effect at 4 μM, Emo4+I/R group: whole thickness=87.40±0.60, inner layer thickness=38.60±1.01; followed by 10 μM; maximal effect at 20 μM), and attenuated ischemia-induced reduction in whole retinal and inner retinal thickness in a significant manner (Emo10+I/R group: whole thickness=153.20±1.48, inner thickness=70.05±0.60; Emo20 +I/R group: overall thickness=170.10±0.10, inner layer thickness=70.65±2.06). Figures 3f, 3g and 3h show that intravitreal injection of 20 μM emodin after ischemia also significantly attenuated the reduction in the thickness of the whole retina and inner retinal layer caused by retinal ischemia (I/R+Emo20: whole thickness=125.45±1.68 , inner layer thickness=69.65±0.68). Figures 3g and 3h are quantitative analysis of whole retina or inner retinal thickness. *** or †††/†† indicates a significant difference ( P < 0.001 or P < 0.001/ P < 0.01) compared to the sham-operated control group (Sham) or the vehicle + I/R group. Abbreviations used in the figures are as follows: I/R: ischemia plus reperfusion; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer ; IPL: inner plexiform layer; GCL: ganglion cell layer. Scale bar is 50 μm. Results are mean ± standard error. Table 4 provides abbreviations for each group name.
圖4為螢光金(fluorogold)反向標記。顯微影像顯示各組的視網膜神經節細胞(RGC)的密度。圖4a及4e顯示在假手術對照組中,觀察到的RGC的最高密度為5323.53±215.6/0.17mm2。圖4b及4e指出媒劑+I/R組的細胞密度明顯降低。圖4c、4d及4e顯示缺血前玻璃體內注射大黃素10μM和20μM(Emo10+I/R和Emo20+I/R)呈現劑量依賴性並顯著增加細胞密度。圖4e顯示視網膜神經節細胞(RGC)密度的定量分析。***或††/†††表示與假手術對照組或媒劑+I/R組具有顯著差異(P<0.001或P<0.01/P<0.001)。大黃素能劑量依賴性並且顯著抵消因視網膜缺血而誘導的視網膜神經節細胞(RGC)密度的降低。結果係括號內顯示之動物數量的平均值±標準誤差表示。比例尺為50μm。表5提供各組別名稱的縮寫。 Figure 4 is a fluorogold reverse label. Microscopic images show the density of retinal ganglion cells (RGCs) in each group. Figures 4a and 4e show that in the sham-operated control group, the highest density of RGCs observed was 5323.53 ± 215.6/0.17 mm 2 . Figures 4b and 4e indicate that the cell density was significantly reduced in the vehicle + I/R group. Figures 4c, 4d and 4e show that pre-ischemic intravitreal injection of emodin 10 μM and 20 μM (Emo10+I/R and Emo20+I/R) was dose-dependent and significantly increased cell density. Figure 4e shows quantitative analysis of retinal ganglion cell (RGC) density. *** or ††/††† indicates a significant difference ( P < 0.001 or P < 0.01/ P < 0.001) from the sham-operated control group or the vehicle + I/R group. Emodin was dose-dependent and significantly counteracted the reduction in retinal ganglion cell (RGC) density induced by retinal ischemia. Results are expressed as the mean ± standard error of the number of animals shown in parentheses. Scale bar is 50 μm. Table 5 provides abbreviations for each group name.
圖5為西方墨點法檢測分析。圖5a所示為β-鏈蛋白(β-catenin),血管內皮生長因子(VEGF)和β-肌動蛋白(β-actin)的墨點圖像,泳道1來自假手術對照組的視網膜(對照組);泳道2是以媒劑預先處理的缺血視網膜(媒劑+I/R);泳道3和4來自分別用10μM(Emo10+I/R)和20μM的大黃素(Emo20+I/R)預先處理並經缺血再灌柱的視網膜。圖5b及圖5c分別為β-鏈蛋白和血管內皮生長因子(VEGF)對管家蛋白(house-keeping
protein)β-肌動蛋白的比例柱狀圖。將假手術對照組的比率標準化至1,***/*表示與假手術對照組相比具有極顯著的差異(P<0.001)或顯著的差異(P<0.05),†表示與媒劑+I/R組相比具有顯著性差異(P=0.02/0.03)。與假手術對照組相比,在缺血性損傷和缺血前應用媒劑後,觀察到β-鏈蛋白/血管內皮生長因子(VEGF)的蛋白表現含量顯著增加(媒劑+I/R=1.64±0.14/7.67±2.57)。相比之下,缺血前給予大黃素具有劑量依賴性地且顯著地抑制因缺血導致的β-鏈蛋白的蛋白表現含量升高(在大黃素為20μM時,P=0.02/0.03;Emo20+IR=1.00±0.19/1.23±0.44)。數值為括號內所示動物數量(n)的平均值±標準誤差。縮寫列出如下:I/R:缺血加再灌注;Emo10+I/R:缺血前給予10μM的大黃素,然後進行I/R;Emo20+I/R:缺血前給予20μM的大黃素,然後進行I/R。表6中提供各組別名稱的縮寫。
Figure 5 shows the detection and analysis of Western blotting method. Figure 5a shows the blot images of β-catenin, vascular endothelial growth factor (VEGF) and β-actin, lane 1 from the retina of the sham-operated control group (control group); lane 2 is ischemic retina pretreated with vehicle (vehicle+I/R);
以下實施例是非限制性的,僅代表本發明的各個面向及特徵。 The following examples are non-limiting and represent only various aspects and features of the present invention.
細胞實驗cell experiment
氧葡萄糖剝奪oxyglucose deprivation
RGC-5細胞已被報導不是轉化的大鼠RGC,而是小鼠視網膜神經元前體細胞。OGD是在缺血模擬條件下,透過將RGC-5細胞孵育在37℃,不含葡萄糖的Dulbecco’s modified Eagle的培養基(DMEM;Thermo Fisher Scientific Inc.)中建立的,即l%氧氣(使用Penguin Incubator;Astec Company,Kukuoka,Japan測量),94%的氮氣和5%的二氧化碳。研究了各種 實驗組(表1)。這些是用以下物質處理的細胞:(i)含有媒劑的培養基(對照組),(ii)用媒劑進行1小時的OGD前處理(OGD前媒劑組),(iii)用0.25μM大黃素進行的OGD前處理1小時(OGD前Emo 0.25μM組),(iv)用0.5μM大黃素進行OGD前1小時處理(OGD前Emo 0.5μM組)。在OGD24小時後,將細胞培養物轉移到新的DMEM中再放置1天,然後進行細胞存活率分析(MTT assay)以評估細胞存活率。 RGC-5 cells have been reported not to be transformed rat RGCs, but to mouse retinal neuronal precursor cells. OGD was established under ischemia-mimicking conditions by incubating RGC-5 cells at 37°C in Dulbecco's modified Eagle's medium (DMEM; Thermo Fisher Scientific Inc.) without glucose, i.e. 1% oxygen (using a Penguin Incubator ; Astec Company, Kukuoka, Japan measurement), 94% nitrogen and 5% carbon dioxide. studied various Experimental group (Table 1). These are cells treated with: (i) medium containing vehicle (control group), (ii) pre-OGD treatment with vehicle for 1 hour (OGD pre-vehicle group), (iii) with 0.25 μM 1 hour pre-OGD treatment with flavin (pre-OGD Emo 0.25 μM group), (iv) 1 hour pre-OGD treatment with 0.5 μM emodin (pre-OGD Emo 0.5 μM group). After 24 hours of OGD, the cell cultures were transferred to new DMEM for an additional day and then subjected to a cell viability assay (MTT assay) to assess cell viability.
細胞存活率分析(MTT assay)Cell viability assay (MTT assay)
線粒體菸鹼醯胺腺嘌呤二核苷酸磷酸依賴性氧化還原酶能夠降低MTT生成甲,從而增加暗紫色甲的量,這與更大的細胞存活率有關。將MTT(0.5mg/mL;Sigma-Aldrich)添加到96孔盤中每孔100μL的細胞中,在37℃下放置3小時。還原MTT後,透過添加100μL DMSO溶解甲。搖動後,使用ELISA酶標儀(Synergy H1 Multi-Mode Reader BioTek Instruments)在562nm波長下測量溶解的甲的光密度(OD)。與未處理的對照組(100%)相比,將OD值的變化計算為細胞存活率。 Mitochondrial nicotinamide adenine dinucleotide phosphate-dependent oxidoreductase reduces MTT production of formazan , thereby increasing the dark purple armor amount, which was associated with greater cell viability. MTT (0.5 mg/mL; Sigma-Aldrich) was added to 100 [mu]L per well of cells in a 96-well plate and left at 37[deg.]C for 3 hours. After reducing MTT, dissolve formazan by adding 100 μL DMSO . After shaking, the dissolved formazan was measured using an ELISA plate reader (Synergy H1 Multi-Mode Reader BioTek Instruments) at a wavelength of 562 nm. optical density (OD). The change in OD value compared to the untreated control (100%) was calculated as cell viability.
各組的值是培養的RGC-5細胞的存活率相對於對照組的存活率之比,其中對照組的存活率設為100%。這項研究包括4個組別,包括對照組(正常;RGC-5細胞,在含有媒劑的培養基中孵育),OGD前媒劑組(在
OGD病症前,於OGD前給予媒劑1小時),OGD前Emo 0.25μM組(在OGD病症前,於OGD前施用0.25μM大黃素1小時)和OGD前Emo 0.5μM組(在OGD前施用0.5μM大黃素1小時)。***表示正常對照組和OGD組之間的極顯著差異(P<0.001)。†表示OGD前媒劑組與OGD前Emo 0.5μM組之間存在顯著差異(P=0.04)。結果為平均值±標準差(n=5~6)。縮寫:RGC-5:視網膜神經節細胞5;MTT:3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四唑鎓溴化物(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide);OGD:氧葡萄糖剝奪;Emo:大黃素。
The value of each group is the ratio of the survival rate of cultured RGC-5 cells to the survival rate of the control group, where the survival rate of the control group was set as 100%. The study included 4 groups including control (normal; RGC-5 cells, incubated in vehicle-containing medium), pre-OGD vehicle group (vehicle given 1 hour before OGD onset) , pre-OGD Emo 0.25μM group (0.25μM emodin administered 1 hour before OGD) and pre-OGD Emo 0.5μM group (0.5μM emodin administered 1 hour before OGD). *** indicates a very significant difference between the normal control group and the OGD group ( P < 0.001). † Indicates a significant difference between the pre-OGD vehicle group and the pre-OGD Emo 0.5 μM group ( P =0.04). Results are mean±standard deviation (n=5~6). Abbreviations: RGC-5:
動物實驗Animal experiment
實驗動物laboratory animal
本發明所使用的實驗動物是購自台北BioLasco公司的Wistar大鼠。抵達後,Wistar大鼠為6周大,體重175至250克重。該些大鼠被以每組少於六隻的大鼠飼養在一個大的塑膠鼠籠中(信德儀器有限公司)。濕度和溫度分別控制在40-60%和21±2℃內。將大鼠隨機分配至各個實驗組。本發明中所使用的大鼠為120隻(為99隻+21隻,99隻為60隻+16隻+23隻,如表2所示),其中包括在以下實驗過程中死亡的動物(n=21):這些發生在視網膜缺血誘導(n=9)、ERG檢測(n=4)和螢光金反向標記RGC(n=8)。進行ERG記錄後,所有存活的大鼠(n=99)均接受以下步驟,即以甲苯酚紫染色、以螢光金標記和西方墨點法。存活的動物接受假手術(Sham)程序、缺血前給予媒劑或缺血前/後給予大黃素(Emo),分為以下幾組:假手術對照組(n=19);媒劑+I/R組(n=20);Emo4+I/R(n=10);Emo10+I/R(n=20);Emo20+I/R(n=20)和I/R+Emo20(n=10)。動物實驗程序是以遵循《動物研 究:體內實驗報告》(ARRIVE)指南的方式進行。 The experimental animals used in the present invention are Wistar rats purchased from Taipei BioLasco Company. Upon arrival, Wistar rats were 6 weeks old and weighed 175 to 250 grams. The rats were housed in a large plastic rat cage (Shin Tak Instruments Co., Ltd.) in groups of less than six rats. Humidity and temperature were controlled within 40-60% and 21±2℃, respectively. Rats were randomly assigned to each experimental group. The number of rats used in the present invention is 120 (99 + 21, 99 is 60 + 16 + 23, as shown in Table 2), including animals that died during the following experiments (n =21): These occurred during retinal ischemia induction (n=9), ERG detection (n=4) and fluorescent gold reverse-labeled RGCs (n=8). Following ERG recordings, all surviving rats (n=99) were subjected to cresyl violet staining, fluorescent gold labeling and Western blotting. Surviving animals underwent sham surgery (Sham) procedure, vehicle pre-ischemia or emodin (Emo) pre/post-ischemia and were divided into the following groups: sham control group (n=19); vehicle + I/R group (n=20); Emo4+I/R (n=10); Emo10+I/R (n=20); Emo20+I/R (n=20) and I/R+Emo20 (n =10). Animal experimental procedures are based on the "Animal Research Research: Reporting of In Vivo Experiments (ARRIVE) guidelines.
動物麻醉和安樂死Animal anesthesia and euthanasia
將Wistar大鼠使用腹腔注射氯胺酮(ketamine)(Pfizer;100mg/kg)和賽拉嗪(xylazine)(Sigma-Aldrich;5mg/kg)的組合物進行麻醉,以帶來止痛和鎮靜作用。進行ERG記錄時,執行了Wistar大鼠的顱內注射螢光金和在玻璃體內注射特定的藥劑。為了最大程度地減少疼痛並以人道方式犧牲Wistar大鼠,最後給每個個體的腹腔內注射至少140mg/kg的戊巴比妥鈉(sodium pentobarbital)(SCI Pharmtech)。 Wistar rats were anesthetized with an intraperitoneal injection of a combination of ketamine (Pfizer; 100 mg/kg) and xylazine (Sigma-Aldrich; 5 mg/kg) for analgesia and sedation. For ERG recordings, intracranial injections of fluorescent gold and intravitreal injections of specific agents were performed in Wistar rats. To minimize pain and to sacrifice Wistar rats humanely, each individual was finally injected intraperitoneally with at least 140 mg/kg of sodium pentobarbital (SCI Pharmtech).
藥物給予 drug administration
大黃素是購自Sigma-Aldrich公司(E7881;90%;在2-8℃下儲存;購自Frangula bark;St.Louis,Missouri,United States)。表3至表6描述不同的藥物給予程序,即視網膜電圖(ERG)、螢光金RGC標記、甲苯酚紫視網膜染色和西方墨點法。媒劑或大黃素(5μL)是透過玻璃體內注射給予,這樣這些藥劑便能夠直接擴散至目標物。大黃素溶解在媒介物中(DMSO:蒸餾水=1:3)。根據玻璃體體積的任意定義為200μL,給藥的最終濃度為0.25μM或0.5μM,這是從儲備液稀釋40倍後獲得的,即10μM或20μM。為了測試更大範圍的劑量反應,因此在動物實驗中添加了4μM大黃素。媒劑+I/R組和大黃素+I/R組(缺血前給予大黃素4μM、10μM或20μM)按照以下實驗步驟進行;這些是初始缺血前玻璃體內注射(媒劑或大黃素),1天後誘導視網膜缺血,並在第二天將動物犧牲以進行除了視網膜電圖(ERG)以外的各種死後程序。在缺血後治療組中,為了減少所用動物的數量,本發明僅使用了20μM的單一大黃素濃度。此外,在初始視網膜缺血誘導後1天透過玻璃體內注射給予大黃素,並在第二天犧牲動物以進行上述各種死後程序。
Emodin was purchased from Sigma-Aldrich (E7881; 90%; stored at 2-8°C; purchased from Frangula bark; St. Louis, Missouri, United States). Tables 3 to 6 describe the different drug administration procedures, namely electroretinography (ERG), fluorescent gold RGC labeling, cresyl violet retinal staining and western blotting. Vehicle or emodin (5 μL) was administered by intravitreal injection so that the agents could diffuse directly to the target. Emodin was dissolved in vehicle (DMSO:distilled water=1:3). The final concentrations administered were 0.25 μM or 0.5 μM according to an arbitrary definition of vitreous volume of 200 μM, which was obtained after 40-fold dilution from the stock solution, i.e., 10 μM or 20 μM. To test a wider range of dose responses, 4 μM emodin was therefore added in animal experiments. Vehicle+I/R groups and emodin+I/R groups (
誘導視網膜缺血Induce retinal ischemia
所使用的IOP程序提高了IOP,旨在引起Wistar大鼠視網膜缺血並模擬缺血性視網膜疾病。首先將大鼠麻醉並以立體定位儀(stereotaxic frame)保定,將一根30G的針頭連接到一個升高的鹽水瓶,並將該針頭刺入 大鼠眼睛的前房。瓶內食鹽水的注射壓力控制在120毫米汞柱(mmHg),此步驟持續進行1小時。透過觀察到視網膜變白來確認成功的視網膜缺血誘導。在整個實驗過程中,動物都放在加熱墊上以保持動物的體溫。假手術程序係在瓶內生理食鹽水的壓力保持在0毫米汞柱(mmHg)下執行。 The IOP procedure used increased IOP and was designed to induce retinal ischemia in Wistar rats and to simulate ischemic retinal disease. The rat was first anesthetized and restrained in a stereotaxic frame, a 30G needle was attached to a raised saline bottle, and the needle was pierced into the Anterior chamber of rat eye. The injection pressure of saline in the bottle was controlled at 120 millimeters of mercury (mmHg), and this step was continued for 1 hour. Successful induction of retinal ischemia was confirmed by the observation of retinal whitening. Animals were placed on a heating pad to maintain their body temperature throughout the experiment. The sham procedure was performed with the pressure of the saline in the bottle maintained at 0 millimeters of mercury (mmHg).
視網膜電圖(ERG)測量記錄Electroretinogram (ERG) measurement recording
在進行閃爍ERG(flash ERG)測量之前,先將動物麻醉。對於假手術對照組(Sham)或缺血前治療組(缺血前1天透過玻璃體內注射大黃素或媒劑;即為大黃素+I/R組或媒劑+I/R組),閃爍ERG反應是在假手術、缺血程序或任何給藥步驟前(第0天),以及假手術後一天或缺血前玻璃體內給藥的缺血程序進行測量。在缺血後治療組中,在缺血前(第0天)和缺血後(時間點:缺血後1天;缺血後玻璃體內注射大黃素後1天)收集ERG的記錄。在ERG測量前8小時,進行了暗適應並使用1%的托平卡胺(tropicamide)和2.5%的脫羥腎上腺素(phenylephrine)誘導瞳孔擴張。ERG記錄設備是從Grass-Telefactor公司(AstroNova,QC,Canada)獲得的,其中包括刺激器(PS22),穩壓電源(RPS107)和放大器(P511)。將作為刺激源的閃光燈(strobe light)(0.5Hz)直接置於大鼠眼前方2公分處。以每兩秒鐘閃爍15次進行連續測量(10kHz),並計算振幅以獲得平均值。為了進行各組之間的比較,分析一隻眼(假手術或缺血性損傷並給予特定的藥劑)的b波振幅與未處理的正常眼的b波振幅之比率。 Animals were anesthetized prior to flash ERG measurements. For sham-operated control group (Sham) or pre-ischemia treatment group (intravitreal injection of emodin or vehicle 1 day before ischemia; ie emodin+I/R group or vehicle+I/R group) , scintillation ERG responses were measured before sham surgery, ischemic procedures, or any dosing step (day 0), and one day after sham surgery or pre-ischemic ischemic procedures with intravitreal administration. In the post-ischemia treatment group, ERG recordings were collected before ischemia (day 0) and after ischemia (time points: 1 day after ischemia; 1 day after post-ischemia intravitreal injection of emodin). Eight hours before ERG measurements, dark adaptation was performed and pupil dilation was induced using 1% tropicamide and 2.5% phenylephrine. ERG recording equipment was obtained from Grass-Telefactor Corporation (AstroNova, QC, Canada) and included a stimulator (PS22), a regulated power supply (RPS107) and an amplifier (P511). A strobe light (0.5 Hz) as a stimulus source was placed 2 cm directly in front of the eyes of the rats. Continuous measurements (10 kHz) were made with 15 blinks every two seconds and the amplitude was calculated to obtain an average value. For comparisons between groups, the ratio of b-wave amplitudes in one eye (sham or ischemic injury and given specific agents) to b-wave amplitudes in untreated normal eyes was analyzed.
甲苯酚紫染色cresyl violet staining
將前述的大鼠犧牲之後,用生理食鹽水對大鼠進行心內灌注,然後摘除眼球,在4℃下用4%多聚甲醛(paraformaldehyde)固定1天,
再用乙醇脫水,包埋在石蠟(Tissue-Tek TEC 5;Sakura)中,並切成5μm的厚度的切片,之後將切片的樣本用甲苯酚紫染色並透過光學顯微鏡(Leica)檢視。所有切片的視網膜樣本均在相同的放大倍率下拍攝(Ilford Pan-F plus film,50 ASA)。
After the aforementioned rats were sacrificed, the rats were intracardially perfused with physiological saline, and then the eyeballs were enucleated and fixed with 4% paraformaldehyde at 4°C for 1 day.
It was then dehydrated with ethanol, embedded in paraffin (Tissue-
視網膜切片的厚度是透過在相同距離(距視盤1.5mm)處擷取視網膜樣本來測定。為了評估由視網膜缺血引起的損傷程度,本發明會測量整個視網膜的厚度(從內限膜(ILM)到視網膜色素上皮(RPE)層)及內層視網膜的厚度(從ILM到內核層(INL))。所有測量均由不了解樣本處理的實驗條件的專家進行。 The thickness of retinal sections was determined by taking retinal samples at the same distance (1.5 mm from the optic disc). To assess the degree of damage caused by retinal ischemia, the present invention measures the thickness of the entire retina (from the inner limiting membrane (ILM) to the retinal pigment epithelium (RPE) layer) and the thickness of the inner retina (from the ILM to the inner nuclear layer (INL) )). All measurements were performed by experts who were unaware of the experimental conditions for sample handling.
RGC的螢光金反向標記Fluorescent gold reverse labeling of RGC
本實驗開始的第一天,大鼠接受麻醉後,在其頭部皮膚上開了一個2公分的開口,並用鑽頭在顱骨上開了兩個圓形的側面開口,然後透過漢密爾頓微注射器(Hamilton Microsyringe)在顱骨頂點以下3.8mm、4.0mm和4.2mm的深度進行顱內注射2μL的0.5%的螢光金(Sigma-Aldrich)。螢光金處理後一天,進行缺血前給予大黃素、媒劑或執行假手術程序(如藥物給予段落所述)。大鼠於螢光金注射後3天進行犧牲。犧牲後,仔細地分離視網膜組織,並與4%的多聚甲醛固定劑一起孵育、切片並加工。最後,透過螢光顯微鏡進行樣本分析。本實驗中的RGC密度定義為RGC總量除以整個視網膜面積,然後計算其平均值。 On the first day of the experiment, after the rats were anesthetized, a 2 cm opening was made in the skin of their head, and two circular lateral openings were made in the skull with a drill, and then a Hamilton microsyringe (Hamilton Microsyringe) intracranial injections of 2 μL of 0.5% fluorescent gold (Sigma-Aldrich) were performed at depths of 3.8 mm, 4.0 mm and 4.2 mm below the apex of the skull. One day after luciferase treatment, administer emodin, vehicle or perform a sham procedure (as described in the drug administration paragraph) prior to ischemia. Rats were sacrificed 3 days after fluorescent gold injection. After sacrifice, retinal tissue was carefully dissociated, incubated with 4% paraformaldehyde fixative, sectioned, and processed. Finally, sample analysis was performed by fluorescence microscopy. The RGC density in this experiment was defined as the total amount of RGCs divided by the entire retinal area, and then the average was calculated.
西方墨點法Western ink dot method
本實驗於犧牲大鼠後立即取出視網膜樣本,然後使用裂解緩衝液(哺乳動物蛋白質提取試劑;Hycell)以獲得變性的蛋白質,然後進行 超音波處理並定量至每孔蛋白質樣品當量為30μg/30μl。製備完成的蛋白質樣本在12%的十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis,SDS-PAGE)(Bio-Rad,Hercules,CA)上分離,並進一步轉漬到聚偏二氟乙烯(PVDF)膜上。將轉漬後的PVDF膜與含有5%脫脂牛奶的阻斷緩衝液(Blocking Buffer;135mM NaCl,8.1mM Na2HPO4,1.5mM KH2PO4,2.7mM KCl;pH 7.2)在4℃孵育16小時。接下來將該PVDF膜與各種一級抗體在25℃下孵育1小時,其中有小鼠抗β-肌動蛋白(β-actin)單株抗體(ab6276;1:5000;Abcam Inc.,Cambridge,UK),兔子抗β-鏈蛋白(β-catenin)單株抗體(ab32572;1:5000;Abcam Inc.,Cambridge,UK)和兔子抗VEGF多株抗體(A-20;1:200;sc-152)。隨後,該PVDF膜上的墨點與它們合適的二級抗體一起在25℃下孵育1小時,即辣根過氧化物酶偶聯的山羊抗兔子IgG抗體(Horseradish Peroxidase(HRP)-Conjugated Goat Anti-Rabbit IgG;111-035-003;1:2000;Jackson ImmunoResearch)或辣根過氧化物酶偶聯的山羊抗小鼠IgG(Horseradish Peroxidase(HRP)-Conjugated Goat Anti-Mouse IgG;sc-2005;1:2000;Santa Cruz Biotech)。最後,使用增強型化學發光分析系統(HyCell)將該PVDF膜顯影。然後,使用成像儀(Amersham Imager;LifeSciences)掃描該PVDF膜,並透過掃描光密度測定法定量每種蛋白質的量。 In this experiment, retinal samples were taken immediately after the rats were sacrificed, and then lysis buffer (mammalian protein extraction reagent; Hycell) was used to obtain denatured proteins, which were then sonicated and quantified to a protein sample equivalent of 30 μg/30 μl per well. Prepared protein samples were separated on 12% Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) (Bio-Rad, Hercules, CA) and further blotted onto a polyvinylidene fluoride (PVDF) membrane. The transfected PVDF membrane was incubated with blocking buffer (Blocking Buffer; 135 mM NaCl, 8.1 mM Na 2 HPO 4 , 1.5 mM KH 2 PO 4 , 2.7 mM KCl; pH 7.2) containing 5% skim milk at 4°C for 16 Hour. The PVDF membrane was next incubated for 1 hour at 25°C with various primary antibodies, including mouse anti-β-actin monoclonal antibody (ab6276; 1:5000; Abcam Inc., Cambridge, UK) ), rabbit anti-β-catenin monoclonal antibody (ab32572; 1:5000; Abcam Inc., Cambridge, UK) and rabbit anti-VEGF polyclonal antibody (A-20; 1:200; sc-152 ). Subsequently, the blots on this PVDF membrane were incubated with their appropriate secondary antibody, Horseradish Peroxidase (HRP)-Conjugated Goat Antibody, for 1 hour at 25°C. -Rabbit IgG; 111-035-003; 1:2000; Jackson ImmunoResearch) or horseradish peroxidase-conjugated goat anti-mouse IgG (Horseradish Peroxidase (HRP)-Conjugated Goat Anti-Mouse IgG; sc-2005; 1:2000; Santa Cruz Biotech). Finally, the PVDF membrane was developed using an enhanced chemiluminescence analysis system (HyCell). The PVDF membrane was then scanned using an imager (Amersham Imager; LifeSciences) and the amount of each protein was quantified by scanning densitometry.
統計學分析Statistical analysis
本發明使用非成對學生t檢定比較兩個實驗組之間的統計學差異。概率(P)<0.05表示具有統計學上的顯著差異。所有結果均以平均值±標準誤差來表示。 The present invention uses an unpaired Student's t-test to compare the statistical differences between the two experimental groups. Probability (P) < 0.05 indicates a statistically significant difference. All results are presented as mean ± standard error.
細胞實驗cell experiment
透過MTT分析評估大黃素對缺血誘導的細胞存活率下降的影響Evaluation of the effect of emodin on ischemia-induced decrease in cell viability by MTT assay
培養的細胞用於鑑定受試藥劑大黃素的有效劑量。大黃素(0.25μM和0.5μM)對培養細胞的作用使用MTT細胞存活率分析和一種細胞缺血模擬模型(即OGD)評估1天。OGD的定義是在缺氧條件下(即1% O2)於37℃在無葡萄糖的培養基中培養細胞。隨後描述了各個實驗組相對於對照組的結果(設置為100%;在含有載體的培養基中孵育的細胞)(圖1和表1)。將細胞在培養基中進行孵育,然後在OGD前施用一小時的媒劑(細胞存活率:38.30±2.51%)、OGD前施用一小時的大黃素0.25μM(細胞存活率:43.81±3.75%)和OGD前施用一小時的大黃素0.5μM(細胞存活率:47.52±3.99%)。與媒介物治療組相比,大黃素治療導致OGD誘導的細胞損傷的劑量相關且顯著(P=0.04;在0.5μM時)減弱。 The cultured cells are used to identify effective doses of the test agent emodin. The effect of emodin (0.25 [mu]M and 0.5 [mu]M) on cultured cells was assessed for 1 day using the MTT cell viability assay and a mimic model of cellular ischemia (ie, OGD). OGD is defined as culturing cells in glucose-free medium at 37°C under hypoxic conditions (ie, 1% O2 ). The results of each experimental group relative to the control group (set at 100%; cells incubated in medium containing vehicle) are subsequently described (Figure 1 and Table 1). Cells were incubated in culture medium followed by vehicle (cell viability: 38.30 ± 2.51%) for one hour before OGD, emodin 0.25 μM for one hour before OGD (cell viability: 43.81 ± 3.75%) Emodin 0.5 μM was administered one hour before OGD (cell viability: 47.52±3.99%). Emodin treatment resulted in a dose-related and significant ( P =0.04; at 0.5 μM) attenuation of OGD-induced cellular damage compared to the vehicle-treated group.
動物實驗Animal experiment
大黃素對缺血引起的ERG b波振幅降低的影響The effect of emodin on the reduction of ERG b-wave amplitude induced by ischemia
在假手術對照組中,ERG的b波振幅測量為0.87mV/±1.00±0.00mV(如圖2a所示,振幅比為0.82±0.14,並在圖2b中標準化至1;表3;n=7)。在視網膜缺血後,觀察到ERG的b波振幅/比率顯著下降(P<0.001)(如圖2a所示媒劑+I/R=0.03mV,如圖2b所示媒劑+I/R=0.04±0.02,n=8)。缺血前於玻璃體內注射大黃素減輕了因缺血所引起的ERG的b波振幅/比率的顯著下降(如圖2a所示Emo4+I/R=0.07mV,如圖2b 所示Emo4+I/R=0.08±0.07,n=8;如圖2a所示Emo10+I/R=0.58mV,如圖2bB所示Emo10+I/R=0.64±0.28,P<0.001,n=4;如圖2a所示Emo20+I/R=0.63mV,如圖2b所示Emo20+I/R=0.99±0.18,P<0.001,n=4)。有趣的是,本實驗還證明了缺血後於玻璃體內給予大黃素也顯著改善了上述因缺血誘導的ERG的b波振幅/比率降低的情況(P<0.001)(如圖2a所示I/R+Emo20=0.12mV,如圖2b所示I/R+Emo20=0.24±0.09,n=9)。ERG的b波普遍被認為是主要用以反映雙極細胞(bipolar cells)和穆勒細胞(Müller Cells)的光誘導活性。因此,以上ERG的b波結果表明,大黃素可以保護雙極細胞(bipolar cells)和穆勒細胞(Müller Cells)免受視網膜缺血引起的損傷。 In the sham-operated control group, the b-wave amplitude of the ERG was measured as 0.87 mV/±1.00±0.00 mV (as shown in Fig. 2a, the amplitude ratio was 0.82±0.14 and normalized to 1 in Fig. 2b; Table 3; n= 7). After retinal ischemia, a significant decrease ( P < 0.001) in the b-wave amplitude/ratio of ERG was observed (vehicle + I/R = 0.03 mV as shown in Fig. 2a and vehicle + I/R = 0.03 mV as shown in Fig. 2b 0.04±0.02, n=8). Intravitreal injection of emodin before ischemia attenuated the significant decrease in the b-wave amplitude/ratio of ERG induced by ischemia (Fig. I/R=0.08±0.07, n=8; Emo10+I/R=0.58mV as shown in Fig. 2a, Emo10+I/R=0.64±0.28 as shown in Fig. 2bB, P < 0.001, n=4; as Figure 2a shows Emo20+I/R=0.63mV, and Figure 2b shows Emo20+I/R=0.99±0.18, P < 0.001, n=4). Interestingly, this experiment also demonstrated that intravitreal administration of emodin after ischemia also significantly ameliorated the above-mentioned ischemia-induced reduction in b-wave amplitude/ratio of ERG ( P < 0.001) (Figure 2a). I/R+Emo20=0.12mV, as shown in Figure 2b, I/R+Emo20=0.24±0.09, n=9). The b-wave of ERG is generally considered to be mainly used to reflect the light-induced activity of bipolar cells and Müller cells. Therefore, the above b-wave results of ERG suggest that emodin can protect bipolar cells and Müller cells from damage caused by retinal ischemia.
甲苯酚紫染色中大黃素對缺血誘導的視網膜厚度減少的影響Effects of emodin on ischemia-induced retinal thickness reduction in cresyl violet staining
如圖3和表4所示,在假手術對照組(n=10)中視網膜厚度(μm)被測量為:整個視網膜厚度為186.50±1.43μm或內層視網膜厚度為79.90±2.06μm。誘導視網膜缺血後,觀察到整個視網膜厚度和內層視網膜厚度有顯著的損失(媒劑+I/R:整個視網膜厚度=71.80±1.08μm;內層視網膜厚度=20.97±0.85μm;P<0.001)。然而,在缺血前於玻璃體內注射大黃素(4、10或20μM)是呈劑量依賴性地(n=10,Emo4+I/R:整個視網膜厚度=87.40±0.60μm,內層視網膜厚度=38.60±1.01μm;n=10,Emo10+I/R:整個視網膜厚度=153.20±1.48μm,內層視網膜厚度=70.05±0.60μm;n=10,Emo20+I/R:整個視網膜厚度=170.10±0.10μm;內層視網膜厚度=70.65±2.06μm)並顯著緩解了因視網膜缺血和再灌注所引起的視網膜厚度減少(給予4μM的大黃素時:P<0.01;給予10或20μM的大黃素時:P<0.001)。此外, 在缺血後於玻璃體內注射大黃素(n=10;I/R+Emo20:整個視網膜厚度=125.45±1.68μm,內層視網膜厚度=69.65±0.68μm)就缺血相關所引起的視網膜厚度損失而言也具有顯著的抗缺血作用(P<0.001)。 As shown in Figure 3 and Table 4, retinal thickness (μm) in the sham-operated control group (n=10) was measured as: the whole retinal thickness was 186.50±1.43 μm or the inner retinal thickness was 79.90±2.06 μm. After induction of retinal ischemia, a significant loss of whole retinal thickness and inner retinal thickness was observed (vehicle+I/R: whole retinal thickness=71.80±1.08 μm; inner retinal thickness=20.97±0.85 μm; P <0.001 ). However, intravitreal injection of emodin (4, 10 or 20 μM) prior to ischemia was dose-dependent (n=10, Emo4+I/R: whole retinal thickness = 87.40±0.60 μm, inner retinal thickness =38.60±1.01μm; n=10, Emo10+I/R: whole retinal thickness=153.20±1.48μm, inner retinal thickness=70.05±0.60μm; n=10, Emo20+I/R: whole retinal thickness=170.10 ±0.10 μm; inner retinal thickness = 70.65 ± 2.06 μm) and significantly alleviated retinal thickness reduction due to retinal ischemia and reperfusion (4 μM emodin: P <0.01; 10 or 20 μM emodin: P < 0.001). In addition, intravitreal injection of emodin after ischemia (n=10; I/R+Emo20: whole retinal thickness=125.45±1.68 μm, inner retinal thickness=69.65±0.68 μm) was associated with ischemia-related There was also a significant anti-ischemic effect in terms of retinal thickness loss ( P < 0.001).
螢光金反向標記中大黃素對缺血誘導的RGC密度降低的影響Effects of emodin in fluorescent gold reverse labeling on ischemia-induced reduction in RGC density
如圖4a、圖4e和表5所示,RGC免疫標記的評估證實,假手術後的RGC的細胞密度為5323.53±215.6/0.17mm2(假手術對照組;n=4)。缺血前於玻璃體內給予媒劑觀察到缺血性視網膜的RGC的細胞密度的極顯著下降(P<0.001)(n=4;媒劑+I/R=2069.12±212.82mm2;圖4b、圖4e)。此外,缺血前給予10μM或20μM的大黃素發現細胞密度呈現劑量依賴性地且顯著地增加(n=4,在10μM時P<0.01,Emo10+I/R=3345.59±206.80mm2,圖4c及圖4e;n=4,在20μM時P<0.001,Emo20+I/R=4623.53±179.48mm2,圖4d及圖4e)。 As shown in Figure 4a, Figure 4e and Table 5, the evaluation of RGC immunolabeling confirmed that the cell density of RGCs after sham operation was 5323.53 ± 215.6/0.17 mm2 (sham operation control group; n=4). Intravitreal administration of vehicle prior to ischemia observed a very significant decrease in the cell density of RGCs in the ischemic retina ( P < 0.001) (n=4; vehicle+I/R=2069.12±212.82 mm 2 ; Figure 4b, Figure 4e). In addition, administration of 10 μM or 20 μM of emodin before ischemia revealed a dose-dependent and significant increase in cell density (n=4, P < 0.01 at 10 μM, Emol0+I/R=3345.59±206.80 mm 2 , Fig. 4c and Fig. 4e; n=4, P < 0.001 at 20 μM, Emo20+I/R=4623.53±179.48 mm 2 , Fig. 4d and Fig. 4e).
大黃素對缺血誘導的β-鏈蛋白(β-catenin)/血管內皮生長因子(VEGF)表現量與β-肌動蛋白(β-actin)表現量之比率變化的影響Effects of emodin on ischemia-induced changes in the ratio of β-catenin/vascular endothelial growth factor (VEGF) expression to β-actin expression
西方墨點法分析是用於研究大黃素改善缺血性損傷的治療機制。參照免疫墨點影像顯示(圖5a及表6),與缺血前玻璃體內給予媒劑(媒劑+I/R)相比,缺血前給予10μM或20μM的大黃素(Emo10+I/R或Emo20+I/R)對於缺血誘導的β-鏈蛋白(β-catenin)/血管內皮生長因子(VEGF)過量表現具有劑量依賴性地抑制作用。在定量分析中(圖5b、圖5c及表6),以假手術對照組(n=5)中β-鏈蛋白(β-catenin)/血管內皮生長因子(VEGF):β-肌動蛋白(β-actin)比率標準化至1來計算大黃素對β-鏈 蛋白(β-catenin)/血管內皮生長因子(VEGF)的蛋白表現量的影響。缺血性損傷後,觀察到大黃素對於缺血性和缺血前玻璃體內給予媒劑(媒劑+I/R=1.64±0.14/7.67±2.57;n=6)所引起的β-鏈蛋白(β-catenin)/血管內皮生長因子(VEGF)的顯著上調(P<0.001)具有劑量反應性的(給予10μM的大黃素時作用較弱,Emo10+I/R=1.18±0.24/3.99±2.86,n=6)和顯著的(P=0.02/0.03,當給予20μM的大黃素時P=0.02,Emo20+I/R=1.00±0.19,n=6)抑制作用。括號中顯示的結果遵循β-鏈蛋白(β-catenin)/血管內皮生長因子(VEGF)的格式。 Western blot analysis was used to study the therapeutic mechanism of emodin in improving ischemic injury. With reference to the immunoblot images (Fig. 5a and Table 6), compared with the intravitreal administration of vehicle (vehicle+I/R) before ischemia, 10 μM or 20 μM of emodin (Emo10+I/R) was administered before ischemia. R or Emo20+I/R) has a dose-dependent inhibitory effect on ischemia-induced β-catenin (β-catenin)/vascular endothelial growth factor (VEGF) overexpression. In quantitative analysis (Fig. 5b, Fig. 5c and Table 6), β-catenin (β-catenin)/vascular endothelial growth factor (VEGF):β-actin ( The β-actin) ratio was normalized to 1 to calculate the effect of emodin on the protein expression of β-catenin (β-catenin)/vascular endothelial growth factor (VEGF). After ischemic injury, emodin was observed to contribute to the β-chain elicitation of ischemic and pre-ischemic intravitreal administration of vehicle (vehicle+I/R=1.64±0.14/7.67±2.57; n=6). Protein (β-catenin)/vascular endothelial growth factor (VEGF) was significantly up-regulated ( P < 0.001) dose-responsive (weak effect when given 10 μM emodin, Emo10+I/R=1.18±0.24/3.99±2.86 , n=6) and significant ( P =0.02/0.03, P =0.02, Emo20+I/R=1.00±0.19, n=6) inhibition when 20 μM emodin was administered. Results shown in parentheses follow the beta-catenin/vascular endothelial growth factor (VEGF) format.
本領域技術人員非常容易理解本發明所欲實現的目的,並從本發明中獲得其中所提及的目的和技術優勢。本發明所述之方法及其用途僅代表優選實施例,是示例性的,並不意在限製本發明的範圍。任何本領域技術人員所想到的修改和其他用途均包含在本發明的精神內,並由本發明之申請專利範圍所請求保護的範圍所限定。 Those skilled in the art can easily understand the objects to be achieved by the present invention, and obtain the objects and technical advantages mentioned therein from the present invention. The methods and uses described herein represent preferred embodiments only, are exemplary, and are not intended to limit the scope of the invention. Any modifications and other uses conceived by those skilled in the art are included in the spirit of the present invention, and are defined by the scope of protection claimed by the patent application scope of the present invention.
對於本領域技術人員而言顯而易見的是,在不脫離本發明的範圍和精神的情況下,本領域技術人員可以對本文公開的發明進行各種替換和修改。 It will be apparent to those skilled in the art that various substitutions and modifications of the invention disclosed herein can be made by those skilled in the art without departing from the scope and spirit of the invention.
本發明可以在缺少本發明中未具體公開的任何一個或多個元件,一個或多個限制的情況下被適當地實踐。本發明所採用的術語僅用作描述性術語,並非是限制性的,在使用這些術語時,無意排除所顯示和描述的技術特徵或其部分的任何等同形式,而是應當認識到,在所要求保護的本發明的範圍內可以進行各種修改。因此,應當理解,儘管已經透過最佳或較佳實施例和可選擇的技術特徵具體公開了本發明,但本領域技術人員仍然 可以針對本發明公開的概念進行修改和變化,並且這些修改和變化應被認為是在本發明所附申請專利範圍所限定的範圍內。 The present invention may suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. The terms used in the present invention are only used as descriptive terms and are not restrictive, and when these terms are used, they are not intended to exclude any equivalents of the technical features or parts thereof shown and described, but it should be recognized that in all Various modifications are possible within the scope of the claimed invention. Therefore, it should be understood that although the present invention has been specifically disclosed by the best or preferred embodiment and optional technical features, those skilled in the art will still Modifications and variations can be made with respect to the concepts disclosed herein, and such modifications and variations should be considered within the scope of the invention as defined by the appended claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109121178A TWI775101B (en) | 2020-06-22 | 2020-06-22 | Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109121178A TWI775101B (en) | 2020-06-22 | 2020-06-22 | Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202200186A TW202200186A (en) | 2022-01-01 |
TWI775101B true TWI775101B (en) | 2022-08-21 |
Family
ID=80787900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109121178A TWI775101B (en) | 2020-06-22 | 2020-06-22 | Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI775101B (en) |
-
2020
- 2020-06-22 TW TW109121178A patent/TWI775101B/en active
Also Published As
Publication number | Publication date |
---|---|
TW202200186A (en) | 2022-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Russo et al. | Rapamycin and fasting sustain autophagy response activated by ischemia/reperfusion injury and promote retinal ganglion cell survival | |
Thomas et al. | Reactive gliosis in the adult zebrafish retina | |
Zuccolo et al. | Muscarinic M5 receptors trigger acetylcholine‐induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells | |
Zhang et al. | CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury | |
Adams et al. | Glaucoma-next generation therapeutics: impossible to possible | |
Crooke et al. | Melatonin and its analog 5-methoxycarbonylamino-N-acetyltryptamine potentiate adrenergic receptor-mediated ocular hypotensive effects in rabbits: significance for combination therapy in glaucoma | |
Chao et al. | Dendrobium nobile Lindley and its bibenzyl component moscatilin are able to protect retinal cells from ischemia/hypoxia by dowregulating placental growth factor and upregulating Norrie disease protein | |
Yang et al. | Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy | |
Li et al. | Modulation of α‐adrenoceptor signalling protects photoreceptors after retinal detachment by inhibiting oxidative stress and inflammation | |
Wang et al. | Anti-VEGF therapy prevents Müller intracellular edema by decreasing VEGF-A in diabetic retinopathy | |
Yang et al. | Overexpression of S100A4 protects retinal ganglion cells against retinal ischemia-reperfusion injury in mice | |
Xu et al. | Erythropoietin protects retinal cells in diabetic rats through upregulating ZnT8 via activating ERK pathway and inhibiting HIF-1α expression | |
Li et al. | Rapamycin mediates mTOR signaling in reactive astrocytes and reduces retinal ganglion cell loss | |
Hida et al. | Effects of ripasudil, a ROCK inhibitor, on retinal edema and nonperfusion area in a retinal vein occlusion murine model | |
Cammalleri et al. | The urokinase‐type plasminogen activator system as drug target in retinitis pigmentosa: New pre‐clinical evidence in the rd10 mouse model | |
Ichikawa et al. | Differential effects of two ROCK inhibitors, Fasudil and Y-27632, on optic nerve regeneration in adult cats | |
Han et al. | Irisin attenuates acute lung injury by suppressing the pyroptosis of alveolar macrophages | |
TWI775101B (en) | Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia | |
Zhu et al. | Inhibition of CK2α accelerates skin wound healing by promoting endothelial cell proliferation through the Hedgehog signaling pathway | |
TWI814760B (en) | Lipocalin-type prostaglandin d2 synthase production promoter | |
Chao et al. | Emodin protected against retinal ischemia insulted neurons through the downregulation of protein overexpression of β-catenin and vascular endothelium factor | |
TWI721274B (en) | Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder | |
Mentek et al. | Chronic intermittent hypoxia alters rat ophthalmic artery reactivity through oxidative stress, endothelin and endothelium-derived hyperpolarizing pathways | |
US20220079929A1 (en) | Use of axitinib and analogs thereof in preparing blood-brain barrier permeability regulator | |
US20210393547A1 (en) | Use of emodin in treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |