TWI721274B - Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder - Google Patents

Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder Download PDF

Info

Publication number
TWI721274B
TWI721274B TW107118352A TW107118352A TWI721274B TW I721274 B TWI721274 B TW I721274B TW 107118352 A TW107118352 A TW 107118352A TW 107118352 A TW107118352 A TW 107118352A TW I721274 B TWI721274 B TW I721274B
Authority
TW
Taiwan
Prior art keywords
retinal
ischemia
retina
ogd
vehicle
Prior art date
Application number
TW107118352A
Other languages
Chinese (zh)
Other versions
TW202003009A (en
Inventor
趙效明
Original Assignee
趙效明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 趙效明 filed Critical 趙效明
Priority to TW107118352A priority Critical patent/TWI721274B/en
Publication of TW202003009A publication Critical patent/TW202003009A/en
Application granted granted Critical
Publication of TWI721274B publication Critical patent/TWI721274B/en

Links

Images

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

The present invention relates to the use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder, wherein the composition comprises a therapeutically effective amount of a dendrobium nobile lindley (DNL).

Description

組合物用於製備治療發育性視網膜血管疾病的藥物之用途 Use of composition for preparing medicine for treating developmental retinal vascular disease

本發明提供一種組合物用於製備治療發育性視網膜血管疾病的藥物之用途,其特徵在於該組合物包含一金釵石斛,其能有效改善視網膜血管發育異常,進而避免因視網膜血管發育異常所造成的缺血性損傷。 The present invention provides a composition for the preparation of a drug for the treatment of developmental retinal vascular diseases, characterized in that the composition contains a Dendrobium nobile, which can effectively improve retinal vascular development abnormalities, thereby avoiding retinal vascular development abnormalities caused by Of ischemic injury.

諾里(Norrin)依賴性Wnt訊號路徑(Norrin-dependent Wnt signaling pathway)似乎會介導血管生成(vasculogenesis)(早期視網膜血管發育)的缺陷。諾里/捲曲受體-4(Frizzled-4)訊號在血管生成上扮演重要的角色,如諾里疾病(Norrie disease,ND)和家族性滲出性玻璃體視網膜病變(familial exudative vitreoretinopathy,FEVR),最終可能會進展至視網膜缺血和新血管生成(neovascularization,NV)或是血管新生(angiogenesis)。除了ND和FEVR之外,還有其他發育性視網膜血管疾病,即柯氏症(Coats disease)和永存原始玻璃體增生症(persistent hyperplastic primary vitreous,PHPV),其有共同類似的眼底圖片,即周邊視網膜無血管形成(peripheral retinal avascularization)和視網膜下滲出(subretinal exudation)。如上所述,這些玻璃體視網膜病變(vitreoretinopathy)也可能導致視網膜缺血而對患者 的視力產生類似的威脅,儘管它們並不像其他視網膜缺血性疾病(即中央視網膜動脈阻塞(central retinal artery occlusion,CRAO)、分支視網膜動脈阻塞(branch retinal artery occlusion,BRAO)、中央視網膜靜脈阻塞(central retinal vein occlusion,CRVO)、分支視網膜靜脈阻塞(branch retinal vein occlusion,BRVO)、青光眼、糖尿病視網膜病變(diabetic retinopathy,DR)或新生血管型老年性黃斑部病變(neovascular age-related macular degeneration,nvAMD))那樣常見。如先前文獻報導持續缺氧被推測為這些發育性視網膜血管疾病(如ND)的發展的主要動力之一。 Norrin-dependent Wnt signaling pathway seems to mediate defects in vasculogenesis (early retinal vascular development). Norrie/Frizzled-4 (Frizzled-4) signal plays an important role in angiogenesis, such as Norrie disease (ND) and familial exudative vitreoretinopathy (FEVR), and ultimately It may progress to retinal ischemia and neovascularization (NV) or angiogenesis. In addition to ND and FEVR, there are other developmental retinal vascular diseases, namely Coats disease (Coats disease) and persistent hyperplastic primary vitreous (PHPV), which have similar fundus pictures, namely peripheral retina There is no peripheral retinal avascularization and subretinal exudation. As mentioned above, these vitreoretinopathy may also cause retinal ischemia and pose a similar threat to the patient’s vision, although they are not like other retinal ischemic diseases (ie central retinal artery occlusion, CRAO), branch retinal artery occlusion (BRAO), central retinal vein occlusion (CRVO), branch retinal vein occlusion (BRVO), glaucoma, diabetic retinopathy , DR) or neovascular age-related macular degeneration (nvAMD)). As previously reported in the literature, persistent hypoxia is presumed to be one of the main driving forces for the development of these developmental retinal vascular diseases (such as ND).

位於內層視網膜的視網膜神經節細胞(Retinal ganglion cells,RGCs)和無軸突細胞(amacrine cells)是易受到缺血/再灌注(ischemia/reperfusion(I/R))的傷害。再者,在缺血後,繆氏細胞(Müller cells)中的波形蛋白(vimentin)和膠質原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)之免疫標記會提高;而這與RGC數量減少有關。已知在缺血視網膜上,血管內皮生長因子(vascular endothelium growth factor,VEGF)、缺氧誘導因子-1α(hypoxia-inducible factor-1α,HIF-1α)、丙酮酸激酶M2(pyruvate kinase M2,PKM2)和視網膜母細胞瘤結合蛋白2(retinoblastoma-binding protein 2,RBP2)會同時發生過度表現之現象,且進一步異常地新血管形成(NV)(後期新血管形成)可能導致因水腫和出血所引起的視覺功能障礙。而在諾里蛋白耗盡的視網膜也可以觀察到HIF-1α和VEGF的上調。除VEGF外,胎盤生長因子(placental growth factor,PLGF)被報導出在確認的視網膜/脈絡膜的血管系統疾病中會增加;因此,該因子的下調可 作為視覺功能的結果和治療之生物標誌。 Retinal ganglion cells (RGCs) and axon cells (amacrine cells) located in the inner retina are susceptible to ischemia/reperfusion (I/R) damage. Furthermore, after ischemia, the immune markers of vimentin and glial fibrillary acidic protein (GFAP) in Müller cells will increase; this is related to the decrease in the number of RGCs. It is known that on ischemic retina, vascular endothelium growth factor (VEGF), hypoxia-inducible factor-1α (HIF-1α), pyruvate kinase M2 (PKM2) ) And retinoblastoma-binding protein 2 (RBP2) will be overexpressed at the same time, and further abnormal neovascularization (NV) (late neovascularization) may lead to edema and hemorrhage Visual dysfunction. The up-regulation of HIF-1α and VEGF can also be observed in the retina depleted of Norrin. In addition to VEGF, placental growth factor (PLGF) has been reported to increase in confirmed retinal/choroidal vascular diseases; therefore, the down-regulation of this factor can be used as a result of visual function and a biomarker of treatment.

金釵石斛(DNL)是蘭科(Orchidae)植物的家族成員之一,其屬於改善視力的草藥。DNL也被用作補品,並發現具有解熱/抗發炎的功效以及抗血管新生(anti-angiogenic)(如抗VEGF/HIF-1α)的性質。金釵石斛(DNL)具有多種與不同作用機制有關的活性成分,其包括生物鹼(alkaloids)(透過抑制p-p38 MAPK和NF-κB途徑使TNFR1過量表現)、黃酮醇配醣體(flavonol glycosides)(α-葡萄糖苷酶(α-glucosidase)抑制劑)、SG-168、多醣(polysaccharides)(抗氧化)。此外,抗血管新生或抗氧化的石斛酚(moscatilin)是金釵石斛的活性成分(聯芐),且可能具有與上述成分不同的已知(抗VEGF/HIF-1α、.OH自由基清除劑、抗發炎和抗細胞凋亡)和未知的作用機制。 Dendrobium nobile (DNL) is a member of the orchid family (Orchidae) plant family, which belongs to the herbal medicine for improving eyesight. DNL is also used as a tonic and has been found to have antipyretic/anti-inflammatory effects and anti-angiogenic (such as anti-VEGF/HIF-1α) properties. Dendrobium nobile (DNL) has a variety of active ingredients related to different mechanisms of action, including alkaloids (through the inhibition of p-p38 MAPK and NF-κB pathways to over-express TNFR1), flavonol glycosides ) (α-glucosidase inhibitor), SG-168, polysaccharides (antioxidant). In addition, the anti-angiogenesis or antioxidant moscatilin is the active ingredient of Dendrobium nobile (bibenzyl), and may have different known ingredients (anti-VEGF/HIF-1α, .OH free radical scavenger). , Anti-inflammatory and anti-apoptosis) and unknown mechanism of action.

本發明藉由視網膜電圖(ERG)、免疫組織化學(視網膜神經節細胞、無軸突神經細胞、繆氏細胞)、組織病理學(視網膜厚度)、細胞存活率和蛋白質測量分析(PLGF、HIF-1α、VEGF-A、PKM2、RBP2和NDP)證實在視網膜或視網膜細胞中發生的各種缺血/缺氧(OGD)所造成的改變。本發明發現HIF-1α,VEGF,PKM2和RBP2的蛋白表現量在缺血性視網膜中顯著上調,但藉由施予金釵石斛後會顯著降低這些蛋白的上調現象。當預先施予VEGF捕獲(trap)/抗PLGF的采視明(Eylea)於缺血性視網膜時,缺血所誘發的PLGF上升也顯著減弱;而1.0g/Kg/天的DNL也有此功效。故其新穎性和臨床意義的在於DNL可能具有抗血管新生(angiogenesis)/ VEGF(PLGF)的捕獲效應。這與先前報導指出DNL的聯芐成分石斛酚(moscatilin)是透過抑制HIF-1α和VEGF而成為抗血管生成劑的結論並不一致。 The present invention uses electroretinogram (ERG), immunohistochemistry (retinal ganglion cells, axonal nerve cells, Mühler cells), histopathology (retinal thickness), cell survival rate and protein measurement analysis (PLGF, HIF) -1α, VEGF-A, PKM2, RBP2 and NDP) confirmed the changes caused by various ischemia/hypoxia (OGD) in the retina or retinal cells. The present invention has found that the protein expression levels of HIF-1α, VEGF, PKM2 and RBP2 are significantly up-regulated in the ischemic retina, but the up-regulation of these proteins can be significantly reduced by administering Dendrobium nobile. When VEGF trap/anti-PLGF Eylea was administered to the ischemic retina in advance, the rise of PLGF induced by ischemia was also significantly reduced; and 1.0g/Kg/day DNL also had this effect. Therefore, its novelty and clinical significance is that DNL may have anti-angiogenesis/VEGF (PLGF) trapping effects. This is inconsistent with the previous report that moscatilin, the bibenzyl component of DNL, is an anti-angiogenic agent by inhibiting HIF-1α and VEGF.

缺血可能與發育性視網膜血管疾病(如FEVR或ND)有密切相關。而抗VEGF抗體雖能有效清除眼部出血和黃斑水腫;但令人失望的是,一些患者的視覺效果不佳。而諾里(Norrin)的Wnt訊號路徑在視網膜血管的早期正常發育和確定的發育性視網膜血管疾病的晚期進展都扮演著重要角色。而後者情況可能會進一步加重缺血/缺氧並形成新血管生成(NV)。一致的是,諾里疾病蛋白(Norrie disease protein,NDP)似乎透過調節諾里(Norrin)依賴性Wnt訊號路徑來保護眼睛免於異常的血管新生和視網膜疾病。此外,過量表現的NDP會透過活化諾里(norrin)依賴性Wnt訊號路徑來保護光感受器和RGC免於細胞死亡。本發明亦證實缺氧(OGD)會導致NDP表現量和細胞存活率顯著降低。但金釵石斛的聯芐成分的石斛酚(0.1μM)能夠顯著緩解缺氧/類缺血(OGD)所造成的損傷。故本發明證實金釵石斛和/或石斛酚能夠活化NDP依賴性Wnt訊號路徑,從而提供神經保護作用,並透過抑制VEGF-A/PLGF和上調NDP來抵抗視網膜缺血的症狀。 Ischemia may be closely related to developmental retinal vascular diseases (such as FEVR or ND). Although anti-VEGF antibody can effectively remove eye bleeding and macular edema, it is disappointing that some patients have poor vision. Norrin's Wnt signaling pathway plays an important role in the early normal development of retinal blood vessels and the late progression of definite developmental retinal vascular diseases. The latter situation may further aggravate ischemia/hypoxia and form new blood vessels (NV). In agreement, Norrie disease protein (NDP) seems to protect the eye from abnormal angiogenesis and retinal diseases by modulating the Norrin-dependent Wnt signaling pathway. In addition, overexpressed NDP can protect photoreceptors and RGCs from cell death by activating the norrin-dependent Wnt signal pathway. The present invention also confirms that hypoxia (OGD) can lead to a significant decrease in NDP expression and cell survival rate. However, Dendrobium nobile (0.1μM), the bibenzyl component of Dendrobium nobile, can significantly alleviate the damage caused by hypoxia/ischemia-like (OGD). Therefore, the present invention confirms that Dendrobium nobile and/or Dendrobium phenol can activate the NDP-dependent Wnt signal pathway, thereby providing neuroprotection, and resisting the symptoms of retinal ischemia by inhibiting VEGF-A/PLGF and up-regulating NDP.

此外,在缺血性損傷和給予媒劑(Vehicle)後,視網膜內層厚度、RGC數量無軸突神經細胞上的ChAT免疫反應性顯著及明顯地下降。重要的是,本發明證實,在給予高劑量金釵石斛前及/或後(1g/kg/天),這些缺血誘發的變化顯著及明顯鈍化。此外,在媒劑(Vehicle)給藥前/給藥 後的缺血性視網膜中,波形蛋白/GFAP免疫標記過量表現伴隨著b波下降。但本發明的結果顯示這些缺血性改變在1g/kg/天的金釵石斛給藥前/給藥後明顯及顯著地抵消,其在臨床上具有重要性。 In addition, after ischemic injury and vehicle administration, the thickness of the inner layer of the retina, the number of RGCs, and the ChAT immunoreactivity on axon-free nerve cells decreased significantly and significantly. Importantly, the present invention proves that these ischemia-induced changes are significant and obviously passivated before and/or after high-dose Dendrobium nobile (1g/kg/day) is administered. In addition, in the ischemic retina before/after administration of vehicle, the overexpression of vimentin/GFAP immunolabel is accompanied by a decrease in b wave. However, the results of the present invention show that these ischemic changes are significantly and significantly offset before/after administration of 1 g/kg/day Dendrobium nobile, which is of clinical importance.

本發明的結果顯示缺血/缺氧(缺血模擬OGD)顯著及明顯影響視網膜電生理、形態計量學、免疫組織化學和視網膜分子生物學/細胞存活率。臨床上重要的是,所有這些因缺血/OGD所發生的變化可透過用金釵石斛或其聯芐成分石斛酚進行預處理和/或後處理而有效減弱。故本發明認為這些保護性機制係透過抑制HIF-1α、VEGF-A、PKM2、RBP2以及最重要的是藉由PLGF的上調以及上調NDP的表現量來發揮作用(如圖9所示)。 The results of the present invention show that ischemia/hypoxia (ischemia mimic OGD) significantly and obviously affects retinal electrophysiology, morphometrics, immunohistochemistry and retinal molecular biology/cell survival rate. It is clinically important that all these changes due to ischemia/OGD can be effectively reduced by pre-treatment and/or post-treatment with Dendrobium nobile or its bibenzyl component Dendrobium. Therefore, the present invention believes that these protective mechanisms work through the inhibition of HIF-1α, VEGF-A, PKM2, RBP2 and, most importantly, the up-regulation of PLGF and up-regulation of the expression level of NDP (as shown in Figure 9).

總之,金釵石斛及/或石斛酚能夠保護或防止確定的視網膜缺血/類缺血的改變,並且藉由抑制PLGF和上調NDP來實現。金釵石斛(及/或石斛酚)的治療是能提供有用的方式,其允許預防及/或管理可能由於持續缺血/缺氧而發展的發育性視網膜血管疾病的患者。 In short, Dendrobium nobile and/or Dendrobium phenol can protect or prevent certain retinal ischemia/ischemia-like changes, and it can be achieved by inhibiting PLGF and up-regulating NDP. The treatment of Dendrobium nobile (and/or Dendrobium phenol) is a useful way to prevent and/or manage patients with developmental retinal vascular disease that may develop due to persistent ischemia/hypoxia.

本發明藉由視網膜電圖(繆氏細胞(müller cells)和雙極細胞上的b波變化)、免疫組織化學(螢光免疫標記的視網膜神經節細胞(RGC)、膽鹼乙醯轉移酶(ChAT)免疫呈陽性之無軸突神經細胞、波形蛋白(vimentin)/膠質原纖維酸性蛋白(GFAP)所染色的繆氏細胞)、組織病理學(視網膜厚度測量)、及/或西方墨點法(HIF-1α、VEGF、PKM2和RBP2)以觀察大鼠視網膜中各種缺血性的改變。重要的是,在缺血再灌注(I/R)前/後施予金釵石斛(DNL)可顯著調節所有這些被定義的缺血性相關特徵。 最重要的是,在視網膜缺血/類缺血(OGD)的狀況下,胎盤生長因子(PLGF)的蛋白質濃度上調(圖8),且諾里疾病蛋白(NDP)的蛋白質濃度下調(圖2),但以金釵石斛(DNL)/石斛酚(moscatilin)治療處理後會抵消上述這些改變。在臨床意義上,DNL可以藉由下調PLGF和上調NDP來預防或保護所定義的視網膜缺血/類缺血的改變。故金釵石斛/石斛酚可透過下調胎盤生長因子的表現量及上調諾里疾病蛋白的濃度來提供另一預防或管理患有持續缺氧/缺血相關的發育性血管疾病(如諾里疾病)的病程之病患的替代方法。 The present invention uses electroretinogram (müller cells and b-wave changes on bipolar cells), immunohistochemistry (fluorescence immunolabeled retinal ganglion cells (RGC), choline acetyltransferase ( ChAT) immune-positive axonal nerve cells, vimentin/glia fibrillary acidic protein (GFAP) stained Murdoch cells), histopathology (retinal thickness measurement), and/or western blot method (HIF-1α, VEGF, PKM2 and RBP2) to observe various ischemic changes in the rat retina. Importantly, the administration of Dendrobium nobile (DNL) before/after ischemia-reperfusion (I/R) can significantly modulate all these defined ischemic-related characteristics. Most importantly, under the condition of retinal ischemia/ischemia-like (OGD), the protein concentration of placental growth factor (PLGF) is up-regulated (Figure 8), and the protein concentration of Norrie disease protein (NDP) is down-regulated (Figure 2) ), but treatment with Dendrobium nobile (DNL)/moscatilin will offset these changes. In a clinical sense, DNL can prevent or protect the defined retinal ischemia/ischemia-like changes by down-regulating PLGF and up-regulating NDP. Therefore, Dendrobium nobile/Dendrobium can provide another way to prevent or manage developmental vascular diseases related to persistent hypoxia/ischemia by down-regulating the expression level of placental growth factor and up-regulating the concentration of Norri disease protein. ) An alternative method for patients in the course of the disease.

本文中的用語「一」或「一種」係用以敘述本發明之元件及成分。此術語僅為了敘述方便及給予本發明之基本觀念。此敘述應被理解為包括一種或至少一種,且除非明顯地另有所指,表示單數時亦包括複數。於申請專利範圍中和”包含”一詞一起使用時,該用語「一」可意謂一個或超過一個。 The term "a" or "a" in this text is used to describe the elements and components of the present invention. This term is only for convenience of description and to give the basic idea of the present invention. This description should be understood to include one or at least one, and unless clearly indicated otherwise, the singular number also includes the plural number. When used with the word "including" in the scope of the patent application, the term "a" can mean one or more than one.

本文中的用語「或」其意同「及/或」。 The term "or" in this article means the same as "and/or".

本發明提供一種組合物用於製備治療發育性視網膜血管疾病(developmental retinal vascular disorder)的藥物之用途,其中該組合物包含一有效劑量的金釵石斛(Dendrobium nobile Lindley,DNL)。 The present invention provides a composition for the preparation of a drug for the treatment of developmental retinal vascular disorder (developmental retinal vascular disorder), wherein the composition contains an effective dose of Dendrobium nobile Lindley (DNL).

於一具體實施例中,該金釵石斛的成分包含聯芐(bibenzyls)、生物鹼(alkaloids)、糖苷(glycosides)和多醣(polysaccharides)。於一較佳具體實施例中,該金釵石斛包含一聯芐化合物(bibenzyl compound)。於一更佳具體實施例中,該聯芐化合物包含一石斛酚 (moscatilin)。 In a specific embodiment, the ingredients of Dendrobium nobile include bibenzyls, alkaloids, glycosides and polysaccharides. In a preferred embodiment, the Dendrobium nobile contains a bibenzyl compound. In a more preferred embodiment, the bibenzyl compound contains moscatilin.

於一具體實施例中,該石斛酚(moscatilin)的結構式為:

Figure 107118352-A0101-12-0007-2
In a specific embodiment, the structural formula of the moscatilin is:
Figure 107118352-A0101-12-0007-2

於一具體實施例中,其中該治療發育性視網膜血管疾病係藉由改善視網膜血管發育的缺陷所達成。視網膜血管發育分成兩個部分:(1)血管生成(vasculogenesis):起始於懷孕的第18週左右,且在懷孕的第38-40週完成。因血管會組織成血管叢(vascular plexuses)的網路,其係藉由血管生成(vasculogenesis)和血管新生(angiogenesis)的組合而形成;血管生成是由內皮前驅細胞(endothelial precursor cell),其聚集成索然後形成內腔,重新(de novo)形成的血管發育過程;及(2)血管新生(angiogenesis):血管係藉由從已存在的血管發芽而形成。一般認為血管生成形成發育中的視網膜的大部分主要視網膜血管叢,而血管新生形成中央窩(fovea)周圍以及更深和周邊視網膜上的剩餘毛細血管層。於一較佳具體實施例中,其中該金釵石斛或石斛酚藉由改善血管生成(vasculogenesis)的缺陷以治療該發育性視網膜血管疾病。 In a specific embodiment, the treatment of developmental retinal vascular disease is achieved by improving defects in retinal vascular development. The development of retinal blood vessels is divided into two parts: (1) Vasculogenesis: It starts around the 18th week of pregnancy and is completed in the 38th-40th week of pregnancy. Because blood vessels are organized into a network of vascular plexuses, which are formed by the combination of vasculogenesis and angiogenesis; angiogenesis is formed by endothelial precursor cells, which aggregate The cord then forms the lumen, a process of de novo formation of blood vessel development; and (2) angiogenesis: blood vessels are formed by sprouting from existing blood vessels. It is generally believed that angiogenesis forms most of the main retinal vascular plexus of the developing retina, while angiogenesis forms the remaining capillary layer around the fovea and on the deeper and peripheral retina. In a preferred embodiment, the Dendrobium nobile or Dendrobium phenol treats the developmental retinal vascular disease by improving vasculogenesis defects.

如本文所使用之術語「治療」包括減輕發育性視網膜血管疾病之嚴重程度,延遲發育性視網膜血管疾病之發作,使發育性視網膜血管疾 病消退,緩解由發育性視網膜血管疾病引起之病狀或停止由發育性視網膜血管疾病產生之症狀。術語「治療」包括但不限於預防性及/或治療性治療。 As used herein, the term "treatment" includes reducing the severity of developmental retinal vascular disease, delaying the onset of developmental retinal vascular disease, regressing developmental retinal vascular disease, alleviating or stopping developmental retinal vascular disease. Symptoms caused by developmental retinal vascular disease. The term "treatment" includes but is not limited to prophylactic and/or therapeutic treatment.

於另一具體實施例中,該發育性視網膜血管疾病包含永存原始玻璃體增生症(persistent hyperplastic primary vitreous,PHPV)、諾里疾病(Norrie disease)、家族性滲出性玻璃體視網膜病變(familial exudative vitreoretinopathy,FEVR)及柯氏症(Coats disease)。於一較佳具體實施例中,該發育性視網膜血管疾病包含諾里疾病和家族性滲出性玻璃體視網膜病變。於一更佳具體實施例中,該發育性視網膜血管疾病為諾里疾病。 In another specific embodiment, the developmental retinal vascular disease includes persistent hyperplastic primary vitreous (PHPV), Norrie disease (Norrie disease), and familial exudative vitreoretinopathy (FEVR). ) And Coats disease. In a preferred embodiment, the developmental retinal vascular disease includes Norrie disease and familial exudative vitreoretinopathy. In a more preferred embodiment, the developmental retinal vascular disease is Norrie disease.

由於該發育性視網膜血管疾病是一種視網膜血管發育異常的疾病,故會導致視網膜缺血和患者的視力受損。於另一具體實施例中,該發育性視網膜血管疾病的症狀包含視網膜血管發育異常、視網膜缺血和視力受損。 Since the developmental retinal vascular disease is a disease of abnormal retinal vascular development, it can cause retinal ischemia and impaired vision of the patient. In another embodiment, the symptoms of the developmental retinal vascular disease include abnormal retinal vascular development, retinal ischemia, and impaired vision.

由於該發育性視網膜血管疾病會導致視網膜缺血,而視網膜缺血會造成視網膜缺血性損傷。於一具體實施例中,該視網膜缺血性損傷包含視網膜的厚度變薄、視網膜神經節細胞(RGC)的數量減少、以及相關因子(如缺氧誘導因子(HIF)、視網膜母細胞瘤結合蛋白2(RBP2)、丙酮酸激酶M2(PKM2)、血管內皮生長因子(VEGF))的表現量上升。於另一具體實施例中,該金釵石斛或該石斛酚治療該發育性視網膜血管疾病所造成的視網膜缺血性損傷。 Because the developmental retinal vascular disease can cause retinal ischemia, and retinal ischemia can cause retinal ischemic damage. In a specific embodiment, the retinal ischemic injury includes thinning of the thickness of the retina, a decrease in the number of retinal ganglion cells (RGC), and related factors (such as hypoxia-inducible factor (HIF), retinoblastoma binding protein 2 (RBP2), pyruvate kinase M2 (PKM2), vascular endothelial growth factor (VEGF)) increased. In another specific embodiment, the Dendrobium nobile or the Dendrobium phenol treats retinal ischemic damage caused by the developmental retinal vascular disease.

該視網膜缺血性損傷會使視網膜的厚度變薄,故施予該金釵石斛或該石斛酚能避免視網膜厚度變薄的現象發生,即該金釵石斛或該石 斛酚能治療或增加視網膜的厚度。於一具體實施例中,該金釵石斛或該石斛酚治療該發育性視網膜血管疾病所造成的視網膜厚度變薄的情況。 The retinal ischemic damage will make the thickness of the retina thinner, so administering the Dendrobium nobile or the Dendrobium phenol can avoid the phenomenon of thinning of the retinal thickness, that is, the Dendrobium nobile or the Dendrobium phenol can treat or increase the retina thickness. In a specific embodiment, the Dendrobium nobile or the Dendrobium phenol treats the thinning of the retinal thickness caused by the developmental retinal vascular disease.

該發育性視網膜血管疾病會導致視網膜缺血性損傷,進而造成視網膜神經節細胞(RGC)的數量減少,而施予該金釵石斛或石斛酚後能增加視網膜神經節細胞(RGC)的數量或保護視網膜神經節細胞免於細胞死亡,以治療該發育性視網膜血管疾病中視網膜的缺血性損傷。於一具體實施例中,該金釵石斛或該石斛酚增加視網膜神經節細胞(RGC)的數量。 The developmental retinal vascular disease can cause ischemic damage to the retina, which will result in a decrease in the number of retinal ganglion cells (RGC). The administration of Dendrobium nobile or dendrobium can increase the number of retinal ganglion cells (RGC) or Protect retinal ganglion cells from cell death to treat ischemic damage to the retina in this developmental retinal vascular disease. In a specific embodiment, the Dendrobium nobile or the Dendrobium phenol increases the number of retinal ganglion cells (RGC).

此外,該發育性視網膜血管疾病導致視網膜缺血性損傷,進而促使視網膜中的缺氧誘導因子(HIF)、視網膜母細胞瘤結合蛋白2(RBP2)、丙酮酸激酶M2(PKM2)、血管內皮生長因子(VEGF)的表現量上升,而施予該金釵石斛或該石斛酚後能降低上述因子的表現量,以治療該發育性視網膜血管疾病上的視網膜缺血性損傷。於一具體實施例中,該金釵石斛或該石斛酚降低缺氧誘導因子-1α(HIF-1α)、視網膜母細胞瘤結合蛋白2(RBP2)、丙酮酸激酶M2(PKM2)和血管內皮生長因子(VEGF)的表現量。 In addition, the developmental retinal vascular disease causes ischemic damage to the retina, which in turn promotes hypoxia-inducible factor (HIF), retinoblastoma binding protein 2 (RBP2), pyruvate kinase M2 (PKM2), and vascular endothelial growth in the retina. The expression level of the factor (VEGF) increases, and the administration of the Dendrobium nobile or the Dendrobium phenol can reduce the expression level of the above factors, so as to treat the retinal ischemic damage in the developmental retinal vascular disease. In a specific embodiment, the dendrobium nobile or the dendrobium phenol reduces hypoxia-inducible factor-1α (HIF-1α), retinoblastoma binding protein 2 (RBP2), pyruvate kinase M2 (PKM2) and vascular endothelial growth The expression level of factor (VEGF).

該發育性視網膜血管疾病會引起血管新生(angiogenesis)。故於另一具體實施例中,該金釵石斛或該石斛酚能捕獲血管內皮生長因子(VEGF)以抗血管新生(anti-angiogenesis)。 This developmental retinal vascular disease causes angiogenesis. Therefore, in another embodiment, the Dendrobium nobile or the Dendrobium phenol can capture vascular endothelial growth factor (VEGF) to prevent anti-angiogenesis.

本文中「表現量」一詞包含但不限於DNA、RNA或蛋白質的表現量。 The term "expressive quantity" in this article includes but is not limited to the expressive quantity of DNA, RNA or protein.

該發育性視網膜血管疾病所造成的視網膜缺血性損傷會上調胎盤生長因子(PLGF)的表現量以及下調諾里疾病蛋白(NDP)的表現量。而施予該金釵石斛或該石斛酚後能下調胎盤生長因子(PLGF)的表現量以及上調諾里疾病蛋白(NDP)的表現量,以治療該發育性視網膜血管疾病中因缺血/缺氧所造成的視網膜損傷。因諾里疾病蛋白(NDP)能透過調節諾里(norrin)依賴性Wnt訊號路徑來保護眼睛免於血管發育異常和其所導致的視網膜缺血性損傷。於一具體實施例中,該金釵石斛或石斛酚下調胎盤生長因子(PLGF)的表現量以及上調諾里疾病蛋白(NDP)的表現量。於一較佳具體實施例中,該金釵石斛或石斛酚上調諾里疾病蛋白(NDP)的表現量以調節諾里(Norrin)依賴性Wnt訊號路徑來改善視網膜血管發育異常。於一更佳具體實施例中,該金釵石斛或石斛酚上調諾里疾病蛋白(NDP)的表現量以調節諾里(Norrin)依賴性Wnt訊號路徑來改善視網膜缺血。 The retinal ischemic damage caused by the developmental retinal vascular disease will up-regulate the expression level of placental growth factor (PLGF) and down-regulate the expression level of Norrie disease protein (NDP). The administration of Dendrobium nobile or Dendrobium can down-regulate the expression level of placental growth factor (PLGF) and up-regulate the expression level of Nori disease protein (NDP) to treat the developmental retinal vascular disease due to ischemia/deficiency. Retina damage caused by oxygen. Innori disease protein (NDP) can protect the eye from vascular development abnormalities and retinal ischemic damage caused by regulating the norrin-dependent Wnt signal pathway. In a specific embodiment, the Dendrobium nobile or Dendrobium phenol down-regulates the expression level of placental growth factor (PLGF) and up-regulates the expression level of Norrie disease protein (NDP). In a preferred embodiment, the Dendrobium nobile or Dendrobium phenol up-regulates the expression of Norrin disease protein (NDP) to regulate the Norrin-dependent Wnt signal pathway to improve retinal vascular development abnormalities. In a more preferred embodiment, the Dendrobium nobile or Dendrobium phenol up-regulates the expression level of Norrin disease protein (NDP) to regulate the Norrin-dependent Wnt signal pathway to improve retinal ischemia.

本文中「有效劑量」一詞為一治療劑量可在特定條件下可預防、降低、阻止或逆轉一個體的一症狀的發展,或部分、完全舒緩該個體開始接受治療時於特別情況下已存在的症狀。 The term "effective dose" as used herein refers to a therapeutic dose that can prevent, reduce, prevent, or reverse the development of a symptom in an individual under certain conditions, or partially or completely relieve the individual when the individual starts receiving treatment. It already exists under special circumstances. Symptoms.

於一具體實施例中,該金釵石斛的有效劑量範圍為0.01克/公斤體重至100克/公斤體重。於一較佳具體實施例中,該金釵石斛的有效劑量範圍為0.1克/公斤體重至50克/公斤體重。於一更佳具體實施例中,該金釵石斛的有效劑量範圍為0.5克/公斤體重至10克/公斤體重。於另一佳具體實施例中,該金釵石斛的有效劑量範圍為0.1克/公斤體重至5克/公斤體重。 In a specific embodiment, the effective dose of Dendrobium nobile is in the range of 0.01 g/kg body weight to 100 g/kg body weight. In a preferred embodiment, the effective dose of Dendrobium nobile is in the range of 0.1 g/kg body weight to 50 g/kg body weight. In a more preferred embodiment, the effective dose of Dendrobium nobile is in the range of 0.5 g/kg body weight to 10 g/kg body weight. In another preferred embodiment, the effective dose of Dendrobium nobile is in the range of 0.1 g/kg body weight to 5 g/kg body weight.

於另一具體實施例中,該石斛酚的有效劑量範圍為0.01克/公斤體重至100克/公斤體重。於一較佳具體實施例中,該石斛酚的有效劑量範圍為0.1克/公斤體重至50克/公斤體重。於一更佳具體實施例中,該石斛酚的有效劑量範圍為0.5克/公斤體重至10克/公斤體重。於另一佳具體實施例中,該石斛酚的有效劑量範圍為0.1克/公斤體重至5克/公斤體重。 In another embodiment, the effective dose of the dendrobium phenol ranges from 0.01 g/kg body weight to 100 g/kg body weight. In a preferred embodiment, the effective dose of the dendrobium phenol is in the range of 0.1 g/kg body weight to 50 g/kg body weight. In a more preferred embodiment, the effective dose of the dendrobium phenol ranges from 0.5 g/kg body weight to 10 g/kg body weight. In another preferred embodiment, the effective dose of the dendrobol is in the range of 0.1 g/kg body weight to 5 g/kg body weight.

於一具體實施例中,該有效劑量每天以單次施予。於一較佳具體實施例中,該有效劑量每天以兩次或多次施予。 In a specific embodiment, the effective dose is administered once a day. In a preferred embodiment, the effective dose is administered two or more times a day.

該藥物可在例行時間表下投予。於本文中使用之例行時間表係指預定之所指定時期。例行時間表可涵蓋一些時期,其係為相同,或其在長度上不同,只要時間表為預定即可。例如,例行時間表可涉及一天一次投藥,每天、每兩天、每三天、每四天、每五天、每六天、每週基礎、每月基礎或介於其間之任何設定天數或週數。或者,預定例行時間表可涉及以每日一次為基礎投藥,歷經第一週,接著以每日為基礎,歷經數個月等。在其他具體實施例中,本發明係提供藥物可以經口方式服用,且其時機係依賴或不依賴食物攝取而定。因此,例如藥物可於每個早晨及/或每個夜晚服用,而不管病患何時已進食或將進食。 The drug can be administered on a routine schedule. The routine schedule used in this article refers to the predetermined and designated period. The routine timetable may cover some periods, which are the same or different in length, as long as the timetable is predetermined. For example, a routine schedule may involve dosing once a day, every day, every two days, every three days, every four days, every five days, every six days, a weekly basis, a monthly basis, or any set number of days in between. The number of weeks. Alternatively, the predetermined routine schedule may involve dosing on a once-daily basis, for the first week, and then on a daily basis, for several months, etc. In other specific embodiments, the present invention provides that the drug can be taken orally, and the timing is dependent on or independent of food intake. Thus, for example, the drug can be taken every morning and/or every night, regardless of when the patient has eaten or will eat.

本發明的藥物可進一步包含一醫藥上可接受的載體,在本發明相關領域下習知的治療方式中可透過許多不同途徑施用於一個體。在一些實施例中,該組合物(包含金釵石斛或石斛酚)及醫藥上可接受的載體會經由外用、靜脈、肌肉、皮下、局部、口服或吸入施用。該藥物將會透過消化及循環系統被傳遞到目標處。於一較佳具體實施例中,該藥物之給藥路徑 為口服給予。 The medicament of the present invention may further comprise a pharmaceutically acceptable carrier, and can be administered to a body through many different ways in the conventional treatment methods in the relevant field of the present invention. In some embodiments, the composition (including Dendrobium nobile or Dendrobium phenol) and a pharmaceutically acceptable carrier will be administered via external, intravenous, intramuscular, subcutaneous, topical, oral or inhalation administration. The drug will be delivered to the target through the digestive and circulatory system. In a preferred embodiment, the route of administration of the drug is oral administration.

於另一具體實施例中,該個體為動物,較佳為哺乳類,更佳為人類。 In another embodiment, the individual is an animal, preferably a mammal, and more preferably a human.

如本文所用術語「醫藥上可接受的載體」為透過特定組合施用及特定方法施用組合物所決定。如本文所用「載體」一詞包含但不局限任何及所有溶劑、分散介質、載具、包衣、稀釋劑、抗細菌和抗真菌劑等滲透和吸收延遲劑、緩衝劑、載體溶液、懸浮液、膠體等。用於藥物活性物質的這些介質和試劑在本領域中是公知的。除非任何常規介質或試劑與活性成分不相容,其用於治療的組合就需要被考慮。補充的活性成分也可摻入組合物中。術語「醫藥上可接受的」係指分子實體和組合物施用於受試者時不產生過敏或類似的不良反應。以蛋白質作為活性物質的水組合物製備在本領域中是習知的。通常,此組合物被製備為液體溶液、錠劑、膠囊或懸浮液注射劑;亦可製備為可用於注射劑之可溶解或懸浮液之固體形式。 The term "pharmaceutically acceptable carrier" as used herein is determined by the specific combination of administration and the specific method of administration of the composition. As used herein, the term "carrier" includes but is not limited to any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, etc. penetration and absorption delaying agents, buffers, carrier solutions, suspensions , Colloid, etc. These media and agents for pharmaceutically active substances are well known in the art. Unless any conventional medium or agent is incompatible with the active ingredient, its therapeutic combination needs to be considered. Supplementary active ingredients can also be incorporated into the composition. The term "pharmaceutically acceptable" means that molecular entities and compositions do not produce allergic or similar adverse reactions when administered to a subject. The preparation of water compositions with protein as the active substance is well known in the art. Usually, the composition is prepared as a liquid solution, lozenge, capsule or suspension injection; it can also be prepared as a solid form that can be used for injection which can be dissolved or suspended.

該組合物(包含金釵石斛或石斛酚)及醫藥上可接受的載體的配製可能經由無菌的水溶液或分散體、水懸浮液、油乳化液、油包乳化液中的水、特定點的乳化液、長停留乳化液、黏性乳化液、微乳液、奈米乳液、微脂粒、微粒、微球、奈米球、奈米顆粒、微汞及數種可持續釋放的天然或合成聚合物。醫藥上可接受的載體及該金釵石斛(或石斛酚)也可配置成氣霧劑、片劑、丸劑、膠囊、無菌粉末、栓劑、洗劑、霜劑、軟膏劑、糊劑、凝膠、水凝膠,或其他可用於組合物輸送的製劑。 The preparation of the composition (including Dendrobium nobile or Dendrobium phenol) and a pharmaceutically acceptable carrier may be through sterile aqueous solutions or dispersions, water suspensions, oil emulsions, water in oil emulsions, and emulsification at specific points. Liquid, long-stay emulsion, viscous emulsion, microemulsion, nanoemulsion, liposomes, microparticles, microspheres, nanospheres, nanoparticle, micromercury, and several sustainable-release natural or synthetic polymers . The pharmaceutically acceptable carrier and the Dendrobium nobile (or Dendrobium phenol) can also be formulated into aerosols, tablets, pills, capsules, sterile powders, suppositories, lotions, creams, ointments, pastes, gels , Hydrogel, or other formulations that can be used for composition delivery.

該組合物被製備成藥物時,每一單位藥物所含的金釵石斛或 石斛酚的單位劑量為0.5-50克(g),較佳為0.1-10克(g),更佳為0.01-1克(g)。 When the composition is prepared into a medicine, the unit dose of Dendrobium nobile or Dendrobium phenol contained in each unit of medicine is 0.5-50 grams (g), preferably 0.1-10 grams (g), more preferably 0.01- 1 gram (g).

是以,本發明所提供的組合物(包含金釵石斛(DNL)或石斛酚)能治療發育性視網膜血管疾病,其包含但不限於修復/治療視網膜血管發育異常或血管發育的缺陷;此外,因視網膜血管發育異常,會造成視網膜缺血,故本發明的組合物能進一步改善缺血/缺氧對視網膜所造成的不良影響和損傷,即保護視網膜免於缺血/缺氧的損傷。 Therefore, the composition (including Dendrobium nobile (DNL) or Dendrobium phenol) provided by the present invention can treat developmental retinal vascular diseases, including but not limited to repairing/treating abnormal retinal vascular development or defects in vascular development; in addition, Due to abnormal retinal vascular development, it can cause retinal ischemia, so the composition of the present invention can further improve the adverse effects and damage caused by ischemia/hypoxia to the retina, that is, protect the retina from ischemia/hypoxia damage.

圖1中(a)至(e)為以光學顯微鏡觀察石斛酚(moscatilin,Mos)對氧糖剝奪(oxygen glucose deprivation,OGD)處理之視網膜神經節細胞-5(retinal ganglion cell-5,RGC-5)的影響之細胞存活率研究。與正常對照組(細胞培養於DMEM培養基中且預先施予DMSO,DMSO+DMEM)相比,在預先施予二甲亞碸(DMSO)(媒劑(Vehicle))並接著OGD(DMSO+OGD)後,細胞數量較少且有一些會變形(如箭號所示)。藉由在OGD處理前1小時預先施予石斛酚(Pre-OGD Mos 0.1μM)會緩解OGD所誘發的改變。(f)為使用MTT分析法定量分析Mos對OGD處理的細胞之影響。**:正常對照組(DMSO+DMEM)和DMSO+OGD組之間具有顯著差異(P<0.01)。†:DMSO+OGD組和Pre-OGD Mos 0.1μM組之間具有顯著差異(P=0.04)。實驗結果以平均值±標準誤差(SEM)表示(數量為6)。比例尺為50μm。DMSO+DMEM:含有DMSO之DMEM培養基;DMSO+OGD:OGD處理前1小時施予DMSO,再接著OGD;Pre-OGD Mos 0.1μM:OGD處理前1小時施予0.1μM石斛酚(Mos),再接著OGD;During OGD Mos 0.1μM:OGD期間施予0.1μM石斛酚(Mos);及Post-OGD Mos 0.1μM:OGD處理後1小時施予0.1μM石斛酚(Mos)。N:數量。 In Figure 1, (a) to (e) are observations of retinal ganglion cell-5 (RGC-) treated by moscatilin (Mos) on oxygen glucose deprivation (OGD) under an optical microscope. 5) Study on the effect of cell viability. Compared with the normal control group (cells cultured in DMEM medium and pre-administered DMSO, DMSO+DMEM), DMSO (Vehicle) followed by OGD (DMSO+OGD) was pre-administered Later, the number of cells is small and some will be deformed (as indicated by the arrow). Pre-administration of dendrobium (Pre-OGD Mos 0.1μM) 1 hour before OGD treatment will alleviate the changes induced by OGD. (f) Quantitative analysis of the influence of Mos on OGD-treated cells using MTT analysis. **: There is a significant difference between the normal control group (DMSO+DMEM) and the DMSO+OGD group (P<0.01). †: There is a significant difference between the DMSO+OGD group and the Pre-OGD Mos 0.1μM group (P=0.04). The experimental results are expressed as mean±standard error (SEM) (the number is 6). The scale bar is 50μm. DMSO+DMEM: DMEM medium containing DMSO; DMSO+OGD: DMSO was administered 1 hour before OGD treatment, followed by OGD; Pre-OGD Mos 0.1μM: 0.1μM dendrobium (Mos) was administered 1 hour before OGD treatment, and then Then OGD; During OGD Mos 0.1 μM: 0.1 μM dendrobol (Mos) was administered during OGD; and Post-OGD Mos 0.1 μM: 0.1 μM dendrobol (Mos) was administered 1 hour after OGD treatment. N: number.

圖2為石斛酚(moscatilin,Mos)在相對於β-肌動蛋白(β-actin)的諾里疾病蛋白(NDP)之蛋白質表現的影響。上圖:一系列免疫墨點的代表圖;下圖:柱狀圖。在正常對照組(DMSO+DMEM:視網膜神經節細胞-5(RGC-5)細胞培養在DMEM培養基中,且預先施予二甲亞碸(DMSO))中NDP對β-actin蛋白的表現量調整為100%。**:DMSO+DMEM組和DMSO+OGD組之間具有顯著差異(P<0.01)。†:DMSO+OGD組和Pre-OGD Mos 0.1μM組之間具有顯著差異(P=0.048)。實驗結果以平均值±標準誤差(SEM)表示(數量為3)。OGD:氧糖剝奪;RGC:視網膜神經節細胞。DMSO+DMEM:含有DMSO之DMEM培養基;DMSO+OGD:OGD處理前1小時施予DMSO,再接著OGD;Pre-OGD Mos 0.1μM:OGD處理前1小時施予0.1μM石斛酚(Mos),再接著OGD;During OGD Mos 0.1μM:OGD期間施予0.1μM石斛酚(Mos);及Post-OGD Mos 0.1μM:OGD處理後1小時施予0.1μM石斛酚(Mos)。 Figure 2 shows the effect of moscatilin (Mos) on the protein expression of Norrie disease protein (NDP) relative to β-actin. Top image: a series of representative images of immune ink dots; bottom image: histogram. In the normal control group (DMSO+DMEM: retinal ganglion cell-5 (RGC-5) cells cultured in DMEM medium, and pre-administered with dimethylsulfoxide (DMSO)), the expression level of β-actin protein adjusted by NDP in the normal control group (DMSO+DMEM: retinal ganglion cell-5 (RGC-5)) Is 100%. **: There is a significant difference between the DMSO+DMEM group and the DMSO+OGD group (P<0.01). †: There is a significant difference between the DMSO+OGD group and the Pre-OGD Mos 0.1μM group (P=0.048). The experimental results are expressed as mean±standard error (SEM) (the number is 3). OGD: oxygen glucose deprivation; RGC: retinal ganglion cells. DMSO+DMEM: DMEM medium containing DMSO; DMSO+OGD: DMSO was administered 1 hour before OGD treatment, followed by OGD; Pre-OGD Mos 0.1μM: 0.1μM dendrobium (Mos) was administered 1 hour before OGD treatment, and then Then OGD; During OGD Mos 0.1 μM: 0.1 μM dendrobol (Mos) was administered during OGD; and Post-OGD Mos 0.1 μM: 0.1 μM dendrobol (Mos) was administered 1 hour after OGD treatment.

圖3為視網膜電圖(electroretinogram,ERG)分析。(a)和(b):與對照組(sham)的視網膜相比,在高眼壓(high intraocular pressure,HIOP)誘發的視網膜缺血再灌注(ischemia plus reperfusion,I/R)前施予媒劑(vehicle)(a)或後施予媒劑(b)後,ERG的b波振幅急劇下降。而這種降低可藉由預先施予金釵石斛(DNL)(DNL1.0+I/R;DNL0.5+I/R,a) 或後施予金釵石斛(I/R+DNL1.0,b)會產生劑量依賴性地抵消。(c):與對照組(sham)相比,在視網膜經缺血再灌注(I/R)後,Vehicle+I/R組中ERG的b波比率顯著地降低(**;P<0.01)。預先施予高劑量(DNL1.0+I/R)和低劑量(DNL0.5+I/R)的DNL呈現劑量反應且顯著地抵銷這種缺血性誘發的降低(††;P<0.01)。(d):經I/R之視網膜並缺血後施予媒劑之後的第1、3、5或7天,ERG的b波振幅顯著降低(**;P<0.01)。藉由後施予DNL(I/R+DNL1.0)可顯著緩解ERG的b波振幅上的降低(†/††;P<0.05/0.01)。實驗結果以平均值±標準誤差(SEM)表示;實驗數量為10~12。Sham(對照組):假程序手術實驗(數量為12);Vehicle+I/R:視網膜缺血再灌注(I/R)前施予媒劑(vehicle),再接著I/R手術(數量為12);DNL0.5+I/R:視網膜缺血再灌注(I/R)前施予0.5g/kg/天的DNL,再接著I/R手術(數量為12);DNL1.0+I/R:視網膜缺血再灌注(I/R)前施予1.0g/kg/天的DNL,再接著I/R手術(數量為12);I/R+Vehicle D7:I/R手術後施予媒劑(vehicle)之後的第7天;I/R+DNL1.0 D7:I/R手術後施予1.0g/kg/天的DNL之後的第7天;I/R+Vehicle:I/R手術後施予媒劑(vehicle)(數量為10);I/R+DNL1.0:I/R手術後施予1.0g/kg/天的DNL(數量為10);Pre-ischemia:I/R手術前;Post-ischemia D1:I/R手術後的第1天;Post-ischemia D3:I/R手術後的第3天;Post-ischemia D5:I/R手術後的第5天;Post-ischemia D7:I/R手術後的第7天。 Figure 3 shows the electroretinogram (ERG) analysis. (a) and (b): Compared with the retina of the control group (sham), the vehicle was administered before the retinal ischemia reperfusion (I/R) induced by high intraocular pressure (HIOP) After vehicle (a) or later administration of vehicle (b), the b-wave amplitude of ERG drops sharply. And this reduction can be done by pre-administering Dendrobium nobile (DNL) (DNL1.0+I/R; DNL0.5+I/R, a) or post-administering Dendrobium nobile (I/R+DNL1.0) , B) will produce a dose-dependent offset. (c): Compared with the control group (sham), the b-wave ratio of ERG in the Vehicle+I/R group was significantly reduced after retina ischemia-reperfusion (I/R) (**; P<0.01) . Pre-administered high-dose (DNL1.0+I/R) and low-dose (DNL0.5+I/R) DNL showed a dose response and significantly offset this ischemic-induced reduction (††; P< 0.01). (d): The b-wave amplitude of ERG decreased significantly on the 1, 3, 5, or 7 days after the administration of the vehicle after the I/R retina and ischemia (**; P<0.01). Post-administration of DNL (I/R+DNL1.0) can significantly alleviate the decrease in the b-wave amplitude of ERG (†/††; P<0.05/0.01). The experimental results are expressed as mean ± standard error (SEM); the number of experiments is 10-12. Sham (control group): sham procedure operation experiment (the number is 12); Vehicle+I/R: vehicle is administered before retinal ischemia-reperfusion (I/R), followed by I/R surgery (the number is 12); DNL0.5+I/R: 0.5g/kg/day of DNL before retinal ischemia-reperfusion (I/R), followed by I/R surgery (the number is 12); DNL1.0+I /R: 1.0g/kg/day DNL before retinal ischemia-reperfusion (I/R), followed by I/R surgery (12 in number); I/R+Vehicle D7: after I/R surgery The 7th day after vehicle (vehicle); I/R+DNL1.0 D7: The 7th day after I/R surgery with 1.0g/kg/day DNL; I/R+Vehicle: I/ Vehicle (vehicle) (quantity 10) after R surgery; I/R+DNL1.0: 1.0g/kg/day DNL (quantity 10) after I/R surgery; Pre-ischemia: I /R before surgery; Post-ischemia D1: the first day after I/R surgery; Post-ischemia D3: the third day after I/R surgery; Post-ischemia D5: the fifth day after I/R surgery; Post-ischemia D7: The 7th day after I/R surgery.

圖4為以甲苯酚紫(cresyl violet)標記的整個或內層視網膜之厚度分析。(a)、(b)和(e)分別為接受假程序(Sham)(a)、經缺血再 灌注(I/R)並預先施予媒劑(vehicle)(b)或後施予媒劑(e)的視網膜。(c)、(d)和(f)分別為缺血加再灌注並預先施予0.5g/kg/天(c,DNL0.5+I/R)、1.0g/kg/天(d,DNL1.0+I/R)或後施予1.0g/kg/天(f,I/R+DNL1.0)的金釵石斛(DNL)之視網膜切片。(g)和(h)為對相同偏心率(eccentricity)的內層及整個視網膜切片的厚度進行形態學分析。實驗結果以平均值±SEM表示,實驗數量為10~12。**:與假程序之視網膜有顯著性差異(P<0.01)。†或††:與vehicle+I/R或I/R+vehicle相比有顯著性差異(P<0.05或P<0.01)。ONL:外核層(outer nuclear layer);OPL:外叢狀層(outer plexiform layer);INL:內核層(inner nuclear layer);IPL:內叢狀層(inner plexiform layer);GCL:神經節細胞層(ganglion cell layer)。比例尺為50μm。 Figure 4 shows the thickness analysis of the whole or inner retina marked with cresyl violet. (a), (b) and (e) are respectively receiving sham procedure (Sham) (a), via ischemia reperfusion (I/R) and pre-administration of vehicle (vehicle) (b) or post-administration of vehicle Agent (e) of the retina. (c), (d) and (f) are respectively ischemia plus reperfusion and pre-administered 0.5g/kg/day (c, DNL0.5+I/R), 1.0g/kg/day (d, DNL1 .0+I/R) or 1.0g/kg/day (f, I/R+DNL1.0) of retinal sections of Dendrobium nobile (DNL). (g) and (h) are the morphological analysis of the thickness of the inner layer and the entire retinal slice with the same eccentricity. The experimental results are expressed as mean±SEM, and the number of experiments is 10-12. **: There is a significant difference between the retina of the fake program (P<0.01). † or ††: There is a significant difference compared with vehicle+I/R or I/R+vehicle (P<0.05 or P<0.01). ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; IPL: inner plexiform layer; GCL: ganglion cell Layer (ganglion cell layer). The scale bar is 50μm.

圖5為螢光金(Fluorogold)標記染色。顯微鏡照片顯示經假程序(a,Sham)、缺血前施予媒劑再缺血再灌注(I/R)(b,Vehicle+I/R)或於缺血前/後施予1.0g/kg/天的金釵石斛(DNL)加缺血再灌注(c,DNL1.0+I/R;d,I/R+DNL1.0)之視網膜神經節細胞(retinal ganglion cell,RGC)的密度。(e)為RGC密度的定量分析,其數量如每條柱狀體所示,實驗結果以平均值±標準誤差(SEM)表示(數量為4)。**:與假程序的視網膜有顯著差異(P<0.01;Sham組對Vehicle+I/R組);††或†:與Vehicle+I/R組有顯著差異(P<0.01或P<0.05;Vehicle+I/R組對DNL1.0+I/R組或I/R+DNL1.0組)。比例尺為50μm。 Figure 5 shows Fluorogold staining. Microscopic photographs show the sham procedure (a, Sham), the administration of vehicle before ischemia and reperfusion (I/R) (b, Vehicle+I/R) or the administration of 1.0g/before/after ischemia The density of retinal ganglion cell (RGC) in kg/day of Dendrobium nobile (DNL) plus ischemia reperfusion (c, DNL1.0+I/R; d, I/R+DNL1.0) . (e) is the quantitative analysis of RGC density, the number is shown in each column, and the experimental result is expressed as the mean ± standard error (SEM) (the number is 4). **: Significantly different from the sham procedure retina (P<0.01; Sham group vs. Vehicle+I/R group); †† or †: Significantly different from Vehicle+I/R group (P<0.01 or P<0.05 ; Vehicle+I/R group to DNL1.0+I/R group or I/R+DNL1.0 group). The scale bar is 50μm.

圖6為膽鹼乙醯轉移酶(Choline acetyltransferase,ChAT; 紅色)之免疫組織化學實驗。(a)為經假程序的視網膜(Sham),細胞核以4',6-二脒基-2-苯基吲哚二鹽酸鹽(4,6-diamidine-2-phenylindole dihydrochloride,DAPI;藍色)進行複染。無軸突神經細胞體(amacrine cell bodies)(Sham;短箭號)係位於內核層(INL)和神經節細胞層(GCL)中,並且它們的神經突出(neuronal processes)(長箭號)在內叢狀層(IPL)中顯示雙帶狀的態樣。(b)和(e)分別為經缺血再灌注(I/R)及於缺血前/後施予媒劑(Vehicle+I/R或I/R+Vehicle)的視網膜;而且可觀察到IPL內的免疫反應性伴隨著無軸突神經細胞體的數量大幅減少而顯著降低。(c)、(d)和(f)分別為經缺血再灌注(I/R)及預先施予0.5g/kg/天(c,DNL0.5+I/R)或1.0g/kg/天(d,DNL1.0+I/R)的金釵石斛(DNL)、或經缺血再灌注(I/R)及後施予1.0g/kg/天(f,I/R+DNL1.0)的金釵石斛之視網膜切片。在這些組別中,當預先施予0.5和1.0g/Kg/天的金釵石斛於缺血性視網膜時,這些缺血誘導的變化明顯呈劑量依賴性形式來降低。而後施予1.0g/Kg/天的金釵石斛也明顯減輕這些缺血引起的變化。比例尺為50μm。 Figure 6 shows the immunohistochemistry experiment of Choline acetyltransferase (ChAT; red). (a) Sham retina (Sham), the nucleus is 4',6-diamidine-2-phenylindole dihydrochloride (4,6-diamidine-2-phenylindole dihydrochloride, DAPI; blue ) Perform counterstaining. Axonal cell bodies (Sham; short arrow) are located in the inner nuclear layer (INL) and ganglion cell layer (GCL), and their neuronal processes (long arrow) are located in the inner core layer (INL) and ganglion cell layer (GCL). The inner plexiform layer (IPL) shows the appearance of double bands. (b) and (e) are respectively the retina after ischemia-reperfusion (I/R) and vehicle (Vehicle+I/R or I/R+Vehicle) administered before/after ischemia; and can be observed The immunoreactivity in the IPL is significantly reduced with a significant decrease in the number of axonal neuronal cell bodies. (c), (d) and (f) are respectively via ischemia reperfusion (I/R) and pre-administered 0.5g/kg/day (c, DNL0.5+I/R) or 1.0g/kg/ Dendrobium nobile (DNL) on day (d, DNL1.0+I/R), or after ischemia-reperfusion (I/R) and 1.0g/kg/day (f, I/R+DNL1. 0) Retina section of Dendrobium nobile. In these groups, when 0.5 and 1.0 g/Kg/day of Dendrobium nobile were administered to the ischemic retina in advance, these ischemia-induced changes were significantly reduced in a dose-dependent manner. The subsequent administration of 1.0g/Kg/day of Dendrobium nobile also significantly reduced these changes caused by ischemia. The scale bar is 50μm.

圖7為波形蛋白(vimentin)之免疫組織化學染色。(b)為在進行假程序(Sham)後,繆氏細胞(müller cells)細胞的末端在神經節細胞層(GCL)中可觀察到抗波形蛋白(綠色)免疫反應性(箭頭;在(c)和(f)亦可觀察到);並且繆氏細胞的突出(processes)在內叢狀層(IPL)(箭號;在(c)和(f)亦可觀察到)、內核層(INL)和外核層(ONL)也被免疫染色出來。(c)和(f)分別為與假程序的視網膜相比,在缺血前/後施予媒劑(Vehicle+I/R或I/R+Vehicle),視網膜上的抗波形蛋白免疫標記顯 著增強。(d)、(e)和(g)分別為藉由預先施予0.5g/kg/天(DNL0.5+I/R)或1g/kg/天的金釵石斛(DNL)(DNL1.0+I/R)、或後施予1g/kg/天(I/R+DNL1.0)的金釵石斛會使上述增強現象明顯被減弱。(h)至(n)為膠質原纖維酸性蛋白(glial fibrillary acidic protein,GFAP)的免疫組織化學染色。在假程序(Sham,i)之後,繆氏細胞的末端在神經節細胞層(GCL)顯示GFAP免疫反應性(箭頭;在(j)和(m)亦可觀察到),並且繆氏細胞的突出(processes)在內叢狀層(IPL)(箭號;在(j)和(m)亦可觀察到)、內核層(INL)和外核層(ONL)亦顯示GFAP免疫反應性。和經假程序的視網膜相比,在經缺血和預先/後施予媒劑(Vehicle+I/R,j;I/R+Vehicle,m)後,抗GFAP免疫標記增強。透過預先施予0.5g/kg/天(DNL0.5+I/R,k)或1g/kg/天(DNL1.0+I/R,l)的金釵石斛(DNL),或後施予1g/kg/天(I/R+DNL1.0,n)的金釵石斛,會將上述增強程度減少。(a)和(h)為4',6-二脒基-2-苯基吲哚二鹽酸鹽(DAPI)(藍色)用於在假程序之視網膜中複染細胞核。比例尺為25μm。 Figure 7 shows the immunohistochemical staining of vimentin. (b) After the sham procedure (Sham), the end of the müller cells (müller cells) cell can be observed in the ganglion cell layer (GCL) anti-vimentin (green) immunoreactivity (arrow; in (c) ) And (f) can also be observed); and the processes of the Mühl cells in the inner plexiform layer (IPL) (arrows; can also be observed in (c) and (f)), the inner plexiform layer (INL) ) And the outer nuclear layer (ONL) were also immunostained. (c) and (f) are respectively compared with the sham procedure retina, when vehicle (Vehicle+I/R or I/R+Vehicle) is administered before/after ischemia, the anti-vimentin immunolabeling on the retina is significant Enhanced. (d), (e), and (g) are by pre-administering 0.5g/kg/day (DNL0.5+I/R) or 1g/kg/day of Dendrobium nobile (DNL) (DNL1.0 +I/R), or after 1g/kg/day (I/R+DNL1.0) of Dendrobium nobile, the above-mentioned enhancement phenomenon will be significantly reduced. (h) to (n) are immunohistochemical staining of glial fibrillary acidic protein (GFAP). After the sham procedure (Sham, i), the end of Mühle cells showed GFAP immunoreactivity in the ganglion cell layer (GCL) (arrow; can also be observed in (j) and (m)), and the end of Mühle cells The processes of the inner plexiform layer (IPL) (arrows; can also be observed at (j) and (m)), the inner core layer (INL) and the outer core layer (ONL) also show GFAP immunoreactivity. Compared with the sham-programmed retina, the anti-GFAP immunolabeling is enhanced after ischemia and pre/post vehicle administration (Vehicle+I/R, j; I/R+Vehicle, m). By pre-administering 0.5g/kg/day (DNL0.5+I/R, k) or 1g/kg/day (DNL1.0+I/R, l) of Dendrobium nobile (DNL), or administering later 1g/kg/day (I/R+DNL1.0, n) Dendrobium nobile can reduce the above-mentioned enhancement degree. (a) and (h) are 4',6-diamidino-2-phenylindole dihydrochloride (DAPI) (blue) for counterstaining the nucleus in the retina of the pseudo-procedure. The scale bar is 25μm.

圖8:(a1)以西方墨點法(western blotting)分析下顯示β-肌動蛋白(β-actin)、缺氧誘導因子-1α(HIF-1α)、血管內皮生長因子(VEGF)、丙酮酸激酶M2(PKM2)和視網膜母細胞瘤結合蛋白2(RBP2)的表現量。欄位1或2分別為經假程序之視網膜(Sham)或預先施予媒劑的缺血性視網膜(Vehicle+I/R)。欄位3顯示接受缺血且在缺血前預先施予1g/kg/天的金釵石斛(DNL)(DNL1.0+I/R)的視網膜。欄位4、5和6分別為接受缺血且在缺血前預先施予10μM/5μl JIB-04(RBP2抑制劑)、4μM/5μl紫草 素(shikonin)(PKM2抑制劑)和125μg/5μl癌思停(avastin)(抗VEGF)的視網膜。(a2)中每一條顯示RBP2、HIF-1α、PKM2和VEGF相對β-actin的比例。**:經假程序之視網膜(Sham)與預先施予媒劑的缺血性視網膜(Vehicle+I/R)之間有顯著差異(P<0.01)。†或††:Vehicle+I/R組與預先施予DNL1、JIB-04、紫草素或癌思停的缺血性視網膜之間有顯著差異(P<0.05或P<0.01)。實驗結果以平均值±標準誤差(SEM)表示(數量為4至10)。(b)為酵素免疫吸附分析法(ELISA)的分析結果。測量不同組別(即假程序(Sham)、Vehicle+I/R、DNL1.0+I/R或Eylea+I/R)中視網膜內的胎盤生長因子(placental growth factor,PLGF)的濃度。**:假程序之視網膜和Vehicle+I/R組之間有顯著差異(P<0.01)。†或††:Vehicle+I/R組與DNL1.0+I/R組或Eylea+I/R組之間有顯著差異(P<0.05或P<0.01)。實驗結果以平均值±標準誤差(SEM)表示(數量為4)。Sham(對照組):假程序手術實驗(數量為10);Vehicle+I/R:視網膜缺血再灌注(I/R)前玻璃體內施予媒劑(vehicle),再接著I/R手術(數量為10);DNL1.0+I/R:視網膜缺血再灌注(I/R)前玻璃體內施予1.0g/kg/天的金釵石斛,再接著I/R手術(數量為10);JIB-04+I/R:視網膜缺血再灌注(I/R)前玻璃體內施予JIB-04,再接著I/R手術(數量為4);Shikonin+I/R:視網膜缺血再灌注(I/R)前玻璃體內施予紫草素(shikonin),再接著I/R手術(數量為7);Avastin+I/R:視網膜缺血再灌注(I/R)前玻璃體內施予癌思停(avastin),再接著I/R手術(數量為4);Eylea+I/R:視網膜接受缺血再灌注(I/R)加上缺血前預先施予200μg/5μl的采視明(Eylea)(數量為4)。 Figure 8: (a1) Western blotting analysis shows β-actin (β-actin), hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), acetone The expression levels of acid kinase M2 (PKM2) and retinoblastoma binding protein 2 (RBP2). Columns 1 or 2 are respectively sham retina (Sham) or ischemic retina (Vehicle+I/R) administered with vehicle in advance. Column 3 shows the retina that received ischemia and was pre-administered 1 g/kg/day of Dendrobium nobile (DNL) (DNL1.0+I/R) before ischemia. Columns 4, 5, and 6 are for receiving ischemia and pre-administering 10μM/5μl JIB-04 (RBP2 inhibitor), 4μM/5μl shikonin (PKM2 inhibitor) and 125μg/5μl before ischemia, respectively The retina of avastin (anti-VEGF). Each bar in (a2) shows the ratio of RBP2, HIF-1α, PKM2 and VEGF to β-actin. **: There is a significant difference between the sham retina (Sham) and the ischemic retina (Vehicle+I/R) administered with vehicle in advance (P<0.01). †Or††: There was a significant difference between the Vehicle+I/R group and the ischemic retina pre-administered DNL1, JIB-04, Shikonin or Aisiting (P<0.05 or P<0.01). The experimental results are expressed as mean±standard error (SEM) (numbers range from 4 to 10). (b) is the analysis result of enzyme immunosorbent assay (ELISA). Measure the concentration of placental growth factor (PLGF) in the retina in different groups (ie, sham program (Sham), Vehicle+I/R, DNL1.0+I/R or Eylea+I/R). **: There is a significant difference between the retina of the sham procedure and the Vehicle+I/R group (P<0.01). †Or††: There is a significant difference between Vehicle+I/R group and DNL1.0+I/R group or Eylea+I/R group (P<0.05 or P<0.01). The experimental results are expressed as mean±standard error (SEM) (the number is 4). Sham (control group): sham procedure operation experiment (the number is 10); Vehicle+I/R: intravitreal administration of vehicle before retinal ischemia-reperfusion (I/R), followed by I/R surgery ( The number is 10); DNL1.0+I/R: 1.0g/kg/day of Dendrobium nobile is administered intravitreally before retinal ischemia-reperfusion (I/R), followed by I/R surgery (the number is 10) ; JIB-04+I/R: JIB-04 administered intravitreally before retinal ischemia-reperfusion (I/R), followed by I/R surgery (number of 4); Shikonin+I/R: retinal ischemia-reperfusion (I/R) Shikonin was administered intravitreally before perfusion (I/R), followed by I/R surgery (number 7); Avastin+I/R: intravitreal administration before retinal ischemia-reperfusion (I/R) Avastin was given, followed by I/R surgery (the number is 4); Eylea+I/R: the retina received ischemia-reperfusion (I/R) plus pre-administration of 200μg/5μl before ischemia Eylea (quantity is 4).

圖9為金釵石斛(DNL)/石斛酚(moscatilin)治療視網膜缺血之路徑分析。NDP:諾里疾病蛋白;PKM2:丙酮酸激酶M2;RBP2:視網膜母細胞瘤結合蛋白2;HIF-1α:缺氧誘導因子-1α;VEGF-A:血管內皮生長因子-A;VEGF-B:血管內皮生長因子-B;PLGF:胎盤生長因子。 Figure 9 shows the path analysis of Dendrobium nobile (DNL)/moscatilin in the treatment of retinal ischemia. NDP: Norrie disease protein; PKM2: pyruvate kinase M2; RBP2: retinoblastoma binding protein 2; HIF-1α: hypoxia-inducible factor-1α; VEGF-A: vascular endothelial growth factor-A; VEGF-B: Vascular endothelial growth factor-B; PLGF: placental growth factor.

本發明包括但不限於上述與下開之說明。實施方式則如下範例所示。 The present invention includes but is not limited to the above and the following descriptions. The implementation is shown in the following example.

方法: Method:

化學品和藥物給予 Chemical and drug administration

金釵石斛(DNL)購自科達公司(台灣台北),溶於水(ddH2O)中。對於電生理學,免疫組織化學和分子生物學研究,藥物施予會進行7天並且涉及各種實驗所設計的組別,即缺血後給藥(每天1g/kg/天的高劑量金釵石斛(DNL),I/R+DNL1.0)或缺血前預先給藥(每日高劑量DNL,DNL1.0+I/R;低劑量DNL 0.5g/kg/天,DNL0.5+I/R)。經過缺血的媒劑(vehicel)組中的大鼠會後施予(I/R+Vehicel)或者預先施予與DNL組類似體積的媒劑(Vehicel+I/R)。 Dendrobium nobile (DNL) was purchased from Keda Company (Taipei, Taiwan) and dissolved in water (ddH 2 O). For electrophysiology, immunohistochemistry and molecular biology research, drug administration will be conducted for 7 days and involves various experimental design groups, that is, post-ischemic administration (1g/kg/day high-dose Dendrobium nobile) (DNL), I/R+DNL1.0) or pre-administered before ischemia (daily high-dose DNL, DNL1.0+I/R; low-dose DNL 0.5g/kg/day, DNL0.5+I/ R). Rats in the ischemic vehicle (vehicel) group were administered (I/R+Vehicel) or pre-administered with a similar volume of vehicle (Vehicel+I/R) as in the DNL group.

與假程序組(sham)、媒劑加缺血組(vehicle+I/R)或DNL1.0+I/R組相比,其他組的缺血眼睛先以1%睫狀肌麻痺劑(tropicamide)和2.5%脫羥腎上腺素(phenylephrine)擴張瞳孔後,使用連接25μl注射筒的30號針頭進行玻璃體內注射(intravitreal injections)。具體而言,要進行 缺血手術的眼睛於缺血前1天施予各種抑製劑/抗體的玻璃體內,即10μM/5μl JIB-04(Sigma-Aldrich)、4μM/5μl紫草素(Shikonin)(S7576;Sigma-Aldrich)、100mg/5μl癌思停(Avastin)(Hoffmann-La Roche)或200μg/5μl采視明(eylea)(Regeneron Pharmaceuticals Inc.)。在視網膜經缺血再灌注(I/R)及施予相關化合物或在假程序(Sham)手術一天後,將動物犧牲。收集視網膜樣本,並透過西方墨點法(Western blot)分析或酵素連結免疫分析法(ELISA)分析以測量缺氧誘導因子-1α(HIF-1α)、視網膜母細胞瘤結合蛋白2(RBP2)、丙酮酸激酶M2(PKM2)、血管內皮生長因子-A(VEGF-A)和胎盤生長因子(PLGF)的蛋白質表現量。 Compared with the sham procedure group (sham), vehicle plus ischemia group (vehicle+I/R) or DNL1.0+I/R group, the ischemic eyes of other groups were first treated with 1% cycloplegia (tropicamide). ) And 2.5% phenylephrine to dilate the pupils, and then use a 30-gauge needle connected to a 25μl syringe for intravitreal injections. Specifically, the eyes undergoing ischemia surgery were administered intravitreal inhibitors/antibodies, namely 10μM/5μl JIB-04 (Sigma-Aldrich), 4μM/5μl Shikonin (Shikonin) one day before ischemia. (S7576; Sigma-Aldrich), 100mg/5μl Avastin (Hoffmann-La Roche) or 200μg/5μl eylea (Regeneron Pharmaceuticals Inc.). Animals were sacrificed one day after retina ischemia-reperfusion (I/R) and administration of related compounds or sham procedure (Sham) operation. Collect retinal samples and measure hypoxia-inducible factor-1α (HIF-1α), retinoblastoma binding protein 2 (RBP2), Western blot analysis or enzyme-linked immunoassay (ELISA) analysis The protein expression levels of pyruvate kinase M2 (PKM2), vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PLGF).

石斛酚(moscatilin)購自EMMX Biotechnology(EN10271,CA,USA)並溶解於DMSO(媒劑(vehicle))中。先前報導指出較高濃度的石斛酚(1.25~20μM)會以劑量和時間依賴性地降低24小時處理之IC50分別具7.0和6.7μM的兩種細胞株之細胞活力;因此,目前選擇0.1μM來評估其對氧糖剝奪(oxygen glucose deprivation,OGD)的保護作用。在OGD前1小時、OGD期間或OGD後1小時給予石斛酚(0.1μM)。藉由細胞活率分析(MTT assay)和西方墨點法(Western blot)評估其治療效果。 Moscatilin was purchased from EMMX Biotechnology (EN10271, CA, USA) and dissolved in DMSO (vehicle). Previous reports indicated that higher concentrations of dendrobol (1.25-20μM) would decrease the cell viability of two cell lines with 7.0 and 6.7μM, respectively, of IC 50 after 24 hours of treatment in a dose- and time-dependent manner; therefore, 0.1μM is currently selected To evaluate its protective effect on oxygen glucose deprivation (OGD). Dendrobium (0.1 μM) was administered 1 hour before OGD, during OGD, or 1 hour after OGD. The therapeutic effect was evaluated by cell viability analysis (MTT assay) and Western blot method (Western blot).

體外實驗 In vitro experiments

氧糖剝奪(oxygen glucose deprivation,OGD)和細胞處理 Oxygen glucose deprivation (OGD) and cell processing

視網膜神經節細胞-5(retinal ganglion cell-5,RGC-5)並不會轉化成大鼠視網膜神經節細胞(RGC),而是小鼠視網膜神經前體細胞(retinal neuronal precursor cell)。氧糖剝奪(OGD)的定義為在缺氧(類似 缺血)條件(即1%氧氣(藉由分析儀進行監測;Penguin Incubator:對照範圍1~89%;Astec Company,Kukuoka,Japan),94%氮氣,5%二氧化碳)下,將細胞維持在37℃下無葡萄糖的DMEM培養基中。此實驗有不同的組別,包括(i)在DMEM培養基中的給予DMSO的細胞(對照組的細胞;DMSO+DMEM);(ii)於OGD前1小時先給予DMSO,再接著OGD處理之細胞(DMSO+OGD);(iii)於OGD前1小時先給予石斛酚(moscatilin,Mos)(於DMEM培養基中加入0.1μM),再接著OGD處理之細胞(Pre-OGD Mos 0.1μM);(iv)在OGD期間給予石斛酚之細胞(During OGD Mos 0.1μM);和(v)OGD後1小時給予石斛酚之細胞(DMSO+OGD)(Post-OGD Mos 0.1μM)。在1天的OGD期間結束時,細胞培養物會再回到DMEM培養基中培養24小時。接著再進行細胞活率分析(針對細胞存活率)和西方墨點法分析(針對諾里疾病蛋白(NDP))。 Retinal ganglion cell-5 (RGC-5) does not transform into rat retinal ganglion cell (RGC), but mouse retinal neuronal precursor cell. Oxygen glucose deprivation (OGD) is defined as under hypoxic (similar to ischemic) conditions (ie 1% oxygen (monitored by an analyzer; Penguin Incubator: control range 1~89%; Astec Company, Kukuoka, Japan), 94 % Nitrogen, 5% carbon dioxide), the cells were maintained in DMEM medium without glucose at 37°C. This experiment has different groups, including (i) DMSO-administered cells in DMEM medium (control group cells; DMSO+DMEM); (ii) DMSO is given 1 hour before OGD, followed by OGD-treated cells (DMSO+OGD); (iii) Administer moscatilin (Mos) (0.1μM in DMEM medium) 1 hour before OGD, followed by OGD-treated cells (Pre-OGD Mos 0.1μM); (iv) ) Cells that were given Dendrobium during OGD (During OGD Mos 0.1 μM); and (v) Cells that were given Dendrobium (DMSO+OGD) (Post-OGD Mos 0.1 μM) 1 hour after OGD. At the end of the 1-day OGD period, the cell culture will be returned to the DMEM medium for another 24 hours. Then proceed to cell viability analysis (for cell survival rate) and Western blot analysis (for Norrie disease protein (NDP)).

MTT細胞存活率分析 MTT cell survival rate analysis

粒線體菸鹼醯胺腺嘌呤二核苷酸磷酸(nicotinamide adenine dinucleotide phosphate hydrogen,NADPH)依賴性氧化還原酵素能夠還原MTT以形成甲

Figure 107118352-A0101-12-0022-14
(blue formazan)。因此,深紫色甲
Figure 107118352-A0101-12-0022-15
的數量增加係對應於更高的細胞存活率。在37℃下,將MTT(0.5mg/mL;Sigma-Aldrich)加入至含有原始100μL細胞的96孔盤中3小時。然後藉由加入100μL DMSO溶解還原的MTT。攪動平板後,使用酵素連結免疫分析法(ELISA)讀取器(Synergy H1 Multi-Mode Reader BioTek Instruments)在562nm下測量溶解的甲
Figure 107118352-A0101-12-0022-16
的光密度(OD)。細胞存活率以相對於對照組(100%)的OD值 作為表示。 Mitochondrial nicotine adenine dinucleotide phosphate hydrogen (NADPH)-dependent redox enzyme can reduce MTT to form formazan
Figure 107118352-A0101-12-0022-14
(blue formazan). Therefore, the dark purple armor
Figure 107118352-A0101-12-0022-15
An increase in the number of cells corresponds to a higher cell survival rate. At 37°C, MTT (0.5 mg/mL; Sigma-Aldrich) was added to a 96-well dish containing the original 100 μL of cells for 3 hours. Then dissolve the reduced MTT by adding 100 μL of DMSO. After agitating the plate, use an enzyme linked immunoassay (ELISA) reader (Synergy H1 Multi-Mode Reader BioTek Instruments) to measure the dissolved formazan at 562 nm.
Figure 107118352-A0101-12-0022-16
The optical density (OD). The cell survival rate is expressed as the OD value relative to the control group (100%).

體內實驗 In vivo experiment

動物 Animals

本發明使用6周齡的Wistar大鼠。 The present invention uses 6-week-old Wistar rats.

視網膜缺血(retinal ischemia)的建立 Establishment of retinal ischemia

麻醉和安樂死 Anesthesia and euthanasia

用100mg/kg的克他明(ketamine)(Pfizer)和5mg/kg甲苯噻嗪(xylazine)(Sigma-Aldrich)進行腹腔內注射以麻醉動物。此外,腹腔給予至少140mg/kg戊巴比妥(pentobarbital)(SCI Pharmtech)以人道的方式犧牲動物。 The animals were anesthetized by intraperitoneal injection with 100 mg/kg of ketamine (Pfizer) and 5 mg/kg of xylazine (Sigma-Aldrich). In addition, at least 140 mg/kg pentobarbital (SCI Pharmtech) was administered intraperitoneally to sacrifice animals in a humane manner.

缺血誘發 Ischemia induced

將大鼠(200-250g)以上述麻醉劑進行麻醉並置於立體定位儀(stereotaxic frame)內。用一連接0.9%生理食鹽水瓶之30號的針頭穿刺進大鼠的眼睛之前房,以使眼球內壓(intraocular pressure,IOP)升高至120毫米水銀柱,並維持1小時。透過視網膜變白證實缺血性損傷的建立。進行上述缺血誘發過程的假程序,但並不升高連接到大鼠眼睛的鹽水瓶,以作為對照。將動物置於37℃的加熱墊上並在缺血和隨後的3小時再灌注的期間內保持正常體溫。 Rats (200-250g) were anesthetized with the above-mentioned anesthetic and placed in a stereotaxic frame. A 30-gauge needle connected to a 0.9% saline bottle was used to puncture the anterior chamber of the rat's eye to increase the intraocular pressure (IOP) to 120 mm mercury column and maintain it for 1 hour. The establishment of ischemic damage is confirmed by the whitening of the retina. The sham procedure of the above-mentioned ischemia-inducing process was performed, but the saline bottle connected to the rat's eye was not raised, as a control. The animal was placed on a heating pad at 37°C and maintained a normal body temperature during the period of ischemia and the subsequent 3 hours of reperfusion.

閃爍視網膜電位圖測量 Scintillation electroretinogram measurement

在假程序或視網膜缺血再灌注(第0天)前,以及假程序或視網膜缺血/再灌注後及預先施予指定藥物一天後,記錄所有動物的閃爍視網膜電位圖(Flash electroretinogram,Flash ERG)。在後給藥組中,在缺血前(第0天)和缺血後(在缺血後施予適當的化合物以及缺血後第1、3、5或7天記錄ERG)記錄所有動物的ERG數據。老鼠需對黑暗適應8小時,然後麻醉以記錄瞳孔擴大時的ERG。於動物的眼睛前2公分放置一閃光燈(strobe)以誘發出0.5Hz的刺激。在10kHz時以每2秒的時間間隔內收集連續15次的記錄;並將其振幅最大化及藉由放大器P511/穩壓電源RPS107/刺激器PS22(Grass-Telefactor)計算以求平均值。為了進行不同組別之間的比較,計算一隻眼(假程序或缺血)對未處理的正常眼的b波振幅之比。 Before sham procedure or retinal ischemia/reperfusion (day 0), and after sham procedure or retinal ischemia/reperfusion and one day after pre-administration of the specified drug, the flash electroretinogram (Flash ERG) of all animals was recorded. ). In the post-administration group, all animals were recorded before ischemia (day 0) and after ischemia (administration of appropriate compounds after ischemia and ERG recording on days 1, 3, 5, or 7 after ischemia). ERG data. The mice need to adapt to the dark for 8 hours, and then anesthetize to record the ERG when the pupils dilate. A strobe was placed 2 cm in front of the animal’s eyes to induce a 0.5 Hz stimulus. Collect 15 consecutive records every 2 seconds at 10kHz; maximize the amplitude and calculate the average by the amplifier P511/stabilized power supply RPS107/stimulator PS22 (Grass-Telefactor). In order to compare the different groups, calculate the ratio of the b-wave amplitude of one eye (sham procedure or ischemia) to the untreated normal eye.

甲苯酚紫(Cresyl violet)染色 Cresyl violet staining

在所有組別,於犧牲大鼠後,以生理食鹽水進行心內灌注(intracardial perfusion)。在角膜的12點鐘方向以絲線縫合來標記眼球,然後進行眼球摘除,並在4%多聚甲醛(paraformaldehyde)中於4℃下固定24小時,透過一系列梯度設計的乙醇進行脫水,再包埋於石蠟(Tissue-Tek TEC 5)中。沿著垂直子午線(vertical meridian)切出5μm厚的切片。切片用甲苯酚紫標記,並在光學顯微鏡(Leica)下觀察。在相同放大倍數下拍攝視網膜切片,並從照片(Ilford Pan-F plus film,50ASA)測量不同層的視網膜厚度。為了量化視網膜缺血損傷程度,整個視網膜厚度(從內限界膜(inner limiting membrane,ILM)到視網膜色素上皮細胞(retinal pigment epithelium, RPE)層),及內層視網膜厚度(從內限界膜到內核層(inner nuclear layer,INL))的厚度皆被測量。 In all groups, rats were sacrificed and intracardial perfusion was performed with saline. Mark the eyeballs with silk sutures in the direction of the cornea at 12 o'clock, then remove the eyeballs and fix them in 4% paraformaldehyde at 4°C for 24 hours. They are dehydrated through a series of gradient-designed ethanol. Buried in paraffin (Tissue-Tek TEC 5). Cut 5μm thick slices along the vertical meridian. The sections were marked with cresol purple and observed under an optical microscope (Leica). Retinal slices were taken at the same magnification, and the thickness of the retina of different layers was measured from the photos (Ilford Pan-F plus film, 50ASA). In order to quantify the degree of retinal ischemic damage, the thickness of the entire retina (from the inner limiting membrane (ILM) to the retinal pigment epithelium (RPE) layer) and the thickness of the inner retina (from the inner limiting membrane to the inner core) The thickness of the inner nuclear layer (INL) is measured.

視網膜神經節細胞逆行染色(RGC retrograde staining) RGC retrograde staining

在動物於麻醉狀態下,在動物的頭皮上製造2cm的切口,並鑽出兩個小孔以深入頭蓋骨顱。此外,透過微量滴管將10μl的5%螢光金(fluorogold)(Sigma-Aldrich)注射入頭蓋骨下深度3.8、4.0和4.2mm的位置。在不同組別中,在動物犧牲前3天注射螢光金。以先前方式對視網膜樣本進行取出、固定、解剖和處理。視網膜神經節細胞(RGC)的密度為全部RGC的數量除以視網膜樣本的總面積之比例。 When the animal is under anesthesia, a 2 cm incision is made on the animal's scalp, and two small holes are drilled to penetrate into the skull. In addition, 10 μl of 5% fluorogold (Sigma-Aldrich) was injected into the cranium at depths of 3.8, 4.0, and 4.2 mm through a micropipette. In different groups, fluorescein gold was injected 3 days before animal sacrifice. The retinal sample is removed, fixed, dissected, and processed in the previous manner. The density of retinal ganglion cells (RGC) is the ratio of the total number of RGCs divided by the total area of the retinal sample.

免疫螢光分析 Immunofluorescence analysis

動物犧牲後,對其心臟進行生理鹽水(w/v)灌注;然後,取出大鼠眼球,用4%(w/v)多聚甲醛固定45分鐘,並以先前方式進行脫水並包埋在石蠟中。在假程序或誘發視網膜缺血及缺血前/後施予DNL或媒劑的一天後進行取樣。將5μm視網膜切片與一級抗體(山羊抗乙醯膽鹼轉移酶(ChAT)多株抗體(1:100;AB144p;Chemicon)、小鼠抗波形蛋白單株抗體(1:100;V6630;Sigma-Aldrich)、或兔抗膠質原纖維酸性蛋白(GFAP)多株抗體(Millipore))共同孵育過夜。接著,將視網膜切片與合適的二級抗體(羅丹明(rhodamine)共軛的兔抗山羊抗體(1:500;AP106R;Chemicon)、螢光異硫氰酸鹽(FITC)共軛的山羊抗小鼠IgG(1:500;AP124F;Millipore)/抗兔IgG(Millipore)。同時,細胞核用4',6-二脒基-2-苯基吲哚(DAPI;Molecular Probes)進行染色標記。最後,使用螢光顯微鏡(Olympus BX61, Göttingen,德國)觀察視網膜切片。為了比較不同組別之間切片視網膜之視網膜厚度(甲酚紫染色)或免疫反應性程度,研究人員在不知切片樣本是何條件下,測量視網膜厚度或評價不同組別對對照組(假程序)之免疫標記程度。 After the animal was sacrificed, its heart was perfused with saline (w/v); then, the rat’s eyeballs were taken out, fixed with 4% (w/v) paraformaldehyde for 45 minutes, dehydrated in the previous way and embedded in paraffin wax in. Samples were taken one day after the administration of DNL or vehicle before or after the sham procedure or induction of retinal ischemia and ischemia. The 5μm retinal section was combined with primary antibody (goat anti-acetylcholine transferase (ChAT) multi-strain antibody (1:100; AB144p; Chemicon), mouse anti-vimentin monoclonal antibody (1:100; V6630; Sigma-Aldrich) ), or multiple rabbit anti-glia fibrillary acidic protein (GFAP) antibodies (Millipore)) and incubated overnight. Next, the retinal section and the appropriate secondary antibody (rhodamine (rhodamine) conjugated rabbit anti-goat antibody (1:500; AP106R; Chemicon), fluorescent isothiocyanate (FITC) conjugated goat anti-small Mouse IgG (1:500; AP124F; Millipore)/anti-rabbit IgG (Millipore). At the same time, the nucleus was stained and labeled with 4',6-diamidino-2-phenylindole (DAPI; Molecular Probes). Finally, Observe the retinal slices with a fluorescent microscope (Olympus BX61, Göttingen, Germany). In order to compare the thickness of the retina (cresyl purple staining) or the degree of immunoreactivity of the sliced retinas between different groups, the researchers did not know the conditions of the sliced samples , To measure the thickness of the retina or to evaluate the degree of immunolabeling of different groups to the control group (sham procedure).

西方墨點法分析 Analysis of Western Ink Spot Method

取出的視網膜/細胞樣本進一步在裂解緩衝液(哺乳動物蛋白質提取試劑(MPER;HyCell))中進行超音波處理。在十二烷基磺酸鈉-聚丙烯醯胺膠凝體電泳(SDS-PAGE;Bio-Rad)上處理等量的變性蛋白質(40μg/30μl/孔)。分離後,將蛋白質轉移到聚偏二氟乙烯(PVDF)膜上,且將PVDF膜進一步在4℃下浸入各種一級抗體(兔單株抗β-肌動蛋白抗體(AC-15;1:2000;ab6276)/抗HIF-1α抗體(1:200;H1alpha67-ChIP Grade;Abcam Inc.),兔多株抗VEGF抗體(A-20;1:200;sc-152)/抗PKM2抗體(1:500;ab38237),或兔單株抗RBP2單株抗體(ab177486;1:1000;Abcam Inc.)12小時。接下來將墨點浸入相關的二級抗體,即辣根過氧化酵素(HRP)共軛的山羊抗兔IgG(1:5,000;Santa Cruz Biotechnology Inc.)或羊抗老鼠IgG(1:5,000;sc-2005),於37℃下1小時。以5%脫脂牛奶稀釋一級/二級抗體。最後,使用增強型化學發光分析系統(HyCell)進行對膜掃描,並且曝光在X射線膠片(Fujifilm)進行。然後,透過密度掃描以評估每個蛋白質的數量。 The removed retina/cell sample is further subjected to ultrasonic processing in a lysis buffer (Mammalian Protein Extraction Reagent (MPER; HyCell)). The same amount of denatured protein (40 μg/30 μl/well) was processed on sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad). After separation, the protein was transferred to a polyvinylidene fluoride (PVDF) membrane, and the PVDF membrane was further immersed in various primary antibodies (rabbit monoclonal anti-β-actin antibody (AC-15; 1:2000) at 4°C. ;Ab6276)/anti-HIF-1α antibody (1:200; H1alpha67-ChIP Grade; Abcam Inc.), rabbit multi-strain anti-VEGF antibody (A-20; 1:200; sc-152)/anti-PKM2 antibody (1: 500; ab38237), or rabbit monoclonal anti-RBP2 monoclonal antibody (ab177486; 1:1000; Abcam Inc.) for 12 hours. Next, dip the ink dot into the relevant secondary antibody, namely horseradish peroxidase (HRP). Conjugated goat anti-rabbit IgG (1:5,000; Santa Cruz Biotechnology Inc.) or goat anti-mouse IgG (1:5,000; sc-2005) at 37°C for 1 hour. Dilute the primary/secondary antibody with 5% skim milk Finally, use the enhanced chemiluminescence analysis system (HyCell) to scan the membrane, and expose it to X-ray film (Fujifilm). Then, transmit the density scan to evaluate the quantity of each protein.

酵素免疫吸附分析法(ELISA) Enzyme immunosorbent assay (ELISA)

使用ELISA測定胎盤生長因子(PLGF)的表現量。在缺血 一天後,將視網膜從摘除的眼杯(eye cup)中分離,並將其解離,然後透過與哺乳動物蛋白提取試劑(Sigma-Aldrich)孵育30分鐘進行裂解,然後再另以13,000rpm離心30分鐘。使用二金雞鈉酸蛋白試劑盒(bicinchoninic acid protein kit)(Thermo Fisher Scientific)測定每個樣本中全部蛋白。用PLGF的ELISA試劑盒(CSB-E07400;Cusabio Life Scince)測量上清液中的PLGF表現量。先將抗PLGF抗體塗布在微孔上。用200μL洗滌緩衝液對每一個微孔洗滌兩次且超過15分鐘後,將樣本中PLGF或PLGF標準蛋白的各種濃度(100μL)與塗佈於微孔中的抗體進行結合,於室溫下並在振盪器(75rpm)上搖晃2小時。用200μL洗滌緩衝液(含有0.05%土溫乳化劑(Tween 20)的磷酸緩衝鹽溶液(PBS),PBST)對每一個微孔洗滌兩次後,將100μL生物素共軛的抗PLGF抗體(以測定緩衝液稀釋:PBST和0.5%牛血清蛋白(BSA))加入到每個微孔並搖晃(75rpm)1小時,以結合被塗佈的抗體所捕捉的PLGF。在兩次洗滌以去除未結合的生物素共軛的抗PLGF後,加入100μ1親合素(avidin)-辣根過氧化酵素(HRP;以測定緩衝液稀釋)並結合生物素共軛的抗VEGF-A抗體,最後於振盪器(75rpm)上搖晃。於振盪器上孵育1小時後,洗滌兩次後去除未結合的親和素-HRP。最後,將90μL 3,3',5,5'-四甲基聯苯胺(3,3’,5,5’-tetramethylbenzidine)(100μM)溶液(其可被HRP氧化)加入到每個微孔中20分鐘。然後加入50μL終止液(硫酸溶液,100μM),使顏色變為黃色。用分光光度計(Synergy H1 Hybrid Multi-Mode Reader,Biotek ELx800)立即檢測450nm處的最大吸光度(OD)。透過使用不同量的PLGF(200、100、50、25、12.5、6.25、3.125和0pg/mL)建立標準曲線來確定每個樣本的PLGF濃度。用100μL樣品稀釋液(作為 空白)將儀器歸零。實驗結果以相對於對照組的OD值(標準化成100%)的OD值表示。 ELISA was used to determine the expression level of placental growth factor (PLGF). After one day of ischemia, the retina was separated from the removed eye cup, dissociated, and then lysed by incubating with mammalian protein extraction reagent (Sigma-Aldrich) for 30 minutes, and then at 13,000 rpm Centrifuge for 30 minutes. The bicinchoninic acid protein kit (Thermo Fisher Scientific) was used to determine all the proteins in each sample. PLGF ELISA kit (CSB-E07400; Cusabio Life Scince) was used to measure the expression level of PLGF in the supernatant. First spread the anti-PLGF antibody on the microwells. Wash each microwell twice with 200μL washing buffer for more than 15 minutes, then combine various concentrations (100μL) of PLGF or PLGF standard protein in the sample with the antibody coated in the microwell, and combine them at room temperature. Shake on a shaker (75 rpm) for 2 hours. After washing each microwell twice with 200 μL washing buffer (phosphate buffered saline (PBS) containing 0.05% Tween 20), PBST, 100 μL of biotin-conjugated anti-PLGF antibody (with Assay buffer dilution: PBST and 0.5% bovine serum albumin (BSA)) were added to each microwell and shaken (75 rpm) for 1 hour to bind the PLGF captured by the coated antibody. After two washes to remove unbound biotin-conjugated anti-PLGF, 100 μl avidin-horseradish peroxidase (HRP; diluted with assay buffer) was added and combined with biotin-conjugated anti-VEGF -A antibody, finally shake on a shaker (75 rpm). After incubating on a shaker for 1 hour, the unbound avidin-HRP was removed after washing twice. Finally, 90μL of 3,3',5,5'-tetramethylbenzidine (3,3',5,5'-tetramethylbenzidine) (100μM) solution (which can be oxidized by HRP) was added to each well 20 minutes. Then add 50 μL stop solution (sulfuric acid solution, 100 μM) to make the color change to yellow. A spectrophotometer (Synergy H1 Hybrid Multi-Mode Reader, Biotek ELx800) was used to immediately detect the maximum absorbance (OD) at 450 nm. The PLGF concentration of each sample was determined by establishing a standard curve using different amounts of PLGF (200, 100, 50, 25, 12.5, 6.25, 3.125, and 0 pg/mL). Zero the instrument with 100 μL of sample diluent (as blank). The experimental results are expressed as OD value relative to the OD value of the control group (normalized to 100%).

統計分析 Statistical Analysis

兩組之間的比較使用非成對學生t檢定(unpaired Student’s t-tests)。進行單因子共變數分析(ANOVA)以比較3個或更多獨立組別。在單因子共變數分析後,利用Dunnett檢定比較對照組(例如媒劑處理的缺血性視網膜,Vehicle+I/R)與所有其他組(例如DNL處理的缺血性視網膜,DNL1.0+I/R)。實驗結果以平均值±標準誤差(standard error)表示。P<0.05代表有顯著差異。 The comparison between the two groups uses unpaired Student’s t-tests. A one-way covariate analysis (ANOVA) was performed to compare 3 or more independent groups. After single factor covariate analysis, the Dunnett test was used to compare the control group (e.g. vehicle-treated ischemic retina, Vehicle+I/R) with all other groups (e.g. DNL-treated ischemic retina, DNL1.0+I /R). The experimental results are expressed as mean±standard error. P<0.05 represents a significant difference.

結果: Result:

(a)MTT細胞存活率測定 (a) MTT cell survival rate determination

首先,在光學顯微鏡下檢查RGC-5細胞的細胞形態和數量的變化。細胞形態的改變可能暗指缺血性損傷的嚴重程度。培養於預先施予DMSO的DMEM培養基中(DMSO+DMEM;圖1a)的細胞表現出錐狀,並展露特徵性的神經元形態。與DMSO+DMEM組相比,經歷氧糖剝奪(OGD)並預先施予DMSO(DMSO+OGD)的細胞會有變形的現象(如白色箭號所指;圖1b);此外,細胞數目亦顯著減少。施予石斛酚(moscatilin)(0.1至100μM)以治療遭受氧糖剝奪的細胞;此外,本發明證實OGD前預先施予石斛酚(moscatilin)於OGD的保護作用在0.1μM(62.65%±4.35%;數量為6)或1μM(66.36%±9.35%;數量為4)有較佳的細胞存活率;然 而,在10μM(15.43±3.09%;數量為4)和100μM(12.49%;數量為1)時卻會出現細胞毒性效應(細胞存活率降低)。故後者的濃度可能超出藥理保護程度。但此結果並不矛盾,因先前的研究亦指出石斛酚在時間依賴性(1~3天)和劑量依賴性(1.25~20μM)上具有細胞毒性作用,這可能與其在濃度為20或50μM且處理15小時後能誘導有絲分裂中G2期的阻滯之能力有關。然而,石斛酚的濃度在等於或小於1μM時被證明是無毒的,並且作為有效.OH自由基的清除劑。與DMSO+OGD組相比(圖1b),在OGD前1小時(圖1c)、OGD期間(圖1d)和OGD後1小時(圖1e)施予0.1μM的石斛酚(moscatilin)評估細胞保護作用(cytoprotection)對抗OGD的程度。在OGD前1小時給0.1μM的石斛酚效果最大(圖1c),在OGD期間給藥效果次之(圖1d),最後是OGD後1小時就無給藥效果(圖1e)。 First, examine the changes in the cell morphology and number of RGC-5 cells under an optical microscope. Changes in cell morphology may imply the severity of ischemic injury. The cells cultured in the DMEM medium (DMSO+DMEM; Figure 1a) pre-administered DMSO showed a cone shape and showed characteristic neuronal morphology. Compared with the DMSO+DMEM group, the cells undergoing oxygen glucose deprivation (OGD) and pre-administered DMSO (DMSO+OGD) will be deformed (as indicated by the white arrow; Figure 1b); in addition, the number of cells is also significant cut back. Administration of moscatilin (0.1 to 100μM) to treat cells suffering from oxygen and glucose deprivation; in addition, the present invention proves that the protective effect of pre-administration of moscatilin in OGD before OGD is 0.1μM (62.65%±4.35%). ; Quantity is 6) or 1μM (66.36%±9.35%; quantity is 4) has better cell survival rate; however, at 10μM (15.43±3.09%; quantity is 4) and 100μM (12.49%; quantity is 1) However, cytotoxic effects (decreased cell survival rate) occur at times. Therefore, the concentration of the latter may exceed the degree of pharmacological protection. However, this result is not contradictory, because previous studies also pointed out that Dendrobium has cytotoxic effects in time-dependent (1~3 days) and dose-dependent (1.25~20μM), which may be related to the concentration of 20 or 50μM and It is related to the ability to induce G2 arrest in mitosis after 15 hours of treatment. However, dendrobin is proved to be non-toxic and effective when the concentration is equal to or less than 1μM. Scavenger of OH free radicals. Compared with the DMSO+OGD group (Figure 1b), 0.1 μM moscatilin was administered to assess cell protection 1 hour before OGD (Figure 1c), during OGD (Figure 1d), and 1 hour after OGD (Figure 1e) The degree of cytoprotection against OGD. One hour before OGD, the effect of 0.1μM dendrobium is the most effective (Figure 1c), the second is the effect of administration during OGD (Figure 1d), and the last one hour after OGD has no effect (Figure 1e).

與DMSO+DMEM組(正常對照組:100%;數量為6)相比,預先施予DMSO並接受OGD,在DMSO+OGD組中細胞存活率顯著降低(53.66±2.67%)(P<0.001)(圖1f)。此外,與DMSO+OGD組相比,OGD前1小時施予0.1μM石斛酚會產生顯著的細胞保護作用以抵抗OGD(圖1f;62.65±4.35%;P=0.04)。然而,OGD期間(圖1f;56.03±4.08%;P=0.31)或OGD後1小時(圖1f;52.61±4.16%;P=0.41)施予0.1μM石斛酚並無顯著的細胞保護作用以抵抗OGD。 Compared with the DMSO+DMEM group (normal control group: 100%; the number is 6), pre-administered DMSO and received OGD, the cell survival rate in the DMSO+OGD group was significantly reduced (53.66±2.67%) (P<0.001) (Figure 1f). In addition, compared with the DMSO+OGD group, administration of 0.1μM dendrobium 1 hour before OGD produced a significant cytoprotective effect against OGD (Figure 1f; 62.65±4.35%; P=0.04). However, during OGD (Figure 1f; 56.03±4.08%; P=0.31) or 1 hour after OGD (Figure 1f; 52.61±4.16%; P=0.41) administration of 0.1 μM dendrobium did not have a significant cytoprotective effect against resistance OGD.

(b)石斛酚對體外相對β-肌動蛋白的NDP表現之影響 (b) The effect of dendrobium on the expression of NDP relative to β-actin in vitro

為了研究與血管生成(vasculogenesis)相關諾里疾病蛋白(NDP)的變化,代表性的免疫印跡圖像和分析條形圖分別在圖2的頂部 和底部示出。與DMSO+DMEM組(正常對照:100%;數量為3)相比,OGD處理前給予媒劑再接著OGD(DMSO+OGD;P<0.001)顯著降低NDP的量至44.54±3.15%。當DMSO+OGD組與pre-OGD Mos 0.1μM組相比時,NDP的數量顯著增加(108.38±29.33%)(P=0.048)。當在OGD前1小時施予石斛酚,此時的蛋白質表現量的升高是最大的;然後是在OGD後1小時施予(54.36±3.88%),最後是在OGD期間施予(48.99±9.89%)。 In order to study the changes of Norrie disease protein (NDP) related to vasculogenesis, representative western blot images and analysis bar graphs are shown at the top and bottom of Figure 2, respectively. Compared with the DMSO+DMEM group (normal control: 100%; the number is 3), the administration of vehicle before OGD treatment followed by OGD (DMSO+OGD; P<0.001) significantly reduced the amount of NDP to 44.54±3.15%. When the DMSO+OGD group was compared with the pre-OGD Mos 0.1μM group, the number of NDP increased significantly (108.38±29.33%) (P=0.048). When dendrobium phenol was administered 1 hour before OGD, the increase in protein expression was the greatest; then it was administered 1 hour after OGD (54.36±3.88%), and finally it was administered during OGD (48.99±). 9.89%).

(c)金釵石斛對ERG之b波的影響 (c) The influence of Dendrobium nobile on the b wave of ERG

本發明接著測試視網膜電生理功能。在接受假程序的視網膜(Sham,圖3)中,視網膜電位圖(ERG)的b波振幅測量為0.41mV。在視網膜缺血後,b波振幅劇烈地降低,且其不受缺血前或缺血後施予媒劑(vehicel)處理的影響(Vehicel+I/R:0.03mV,圖3a;I/R+Vehicel:0.07mV,圖3b)。然而,在缺血前(DNL0.5+I/R;DNL1.0+I/R,圖3a)或缺血後以金釵石斛(DNL)處理(I/R+DNL1.0 D7,圖3b)緩解缺血引起的b波下降,且振幅分別升高至0.18、0.22和0.15mV。此外,缺血前以DNL處理會呈劑量依賴性地減弱振幅降低的情況。 The present invention then tests the electrophysiological function of the retina. In the retina under the sham procedure (Sham, Fig. 3), the b-wave amplitude of the electroretinogram (ERG) was measured to be 0.41 mV. After retinal ischemia, the b-wave amplitude decreases drastically, and it is not affected by vehicle (vehicel) treatment before or after ischemia (Vehicel+I/R: 0.03mV, Figure 3a; I/R +Vehicel: 0.07mV, Figure 3b). However, before ischemia (DNL0.5+I/R; DNL1.0+I/R, Figure 3a) or after ischemia with Dendrobium nobile (DNL) treatment (I/R+DNL1.0 D7, Figure 3b ) Alleviate the decrease of b wave caused by ischemia, and the amplitude increased to 0.18, 0.22 and 0.15mV respectively. In addition, treatment with DNL before ischemia attenuated the decrease in amplitude in a dose-dependent manner.

如圖3c所示(數量為12),與對照組(Sham)(1.00±0.08)相比,Vehicle+I/R組的b波比率(0.10±0.03)顯著下降(P=0.002)。重要的是,缺血前以DNL處理會呈劑量反應的顯著減輕經I/R後缺血所引起的b波比率下降的情況(DNL1.0+I/R:0.57±0.06;DNL0.5+I/R:0.45±0.03(P<0.001))。 As shown in Figure 3c (the number is 12), compared with the control group (Sham) (1.00±0.08), the b-wave ratio (0.10±0.03) of the Vehicle+I/R group was significantly decreased (P=0.002). Importantly, DNL treatment before ischemia can significantly reduce the decrease in b-wave ratio caused by ischemia after I/R (DNL1.0+I/R: 0.57±0.06; DNL0.5+ I/R: 0.45±0.03 (P<0.001)).

在圖3d(數量為10)中,與對照組(Sham)相比,在I/R+Vehicle 組(I/R缺血手術後施予媒劑(Vehicle))中,b波比率顯著降低(第1天:0.13±0.04;第3天:0.10±0.02;第5天:0.09±0.03;第7天:0.06±0.03)(P<0.001)。重要的是,缺血後施予金釵石斛(DNL)(1.0g/kg/天,I/R+DNL1.0)顯著減弱缺血所誘發的b波比率下降之情況(第1天:0.14±0.04;第3天:0.26±0.05(P=0.02);第5天:0.34±0.05(P=0.003);第7天:0.40±0.04(P<0.001))。缺血前(第0天)b波比率分別為1.00±0.09(I/R+Vehicle)和1.00±0.08(I/R+DNL1.0)。當對假程序(sham)的第0、1、3、5和7天之ERG的b波比率(0.99±0.06、0.97±0.07、0.98±0.06、1.02±0.01和0.99±0.07)進行彼此之間的相互比較後,並沒有發現任何明顯地不同。 In Figure 3d (the number is 10), compared with the control group (Sham), in the I/R+Vehicle group (vehicle administered after I/R ischemia surgery), the b-wave ratio was significantly reduced ( Day 1: 0.13±0.04; Day 3: 0.10±0.02; Day 5: 0.09±0.03; Day 7: 0.06±0.03) (P<0.001). Importantly, the administration of Dendrobium nobile (DNL) (1.0g/kg/day, I/R+DNL1.0) after ischemia significantly reduced the decrease in b-wave ratio induced by ischemia (Day 1: 0.14 ±0.04; Day 3: 0.26±0.05 (P=0.02); Day 5: 0.34±0.05 (P=0.003); Day 7: 0.40±0.04 (P<0.001)). The b-wave ratios before ischemia (day 0) were 1.00±0.09 (I/R+Vehicle) and 1.00±0.08 (I/R+DNL1.0), respectively. When comparing the b-wave ratios (0.99±0.06, 0.97±0.07, 0.98±0.06, 1.02±0.01, and 0.99±0.07) of the ERG on days 0, 1, 3, 5, and 7 of the sham program (sham) After comparing them, they did not find any significant differences.

(d)DNL對甲苯酚紫所標記的視網膜層厚度的影響 (d) The effect of DNL on the thickness of the retinal layer marked by cresol purple

視網膜厚度的評估係基於對全部不同的組別在距離視盤的相同距離(1.5mm)所切出的視網膜樣本(數量為10~12,圖4)。與接受假程序的視網膜相比(Sham,圖4a和4g:整個視網膜(whole retina)為225.50±3.26μm,內層視網膜(innerretina)為112.08±2.58μm),預先施予媒劑(Vehicle)且接受I/R的動物之視網膜厚度顯著降低(Vehicle+I/R,圖4b和4g:整個視網膜為110.83±1.85μm,內層視網膜為62.50±3.06μm)(P<0.001)。此外,當動物接受I/R且預先施予金釵石斛(DNL),上述降低情況會呈劑量依賴性和顯著地抵銷(DNL1.0+I/R,圖4c和4g:整個視網膜為190.08±4.48μm,內層視網膜為94.92±2.27μm;DNL0.5+I/R,圖4d和4g:整個視網膜為148.58±2.80μm,內層視網膜為78.25±1.53μm)(P<0.001)。 The evaluation of retinal thickness is based on retinal samples (10-12, Figure 4) cut out at the same distance (1.5mm) from the optic disc for all different groups. Compared with the retina that received the sham procedure (Sham, Figures 4a and 4g: the whole retina is 225.50±3.26μm, the inner retina is 112.08±2.58μm), the vehicle is pre-administered and The thickness of the retina of the animals receiving I/R was significantly reduced (Vehicle+I/R, Figures 4b and 4g: the whole retina was 110.83±1.85μm, and the inner retina was 62.50±3.06μm) (P<0.001). In addition, when animals receive I/R and pre-administer Dendrobium nobile (DNL), the above reduction will be dose-dependent and significantly offset (DNL1.0+I/R, Figures 4c and 4g: the entire retina is 190.08 ±4.48μm, the inner retina is 94.92±2.27μm; DNL0.5+I/R, Figure 4d and 4g: the whole retina is 148.58±2.80μm, the inner retina is 78.25±1.53μm) (P<0.001).

與接受假程序的視網膜(Sham,圖4a)相比,接受I/R和後施予媒劑(vehicle)的大鼠之視網膜厚度顯著降低(I/R+vehicle,圖4e和4h:整個視網膜為115.00±2.04μm,內層視網膜為63.92±3.30μm)(P<0.001)。此外,後施予金釵石斛會使缺血所誘發的減少顯著降低(I/R+DNL1.0,圖4f和4h:整個視網膜為125.25±2.66μm(P=0.006);內層視網膜為71.50±1.51μm(P=0.048))。 Compared with the retina that received the sham procedure (Sham, Fig. 4a), the thickness of the retina in rats that received I/R and the subsequent administration of vehicle (vehicle) was significantly reduced (I/R+vehicle, Figs. 4e and 4h: the entire retina It is 115.00±2.04μm, and the inner retina is 63.92±3.30μm) (P<0.001). In addition, post-administration of Dendrobium nobile can significantly reduce the reduction induced by ischemia (I/R+DNL1.0, Figures 4f and 4h: the whole retina is 125.25±2.66μm (P=0.006); the inner retina is 71.50 ±1.51μm (P=0.048)).

(e)DNL對逆行螢光金免疫標記的RGC密度的影響 (e) The effect of DNL on the density of retrograde fluorescent gold immunolabeled RGC

圖5為視網膜神經節細胞(RGC)的密度分析(數量為4),假程序組(Sham,圖5a和5e)中RGC的密度為363.23±2.84個細胞/視野(field)。與假程序組相比,在接受視網膜缺血和預先施予媒劑(Vehicle)的動物(Vehicle+I/R,圖5b和5e)中RGC密度顯著減少(192.06±23.53個細胞/視野)(P<0.001)。此外,當動物接受視網膜缺血和預先施予金釵石斛(DNL)(DNL1.0+I/R,圖5c和5e:295.15±7.14個細胞/視野)或缺血後施予金釵石斛(I/R+DNL1.0,圖5d和5e:256.26±9.46個細胞/視野),上述減少現象顯著降低(P=0.006或0.045)。 Figure 5 shows the density analysis of retinal ganglion cells (RGC) (the number is 4). The density of RGCs in the sham program group (Sham, Figures 5a and 5e) is 363.23±2.84 cells/field. Compared with the sham program group, the RGC density was significantly reduced (192.06±23.53 cells/field) in the animals (Vehicle+I/R, Figures 5b and 5e) that received retinal ischemia and pre-administration of vehicle (Vehicle) ( P<0.001). In addition, when animals received retinal ischemia and pre-administration of Dendrobium nobile (DNL) (DNL1.0+I/R, Figures 5c and 5e: 295.15±7.14 cells/field) or administered Dendrobium nobile (DNL) after ischemia ( I/R+DNL1.0, Figure 5d and 5e: 256.26±9.46 cells/field), the above reduction phenomenon was significantly reduced (P=0.006 or 0.045).

(f)DNL對ChAT免疫反應性的影響 (f) The effect of DNL on ChAT immunoreactivity

在接受假程序的視網膜(Sham,圖6a)之膽鹼乙醯轉移酶(ChAT)免疫反應性顯示在內核層(INL)和神經節細胞層(GCL)中的無軸突神經細胞體(amacrine cell bodies)(短箭號)出現膽鹼乙醯轉移酶(ChAT)(紅色)的免疫標記;這也證實在內叢狀層(IPL)中有2個明顯的層(strata)(長箭號)。接受缺血和預先施予/後施予媒劑的視網膜 (Vehicle+I/R,圖6b;I/R+Vehicle,圖6e)中,ChAT免疫標記的無軸突神經細胞體的數量顯著減少;此外,無軸突神經細胞體在內叢狀層(IPL)的免疫標記顯著減少。而在臨床上重要的是,當於缺血性視網膜預先施予金釵石斛(DNL)(DNL0.5+I/R,圖6c;DNL1.0+I/R,圖6d)時,這些上述變化會呈劑量依賴性形式來降低。此外,後施予金釵石斛(I/R+DNL1.0,圖6f)也明顯減輕因缺血所引起的變化。在所有圖片中顯示ChAT免疫反應標記和以4',6-二脒基-2-苯基吲哚(DAPI)免疫標記所染的細胞核之合併圖像。 The choline acetyltransferase (ChAT) immunoreactivity in the sham-proceded retina (Sham, Figure 6a) is shown in the axonal neuronal cell bodies (amacrine) in the inner nuclear layer (INL) and ganglion cell layer (GCL) Cell bodies) (short arrow) appear choline acetyltransferase (ChAT) (red) immunolabel; this also confirms that there are 2 obvious strata (long arrow) in the inner plexiform layer (IPL) ). In the retina (Vehicle+I/R, Figure 6b; I/R+Vehicle, Figure 6e) that received ischemia and pre-administration/post-administration of vehicle, the number of ChAT immunolabeled axon-free neurocyte bodies was significantly reduced In addition, the immune markers of the inner plexiform layer (IPL) of axonal neuron cell bodies are significantly reduced. It is clinically important that when Dendrobium nobile (DNL) (DNL0.5+I/R, Figure 6c; DNL1.0+I/R, Figure 6d) is pre-administered to the ischemic retina, these The change will be reduced in a dose-dependent manner. In addition, post-administration of Dendrobium nobile (I/R+DNL1.0, Figure 6f) also significantly reduced the changes caused by ischemia. The combined images of the ChAT immunoreaction marker and the cell nucleus stained with 4',6-diamidino-2-phenylindole (DAPI) immunolabeling are shown in all pictures.

(g)DNL對波形蛋白和GFAP免疫反應性的影響 (g) The effect of DNL on vimentin and GFAP immunoreactivity

進行免疫組織化學研究以研究波形蛋白和GFAP免疫反應性。 Perform immunohistochemical studies to study vimentin and GFAP immunoreactivity.

波形蛋白的免疫組織化學染色 Immunohistochemical staining of vimentin

在對照視網膜(Sham,圖7b)中,繆氏細胞(müller cells)之突出(processes)被波形蛋白免疫標記出末端(箭頭,圖7c和7f)在神經節細胞層(GCL)上,且突出延伸到內叢狀層(IPL)、內核層(INL)和外核層(ONL)(箭號,圖7c和7f)。與對照視網膜(Sham,圖7b)相比,在接受I/R的視網膜且預先施予/後施予媒劑的抗波形蛋白免疫反應增強(Vehicle+I/R,圖7c;I/R+Vehicle,圖7f)。透過預先施予金釵石斛(DNL),上述增強情況會顯著且呈劑量依賴性地減弱(DNL0.5+I/R,圖7d;DNL1.0+I/R,圖7e)。此外,後施予金釵石斛(I/R+DNL1.0,圖7g)顯著地消除因缺血所誘發的變化。 In the control retina (Sham, Fig. 7b), the processes of müller cells were immunolabeled with vimentin at the ends (arrows, Figs. 7c and 7f) on the ganglion cell layer (GCL) and protruded Extends to the inner plexiform layer (IPL), inner core layer (INL) and outer core layer (ONL) (arrows, Figures 7c and 7f). Compared with the control retina (Sham, Fig. 7b), the anti-vimentin immune response of the retina that received I/R and pre-administration/post-administration of vehicle was enhanced (Vehicle+I/R, Fig. 7c; I/R+ Vehicle, Figure 7f). By pre-administering Dendrobium nobile (DNL), the above enhancement will be significantly and dose-dependently weakened (DNL0.5+I/R, Figure 7d; DNL1.0+I/R, Figure 7e). In addition, post-administration of Dendrobium nobile (I/R+DNL1.0, Figure 7g) significantly eliminated the changes induced by ischemia.

GFAP的免疫組織化學染色 Immunohistochemical staining of GFAP

與對照視網膜(Sham,圖7i)相比,觀察到抗膠質原纖維酸性蛋白(GFAP)免疫標記在缺血性視網膜且預先/後施予媒劑有增加的現象(Vehicle+I/R,圖7j;I/R+Vehicle,圖7m)。此外,當缺血性視網膜預先施予金釵石斛,上述變化會明顯且呈劑量依賴性方式消除(DNL0.5+I/R,圖7k;DNL1.0+I/R,圖7l)。後施予金釵石斛也明顯消除上述因缺血所誘發的變化(I/R+DNL1.0,圖7n)。用4',6-二脒基-2-苯基吲哚(DAPI)(藍色;圖7a和7h)染色標記假程序之視網膜的細胞核。 Compared with the control retina (Sham, Fig. 7i), it was observed that the anti-glial fibrillary acidic protein (GFAP) immunolabeling in the ischemic retina and the increase of pre/post vehicle administration (Vehicle+I/R, Fig. 7j; I/R+Vehicle, Figure 7m). In addition, when the ischemic retina is pre-administered Dendrobium nobile, the above changes will be obvious and eliminated in a dose-dependent manner (DNL0.5+I/R, Figure 7k; DNL1.0+I/R, Figure 71). Post-administration of Dendrobium nobile also significantly eliminated the above-mentioned changes induced by ischemia (I/R+DNL1.0, Figure 7n). 4',6-diamidino-2-phenylindole (DAPI) (blue; Figures 7a and 7h) was used to stain the nuclei of the sham retina.

(h)DNL1.0對大鼠視網膜中各種蛋白質表現量的影響 (h) The effect of DNL1.0 on the expression of various proteins in the rat retina

測量對照視網膜(Sham,數量為4~10)中各種蛋白質的表現量,結果如圖8a1和8a2所示(HIF-1α=51.17±5.14%;VEGF=59.72±6.94%;PKM2=52.93±7.01%;RBP2=12.81±0.55%)。相反的,當接受I/R且預先施予媒劑(Vehicle)後,觀察到HIF-1α、VEGF、PKM2和RBP2的表現量(標準化成100%)顯著上升(P

Figure 107118352-A0101-12-0034-17
0.001)。此外,當缺血性視網膜預先施予1.0g/Kg天的金釵石斛(DNL)時,會顯著抑制這種上升現象(P<0.001;HIF-1α:56.08±6.76;VEGF:51.87±9.89;PKM2:71.99±3.05;RBP2:50.64±1.48)。另外,在預先施予各自的抑制劑/抗體:JIB-04(RBP2抑製劑)、紫草素(shikonin)(PKM2抑制劑)和癌思停(avastin)(VEGF抗體)後,其能顯著抵銷缺血所誘發的HIF-1α(JIB-04:53.98±2.29;shikonin:42.65±0.76;avastin:84.61±3.96(P=0.07))、VEGF(JIB-04:27.82±1.21;shikonin:57.55±9.40;avastin:5.38±2.51)、PKM2(JIB-04:60.36±7.59; shikonin:44.94±10.91;avastin:84.44±4.53(P=0.01))和RBP2(JIB-04:5.83±1.43;shikonin:3.40±0.23;avastin:78.35±3.29(P=0.02));P<0.001)的表現量增加(P<0.002,除癌思停(avastin)組外)。 Measure the expression level of various proteins in the control retina (Sham, the number is 4-10), and the results are shown in Figure 8a1 and 8a2 (HIF-1α=51.17±5.14%; VEGF=59.72±6.94%; PKM2=52.93±7.01% ; RBP2=12.81±0.55%). On the contrary, after receiving I/R and pre-administration of vehicle (Vehicle), it was observed that the expression levels of HIF-1α, VEGF, PKM2 and RBP2 (normalized to 100%) increased significantly (P
Figure 107118352-A0101-12-0034-17
0.001). In addition, when the ischemic retina was pre-administered 1.0g/Kg day of Dendrobium nobile (DNL), it would significantly inhibit this increase (P<0.001; HIF-1α: 56.08±6.76; VEGF: 51.87±9.89; PKM2: 71.99±3.05; RBP2: 50.64±1.48). In addition, after pre-administering the respective inhibitors/antibodies: JIB-04 (RBP2 inhibitor), shikonin (PKM2 inhibitor) and avastin (VEGF antibody), it can significantly resist HIF-1α induced by pin ischemia (JIB-04: 53.98±2.29; shikonin: 42.65±0.76; avastin: 84.61±3.96 (P=0.07)), VEGF (JIB-04: 27.82±1.21; shikonin: 57.55± 9.40; avastin: 5.38±2.51), PKM2 (JIB-04: 60.36±7.59; shikonin: 44.94±10.91; avastin: 84.44±4.53 (P=0.01)) and RBP2 (JIB-04: 5.83±1.43; shikonin: 3.40 ±0.23; avastin: 78.35±3.29 (P=0.02)); P<0.001) increased performance (P<0.002, except for the avastin group).

如圖8b所示(數量為4),與對照視網膜(Sham:15.11±1.58pg/ml)相比,接受I/R且預先施予媒劑後,胎盤生長因子(PLGF)的表現量有顯著升高(Vehicle+I/R=39.53±5.25)(P=0.004)。此外,當預先施予金釵石斛(DNL)(DNL1.0+I/R=19.93±2.24)或抗PLGF抗體采視明(eylea)(Eylea+I/R=6.44±0.60)於缺血性視網膜時,這種升高顯著變差(P=0.01或P<0.001)。 As shown in Figure 8b (the number is 4), compared with the control retina (Sham: 15.11±1.58pg/ml), after receiving I/R and pre-administered vehicle, the expression level of placental growth factor (PLGF) is significant Increase (Vehicle+I/R=39.53±5.25) (P=0.004). In addition, when pre-administration of Dendrobium nobile (DNL) (DNL1.0+I/R=19.93±2.24) or anti-PLGF antibody takes eylea (Eylea+I/R=6.44±0.60) for ischemic In the retina, this increase was significantly worse (P=0.01 or P<0.001).

本發明適當的描述可以在本文未具體公開的元素或限制下實施。已被用作描述的術語並不是限制。在使用這些術語和除此之外的任何等同物的表達和描述是沒有差別的,但應當認識到本發明內的權利是可能修改的。因此,雖然本發明已說明實施例和其他情況,本文中所公開的內容可以被本領域的技術人員進行修飾和變化,並且這樣的修改和變化被認為是在本發明的權利範圍之內。 The proper description of the present invention can be implemented under elements or limitations not specifically disclosed herein. The terms that have been used for description are not limiting. There is no difference between using these terms and any other equivalent expressions and descriptions, but it should be recognized that the rights in the present invention may be modified. Therefore, although the present invention has described embodiments and other situations, the content disclosed herein can be modified and changed by those skilled in the art, and such modifications and changes are considered to be within the scope of the rights of the present invention.

Figure 107118352-A0101-11-0002-1
Figure 107118352-A0101-11-0002-1

Claims (4)

一種組合物用於製備治療發育性視網膜血管疾病的藥物之用途,其中該組合物包含一有效劑量的金釵石斛(Dendrobium nobile Lindley),其中該發育性視網膜血管疾病為諾里疾病(Norrie disease)的視網膜病變。 A composition for the preparation of a medicine for the treatment of developmental retinal vascular diseases, wherein the composition comprises an effective dose of Dendrobium nobile Lindley, wherein the developmental retinal vascular disease is Norrie disease Retinopathy. 如申請專利範圍第1項所述之用途,其中該發育性視網膜血管疾病的症狀包含視網膜血管發育異常、視網膜缺血和視力受損。 The use described in item 1 of the scope of patent application, wherein the symptoms of the developmental retinal vascular disease include abnormal retinal vascular development, retinal ischemia, and impaired vision. 如申請專利範圍第1項所述之用途,其中該金釵石斛治療該發育性視網膜血管疾病所造成的視網膜缺血性損傷。 The use as described in item 1 of the scope of patent application, wherein the Dendrobium nobile is used to treat the retinal ischemic damage caused by the developmental retinal vascular disease. 如申請專利範圍第1項所述之用途,其中該金釵石斛治療該發育性視網膜血管疾病所造成的視網膜厚度變薄的情況。 The use described in item 1 of the scope of patent application, wherein the Dendrobium nobile is used to treat the thinning of the retinal thickness caused by the developmental retinal vascular disease.
TW107118352A 2018-05-29 2018-05-29 Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder TWI721274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107118352A TWI721274B (en) 2018-05-29 2018-05-29 Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107118352A TWI721274B (en) 2018-05-29 2018-05-29 Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder

Publications (2)

Publication Number Publication Date
TW202003009A TW202003009A (en) 2020-01-16
TWI721274B true TWI721274B (en) 2021-03-11

Family

ID=69942311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107118352A TWI721274B (en) 2018-05-29 2018-05-29 Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder

Country Status (1)

Country Link
TW (1) TWI721274B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200268838A1 (en) * 2017-05-05 2020-08-27 Retinal Solutions Llc Norrin induced expression of genes and use thereof to treat disease
CN117257827A (en) * 2022-10-28 2023-12-22 深圳市眼科医院(深圳市眼病防治研究所) Application of dendrobium polysaccharide in treating age-related maculopathy and medicament

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Kowitdamrong A et al., "Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species", BioMed Research International Volume 2013, Article ID 765894, 11 pages, http://dx.doi.org/10.1155/2013/765894, 2013/05/08
Yu Z et al., "Erianin inhibits high glucoseinduced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α- VEGF/VEGFR2 signaling pathway", Scientific Reports 6:34306 DOI:10.1038/srep34306, 2016/09/28
張聰,「大苞鞘石斛的化學成分研究及12種石斛的毛蘭素含量測定」,安徽中醫藥大學生藥學碩士論文,2017
張聰,「大苞鞘石斛的化學成分研究及12種石斛的毛蘭素含量測定」,安徽中醫藥大學生藥學碩士論文,2017 Yu Z et al., "Erianin inhibits high glucoseinduced retinal angiogenesis via blocking ERK1/2-regulated HIF-1α- VEGF/VEGFR2 signaling pathway", Scientific Reports 6:34306 DOI:10.1038/srep34306, 2016/09/28 Kowitdamrong A et al., "Moscatilin Inhibits Lung Cancer Cell Motility and Invasion via Suppression of Endogenous Reactive Oxygen Species", BioMed Research International Volume 2013, Article ID 765894, 11 pages, http://dx.doi.org/10.1155/2013/765894, 2013/05/08 *

Also Published As

Publication number Publication date
TW202003009A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
KR100883232B1 (en) Modulation of excitable tissue function by peripherally administered erythropoietin
Yang et al. Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy
JP2020500938A (en) New treatment for macular degeneration
TWI721274B (en) Use of a composition in the manufacture of a drug for treating developmental retinal vascular disorder
Chao et al. Dendrobium nobile Lindley and its bibenzyl component moscatilin are able to protect retinal cells from ischemia/hypoxia by dowregulating placental growth factor and upregulating Norrie disease protein
US20170007670A1 (en) Method of Treating Intraocular Tissue Pathologies
Hayashi et al. Increase of protein tyrosine phosphorylation in rat retina after ischemia-reperfusion injury.
Halász et al. ROCK inhibition reduces morphological and functional damage to rod synapses after retinal injury
Manning et al. Histamine‐immunoreactive neurons and their innervation of visual regions in the cortex, tectum, and thalamus in the primate Macaca mulatta
CN110538273B (en) Application of composition in preparation of medicine for treating developmental retinal vascular diseases
Kuroiwa et al. A possible role for p16INK4 in neuronal cell death after retinal ischemia-reperfusion injury.
Kwon et al. Alterations in the localization of calbindin D28K-, calretinin-, and parvalbumin-immunoreactive neurons of rabbit retinal ganglion cell layer from ischemia and reperfusion
TWI814760B (en) Lipocalin-type prostaglandin d2 synthase production promoter
CA2422774A1 (en) Remedies for amyotrophic lateral sclerosis
US10493044B1 (en) Method for treating developmental retinal vascular disorder
US11795200B2 (en) Nano small peptide and its use in preparation of drugs for treating and preventing fundus vascular diseases
Ferreira-Neto et al. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation
EP2501362B1 (en) Ophthalmic preparations based on bdnf (brain-derived neurotrophic factor) and their use
Layton et al. Monocarboxylate transporter expression remains unchanged during the development of diabetic retinal neuropathy in the rat
US20030176347A1 (en) Remedies for amyotrophic lateral sclerosis
Bronzetti et al. Expression of neurotransmitters and neurotrophins in neurogenic inflammation of the rat retina
US20180296626A1 (en) Medicinal composition for prevention or treatment retinal ischemia
TWI775101B (en) Use of emodin in manufacture of medicament for treating retinal ischemia or a disease, condition, or disorder associated with retinal ischemia
Tsai Safety of intravitreally administered recombinant erythropoietin (an AOS thesis)
US20230087023A1 (en) Nano small peptide and its use in preparation of drugs for treating and preventing fundus vascular diseases