TWI774361B - 光偵測記憶運算元件 - Google Patents

光偵測記憶運算元件 Download PDF

Info

Publication number
TWI774361B
TWI774361B TW110116658A TW110116658A TWI774361B TW I774361 B TWI774361 B TW I774361B TW 110116658 A TW110116658 A TW 110116658A TW 110116658 A TW110116658 A TW 110116658A TW I774361 B TWI774361 B TW I774361B
Authority
TW
Taiwan
Prior art keywords
oxide layer
transparent oxide
layer
light detection
gold nanoparticles
Prior art date
Application number
TW110116658A
Other languages
English (en)
Other versions
TW202245236A (zh
Inventor
陳貞夙
石立中
蘇彥勳
龔柏諺
吳季珍
關肇正
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW110116658A priority Critical patent/TWI774361B/zh
Application granted granted Critical
Publication of TWI774361B publication Critical patent/TWI774361B/zh
Publication of TW202245236A publication Critical patent/TW202245236A/zh

Links

Images

Abstract

一種光偵測記憶運算元件,包含閘極基板、絕緣層、複數個奈米金粒子、透明氧化層、源電極及汲電極。透明氧化層覆蓋奈米金粒子及絕緣層的表面,透明氧化層與奈米金粒子共同形成主動層。光偵測記憶運算元件為薄膜電晶體的邏輯運算結構,利用奈米金粒子及透明氧化層調配主動層的能隙,可見光特定波段激發奈米金粒子,達到光偵測的功能。透明氧化層包覆奈米金粒子的結構,使得主動層由具有激發波長的可見光光波照光後,奈米金粒子電漿共振產生的光電流能維持於透明氧化層中,而具有記憶的功能。

Description

光偵測記憶運算元件
本發明涉及光電領域,尤其是一種光偵測記憶運算元件。
近年來WiFi、5G通訊技術發展迅速,這些通訊技術皆是利用射頻(Radio Frequency,RF)波段來進行訊號傳輸,因此讓RF波段發生供不應求的現象,且其訊號越來越容易受到外在電磁波干擾,導致高延遲的問題。為了解決RF波段難以負荷的困境,科學家們提出「可見光通訊」(LiFi)技術。可見光的頻寬(430THz~790THz)約為RF波段的103倍,故其傳輸速度隨之大為增加。
目前的技術上,習知一個Lifi晶片總成,通常包含了三個結構,包含了感光晶片、記憶晶片及運算晶片,一般需要分層製作,整體的成本較高。此外,光偵測後,需要經過光電訊號交互轉換,以及經由記憶晶片的反覆存取,元件能耗高,導致運作效率降低。
為了解決先前技術所面臨的問題,在此提供一種光偵測記憶運算元件。光偵測記憶運算元件包含閘極基板、絕緣層、複數個奈米金粒子、透明氧化層、源電極及汲電極。閘極基板為P型摻雜矽基板。 絕緣層設置於閘極基板上。奈米金粒子設置於絕緣層上。透明氧化層覆蓋奈米金粒子及絕緣層的表面。源電極及汲電極,設置於透明氧化層上。
在此,透明氧化層與奈米金粒子共同形成主動層。當主動層由具有激發波長的可見光光波經由照光時間後,奈米金粒子能產生光電流,並能維持在透明氧化層中。
在一些實施例中,透明氧化層係選自氧化鋅層、氧化鋅錫層以及氧化鋁鋅層所構成的群組。
在一些實施例中,奈米金粒子的粒徑為5至50nm,透明氧化層的厚度為5至30nm。
在一些實施例中,奈米金粒子分布於該絕緣層上的密度為0.8×1010至2.2×1010(個/cm2)。
在一些實施例中,可見光光波的激發波長為450至650nm。更詳細地,在一些實施例中,可見光光波為藍光或綠光。
在一些實施例中,絕緣層為二氧化矽層,絕緣層的厚度為80至160nm。
在一些實施例中,源電極及汲電極之間的距離為80至120um,且源電極及汲電極的厚度為200nm至350nm。
在一些實施例中,進一步對主動層在施加偏壓,並經過照光時間後所產生的光電流能維持在透明氧化層中至少3000秒。更詳細地,在一些實施例中,照光時間與主動層光電流的大小呈正相關。
在一些實施例中,該透明氧化層覆蓋各該奈米金粒子的部分形成突起結構。
綜上所述,光偵測記憶運算元件基於薄膜電晶體的邏輯運算結構,利用奈米金粒子及透明氧化層調配主動層的能隙,使特定波段的可見光激發奈米金粒子產生光電流,有效地提升光偵測的靈敏度。透明氧化層包覆奈米金粒子的結構,使得主動層由具有激發波長的可見光光波照光後,奈米金粒子電漿共振產生的光電流能維持於透明氧化層中,而具有記憶的功能。從而在同一元件可以達到三種功能,能有效地降低現有技術的成本、並提升運算效率、降低能耗。
1:光偵測記憶運算元件
10:閘極基板
20:絕緣層
30:主動層
31:奈米金粒子
33:透明氧化層
41:源電極
43:汲電極
圖1係光偵測記憶運算元件的剖面示意圖。
圖2為實施例及比較例汲極電流-閘級電壓的曲線圖。
圖3為實施例的時域有限差分的電場模擬圖。
圖4為實施例及比較例汲極光電流-時間的曲線圖。
圖5為實施例及比較例分次照光之汲極光電流-時間的曲線圖。
圖1係光偵測記憶運算元件的剖面示意圖。如圖1所示,光偵測記憶運算元件1包含閘極基板10、絕緣層20、複數個奈米金粒子31、透明氧化層33、源電極41及汲電極43。閘極基板10為P型摻雜矽基板。絕緣層20設置於閘極基板10上。奈米金粒子31設置於絕緣層20上。透明氧化層33覆蓋奈米金粒子31及絕緣層20的表面。源電極41及汲電極43,設置於透明氧化層33上。
在此,透明氧化層33與奈米金粒子31共同形成主動層30。 當主動層30由具有激發波長的可見光光波經由照光時間後,奈米金粒子31能產生光電流,並能維持在透明氧化層33中。實際的結果,將於後續實驗呈現。
在此,透明氧化層33係選自氧化鋅(ZnO)層、氧化鋅錫(Zinc Tin Oxide,ZTO)層以及氧化鋁鋅(AluminumZinc Oxide,AZO)層所構成的群組。然而,以上僅為示例,通常選擇的透明氧化物,具有較寬的能隙,藉由偏壓的施加,才能維持導電的功效。
更詳細地,奈米金粒子31的粒徑為5至50nm,較佳為10至30nm,透明氧化層33的厚度為5至30nm,較佳為10至20nm。奈米金粒子31分布於絕緣層20上的密度為0.8×1010至2.2×1010(個/cm2)。更詳細地,透明氧化層33覆蓋奈米金粒子31的部分形成突起結構。
另外,絕緣層20為二氧化矽(SiO2)層,且絕緣層20的厚度為80至160nm。源電極41及汲電極43通常有金屬材料,例如,鋁、銅、銀等所製成,且源電極41及汲電極43的厚度為200至350nm。源電極41及汲電極43之間的距離,即主動層30的開口大小為80至120um,較佳為90至110um。
一般而言,透明氧化層33,例如,鋅錫氧化物的能隙較寬,只對短波長之可見光(λ<400nm)有所反應。奈米金粒子31對於特定波長之可見光會產生表面電漿共振效應,可以增加主動層30在可見光的吸收波段。更具體地,用以照射主動層30的可見光光波的激發波長為450至650nm,較佳為500至600nm。更詳細地,可以採用藍光或綠光進行照射。
以下為實際製作光偵測記憶運算元件1的其中一種方法及其相關的量測的實驗程序。首先,準備厚度500um的P型摻雜矽基板作為閘極基板10,接著透過真空鍍熱氣化的方式,在閘極基板10的表面形成110nm的二氧化矽層,作為絕緣層20。
另外,配置金奈米粒子溶液及氧化鋅錫前驅液。金奈米粒子溶液是以兩相法將四氯金酸(hydrogen tetrachloroaurate,HAuCl4.3H2O)溶於無水乙醇中達到飽和使其沉澱,最後以離心的方式,去除金奈米粒子中多餘雜質,完成金奈米粒子溶液之配置。氧化鋅錫前驅液是以利用乙酸鋅(Zn(CH3COO)2)與氯化亞錫(SnCl2)作為溶質溶於乙二醇甲醚(C3H8O2)溶劑中。
以旋轉塗佈法將金奈米粒子溶液塗佈於絕緣層20的表面,待乾燥後,進行500℃退火1小時,使得溶液揮發後,奈米金粒子31分佈於絕緣層20的表面。緊接著以旋轉塗佈法將氧化鋅錫前驅液塗佈在奈米金粒子31上方,再進行一次500℃退火1小時,使得鋅錫氧化物(ZTO)的透明氧化層33包覆奈米金粒子31及絕緣層20的表面,完成一試片。在此實施例中,奈米金粒子31的粒徑約為10至30nm,絕緣層20為5至10nm。以掃描式電子顯微鏡(SEM)的觀察及推算,奈米金粒子31分布於絕緣層20上的密度約為1.03×1010(個/cm2)。
將試片貼上不銹鋼遮罩,放入電子束蒸鍍系統鍍上鋁電極,形成源電極41及汲電極43,而完成光偵測記憶運算元件1的實施例。
另外,再以同樣方法,省略金奈米粒子溶液塗佈於絕緣層20的表面的步驟製作未有奈米金粒子的比較例。以上光偵測記憶運算元 件1的實施例及比較例,其材料的選擇、厚度,僅作為示例說明,而非用以限制。
圖2為實施例及比較例汲極電流-閘級電壓的曲線圖。如圖2所示,將比較例及實施例的源電極41接地,在閘極基板10與汲電極43施予偏壓,量測汲極電流值大小。並分別量測照射520nm綠光雷射及未照光的情形。由圖2可以看出具有實施例在照光後,具有較大的啟動電壓(Von)位移,可以顯示奈米金粒子31貢獻了電漿共振效應產生光電流至主動層30,使得通道能快速開啟。另外,與比較例相比,實施例具有的照光後的光電流較大,如此,可以透過奈米金粒子31對於主動層30貢獻的電流,提升光感測的靈敏性。
圖3為實施例的時域有限差分的電場模擬圖。如圖3所示,同時參考圖2,為了確認圖2中奈米金粒子31的貢獻,對單一奈米金粒子31被透明氧化層33包覆的區域進行時域有限差分(Finite-difference time-domain,FDTD)的模擬。圖3顯示出,透明氧化層33所覆蓋奈米金粒子31處具有相較其他區域較高的電場,可以再次理解奈米金粒子31對於光電流的貢獻。
圖4為實施例及比較例汲極光電流-時間的曲線圖。如圖4所示,是在施加偏壓並照光的條件下,進行光電流的比較。與比較例相比,實施例除了明顯具有較大的汲極電流值外,光電流更能維持3000秒以上,較佳地,更可以維持到4000秒以上。如此,可以透過編寫光電流信號,並透過存在於主動層30之中,達到光記憶的功能,達到類似非揮發性記憶體的功效。
此光記憶特性主要在於透明氧化層33中的電洞量,不足以與奈米金粒子31電漿共振產生的光電子反應,光電流能維持在主動層30中也不易受外部環境的影響而消散。不具有奈米金粒子31的比較例,雖然照光仍可能使得透明氧化層33產生部分的反應,但結果顯示,光電流太小,也無法持續,光感測功能的效果不佳,且不具有光記憶的功能。
圖5為實施例及比較例分次照光之汲極光電流-時間的曲線圖。如圖5所示,在重複的同時照光和施加偏壓的刺激下,顯示汲極電流有階梯狀增加的狀態。換言之,透過多次照光,可以顯示照光時間、次數與主動層30中量測到的光電流的大小呈正相關。此外,透過分次照光的刺激,光電流值的增加,呈現出同一元件能夠具有多重的電性組態。
目前常見的運算或是儲存元件都只有0、1兩種排列組合,圖5呈現出光偵測記憶運算元件1可以利用照光調控組態變化,甚至可以達到兩種以上的排列組合。因此,對於記憶體元件來看,同一元件所儲存的資訊可以更多、達到更高的資訊儲存效率。換言之,在同一資訊量下,可以用更微縮的尺寸來達成。因此,光偵測記憶運算元件1更適用於類神經網路演算法、各種人工智慧演算法、雲端硬碟等巨量數據的處理及儲存使用。
如同前述實施例所描述,光偵測記憶運算元件1是基於薄膜電晶體(thin film transistor,TFT)的邏輯運算結構,利用奈米金粒子31及透明氧化層33調配主動層30的能隙,使特定波段的可見光激發奈米金粒子31產生光電流,而能有效地提升光偵測的靈敏度。此外,以透明氧化層33包覆奈米金粒子31的結構,使得主動層30由具有激發波長的 可見光光波照光後,奈米金粒子31電漿共振產生的光電流能維持於透明氧化層33中,而具有記憶的功能。因此,光偵測記憶運算元件1能在同一元件可以達到光偵測、記憶及運算的功能,對於LiFi技術上,可以將感光晶片、記憶晶片及運算晶片製作在同一片上,由於使用同一元件,能增快運算的效率,同時降低能耗,而達到更高的效率。
應當理解的是,元件被稱為「設置」於另一元件時,可以表示元件是直接位另一元件上,或者可以也存中間元件,透過中間元件連接元件與另一元件。相反地,當元件被稱為「直接設置在另一元件上」時,可以理解的是,此時明確定義了不存在中間元件。
此外,諸如「下」和「上」的相對術語可在本文中用於描述一個元件與另一元件的關係,應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。例如,如果一個附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。此僅表示相對的方位關係,而非絕對的方位關係。
雖然本發明的技術內容已經以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神所作些許之更動與潤飾,皆應涵蓋於本發明的範疇內,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
1:光偵測記憶運算元件
10:閘極基板
20:絕緣層
30:主動層
31:奈米金粒子
33:透明氧化層
41:源電極
43:汲電極

Claims (10)

  1. 一種光偵測記憶運算元件,包含:一閘極基板,為一P型摻雜矽基板;一絕緣層,設置於該閘極基板上;複數個奈米金粒子,分佈設置於該絕緣層上;一透明氧化層,覆蓋該等奈米金粒子及該絕緣層的表面,其中該透明氧化層係選自一氧化鋅層、一氧化鋅錫層以及一氧化鋁鋅層所構成的群組;以及一源電極及一汲電極,設置於該透明氧化層上;其中該透明氧化層與該等奈米金粒子共同形成一主動層,當該主動層由具有一激發波長的一可見光光波經過一照光時間後,該等奈米金粒子能產生一光電流,並能維持在該透明氧化層中。
  2. 如請求項1所述之光偵測記憶運算元件,其中該等奈米金粒子的粒徑為5至50nm,該透明氧化層的厚度為5至30nm。
  3. 如請求項1所述之光偵測記憶運算元件,其中該奈米金粒子分布於該絕緣層上的密度為0.8×1010至2.2×1010(個/cm2)。
  4. 如請求項1所述之光偵測記憶運算元件,其中該可見光光波的該激發波長為450至650nm。
  5. 如請求項4所述之光偵測記憶運算元件,其中該可見光光波為藍光或綠光。
  6. 如請求項1所述之光偵測記憶運算元件,其中該絕緣層為二氧化矽層,該絕緣層的厚度為80至160nm。
  7. 如請求項1所述之光偵測記憶運算元件,其中該源電極及該汲電極之間的距離為80至120um,且該源電極及該汲電極的厚度為200至350nm。
  8. 如請求項1所述之光偵測記憶運算元件,進一步對該主動層施加偏壓,並經過該照光時間後所產生的該光電流能維持在該透明氧化層中至少3000秒。
  9. 如請求項8所述之光偵測記憶運算元件,其中該照光時間與該主動層該光電流的大小呈正相關。
  10. 如請求項1所述之光偵測記憶運算元件,其中該透明氧化層覆蓋各該奈米金粒子的部分形成一突起結構。
TW110116658A 2021-05-07 2021-05-07 光偵測記憶運算元件 TWI774361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110116658A TWI774361B (zh) 2021-05-07 2021-05-07 光偵測記憶運算元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110116658A TWI774361B (zh) 2021-05-07 2021-05-07 光偵測記憶運算元件

Publications (2)

Publication Number Publication Date
TWI774361B true TWI774361B (zh) 2022-08-11
TW202245236A TW202245236A (zh) 2022-11-16

Family

ID=83807086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110116658A TWI774361B (zh) 2021-05-07 2021-05-07 光偵測記憶運算元件

Country Status (1)

Country Link
TW (1) TWI774361B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132020A1 (en) * 2006-06-16 2008-06-05 Young-Kwan Cha Method of forming silicon nano crystals and method of manufacturing memory devices having the same
TW201010156A (en) * 2008-08-26 2010-03-01 Univ Nat Chiao Tung Optoelectronic memory device and method for manufacturing and measuring the same
TWI397111B (zh) * 2007-01-25 2013-05-21 Au Optronics Corp 包括矽奈米晶粒之多層結構、太陽能晶胞、非揮發記憶體單元、光感測單元及其製作方法、形成矽奈米晶粒之方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080132020A1 (en) * 2006-06-16 2008-06-05 Young-Kwan Cha Method of forming silicon nano crystals and method of manufacturing memory devices having the same
TWI397111B (zh) * 2007-01-25 2013-05-21 Au Optronics Corp 包括矽奈米晶粒之多層結構、太陽能晶胞、非揮發記憶體單元、光感測單元及其製作方法、形成矽奈米晶粒之方法
TW201010156A (en) * 2008-08-26 2010-03-01 Univ Nat Chiao Tung Optoelectronic memory device and method for manufacturing and measuring the same

Also Published As

Publication number Publication date
TW202245236A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
Stelling et al. Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells
Adachi et al. Broadband solar absorption enhancement via periodic nanostructuring of electrodes
CN107275421B (zh) 一种量子点光电探测器及其制备方法
CN105493295B (zh) 来自溶液处理的无机半导体的空气稳定红外光探测器
Ahmadivand et al. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors
Kim et al. Semi-transparent perovskite solar cells developed by considering human luminosity function
US20130327928A1 (en) Apparatus for Manipulating Plasmons
CN107342345A (zh) 一种基于铁电栅介质和薄层二硫化钼沟道的光电晶体管
EP3508893B1 (en) Light absorbing body, bolometer, infrared ray absorbing body, solar thermal power generating device, radiant cooling film, and method for manufacturing light absorbing body
CN107732017B (zh) 一种等离激元结构衬底及其制备和应用
Bonavolontà et al. Reduced graphene oxide on silicon-based structure as novel broadband photodetector
CN107316915A (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
CN110416235B (zh) 一种中空表面等离激元结构的二维材料复合多色红外探测芯片
Rohizat et al. Plasmon-enhanced reduced graphene oxide photodetector with monometallic of Au and Ag nanoparticles at VIS–NIR region
Zheng et al. Photovoltaic enhancement due to surface-plasmon assisted visible-light absorption at the inartificial surface of lead zirconate–titanate film
Ho et al. Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells
Alwazny et al. High-quantum efficiency of Au@ LiNbO3 core–shell nano composite as a photodetector by two-step laser ablation in liquid
TW202017219A (zh) 半導體結構、光電器件、光探測器及光譜儀
TWI774361B (zh) 光偵測記憶運算元件
Ismail et al. Nanosecond laser ablation of Au@ LiNbO3 core–shell nanoparticles in ethanol: properties and application in optoelectronic devices
Park et al. Plasmonic Nanoparticles on Graphene Absorber for Broadband High Responsivity 2D/3D Photodiode
Ho et al. Performance enhancement of plasmonics silicon solar cells using Al2O3/In NPs/TiO2 antireflective surface coating
Wang et al. Surface state induced filterless SWIR narrow-band Si photodetector
US20220155150A1 (en) Infrared absorption and detection enhancement using plasmonics
Lee et al. Nanomesh electrode on MgZnO-based metal-semiconductor-metal ultraviolet photodetectors