TWI774315B - Motor control device and motor control method - Google Patents

Motor control device and motor control method Download PDF

Info

Publication number
TWI774315B
TWI774315B TW110112741A TW110112741A TWI774315B TW I774315 B TWI774315 B TW I774315B TW 110112741 A TW110112741 A TW 110112741A TW 110112741 A TW110112741 A TW 110112741A TW I774315 B TWI774315 B TW I774315B
Authority
TW
Taiwan
Prior art keywords
axis
current
value
equation
quadrature
Prior art date
Application number
TW110112741A
Other languages
Chinese (zh)
Other versions
TW202241040A (en
Inventor
林育賢
陳明宗
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW110112741A priority Critical patent/TWI774315B/en
Application granted granted Critical
Publication of TWI774315B publication Critical patent/TWI774315B/en
Publication of TW202241040A publication Critical patent/TW202241040A/en

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

The present disclosure relates to a motor control method, including the following steps: receiving a frequency command and an excitation current setting value as a motor speed command; performing a magnetic flux calculation program to generate a magnetic flux voltage command; obtaining a synchronous coordinate voltage command, and generating a three-phase current to a sensorless motor; calculating a synchronous coordinate feedback current, and calculating a current effective value of the three-phase current according to the three-phase current; calculating a virtual power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current; performing a steady state calculation program to calculate a virtual power command according to the frequency command and the current effective value; calculating a virtual power error value between the virtual power command and the virtual power feedback value; adding the magnetic flux voltage command and the virtual work error value to adjust the synchronous coordinate voltage command and change the three-phase current.

Description

馬達控制裝置及馬達控制方法Motor control device and motor control method

本揭示內容關於一種馬達控制裝置及馬達控制方法,用以驅動無感測器之馬達運轉。The present disclosure relates to a motor control device and a motor control method for driving a sensorless motor to operate.

隨著世界各國的能源政策改變,馬達的運轉效率的要求也日益增加。同步磁阻馬達(Synchronous reluctance motor, SynRM)具有高運轉效率、低製造成本、強健的機械結構、等關鍵優勢,並且同步磁阻馬達還兼具永磁馬達及感應馬達的優點。因此為了滿足能源政策的需求,同步磁阻馬達的研究也越來越受到重視。With the changes in energy policies in countries around the world, the requirements for the operating efficiency of motors are also increasing. Synchronous reluctance motor (SynRM) has key advantages such as high operating efficiency, low manufacturing cost, robust mechanical structure, etc., and synchronous reluctance motor also has the advantages of permanent magnet motor and induction motor. Therefore, in order to meet the needs of energy policy, the research of synchronous reluctance motor is also paid more and more attention.

目前針對同步磁阻馬達的控制,大多需要搭配位置感測器或編碼器(encoder),以便於進行馬達控制。然而,運用位置感測器或編碼器,往往會明顯地提高製造成本。另外,在微型化的馬達產品中,有限的空間不容易容納位置感測器或編碼器。At present, the control of the synchronous reluctance motor mostly needs to be equipped with a position sensor or an encoder to facilitate the motor control. However, the use of position sensors or encoders tends to significantly increase manufacturing costs. In addition, in miniaturized motor products, the limited space cannot easily accommodate position sensors or encoders.

此外,許多有關於無位置感測器的馬達研究,需要透過估測器,例如:磁通估測器(flux observer)及位置與速度估測器(position and speed estimator),進行演算法的運算來取得馬達的位置、轉速等資訊。然而,估測器地運用需要大量的正確馬達參數來建立馬達模型,才能準確地計算出馬達的位置、轉速等資訊。In addition, many studies on motors without position sensors require the use of estimators, such as flux observers and position and speed estimators, to perform algorithms. to obtain information such as the position and speed of the motor. However, the application of the estimator requires a large number of correct motor parameters to establish a motor model, so as to accurately calculate the information such as the position and rotation speed of the motor.

本揭示內容係關於一種馬達控制方法,用於無感測器之馬達,包含下列步驟:接收頻率命令及勵磁電流設定值,以作為馬達轉速命令;根據馬達轉速命令,運行磁通運算程序來產生磁通電壓命令;將磁通電壓命令轉換為同步座標電壓命令,並進而產生三相電流給馬達;根據三相電流,計算同步座標回授電流,並進而計算三相電流的電流有效值;根據同步座標電壓命令及同步座標回授電流,計算虛功回授值;根據頻率命令及電流有效值,運行穩態運算程序以計算虛功命令;計算虛功命令及虛功回授值之間的虛功誤差值;以及疊加磁通電壓命令及虛功誤差值,調整同步座標電壓命令,並進而改變三相電流。The present disclosure relates to a motor control method for a sensorless motor, comprising the following steps: receiving a frequency command and an excitation current setting value as a motor speed command; running a magnetic flux calculation program according to the motor speed command to Generate a magnetic flux voltage command; convert the magnetic flux voltage command into a synchronous coordinate voltage command, and then generate a three-phase current to the motor; calculate the synchronous coordinate feedback current according to the three-phase current, and then calculate the current effective value of the three-phase current; According to the synchronous coordinate voltage command and the synchronous coordinate feedback current, calculate the virtual power feedback value; according to the frequency command and current RMS, run the steady-state operation program to calculate the virtual power command; calculate the difference between the virtual power command and the virtual power feedback value The virtual power error value of ; and superimpose the magnetic flux voltage command and virtual power error value, adjust the synchronous coordinate voltage command, and then change the three-phase current.

本揭示內容還關於一種馬達控制方法,用於無感測器之馬達,包含下列步驟:接收頻率命令及勵磁電流設定值,以作為馬達轉速命令;根據馬達轉速命令,運行磁通運算程序來產生磁通電壓命令;將磁通電壓命令轉換為同步座標電壓命令,並進而產生三相電流給無感測器之馬達;根據三相電流,計算同步座標回授電流,並進而計算三相電流的電流有效值;根據同步座標電壓命令及同步座標回授電流,計算實功回授值;根據實功回授值及電流有效值,計算氣隙功率變化量;以及根據氣隙功率變化量,調整同步座標電壓命令,並進而改變三相電流給無感測器之馬達。The present disclosure also relates to a motor control method for a sensorless motor, comprising the following steps: receiving a frequency command and an excitation current setting value as a motor speed command; and running a magnetic flux calculation program according to the motor speed command to Generate magnetic flux voltage command; convert the magnetic flux voltage command into synchronous coordinate voltage command, and then generate three-phase current to the motor without sensor; calculate the synchronous coordinate feedback current according to the three-phase current, and then calculate the three-phase current According to the synchronous coordinate voltage command and the synchronous coordinate feedback current, calculate the real power feedback value; according to the real power feedback value and the current effective value, calculate the air gap power variation; Adjust the synchronous coordinate voltage command, and thereby change the three-phase current to the sensorless motor.

本揭示內容還關於一種馬達控制裝置,用於無感測器之馬達。馬達控制裝置包含磁通運算單元、驅動運算單元、回授運算單元及補償運算單元。磁通運算單元用以接收頻率命令及勵磁電流設定值,以計算磁通電壓命令。驅動運算單元用以將磁通電壓命令轉換為同步座標電壓命令,並進而產生三相電流給馬達。回授運算單元用以根據三相電流,計算同步座標回授電流及取得三相電流的電流有效值。回授運算單元根據同步座標電壓命令及同步座標回授電流,計算虛功回授值。補償運算單元用以根據頻率命令及電流有效值,計算虛功命令。補償運算單元用以計算虛功命令及虛功回授值之間的虛功誤差值。驅動運算單元還用以疊加磁通電壓命令及虛功誤差值,以調整同步座標電壓命令,並進而改變三相電流。The present disclosure also relates to a motor control device for a sensorless motor. The motor control device includes a magnetic flux calculation unit, a drive calculation unit, a feedback calculation unit and a compensation calculation unit. The magnetic flux computing unit is used for receiving the frequency command and the setting value of the excitation current to calculate the magnetic flux voltage command. The driving arithmetic unit is used to convert the magnetic flux voltage command into the synchronous coordinate voltage command, and then generate three-phase current to the motor. The feedback operation unit is used to calculate the synchronous coordinate feedback current and obtain the current effective value of the three-phase current according to the three-phase current. The feedback computing unit calculates the virtual power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current. The compensation operation unit is used to calculate the virtual power command according to the frequency command and the current RMS. The compensation operation unit is used to calculate the virtual power error value between the virtual power command and the virtual power feedback value. The driving operation unit is also used to superimpose the magnetic flux voltage command and the virtual power error value to adjust the synchronous coordinate voltage command, thereby changing the three-phase current.

本揭示內容主要提出無位置感測器的同步磁阻馬達的驅動技術。本揭示內容僅使用基本的馬達參數,並且不需考慮非線性參數,並且搭配改善效率與穩定性的補償方式。因此,本揭示內容具備高效率與穩定性佳的操作性能,且相較於習知方式具有低馬達參數量及較簡易的計算方式等優點。The present disclosure mainly proposes a driving technology of a synchronous reluctance motor without a position sensor. The present disclosure uses only basic motor parameters, and does not need to consider nonlinear parameters, and is paired with compensation methods that improve efficiency and stability. Therefore, the present disclosure has the operational performance of high efficiency and good stability, and has the advantages of low motor parameter quantity and simpler calculation method compared with the conventional method.

以下將以圖式揭露本發明之複數個實施方式,為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施方式中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。特別注意的是,以下所稱的無感測器的馬達通常是指無位置感測器(例如:編碼器)的馬達。Several embodiments of the present invention will be disclosed in the drawings below, and for the sake of clarity, many practical details will be described together in the following description. It should be understood, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the invention, these practical details are unnecessary. In addition, for the purpose of simplifying the drawings, some well-known structures and elements will be shown in a simple and schematic manner in the drawings. It should be noted that the term "sensorless motor" hereinafter generally refers to a motor without a position sensor (eg, an encoder).

以下請同時參閱第1A圖、第1B圖、第1C圖、第1D圖、第1E圖、第2A圖及第2B圖,來說明以下各個實施例。如第1A圖所示,馬達控制裝置100包含磁通運算單元110、補償運算單元120、穩定度運算單元130、驅動運算單元140、回授運算單元150及電流感測裝置160。馬達控制裝置100用於驅動無感測器的馬達200。其中馬達200可以是同步磁阻馬達,但本發明不限於此。Please refer to FIG. 1A , FIG. 1B , FIG. 1C , FIG. 1D , FIG. 1E , FIG. 2A , and FIG. 2B at the same time to describe the following embodiments. As shown in FIG. 1A , the motor control device 100 includes a magnetic flux computing unit 110 , a compensation computing unit 120 , a stability computing unit 130 , a driving computing unit 140 , a feedback computing unit 150 and a current sensing device 160 . The motor control device 100 is used to drive the sensorless motor 200 . The motor 200 may be a synchronous reluctance motor, but the invention is not limited thereto.

如第2A圖及第2B圖所示,本發明提出一種馬達控制方法300,且馬達控制方法300適用於無感測器之馬達200。其中馬達控制方法300包含步驟S201~S211,且馬達控制方法300由馬達控制裝置100(如第1A圖所示)來執行。As shown in FIG. 2A and FIG. 2B , the present invention provides a motor control method 300 , and the motor control method 300 is suitable for the sensorless motor 200 . The motor control method 300 includes steps S201 to S211 , and the motor control method 300 is executed by the motor control device 100 (as shown in FIG. 1A ).

如第1A圖、第1B圖及第2A圖所示,於步驟S201中,馬達控制裝置100的磁通運算單元110接收頻率命令ω e及勵磁電流設定值Io,以作為馬達轉速命令。在部分的實施例中,如第1B圖所示,磁通運算單元110包含預定磁通曲線110a及磁通運算程序110b。其中,預定磁通曲線110a是依據勵磁電流設定值Io及頻率命令ω e的比例(例如:Io/ω e)所取得的曲線,用以紀錄馬達200之特性。透過預定磁通曲線110a,磁通運算單元110可以僅接收頻率命令ω e而取得勵磁電流設定值Io,或僅接收勵磁電流設定值Io而取得頻率命令ω e。或者,在沒有設置預定磁通曲線110a的情況下,磁通運算單元110同時接收勵磁電流設定值Io及頻率命令ω e。此外,頻率命令ω e可透過1/S運算子 ,產生驅動角度Θ e。其中1/S運算子是本領域之技術人員常用的拉普拉斯轉換(Laplace Transform)或傅立葉轉換(Fourier transform),由於本領域人士能理解其意義及運算方式,且本揭示內容不限於此,故在此不再贅述。 As shown in FIGS. 1A , 1B and 2A, in step S201 , the magnetic flux calculation unit 110 of the motor control device 100 receives the frequency command ω e and the excitation current set value Io as the motor rotational speed command. In some embodiments, as shown in FIG. 1B , the magnetic flux computing unit 110 includes a predetermined magnetic flux curve 110 a and a magnetic flux computing program 110 b. The predetermined magnetic flux curve 110a is a curve obtained according to the excitation current setting value Io and the ratio of the frequency command ω e (eg, Io/ω e ), and is used to record the characteristics of the motor 200 . Through the predetermined magnetic flux curve 110a, the magnetic flux computing unit 110 can only receive the frequency command ω e to obtain the excitation current set value Io, or only receive the excitation current set value Io to obtain the frequency command ω e . Alternatively, in the case where the predetermined magnetic flux curve 110a is not set, the magnetic flux operation unit 110 simultaneously receives the excitation current setting value Io and the frequency command ω e . In addition, the frequency command ω e can generate the driving angle Θ e through the 1/S operator. The 1/S operator is a Laplace transform or Fourier transform commonly used by those skilled in the art, because those in the art can understand its meaning and operation method, and the present disclosure is not limited thereto. , so it is not repeated here.

如第1A圖、第1B圖及第2A圖所示,於步驟S202中,磁通運算單元110根據馬達轉速命令(包括勵磁電流設定值Io及頻率命令ω e),運行磁通運算程序110b來產生磁通電壓命令V vf。請參閱第1A圖、第1B圖及第3圖,來說明磁通運算程序110b的操作原理。 As shown in Fig. 1A, Fig. 1B and Fig. 2A, in step S202, the magnetic flux computing unit 110 runs the magnetic flux computing program 110b according to the motor rotational speed command (including the excitation current setting value Io and the frequency command ω e ). to generate the magnetic flux voltage command V vf . Please refer to FIG. 1A , FIG. 1B and FIG. 3 to describe the operation principle of the magnetic flux calculation program 110 b.

磁通運算程序110b包括步驟S301~S304。於步驟S301中,磁通運算單元110根據馬達轉速命令,建立第一直軸方程式及第一交軸方程式。其中第一直軸方程式如方程式(1)所示,且第一交軸方程式如方程式(2)所示。The magnetic flux calculation program 110b includes steps S301 to S304. In step S301, the magnetic flux computing unit 110 establishes the first straight-axis equation and the first quadrature-axis equation according to the motor rotational speed command. The first straight-axis equation is shown in equation (1), and the first quadrature-axis equation is shown in equation (2).

Figure 02_image001
(1)
Figure 02_image001
(1)

Figure 02_image003
(2)
Figure 02_image003
(2)

其中,v d:馬達定子的直軸電壓、v q:馬達定子的交軸電壓、R s:馬達定子的電阻、L d:馬達的直軸自感、L q:馬達的交軸自感、i d:馬達定子的直軸電流、i q:馬達定子的交軸電流、ω γ:馬達轉子的轉速、p:微分項因子。特別注意的是,方程式(1)及方程式(2)即代表馬達200的兩軸電壓方程式。方程式(1)及方程式(2)的R s、L d、L q為馬達的線性參數,且這些線性參數是預設於馬達控制裝置100(或磁通運算單元110)的程式。此外,i d及i q是來自於勵磁電流設定值Io,且ω γ來自於頻率命令ω eAmong them, v d : the direct-axis voltage of the motor stator, v q : the quadrature-axis voltage of the motor stator, R s : the resistance of the motor stator, L d : the direct-axis self-inductance of the motor, L q : the quadrature-axis self-inductance of the motor, i d : the direct-axis current of the motor stator, i q : the quadrature-axis current of the motor stator, ω γ : the rotational speed of the motor rotor, p: the differential term factor. It is particularly noted that equation (1) and equation (2) represent the two-shaft voltage equations of the motor 200 . R s , L d , and L q of equation (1) and equation (2) are linear parameters of the motor, and these linear parameters are preset programs of the motor control device 100 (or the magnetic flux operation unit 110 ). In addition, id and i q are derived from the excitation current setting value Io, and ω γ is derived from the frequency command ω e .

於步驟S302中,磁通運算單元110分別去除第一直軸方程式及第一交軸方程式的微分項參數(如:

Figure 02_image005
),以分別建立第二直軸方程式(如方程式(3)所示)及第二交軸方程式(如方程式(4)所示)。 In step S302, the magnetic flux operation unit 110 removes the differential term parameters of the first straight-axis equation and the first quadrature-axis equation (eg:
Figure 02_image005
) to establish a second straight-axis equation (as shown in equation (3)) and a second quadrature-axis equation (as shown in equation (4)), respectively.

Figure 02_image007
(3)
Figure 02_image007
(3)

Figure 02_image009
(4)
Figure 02_image009
(4)

去除第一直軸方程式及第一交軸方程式的微分項參數是為了假設馬達200是維持穩態(即:馬達200的轉速維持不變)。因此,方程式(3)也視為直軸穩態方程式,且方程式(4)也視為交軸穩態方程式。此時, i d也可以視為直軸電流穩態值,且i q也可以視為交軸電流穩態值。 The reason for removing the differential term parameters of the first straight-axis equation and the first quadrature-axis equation is to assume that the motor 200 maintains a steady state (ie, the rotational speed of the motor 200 remains unchanged). Therefore, equation (3) is also regarded as a straight-axis steady state equation, and equation (4) is also regarded as a quadrature-axis steady state equation. At this time, id can also be regarded as the steady-state value of the direct-axis current, and i q can also be regarded as the steady-state value of the quadrature-axis current.

於步驟S303中,磁通運算單元110分別設置第二直軸方程式及第二交軸方程式的交軸參數(如:i q)為零,以分別建立第三直軸方程式(如方程式(5)所示)及第三交軸方程式(如方程式(6)所示)。 In step S303, the magnetic flux computing unit 110 sets the quadrature axis parameters (eg: i q ) of the second quadrature axis equation and the second quadrature axis equation to zero, respectively, to establish a third quadrature axis equation (eg, equation (5)) shown) and the third quadrature equation (as shown in equation (6)).

Figure 02_image011
(5)
Figure 02_image011
(5)

Figure 02_image013
(6)
Figure 02_image013
(6)

設置第二直軸方程式及第二交軸方程式的交軸參數為零是為了假設馬達200沒有連接任何的負載(即:空載)。特別注意的是,為了提升對馬達200的控制效率,在計算磁通電壓命令V vf時,需要假設馬達200維持一理想狀態,且該理想狀態是馬達200維持穩態且為空載。 Setting the quadrature axis parameters of the second straight axis equation and the second quadrature axis equation to zero is to assume that the motor 200 is not connected to any load (ie, no load). It should be noted that, in order to improve the control efficiency of the motor 200, when calculating the magnetic flux voltage command V vf , it is necessary to assume that the motor 200 maintains an ideal state, and the ideal state is that the motor 200 maintains a steady state and is no-load.

於步驟S304中,磁通運算單元110根據第三直軸方程式及第三交軸方程式,計算磁通電壓命令V vf。其中,磁通電壓命令V vf的計算方式,如方程式(7)所示: In step S304, the magnetic flux computing unit 110 calculates the magnetic flux voltage command V vf according to the third straight-axis equation and the third quadrature-axis equation. Among them, the calculation method of the magnetic flux voltage command V vf is shown in equation (7):

Figure 02_image015
(7)
Figure 02_image015
(7)

如第1A圖及第2A圖所示,於步驟S203中,驅動運算單元140接收磁通電壓命令V vf來作為驅動電壓訊號Vs,且驅動運算單元140包括:第一座標轉換迴路141、第二座標轉換迴路142及調變迴路143。第一座標轉換迴路141依據電壓補償角度Θ h將磁通電壓命令V vf轉換為同步座標電壓命令V a,並且第二座標轉換迴路142依據驅動角度Θ e及同步座標電壓命令V a產生三相電壓V abc,並且調變迴路143切換三相電壓V abc而產生三相電流I abc給馬達200。電壓補償角度Θ h的產生方式,於後面的段落介紹。其中,同步座標電壓命令V a包括:直軸電壓命令V δ及交軸電壓命令V γ。特別注意的是,當馬達控制裝置100第一次運作時,由於沒有產生任何的回授訊號,所以磁通電壓命令V vf等於驅動電壓訊號V s。此外,由於驅動運算單元140的操作原理屬於本領域之慣用技術,故不再此贅述。接者,馬達控制裝置100還包括電流感測裝置160,且電流感測裝置160用來檢測三相電流I abc,並傳送三相電流I abc的量測值給回授運算單元150。在其他一些實施例中,電流感測裝置160檢測三相電流I abc中之任兩相電流給回授運算單元150。回授運算單元150依據所接收的該任兩相電流,計算未量測的第三相電流。 As shown in FIG. 1A and FIG. 2A, in step S203, the driving operation unit 140 receives the magnetic flux voltage command V vf as the driving voltage signal Vs, and the driving operation unit 140 includes: a first coordinate conversion circuit 141, a second The coordinate conversion loop 142 and the modulation loop 143 are provided. The first coordinate conversion circuit 141 converts the magnetic flux voltage command V vf into a synchronous coordinate voltage command Va according to the voltage compensation angle Θh , and the second coordinate conversion circuit 142 generates three-phase according to the driving angle Θe and the synchronous coordinate voltage command Va voltage V abc , and the modulation circuit 143 switches the three-phase voltage V abc to generate the three-phase current I abc to the motor 200 . The generation method of the voltage compensation angle Θ h is described in the following paragraphs. The synchronous coordinate voltage command Va includes: a direct-axis voltage command V δ and a quadrature-axis voltage command V γ . It should be noted that when the motor control device 100 operates for the first time, since no feedback signal is generated, the magnetic flux voltage command V vf is equal to the driving voltage signal V s . In addition, since the operation principle of the driving operation unit 140 belongs to the conventional technology in the art, it is not repeated here. Alternatively, the motor control device 100 further includes a current sensing device 160 , and the current sensing device 160 is used to detect the three-phase current I abc and transmit the measured value of the three-phase current I abc to the feedback operation unit 150 . In other embodiments, the current sensing device 160 detects any two-phase current in the three-phase current I abc to the feedback operation unit 150 . The feedback operation unit 150 calculates the unmeasured third-phase current according to the received two-phase currents.

如第1A圖及第2A圖所示,於步驟S204中,回授運算單元150的第三座標轉換迴路151根據三相電流I abc的量測值及驅動角度Θ e,計算同步座標回授電流I a,且同步座標回授電流i a包括直軸回授電流i δ及交軸回授電流i γ。接著,回授運算單元150的電流運算迴路152依據直軸回授電流i δ及交軸回授電流i γ,運行方程式(8)來計算三相電流I abc的電流有效值Is。其中,方程式(8)如下所示: As shown in FIGS. 1A and 2A, in step S204, the third coordinate conversion circuit 151 of the feedback operation unit 150 calculates the synchronous coordinate feedback current according to the measured value of the three-phase current I abc and the driving angle Θ e I a , and the synchronous coordinate feedback current i a includes the direct axis feedback current i δ and the quadrature axis feedback current i γ . Next, the current calculation loop 152 of the feedback calculation unit 150 calculates the effective current value Is of the three-phase current I abc according to the direct-axis feedback current i δ and the quadrature-axis feedback current i γ , running equation (8). where Equation (8) is as follows:

Figure 02_image017
(8)
Figure 02_image017
(8)

如第1A圖及第2A圖所示,於步驟S205中,回授運算單元150的功率運算迴路153根據同步座標電壓命令Va(包括直軸電壓命令V δ及交軸電壓命令V γ)及同步座標回授電流ia(包括直軸回授電流i δ及交軸回授電流i γ),計算虛功回授值Qin。其中,功率運算迴路153包括方程式(9),且依據方程式(9)計算虛功回授值Qin。其中方程式(9),如下所示: As shown in FIGS. 1A and 2A, in step S205, the power calculation loop 153 of the feedback calculation unit 150 according to the synchronous coordinate voltage command Va (including the direct-axis voltage command V δ and the quadrature-axis voltage command V γ ) and the synchronization Coordinate feedback current ia (including direct axis feedback current i δ and quadrature axis feedback current i γ ), calculate the virtual work feedback value Qin. The power calculation loop 153 includes the equation (9), and calculates the virtual power feedback value Qin according to the equation (9). where equation (9), as follows:

Figure 02_image019
(9)
Figure 02_image019
(9)

如第1A圖及第2A圖所示,於步驟S206中,回授運算單元150的功率運算迴路153根據同步座標電壓命令Va(包括直軸電壓命令V δ及交軸電壓命令V γ)及同步座標回授電流ia(包括直軸回授電流i δ及交軸回授電流i γ),計算實功回授值Pin。其中,功率運算迴路153包括方程式(10),且依據方程式(10)計算實功回授值Pin。其中方程式(10),如下所示: As shown in FIGS. 1A and 2A, in step S206, the power calculation loop 153 of the feedback calculation unit 150 according to the synchronous coordinate voltage command Va (including the direct-axis voltage command V δ and the quadrature-axis voltage command V γ ) and the synchronization Coordinate feedback current ia (including direct axis feedback current i δ and quadrature axis feedback current i γ ), calculate the real power feedback value Pin. The power calculation loop 153 includes the equation (10), and calculates the real power feedback value Pin according to the equation (10). where equation (10), as follows:

Figure 02_image021
(10)
Figure 02_image021
(10)

如第1A圖、第1C圖及第2B圖所示,於步驟S207中,補償運算單元120的穩態補償迴路121根據頻率命令ω e及電流有效值Is,運行穩態運算程序以計算虛功命令Qref。其中,穩態補償迴路121包括虛功控制器121a及誤差控制器121b,且虛功控制器121a用來執行穩態運算程序。請參閱第1C圖、第2A圖及第4圖,來說明穩態運算程序500的操作原理: As shown in FIG. 1A , FIG. 1C and FIG. 2B , in step S207 , the steady-state compensation loop 121 of the compensation operation unit 120 runs the steady-state operation program to calculate the virtual work according to the frequency command ω e and the current effective value Is Command Qref. The steady-state compensation loop 121 includes a virtual power controller 121a and an error controller 121b, and the virtual power controller 121a is used to execute a steady-state operation program. Please refer to FIG. 1C, FIG. 2A, and FIG. 4 to illustrate the operation principle of the steady-state operation program 500:

穩態運算程序500包含步驟S501~S503。於步驟S501中,虛功控制器121a依據頻率命令ω e及電流有效值Is,建立直軸穩態方程式(如方程式(3)所示)及交軸穩態方程式(如方程式(4)所示),以計算直軸電流穩態值i d及交軸電流穩態值i qThe steady-state operation program 500 includes steps S501 to S503. In step S501, the virtual power controller 121a establishes the direct-axis steady state equation (as shown in equation (3)) and the quadrature-axis steady state equation (as shown in equation (4)) according to the frequency command ω e and the current effective value Is ) to calculate the steady-state value of the direct-axis current id and the steady-state value of the quadrature -axis current i q .

於步驟S502中,虛功控制器121a調整直軸電流穩態值i d和交軸電流穩態值i q之間的差值落入誤差內(理想情況:直軸電流穩態值i d等於交軸電流穩態值i q)。 In step S502, the virtual power controller 121a adjusts the difference between the steady-state value id of the direct-axis current and the steady-state value of the quadrature-axis current iq to fall within the error (ideally: the steady-state value of the direct-axis current id is equal to Steady-state value of quadrature axis current i q ).

於步驟S503中,當虛功控制器121a判斷差值落入誤差內時,將直軸電流穩態值i d和交軸電流穩態值i q代入直軸穩態方程式(方程式(3))及交軸穩態方程式(方程式(4)),以計算虛功命令Qref。其中計算虛功命令Qref的計算方式,如方程式(11)及方程式(12)所示: In step S503, when the virtual power controller 121a determines that the difference falls within the error, the direct-axis current steady-state value id and the quadrature-axis current steady-state value iq are substituted into the direct-axis steady state equation (equation (3)) and the quadrature-axis steady state equation (equation (4)) to calculate the virtual work command Qref. The calculation method of calculating the virtual work command Qref is shown in equation (11) and equation (12):

Figure 02_image023
(11)
Figure 02_image023
(11)

經整理方程式(8)及方程式(11),即可以得到方程式(12):After arranging Equation (8) and Equation (11), Equation (12) can be obtained:

Figure 02_image025
(12)
Figure 02_image025
(12)

如第1A圖、第1C圖及第2B圖所示,於步驟S208中,補償運算單元120的穩態補償迴路121計算虛功命令Qref及虛功回授值Qin之間的誤差值,且經由誤差控制器121b將誤差值作為虛功誤差值V com輸出給低通濾波器123以濾除雜訊。在部分的實施例中,馬達控制裝置100直接疊加磁通電壓命令V vf及虛功誤差值V com,以作為驅動電壓訊號V s,並經由驅動運算單元140調整同步座標電壓命令V a(包括直軸電壓命令V δ及交軸電壓命令V γ),並進而改變三相電流I abc來驅動馬達200。 As shown in FIG. 1A , FIG. 1C and FIG. 2B , in step S208 , the steady-state compensation loop 121 of the compensation operation unit 120 calculates the error value between the virtual power command Qref and the virtual power feedback value Qin, and uses The error controller 121b outputs the error value as the virtual power error value V com to the low-pass filter 123 to filter out noise. In some embodiments, the motor control device 100 directly superimposes the magnetic flux voltage command V vf and the virtual power error value V com as the driving voltage signal V s , and adjusts the synchronous coordinate voltage command Va ( including The direct-axis voltage command V δ and the quadrature-axis voltage command V γ ), and then the three-phase current I abc is changed to drive the motor 200 .

如第1A圖、第1D圖及第2B圖所示,於步驟S209中,當補償運算單元120的低速補償迴路122判斷馬達200的直軸回授電流i δ小於預設的門檻值時(代表馬達200運轉於低轉速),低速補償迴路122計算勵磁電流設定值Io與同步座標回授電流i a的直軸回授電流i δ之間的誤差值i err,並且經由誤差控制器122a來產生勵磁誤差值V tor。當馬達200運轉於低轉速時,馬達200的驅動效能會明顯地降低。因此,透過低速補償迴路122計算出的勵磁誤差值V tor,來作為補償。可以有效地增加維持低轉速的馬達200之驅動效能。在部分的實施例中,勵磁誤差值V tor及虛功誤差值V com疊加後的訊號,經由低通濾波器123來濾除雜訊。其中,勵磁誤差值V tor用以與磁通電壓命令V vf及虛功誤差值V com疊加,以調整同步座標電壓命令V aAs shown in FIG. 1A , FIG. 1D and FIG. 2B , in step S209 , when the low-speed compensation circuit 122 of the compensation arithmetic unit 120 determines that the direct-axis feedback current i δ of the motor 200 is smaller than the preset threshold value (representing the The motor 200 is running at a low speed), the low speed compensation circuit 122 calculates the error value i err between the excitation current set value Io and the direct axis feedback current i δ of the synchronous coordinate feedback current i a , and uses the error controller 122a to calculate the error value i err An excitation error value Vtor is generated. When the motor 200 operates at a low speed, the driving performance of the motor 200 will be significantly reduced. Therefore, the excitation error value Vtor calculated by the low-speed compensation circuit 122 is used as compensation. The driving performance of the motor 200 that maintains a low speed can be effectively increased. In some embodiments, the signal obtained by superimposing the excitation error value V tor and the virtual power error value V com is filtered through the low-pass filter 123 to remove noise. The excitation error value V tor is used to superimpose the magnetic flux voltage command V vf and the virtual power error value V com to adjust the synchronous coordinate voltage command Va .

如第1A圖、第1E圖及第2B圖所示,於步驟S210中,穩定度運算單元130的穩定度控制器130a根據實功回授值Pin及電流有效值Is,計算氣隙功率值P AG。氣隙功率值(air-gap power, P AG)表示定子與轉子之間的氣隙傳輸到電動機的轉子之功率。其中,穩定度控制器130a包含方程式(13)來計算氣隙功率值P AG,方程式(13)如下所示: As shown in FIG. 1A , FIG. 1E and FIG. 2B , in step S210 , the stability controller 130 a of the stability calculation unit 130 calculates the air gap power value P according to the real power feedback value Pin and the current effective value Is AG . The air-gap power (P AG ) represents the power transferred from the air gap between the stator and the rotor to the rotor of the motor. The stability controller 130a includes equation (13) to calculate the air gap power value P AG , and equation (13) is as follows:

Figure 02_image027
(13)
Figure 02_image027
(13)

接著,穩定度運算單元130的高通濾波器130b再依據即時的氣隙功率值P AG計算氣隙功率變化量ΔP AG。氣隙功率變化量ΔP AG代表馬達200的震盪情況,或連接於馬達200之負載(未圖示)的震盪情況。接著,穩定度運算單元130的誤差控制器130c依據氣隙功率變化量ΔP AG產生電壓補償角度Θ h。其中,電壓補償角度Θ h的計算方式,如方程式(14)所示: Next, the high-pass filter 130b of the stability calculation unit 130 calculates the air-gap power variation ΔP AG according to the real-time air-gap power value P AG . The air gap power variation ΔP AG represents the vibration of the motor 200 , or the vibration of a load (not shown) connected to the motor 200 . Next, the error controller 130c of the stability computing unit 130 generates the voltage compensation angle Θ h according to the air gap power variation ΔP AG . Among them, the calculation method of the voltage compensation angle Θ h is shown in equation (14):

Θ h=­­-K p·ΔP AG(14) Θ h = -K p ·ΔP AG (14)

於方程式(14)中,電壓補償角度Θ h可視為馬達200的震盪情況,-K p為一負比例常數,其中-K p為與輸出頻率呈反比關係的比例常數。也就是說,電壓補償角度Θ h代表馬達200需產生反力矩來克服馬達200的震盪情況的補償量。因此,為了降低前述的馬達200之震盪,穩定度運算單元130根據氣隙功率變化量ΔP AG提供電壓補償角度Θ h給驅動運算單元140,使得驅動運算單元140調整同步座標電壓命令V a,並進而改變三相電流I abc,讓馬達200產生反力矩。 In equation (14), the voltage compensation angle Θ h can be regarded as the oscillation of the motor 200 , -K p is a negative proportional constant, wherein -K p is a proportional constant inversely proportional to the output frequency. That is to say, the voltage compensation angle Θ h represents the compensation amount that the motor 200 needs to generate a reaction torque to overcome the vibration of the motor 200 . Therefore, in order to reduce the aforementioned vibration of the motor 200, the stability calculation unit 130 provides the voltage compensation angle Θh to the drive calculation unit 140 according to the air gap power variation ΔP AG , so that the drive calculation unit 140 adjusts the synchronous coordinate voltage command Va , and Further, the three-phase current I abc is changed, so that the motor 200 generates a counter torque.

如第1A圖及第2B圖所示,於步驟S211中,當馬達200運轉於低轉速時,馬達控制裝置100主要地疊加勵磁誤差值V tor、磁通電壓命令V vf及虛功誤差值V com,來作為驅動電壓訊號V s,使得驅動運算單元140調整同步座標電壓命令V a,並進而改變三相電流I abc。當馬達200不是運轉於低轉速時,馬達控制裝置100主要地疊加磁通電壓命令V vf及虛功誤差值V com,來作為驅動電壓訊號V s,使得驅動運算單元140調整同步座標電壓命令V a,並進而改變三相電流I abcAs shown in FIGS. 1A and 2B, in step S211, when the motor 200 operates at a low speed, the motor control device 100 mainly superimposes the excitation error value V tor , the magnetic flux voltage command V vf and the virtual power error value V com is used as the driving voltage signal V s , so that the driving operation unit 140 adjusts the synchronous coordinate voltage command Va and further changes the three-phase current I abc . When the motor 200 is not running at a low speed, the motor control device 100 mainly superimposes the magnetic flux voltage command V vf and the virtual power error value V com as the driving voltage signal V s , so that the driving arithmetic unit 140 adjusts the synchronous coordinate voltage command V a , and thus change the three-phase current I abc .

在前述步驟S201~步驟S211中,係針對馬達200的不同情況進行多種補償,但本揭示內容並不以此為限。在一實施例中,若馬達200出現低速轉矩的機率不高,則馬達控制裝置100可僅根據磁通電壓命令V vf及虛功誤差值V com,調整同步座標電壓命令V a。相似地,根據不同的控制需求,馬達控制裝置100亦可僅根據氣隙功率變化量ΔP AG,調整同步座標電壓命令V a,以改變三相電流I abc。換言之,馬達控制裝置100可根據驅動狀況,選擇性地針對一種或多種情況(即,空載情況、有載情況、低速轉矩情況或氣隙功率變化量)來進行補償。 In the aforementioned steps S201 to S211, various compensations are performed for different conditions of the motor 200, but the present disclosure is not limited thereto. In one embodiment, if the motor 200 has a low probability of low-speed torque, the motor control device 100 can adjust the synchronous coordinate voltage command Va only according to the magnetic flux voltage command V vf and the virtual power error value V com . Similarly, according to different control requirements, the motor control device 100 can also adjust the synchronous coordinate voltage command Va only according to the air gap power variation ΔP AG to change the three-phase current I abc . In other words, the motor control apparatus 100 may selectively compensate for one or more conditions (ie, no-load condition, on-load condition, low speed torque condition, or air gap power variation) depending on driving conditions.

本揭示內容係透過步驟S201~步驟S203先驅動馬達200,再透過步驟S204~步驟S206,根據回授的三相電流I abc計算出同步座標回授電流i a(直軸回授電流i δ和交軸回授電流i γ)、電流有效值Is、虛功回授值Qin、實功回授值等數據。最後,透過步驟S207~步驟S211產生虛功誤差值V com、勵磁誤差值V tor及氣隙功率變化量(即:對應之電壓補償角度Θ h),以補償馬達200在不同情況下可能產生的誤差。 In the present disclosure, the motor 200 is driven first through steps S201 to S203, and then through steps S204 to S206 , the synchronous coordinate feedback current i a (direct axis feedback current i δ and Feedback current i γ ), current RMS value Is, virtual power feedback value Qin, real power feedback value and other data. Finally, through steps S207 to S211, the virtual power error value V com , the excitation error value V tor and the air gap power variation (ie, the corresponding voltage compensation angle Θ h ) are generated to compensate the motor 200 under different conditions. error.

本揭示內容所提的「迴路」及「控制器」可以是數位邏輯電路、硬體電路或其他程式語言,但本揭示內容不限於此。The "loop" and "controller" mentioned in the present disclosure may be digital logic circuits, hardware circuits or other programming languages, but the present disclosure is not limited thereto.

前述各實施例中的各項元件、方法步驟或技術特徵,係可相互結合,而不以本揭示內容中的文字描述順序或圖式呈現順序為限。The various elements, method steps or technical features in the foregoing embodiments can be combined with each other, and are not limited by the order of description in the text or the order of presentation of the drawings in the present disclosure.

100:馬達控制裝置 110:磁通運算單元 110a:預定磁通曲線 110b磁通運算程序 120:補償運算單元 121:穩態補償迴路 121a:虛功控制器 121b:誤差控制器 122:低速補償迴路 122a:誤差控制器 123:低通濾波器 130:穩定度運算單元 130a:穩定度控制器 130b:高通濾波器 130c:誤差控制器 140:驅動運算單元 141:第一座標轉換迴路 142:第二座標轉換迴路 143:調變迴路 150:回授運算單元 151:第三座標轉換迴路 152:電流運算迴路 153:功率運算迴路 160:電流感測裝置 200:馬達 ω e:頻率命令 V a:同步座標電壓命令 V vf:磁通電壓命令 V s:驅動電壓訊號 V γ:交軸電壓命令 V δ:直軸電壓命令 V abc:三相電壓訊號 V tor:勵磁誤差值 V com:虛功誤差值 i a:同步座標回授電流 I abc:三相電流 Io:勵磁電流設定值 i γ:交軸回授電流 i δ:直軸回授電流 i err:誤差值 Is:電流有效值 Pin:實功回授值 Qin:虛功回授值 Qref:虛功命令 Θ h:電壓補償角度 Θ e:驅動角度 P AG:氣隙功率值 ΔP AG:氣隙功率變化量 300:馬達控制方法 S201-S211:步驟 S301-S304:步驟 500:穩態運算程序 S501-S503:步驟 1/S:運算子100: motor control device 110: magnetic flux calculation unit 110a: predetermined magnetic flux curve 110b magnetic flux calculation program 120: compensation calculation unit 121: steady state compensation circuit 121a: virtual power controller 121b: error controller 122: low speed compensation circuit 122a : error controller 123 : low-pass filter 130 : stability calculation unit 130 a : stability controller 130 b : high-pass filter 130 c : error controller 140 : drive calculation unit 141 : first coordinate conversion loop 142 : second coordinate conversion Loop 143: Modulation loop 150: Feedback calculation unit 151: Third coordinate conversion loop 152: Current calculation loop 153: Power calculation loop 160: Current sensing device 200: Motor ω e : Frequency command V a : Synchronous coordinate voltage command V vf : magnetic flux voltage command V s : driving voltage signal V γ : quadrature axis voltage command V δ : direct axis voltage command V abc : three-phase voltage signal V tor : excitation error value V com : virtual power error value i a : Synchronous coordinate feedback current I abc : Three-phase current Io: Excitation current setting value i γ : Quadrature axis feedback current i δ : Direct axis feedback current i err : Error value Is: Current effective value Pin: Real power feedback Value Qin: virtual power feedback value Qref: virtual power command Θ h : voltage compensation angle Θ e : driving angle P AG : air gap power value ΔP AG : air gap power variation 300: motor control method S201-S211: steps S301-S304: Step 500: Steady-state operation program S501-S503: Step 1/S: Operator

第1A圖為根據本揭示內容之部份實施例之馬達控制裝置的示意圖。 第1B圖為根據本揭示內容之部份實施例之磁通運算單元的示意圖。 第1C圖為根據本揭示內容之部份實施例之穩態補償迴路的示意圖。 第1D圖為根據本揭示內容之部份實施例之低速補償迴路的示意圖。 第1E圖為根據本揭示內容之部份實施例之穩定度運算單元的示意圖。 第2A及2B圖為根據本揭示內容之部份實施例之馬達控制方法的流程圖。 第3圖為根據本揭示內容之部份實施例之磁通運算程序的流程圖。 第4圖為根據本揭示內容之部份實施例之穩態運算程序的流程圖。 FIG. 1A is a schematic diagram of a motor control apparatus according to some embodiments of the present disclosure. FIG. 1B is a schematic diagram of a magnetic flux operation unit according to some embodiments of the present disclosure. 1C is a schematic diagram of a steady state compensation loop according to some embodiments of the present disclosure. 1D is a schematic diagram of a low speed compensation loop according to some embodiments of the present disclosure. FIG. 1E is a schematic diagram of a stability computing unit according to some embodiments of the present disclosure. 2A and 2B are flowcharts of motor control methods according to some embodiments of the present disclosure. FIG. 3 is a flow chart of a magnetic flux calculation routine according to some embodiments of the present disclosure. FIG. 4 is a flowchart of a steady state operation procedure according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

100:馬達控制裝置 100: Motor control device

110:磁通運算單元 110: Magnetic flux operation unit

120:補償運算單元 120: Compensation operation unit

121:穩態補償迴路 121: steady state compensation loop

122:低速補償迴路 122: Low speed compensation loop

123:低通濾波器 123: low pass filter

130:穩定度運算單元 130: Stability operation unit

140:驅動運算單元 140: Drive arithmetic unit

141:第一座標轉換迴路 141: The first coordinate conversion loop

142:第二座標轉換迴路 142: Second coordinate conversion loop

143:調變迴路 143: Modulation loop

150:回授運算單元 150: Feedback operation unit

151:第三座標轉換迴路 151: The third coordinate conversion circuit

152:電流運算迴路 152: Current operation loop

153:功率運算迴路 153: Power calculation loop

160:電流感測裝置 160: Current Sensing Device

200:馬達 200: Motor

ωe:頻率命令 ω e : frequency command

Va:同步座標電壓命令 Va : Synchronous coordinate voltage command

Vvf:磁通電壓命令 V vf : Flux voltage command

Vs:驅動電壓訊號 V s : driving voltage signal

Vγ:交軸電壓命令 V γ : Quadrature axis voltage command

Vδ:直軸電壓命令 V δ : Direct axis voltage command

Vabc:三相電壓訊號 V abc : Three-phase voltage signal

Vtor:勵磁誤差值 V tor : Excitation error value

Vcom:虛功誤差值 V com : virtual power error value

ia:同步座標回授電流 i a : Synchronous coordinate feedback current

Iabc:三相電流 I abc : three-phase current

Io:勵磁電流設定值 Io: Excitation current setting value

iγ:交軸回授電流 i γ : Feedback current of quadrature axis

iδ:直軸回授電流 i δ : Direct axis feedback current

Is:電流有效值 Is: current effective value

Pin:實功回授值 Pin: Real work feedback value

Qin:虛功回授值 Qin: virtual work feedback value

Θh:電壓補償角度 Θ h : Voltage compensation angle

Θe:驅動角度 Θ e : drive angle

1/S:運算子 1/S: operator

Claims (15)

一種馬達控制方法,用於一無感測器之馬達,包含: 接收一頻率命令及一勵磁電流設定值,以作為一馬達轉速命令; 根據該馬達轉速命令,運行一磁通運算程序來產生一磁通電壓命令; 將該磁通電壓命令轉換為一同步座標電壓命令,並進而產生一三相電流給該馬達; 根據該三相電流,計算一同步座標回授電流,並進而計算該三相電流的一電流有效值; 根據該同步座標電壓命令及該同步座標回授電流,計算一虛功回授值; 根據該頻率命令及該電流有效值,運行一穩態運算程序以計算一虛功命令; 計算該虛功命令及該虛功回授值之間的一虛功誤差值;以及 疊加該磁通電壓命令及該虛功誤差值,調整該同步座標電壓命令,並進而改變該三相電流。 A motor control method for a sensorless motor, comprising: Receive a frequency command and an excitation current setting value as a motor speed command; According to the motor speed command, run a magnetic flux operation program to generate a magnetic flux voltage command; Converting the magnetic flux voltage command into a synchronous coordinate voltage command, and then generating a three-phase current to the motor; According to the three-phase current, calculate a synchronous coordinate feedback current, and then calculate a current effective value of the three-phase current; Calculate a virtual power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current; According to the frequency command and the current effective value, run a steady-state operation program to calculate a virtual power command; calculating a virtual power error value between the virtual power command and the virtual power feedback value; and The magnetic flux voltage command and the virtual power error value are superimposed to adjust the synchronous coordinate voltage command, thereby changing the three-phase current. 如請求項1所述之馬達控制方法,還包含: 根據該同步座標電壓命令及該同步座標回授電流,計算一實功回授值; 根據該實功回授值及該電流有效值,計算一氣隙功率變化量;以及 根據該氣隙功率變化量,調整該同步座標電壓命令,並進而改變該三相電流。 The motor control method of claim 1, further comprising: Calculate a real power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current; Calculate an air-gap power variation according to the real power feedback value and the current RMS value; and According to the air-gap power variation, the synchronous coordinate voltage command is adjusted, and the three-phase current is further changed. 如請求項1所述之馬達控制方法,還包含: 計算該勵磁電流設定值與該同步座標回授電流的一直軸回授電流之間的一誤差值,以產生一勵磁誤差值,其中該勵磁誤差值用以與該磁通電壓命令及該虛功誤差值疊加,以調整該同步座標電壓命令。The motor control method of claim 1, further comprising: calculating an error value between the excitation current set value and the straight-axis feedback current of the synchronous coordinate feedback current to generate an excitation error value, wherein The excitation error value is superimposed with the magnetic flux voltage command and the virtual power error value to adjust the synchronous coordinate voltage command. 如請求項1所述之馬達控制方法,其中該磁通運算程序包括: 根據該馬達轉速命令,建立一第一直軸方程式及一第一交軸方程式; 分別去除該第一直軸方程式及該第一交軸方程式的微分項參數,以分別建立一第二直軸方程式及一第二交軸方程式; 分別設置該第二直軸方程式及該第二交軸方程式的一交軸參數為零,以分別建立一第三直軸方程式及一第三交軸方程式;以及 根據該第三直軸方程式及該第三交軸方程式,計算該磁通電壓命令。 The motor control method as claimed in claim 1, wherein the magnetic flux calculation program comprises: establishing a first straight axis equation and a first quadrature axis equation according to the motor speed command; respectively removing the differential term parameters of the first straight-axis equation and the first quadrature-axis equation to establish a second straight-axis equation and a second quadrature-axis equation, respectively; respectively setting a quadrature axis parameter of the second quadrature axis equation and the second quadrature axis equation to zero to establish a third quadrature axis equation and a third quadrature axis equation, respectively; and The magnetic flux voltage command is calculated according to the third straight-axis equation and the third quadrature-axis equation. 如請求項4所述之馬達控制方法,其中該穩態運算程序包括: 根據該頻率命令及該電流有效值,建立一直軸穩態方程式及一交軸穩態方程式 ,以計算一直軸電流穩態值及一交軸電流穩態值; 調整該直軸電流穩態值和該交軸電流穩態值之間的一差值落入一誤差內﹔以及 當該差值落入該誤差內時,將該直軸電流穩態值和該交軸電流穩態值代入該直軸穩態方程式及該交軸穩態方程式,以計算該虛功命令。 The motor control method as claimed in claim 4, wherein the steady state operation program comprises: According to the frequency command and the current effective value, establish a steady-state equation for a straight axis and a steady-state equation for a quadrature axis to calculate the steady-state value of the straight-axis current and a steady-state value of the quadrature axis current; adjusting a difference between the steady-state value of the direct-axis current and the steady-state value of the quadrature-axis current to fall within an error; and When the difference falls within the error, the direct-axis current steady-state value and the quadrature-axis current steady-state value are substituted into the direct-axis steady-state equation and the quadrature-axis steady-state equation to calculate the virtual work command. 一種馬達控制方法,用於一無感測器之馬達,包含: 接收一頻率命令及一勵磁電流設定值,以作為一馬達轉速命令; 根據該馬達轉速命令,運行一磁通運算程序來產生一磁通電壓命令; 將該磁通電壓命令轉換為一同步座標電壓命令,並進而產生一三相電流給該無感測器之馬達; 根據該三相電流,計算一同步座標回授電流,並進而計算該三相電流的一電流有效值; 根據該同步座標電壓命令及該同步座標回授電流,計算一實功回授值; 根據該實功回授值及該電流有效值,計算一氣隙功率變化量;以及 根據該氣隙功率變化量,調整該同步座標電壓命令,並進而改變該三相電流給該無感測器之馬達。 A motor control method for a sensorless motor, comprising: Receive a frequency command and an excitation current setting value as a motor speed command; According to the motor speed command, run a magnetic flux operation program to generate a magnetic flux voltage command; converting the magnetic flux voltage command into a synchronous coordinate voltage command, and then generating a three-phase current to the sensorless motor; According to the three-phase current, calculate a synchronous coordinate feedback current, and then calculate a current effective value of the three-phase current; Calculate a real power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current; Calculate an air-gap power variation according to the real power feedback value and the current RMS value; and According to the air-gap power variation, the synchronous coordinate voltage command is adjusted, and then the three-phase current is changed to the sensorless motor. 如請求項6所述之馬達控制方法,更包括: 根據該同步座標電壓命令及該同步座標回授電流,計算一虛功回授值; 根據該頻率命令及該電流有效值,運行一穩態運算程序來計算一虛功命令; 計算該虛功命令及該虛功回授值之間的一虛功誤差值; 計算該勵磁電流設定值與該同步座標回授電流的一直軸回授電流之間的一誤差值,以取得一勵磁誤差值;以及 疊加該磁通電壓命令、該勵磁誤差值及該虛功誤差值,以調整該同步座標電壓命令,並進而改變該三相電流給該無感測器之馬達。 The motor control method as claimed in claim 6, further comprising: Calculate a virtual power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current; According to the frequency command and the current effective value, run a steady-state operation program to calculate a virtual power command; Calculate a virtual power error value between the virtual power command and the virtual power feedback value; calculating an error value between the set value of the excitation current and the straight-axis feedback current of the synchronous coordinate feedback current to obtain an excitation error value; and The magnetic flux voltage command, the excitation error value and the virtual power error value are superimposed to adjust the synchronous coordinate voltage command, thereby changing the three-phase current to the sensorless motor. 如請求項7所述之馬達控制方法,其中該磁通運算程序包括: 根據該馬達轉速命令,建立一第一直軸方程式及一第一交軸方程式; 分別去除該第一直軸方程式及該第一交軸方程式的微分項參數,以分別建立一第二直軸方程式及一第二交軸方程式; 分別設置該第二直軸方程式及該第二交軸方程式的一交軸參數為零,以分別建立一第三直軸方程式及一第三交軸方程式;以及 根據該第三直軸方程式及該第三交軸方程式,計算該磁通電壓命令。 The motor control method as claimed in claim 7, wherein the magnetic flux calculation program comprises: establishing a first straight axis equation and a first quadrature axis equation according to the motor speed command; respectively removing the differential term parameters of the first straight-axis equation and the first quadrature-axis equation to establish a second straight-axis equation and a second quadrature-axis equation, respectively; respectively setting a quadrature axis parameter of the second quadrature axis equation and the second quadrature axis equation to zero to establish a third quadrature axis equation and a third quadrature axis equation, respectively; and The magnetic flux voltage command is calculated according to the third straight-axis equation and the third quadrature-axis equation. 如請求項8所述之馬達控制方法,其中該穩態運算程序包括: 根據該頻率命令及該電流有效值,建立一直軸穩態方程式及一交軸穩態方程式,以計算一直軸電流穩態值及一交軸電流穩態值; 調整該直軸電流穩態值和該交軸電流穩態值之間的一差值落入一誤差內﹔以及 當判斷該差值落入該誤差內時,將該直軸電流穩態值和該交軸電流穩態值代入該直軸穩態方程式及該交軸穩態方程式,以計算該虛功命令。 The motor control method as claimed in claim 8, wherein the steady state operation program comprises: According to the frequency command and the current effective value, establish a steady-state equation for a straight axis and a steady-state equation for a quadrature axis, so as to calculate a steady-state value of the straight-axis current and a steady-state value of the quadrature axis current; adjusting a difference between the steady-state value of the direct-axis current and the steady-state value of the quadrature-axis current to fall within an error; and When it is judged that the difference falls within the error, the direct-axis current steady-state value and the quadrature-axis current steady-state value are substituted into the direct-axis steady-state equation and the quadrature-axis steady-state equation to calculate the virtual work command. 一種馬達控制裝置,用於一無感測器之馬達,包含: 一磁通運算單元,用以接收一頻率命令及一勵磁電流設定值,以計算一磁通電壓命令; 一驅動運算單元,用以將該磁通電壓命令轉換為一同步座標電壓命令,並進而產生一三相電流給該馬達;以及 一回授運算單元,用以根據該三相電流,計算一同步座標回授電流及取得該三相電流的一電流有效值,其中該回授運算單元根據該同步座標電壓命令及該同步座標回授電流,計算一虛功回授值; 一補償運算單元,用以根據該頻率命令及該電流有效值,計算一虛功命令; 其中該補償運算單元用以計算該虛功命令及該虛功回授值之間的一虛功誤差值; 其中驅動運算單元還用以疊加該磁通電壓命令及該虛功誤差值,以調整該同步座標電壓命令,並進而改變該三相電流。 A motor control device for a sensorless motor, comprising: a magnetic flux computing unit for receiving a frequency command and an excitation current setting value to calculate a magnetic flux voltage command; a driving arithmetic unit for converting the magnetic flux voltage command into a synchronous coordinate voltage command, and then generating a three-phase current to the motor; and a feedback computing unit for calculating a synchronous coordinate feedback current according to the three-phase current and obtaining a current effective value of the three-phase current, wherein the feedback computing unit according to the synchronous coordinate voltage command and the synchronous coordinate feedback Give current, calculate a virtual work feedback value; a compensation arithmetic unit for calculating a virtual power command according to the frequency command and the current effective value; Wherein the compensation operation unit is used for calculating a virtual power error value between the virtual power command and the virtual power feedback value; The driving operation unit is also used for superimposing the magnetic flux voltage command and the virtual power error value to adjust the synchronous coordinate voltage command, thereby changing the three-phase current. 如請求項10所述之馬達控制裝置,其中該補償運算單元還用以計算該勵磁電流設定值與該同步座標回授電流的一直軸回授電流之間的一誤差值,以取得一勵磁誤差值,以將該勵磁誤差值與該磁通電壓命令及該虛功誤差值疊加,以調整該同步座標電壓命令。The motor control device of claim 10, wherein the compensation calculation unit is further configured to calculate an error value between the excitation current setting value and the straight-axis feedback current of the synchronous coordinate feedback current, so as to obtain an excitation current The magnetic error value is superimposed with the magnetic flux voltage command and the virtual power error value to adjust the synchronous coordinate voltage command. 如請求項10所述之馬達控制裝置,其中該回授運算單元還用以根據該同步座標電壓命令及該同步座標回授電流,計算一實功回授值。The motor control device of claim 10, wherein the feedback computing unit is further configured to calculate a real power feedback value according to the synchronous coordinate voltage command and the synchronous coordinate feedback current. 如請求項12所述之馬達控制裝置,更包括: 一穩定度運算單元,用以根據該實功回授值及該電流有效值,計算一氣隙功率變化量;其中驅動運算單元還根據該氣隙功率變化量,調整該同步座標電壓命令,並進而改變該三相電流。 The motor control device of claim 12, further comprising: a stability calculation unit for calculating an air-gap power variation according to the real power feedback value and the current effective value; wherein the driving calculation unit also adjusts the synchronous coordinate voltage command according to the air-gap power variation, and further Change the three-phase current. 如請求項10所述之馬達控制裝置,其中該磁通運算單元還用以: 根據該頻率命令及該勵磁電流設定值,建立一第一直軸方程式及一第一交軸方程式; 分別去除該第一直軸方程式及該第一交軸方程式的微分項參數,以分別建立一第二直軸方程式及一第二交軸方程式; 分別設置該第二直軸方程式及該第二交軸方程式的一交軸參數為零,以分別建立一第三直軸方程式及一第三交軸方程式;以及 根據該第三直軸方程式及該第三交軸方程式,計算該磁通電壓命令。 The motor control device of claim 10, wherein the magnetic flux computing unit is further used to: establishing a first straight-axis equation and a first quadrature-axis equation according to the frequency command and the excitation current setting value; respectively removing the differential term parameters of the first straight-axis equation and the first quadrature-axis equation to establish a second straight-axis equation and a second quadrature-axis equation, respectively; respectively setting a quadrature axis parameter of the second quadrature axis equation and the second quadrature axis equation to zero to establish a third quadrature axis equation and a third quadrature axis equation, respectively; and The magnetic flux voltage command is calculated according to the third straight-axis equation and the third quadrature-axis equation. 如請求項10所述之馬達控制裝置,其中該補償運算單元還用以: 根據該頻率命令及該電流有效值,建立一直軸穩態方程式及一交軸穩態方程式,以計算一直軸電流穩態值及一交軸電流穩態值; 調整該直軸電流穩態值和該交軸電流穩態值之間的一差值落入一誤差內﹔以及 當判斷該差值落入該誤差內時,將該直軸電流穩態值和該交軸電流穩態值代入該直軸穩態方程式及該交軸穩態方程式,以計算該虛功命令。 The motor control device of claim 10, wherein the compensation arithmetic unit is further used for: According to the frequency command and the current effective value, establish a steady-state equation for a straight axis and a steady-state equation for a quadrature axis, so as to calculate a steady-state value of the straight-axis current and a steady-state value of the quadrature axis current; adjusting a difference between the steady-state value of the direct-axis current and the steady-state value of the quadrature-axis current to fall within an error; and When it is judged that the difference falls within the error, the direct-axis current steady-state value and the quadrature-axis current steady-state value are substituted into the direct-axis steady-state equation and the quadrature-axis steady-state equation to calculate the virtual work command.
TW110112741A 2021-04-08 2021-04-08 Motor control device and motor control method TWI774315B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110112741A TWI774315B (en) 2021-04-08 2021-04-08 Motor control device and motor control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110112741A TWI774315B (en) 2021-04-08 2021-04-08 Motor control device and motor control method

Publications (2)

Publication Number Publication Date
TWI774315B true TWI774315B (en) 2022-08-11
TW202241040A TW202241040A (en) 2022-10-16

Family

ID=83807038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110112741A TWI774315B (en) 2021-04-08 2021-04-08 Motor control device and motor control method

Country Status (1)

Country Link
TW (1) TWI774315B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200306059A (en) * 2002-04-02 2003-11-01 Yaskawa Denki Seisakusho Kk Sensor-free control apparatus of AC motor and control method
TWI315602B (en) * 2006-04-07 2009-10-01 Ming Tsan Lin A current controlled inverter switching method for three phase ac permanent magnet synchronous motors and synchronous reluctance motors
TWI535185B (en) * 2013-10-22 2016-05-21 三菱電機股份有限公司 Motor controlling device
TWI654827B (en) * 2016-09-05 2019-03-21 日商東芝股份有限公司 Converter control device and motor driving system
US20200186070A1 (en) * 2017-03-27 2020-06-11 Mitsubishi Electric Corporation Control device for rotating electrical machine
US20200373864A1 (en) * 2018-01-12 2020-11-26 Mitsubishi Electric Corporation Rotary machine control device
US20210058017A1 (en) * 2018-06-21 2021-02-25 Mitsubishi Electric Corporation Synchronous rotating machine control device and machine learning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200306059A (en) * 2002-04-02 2003-11-01 Yaskawa Denki Seisakusho Kk Sensor-free control apparatus of AC motor and control method
TWI315602B (en) * 2006-04-07 2009-10-01 Ming Tsan Lin A current controlled inverter switching method for three phase ac permanent magnet synchronous motors and synchronous reluctance motors
TWI535185B (en) * 2013-10-22 2016-05-21 三菱電機股份有限公司 Motor controlling device
TWI654827B (en) * 2016-09-05 2019-03-21 日商東芝股份有限公司 Converter control device and motor driving system
US20200186070A1 (en) * 2017-03-27 2020-06-11 Mitsubishi Electric Corporation Control device for rotating electrical machine
US20200373864A1 (en) * 2018-01-12 2020-11-26 Mitsubishi Electric Corporation Rotary machine control device
US20210058017A1 (en) * 2018-06-21 2021-02-25 Mitsubishi Electric Corporation Synchronous rotating machine control device and machine learning device

Also Published As

Publication number Publication date
TW202241040A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP3802894B2 (en) Sensorless position control algorithm for AC machine
Pellegrino et al. Unified direct-flux vector control for AC motor drives
CN110022106B (en) Permanent magnet synchronous motor position sensorless control method based on high-frequency signal injection
JP4715576B2 (en) Electric drive control device and electric drive control method
JP4168252B2 (en) Power generation system and control method thereof
JP2001268998A (en) Method for vector controlling synchronous reluctance motor
CN102437813A (en) Speed sensor-less method for estimating rotor angle and revolving speed of permanent-magnet synchronous motor
JP2003061386A (en) Synchronous motor drive system
JP2007274844A (en) Electric drive controller and control method
Liu et al. Principle and stability analysis of an improved self-sensing control strategy for surface-mounted PMSM drives using second-order generalized integrators
CN110429891B (en) Position-sensor-free permanent magnet motor direct-drive power generation control method
Kumar et al. Sensorless speed estimation of brushless doubly-fed reluctance generator using active power based MRAS
KR20150130388A (en) Rotary machine controller
Comanescu Speed, rotor position and load torque estimation of the PMSM using an extended dynamic model and cascaded sliding mode observers
CN111293946B (en) Method for suppressing harmonic current of motor
Zhao Position/speed sensorless control for permanent-magnet synchronous machines
CN117895851A (en) Full-speed domain control method for surface-mounted permanent magnet synchronous motor
CN111478632B (en) Observer-free control method for improving parameter robustness of permanent magnet synchronous motor
TWI774315B (en) Motor control device and motor control method
JP3656944B2 (en) Control method of synchronous motor
CN108540031B (en) Rotating speed estimation method and torque control system of bearingless synchronous reluctance motor
JP2010206946A (en) Sensorless controller of synchronous motor
CN112865654B (en) Torque maximum utilization control system and method for permanent magnet magnetic concentration type synchronous reluctance motor
JP3864309B2 (en) Wind power generation system and method
JP4380650B2 (en) Electric drive control device and electric drive control method