TWI773979B - Ammonia purification apparatus and purification method - Google Patents
Ammonia purification apparatus and purification method Download PDFInfo
- Publication number
- TWI773979B TWI773979B TW109112064A TW109112064A TWI773979B TW I773979 B TWI773979 B TW I773979B TW 109112064 A TW109112064 A TW 109112064A TW 109112064 A TW109112064 A TW 109112064A TW I773979 B TWI773979 B TW I773979B
- Authority
- TW
- Taiwan
- Prior art keywords
- unit
- liquid
- gas
- storage tank
- ammonia
- Prior art date
Links
Images
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
本發明是有關於一種純化裝置及純化方法,特別是指一種氨水純化裝置及純化方法。 The present invention relates to a purification device and a purification method, in particular to an ammonia water purification device and a purification method.
目前電子業或半導體業的製程中需使用到氣體,例如NH3(氨)氣體。對於先進製程而言,氣體的純度要求已由4N(99.99%)要求到5N(99.999%),甚至達6N5(99.99995%以上。目前純化NH3的現有技術是選用氨濃度為99%~99.99%的液相氨水做進料。目前最常用的是兩根塔,第一根塔除水,第二根塔除較氨氣為輕的氣體如N2、O2,及CH4;或第一根塔除較氨氣為輕的氣體,第二根塔除水。由於水分是較難除去的不純物,因此在除水的蒸餾塔後會接分子篩使水分能在規格以下,以符合半導體氣體的要求。 Gases, such as NH 3 (ammonia) gas, are currently used in the processes of the electronics industry or the semiconductor industry. For the advanced process, the purity requirement of the gas has been changed from 4N (99.99%) to 5N (99.999%), even up to 6N5 (99.99995% or more. The current technology for purifying NH 3 is to select ammonia concentration of 99% to 99.99%) The most commonly used liquid ammonia is two towers, the first tower removes water, and the second tower removes gases that are lighter than ammonia such as N 2 , O 2 , and CH 4 ; or the first tower removes water. The root tower removes gas that is lighter than ammonia, and the second tower removes water. Since water is an impurity that is difficult to remove, molecular sieves will be connected to the distillation tower for water removal so that the water can be below the specification to meet the requirements of semiconductor gases. Require.
由前述說明可知,目前純化NH3的現有技術是選用氨濃度為99%~99.99%的液相氨水做進料。然而,面對循環經濟的粗氨 水濃度只有17%~23%,倘用到前段所提到的這兩類蒸餾塔但沒有循環單元,則舊有的參數面對著進料是17~23%的變化是無法適用地,且舊有除水蒸餾塔的塔徑相對粗氨水純化所需的塔徑而言太小所以無法用在17~23%的進料,且廢氨水的濃度無法達到法定排放的標準,若要排放就需要用大量水來稀釋,則會浪費過多的水資源。 As can be seen from the foregoing description, the prior art of purifying NH at present is to select liquid-phase ammonia water with an ammonia concentration of 99% to 99.99% as the feed. However, the concentration of crude ammonia water in the face of circular economy is only 17%~23%. If the two types of distillation columns mentioned in the previous paragraph are used but there is no circulation unit, the old parameters are 17~23% for the feed. The change is not applicable, and the column diameter of the old water removal distillation column is too small relative to the column diameter required for the purification of crude ammonia water, so it cannot be used in 17~23% feed, and the concentration of waste ammonia water cannot reach the legal level. The standard of discharge, if it is to be discharged, it needs to be diluted with a large amount of water, which will waste too much water resources.
此外,由於目前高純度氨氣的純化其進料氨水濃度極高(液相進料濃度在99%~99.99%之間),為使產品的氣相達5N5或6N5以上,因此廢氨水中的氨濃度會大幅超過法規排放的標準,因此,並無法直接排放,必須另外儲存或找其它環保廠商處理或做為其他用途。 In addition, due to the extremely high concentration of ammonia water in the current purification of high-purity ammonia (the concentration of liquid phase feed is between 99% and 99.99%), in order to make the gas phase of the product reach 5N5 or 6N5 or more, the amount of ammonia in the waste ammonia water is extremely high. The concentration of ammonia will greatly exceed the emission standard of regulations. Therefore, it cannot be directly discharged. It must be stored separately or dealt with by other environmental protection manufacturers or used for other purposes.
因此,本發明的目的,即在提供一種用於純化濃度17%~23mole%的粗氨水的氨水純化裝置。 Therefore, the purpose of the present invention is to provide an ammonia water purification device for purifying the crude ammonia water with a concentration of 17% to 23 mole%.
於是,本發明的氨水純化裝置,包含一加熱加壓單元、一第一蒸餾單元、一第一冷凝單元、一第二蒸餾單元、一第二冷凝單元、一儲槽單元,及一再循環單元。 Therefore, the ammonia water purification device of the present invention includes a heating and pressurizing unit, a first distillation unit, a first condensation unit, a second distillation unit, a second condensation unit, a storage tank unit, and a recycling unit.
該加熱加壓單元用於將該粗氨水加熱加壓,使該粗氨水形成相對高壓的粗氨水。 The heating and pressurizing unit is used for heating and pressurizing the crude ammonia water to form relatively high pressure crude ammonia water.
該第一蒸餾單元包括一與該加熱加壓單元連通的第一蒸 餾塔,及一供該第一蒸餾塔加熱的煮沸加熱器,該相對高壓的粗氨水可進入該第一蒸餾塔進行蒸餾,得到第一混合氣體及第一排放液體。 The first distillation unit includes a first distillation unit in communication with the heating and pressurizing unit A distillation column, and a boiling heater for heating the first distillation column, the relatively high-pressure crude ammonia water can enter the first distillation column for distillation to obtain the first mixed gas and the first discharged liquid.
該第一冷凝單元用於冷凝該第一混合氣體,包括一與該第一蒸餾塔連通的第一冷凝器,及一位於該第一冷凝器下游的第一再冷凝器(re-condensor)。 The first condensing unit is used for condensing the first mixed gas, and includes a first condenser communicated with the first distillation column, and a first re-condensor located downstream of the first condenser.
該第二蒸餾單元對通過該第一再冷凝器後得到的冷凝液體進行蒸餾,以產生第二混合氣體及高濃度廢氨液,包括一與該第一再冷凝器連通的第二蒸餾塔,及一供該第二蒸餾塔加熱的再煮沸器。 The second distillation unit distills the condensed liquid obtained after passing through the first recondenser to generate the second mixed gas and high-concentration waste ammonia liquid, and includes a second distillation column communicated with the first recondenser, and a reboiler for heating the second distillation column.
該第二冷凝單元用於冷凝經該第二次蒸餾後的第二混合氣體,包括一與該第二蒸餾塔連通的第二冷凝器,及依序位於該第二冷凝器下游的一第二再冷凝器,及一過冷器,該過冷器接收經該第二再冷凝器冷凝後得到的液態氨並形成過冷液體。 The second condensing unit is used for condensing the second mixed gas after the second distillation, and includes a second condenser communicated with the second distillation column, and a second condenser sequentially located downstream of the second condenser A recondenser, and a subcooler that receives the liquid ammonia condensed by the second recondenser and forms a subcooled liquid.
該儲槽單元包括一與該過冷器連通,用於儲存通過該過冷器後的液態氨的精品儲存槽。 The storage tank unit includes a fine storage tank communicating with the subcooler for storing liquid ammonia after passing through the subcooler.
該再循環單元包括一分別與該第一蒸餾塔及第二蒸餾塔連通的氣液儲存槽、一加熱器,及一加壓幫浦,該第二蒸餾塔的高濃度氨液會排出進入該氣液儲存槽,該加熱器供該氣液儲存槽的液體加熱以提高壓力,使其具有與該第一蒸餾塔內的粗氨水大致相同 的壓力並具有飽和的氣液兩相,且該氣液儲存槽內的液相可再引入該第一蒸餾塔。 The recirculation unit includes a gas-liquid storage tank, a heater, and a pressurized pump respectively communicated with the first distillation column and the second distillation column. The high-concentration ammonia liquid of the second distillation column is discharged into the second distillation column. Gas-liquid storage tank, the heater is used for heating the liquid in the gas-liquid storage tank to increase the pressure, so that it has roughly the same value as the crude ammonia water in the first distillation column and has a saturated gas-liquid two-phase, and the liquid phase in the gas-liquid storage tank can be reintroduced into the first distillation column.
本發明的功效在於:透過本案創新的純化構想及簡單裝置的組合設計,而可應用於將半導體廠排出濃度為17%~23mole%的粗氨水進行純化,而可得到高純度(純度可達5N以上)的氨氣,且於第一次蒸餾的過程所產生的廢氨水濃度可符合政府規範直接排放,或是回製程循環利用,而可同時達成循環經濟的效益。 The effect of the present invention is: through the innovative purification concept and the combined design of the simple device in this case, it can be applied to purify the crude ammonia water with a concentration of 17% to 23 mole% discharged from a semiconductor factory, and high purity (purity up to 5N) can be obtained. The ammonia gas above), and the concentration of waste ammonia water produced in the first distillation process can be directly discharged in compliance with government regulations, or recycled back to the process, and at the same time, the benefits of circular economy can be achieved.
2:加壓單元 2: pressurization unit
21:桶槽 21: barrel tank
22:加壓幫浦 22: Pressurized pump
23:管路 23: Pipeline
24:壓力控制閥 24: Pressure control valve
25:溫度控制閥 25: Temperature control valve
3:第一蒸餾單元 3: The first distillation unit
31:第一蒸餾塔 31: The first distillation column
32:煮沸加熱器 32: Boil Heaters
4:第一冷凝單元 4: The first condensing unit
41:第一冷凝器 41: First condenser
42:第一再冷凝器 42: First Recondenser
5:第二蒸餾單元 5: Second distillation unit
51:第二蒸餾塔 51: Second distillation column
52:再煮沸器 52: Reboiler
6:第二冷凝單元 6: The second condensing unit
61:第二冷凝器 61: Second condenser
62:第二再冷凝器 62: Second Recondenser
63:過冷器 63: Subcooler
7:儲槽單元 7: Tank unit
71:精品儲存槽 71: Boutique Storage Tank
72:控壓裝置 72: Pressure control device
721:壓力計 721: Manometer
722:洩壓閥 722: Pressure relief valve
8:再循環單元 8: Recirculation unit
81:氣液儲存槽 81: Gas-liquid storage tank
82:加熱器 82: Heater
83:加壓幫浦 83: Pressurized pump
9:氣體吸收槽 9: Gas absorption tank
M:流量調節單元 M: flow adjustment unit
M1~M5:流量調節閥 M1~M5: Flow control valve
91~9:步驟 91~9: Steps
本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是本發明氨水純化裝置之實施例的示意圖;及圖2是利用本發明氨水純化裝置之實施例進行氨水純化的步驟流程文字圖。 Other features and effects of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: FIG. 1 is a schematic diagram of an embodiment of the ammonia water purification device of the present invention; and FIG. 2 is the implementation of the ammonia water purification device of the present invention. Example of the process flow chart of the purification of ammonia water.
本發明的氨水純化裝置是用於供濃度17mole%~23mole%的粗氨水進行純化,而可得到氨氣濃度達5N以上的氨水純化裝置。其中,前述該濃度17%~23mole%的粗氨水的來源可以是來自半導體廠稀釋後排出的氨水。 The ammonia water purification device of the present invention is used for purifying crude ammonia water with a concentration of 17 mole% to 23 mole%, and can obtain an ammonia water purification device with an ammonia gas concentration of more than 5N. Wherein, the source of the aforementioned crude ammonia water with a concentration of 17% to 23 mole% can be the ammonia water discharged from the semiconductor factory after dilution.
參閱圖1,本發明氨水純化裝置的一實施例,包含一加熱加壓單元2、一第一蒸餾單元3、一第一冷凝單元4、一第二蒸餾單元5、一第二冷凝單元6、一儲槽單元7、一再循環單元8、一氣體吸收槽9,及一流量調節單元M。
Referring to FIG. 1, an embodiment of the ammonia water purification device of the present invention includes a heating and pressurizing unit 2, a first distillation unit 3, a
該加熱加壓單元2用於將濃度介於17~mole23%的粗氨水加熱加壓,使該粗氨水形成壓力大於該粗氨水的相對高壓的粗氨水。包含一用於供容置熱媒的桶槽21、一加壓幫浦22、一設置於該桶槽21可被該熱媒加熱的管路23、一壓力控制閥24,及一溫度控制閥25。粗氨水可經由該加壓幫浦22送入該管路23進入該第一蒸餾塔31。透過該壓力控制閥24可控制經由該管路23進入第一蒸餾塔31的粗氨水壓力,並利用該溫度控制閥25調整桶槽21中的熱媒流量,以控制該管路23中的粗氨水的溫度,使該粗氨水達到預期的熱力學狀態再進入第一蒸餾單元。
The heating and pressurizing unit 2 is used to heat and pressurize the crude ammonia water with a concentration of 17 to 23%, so that the crude ammonia water can be formed into a relatively high-pressure crude ammonia water with a pressure greater than that of the crude ammonia water. It includes a
該第一蒸餾單元3包括一與該加熱加壓單元2的桶槽21及管路23連通的第一蒸餾塔31,及一鄰近該第一蒸餾塔31底部設置,供該第一蒸餾塔31加熱的煮沸加熱器32。
The first distillation unit 3 includes a
經過該加熱加壓單元後的相對高壓的粗氨水可經由該管路23進入該第一蒸餾塔31,並利用該煮沸加熱器32煮沸氨水,飽和氣相往蒸餾塔上方流動而由蒸餾塔頂冷凝氣冷凝的液體往塔底流動進行蒸餾,而得到第一混合氣體及第一排放液體。此外,該第
一蒸餾塔31還可透過管路將回流得到而具有高溫的第一排放液體再引入該桶槽21,作為熱源以供該管路23中之粗氨水加熱的熱媒,而可節省能源。
The relatively high-pressure crude ammonia water after passing through the heating and pressurizing unit can enter the
該第一冷凝單元4用於冷凝經該第一次蒸餾後排出的第一混合氣體,包括一與該第一蒸餾塔31連通的第一冷凝器41,及一位於該第一冷凝器41下游的第一再冷凝器42。
The
該第二蒸餾單元5與該第一冷凝單元4及該再循環單元8連通,用於對通過該第一再冷凝器42後得到的冷凝液體進行第二次蒸餾。詳細地說,該第二蒸餾單元5包括一與該第一再冷凝器42及該再循環單元8連通的第二蒸餾塔51,及一鄰近該第二蒸餾塔51底部設置,提供該第二蒸餾塔51內的物質(氨水)加熱的再煮沸器52。透過該再煮沸器52對流到該第二蒸餾塔51底部的氨水(冷凝液體)進行加熱,並於該第二蒸餾塔51進行蒸餾以產生第二混合氣體及塔底高濃度的廢氨液。其中,該第二混合氣體會排出進入該第二冷凝單元6,而該廢氨液則可經管路引入該再循環單元8。
The
由於前述該第一、二蒸餾塔31、51的細部結構為本技術領域習知,因此,不再多加說明。此外,於本實施例中,該第一、二加熱器32、52是以熱交換管路為例說明但不以此為限。
Since the detailed structures of the aforementioned first and second distillation towers 31 and 51 are well known in the technical field, they will not be further described. In addition, in this embodiment, the first and
該第二冷凝單元6與該第二蒸餾單元5連通,用於接收並冷凝經該第二次蒸餾後得到的第二混合氣體,包括一與該第二蒸餾
塔51連通用於接收並冷凝該第二混合氣體的第二冷凝器61,及依序位於該第二冷凝器61下游的一第二再冷凝器62,及一過冷器63,該第二再冷凝器62是對通過該第二冷凝器61後排出的氣體進行再冷凝,該過冷器63則是用於將經過該第二再冷凝器62冷凝後得到的液態氨進行過冷程序。
The second condensation unit 6 is communicated with the
該儲槽單元7包括一與該過冷器63連通,用於儲存通過該過冷器63的液態氨的精品儲存槽71,以及一控壓裝置72,該控壓裝置72可具有一用於偵測該精品儲存槽71壓力的壓力計721及一洩壓閥722。該液態氨儲存於該精品儲存槽71時具有氣/液兩相,該儲槽單元7透過該控壓裝置72可用以控制該精品儲存槽71的壓力,以避免壓力過高。
The
該再循環單元8包括一氣液儲存槽81、一加熱器82,及一加壓幫浦83,該氣液儲存槽81分別與該第一蒸餾塔31、第二蒸餾塔51及氣體吸收槽9連通,其中,該第二蒸餾塔51冷凝回流的液體(廢氨液)可引入該氣液儲存槽81,該加熱器82及加壓幫浦83供加熱並加壓該氣液儲存槽81的液體,使其具有與該第一蒸餾塔31內的粗氨水大致相同的壓力並同時具有氣相及液相,該氣液儲存槽81內的液相可再引入該第一蒸餾塔31進行濃縮純化的蒸餾作業,而該氣液儲存槽81內的氣相可排出至該氣體吸收槽9。此外,要說明的是,該再循環單元8的加熱器82也可與該第一蒸餾塔31連通,
並透過將該第一蒸餾塔31回流得到的具有高溫的第一排放液體引入該加熱器82(熱交換器)做為部份熱源提供。
The
該氣體吸收槽9分別與該第一再冷凝器42、第二再冷凝器62、精品儲存槽71,及氣液儲存槽81連通,用於吸收自該第一、二再冷凝器42、62、該精品儲存槽71,及該氣液儲存槽81排出之氣體(NH3、H2、N2、O2、CH4等),並調節各桶槽的壓力避免桶槽壓力過高的危險,而具純化及工安的目的。
The
該流量調節單元M可視需求,而對應前述第一、二蒸餾單元3、5,第一、二冷凝單元4、6,儲槽單元7,再循環單元8,及氣體吸收槽9的其中至少任一者設置依據壓力或溫度設定用於調節氣體或液體的流量調節閥,以調節並控制排出之氣體或液體的流量。於本實施例中是以該流量調節單元M具有分別對應設置於該第一蒸餾塔31的流量調節閥M1、設置於該第一冷凝器41與該第一再冷凝器42之間的流量調節閥M2、設置於該第一再冷凝器42與該第二蒸餾塔51之間的流量調節閥M3、設置於該第二冷凝器61與該第二再冷凝器62之間的流量調節閥M4,以及設置於該第二再冷凝器62與過冷器63之間的流量調節閥M5,以調節進入第一再冷凝器42、第二再冷凝器62,及過冷器63的氣體及液體流量。然而,要說明的是,於實際實施時,該流量調節單元M的設置位置並不以此為限,這些裝置或許會有沒有畫出來的其他裝置,如緩衝桶與之相
連,用以維持穩定壓力的流動。
The flow adjustment unit M may correspond to at least any of the aforementioned first and
配合參閱圖1、2,茲將利用前述本發明該氨水純化裝置的實施例進行粗氨水純化的方法說明如下。 Referring to FIGS. 1 and 2 in conjunction, the method for purifying crude ammonia water by using the embodiment of the ammonia water purification device of the present invention will be described as follows.
首先,進行步驟91,將濃度介於17~23mole%的粗氨水溶液加壓加熱。 First, step 91 is performed, and the crude ammonia aqueous solution with a concentration of 17-23 mole% is heated under pressure.
詳細的說,該步驟91是將位於外界之儲槽內,壓力/溫度約為1bar/20℃,且濃度介於17~23mole%的粗氨水溶液透過流量調節閥調節流量並利用該加壓幫浦22加壓,使其變成壓力約為4.4bar的粗氨水溶液進入該管路23,再藉由該桶槽21的熱媒對內有粗氨水流動的管路23加熱,令該粗氨水溶液的溫度達到約30℃,而得到相對高壓的粗氨水。該步驟的目的即是在避免飽和蒸汽在該管路23裡的產生及流動。
In detail, the step 91 is to adjust the flow rate of the crude ammonia aqueous solution with a pressure/temperature of about 1 bar/20°C and a concentration of 17-23 mole% in an external storage tank through a flow control valve and use the pressurized aid to adjust the flow rate.
接著,進行步驟92,將該相對高壓的粗氨水引入該第一蒸餾單元3進行第一次蒸餾。
Next,
詳細的說,該步驟92是將該相對高壓的粗氨水引入該第一蒸餾塔31,並利用位於該第一蒸餾塔31底部的該煮沸加熱器32將該第一蒸餾塔內流入的液體進行煮沸,在煮沸槽中形成飽和氣體及液體(廢氨水)。飽和氣體往上流動,液體則由流量控制閥M1進行排放或做能源再利用。該第一蒸餾塔31內為氣液兩相做逆向流動,液體往下流動,氣體往上流動,並同時進行熱傳、質傳及相平
衡。因此,第一次蒸餾後的該第一混合氣體由該第一蒸餾塔31的頂部排出並經由管路進入該第一冷凝器41,而其它氣體則被冷凝回流到該第一蒸餾塔31。
In detail, the
要說明的是,該第一排放液體(即氨水廢液)的氨濃度可利用自該第一蒸餾塔31的頂部排出的該第一混合氣體的多寡控制,而得以讓該第一排放液體的氨濃度符合政府排放規範直接進行排放或再引用回製程循環應用,且該第一排放液體利用流量調節閥M2調節其排出量,使符合質量守恆。
It should be noted that, the ammonia concentration of the first discharge liquid (ie, ammonia water waste liquid) can be controlled by the amount of the first mixed gas discharged from the top of the
於一些實施例中,該第一排放液體的氨濃度可控制在不大於政府排放規範內。於一些實施例中,該第一排放液體的氨濃度可控制在低於政府法規的排放限制,並可直接排放。 In some embodiments, the ammonia concentration of the first discharge liquid can be controlled to be no greater than government discharge specifications. In some embodiments, the ammonia concentration of the first discharge liquid can be controlled below the discharge limit of government regulations and can be discharged directly.
此外,要再說明的是,由於經過該第一蒸餾塔31蒸餾後得到的該第一排放液體具有較高的溫度,因此,利用將該第一排放液體循環引至進入該加熱加壓單元2的桶槽21,並做為熱媒使用後再加以排放,可節省能源並具經濟價值。
In addition, it should be noted that, because the first discharge liquid obtained after distillation through the
接著,進行步驟93,利用該第一冷凝單元4將該第一混合氣體進行冷凝。
Next,
該步驟93是先將進入該第一冷凝器41的第一混合氣體進行冷凝。冷凝後得到的飽和氣體會經由管路排出至該第一再冷凝器42進行再冷凝,而經該第一冷凝器41冷凝後得到液體則可藉由
管路再回流至該第一蒸餾塔31。
接著,將通過該第一冷凝器41並進入該第一再冷凝器42的飽和氣體進行再冷凝,得到一冷凝液體及一排出氣體。其中,該飽和氣體可透過該流量調節閥M2以控制進入該第一再冷凝器42的氣體流量,經冷凝後的該冷凝液體則可經由流量調節閥M3控制流量並引入該第二蒸餾塔51。該第一再冷凝器42的排出氣體為含有如N2、O2、H2及CH4等雜氣,以及極少的H2O,可透過管路引入該氣體吸收槽9。
Next, the saturated gas passing through the
然後,再進行步驟94,利用該第二蒸餾單元5將該冷凝液體進行第二次蒸餾。
Then, step 94 is performed again, and the condensed liquid is subjected to a second distillation by the
詳細的說,該步驟94是將由該第二再冷凝器42進入該第二蒸餾塔51的冷凝液體,利用位於該第二蒸餾塔51底部的再煮沸器52加熱成氣相後再進行冷凝形成氣液兩相,以濃縮並純化氨氣。冷凝後的第二混合氣體(氣相)由該第二蒸餾塔51的塔頂排出並經由管路進入該第二冷凝器61,而被冷凝回流到該第二蒸餾塔51塔底的液相因為含水量低,為高濃度的廢氨液無法直接排放,因此,該高濃度廢氨液可透過管路回流至該再循環單元8的加熱氣液儲存槽81,並利用該加熱器82及加壓幫浦83使該高濃度廢氨液在桶槽81內成為飽和氣液體,具有與進入該第一蒸餾塔31的相對高壓的粗氨水約相近的溫度及壓力後,即可將桶槽81內的飽和液體引入該
第一蒸餾塔31再進行循環蒸餾。
In detail, in
要說明的是,該第二蒸餾塔51的廢氨液的氨莫耳濃度遠高於政府法規所規範的排放數值,尤其當進料氨的濃度是在17~23mole%變動,蒸餾塔底排放的廢氨水濃度變化將非常大,且由各蒸餾塔頂排放的氨氣量將不易控制,若以傳統的氨水純化裝置並無法得到高純度(純度>5N)的液態氨精品,這也是目前一般都是以氨濃度99mole%~99.99mole%作為純化進料的限制。此外,該第二蒸餾塔51的廢氨液若沒有經過該再循環單元8再進入第一蒸餾塔31,則所得到的氨氣純度會因進料濃度的變化而有大幅度的改變,而在操作上要時時調整排出氣量的大小,此非習知的氨水純化裝置所能達成,因此,本發明透過該再循環單元8,進料濃度在17~23mole%,而可維持第二蒸餾塔51頂出來的氨氣可達5N以上的純度。
It should be noted that the ammonia molar concentration of the waste ammonia liquid of the
於本實施例中,是將自該第二蒸餾塔51塔底的冷凝回流的液相引入該氣液儲存槽81,並將其加熱加壓到4.4bar/60℃,即可再引入該第一蒸餾塔31濃縮純化,而該氣液儲存槽81的飽和氣體的氨濃度為90mole%以上,並可再進入氣體吸收槽單元9。
In this embodiment, the condensed and refluxed liquid phase from the bottom of the
接著,進行步驟95,利用該第二冷凝單元6將該第二混合氣體進行冷凝,得到精製液態氨。
Next,
該步驟95是先將進入該第二冷凝器61的第二混合氣體
進行冷凝。冷凝後得到的飽和氣體會經由管路排出至該第二再冷凝器62進行再冷凝,而經該第二冷凝器61冷凝後得到液體則可藉由管路再回流至該第二蒸餾塔51。
In
接著,將通過該第二冷凝器61並進入該第二再冷凝器62的飽和氣體進行再冷凝,得到一液態氨及一排出氣體。其中,該飽和氣體可經由流量調節閥M4以控制進入該第二再冷凝器62的流量,該第二再冷凝器62排出的氣體可透過管路引入至該氣體吸收槽9,該液態氨可經由流量調節閥M5控制進入該過冷器63的流量。該過冷器63接收經該第二再冷凝器62冷凝後得到精製過冷的液態氨。
Next, the saturated gas passing through the
最後,進行步驟96,儲存精製液態氨。 Finally, step 96 is performed to store the refined liquid ammonia.
該步驟96是透過管路將通過該過冷器63後得到的精製過冷的液態氨引入該精品儲存槽71中,而形成低壓的氣液兩相氨液進行儲存。此外,可進一步透過該控壓裝置72監控並調整該精品儲存槽71的壓力。當該精品儲存槽71受環境的溫度影響致使壓力超過設定值時,則可經由該洩壓閥722洩壓,將該精品儲存槽71內的氣態氨透過管路排出至該氣體吸收槽9,以維持該精品儲存槽71的壓力。
In
此外,要再說明的是,經該第二次蒸餾後排出的該第二混合氣體的含水量已極低,而該第二混合氣體中的雜氣含有如N2、
H2、O2、CH4,因此,為了提昇最終製得之氨氣的純度,可在該第二冷凝單元62中將該第二混合氣體進一步進行排放蒸餾(詳細步驟請參考TW I413891)。該排放蒸餾的排放氣體可再引入該氣體吸收槽9。此外,該桶槽71也可以為達更高純度進行絕熱排放蒸餾,而排放的氨氣可透過洩壓閥722進入氣體吸收槽9。此外,該氣體吸收槽9的氨水到一定量後,也可再加水稀釋成濃度為17~23%的液氨,而再引入該第一蒸餾塔31進行濃縮純化循環。
In addition, it should be noted that the water content of the second mixed gas discharged after the second distillation is extremely low, and the impurity gas in the second mixed gas contains such as N 2 , H 2 , O 2 , CH 4 , therefore, in order to improve the purity of the final ammonia gas, the second mixed gas can be further discharged and distilled in the second condensing unit 62 (for detailed steps, please refer to TW I413891). The exhaust gas from the exhaust distillation can be reintroduced into the
本發明透過雙蒸餾塔(第一、二蒸餾單元3、5)、雙冷凝單元(第一、二冷凝單元4、6)的組成設計,因此,可利用濃度為17~23mole%的粗氨水為原料,而純化得到純度大於5N的氨氣,並引用本案最具創意構想的再循環單元8,令該第二蒸餾塔51的廢氨水可重新導入該再循環單元8,使重新加熱達到所需要的壓力,在單元81的桶槽形成氣液兩相,液相再導入該第一蒸餾塔31作為原料再循環利用,而可避免因高濃度廢氨液需加水稀釋排放的缺點。此外,利用控制該第一蒸餾單元3排出的混合氣體量即可控制該第一排放液體的氨濃度,使該第一排放液體的氨濃度可符合法規直接排放,而無需再加水稀釋。再者,本發明還同時利用將該第一蒸餾單元3回流得到的第一排放液體循環引至該加熱加壓單元2及該再循環單元8,以做為該加熱加壓單元2的加熱器23及/或該再循環單元8的加熱器82的部份熱源來源使用,而可節省能源並達成循
環經濟的效果,故確實能達成本發明的目的。
The present invention passes through the composition design of double distillation towers (first, second distillation units 3, 5) and double condensation units (first and
惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。 However, the above are only examples of the present invention, and should not limit the scope of implementation of the present invention. Any simple equivalent changes and modifications made according to the scope of the patent application of the present invention and the contents of the patent specification are still included in the scope of the present invention. within the scope of the invention patent.
2:加壓單元2: pressurization unit
21:桶槽21: barrel tank
22:壓幫浦22: Pressure Pump
23:管路23: Pipeline
3:第一蒸餾單元3: The first distillation unit
31:第一蒸餾塔31: The first distillation column
32:煮沸加熱器32: Boil Heaters
4:第一冷凝單元4: The first condensing unit
41:第一冷凝器41: First condenser
42:第一再冷凝器42: First Recondenser
5:第二蒸餾單元5: Second distillation unit
51:第二蒸餾塔51: Second distillation column
52:再煮沸器52: Reboiler
6:第二冷凝單元6: The second condensing unit
61:第二冷凝器61: Second condenser
62:第二再冷凝器62: Second Recondenser
63:過冷器63: Subcooler
7:儲槽單元7: Tank unit
71:精品儲存槽71: Boutique Storage Tank
72:控壓裝置72: Pressure control device
721:壓力計721: Manometer
722:洩壓閥722: Pressure relief valve
8:再循環單元8: Recirculation unit
81:氣液儲存槽81: Gas-liquid storage tank
82:加熱器82: Heater
83:加壓幫浦83: Pressurized pump
9:氣體吸收槽9: Gas absorption tank
M:流量調節單元M: flow adjustment unit
M1~M6:流量調節閥M1~M6: Flow control valve
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109112064A TWI773979B (en) | 2020-04-09 | 2020-04-09 | Ammonia purification apparatus and purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109112064A TWI773979B (en) | 2020-04-09 | 2020-04-09 | Ammonia purification apparatus and purification method |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202138302A TW202138302A (en) | 2021-10-16 |
TWI773979B true TWI773979B (en) | 2022-08-11 |
Family
ID=79601096
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109112064A TWI773979B (en) | 2020-04-09 | 2020-04-09 | Ammonia purification apparatus and purification method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI773979B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010286A1 (en) * | 2000-02-01 | 2001-08-02 | Karl-Heinz Wostbrock | Purification of ammonia by distillation |
TWM533642U (en) * | 2016-07-14 | 2016-12-11 | Asia An Technics Co Ltd | Electronic grade ammonia hydroxide manufacture system |
TWI580638B (en) * | 2016-05-26 | 2017-05-01 | 隆達電子股份有限公司 | Ammonia concentration increment system and method thereof |
CN110436545A (en) * | 2019-07-16 | 2019-11-12 | 临涣焦化股份有限公司 | A kind of remained ammonia distilling apparatus of heat energy recycling |
-
2020
- 2020-04-09 TW TW109112064A patent/TWI773979B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010010286A1 (en) * | 2000-02-01 | 2001-08-02 | Karl-Heinz Wostbrock | Purification of ammonia by distillation |
TWI580638B (en) * | 2016-05-26 | 2017-05-01 | 隆達電子股份有限公司 | Ammonia concentration increment system and method thereof |
TWM533642U (en) * | 2016-07-14 | 2016-12-11 | Asia An Technics Co Ltd | Electronic grade ammonia hydroxide manufacture system |
CN110436545A (en) * | 2019-07-16 | 2019-11-12 | 临涣焦化股份有限公司 | A kind of remained ammonia distilling apparatus of heat energy recycling |
Also Published As
Publication number | Publication date |
---|---|
TW202138302A (en) | 2021-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5498317A (en) | Apparatus for treating chemical production plant process condensate | |
RU2611499C2 (en) | Process and plant for distillation of methanol with heat recuperation | |
EP2495230B1 (en) | Apparatus for the production of vinyl chloride by thermal cracking of 1,2-dichlorethane | |
US8287698B2 (en) | Process and system for producing alcohol by split-feed distillation | |
CN102139864A (en) | Method for producing electronic-grade nitric acid | |
KR100313616B1 (en) | Multiple column nitrogen generators with oxygen coproduction | |
RU2617506C2 (en) | Method and apparatus for distillation of methanol and heat recovery | |
CN108413707B (en) | Krypton-xenon concentration and neon-helium concentration process integration system and method | |
CN108106326B (en) | Method and device for recycling nitrogen in krypton-xenon refining process | |
TWI773979B (en) | Ammonia purification apparatus and purification method | |
CN105731379A (en) | Purifying method of electronic grade chlorine | |
US10443932B2 (en) | Refrigerant vent rectifier and efficiency booster | |
US3054726A (en) | Method of recovering ammonia from aqueous ammonia vapors by a twostage steam distillation operation | |
CN107445179A (en) | The retracting device of periodic off-gases and flashed vapour in a kind of synthesis ammonia system | |
CN111847383A (en) | Full-resolution process for treating impurity-containing byproduct hydrochloric acid | |
KR102048024B1 (en) | Appratus and method for purifying the nitrogen dioxide using the nitric acid production process | |
CN212901433U (en) | Xylenol rectification waste heat recovery device | |
KR100861321B1 (en) | Concentration method of sulfuric acid for producing nuclear hydrogen using nuclear power | |
CN106500086A (en) | A kind of exhaust steam recycling and recovery system | |
JP2779387B2 (en) | Production method of hydrogen chloride | |
US20220144763A1 (en) | Process and apparatus for urea production | |
CN111960436A (en) | Ultrapure ammonia production device and production method | |
CN104003402B (en) | The method of purification of trichlorosilane | |
Lehrich et al. | Process Intensification for the Recovery of Hydrogen Cyanide in the Andrussow Process | |
KR102454912B1 (en) | Apparatus for distillation and a distillation method |