JP2779387B2 - Production method of hydrogen chloride - Google Patents

Production method of hydrogen chloride

Info

Publication number
JP2779387B2
JP2779387B2 JP3334882A JP33488291A JP2779387B2 JP 2779387 B2 JP2779387 B2 JP 2779387B2 JP 3334882 A JP3334882 A JP 3334882A JP 33488291 A JP33488291 A JP 33488291A JP 2779387 B2 JP2779387 B2 JP 2779387B2
Authority
JP
Japan
Prior art keywords
hydrogen chloride
distillation column
temperature
column
continuous distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3334882A
Other languages
Japanese (ja)
Other versions
JPH05163003A (en
Inventor
洋之 伊藤
嘉嗣 神野
綾一 種田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18282282&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2779387(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP3334882A priority Critical patent/JP2779387B2/en
Publication of JPH05163003A publication Critical patent/JPH05163003A/en
Application granted granted Critical
Publication of JP2779387B2 publication Critical patent/JP2779387B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0712Purification ; Separation of hydrogen chloride by distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は塩化水素水溶液より塩化
水素ガスを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen chloride gas from an aqueous hydrogen chloride solution.

【0002】[0002]

【従来の技術】塩化水素水溶液より塩化水素ガスを製造
する方法としては、塩化水素水溶液を加熱し溶存塩化水
素をガス化しコンデンサーで水分の大部分を除去し、さ
らに必要に応じて脱水剤で塩化水素ガスを脱水して目的
とする用途に使用する。しかし、水と塩化水素の系では
共沸組成を作り、常圧の場合には塩化水素濃度20.2
重量%まで液相を加熱濃縮して塩化水素ガスを得ること
ができるが、液相の塩化水素濃度20.2重量%以下に
することができない。従って、塩化水素ガスの製造はこ
の共沸組成にて頭打ちとなる。
2. Description of the Related Art As a method for producing hydrogen chloride gas from an aqueous solution of hydrogen chloride, an aqueous solution of hydrogen chloride is heated to gasify the dissolved hydrogen chloride, most of the water is removed by a condenser, and then, if necessary, a hydrochloric acid is removed by a dehydrating agent. Hydrogen gas is dehydrated and used for the intended use. However, in the system of water and hydrogen chloride, an azeotropic composition is formed.
The hydrogen phase can be obtained by heating and concentrating the liquid phase up to the weight%, but the hydrogen chloride concentration of the liquid phase cannot be reduced to 20.2% by weight or less. Therefore, the production of hydrogen chloride gas reaches a plateau at this azeotropic composition.

【0003】また、この共沸を回避する方法として硫酸
を塩化水素水溶液に添加する方法があるが、この方法で
は多量の硫酸を必要とすること、または塩化水素製造後
に残る硫酸水を濃縮して再利用する設備が必要であるこ
となどから簡単に実行できない点が問題である。
As a method for avoiding this azeotrope, there is a method of adding sulfuric acid to an aqueous solution of hydrogen chloride. However, this method requires a large amount of sulfuric acid or concentrates the aqueous solution of sulfuric acid remaining after the production of hydrogen chloride. The problem is that it cannot be easily executed due to the necessity of equipment for reuse.

【0004】[0004]

【発明が解決しようとする課題】従来技術で述べた方法
の中で、塩化水素水溶液を加熱して塩化水素ガスを製造
する方法は硫酸を使用する方法に比較し簡便であるが、
水と塩化水素との共沸組成において少しでも塩化水素側
の濃度を低くするほうが、より効率的である。本発明は
簡便に液相側の塩化水素濃度を下げる方法を提供するこ
とにある。
Among the methods described in the prior art, the method of producing a hydrogen chloride gas by heating an aqueous hydrogen chloride solution is simpler than the method using sulfuric acid.
It is more efficient to lower the concentration on the hydrogen chloride side as much as possible in the azeotropic composition of water and hydrogen chloride. An object of the present invention is to provide a method for simply reducing the concentration of hydrogen chloride on the liquid phase side.

【0005】[0005]

【課題を解決するための手段】本発明者らは塩化水素水
溶液を加熱する際に加圧して行うことにより共沸時の液
相の塩化水素濃度が低下することを見出し本発明に至っ
た。すなわち、本発明は塩化水素水溶液を加熱して連続
的に塩化水素ガスを製造するプロセスにおいて、リボイ
ラーとコンデンサーを備え2相当段以上の段数を有する
連続蒸留塔を使用し、圧力を3〜7atmとし、20重
量%以上の塩化水素を含む水溶液を70℃以上の温度に
加温して連続蒸留塔の塔頂または塔中間に連続的に供給
し、連続蒸留塔の塔底温度を130℃以上とし、コンデ
ンサーにてガス温度を60℃以下に冷却して塔頂より多
少の水を含む塩化水素ガスを得、塔底より18.5重量
%以下の塩化水素水溶液を得る塩化水素の製造方法であ
る。
Means for Solving the Problems The present inventors have found that the concentration of hydrogen chloride in the liquid phase at the time of azeotropic reduction is reduced by pressurizing the aqueous solution of hydrogen chloride when heating the solution. That is, in the present invention, in a process for continuously producing hydrogen chloride gas by heating an aqueous solution of hydrogen chloride, a continuous distillation column having a reboiler and a condenser and having two or more stages is used, and the pressure is 3 to 7 atm. And an aqueous solution containing 20% by weight or more of hydrogen chloride is heated to a temperature of 70 ° C. or more.
It is heated and continuously supplied to the top or middle of the continuous distillation column, the bottom temperature of the continuous distillation column is set to 130 ° C. or more, and the gas temperature is cooled to 60 ° C. or less by a condenser, and the temperature is slightly increased. This is a method for producing hydrogen chloride in which a hydrogen chloride gas containing water is obtained and an aqueous solution of hydrogen chloride of 18.5 % by weight or less is obtained from the column bottom.

【0006】以下、本発明について詳細に説明する。使
用する設備はリボイラーとコンデンサーを備え2相当段
以上の段数を有する連続蒸留塔で、塩化水素の腐食性を
考慮してグラスライニング、ハステロイ、インコネル、
タンタル、樹脂含浸カーボン、テフロン、セラミックな
どの耐蝕性材料で製作する必要がある。塔段数は多い方
が塔底における液相の塩化水素濃度が限り無く操作圧力
での共沸組成に近づくので有利であり、実際上2段以上
必要である。リボイラーは操作圧力における塔底塩化水
素水溶液を沸騰させうる能力が必要である。またコンデ
ンサーはガス温度を所定以下まで下げる能力が必要で、
実際上60℃以下に冷却可能であることが望ましい。
Hereinafter, the present invention will be described in detail. The equipment to be used is a continuous distillation column equipped with a reboiler and a condenser and having two or more stages, and in consideration of the corrosiveness of hydrogen chloride, glass lining, Hastelloy, Inconel,
It must be made of a corrosion-resistant material such as tantalum, resin-impregnated carbon, Teflon, and ceramic. A larger number of columns is advantageous because the concentration of hydrogen chloride in the liquid phase at the bottom of the column is as close as possible to the azeotropic composition at the operating pressure. In practice, two or more columns are required. The reboiler must be capable of boiling the bottom aqueous hydrogen chloride solution at operating pressure. In addition, the condenser must be capable of lowering the gas temperature below a certain level.
Practically, it is desirable that it can be cooled to 60 ° C. or less.

【0007】本発明では操作圧力の設定が重要である。
常圧下においては水−塩化水素の共沸は沸点108.6
℃で液相の塩化水素濃度20.2重量%である。本発明
者らは本発明に着手する前に水−塩化水素系の気液平衡
を調査した結果、圧力1.58atmにおいて液相の塩
化水素濃度が多少低下することを見出した。しかしさら
に高い操作圧力の場合については調査したがデータを見
出すことができなかった。そこで加圧下における連続蒸
留操作を行ったところ、6.5 atmにおいて液相の
塩化水素濃度16重量%まで低下し、操作圧力を高くす
るほど液相の塩化水素濃度が低下した。従って操作圧力
は3atm以上好ましくは4atm以上が望ましい。こ
の時の連続蒸留塔の塔底はその操作圧力での塩化水素水
溶液の沸点となり、塔底温度は130℃以上となる。
In the present invention, setting of the operating pressure is important.
Under normal pressure, the azeotrope of water-hydrogen chloride has a boiling point of 108.6.
At 20 ° C., the concentration of hydrogen chloride in the liquid phase is 20.2% by weight. The present inventors investigated the vapor-liquid equilibrium of the water-hydrogen chloride system before embarking on the present invention, and found that the hydrogen chloride concentration in the liquid phase was slightly reduced at a pressure of 1.58 atm. However, even at higher operating pressures, no data could be found after investigation. Therefore, when a continuous distillation operation was performed under pressure, the hydrogen chloride concentration in the liquid phase was reduced to 16% by weight at 6.5 atm, and the hydrogen chloride concentration in the liquid phase was reduced as the operating pressure was increased. Therefore, the operating pressure is preferably at least 3 atm, more preferably at least 4 atm. At this time, the bottom of the continuous distillation column becomes the boiling point of the aqueous hydrogen chloride solution at the operating pressure, and the bottom temperature becomes 130 ° C. or higher.

【0008】連続蒸留塔へ供給する塩化水素水溶液の塩
化水素濃度は操作圧力で決まる共沸状態での液相の塩化
水素濃度以上である必要があるとともに、塩化水素ガス
の製造効率を考慮すれば塩化水素濃度はなるべく高い濃
度が好ましい。また塩化水素水溶液供給温度は蒸留塔内
の温度程度が望ましく、少なくとも70℃以上が必要で
ある。塔内温度より大幅に低い温度の塩化水素水溶液を
供給すると、低温の塩化水素水溶液は塔内において塩化
水素ガスの吸収を起こし、塔内圧力が急激に減少する。
特に塩化水素水溶液の供給流量を変更する時にはこの圧
力変動が大きく起こり、連続蒸留塔の安定運転が困難と
なり、フラッディングなどのトラブルを生ずる原因とな
る。しかし、供給する塩化水素水溶液の温度を塔内温度
程度、少なくとも70℃以上とすれば、塩化水素水溶液
を塔内に供給しても、塔内の塩化水素ガスの塩化水素水
溶液への吸収量は少なく運転に支障を与えることはなく
なる。
[0008] The hydrogen chloride concentration of the aqueous hydrogen chloride solution supplied to the continuous distillation column needs to be higher than the hydrogen chloride concentration of the liquid phase in the azeotropic state determined by the operating pressure. The concentration of hydrogen chloride is preferably as high as possible. The supply temperature of the aqueous hydrogen chloride solution is desirably about the temperature in the distillation column, and at least 70 ° C. or higher is required. When an aqueous solution of hydrogen chloride at a temperature significantly lower than the temperature in the column is supplied, the aqueous solution of hydrogen chloride at a low temperature causes absorption of hydrogen chloride gas in the column, and the pressure in the column rapidly decreases.
In particular, when the supply flow rate of the aqueous hydrogen chloride solution is changed, the pressure fluctuates greatly, which makes it difficult to stably operate the continuous distillation column, and causes troubles such as flooding. However, if the temperature of the hydrogen chloride aqueous solution to be supplied is about the temperature in the column, at least 70 ° C. or more, even if the aqueous hydrogen chloride solution is supplied into the column, the amount of hydrogen chloride gas absorbed in the hydrogen chloride aqueous solution in the column is It will not hinder the driving.

【0009】連続蒸留塔への供給位置は塔頂または塔中
段に供給すべきであり、塔底部に供給するのは塔段を有
効に生かせず、塔底から得られる塩化水素水溶液の塩化
水素濃度は共沸組成より掛け離れたものとなり、塩化水
素ガスの製造効率が低下する。
The feed position to the continuous distillation column should be at the top or the middle of the column, and the bottom should be supplied without effectively using the column. Is far from the azeotropic composition, and the production efficiency of hydrogen chloride gas decreases.

【0010】このようにして連続蒸留塔の塔頂より得ら
れた塩化水素ガスはコンデンサーで冷却された温度に相
当する飽和水分を含むものの、ガス状で得ることが出来
る。また蒸留操作を加圧下で行うので、塩化水素ガスの
消費設備の圧力が蒸留塔操作圧力より低ければ、特に塩
化水素ガスの輸送設備なしでも消費設備に送ることがで
きる。さらに、得られた塩化水素ガスは公知技術である
脱水剤を使用した脱水操作を行うことで無水塩化水素に
することも可能である。
The hydrogen chloride gas thus obtained from the top of the continuous distillation column can be obtained in gaseous form, although it contains saturated moisture corresponding to the temperature cooled by the condenser. In addition, since the distillation operation is performed under pressure, if the pressure of the hydrogen chloride gas consuming equipment is lower than the distillation column operating pressure, the hydrogen chloride gas can be sent to the consuming equipment without any hydrogen chloride transport equipment. Further, the obtained hydrogen chloride gas can be converted to anhydrous hydrogen chloride by performing a dehydration operation using a dehydrating agent known in the art.

【0011】塔底より得られる塩化水素水溶液はそのま
ま利用することも可能であるが、たとえば化学プラント
で発生した窒素、酸素等の混入した粗製塩化水素ガスの
吸収液として使用し、また本発明の連続蒸留塔でその吸
収液を処理するならば、粗製塩化水素ガスの精製を廃棄
物なく行うことができる。
The aqueous hydrogen chloride solution obtained from the bottom of the column can be used as it is. For example, it is used as an absorbing solution for crude hydrogen chloride gas mixed with nitrogen, oxygen and the like generated in a chemical plant. If the absorption liquid is treated in a continuous distillation column, the purification of crude hydrogen chloride gas can be performed without waste.

【0012】[0012]

【実施例】以下、本発明をさらに実施例にて説明する。 実施例1 図1に示す連続蒸留装置を使用して実験を行った。#1
は原料塩化水素水溶液の供給ポンプ、#2は連続蒸留
塔、#3はリボイラー、#4はコンデンサー、#5は冷
却器、#6は塔内圧力調整機、#7は連続蒸留塔の塔底
液面調節機、#8は原料加熱器を示す。
The present invention will be further described below with reference to examples. Example 1 An experiment was performed using the continuous distillation apparatus shown in FIG. # 1
Is a supply pump for the aqueous hydrogen chloride solution, # 2 is a continuous distillation column, # 3 is a reboiler, # 4 is a condenser, # 5 is a cooler, # 6 is a pressure regulator in the column, and # 7 is the bottom of the continuous distillation column. A liquid level controller, # 8 indicates a raw material heater.

【0013】#2の蒸留塔は塔径150mm、高さ72
00mmのグラスライニング製の塔で、カスケードミニ
リング0X型を1500mmの高さに2段充填し、全充
填高は3000mmであった。#3のリボイラーは樹脂
含浸カーボン製で伝熱面積1.7m2、#4のコンデン
サーも樹脂含浸カーボン製で伝熱面積1.7m2であっ
た。各機器を接続する配管はすべてグラスライニング製
である。
The # 2 distillation column has a column diameter of 150 mm and a height of 72 mm.
In a 00 mm glass lining tower, Cascade Mini Ring 0X type was packed in two stages to a height of 1500 mm, and the total filling height was 3000 mm. The # 3 reboiler was made of resin-impregnated carbon and had a heat transfer area of 1.7 m 2 , and the # 4 condenser was also made of resin-impregnated carbon and had a heat transfer area of 1.7 m 2 . All piping connecting each device is made of glass lining.

【0014】#1のポンプと#8の加熱器を経由して8
0℃の36.2重量%塩化水素水溶液を39.4kg/
Hで蒸留塔塔頂部に供給し、リボイラーに熱媒体を通し
加熱し、塔内圧力調整機で系内操作圧力を5atmとな
るように調整した。塔頂部よりガスが発生し、コンデン
サーで一部凝縮しその凝縮液は塔頂に戻し、未凝縮ガス
を塩化水素ガスとして系外へ抜き出した。系内が定常に
なるまで3時間運転したのちに、塩化水素ガスと塔底液
の塩化水素濃度を分析した。その結果を表1に示す。
[0014] The pump 8 through the # 1 pump and the heater # 8
39.4 kg / h of a 36.2% by weight aqueous hydrogen chloride solution at 0 ° C.
H was fed to the top of the distillation column, heated by passing a heat medium through a reboiler, and adjusted to an operation pressure of 5 atm with a column pressure controller. Gas was generated from the top of the column, partly condensed in the condenser, and the condensate was returned to the top of the column, and the uncondensed gas was extracted out of the system as hydrogen chloride gas. After operating for 3 hours until the inside of the system became steady, the hydrogen chloride gas and the concentration of hydrogen chloride in the bottom liquid were analyzed. Table 1 shows the results.

【0015】実施例2〜5 原料塩化水素供給流量、操作圧力を変え実施例1と同様
の操作で実験を行った。その結果を表1に示す。
Examples 2 to 5 Experiments were carried out in the same manner as in Example 1 except that the flow rate and operating pressure of the raw material hydrogen chloride were changed. Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例6 実施例1と同様の操作を行い定常運転に達したのち、原
料塩化水素水溶液の供給流量を44.0kg/Hに変更
した。塔内圧力はほとんど変化は見られず、運転は順調
に継続することができた。
Example 6 After the same operation as in Example 1 was performed to reach a steady operation, the supply flow rate of the raw hydrogen chloride aqueous solution was changed to 44.0 kg / H. The pressure in the column hardly changed, and the operation could be continued smoothly.

【0018】比較例1 原料塩化水素水溶液の蒸留塔への供給温度を定常運転の
途中から20℃とした以外は実施例1と同様の操作を行
ったところ系内圧力が5atmより4.3atmまで
急激に低下し、さらに塔頂温度が塔底温度近くまで急激
に上昇した。圧力低下による塔底液のフラッシュと塔内
でのフラッディング現象と考え、運転を中止した。
Comparative Example 1 The feed temperature of the aqueous hydrogen chloride solution to the distillation column was set at a steady operation.
When the same operation as in Example 1 was performed except that the temperature was changed to 20 ° C. in the middle , the pressure in the system rapidly decreased from 5 atm to 4.3 atm, and the top temperature rapidly increased to near the bottom temperature. The operation was stopped on the assumption that the bottom liquid was flushed due to the pressure drop and the flooding phenomenon in the tower.

【0019】[0019]

【発明の効果】以上の記載より明らかな如く、塩化水素
水溶液を加圧下に蒸留することにより、従来から知られ
ていた水−塩化水素系の共沸点における液相側の塩化水
素濃度を下げることが可能となり、塩化水素水溶液から
の塩化水素の製造効率が高くなる。このことは製造設備
が製造効率が上がった分小さくなり、建設費がより安価
となり、その工業的価値は大きなものである。
As is apparent from the above description, it is possible to reduce the concentration of hydrogen chloride in the liquid phase at the azeotropic point of the water-hydrogen chloride system by distilling the aqueous solution of hydrogen chloride under pressure. And the production efficiency of hydrogen chloride from the aqueous hydrogen chloride solution is increased. This means that the manufacturing equipment becomes smaller as the manufacturing efficiency increases, the construction cost becomes lower, and its industrial value is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための連続蒸留塔を用いる設
備の模式図である。
FIG. 1 is a schematic diagram of equipment using a continuous distillation column for carrying out the present invention.

【符号の説明】[Explanation of symbols]

#1:原料塩化水素水溶液の供給ポンプ #2:連続蒸留塔 #3:リボイラー #4:コンデンサー #5:冷却器 #6:塔内圧力調整機 #7:連続蒸留塔の塔底液面調節機 #8:原料加熱器 # 1: Feed pump of raw hydrogen chloride aqueous solution # 2: Continuous distillation column # 3: Reboiler # 4: Condenser # 5: Cooler # 6: Internal pressure regulator # 7: Tower bottom level controller of continuous distillation column # 8: Raw material heater

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特公 昭33−6964(JP,B1) 特公 昭38−14903(JP,B1) (社)化学工業協会編 科学装置便覧 昭和52年 丸善発行 878−893頁 (58)調査した分野(Int.Cl.6,DB名) C01B 7/01──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-B-33-6964 (JP, B1) JP-B-38-14903 (JP, B1) Chemical Industry Association, Japan, Scientific Equipment Handbook 1977 Maruzen 878 −893 (58) Fields investigated (Int.Cl. 6 , DB name) C01B 7/01

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化水素水溶液を加熱して連続的に塩化
水素ガスを製造するプロセスにおいて、リボイラーとコ
ンデンサーを備え2相当段以上の段数を有する連続蒸留
塔を使用し、圧力を3〜7atmとし、20重量%以上
の塩化水素を含む水溶液を70℃以上の温度に加温して
連続蒸留塔の塔頂または塔中間に連続的に供給し、連続
蒸留塔の塔底温度を130℃以上とし、コンデンサーに
てガス温度を60℃以下に冷却して塔頂より多少の水を
含む塩化水素ガスを得、塔底より18.5重量%以下の
塩化水素水溶液を得る塩化水素の製造方法。
In a process for continuously producing hydrogen chloride gas by heating an aqueous solution of hydrogen chloride, a continuous distillation column having a reboiler and a condenser and having two or more stages is used, and the pressure is 3 to 7 atm. And an aqueous solution containing 20% by weight or more of hydrogen chloride is heated to a temperature of 70 ° C. or more and continuously supplied to the top or middle of the continuous distillation column, and the bottom temperature of the continuous distillation column To 130 ° C. or higher, and cool the gas temperature to 60 ° C. or lower with a condenser to obtain a hydrogen chloride gas containing a small amount of water from the top of the tower, and obtain a 18.5 % by weight or less aqueous hydrogen chloride solution from the bottom of the tower. Manufacturing method.
JP3334882A 1991-12-18 1991-12-18 Production method of hydrogen chloride Expired - Lifetime JP2779387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334882A JP2779387B2 (en) 1991-12-18 1991-12-18 Production method of hydrogen chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3334882A JP2779387B2 (en) 1991-12-18 1991-12-18 Production method of hydrogen chloride

Publications (2)

Publication Number Publication Date
JPH05163003A JPH05163003A (en) 1993-06-29
JP2779387B2 true JP2779387B2 (en) 1998-07-23

Family

ID=18282282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334882A Expired - Lifetime JP2779387B2 (en) 1991-12-18 1991-12-18 Production method of hydrogen chloride

Country Status (1)

Country Link
JP (1) JP2779387B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335521A (en) * 2000-05-23 2001-12-04 Nippon Steel Chem Co Ltd Method of producing bisphenol a
JP4561134B2 (en) * 2004-03-12 2010-10-13 住友化学株式会社 Distillation tower
JP5374782B2 (en) * 2008-12-03 2013-12-25 住友化学株式会社 Purification method of hydrochloric acid
JP5374783B2 (en) * 2008-12-03 2013-12-25 住友化学株式会社 Purification method of hydrochloric acid
CN111422833A (en) * 2020-03-20 2020-07-17 安徽相邦化工有限公司 Method for preparing ultra-clean high-purity hydrochloric acid by separating hydrogen chloride from hydrochloric acid-containing mother liquor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(社)化学工業協会編 科学装置便覧 昭和52年 丸善発行 878−893頁

Also Published As

Publication number Publication date
JPH05163003A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP4182608B2 (en) Separation and recovery of hydrogen chloride and water
EP1848701B1 (en) Ethylene oxide plant operation
JPS5929581B2 (en) Recovery of acrylonitrile or methacrylonitrile
JPS6234033B2 (en)
US4021531A (en) Process for the separation of zirconium and hafnium tetrachlorides from mixtures thereof
JPS61115035A (en) Manufacture of vinyl chloride by pyrolysis of purified 1,2_dichloroethane
JPS6112646A (en) Separation of vinyl acetate
JP2779387B2 (en) Production method of hydrogen chloride
JPH01149778A (en) Improvement in ethylene oxide process
US5324873A (en) Azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and process for purification of 1,1,1-trifluoro-2-chloroethane
US4488884A (en) Process for the production of aqueous hydrochloric acid having a concentration of at least 35.5% by weight
JPH1059877A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with methanol as extractant
US5597454A (en) Process for producing urea
US2765873A (en) Method of purifying chlorine
JP3959259B2 (en) Method for recovering hydrogen fluoride
JPH0819014B2 (en) Method for producing ethane dichloride
JPH02108682A (en) Production and concentration of furfural
JP2003509480A (en) Method and apparatus for utilizing heat in producing 1,2-dichloroethane
JPS6350288B2 (en)
US2665195A (en) Chlorine from hci
JPH0129188B2 (en)
JPH02307815A (en) Production of nitrogen peroxide
US2860035A (en) Production of highly concentrated nitric acid
CA1072980A (en) Process for separating and recovering unreacted materials in urea synthesis
KR100744753B1 (en) Recovering method of acetic acid according to azeotropic distillation using butanol as entrainer