TWI773524B - A time synchronization method used in a precision time protocol system - Google Patents

A time synchronization method used in a precision time protocol system Download PDF

Info

Publication number
TWI773524B
TWI773524B TW110134031A TW110134031A TWI773524B TW I773524 B TWI773524 B TW I773524B TW 110134031 A TW110134031 A TW 110134031A TW 110134031 A TW110134031 A TW 110134031A TW I773524 B TWI773524 B TW I773524B
Authority
TW
Taiwan
Prior art keywords
time
time signal
signal
transceiver
synchronization
Prior art date
Application number
TW110134031A
Other languages
Chinese (zh)
Other versions
TW202312742A (en
Inventor
胡秀芳
林勤偉
Original Assignee
中華電信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中華電信股份有限公司 filed Critical 中華電信股份有限公司
Priority to TW110134031A priority Critical patent/TWI773524B/en
Application granted granted Critical
Publication of TWI773524B publication Critical patent/TWI773524B/en
Publication of TW202312742A publication Critical patent/TW202312742A/en

Links

Images

Abstract

A time synchronization method used in a precision time protocol system is provided. The precision time protocol system includes: receiving global navigation satellite system signal as a first time signal; receiving precision time protocol signal as a second time signal; generating calibration information according to the first time signal and the second time signal in response to the first time signal being received successfully, and determining to generate a calibrated time signal according to the second time signal and the calibration information in response to the first time signal not being received successfully; and outputting one of the first time signal and the calibrated time signal.

Description

一種時間同步方法和使用該方法的精確時間協定系統A time synchronization method and a precise time agreement system using the same

本發明是有關於一種藉由精確時間協定傳送達到時間同步的系統和使用的時間同步方法。The present invention relates to a system and a time synchronization method for achieving time synchronization through precise time protocol transmission.

目前,大量無線網路設備達到高精度時間同步的主流方法為通過接收全球衛星導航系統(global navigation satellite system,GNSS)訊號取得世界標準時間。然而,室內或被鄰近建物遮蔽會導致無線網路設備無法成功地接收GNSS訊號達到與世界標準時間的同步。即使處於全球定位系統的衛星覆蓋範圍中,無線網路設備仍可能受到外在干擾影響導致無法接收GNSS訊號。舉例來說,電離層的電磁、遮蔽、多路徑反射、無意干擾(jamming)、惡意破壞(scramble)和蓄意欺騙(spoofing)等因素都會對無線網路設備達成與世界標準時間同步造成負面的影響。因此,如何提出一種取得世界標準時間訊號的異地備援方法,是本領域人員致力的目標之一。At present, the mainstream method for a large number of wireless network devices to achieve high-precision time synchronization is to obtain UTC by receiving global navigation satellite system (GNSS) signals. However, indoors or shaded by nearby buildings can cause wireless network devices to fail to successfully receive GNSS signals to synchronize with UTC. Even within the coverage of GPS satellites, wireless network devices may still be affected by external interference and cannot receive GNSS signals. For example, factors such as ionospheric electromagnetism, shadowing, multipath reflections, jamming, scramble, and spoofing can negatively affect wireless network devices synchronizing with UTC. Therefore, how to propose an off-site backup method for obtaining the UTC signal is one of the goals of those in the art.

本發明提供一種藉由精確時間協定傳送達到時間同步的系統和使用的時間同步方法,可在無法成功地接收GNSS訊號時,利用異地接收的GNSS時間轉由精確時間協定傳來作為備援時間源達到與世界標準時間的同步。The present invention provides a system and a time synchronization method for achieving time synchronization through precise time protocol transmission. When GNSS signals cannot be successfully received, the GNSS time received at different places can be transferred to the precise time protocol as a backup time source. Synchronized with UTC.

本發明的一種精確時間協定系統,包含處理器、儲存媒體以及收發器。儲存媒體儲存多個模組。處理器耦接儲存媒體以及收發器,並且存取和執行多個模組,其中包含GNSS訊號同步模組、從時鐘模組、時間同步量測模組以及主時鐘模組。GNSS訊號同步模組通過收發器接收第一時間訊號。從時鐘模組通過收發器接收第二時間訊號。時間同步量測模組判斷第一時間訊號是否被成功地接收,並且響應於判定第一時間訊號被成功地接收而根據第一時間訊號和第二時間訊號產生校正資訊。主時鐘模組響應於判定第一時間訊號被成功地接收而通過收發器輸出第一時間訊號,以及響應於判定第一時間訊號未被成功地接收而根據第二時間訊號以及校正資訊產生經校正時間訊號並且通過收發器輸出經校正時間訊號。A precise time agreement system of the present invention includes a processor, a storage medium and a transceiver. The storage medium stores multiple modules. The processor is coupled to the storage medium and the transceiver, and accesses and executes a plurality of modules, including a GNSS signal synchronization module, a slave clock module, a time synchronization measurement module and a master clock module. The GNSS signal synchronization module receives the first time signal through the transceiver. The second time signal is received from the clock module through the transceiver. The time synchronization measurement module determines whether the first time signal is successfully received, and generates calibration information according to the first time signal and the second time signal in response to determining that the first time signal is successfully received. The master clock module outputs the first time signal through the transceiver in response to determining that the first time signal is successfully received, and generates a corrected time signal according to the second time signal and the correction information in response to determining that the first time signal is not successfully received time signal and output the corrected time signal through the transceiver.

在本發明的一實施例中,上述的第一時間訊號為全球衛星導航系統訊號。In an embodiment of the present invention, the above-mentioned first time signal is a global satellite navigation system signal.

在本發明的一實施例中,上述的第一時間訊號為當時時間,其中第一時間訊號包含每秒脈衝輸出信號以及奈秒單位時間的至少其中之一。In an embodiment of the present invention, the above-mentioned first time signal is the current time, wherein the first time signal includes at least one of a pulse output signal per second and a nanosecond unit time.

在本發明的一實施例中,上述的第二時間訊號為是當時時間,其中第二時間訊號包含每秒脈衝輸出信號、奈秒單位時間以及與主時鐘偏移量的至少其中之一。In an embodiment of the present invention, the second time signal is the current time, wherein the second time signal includes at least one of a pulse output signal per second, a nanosecond unit time, and an offset from the master clock.

在本發明的一實施例中,上述的時間同步量測模組為基於電機電子工程師學會的ITU-T G 8273.2的要求經衛星共視及分時統計的計算來產生校正資訊。In an embodiment of the present invention, the above-mentioned time synchronization measurement module generates calibration information through calculation of satellite common view and time-sharing statistics based on the requirements of ITU-T G 8273.2 of the Institute of Electrical and Electronics Engineers.

本發明的一種時間同步方法,包含:接收第一時間訊號;接收第二時間訊號;判斷第一時間訊號是否被成功地接收;響應於判定第一時間訊號被成功地接收而根據第一時間訊號和第二時間訊號產生校正資訊,並且輸出第一時間訊號。響應於判定第一時間訊號未被成功地接收而根據第二時間訊號以及校正資訊產生經校正時間訊號,並且輸出經校正時間訊號。A time synchronization method of the present invention includes: receiving a first time signal; receiving a second time signal; judging whether the first time signal is successfully received; and the second time signal to generate calibration information, and output the first time signal. In response to determining that the first time signal is not successfully received, a corrected time signal is generated according to the second time signal and the correction information, and the corrected time signal is output.

基於上述,本發明可提供一種基於精確時間協定的邊緣運算系統,可在失去對應世界標準時間的GNSS時間訊號時,利用異地接收的GNSS訊號所取得的世界標準時間來作為備援時間源。本發明並利用時間同步量測結果判定GNSS時間訊號是否接收成功,以及對備援時間源的時間訊號進行校正以提升與世界標準時間同步的精度。Based on the above, the present invention can provide an edge computing system based on a precise time protocol, which can use the UTC obtained from the GNSS signal received in different places as a backup time source when the GNSS time signal corresponding to the UTC is lost. The invention uses the time synchronization measurement result to determine whether the GNSS time signal is successfully received, and corrects the time signal of the backup time source to improve the synchronization accuracy with the world standard time.

為了使本發明之內容可以被更容易明瞭,以下特舉實施例作為本發明確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。In order to make the content of the present invention more comprehensible, the following specific embodiments are given as examples according to which the present invention can indeed be implemented. Additionally, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts.

圖1根據本發明的一實施例繪示一種精確時間協定系統100的示意圖。精確時間協定系統100可提供用於同步的時間訊號給外部電子裝置。精確時間協定系統100可包含處理器110、儲存媒體120以及收發器130。FIG. 1 is a schematic diagram of a precise time agreement system 100 according to an embodiment of the present invention. The PTC system 100 can provide time signals for synchronization to external electronic devices. The PTA system 100 may include a processor 110 , a storage medium 120 and a transceiver 130 .

處理器110例如是中央處理單元(central processing unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(micro control unit,MCU)、微處理器(microprocessor)、數位信號處理器(digital signal processor,DSP)、可程式化控制器、特殊應用積體電路(application specific integrated circuit,ASIC)、圖形處理器(graphics processing unit,GPU)、影像訊號處理器(image signal processor,ISP)、影像處理單元(image processing unit,IPU)、算數邏輯單元(arithmetic logic unit,ALU)、複雜可程式邏輯裝置(complex programmable logic device,CPLD)、現場可程式化邏輯閘陣列(field programmable gate array,FPGA)或其他類似元件或上述元件的組合。處理器110可耦接至儲存媒體120以及收發器130,並且存取和執行儲存於儲存媒體120中的多個模組和各種應用程式。The processor 110 is, for example, a central processing unit (CPU), or other programmable general-purpose or special-purpose micro control unit (micro control unit, MCU), microprocessor (microprocessor), digital signal processing digital signal processor (DSP), programmable controller, application specific integrated circuit (ASIC), graphics processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP) ), image processing unit (IPU), arithmetic logic unit (ALU), complex programmable logic device (CPLD), field programmable gate array (field programmable gate array) , FPGA) or other similar elements or a combination of the above. The processor 110 may be coupled to the storage medium 120 and the transceiver 130 , and access and execute a plurality of modules and various application programs stored in the storage medium 120 .

儲存媒體120例如是任何型態的固定式或可移動式的隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)、硬碟(hard disk drive,HDD)、固態硬碟(solid state drive,SSD)或類似元件或上述元件的組合,而用於儲存可由處理器110執行的多個模組或各種應用程式。在本實施例中,儲存媒體120可儲存包含主時鐘模組121、從時鐘模組122、時間同步量測模組123以及GNSS訊號同步模組124等多個模組,其功能將於後續說明。值得注意的是,上述的多個模組的功能也可由硬體實施。舉例來說,主時鐘模組121和從時鐘模組122的功能可由獨立電子裝置實施。時間同步量測模組123的功能可由軟體定義網路(software-defined network,SDN)控制器實施。The storage medium 120 is, for example, any type of fixed or removable random access memory (random access memory, RAM), read-only memory (ROM), and flash memory (flash memory). , a hard disk drive (HDD), a solid state drive (SSD), or similar components or a combination of the above components for storing a plurality of modules or various application programs executable by the processor 110 . In this embodiment, the storage medium 120 can store a plurality of modules including a master clock module 121, a slave clock module 122, a time synchronization measurement module 123, and a GNSS signal synchronization module 124, the functions of which will be described later . It is worth noting that the functions of the above-mentioned modules can also be implemented by hardware. For example, the functions of the master clock module 121 and the slave clock module 122 may be implemented by independent electronic devices. The function of the time synchronization measurement module 123 may be implemented by a software-defined network (SDN) controller.

收發器130以無線或有線的方式傳送及接收訊號。收發器130還可以執行例如阻抗匹配、濾波以及類似的操作。The transceiver 130 transmits and receives signals in a wireless or wired manner. Transceiver 130 may also perform operations such as impedance matching, filtering, and the like.

圖2根據本發明的一實施例繪示多個模組的示意圖。GNSS訊號同步模組124可通過收發器130接收時間訊號S1。時間訊號S1例如是來自衛星在本地所接收的GNSS訊號。時間訊號S1為當時時間(time of day,ToD)。時間訊號S1包含每秒脈衝輸出訊號(one-pulse-per-second,PPS)或奈秒單位時間等資訊。GNSS訊號同步模組124在與時間訊號S1被成功地接收並達到同步後,將接收的時間訊號S1傳送給時間同步量測模組123以及主時鐘模組121。時間訊號S1可對應於GNSS世界標準時間訊號。FIG. 2 is a schematic diagram illustrating a plurality of modules according to an embodiment of the present invention. The GNSS signal synchronization module 124 can receive the time signal S1 through the transceiver 130 . The time signal S1 is, for example, a GNSS signal locally received by a satellite. The time signal S1 is the time of day (ToD). The time signal S1 includes information such as one-pulse-per-second (PPS) or nanosecond unit time. After the GNSS signal synchronization module 124 is successfully received and synchronized with the time signal S1 , it transmits the received time signal S1 to the time synchronization measurement module 123 and the master clock module 121 . The time signal S1 may correspond to the GNSS universal time signal.

從時鐘模組122整合主時鐘模組121可由一個邊界時鐘(boundary clock)實施,亦即,邊界時鐘可包含從時鐘模組122接收來自外部時間源(例如:位於異地的GNSS接收器)傳來的精確時間協定時間訊號。邊界時鐘也可包含主時鐘模組121將時間訊號輸出給外部電子裝置。在本實施例中,從時鐘模組122可通過收發器130接收來自外部時間源的時間訊號S2。時間訊號S2的來源例如來自在異地所接收的GNSS訊號。舉例來說,若用於接收時間訊號S1的收發器130被設置在地點A,則時間訊號S2可以是根據由被設置在地點B的GNSS接收器所接收到的GNSS訊號所產生的,其中地點B與地點A相異。時間訊號S2可為當時時間。時間訊號S2包含每秒脈衝輸出訊號、奈秒單位時間或與主時鐘偏移量(offset from master)等資訊。從時鐘模組122可將接收的時間訊號S2傳送給時間同步量測模組123或主時鐘模組121。時間訊號S2可對應於精確時間協定訊號。The integration of the slave clock module 122 into the master clock module 121 may be implemented by a boundary clock, that is, the boundary clock may include the slave clock module 122 receiving data from an external time source (eg, an offsite GNSS receiver) The precise time agreement time signal. The boundary clock may also include a master clock module 121 to output a time signal to an external electronic device. In this embodiment, the slave clock module 122 can receive the time signal S2 from an external time source through the transceiver 130 . The source of the time signal S2 is, for example, a GNSS signal received in a different place. For example, if the transceiver 130 for receiving the time signal S1 is located at the location A, the time signal S2 may be generated according to the GNSS signal received by the GNSS receiver located at the location B, where the location B is different from location A. The time signal S2 can be the current time. The time signal S2 includes information such as the pulse output signal per second, the nanosecond unit time or the offset from the master clock. The slave clock module 122 can transmit the received time signal S2 to the time synchronization measurement module 123 or the master clock module 121 . The time signal S2 may correspond to a precise time agreement signal.

主時鐘模組121可通過收發器130輸出時間訊號,其中所述時間訊號可為時間訊號S1或經校正時間訊號S2’的其中之一。在一般情況下,GNSS訊號同步模組124可通過收發器130在本地接收衛星所發射的時間訊號S1。主時鐘模組121可通過收發器130傳送時間訊號S1給下游的外部電子裝置。下游的外部電子裝置可根據時間訊號S1來與世界標準時間達到同步。然而,收發器130與衛星之間的訊號可能受到電離層的電磁、遮蔽、多路徑反射、無意干擾、惡意破壞和蓄意欺騙等因素的影響而導致GNSS訊號同步模組124無法成功地接收到時間訊號S1。因應於此,主時鐘模組121可改為傳送經過校正的時間訊號S2給下游的外部電子裝置。下游的外部電子裝置可根據校正後的時間訊號S2來與世界標準時間達到同步。The master clock module 121 can output a time signal through the transceiver 130, wherein the time signal can be one of the time signal S1 or the corrected time signal S2'. In general, the GNSS signal synchronization module 124 can locally receive the time signal S1 transmitted by the satellite through the transceiver 130 . The master clock module 121 can transmit the time signal S1 to the downstream external electronic device through the transceiver 130 . The downstream external electronic device can synchronize with the universal time according to the time signal S1. However, the signal between the transceiver 130 and the satellite may be affected by factors such as ionospheric electromagnetics, shading, multi-path reflection, unintentional interference, malicious damage, and deliberate deception, etc., so that the GNSS signal synchronization module 124 cannot successfully receive the time signal. S1. Accordingly, the master clock module 121 can instead transmit the corrected time signal S2 to the downstream external electronic device. The downstream external electronic device can synchronize with the UTC according to the corrected time signal S2.

圖3根據本發明的一實施例繪示一種時間同步方法的流程圖,其中所述時間同步方法可由如圖1所示的精確時間協定系統100實施。在步驟S301中,GNSS訊號同步模組124可通過收發器130接收時間訊號S1。FIG. 3 is a flowchart of a time synchronization method according to an embodiment of the present invention, wherein the time synchronization method can be implemented by the precise time agreement system 100 shown in FIG. 1 . In step S301 , the GNSS signal synchronization module 124 can receive the time signal S1 through the transceiver 130 .

在步驟S302中,從時鐘模組122可通過收發器130接收時間訊號S2。In step S302 , the slave clock module 122 can receive the time signal S2 through the transceiver 130 .

在步驟S303中,時間同步量測模組123可判定收發器130當前是否正成功地接收到時間訊號S1。若收發器130當前正成功地接收到時間訊號S1,則進入步驟S304。若收發器130當前並未成功地接收到時間訊號S1,則進入步驟S306。In step S303, the time synchronization measurement module 123 can determine whether the transceiver 130 is currently successfully receiving the time signal S1. If the transceiver 130 is currently successfully receiving the time signal S1, the process proceeds to step S304. If the transceiver 130 has not successfully received the time signal S1 at present, the process proceeds to step S306.

在步驟S304中,時間同步量測模組123可根據時間訊號S1和時間訊號S2產生校正資訊。校正資訊可包含絕對時間誤差。具體來說,時間同步量測模組123以時間訊號S1為基準,計算時間訊號S1與時間訊號S2之間的時間差。時間同步量測模組123可例如基於電機電子工程師學會(institute of electrical and electronics engineers,IEEE)ITU-T G 8273.2的要求經衛星共視及分時統計的計算來產生上述的時間差。In step S304, the time synchronization measurement module 123 can generate calibration information according to the time signal S1 and the time signal S2. Calibration information may include absolute time errors. Specifically, the time synchronization measurement module 123 uses the time signal S1 as a reference to calculate the time difference between the time signal S1 and the time signal S2. The time synchronization measurement module 123 can generate the above-mentioned time difference through calculation of satellite common view and time-sharing statistics based on the requirements of ITU-T G 8273.2 of the Institute of Electrical and Electronics Engineers (IEEE), for example.

在步驟S305中,主時鐘模組121可通過收發器130輸出時間訊號S1。舉例來說,主時鐘模組121可通過收發器130將時間訊號S1輸出給下游的外部電子裝置。下游的外部電子裝置可根據時間訊號S1來達到與世界標準時間的同步。In step S305 , the master clock module 121 can output the time signal S1 through the transceiver 130 . For example, the master clock module 121 can output the time signal S1 to the downstream external electronic device through the transceiver 130 . The downstream external electronic device can achieve synchronization with the universal time according to the time signal S1.

在步驟S306中,主時鐘模組121可根據校正資訊校正時間訊號S2以產生經校正時間訊號S2’。由於在步驟S306被執行的當下收發器130並無法成功地接收到時間訊號S1,故在步驟S306中所採用於的校正資訊是在先前時間點接收到的訊號,經時間同步量測模組123共視同一衛星以及分時統計時間差的長期分析結果。In step S306, the master clock module 121 may correct the time signal S2 according to the correction information to generate a corrected time signal S2'. Since the current transceiver 130 executed in step S306 cannot successfully receive the time signal S1, the calibration information used in step S306 is the signal received at the previous time point, which is passed through the time synchronization measurement module 123 The long-term analysis results of the same satellite and the time-sharing statistical time difference are viewed together.

在步驟S307中,主時鐘模組121可通過收發器130輸出經校正時間訊號S2’。舉例來說,主時鐘模組121可通過收發器130將經校正時間訊號S2’輸出給下游的外部電子裝置。下游的外部電子裝置可根據經校正時間訊號S2’來達到與世界標準時間的同步。In step S307, the master clock module 121 can output the corrected time signal S2' through the transceiver 130. For example, the master clock module 121 can output the corrected time signal S2' to the downstream external electronic device through the transceiver 130. The downstream external electronic device can achieve synchronization with UTC according to the corrected time signal S2'.

圖4根據本發明的一實施例繪示由精確時間協定系統100提供時間訊號給下游的外部電子裝置200的示意圖。精確時間協定系統100自兩個時間源取得時間訊號。GNSS訊號同步模組124可通過收發器130在本地接收衛星所發射的時間訊號S1,並且從時鐘模組122可通過收發器130以自上游的外部時間源取接收時間訊號S2。在本實施例中,上游的外部時間源可為包含主時鐘模組221、從時鐘模組222、時間同步量測模組223以及GNSS訊號同步模組224的時間同步系統,其中主時鐘模組221、從時鐘模組222、時間同步量測模組223以及GNSS訊號同步模組224的功能分別對應與主時鐘模組121、從時鐘模組122、時間同步量測模組123以及GNSS訊號同步模組124相同。若GNSS訊號同步模組124成功地接收時間訊號S1,則主時鐘模組121可輸出時間訊號S1給下游的外部電子裝置200。若GNSS訊號同步模組124並未成功地接收時間訊號S1,則主時鐘模組121可輸出對應於時間訊號S2的經校正時間訊號S2’給下游的外部電子裝置200。FIG. 4 is a schematic diagram illustrating the time signal provided by the PTA system 100 to the downstream external electronic device 200 according to an embodiment of the present invention. The PTC system 100 obtains time signals from two time sources. The GNSS signal synchronization module 124 can locally receive the time signal S1 transmitted by the satellite through the transceiver 130 , and the slave clock module 122 can receive the time signal S2 from an upstream external time source through the transceiver 130 . In this embodiment, the upstream external time source may be a time synchronization system including a master clock module 221, a slave clock module 222, a time synchronization measurement module 223 and a GNSS signal synchronization module 224, wherein the master clock module 221. The functions of the slave clock module 222, the time synchronization measurement module 223 and the GNSS signal synchronization module 224 correspond to the functions of the master clock module 121, the slave clock module 122, the time synchronization measurement module 123 and the GNSS signal synchronization respectively. Module 124 is the same. If the GNSS signal synchronization module 124 successfully receives the time signal S1 , the master clock module 121 can output the time signal S1 to the downstream external electronic device 200 . If the GNSS signal synchronization module 124 fails to receive the time signal S1 successfully, the master clock module 121 can output the corrected time signal S2' corresponding to the time signal S2 to the downstream external electronic device 200.

時間訊號S2可為時間訊號S3或經校正時間訊號S4’的其中之一。具體來說,若精確時間協定系統100的收發器130被設置在地點A,GNSS訊號同步模組224可通過被設置地點B的收發器接收衛星所發射的時間訊號S3,其中地點B與地點A相異。從時鐘模組222同時自更上游的最高主鐘(grandmaster clock)321接收時間訊號S4。若GNSS訊號同步模組224成功地接收時間訊號S3,則主時鐘模組221可輸出時間訊號S3。若GNSS訊號同步模組224並未成功地接收時間訊號S3,則主時鐘模組221可輸出對應於時間訊號S4的經校正時間訊號S4’給從時鐘模組122。最高主鐘321例如是通過設置在地點C的收發器接收衛星所發射的時間訊號S4,其中地點C與地點A或地點B都相異。The time signal S2 can be one of the time signal S3 or the corrected time signal S4'. Specifically, if the transceiver 130 of the PTA system 100 is set at the location A, the GNSS signal synchronization module 224 can receive the time signal S3 transmitted by the satellite through the transceiver set at the location B, wherein the location B and the location A different. The slave clock module 222 simultaneously receives the time signal S4 from the more upstream grandmaster clock 321 . If the GNSS signal synchronization module 224 successfully receives the time signal S3, the master clock module 221 can output the time signal S3. If the GNSS signal synchronization module 224 fails to receive the time signal S3 successfully, the master clock module 221 can output the corrected time signal S4 ′ corresponding to the time signal S4 to the slave clock module 122 . For example, the master clock 321 receives the time signal S4 transmitted by the satellite through a transceiver located at a location C, where the location C is different from the location A or the location B.

圖5根據本發明的另一實施例繪示一種時間同步方法的流程圖,其中所述方法可由如圖1所示的精確時間協定系統100實施。在步驟S501中,接收第一時間訊號。在步驟S502中,接收第二時間訊號。在步驟S503中,響應於判定第一時間訊號被成功地接收而根據第一時間訊號和第二時間訊號產生校正資訊,同時依據校正資訊設定輸出時間調整量,並且響應於判定第一時間訊號未被成功地接收,而不更動輸出時間調整量,也就是續用最後一個校正資訊。在步驟S504中,永遠輸出根據第二時間訊號以及輸出時間調整量計算出經校正時間訊號。FIG. 5 is a flowchart illustrating a time synchronization method according to another embodiment of the present invention, wherein the method can be implemented by the precise time agreement system 100 as shown in FIG. 1 . In step S501, a first time signal is received. In step S502, a second time signal is received. In step S503, in response to determining that the first time signal has been successfully received, calibration information is generated according to the first time signal and the second time signal, and the output time adjustment amount is set according to the calibration information, and in response to determining that the first time signal is not is successfully received without changing the output time adjustment, that is, the last adjustment information is used. In step S504, the corrected time signal calculated according to the second time signal and the output time adjustment amount is output forever.

綜上所述,本發明除了可讓大量的時間同步系統的取得最接近GNSS世界標準時間的時間源,同時不會因當地無法成功地接收GNSS時間訊號,導致與世界標準時間同步的精度大幅劣化。主時鐘模組第一選擇GNSS訊號同步模組在本地接收到的GNSS訊號作為本地時間源,如此產生最接近於世界標準時間的時間訊號給時間同步系統的用戶。主時鐘還可以取得備援用的異地時間源,並且計算本地時間源與異地時間源的時間差異以產生校正資訊。依據衛星共視以及分時統計判定GNSS訊號無法被成功地接收時,時間同步系統就利用校正資訊校正異地時間源,藉以提供給用戶與GNSS訊號被成功地接收時相近的世界標準時間源。如此,時間同步系統不會因GNSS訊號接收被破壞或欺騙而無法同步的現象。To sum up, the present invention not only allows a large number of time synchronization systems to obtain the time source closest to the GNSS universal time, but also does not cause a significant deterioration in the accuracy of synchronization with the universal time due to the local failure to successfully receive the GNSS time signal. . The master clock module first selects the GNSS signal locally received by the GNSS signal synchronization module as the local time source, so as to generate the time signal closest to the universal standard time to the user of the time synchronization system. The master clock can also obtain the alternate off-site time source, and calculate the time difference between the local time source and the off-site time source to generate correction information. When it is determined that the GNSS signal cannot be successfully received according to the satellite common view and time-sharing statistics, the time synchronization system uses the correction information to correct the remote time source, so as to provide the user with a world standard time source similar to the time when the GNSS signal was successfully received. In this way, the time synchronization system will not fail to synchronize due to corrupted or spoofed GNSS signal reception.

100:精確時間協定系統 110:處理器 120:儲存媒體 121、221:主時鐘模組 122、222:從時鐘模組 123、223:時間同步量測模組 124、224、324:GNSS訊號同步模組 130:收發器 200:外部電子裝置 321:最高主鐘 S1、S2、S3、S4:時間訊號 S2’、S4’:經校正時間訊號 S301、S302、S303、S304、S305、S306、S307、S501、S502、S503、S504:步驟 100: Precise Time Agreement System 110: Processor 120: Storage Media 121, 221: master clock module 122, 222: slave clock module 123, 223: Time synchronization measurement module 124, 224, 324: GNSS signal synchronization module 130: Transceiver 200: External Electronics 321: Supreme Master Clock S1, S2, S3, S4: time signal S2', S4': Corrected time signal S301, S302, S303, S304, S305, S306, S307, S501, S502, S503, S504: Steps

圖1根據本發明的一實施例繪示一種時間同步系統的示意圖。 圖2根據本發明的一實施例繪示多個模組的示意圖。 圖3根據本發明的一實施例繪示一種時間同步方法的流程圖。 圖4根據本發明的一實施例繪示由時間同步系統提供時間訊號給下游的外部電子裝置的示意圖。 圖5根據本發明的另一實施例繪示一種時間同步方法的流程圖。 FIG. 1 is a schematic diagram of a time synchronization system according to an embodiment of the present invention. FIG. 2 is a schematic diagram illustrating a plurality of modules according to an embodiment of the present invention. FIG. 3 is a flowchart illustrating a time synchronization method according to an embodiment of the present invention. FIG. 4 is a schematic diagram illustrating the time signal provided by the time synchronization system to the downstream external electronic device according to an embodiment of the present invention. FIG. 5 is a flowchart illustrating a time synchronization method according to another embodiment of the present invention.

S501、S502、S503、S504:步驟 S501, S502, S503, S504: Steps

Claims (6)

一種精確時間協定系統,包括:收發器;儲存媒體,儲存多個模組;以及處理器,耦接所述儲存媒體以及所述收發器,並且存取和執行所述多個模組,其中所述多個模組包括:GNSS訊號同步模組,通過所述收發器接收第一時間訊號;從時鐘模組,通過所述收發器接收第二時間訊號;時間同步量測模組,判斷所述第一時間訊號是否被成功地接收,並且響應於判定所述第一時間訊號被成功地接收而根據所述第一時間訊號和所述第二時間訊號產生校正資訊,其中所述校正資訊包含絕對時間誤差,其中所述絕對時間誤差是以所述第一時間訊號為基準,計算所述第一時間訊號與所述第二時間訊號之間的時間差;以及主時鐘模組,響應於判定所述第一時間訊號被成功地接收而通過所述收發器輸出所述第一時間訊號,以及響應於判定所述第一時間訊號未被成功地接收而根據所述第二時間訊號以及所述校正資訊產生經校正時間訊號並且通過所述收發器輸出所述經校正時間訊號。 A PTA system, comprising: a transceiver; a storage medium storing a plurality of modules; and a processor coupled to the storage medium and the transceiver, and accessing and executing the plurality of modules, wherein the The plurality of modules include: a GNSS signal synchronization module, receiving a first time signal through the transceiver; a slave clock module, receiving a second time signal through the transceiver; a time synchronization measurement module, judging the whether the first time signal is successfully received, and in response to determining that the first time signal is successfully received, generating calibration information according to the first time signal and the second time signal, wherein the calibration information includes absolute a time error, wherein the absolute time error is based on the first time signal, and a time difference between the first time signal and the second time signal is calculated; and a master clock module, in response to determining the The first time signal is successfully received and the first time signal is output by the transceiver, and in response to determining that the first time signal was not successfully received, the second time signal and the correction information are based on the A corrected time signal is generated and output through the transceiver. 如請求項1所述的精確時間協定系統,其中所述第一時間訊號為全球衛星導航系統訊號。 The PTA system of claim 1, wherein the first time signal is a global satellite navigation system signal. 如請求項1所述的精確時間協定系統,其中所述第一時間訊號為當時時間,其中所述第一時間訊號包含每秒脈衝輸出信號以及奈秒單位時間的至少其中之一。 The PTC system of claim 1, wherein the first time signal is a current time, wherein the first time signal includes at least one of a pulse output signal per second and a nanosecond unit time. 如請求項1所述的精確時間協定系統,其中所述第二時間訊號為當時時間,其中所述第二時間訊號包含每秒脈衝輸出信號、奈秒單位時間以及與主時鐘偏移量的至少其中之一。 The PTC system of claim 1, wherein the second time signal is a current time, wherein the second time signal comprises a pulse-per-second output signal, a nanosecond unit time, and at least an offset from a master clock one of them. 如請求項1所述的精確時間協定系統,其中所述時間同步量測模組基於電機電子工程師學會ITU-T G 8273.2的要求經衛星共視及分時統計的計算來產生所述校正資訊。 The precise time agreement system of claim 1, wherein the time synchronization measurement module generates the correction information through calculation of satellite common view and time division statistics based on the requirements of IEEE ITU-T G 8273.2. 一種時間同步方法,包括:接收第一時間訊號;接收第二時間訊號;判斷所述第一時間訊號是否被成功地接收;響應於判定所述第一時間訊號被成功地接收而根據所述第一時間訊號和所述第二時間訊號產生校正資訊,並且輸出所述第一時間訊號,其中所述校正資訊包含絕對時間誤差,其中所述絕對時間誤差是以所述第一時間訊號為基準,計算所述第一時間訊號與所述第二時間訊號之間的時間差;以及響應於判定所述第一時間訊號未被成功地接收而根據所述第二時間訊號以及所述校正資訊產生經校正時間訊號,並且輸出所述經校正時間訊號。 A time synchronization method, comprising: receiving a first time signal; receiving a second time signal; judging whether the first time signal is successfully received; A time signal and the second time signal generate calibration information, and output the first time signal, wherein the calibration information includes an absolute time error, wherein the absolute time error is based on the first time signal, calculating a time difference between the first time signal and the second time signal; and generating a correction based on the second time signal and the correction information in response to determining that the first time signal was not successfully received time signal, and output the corrected time signal.
TW110134031A 2021-09-13 2021-09-13 A time synchronization method used in a precision time protocol system TWI773524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110134031A TWI773524B (en) 2021-09-13 2021-09-13 A time synchronization method used in a precision time protocol system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110134031A TWI773524B (en) 2021-09-13 2021-09-13 A time synchronization method used in a precision time protocol system

Publications (2)

Publication Number Publication Date
TWI773524B true TWI773524B (en) 2022-08-01
TW202312742A TW202312742A (en) 2023-03-16

Family

ID=83806885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134031A TWI773524B (en) 2021-09-13 2021-09-13 A time synchronization method used in a precision time protocol system

Country Status (1)

Country Link
TW (1) TWI773524B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065642A1 (en) * 2014-10-31 2016-05-06 华为技术有限公司 Synchronization device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016065642A1 (en) * 2014-10-31 2016-05-06 华为技术有限公司 Synchronization device and method

Also Published As

Publication number Publication date
TW202312742A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20110268097A1 (en) Method and system for adaptive synchronization of timing information generated by independently clocked communication nodes
CN112698563B (en) Satellite time service method and device, electronic equipment and storage medium
US20170060101A1 (en) Methods and systems for detecting and defending against invalid time signals
AU2013204757A1 (en) Synchronisation of a system of distributed computers
WO2022077224A1 (en) Clock synchronization method and apparatus, chip system, unmanned aerial vehicle, and terminal
WO2019003320A1 (en) Communication system, master device and slave device
US20200382233A1 (en) Information processing apparatus and time synchronization method
TWI773524B (en) A time synchronization method used in a precision time protocol system
WO2022062671A1 (en) Timing synchronization method, visual navigation aid device control method, and related apparatuses
WO2022062670A1 (en) Timing method, visual navigational aid device control method, and related apparatus
JP5002888B2 (en) Multi-radar system and control method thereof
US10069584B2 (en) Frequency calibration apparatus and method
US20200363536A1 (en) Methods for enhancing non-global navigation satellite system location and timing pseudorange positioning calculations and systems thereof
JP2001324584A (en) Time synchronizer, time synchronizing system, and method of controlling time synchronizer
Fetzer et al. Building fault-tolerant hardware clocks from COTS components
JP2005134215A (en) System for measuring difference of signal arrival time
KR101642094B1 (en) METHOD FOR PERFORMING TIME SYNCHRONIZATION OF low earth orbit satellites AND APPARATUS THEREOF
CN110830732B (en) Exposure time acquisition device and method for automatic driving system
JP2007163330A (en) Time information communication system
TW201409059A (en) Methods, receivers and devices for synchronizing navigation data
KR102042423B1 (en) GPS Synchronization Method of Low Earth Orbit Satellite Time
US10931434B2 (en) Relay apparatus, communication system, and failure detection method
GB2487061A (en) Position determination of mobile device using GNSS and a radio positioning system
JP2010096672A (en) Satellite time synchronizing method and satellite time synchronizing system
Lu et al. Ieee 1588-based general and precise time synchronization method for multiple sensors