TWI773112B - 道路監測系統、裝置及方法 - Google Patents
道路監測系統、裝置及方法 Download PDFInfo
- Publication number
- TWI773112B TWI773112B TW110103511A TW110103511A TWI773112B TW I773112 B TWI773112 B TW I773112B TW 110103511 A TW110103511 A TW 110103511A TW 110103511 A TW110103511 A TW 110103511A TW I773112 B TWI773112 B TW I773112B
- Authority
- TW
- Taiwan
- Prior art keywords
- traffic
- road monitoring
- monitoring device
- objects
- image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/91—Radar or analogous systems specially adapted for specific applications for traffic control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
- G01S13/867—Combination of radar systems with cameras
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/123—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
- G08G1/127—Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Traffic Control Systems (AREA)
Abstract
一種道路監測系統、裝置及方法。道路監測系統包含多個道路監測裝置,其中的第一道路監測裝置儲存多個交通物件各自的多個偵測資料組,各偵測資料組包含一物件影像與一雷達投影座標,且二者間具有一匹配程度。第一道路監測裝置根據各交通物件所對應的該等匹配程度與該等雷達投影座標決定多個第一參考座標,以該等第一參考座標決定一第一界線,根據各交通物件的一最小物件影像決定多個第二參考座標,以該等第二參考座標決定一第二界線,根據第一及第二界線將一道路範圍劃分為第一、第二及第三區域。於不同區域以不同方式追蹤交通物件。
Description
本發明係關於一種道路監測系統、裝置及方法。具體而言,本發明係關於一種利用雷達資料與影像資料至少其中之一以追蹤交通物件的道路監測系統、裝置及方法。
習知的道路監測裝置主要是利用攝影機取得的影像資料或雷達偵測器所取得的雷達資料(例如:位置與速度)來追蹤交通物件,但二種方式各有不足之處。利用影像資料追蹤交通物件,其追蹤效果取決於攝影機所取得的影像品質。若遇到交通物件距離攝影機較遠、氣候不佳、光線不佳(例如:太強或太暗)等情況,攝影機會無法拍攝到品質較佳的影像資料,導致追蹤效果不佳。若利用雷達資料追蹤交通物件,則需要交通物件移動一段距離才能計算出正確的雷達資料。因此,對於剛進入雷達偵測器的偵測範圍的交通物件,會因為交通物件的移動距離不足而無法計算出正確的雷達資料,導致追蹤效果不佳。
目前已有道路監測裝置藉由融合影像資料與雷達資料來追蹤交通物件,但這類道路監測裝置仍未解決影像資料及雷達資料在某些情況下品質不佳、不夠正確的問題。由於融合了品質不佳、不夠正確的影像資料及雷達資料,因此這些技術追蹤交通物件的效果也就不佳。
進一步言,欲正確地追蹤交通物件,除了要考慮單一道路監測裝置的追蹤能力,還需考慮跨道路監測裝置的追蹤能力(亦即,由多個道路監測裝置追蹤同一交通物件)。習知技術係採用影像相似度與時空相似度來達到跨道路監測裝置的交通物件追蹤。然而,習知技術未考慮道路監測裝置之間的其他因素(例如:交通事故),導致跨道路監測裝置的追蹤準確率下降。
有鑑於此,本領域仍亟需一種能於單一道路監測裝置及跨道路監測裝置皆準確地追蹤交通物件的技術。
本發明的一目的在於提供一種道路監測裝置。該道路監測裝置包含一儲存器及一處理器,且該處理器電性連接至該儲存器。該儲存器儲存複數個第一交通物件各自的複數個偵測資料組,其中各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度。該處理器根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標,以該等第一參考座標決定一第一界線,根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,以該等第二參考座標決定一第二界線,且根據該第一界線以及該第二界線將一道路範圍影像劃分為一第一區域、一第二區域以及一第三區域。該處理器還根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤該第二交通物件,且該處理器還根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。
本發明的另一目的在於提供一種道路監測系統,其係包含複數個道路監測裝置。該等道路監測裝置中的一第一道路監測裝置儲存複數個第一交通物件各自的複數個偵測資料組,其中各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度。該第一道路監測裝置還根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標,以該等第一參考座標決定一第一界線,根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,以該等第二參考座標決定一第二界線,根據該第一界線以及該第二界線將該第一道路監測裝置的一道路範圍影像劃分為一第一區域、一第二區域以及一第三區域。該第一道路監測裝置還根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤一第二交通物件,且該第一道路監測裝置還根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。
本發明的又一目的在於提供一種道路監測方法,其係適用於一道路監測系統。該道路監測系統包含一道路監測裝置,且該道路監測裝置儲存複數個第一交通物件各自的複數個偵測資料組。各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度。該道路監測方法包含以下步驟:(a)由該道路監測裝置根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標,(b)由該道路監測裝置以該等第一參考座標決定一第一界線,(c)由該道路監測裝置根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,(d)以該等第二參考座標決定一第二界線,(e)根據該第一界線以及該第二界線將一道路範圍影像劃分為一第一區域、一第二區域以及一第三區域,(f)根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤一第二交通物件,以及(g)根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。
本發明所提供的道路監測技術(至少包含系統、裝置及方法)利用一道路監測裝置的複數組影像資料與雷達資料(亦即,前述複數個第一交通物件各自的複數個偵測資料組)決定一第一界線及一第二界線,再根據該第一界線及該第二界線將該道路監測裝置的一道路範圍影像劃分為一第一區域、一第二區域及一第三區域,之後便於不同區域以不同類型的資料追蹤後續出現的交通物件。
由於本發明所提供的道路監測技術係根據各該第一交通物件的該等第一物件影像與該等第一雷達投影座標間的該等匹配程度以及該等第一雷達投影座標決定複數個第一參考座標,再根據該等第一參考座標決定出該第一界線,因此可將該第一界線視為能以雷達資料準確地追蹤交通物件的界線。另外,由於本發明所提供的道路監測技術係根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,再根據該等第二參考座標決定出該第二界線,因此可將該第二界線視為能以影像資料準確地追蹤交通物件的界線。由於該第一界線及該第二界線各自具有前述特性,因此基於該第一界線及該第二界線所決定出來的第一區域、第二區域及第三區域便各自有較為適合用來追蹤交通物件的資料類型(亦即,影像資料或/及雷達資料)。之後,本發明所提供的道路監測技術便於不同區域以較為準確的資料類型追蹤後續出現的交通物件,因而能提升追蹤交通物件的準確率。
以下結合圖式闡述本發明的詳細技術及實施方式,俾使本發明所屬技術領域中具有通常知識者能理解所請求保護的發明的技術特徵。
以下透過實施方式來解釋本發明所提供的道路監測系統、裝置及方法。然而,該等實施方式並非用以限制本發明需在如該等實施方式所述的任何環境、應用或方式方能實施。因此,關於以下實施方式的說明僅在於闡釋本發明的目的,而非用以限制本發明的範圍。應理解,在以下實施方式及圖式中,與本發明非直接相關的元件已省略而未繪示。此外,圖式中各元件的尺寸以及元件間的尺寸比例僅為便於繪示及說明,而非用以限制本發明的範圍。
本發明的第一實施方式為一道路監測系統1,其架構示意圖係描繪於第1圖。道路監測系統1包含複數個道路監測裝置12a、12b、……、12c。道路監測裝置12a、12b、……、12c被設置於一或多條道路旁的不同地點,且會各自運作以追蹤交通物件(容後詳述)。在某些實施方式中,道路監測系統1還可包含一雲端伺服器11,且道路監測裝置12a、12b、……、12c可進一步地與雲端伺服器11協同運作以達成跨道路監測裝置的交通物件追蹤(容後說明)。
道路監測裝置12a、12b、……、12c於道路監測系統1所扮演的角色雷同。以下將以道路監測裝置12a為例,詳細說明其架構、其如何運作以追蹤交通物件以及其可如何與雲端伺服器11協同運作以達成跨道路監測裝置的交通物件追蹤。應理解,以下針對道路監測裝置12a所作的說明,一併適用於各個道路監測裝置12b、……、12c。
第2圖描繪道路監測裝置12a的架構示意圖。道路監測裝置12a包含一儲存器21、一處理器22、一攝影機24及一雷達偵測器25,且儲存器21、攝影機24及雷達偵測器25皆電性連接至處理器22。儲存器21可為一硬碟(Hard Disk Drive;HDD)、一隨身碟、一記憶體或本發明所屬技術領域中具有通常知識者所知的任何其他能儲存數位資訊的非暫態儲存媒體、電路或裝置。處理器22可為各種處理器、中央處理單元(Central Processing Unit;CPU)、微處理器(Microprocessor Unit;MPU)、數位訊號處理器(Digital Signal Processor;DSP)或本發明所屬技術領域中具有通常知識者所知的任何其他具有相同功能的計算裝置。攝影機24可為各種能不斷地(例如:週期性地)拍攝以產生影像的裝置,例如:各種網路攝影機、各種監視攝影機。雷達偵測器25可為各種能透過發射電波及接收障礙物反射回來的訊號以計算出目標物件的距離的裝置,例如:紅外線雷達、超聲波雷達、毫米波雷達。
攝影機24具有一影像偵測範圍(亦即,拍攝範圍),且該影像偵測範圍中有一道路範圍。於本實施方式中,處理器22已知悉此道路範圍(例如:於設置道路監測裝置12a時,便已設定該道路範圍並將之記錄於儲存器21)。於其他實施方式中,處理器22可針對攝影機24所拍攝到的任一張監測影像進行影像分割,再基於影像分割的結果決定出道路範圍S(如第3A圖所示)。本發明所屬技術領域中具有通常知識者應熟知影像分割技術以及如何依據影像分割的結果決定出道路範圍S,故不贅言。
攝影機24運作時,會不斷地拍攝以產生複數張監測影像(未繪示)。若一交通物件通過攝影機24的該影像偵測範圍,則該交通物件便會被拍攝於該等監測影像的某些張中。處理器22會從攝影機24所產生的該等監測影像中偵測出複數個物件影像。須說明者,本發明未限制處理器22會從一張監測影像中偵測出幾個物件影像;換言之,可為零個、一個或複數個。此外,本發明未限制處理器22需採用何種技術以從該等監測影像中偵測出該等物件影像。舉例而言,處理器22可採用經過訓練的機器學習模型(例如:卷積神經網路(Convolutional Neural Network,CNN)模型中的 YOLO模型)以從該等監測影像中偵測出該等物件影像。
另外,雷達偵測器25具有一雷達偵測範圍。雷達偵測器25運作時,會不斷地發射電波且接收障礙物反射回來的訊號以產生複數個距離資料。若一交通物件通過該雷達偵測範圍,則雷達偵測器25便會產生該交通物件的複數個距離資料。
攝影機24的影像偵測範圍及雷達偵測器25的雷達偵測範圍至少部分重疊。茲假設在一時間區間內有N個交通物件通過攝影機24的影像偵測範圍及雷達偵測器25的雷達偵測範圍,其中N為大於1的正整數。處理器22可採用資料融合(fusion)技術以將該段時間區間內的該等物件影像與該等距離資料配對。本發明未限制處理器22需採用何種資料融合技術。舉例而言,前述資料融合技術可為基於中央極限定理(Central Limit Theorem)、卡爾曼濾波器(Kalman filter)、貝氏網路(Bayesian Network)或Dempster-Shafer 理論的資料融合技術。由於攝影機24與雷達偵測器25採用不同座標系統,因此處理器22在將該等物件影像與該等距離資料配對時,會於同一座標系統進行。舉例而言,若以攝影機24所採用的相機座標系統為準,處理器22會將該等距離資料由雷達座標系統投影至相機座標系統以得複數個雷達投影座標。處理器22可採用點對齊座標方法(Point Alignment Method),將各該距離資料透過投影轉換矩陣轉換至相機座標系統以得對應的該雷達投影座標。在該相機座標系統中,一影像的原點可為該影像的左上角。經前述處理後,處理器22產生N個交通物件每一個的複數個偵測資料組,其中各該偵測資料組包含某一交通物件的一物件影像與一雷達投影座標。儲存器21則會儲存N個交通物件的這些偵測資料組D1、D2、……、Dz。
須說明者,於本實施方式中,攝影機24及雷達偵測器25係包含於道路監測裝置12a。在某些實施方式中,道路監測裝置可不含攝影機,而是透過一收發介面接收一攝影機所拍攝的監測影像,再由處理器22進行前述相關運作。依據前述說明,本發明所屬技術領域中具有通常知識者應能明瞭處理器22會針對接收到的監測影像所進行的運作,故不贅言。在某些實施方式中,道路監測裝置可不含雷達偵測器,而是透過一收發介面接收一雷達偵測器所產生的距離資料,再由處理器22進行前述相關運作。依據前述說明,本發明所屬技術領域中具有通常知識者應能明瞭處理器22會針對所接收到的距離資料所進行的運作,故不贅言。
於本實施方式中,偵測資料組D1、D2、……、Dz每一組的該物件影像與該雷達投影座標間具有一匹配程度。一偵測資料組的物件影像與雷達投影座標間的匹配程度代表該物件影像與該雷達投影座標對應至同一交通物件的正確程度。在某些實施方式中,處理器22可計算各該物件影像的一質心座標,且計算各該物件影像的該質心座標與對應的該雷達投影座標間的一距離。該等距離與該等匹配程度相關;具體而言,距離越小,匹配程度越高。為便於理解,請參第3B圖所示的一具體範例,其係描繪一交通物件的一偵測資料組的物件影像O與雷達投影座標P。處理器22可計算物件影像O的質心座標C,計算質心座標C與雷達投影座標P間的距離,並以該距離作為該偵測資料組的物件影像O與雷達投影座標P間的匹配程度。
如前所述,N個交通物件的每一個存在複數個偵測資料組,因此處理器22會針對N個交通物件的每一個的各偵測資料組計算出物件影像與雷達投影座標間的匹配程度。處理器22會根據N個交通物件的每一個所對應的該等匹配程度與該等雷達投影座標決定複數個第一參考座標(如第3C圖所示),再以該等第一參考座標決定一第一界線B1(如第3D圖所示)。
舉例而言,針對一交通物件,處理器22可挑選出一或多個雷達投影座標,這些挑選出來的雷達投影座標與對應的物件影像間的匹配程度大於一門檻值(若以物件影像的質心座標與對應的雷達投影座標間的距離作為匹配程度,則是選取距離小於一門檻值者),處理器22再從挑選出來的雷達投影座標中選取y座標值最大者作為該交通物件所對應的第一參考座標。一交通物件所對應的第一參考座標可視為該交通物件的該等雷達投影座標中能與物件影像準確地匹配且最為靠近道路監測裝置12a者。處理器22針對每一交通物件的偵測資料組皆會進行前述運作,因此N個交通物件會有N個對應的第一參考座標(如第3C圖所示)。接著,處理器22以該等第一參考座標決定第一界線B1。舉例而言,處理器22可利用線性回歸法(Linear regression)、支援向量機(Support Vector Machine)、稀疏自編碼器(Sparse Autoencoder)或其他技術,基於該等第一參考座標計算出第一界線B1。由於第一界線B1係基於靠近道路監測裝置12a的該等第一參考座標所計算出來的,因此第一界線B1可作為一近處交界線(亦即,雷達投影座標能被準確地與物件影像匹配的近處極限)。
另外,如前所述,N個交通物件的每一個存在對應的複數個偵測資料組,且各偵測資料組包含一物件影像。換言之,各該交通物件具有複數個對應的物件影像。處理器22會根據各該交通物件的一最小物件影像決定複數個第二參考座標(如第3E圖所示),再以該等第二參考座標決定一第二界線 B2(如第3F圖所示)。舉例而言,針對一交通物件,處理器22會基於其最小物件影像(亦即,該交通物件所對應的該等物件影像中最小者,也就是處理器22針對該交通物件所能偵測到的最小物件影像框)決定一第二參考座標(例如:該最小物件影像的質心)。處理器22針對每一交通物件的偵測資料組皆會進行前述運作,因此N個交通物件會有N個對應的第二參考座標(如第3E圖所示)。接著,處理器22以該等第二參考座標決定第二界線B2。類似的,處理器22可利用線性回歸法、支援向量機、稀疏自編碼器或其他技術,基於該等第二參考座標計算出第二界線B2。由於第二界線B2係基於距離道路監測裝置12a較遠的該等第二參考座標所計算出來的,因此第二界線B2可作為一遠處交界線(亦即,能從監測影像中偵測出將通物件的物件影像的遠處極限)。
接著,處理器22根據第一界線B1及第二界線B2,將一道路範圍劃分為一第一區域R1、一第二區域R2以及一第三區域R3(如第3G圖所示)。由於第一界線B1可視為雷達投影座標能被準確地與物件影像匹配的近處極限,意味著在第一區域R1極可能無法以雷達偵測器準確地追蹤交通物件。此外,由於第二界線B2可視為能從監測影像中偵測出物件影像的遠處極限,意味著在第三區域R3極可能無法從監測影像中偵測出交通物件的物件影像。因此,在決定出第一區域R1、第二區域R2及第三區域R3後,處理器22便可在不同區域以較為適合的資料類型來追蹤交通物件,達到準確追蹤交通物件的技術效果。
具體而言,針對後續出現於道路監測裝置12a的偵測範圍(亦即,影像偵測範圍與雷達偵測範圍的聯集)的任一交通物件,處理器22可根據該交通物件在第一區域R1及第二區域R2的複數個物件影像(從攝影機24所拍攝的複數張監測影像中偵測出來的)追蹤該交通物件,且可根據該交通物件在第二區域R2及第三區域R3的複數個雷達投影座標(從雷達偵測器25所產生的複數個距離座標投影至相機座標系統)追蹤該交通物件。須說明者,處理器22係將雷達偵測器25所產生的該等距離座標投影至相機座標系統以判斷哪些距離座標所對應的雷達投影座標落於第二區域R2及第三區域R3,實際追蹤時仍是依據落於第二區域R2及第三區域R3的雷達投影座標所對應的距離座標。此外,針對第二區域R2,處理器22可使用資料融合技術以將第二區域R2內的該等物件影像與該等雷達投影座標配對。
在某些實施方式中,道路監測裝置12a還可根據一累積誤差來更新第一界線B1。茲假設在決定第一區域R1、第二區域R2及第三區域R3後,道路監測裝置12a追蹤了M個交通物件,其中M為大於1的正整數。在追蹤M個交通物件的過程,道路監測裝置12a會產生M個交通物件各自的複數個偵測資料組,且M個交通物件的各該偵測資料組包含一物件影像與一雷達投影座標,M個交通物件的每一個的各該偵測資料組的物件影像與雷達投影座標間具有一匹配程度。M個交通物件的該等偵測資料組可儲存於儲存器21。處理器22可根據M個交通物件各自所對應的該等匹配程度與對應的雷達投影座標決定複數個第三參考座標(例如:依據前述的方式),且計算該等第三參考座標與第一界線B1間的一累積誤差。若處理器22判斷該累積誤差大於一門檻值,則處理器22可依據該累積誤差更新第一界線B1(例如:依據該累積誤差移動第一界線B1)。若處理器22更新了第一界線B1,則第一區域R1及第二區域R2也隨之更新。
在某些實施方式中,道路監測裝置12a還可根據另一累積誤差來更新第二界線B2。類似的,在道路監測裝置12a追蹤M個交通物件的過程,道路監測裝置12a會產生且儲存M個交通物件各自的複數個偵測資料組,如上所述。處理器22可根據M個交通物件各自的最小物件影像決定複數個第四參考座標,且計算該等第四參考座標與第二界線B2間的一累積誤差。若處理器22判斷該累積誤差大於一門檻值,且處理器22以該累積誤差更新第二界線B2(例如:依據該累積誤差移動第二界線B2)。若處理器22更新了第二界線B2,則第二區域R2及第二區域R3也隨之更新。
在某些實施方式中,道路監測裝置12a可採用前述累積誤差的方式來更新第一界線B1以及第二界線B2,茲不贅言。
在某些實施方式中,道路監測裝置12a可定期地或不定期地重新決定第一界線B1。類似的,在道路監測裝置12a追蹤M個交通物件的過程,道路監測裝置12a會產生且儲存M個交通物件各自的複數個偵測資料組,如上所述。處理器22可根據M個交通物件各自所對應的該等匹配程度與該等雷達投影座標決定複數個第五參考座標,且以該等第五參考座標更新第一界線B1(例如:利用線性回歸法、支援向量機、稀疏自編碼器或其他技術,基於該等第五參考座標重新計算出第一界線B1)。
在某些實施方式中,道路監測裝置12a可定期地或不定期地重新決定第二界線B2。類似的,在道路監測裝置12a追蹤M個交通物件的過程,道路監測裝置12a會產生且儲存M個交通物件各自的複數個偵測資料組,如上所述。處理器22可根據M個交通物件各自的最小物件影像決定複數個第六參考座標,且以該等第六參考座標更新第二界線B2(例如:利用線性回歸法、支援向量機、稀疏自編碼器或其他技術,基於該等第六參考座標重新計算出第二界線B1)。
在某些實施方式中,道路監測裝置12a可採用前述方式,定期地會不定期地重新決定第一界線B1以及第二界線B2,茲不贅言。
藉由更新第一界線B1或/及第二界線B2以調整第一區域R1、第二區域R2或/及第三區域R3,讓道路監測裝置12a能在外在環境產生變化(例如:氣候產生變化、光線產生變化)時仍能在不同區域以較為適合的資料類型來追蹤交通物件,達到持續地準確追蹤交通物件的技術效果。
在某些實施方式中,道路監測裝置12a會與雲端伺服器11協同運作以達成跨道路監測裝置的交通物件追蹤。
於該等實施方式中,雲端伺服器11儲存複數個移動物件(未繪示)各自對應的一識別碼(未繪示)、一時間點(未繪示)、一位置資訊(未繪示)及一物件影像(未繪示)。道路監測裝置12a還可包含一收發介面23,且收發介面23電性連接至處理器22。收發介面23可為能接收與傳送訊號的有線介面或無線介面,例如:網路介面。
於該等實施方式中,在道路監測裝置12a採用前述方式追蹤到一交通物件時,會由雲端伺服器11判斷是否要將該交通物件重識別(Re-identification),也就是由雲端伺服器11判斷該交通物件是否為其他道路監測裝置12b、……、12c所曾偵測到的交通物件。
具體而言,收發介面23將追蹤到的該交通物件的多個物件影像其中之一(可稱為「一特定物件影像」)與該特定物件影像對應的一時間點(例如:該特定物件影像被攝影機24拍攝到的時間點)傳送至雲端伺服器11。之後,雲端伺服器11根據該特定物件影像所對應的該時間點從該等移動物件中選取複數個候選物件(例如:對應的時間點早於特定物件影像所對應的時間點的移動物件),計算該交通物件與各該候選物件間的一影像相似度(亦即,計算該特定物件影像與各該候選物件的該物件影像間的影像相似度),且根據一交通路況資料計算該交通物件與各該候選物件間的一時空相似度。
於上述公式中,參數i代表影像物件i,參數j代表影像物件j,參數T i 代表影像物件i識別的時間,參數T j 代表影像物件j識別的時間,參數T max 為任意二個道路監測裝置間的時間距離中的最大者,參數δ(C i ,C j )代表偵測到影像物件i的道路監測裝置與偵測到影像物件j的道路監測裝置的空間距離(亦即,最小路徑),參數D max 代表任意二個道路監測裝置間的空間距離中的最大者,且△T代表依據交通路況資料所決定的時間延遲比例。
在上述公式中,參數v avg 代表依據交通路況資料所計算出來的平均車速,參數k為依據交通路況資料所計算出來的車流密度,參數O type 代表車種(例如:拖板車、大貨車、客運、小型車與二輪車等),而Q(v avg ,k)為計算車流資訊。雲端伺服器11可利用稀疏自編碼與長短期(Long Short Term Memory)
記憶模型演算法預測偵測到影像物件i的道路監測裝置與偵測到影像物件j的道路監測裝置間的路段車流情況。
雲端伺服器11計算該交通物件與各該候選物件間的一影像相似度及一時空相似度後,便可基於該等影像相似度與該等時空相似度產生一指示訊息,且該指示訊息與該交通物件的識別碼相關。具體而言,若有某一候選物件與該交通物件間的影像相似度大於一第一門檻值,且二者間的時空相似度大於一第二門檻值,則雲端伺服器11判斷該交通物件為該候選物件,因而決定該交通物件應沿用該候選物件的識別碼。若有多個候選物件滿足前述條件,則雲端伺服器11會選取相似度值(例如:將影像相似度與時空相似度加權)最高者,並決定該交通物件應沿用相似度最高者的識別碼。若沒有候選物件滿足前述條件,則雲端伺服器11決定該交通物件不需改變其識別碼。雲端伺服器11會依據前述判斷結果產生一指示訊息,且傳送該指示訊息至道路監測裝置12a。道路監測裝置12a的收發介面23接收該指示訊息後,便能據以決定是否改變該交通物件的識別碼。
在某些實施方式中,在道路監測裝置12a追蹤到一交通物件時,是由道路監測裝置12a判斷是否要將該交通物件重識別。
於該等實施方式中,收發介面23將追蹤到的該交通物件的多個物件影像其中之一(可稱為「一特定物件影像」)與該特定物件影像對應的一時間點(例如:該特定物件影像被攝影機24拍攝到的時間點)傳送至雲端伺服器11。收發介面23再從雲端伺服器11接收一候選物件清單,其中該候選物件清單記錄複數個候選物件各自對應的一識別碼、一時間點、一位置資訊及一物件影像。處理器22再計算該交通物件與各該候選物件間的一影像相似度,根據一交通路況資料計算該交通物件與各該候選物件間的一時空相似度,且根據該等影
像相似度與該等時空相似度決定該交通物件的一識別碼。處理器22可採用前述雲端伺服器11所採用的方式計算影像相似度、時空相似度及如何決定該交通物件的該識別碼,茲不贅言。
由於雲端伺服器11儲存道路監測裝置12a、12b、......、12c所曾偵測到的移動物件的相關資訊,因此當一道路監測裝置12a追蹤到一交通物件時,可由雲端伺服器11或道路監測裝置12a判斷是否要將該交通物件重新識別。道路監測系統1在重新識別的過程中考慮了交通路況資料,因此即使道路監測裝置之間有其他異常因素(例如:交通事故),道路監測系統1仍能準確地達成跨道路監測裝置的交通物件追蹤。
本發明的第二實施方式為一道路監測方法,其主要流程圖請參第4圖。該道路監測方法適用於一道路監測系統(例如:前述的道路監測系統1)。該道路監測系統包含至少一道路監測裝置(例如:前述道路監測裝置12a、12b、......、12c中的任一個)。該道路監測裝置儲存複數個第一交通物件各自的複數個偵測資料組,其中各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度。於本實施方式中,該道路監測方法包含步驟401至步驟407。
於步驟401,由該道路監測裝置根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標。於步驟402,由該道路監測裝置以該等第一參考座標決定一第一界線。於步驟403,由該道路監測裝置根據各該第一交通物件的一最小物件影像決定複數個第二參考座標。於步驟404,由該道路監測裝置以該等第二參考座標決定一第二界線。
須說明者,本發明未限制該道路監測方法決定該第一界限及該第二界限的順序。換言之,在不同的實施方式中,步驟401及步驟402的執行時間可早於步驟403及步驟404的執行時間,步驟401及步驟402的執行時間可晚於步驟403及步驟404的執行時間,或步驟401及步驟402的執行時間與步驟403及步驟404的執行時間可部分或完全重疊。
於步驟405,由該道路監測裝置根據該第一界線以及該第二界線將該道路監測裝置的一道路範圍劃分為一第一區域、一第二區域以及一第三區域。於步驟406,由該道路監測裝置根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤一第二交通物件。於步驟407,由該道路監測裝置根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。須說明者,本發明未限制該道路監測方法以該等第二物件影像追蹤該第二交通物件以及以該等第二雷達投影座標追蹤該第二交通物件的順序。換言之,當該第二交通物件的該等第二物件影像出現於該第一區域及該第二區域,該道路監測方法便會利用該等第二物件影像追蹤該第二交通物件,而當該第二交通物件的該等第二雷達投影座標出現於該第二區域及該第三區域,該道路監測方法便會利用該等第二雷達投影座標追蹤該第二交通物件。
除了上述步驟,本發明的道路監測方法還能執行前述各實施方式中所述的道路監測系統1及道路監測裝置12a所能執行的所有運作及步驟,具有同樣的功能,且達到同樣的技術效果。基於上述的道路監測系統1及道路監測裝置12a的敘述內容,本發明所屬技術領域中具有通常知識者可直接瞭解本發明的道路監測方法如何執行此等運作及步驟,具有同樣的功能,並達到同樣的技術效果,故不贅述。
須說明者,於本發明專利說明書及申請專利範圍中,某些用語(包含:道路監測裝置、交通物件、物件影像、雷達投影座標、參考座標、界線、區域)前被冠以「第一」、「第二」或「第三」,該等「第一」、「第二」及「第三」僅用來區隔不同的用語。
綜上所述,本發明所提供的道路監測技術(至少包含系統、裝置及方法)利用一道路監測裝置的複數組影像資料與雷達資料(亦即,前述複數個第一交通物件各自的複數個偵測資料組)決定一第一界線及一第二界線,再根據該第一界線及該第二界線將該道路監測裝置的一道路範圍影像劃分為一第一區域、一第二區域及一第三區域,之後便於不同區域以不同類型的資料追蹤後續出現的交通物件。
由於本發明所提供的道路監測技術係根據各該第一交通物件的該等第一物件影像與該等第一雷達投影座標間的該等匹配程度以及該等第一雷達投影座標決定複數個第一參考座標,再根據該等第一參考座標決定出該第一界線,因此可將該第一界線視為能以雷達資料準確地追蹤交通物件的邊界。另外,由於本發明所提供的道路監測技術係根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,再根據該等第二參考座標決定出該第二界線,因此可將該第二界線視為能以影像資料準確地追蹤交通物件的邊界。由於該第一界線及該第二界線各自具有前述特性,因此基於該第一界線及該第二界線所決定出來的第一區域、第二區域及第三區域便各自有較為適合用來追蹤交通物件的資料類型(亦即,影像資料或/及雷達資料)。之後,本發明所提供的道路監測技術便於不同區域以不同資料類型追蹤後續出現的交通物件,因而能提升追蹤交通物件的準確率。
另外,雲端伺服器可儲存各道路監測裝置所曾偵測到的移動物件的相關資訊,因此當一道路監測裝置追蹤到一交通物件時,可判斷是否要將該交通物件重新識別。道路監測系統在重新識別的過程中考慮了交通路況資料,因此即使道路監測裝置之間有其他異常因素(例如:交通事故),本發明所提供的道路監測技術仍能準確地達成跨道路監測裝置的交通物件追蹤。
上述各實施方式係用以例示性地說明本發明的部分實施態樣,以及闡釋本發明的技術特徵,而非用來限制本發明的保護範疇及範圍。任何本發明所屬技術領域中具有通常知識者可輕易完成的改變或均等性的安排均屬於本發明所主張的範圍,本發明的權利保護範圍以申請專利範圍為準。
1:道路監測系統
11:雲端伺服器
12a、12b、……、12c:道路監測裝置
21:儲存器
22:處理器
23:收發介面
24:攝影機
25:雷達偵測器
D1、D2、……、Dz:偵測資料組
S:道路範圍
O:物件影像
C:質心座標
P:雷達投影座標
B1:第一界線
B2:第二界線
R1:第一區域
R2:第二區域
R3:第三區域
401~407:步驟
第1圖為本發明的道路監測系統的架構示意圖。
第2圖為本發明的道路監測裝置的架構示意圖。
第3A圖為本發明中的一道路範圍S的示意圖。
第3B圖為物件影像、物件影像的質心座標以及對應的雷達投影座標的的示意圖。
第3C圖為複數個第一參考座標的示意圖。
第3D圖為以複數個第一參考座標決定一第一界線B1的示意圖。
第3E圖為複數個第二參考座標的示意圖。
第3F圖為以複數個第二參考座標決定一第二界線B2的示意圖。
第3G圖為根據第一界線B1及第二界線B2,將一道路範圍劃分為一第一區域R1、一第二區域R2以及一第三區域R3的示意圖。
第4圖為本發明的道路監測方法的主要流程圖。
401~407:步驟
Claims (21)
- 一種道路監測裝置,包含:一儲存器,儲存複數個第一交通物件各自的複數個偵測資料組,其中各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度;以及一處理器,電性連接至該儲存器,且根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標,以該等第一參考座標決定一第一界線,根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,以該等第二參考座標決定一第二界線,根據該第一界線以及該第二界線將一道路範圍劃分為一第一區域、一第二區域以及一第三區域;其中,該處理器還根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤該第二交通物件,且該處理器根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。
- 如請求項1所述的道路監測裝置,其中該儲存器還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,各該第三交通物件的各該偵測資料組的該第三物件影像與該第三雷達投影座標間具有一匹配程度,該處理器還根據各該第三交通物件所對應的該等匹配程度與該等第三雷達投影座標決定複數個第三參考座標,計算該等第三參考座標與該第一界線間的一累積誤差,判斷該累積誤差大於一門檻值,且以該累積誤差更新該第一界線。
- 如請求項1所述的道路監測裝置,其中該儲存器還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含 一第三物件影像與一第三雷達投影座標,該處理器還根據各該第三交通物件的一最小物件影像決定複數個第三參考座標,計算該等第三參考座標與該第二界線間的一累積誤差,判斷該累積誤差大於一門檻值,且以該累積誤差更新該第二界線。
- 如請求項1所述的道路監測裝置,其中該儲存器還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,各該第三交通物件的各該偵測資料組的該第三物件影像與該第三雷達投影座標間具有一匹配程度,該處理器還根據各該第三交通物件所對應的該等匹配程度與該等第三雷達投影座標決定複數個第三參考座標,且以該等第三參考座標更新該第一界線。
- 如請求項1所述的道路監測裝置,其中該儲存器還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,該處理器還根據各該第三交通物件的一最小物件影像決定複數個第三參考座標,且以該等第三參考座標更新該第二界線。
- 如請求項1所述的道路監測裝置,還包含:一攝影機,電性連接至該處理器,且產生複數張監測影像,其中,該處理器還從該等監測影像中偵測出該等物件影像。
- 如請求項1所述的道路監測裝置,還包含:一雷達偵測器,電性連接至該處理器,且產生複數個距離資料,其中,該處理器還將該等距離資料投影至一相機座標系統以得該等第一雷達投影座標。
- 如請求項1所述的道路監測裝置,其中該處理器還計算各該第一物件影像的一質心座標,計算各該第一物件影像的該質心座標與對應的該第一雷達投影座標間的一距離,其中該等距離與該等匹配程度相關。
- 如請求項1所述的道路監測裝置,還包含:一收發介面,電性連接至該處理器,將該等第二物件影像其中之一與對應的一時間點傳送至一雲端伺服器,且自該雲端伺服器接收一指示訊息,其中該指示訊息與該第二交通物件的一識別碼相關。
- 如請求項1所述的道路監測裝置,還包含:一收發介面,電性連接至該處理器,將該等第二物件影像其中之一與對應的一時間點傳送至一雲端伺服器,且自該雲端伺服器接收一候選物件清單,其中該候選物件清單記錄複數個候選物件各自對應的一識別碼、一時間點、一位置資訊及一物件影像,其中,該處理器還計算該第二交通物件與各該候選物件間的一影像相似度,根據一交通路況資料計算該第二交通物件與各該候選物件間的一時空相似度,且根據該等影像相似度與該等時空相似度決定該第二交通物件的一識別碼。
- 一種道路監測系統,包含:複數個道路監測裝置,其中,該等道路監測裝置中的一第一道路監測裝置儲存複數個第一交通物件各自的複數個偵測資料組,各該偵測資料組包含一第一物件影像與一第一雷達投影座標,且各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度, 其中,該第一道路監測裝置還根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標,以該等第一參考座標決定一第一界線,根據各該第一交通物件的一最小物件影像決定複數個第二參考座標,以該等第二參考座標決定一第二界線,根據該第一界線以及該第二界線將該第一道路監測裝置的一道路範圍劃分為一第一區域、一第二區域以及一第三區域;其中,該第一道路監測裝置還根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤該第二交通物件,且該第一道路監測裝置根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座標追蹤該第二交通物件。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,各該第三交通物件的各該偵測資料組的該第三物件影像與該第三雷達投影座標間具有一匹配程度,該第一道路監測裝置還根據各該第三交通物件所對應的該等匹配程度與該等第三雷達投影座標決定複數個第三參考座標,計算該等第三參考座標與該第一界線間的一累積誤差,判斷該累積誤差大於一門檻值,且以該累積誤差更新該第一界線。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,該第一道路監測裝置還根據各該第三交通物件的一最小物件影像決定複數個第三參考座標,計算該等 第三參考座標與該第二界線間的一累積誤差,判斷該累積誤差大於一門檻值,且以該累積誤差更新該第二界線。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,各該第三交通物件的各該偵測資料組的該第三物件影像與該第三雷達投影座標間具有一匹配程度,該第一道路監測裝置還根據各該第三交通物件所對應的該等匹配程度與該等第三雷達投影座標決定複數個第三參考座標,且以該等第三參考座標更新該第一界線。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還儲存複數個第三交通物件各自的複數個偵測資料組,各該第三交通物件的各該偵測資料組包含一第三物件影像與一第三雷達投影座標,該第一道路監測裝置還根據各該第三交通物件的一最小物件影像決定複數個第三參考座標,且以該等第三參考座標更新該第二界線。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還包含:一攝影機,產生複數張監測影像,其中,該第一道路監測裝置還從該等監測影像中偵測出該等物件影像。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還包含:一雷達偵測器,產生複數個距離資料,其中,該第一道路監測裝置還將該等距離資料投影至一相機座標系統以得 該等第一雷達投影座標。
- 如請求項11所述的道路監測系統,其中該第一道路監測裝置還計算各該第一物件影像的一質心座標,計算各該第一物件影像的該質心座標與對應的該第一雷達投影座標間的一距離,其中該等距離與該等匹配程度相關。
- 如請求項11所述的道路監測系統,還包含:一雲端伺服器,儲存複數個移動物件各自對應的一識別碼、一時間點、一位置資訊及一物件影像;其中,該第一道路監測裝置還將該等第二物件影像其中之一特定物件影像與對應的一時間點傳送至該雲端伺服器,其中,該雲端伺服器還根據該時間點從該等移動物件中選取複數個候選物件,計算該第二交通物件與各該候選物件間的一影像相似度,根據一交通路況資料計算該第二交通物件與各該候選物件間的一時空相似度,基於該等影像相似度與該等時空相似度產生一指示訊息,其中該指示訊息與該第二交通物件的一識別碼相關,其中,該雲端伺服器還傳送該指示訊息至該第一道路監測裝置,該第一道路監測裝置還自該雲端伺服器接收該指示訊息。
- 如請求項11所述的道路監測系統,還包含:一雲端伺服器,儲存複數個移動物件各自對應的一識別碼、一時間點、一位置資訊及一物件影像;其中,該第一道路監測裝置還將該等第二物件影像其中之一特定物件影像與對應的一時間點傳送至該雲端伺服器,該雲端伺服器還根據該時間點從該等移動物件中選取複數個候選物件,該第一道路監測裝置還自該雲端伺服器接收 一候選物件清單,其中該候選物件清記錄各該候選物件各自對應的該識別碼、該時間點、該位置資訊及該物件影像,其中,該第一道路監測裝置還計算該第二交通物件與各該移動物件間的一影像相似度,根據一交通路況資料計算該第二交通物件與各該移動物件間的一時空相似度,且根據該等影像相似度與該等相似度決定該第二交通物件的一識別碼。
- 一種道路監測方法,適用於一道路監測系統,該道路監測系統包含一道路監測裝置,該道路監測裝置儲存複數個第一交通物件各自的複數個偵測資料組,各該偵測資料組包含一第一物件影像與一第一雷達投影座標,各該偵測資料組的該第一物件影像與該第一雷達投影座標間具有一匹配程度,該道路監測方法包含以下步驟:由該道路監測裝置根據各該第一交通物件所對應的該等匹配程度與該等第一雷達投影座標決定複數個第一參考座標;由該道路監測裝置以該等第一參考座標決定一第一界線;由該道路監測裝置根據各該第一交通物件的一最小物件影像決定複數個第二參考座標;以該等第二參考座標決定一第二界線;根據該第一界線以及該第二界線將一道路範圍劃分為一第一區域、一第二區域以及一第三區域;根據一第二交通物件在該第一區域及該第二區域的複數個第二物件影像追蹤該第二交通物件;以及根據該第二交通物件在該第二區域及該第三區域的複數個第二雷達投影座 標追蹤該第二交通物件。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103511A TWI773112B (zh) | 2021-01-29 | 2021-01-29 | 道路監測系統、裝置及方法 |
CN202110155981.7A CN114814844A (zh) | 2021-01-29 | 2021-02-04 | 道路监测系统、装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110103511A TWI773112B (zh) | 2021-01-29 | 2021-01-29 | 道路監測系統、裝置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202230297A TW202230297A (zh) | 2022-08-01 |
TWI773112B true TWI773112B (zh) | 2022-08-01 |
Family
ID=82526672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110103511A TWI773112B (zh) | 2021-01-29 | 2021-01-29 | 道路監測系統、裝置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114814844A (zh) |
TW (1) | TWI773112B (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201135680A (en) * | 2010-04-15 | 2011-10-16 | Univ Nat Chiao Tung | Vehicle tracking system and tracking method thereof |
TW201513055A (zh) * | 2013-09-25 | 2015-04-01 | Chunghwa Telecom Co Ltd | 交通事故監控追蹤系統 |
CN110660223A (zh) * | 2019-11-19 | 2020-01-07 | 青岛博海数字创意研究院 | 一种车辆定位追踪和管理系统 |
WO2020050328A1 (ja) * | 2018-09-05 | 2020-03-12 | 日本電気株式会社 | 移動体追跡システム、移動体追跡方法及びプログラム |
US10878584B2 (en) * | 2015-09-17 | 2020-12-29 | Hitachi Kokusai Electric Inc. | System for tracking object, and camera assembly therefor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101647370B1 (ko) * | 2014-11-26 | 2016-08-10 | 휴앤에스(주) | 카메라 및 레이더를 이용한 교통정보 관리시스템 |
JP7092540B2 (ja) * | 2018-04-04 | 2022-06-28 | パナソニックホールディングス株式会社 | 交通監視システムおよび交通監視方法 |
US10140855B1 (en) * | 2018-08-24 | 2018-11-27 | Iteris, Inc. | Enhanced traffic detection by fusing multiple sensor data |
CN110223511A (zh) * | 2019-04-29 | 2019-09-10 | 合刃科技(武汉)有限公司 | 一种汽车路边违停智能监测方法及系统 |
-
2021
- 2021-01-29 TW TW110103511A patent/TWI773112B/zh active
- 2021-02-04 CN CN202110155981.7A patent/CN114814844A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201135680A (en) * | 2010-04-15 | 2011-10-16 | Univ Nat Chiao Tung | Vehicle tracking system and tracking method thereof |
TW201513055A (zh) * | 2013-09-25 | 2015-04-01 | Chunghwa Telecom Co Ltd | 交通事故監控追蹤系統 |
US10878584B2 (en) * | 2015-09-17 | 2020-12-29 | Hitachi Kokusai Electric Inc. | System for tracking object, and camera assembly therefor |
WO2020050328A1 (ja) * | 2018-09-05 | 2020-03-12 | 日本電気株式会社 | 移動体追跡システム、移動体追跡方法及びプログラム |
CN110660223A (zh) * | 2019-11-19 | 2020-01-07 | 青岛博海数字创意研究院 | 一种车辆定位追踪和管理系统 |
Also Published As
Publication number | Publication date |
---|---|
TW202230297A (zh) | 2022-08-01 |
CN114814844A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10713490B2 (en) | Traffic monitoring and reporting system and method | |
WO2022083402A1 (zh) | 障碍物检测方法、装置、计算机设备和存储介质 | |
US10317901B2 (en) | Low-level sensor fusion | |
CN110264495B (zh) | 一种目标跟踪方法及装置 | |
US8447069B2 (en) | Apparatus and method for moving object detection | |
WO2019129255A1 (zh) | 一种目标跟踪方法及装置 | |
US20230110730A1 (en) | Method and apparatus for recognizing vehicle lane change trend | |
US11961304B2 (en) | Systems and methods for deriving an agent trajectory based on multiple image sources | |
CN111932901A (zh) | 道路车辆跟踪检测设备、方法及存储介质 | |
US11961241B2 (en) | Systems and methods for deriving an agent trajectory based on tracking points within images | |
US11473912B2 (en) | Location-estimating device and computer program for location estimation | |
CN114662600B (zh) | 一种车道线的检测方法、装置和存储介质 | |
KR102226372B1 (ko) | 다수 카메라와 라이다 센서 융합을 통한 객체 추적 시스템 및 방법 | |
US20210063165A1 (en) | Adaptive map-matching-based vehicle localization | |
WO2024078265A1 (zh) | 多图层高精地图生成方法和装置 | |
TWI773112B (zh) | 道路監測系統、裝置及方法 | |
CN110764526B (zh) | 一种无人机飞行控制方法及装置 | |
JP6934386B2 (ja) | 動体追尾装置及びそのプログラム | |
JP7327355B2 (ja) | 地図更新装置及び地図更新方法 | |
JP7363717B2 (ja) | 物体検出システム、物体検出方法及びプログラム | |
WO2021199286A1 (ja) | オブジェクト追跡装置、オブジェクト追跡方法、および記録媒体 | |
US20230027195A1 (en) | Apparatus, method, and computer program for collecting feature data | |
WO2022226989A1 (en) | System and method for obstacle-free driving | |
Weide | Near-Miss Detection on Traffic Intersections with a Distributed Overlapping Multi-Camera System | |
Santos | Traffic Speed Estimation, Based on Deep Learning in Real-Time with Single Camera and End-to-End 3D Convolution Network |