TWI773011B - Anti-jamming structure of millimeter wave antenna - Google Patents
Anti-jamming structure of millimeter wave antenna Download PDFInfo
- Publication number
- TWI773011B TWI773011B TW109143719A TW109143719A TWI773011B TW I773011 B TWI773011 B TW I773011B TW 109143719 A TW109143719 A TW 109143719A TW 109143719 A TW109143719 A TW 109143719A TW I773011 B TWI773011 B TW I773011B
- Authority
- TW
- Taiwan
- Prior art keywords
- microstrip line
- radiating element
- millimeter
- line radiating
- antenna
- Prior art date
Links
Images
Landscapes
- Details Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
一種毫米波天線之抗干擾結構,具有由至少一梳狀天線元件組成的發射陣列天線及/或接收陣列天線;該梳狀天線元件具有一長條狀之天線本體及一微帶線輻射組件,該天線本體一端能夠連通於可產生毫米波之毫米波電路,該微帶線輻射組件由多個間隔排列於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體尾端的末端微帶線輻射單元組成,各中間微帶線輻射單元與該末端微帶線輻射單元係以一相同歪斜方向間隔排列設置於該天線本體上,以降低對向雜訊之干擾現象。An anti-jamming structure of a millimeter-wave antenna has a transmitting array antenna and/or a receiving array antenna composed of at least one comb-shaped antenna element; the comb-shaped antenna element has an elongated antenna body and a microstrip line radiation component, One end of the antenna body can be connected to a millimeter-wave circuit capable of generating millimeter waves. The microstrip line radiating element consists of a plurality of intermediate microstrip line radiating elements arranged at intervals in the middle section of the antenna body, and an end set at the rear end of the antenna body. It is composed of microstrip line radiating units. Each middle microstrip line radiating unit and the end microstrip line radiating unit are arranged on the antenna body with a same skew direction, so as to reduce the interference phenomenon of opposite noise.
Description
本發明是有關毫米波天線之抗干擾結構,尤指一種可有效降低對向雜訊干擾、提昇增益之天線結構。The present invention relates to an anti-jamming structure of a millimeter-wave antenna, in particular, to an antenna structure that can effectively reduce counter-noise interference and increase gain.
隨著消費者對於汽車的使用安全日益重視,以及相關科技發展逐漸成熟,各種可偵測車輛周遭的動態狀況(如:車輛、行人或其它障礙物的相對位置、相對速度與角度等訊息)以輔助駕駛防止碰撞意外之汽車防撞偵測裝置亦逐漸被廣泛應用;目前一般常見的防撞偵測裝置所應用的技術手段,大約可分為以下幾種:As consumers pay more and more attention to the safety of the use of cars and the development of related technologies gradually matures, various dynamic conditions around the vehicle (such as the relative position, relative speed and angle of vehicles, pedestrians or other obstacles) can be detected. Vehicle collision avoidance detection devices for assisting driving to prevent collision accidents are also gradually being widely used; the technical means used in common collision avoidance detection devices can be roughly divided into the following categories:
超聲波:係為一種利用超聲波來測量到物體的距離的機制,利用一超聲波傳感器經由換能器發送和接收超聲脈衝波,此種超聲波傳感器可以在啟動時,或在每個量程讀數之前皆依據溫度、電壓等參數變化而進行校準,具有一定的準確性;但在使用時,由於過於細小的被偵測物難以有效反射超聲波,因此物體太小可能無法反射足夠的超聲波以供該超聲波傳感器的檢測需求,形成應用上的限制。Ultrasonic: is a mechanism that uses ultrasonic waves to measure the distance to an object, using an ultrasonic sensor to send and receive ultrasonic pulses through a transducer. This ultrasonic sensor can be activated, or before each range reading based on temperature , voltage and other parameters change to calibrate with certain accuracy; but in use, because the detected object is too small to effectively reflect the ultrasonic wave, so the object too small may not be able to reflect enough ultrasonic wave for the detection of the ultrasonic sensor requirements, resulting in application constraints.
紅外線:係利用光反射的測距原理,經由一紅外LED發光,由另一個紅外接收元件接收並測量紅外光的強度,藉由其強度的大小來判斷距離;但紅外線測距的角度小且缺乏整體性,由於偵測的基礎原理是利用光線的反射,因此當使用在反射效率較差的表面(如:深色表面)時,會嚴重影響偵測的結果,形成應用上的缺失。Infrared: It uses the ranging principle of light reflection, emits light through an infrared LED, and receives and measures the intensity of infrared light by another infrared receiving element, and judges the distance by its intensity; however, the angle of infrared ranging is small and lacks Integrity, since the basic principle of detection is to use the reflection of light, when it is used on a surface with poor reflection efficiency (such as a dark surface), it will seriously affect the detection result and form a lack of application.
雷射:係利用一發射器發射雷射光束並記下時間(T1),當雷射光束打到物體上之後反射回來,由傳感器接收到返回光的時間為(T2),假設雷射光束在空氣中傳播的速度為V,則可計算出該傳感器與被測物之間的距離為:S=V*(T2-T1)/2;然而,雷射裝置在使用時,若發射器表面沾黏水、灰等雜質時,會將雷射光線反射回去,產生假信號,且雷射測距的測量精度較差,係為其使用的缺點。Laser: It uses a transmitter to emit a laser beam and record the time (T1). When the laser beam hits the object and then reflects back, the time when the sensor receives the returned light is (T2). Assuming that the laser beam is at The speed of propagation in the air is V, the distance between the sensor and the measured object can be calculated as: S=V*(T2-T1)/2; however, when the laser device is in use, if the surface of the transmitter is stained When there are impurities such as sticky water and ash, the laser light will be reflected back, resulting in false signals, and the measurement accuracy of laser ranging is poor, which is a disadvantage of its use.
毫米波:係利用波長在1mm~10mm(頻率在30GHz~300GHz)範圍之間的電磁波,量測其發射與接收的時間差,進而可計算其距離;若要適用於車用長距離的偵測,使用77GHz毫米波頻段應較為適合,而目前應用於車用環車雷達的毫米波頻段大約落在24GHz,由於毫米波的波長最長,因此較不受環境氣候的影響,最適合應用在遠距離的偵測。Millimeter wave: It uses electromagnetic waves with wavelengths in the range of 1mm~10mm (frequency in the range of 30GHz~300GHz) to measure the time difference between its emission and reception, and then calculate its distance; if it is suitable for long-distance detection in vehicles, It should be more suitable to use the 77GHz millimeter-wave frequency band, and the millimeter-wave frequency band currently used in the car surround radar is about 24GHz. Since the millimeter-wave has the longest wavelength, it is less affected by the environmental climate and is most suitable for long-distance applications. detect.
傳統應用在毫米波裝置中,藉以進行發射或接收毫米波的天線結構,有如第1圖所示,其毫米波天線B之結構主要係可直接蝕刻於電路板C上,包括:分別由複數梳狀天線元件2所組成的發射陣列天線B1及接收陣列天線B2二部份;在第1圖所揭露的實施例中,該發射陣列天線B1係由三個梳狀天線元件2組成,而該接收陣列天線B2係由四個梳狀天線元件2組成(位於該接收陣列天線B2二旁側之梳狀天線元件2係為隔離作用,並未導入毫米波),在實際應用時,可依照該毫米波發射強度及接收靈敏度,而分別調整該等梳狀天線元件2的數量,以滿足不同之需求。Traditionally used in millimeter-wave devices to transmit or receive millimeter-wave antenna structures, as shown in Figure 1, the structure of the millimeter-wave antenna B can be directly etched on the circuit board C, including: In the embodiment disclosed in FIG. 1, the transmitting array antenna B1 is composed of three comb-shaped
上述傳統的梳狀天線元件2結構,主要係由多個微帶線輻射單元22串接而成,各微帶線輻射單元22係為具有固定大小之矩形(或可為正方形)結構,且等間距地正向排列於一條狀之天線本體21上,藉以形成一由串聯饋入架構所組成的梳狀天線元件2;此種串聯饋入架構的梳狀天線元件2若應用於發射陣列天線B1在發射毫米波的狀態下,其由電路板C上預設毫米波電路C1所輸出的毫米波能量先由該梳狀天線元件2頭端(接近該毫米波電路C1之一端)饋入,經過第一個(最接近該毫米波電路C1)微帶線輻射單元22時向外輻射一部分能量,剩餘的能量繼續沿該天線本體21朝向末(尾)端(遠離該毫米波電路C1之一端)饋送,並分別由中間各微帶線輻射單元22逐一向外輻射部分能量(另有一小部分在傳輸的過程中損耗),直到最末(尾)端的一個微帶線輻射單元22將全部剩餘的能量輻射出去。The above-mentioned conventional comb-shaped antenna element 2 structure is mainly composed of a plurality of microstrip line radiating elements 22 connected in series, and each microstrip line radiating element 22 is a rectangular (or square) structure with a fixed size, and the like The antenna bodies 21 are arranged on a strip of antenna body 21 in a forward direction, so as to form a comb-shaped antenna element 2 composed of a series-feeding structure; if the comb-shaped antenna element 2 of this series-feeding structure is applied to the transmitting array antenna B1 In the state of transmitting millimeter waves, the millimeter wave energy output by the preset millimeter wave circuit C1 on the circuit board C is first fed into the head end of the comb antenna element 2 (close to one end of the millimeter wave circuit C1 ), When the first (closest to the millimeter-wave circuit C1) microstrip line radiating element 22 radiates a part of the energy, the remaining energy continues along the antenna body 21 toward the end (tail) end (away from the end of the millimeter-wave circuit C1) Feed, and radiate part of the energy from the microstrip line radiating elements 22 in the middle one by one (the other small part is lost in the process of transmission), until a microstrip line radiating element 22 at the last (tail) end will radiate all the remaining energy. Energy radiates out.
然而,由於該等微帶線輻射單元22係正向排列於該天線本體21上,因此在實際應用時,來自該梳狀天線元件2極易受到來自對向的電磁波雜訊的干擾,影響各梳狀天線元件2之正常運作。However, since the microstrip
再者,在毫米波能量經由梳狀天線元件2上述對外發射的過程中,該梳狀天線元件2中各微帶線輻射單元22向外輻射的能量並不相同,基於各微帶線輻射單元22之面積大小與對外輻射能量的效率成正比的前題下,由於此種梳狀天線元件2之各微帶線輻射單元22具有相同面積、形狀及排列方式,因此於實際應用時,當毫米波電路C1輸出之毫米波導入該天線本體21時具有最大能量,使最接近該毫米波電路C1之微帶線輻射單元22會輻射較多能量,也承擔較大的負荷,隨著毫米波能量逐一被微帶線輻射單元22向外輻射而逐漸衰減,愈遠離該毫米波電路C1之微帶線輻射單元22會逐漸輻射較少能量,也承擔較小的負荷,如此在各微帶線輻射單元22輻射能量分佈不均的狀態,會嚴重影響該梳狀天線元件2之整體對外輻射能量的效率。Furthermore, in the process of millimeter wave energy being radiated to the outside through the comb-shaped
反之,此種梳狀天線元件2若應用於接收陣列天線B2在接收毫米波的狀態下,亦會有接收感應輻射能量分佈不均的情形。Conversely, if the comb-shaped
有鑑於習見之毫米波天線結構有上述缺點,發明人乃針對該些缺點研究改進之道,終於有本發明產生。In view of the above-mentioned disadvantages of the conventional millimeter-wave antenna structure, the inventors have studied and improved the method for these disadvantages, and finally the present invention is produced.
本發明之主要目的在於提供一種毫米波天線之抗干擾結構,具有分別由至少一梳狀天線元件組成的發射陣列天線及/或接收陣列天線;各該梳狀天線元件具有一長條狀之天線本體,以及一設於該天線本體上之微帶線輻射組件,該天線本體一端能夠連通於一電路板上能產生毫米波之毫米波電路,該微帶線輻射組件係由多個間隔排列設置於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體遠離該毫米波電路之一端的末端微帶線輻射單元所組成,且各中間微帶線輻射單元與該末端微帶線輻射單元係以一相同歪斜方向(例如:45度歪斜)間隔排列設置於該天線本體上,藉以達到降低對向雜訊干擾的效果。The main purpose of the present invention is to provide an anti-jamming structure for a millimeter-wave antenna, which has a transmitting array antenna and/or a receiving array antenna respectively composed of at least one comb-shaped antenna element; each of the comb-shaped antenna elements has an elongated antenna body, and a microstrip line radiating element arranged on the antenna body, one end of the antenna body can be connected to a millimeter-wave circuit on a circuit board that can generate millimeter waves, the microstrip line radiating element is arranged by a plurality of spaced arrangements The middle microstrip line radiating unit in the middle section of the antenna body and an end microstrip line radiating unit disposed at the end of the antenna body away from the millimeter-wave circuit are composed, and each middle microstrip line radiating unit is connected to the end microstrip line The line radiating elements are arranged on the antenna body at intervals in the same skew direction (for example, a 45-degree skew), so as to achieve the effect of reducing the interference of opposite noises.
本發明之另一目的在於提供一種毫米波天線之抗干擾結構,其中各中間微帶線輻射單元係為矩形形狀,且該矩形之長寬比例為1.2~1.3:1的範圍,使該等中間微帶線輻射單元的共振點可保持在接近76.5GHz的位置,該等中間微帶線輻射單元之排列方式,係將設於相對接近該毫米波電路之中間微帶線輻射單元的面積,設成小於或等於相對遠離該毫米波電路之中間微帶線輻射單元的面積,而相鄰漸增的二中間微帶線輻射單元之大小比例係設為1.1~1.2:1的範圍,藉以使各中間微帶線輻射單元輻射能量的效率趨近於分佈平均的狀態,進而可提昇該梳狀天線元件之整體增益。Another object of the present invention is to provide an anti-jamming structure for a millimeter-wave antenna, wherein each intermediate microstrip line radiating element is in a rectangular shape, and the length-width ratio of the rectangle is in the range of 1.2-1.3:1, so that the intermediate The resonance point of the microstrip line radiating element can be maintained at a position close to 76.5 GHz. The arrangement of these intermediate microstrip line radiating elements will be relatively close to the area of the intermediate microstrip line radiating element of the millimeter-wave circuit. is smaller than or equal to the area of the middle microstrip line radiating element relatively far away from the millimeter-wave circuit, and the size ratio of the two adjacent middle microstrip line radiating elements is set to be in the range of 1.1~1.2:1, so that each The efficiency of the radiating energy of the intermediate microstrip line radiating element is close to the state of uniform distribution, thereby improving the overall gain of the comb-shaped antenna element.
本發明之又一目的在於提供一種毫米波天線之抗干擾結構,其中該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口,可以降低該末端微帶線輻射單元之反射係數。Another object of the present invention is to provide an anti-interference structure for a millimeter-wave antenna, wherein the part where the end microstrip line radiating element is connected to the antenna body has a rectangular recess, which can reduce the reflection of the end microstrip line radiating element coefficient.
為達成上述目的及功效,本發明所採行的技術手段包括:至少一梳狀天線元件,該梳狀天線元件具有一長條狀之天線本體,以及一設於該天線本體上之微帶線輻射組件,該天線本體一端能夠連通一能產生毫米波之毫米波電路;該微帶線輻射組件係由多個間隔排列設置於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體遠離該毫米波電路之一端的末端微帶線輻射單元所組成,各中間微帶線輻射單元及該末端微帶線輻射單元皆係以一歪斜方向間隔排列設置於該天線本體上。In order to achieve the above objects and effects, the technical means adopted in the present invention include: at least one comb-shaped antenna element, the comb-shaped antenna element has an elongated antenna body, and a microstrip line disposed on the antenna body A radiating element, one end of the antenna body can be connected to a millimeter-wave circuit capable of generating millimeter waves; the microstrip line radiating element is composed of a plurality of intermediate microstrip line radiating units arranged at intervals in the middle section of the antenna body, and a The antenna body is composed of an end microstrip line radiating unit at one end of the antenna body away from the millimeter-wave circuit. Each intermediate microstrip line radiating unit and the end microstrip line radiating unit are arranged on the antenna body at intervals in a skewed direction.
依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元與該天線本體之間的歪斜角度為相同。According to the above structure, the skew angles between each middle microstrip line radiating element and the end microstrip line radiating element and the antenna body are the same.
依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元與該天線本體之間的歪斜角度為45度。According to the above structure, the skew angle between each middle microstrip line radiating unit and the end microstrip line radiating unit and the antenna body is 45 degrees.
依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元與該天線本體之間的歪斜角度為不相同。According to the above structure, the skew angles between each of the middle microstrip line radiation units and the end microstrip line radiation units and the antenna body are different.
依上述結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體,該天線本體於接近該末端微帶線輻射單元的一端設有一彎折部。According to the above structure, each of the middle microstrip line radiating elements is connected to the antenna body with its upper corners respectively, and the antenna body is provided with a bent portion at one end close to the end microstrip line radiating element.
依上述結構,其中位於該天線本體相對遠離該毫米波電路一端的中間微帶線輻射單元之面積,不小於相對接近該毫米波電路一端的中間微帶線輻射單元之面積。According to the above structure, the area of the intermediate microstrip line radiating element located at one end of the antenna body relatively far from the millimeter-wave circuit is not smaller than the area of the intermediate microstrip line radiating element relatively close to the end of the millimeter-wave circuit.
依上述結構,其中該等中間微帶線輻射單元的排列方式,係由設於較接近該毫米波電路之中間微帶線輻射單元的面積,相對小於遠離該毫米波電路之中間微帶線輻射單元的面積。According to the above structure, the arrangement of the intermediate microstrip line radiating elements is such that the area of the intermediate microstrip line radiating elements disposed closer to the millimeter-wave circuit is relatively smaller than that of the intermediate microstrip line radiating away from the millimeter-wave circuit. area of the unit.
依上述結構,其中至少局部之相鄰中間微帶線輻射單元具有相同的面積。According to the above structure, at least part of the adjacent intermediate microstrip line radiation units have the same area.
依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元的形狀為選自矩形、多邊形及橢圓形等形狀中之一。According to the above structure, the shape of each middle microstrip line radiation unit and the end microstrip line radiation unit is one of shapes selected from rectangles, polygons, and ellipses.
依上述結構,其中各中間微帶線輻射單元的形狀為矩形,該等中間微帶線輻射單元之長寬比例為1.2~1.3:1,且相鄰漸增之二中間微帶線輻射單元之面積大小比例係為1.1~1.2:1。According to the above structure, the shape of each intermediate microstrip line radiating element is a rectangle, the length-width ratio of these intermediate microstrip line radiating elements is 1.2-1.3:1, and the ratio between the adjacent two gradually increasing intermediate microstrip line radiating elements is The area size ratio is 1.1~1.2:1.
依上述結構,其中該末端微帶線輻射單元的形狀為正方形,該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口,該天線本體端部係穿過該凹缺口中央,再連結於該末端微帶線輻射單元接近中央的部位。According to the above structure, the shape of the end microstrip line radiating element is a square, the part where the end microstrip line radiating element and the antenna body are connected has a rectangular recess, and the end of the antenna body passes through the center of the recess , and then connected to the end microstrip line radiation unit near the center.
為使本發明的上述目的、功效及特徵可獲致更具體的瞭解,茲依下列附圖說明如下:In order to obtain a more specific understanding of the above-mentioned objects, effects and features of the present invention, the following descriptions are given in accordance with the following drawings:
請參第2至4圖所示,可知本發明第一實施例之毫米波天線A的結構包括:由至少一梳狀天線元件1組成的發射陣列天線A1及/或由至少一梳狀天線元件1組成的接收陣列天線A2等部份,在本實施例中,該發射陣列天線A1由三個梳狀天線元件1組成,該接收陣列天線A2係由四個梳狀天線元件1組成,且於實際應用時,該發射陣列天線A1及/或接收陣列天線A2可依照所需的毫米波發射強度及接收靈敏度,而分別調整各梳狀天線元件1的數量;其中各該梳狀天線元件1分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件12,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件12係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to Figures 2 to 4, it can be seen that the structure of the millimeter-wave antenna A according to the first embodiment of the present invention includes: a transmitting array antenna A1 composed of at least one comb-
在本實施例中,該等中間微帶線輻射單元121、122、123係分別僅以其上一端角連結於該天線本體11上 ,使該等中間微帶線輻射單元121、122、123形成以一(相同)歪斜方向(圖示為45度)的間隔排列連結,配合該天線本體11於接近該末端微帶線輻射單元124的一端設有一彎折(圖示為45度)之彎折部111 ,使該末端微帶線輻射單元124可經由該彎折部111而與前述各中間微帶線輻射單元121、122、123形成一(相同)歪斜角度的排列,藉以達到降低對向雜訊干擾的效果。In this embodiment, the intermediate microstrip
在實際應用時,該等中間微帶線輻射單元121、122、123分別具有不同大小面積,且其之排列方式,係將設於較接近該等毫米波電路C1之一端之中間微帶線輻射單元121的面積設成較小,且逐漸遠離該毫米波電路C1而朝向另一端設置之中間微帶線輻射單元122、123…的面積設成相對逐漸增加;各中間微帶線輻射單元121、122、123及該末端微帶線輻射單元124的形狀可為矩形、多邊形或橢圓形等。In practical application, the intermediate microstrip
在圖示所揭露的較佳實施例中,該中間微帶線輻射單元121係為矩形之結構,其長邊長度為L121,短邊長度為W121,當該長邊長度L121與該短邊長度W121的比例為1.2~1.3:1時,該中間微帶線輻射單元121的共振點保持在接近76.5GHz的位置,而相鄰次一位置的中間微帶線輻射單元122亦為相似矩形之結構,且具有一固定的間隔距離Y,其長邊長度為L122,短邊長度為W122,該長邊長度L122與短邊長度W122的比例亦為1.2~1.3:1;同時,該次一位置中間微帶線輻射單元122之面積(長邊長度L122*短邊長度W122)與該原位置中間微帶線輻射單元121之面積(長邊長度L121*短邊長度W121)比例為1.1~1.2:1。In the preferred embodiment disclosed in the figure, the middle microstrip
由上述類推可知,該等中間微帶線輻射單元121、122、123係可分別為矩形形狀,其長寬比例限制在1.2~1.3:1的範圍,相鄰漸增之二中間微帶線輻射單元的面積比例係限制在1.1~1.2:1的範圍,且具有固定的間隔距離Y;藉由此種向外逐漸加大面積的設計,當該毫米波電路C1所輸出的毫米波能量,傳輸至最接近該毫米波電路C1之該中間微帶線輻射單元121(此時該毫米波能量最強,且輻射面積最小),由該中間微帶線輻射單元121向外輻射一部分能量之後,剩餘的能量,繼續沿該天線本體21朝向該次一位置的中間微帶線輻射單元122饋送(此時該毫米波能量次之,且輻射面積稍大),使該次一位置的中間微帶線輻射單元122,可利用較大的輻射面積來彌補該毫米波能量的衰減,藉以使該次一位置中間微帶線輻射單元122向外輻射之能量,可趨近於該原位置中間微帶線輻射單元121向外輻射之能量,同理,該次一位置的中間微帶線輻射單元122向外輻射能量之後,剩餘的能量再繼續由該再次一位置的中間微帶線輻射單元123向外輻射,利用該再次一位置的中間微帶線輻射單元123具有更大的輻射面積來彌補該毫米波能量的再度衰減,可使各位置的中間微帶線輻射單元121、122、123之輻射能量趨近於分佈平均的狀態,以提昇該梳狀天線元件1之整體增益。It can be seen from the above analogy that the intermediate microstrip
在圖示所揭露的較佳實施例中,該末端微帶線輻射單元124為正方形(或矩形)為較佳,且該末端微帶線輻射單元124與該天線本體11銜接的部位具有一矩形(正方形)之凹缺口1241,該天線本體11末端係穿過該凹缺口1241中央,再連結於該末端微帶線輻射單元124接近中央的部位,藉由該凹缺口1241由周邊饋入之設計,可以降低該末端微帶線輻射單元124之反射係數;因此,當中間微帶線輻射單元121、122、123分別向外輻射能量之後的最後剩餘能量,經由該天線本體11傳輸至該末端微帶線輻射單元124時,藉由該末端微帶線輻射單元124由接近中央的部位向外均勻傳播擴散的方式,可將該剩餘能量完全向外輻射,以進一步提昇整體增益。In the preferred embodiment disclosed in the figure, the end microstrip
請參第5圖所示,可知本發明第二實施例之毫米波天線A00的結構包括:由至少一梳狀天線元件100組成的發射陣列天線A100及/或由至少一梳狀天線元件100組成的接收陣列天線A200等部份,在本實施例中,各該梳狀天線元件100分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件1200,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件1200係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to FIG. 5, it can be seen that the structure of the millimeter-wave antenna A00 according to the second embodiment of the present invention includes: a transmitting array antenna A100 composed of at least one comb-
該第二實施例之梳狀天線元件100與前述第一實施例之梳狀天線元件1相較,其差異在於:該微帶線輻射組件1200之各中間微帶線輻射單元121、122、123及末端微帶線輻射單元124係共同地以小於(或大於)45度的歪斜角度間隔排列設置於該天線本體11上,藉此形成又一種具有類似功能之梳狀天線元件100組合結構。The difference between the comb-
請參第6圖所示,可知本發明第三實施例之毫米波天線A0的結構包括:由至少一梳狀天線元件10組成的發射陣列天線A10及/或由至少一梳狀天線元件10組成的接收陣列天線A20等部份,在本實施例中,各該梳狀天線元件10分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件120,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件120係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to FIG. 6, it can be seen that the structure of the millimeter-wave antenna A0 according to the third embodiment of the present invention includes: a transmitting array antenna A10 composed of at least one comb-
該第三實施例之梳狀天線元件10與前述第一實施例之梳狀天線元件1相較,其差異在於:該微帶線輻射組件120中之各中間微帶線輻射單元121、122、123,至少局部具有相同之面積;在第6圖所示之實施例中,該微帶線輻射組件120中具有最接近該毫米波電路C1之二相同最小面積且相鄰之中間微帶線輻射單元121,一最大面積中間微帶線輻射單元123,位於該天線本體11上最遠離該毫米波電路C1的位置,二相同次大面積且相鄰之中間微帶線輻射單元122,位於該天線本體11介於最小面積中間微帶線輻射單元121與最大面積中間微帶線輻射單元123之間的位置,藉此形成另一種符合各中間微帶線輻射單元依面積逐漸增減排列裝置,而具有類似功能之梳狀天線元件10組合結構。The difference between the comb-shaped
綜合以上所述,本發明毫米波天線之抗干擾結構確可達到提昇各梳狀天線元件之增益及抗干擾能力之功效,實為一具新穎性及進步性之發明,爰依法提出申請發明專利;惟上述說明之內容,僅為本發明之較佳實施例說明,舉凡依本發明之技術手段與範疇所延伸之變化、修飾、改變或等效置換者,亦皆應落入本發明之專利申請範圍內。Based on the above, the anti-jamming structure of the millimeter-wave antenna of the present invention can indeed achieve the effect of improving the gain and anti-jamming capability of each comb-shaped antenna element. However, the content of the above description is only the description of the preferred embodiment of the present invention, and all changes, modifications, changes or equivalent replacements extended by the technical means and scope of the present invention should also fall into the patent of the present invention. within the scope of the application.
1、10、100、2 梳狀天線元件1, 10, 100, 2 comb antenna elements
11、21 天線本體11, 21 Antenna body
111 彎折部111 Bending part
12、120、1200 微帶線輻射組件12, 120, 1200 microstrip line radiation components
121、122、123 中間微帶線輻射單元121, 122, 123 Intermediate microstrip line radiation unit
124 末端微帶線輻射單元124 End microstrip line radiation unit
1241 凹缺口1241 Concave Notch
22 微帶線輻射單元22 Microstrip line radiation unit
A、A0、A00、B 毫米波天線A, A0, A00, B mmWave antenna
A1、A10、A100、B1 發射陣列天線A1, A10, A100, B1 transmit array antenna
A2、A20、A200、B2 接收陣列天線A2, A20, A200, B2 receiving array antenna
C 電路板C circuit board
C1 毫米波電路C1 mmWave circuit
L121、 L122 長邊長度L121, L122 Long side length
W121、W122 短邊長度W121, W122 Short side length
Y 間隔距離Y spacing distance
第1圖係習見毫米波天線之結構示意圖。Figure 1 is a schematic diagram of the structure of a conventional millimeter-wave antenna.
第2圖係本發明之毫米波天線第一種實施例結構示意圖。FIG. 2 is a schematic structural diagram of the first embodiment of the millimeter wave antenna of the present invention.
第3圖係第2圖中位於天線本體中段之各中間微帶線輻射單元的局部放大示意圖。Fig. 3 is a partial enlarged schematic view of each intermediate microstrip line radiating element located in the middle section of the antenna body in Fig. 2.
第4圖係第2圖中位於天線本體末(尾)端之末端微帶線輻射單元的局部放大示意圖。Figure 4 is a partially enlarged schematic diagram of the end microstrip line radiating element located at the end (tail) end of the antenna body in Figure 2.
第5圖係本發明之毫米波天線第二種實施例結構示意圖。FIG. 5 is a schematic structural diagram of the second embodiment of the millimeter-wave antenna of the present invention.
第6圖係本發明之毫米波天線第三種實施例結構示意圖。FIG. 6 is a schematic structural diagram of a third embodiment of the millimeter wave antenna of the present invention.
1 梳狀天線元件
11 天線本體
12 微帶線輻射組件
121、122、123 中間微帶線輻射單元
124 末端微帶線輻射單元
A 毫米波天線
A1 發射陣列天線
A2 接收陣列天線
C 電路板
C1 毫米波電路
1
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109143719A TWI773011B (en) | 2020-12-10 | 2020-12-10 | Anti-jamming structure of millimeter wave antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109143719A TWI773011B (en) | 2020-12-10 | 2020-12-10 | Anti-jamming structure of millimeter wave antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202224264A TW202224264A (en) | 2022-06-16 |
TWI773011B true TWI773011B (en) | 2022-08-01 |
Family
ID=83062678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109143719A TWI773011B (en) | 2020-12-10 | 2020-12-10 | Anti-jamming structure of millimeter wave antenna |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI773011B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109768394A (en) * | 2017-11-09 | 2019-05-17 | 北京木牛领航科技有限公司 | The method of microstrip antenna structure and electromagnetic radiation signal |
CN110854516A (en) * | 2019-10-30 | 2020-02-28 | 纵目科技(上海)股份有限公司 | Long-distance antenna, antenna array and radar applying antenna array |
CN111316499A (en) * | 2018-12-04 | 2020-06-19 | 深圳市大疆创新科技有限公司 | Millimeter wave antenna structure, microwave rotary radar and movable platform |
-
2020
- 2020-12-10 TW TW109143719A patent/TWI773011B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109768394A (en) * | 2017-11-09 | 2019-05-17 | 北京木牛领航科技有限公司 | The method of microstrip antenna structure and electromagnetic radiation signal |
CN111316499A (en) * | 2018-12-04 | 2020-06-19 | 深圳市大疆创新科技有限公司 | Millimeter wave antenna structure, microwave rotary radar and movable platform |
CN110854516A (en) * | 2019-10-30 | 2020-02-28 | 纵目科技(上海)股份有限公司 | Long-distance antenna, antenna array and radar applying antenna array |
Also Published As
Publication number | Publication date |
---|---|
TW202224264A (en) | 2022-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112042053B (en) | Radar system | |
CN104515976B (en) | Radar sensor with antenna house | |
US8009082B2 (en) | Mobile radar and planar antenna | |
JPH08301029A (en) | Rear and side obstruction detection system containing large number of antenna for small vehicle | |
JPWO2005055366A1 (en) | Automotive radar | |
WO2022120702A1 (en) | Radiation energy uniform distribution structure of millimeter-wave antenna | |
TWI773011B (en) | Anti-jamming structure of millimeter wave antenna | |
US10585187B2 (en) | Automotive radar with end-fire antenna fed by an optically generated signal transmitted through a fiber splitter to enhance a field of view | |
TWI773010B (en) | Radiated energy distribution structure of millimeter-wave antenna | |
WO2022120701A1 (en) | Anti-interference structure of millimeter-wave antenna | |
TWM610429U (en) | Anti-interference structure of millimeter wave antenna | |
TWM612128U (en) | Radiant energy uniform-distributing structure of millimeter wave antenna | |
JP5032910B2 (en) | Antenna device for pulse radar | |
CN214589266U (en) | Anti-interference structure of millimeter wave antenna | |
CN214589267U (en) | Radiation energy uniform distribution structure of millimeter wave antenna | |
JP5396052B2 (en) | Radar transceiver | |
JP2009047633A (en) | Radar system | |
JP3272523B2 (en) | Transmitter and receiver antenna separate type radar device | |
US20240201320A1 (en) | Method of designing radome of radar device, radome and radar device using the same | |
KR0173241B1 (en) | Collision preventing apparatus making use of an electromagnetic waves and ultrasonic waves | |
Bezousek et al. | U Signal Propagation through Walls | |
Chengke et al. | Application of Ground-Penetrating Radar Broadband Antenna in Underground Detection | |
JP2002156450A (en) | Obstacle discriminating method | |
JP2024100013A (en) | Periphery monitoring device for vehicle | |
TR2023008321A2 (en) | MILLIMETER WAVE RADAR SYSTEM FOR AUTOMOTIVE USE |