TWI771671B - Semiconductor wafer fabrication system and method of fabricating semiconductor wafer - Google Patents

Semiconductor wafer fabrication system and method of fabricating semiconductor wafer Download PDF

Info

Publication number
TWI771671B
TWI771671B TW109113851A TW109113851A TWI771671B TW I771671 B TWI771671 B TW I771671B TW 109113851 A TW109113851 A TW 109113851A TW 109113851 A TW109113851 A TW 109113851A TW I771671 B TWI771671 B TW I771671B
Authority
TW
Taiwan
Prior art keywords
semiconductor wafer
wafer
offset
reference point
actuator
Prior art date
Application number
TW109113851A
Other languages
Chinese (zh)
Other versions
TW202141670A (en
Inventor
陳哲夫
洪偉華
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Priority to TW109113851A priority Critical patent/TWI771671B/en
Publication of TW202141670A publication Critical patent/TW202141670A/en
Application granted granted Critical
Publication of TWI771671B publication Critical patent/TWI771671B/en

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Embodiment of the disclosure provides a method for fabricating semiconductor wafer, moving lift pins of a wafer chuck to an elevated position; moving a semiconductor wafer over the wafer chuck and placing the semiconductor wafer on the lift pins on the elevated position; producing image in relation to the semiconductor wafer and the wafer chuck; calculating a position shift data based on the image; determine the position shift data is in an acceptable range; and when the position shift data is in the acceptable range, issuing a control signal to an actuator that is connected to the lift pins to change the position of the semiconductor wafer relative to the wafer chuck.

Description

半導體晶圓製造系統及製造半導體晶圓的方法 Semiconductor wafer manufacturing system and method for manufacturing semiconductor wafers

本揭露是關於一種製造半導體晶圓的方法及半導體晶圓製造系統,特別是關於半導體晶圓相對於晶圓座位置的校正方法及其系統。The present disclosure relates to a method for manufacturing a semiconductor wafer and a semiconductor wafer manufacturing system, and more particularly, to a method and system for calibrating the position of a semiconductor wafer relative to a wafer seat.

半導體裝置被用於多種電子應用,例如個人電腦、行動電話、數位相機以及其他電子設備。半導體裝置的製造通常是藉由在半導體基板上依序沉積絕緣或介電層材料、導電層材料以及半導體層材料,接著使用微影製程圖案化所形成的各種材料層,以形成電路組件和零件於此半導體基板之上。在積體電路之材料及其設計上的技術進步已發展出多個世代的積體電路。相較於前一個世代,每一世代具有更小更複雜的電路。Semiconductor devices are used in a variety of electronic applications, such as personal computers, mobile phones, digital cameras, and other electronic equipment. Semiconductor devices are usually fabricated by sequentially depositing insulating or dielectric layer materials, conductive layer materials, and semiconductor layer materials on a semiconductor substrate, and then patterning the resulting layers of various materials using a lithography process to form circuit components and parts on the semiconductor substrate. Technological advances in IC materials and their design have resulted in multiple generations of ICs. Each generation has smaller and more complex circuits than the previous generation.

在半導體裝置的製造中,多種製造工具是依序被使用,以製造積體電路在半導體晶圓之上。在製造工具中,往往採用一晶圓座乘載半導體晶圓。然而,放置於晶圓座上方的半導體晶圓若未與晶圓座正中設置,將導致半導體加工過程中均勻度不佳的缺陷。In the fabrication of semiconductor devices, various fabrication tools are used in sequence to fabricate integrated circuits on semiconductor wafers. In manufacturing tools, a wafer carrier is often used to carry semiconductor wafers. However, if the semiconductor wafer placed above the wafer seat is not centered on the wafer seat, it will lead to defects of poor uniformity during semiconductor processing.

本揭露的一實施例提供一種製造半導體晶圓的方法,包括移動一晶圓座的複數個升降銷至一抬升位置;將一半導體晶圓移動至晶圓座上方並放置半導體晶圓在位於抬升位置的升降銷之上;利用一攝影組件產生關於半導體晶圓及晶圓座的一影像;根據影像計算半導體晶圓的一位置偏移資訊;判斷半導體晶圓的位置偏移資訊是否介於可接受範圍;以及當位置偏移資訊介於可接受範圍內時,根據所計算的位置偏移資訊發送一驅動訊號至連結於升降銷的一致動器,使致動器驅動半導體晶圓相對晶圓座的位移。An embodiment of the present disclosure provides a method of manufacturing a semiconductor wafer, which includes moving a plurality of lift pins of a wafer holder to a raised position; moving a semiconductor wafer over the wafer holder and placing the semiconductor wafer at the raised position position on the lift pins; use a camera to generate an image about the semiconductor wafer and the wafer seat; calculate a position offset information of the semiconductor wafer according to the image; determine whether the position offset information of the semiconductor wafer is within the acceptable range acceptance range; and when the position offset information is within the acceptable range, send a driving signal to an actuator connected to the lift pin according to the calculated position offset information, so that the actuator drives the semiconductor wafer relative to the wafer displacement of the seat.

本揭露的另一實施例提供一種半導體晶圓製造系統,包括一本體,配置用於乘載一半導體晶圓且具有複數個穿孔;一桿件,位於本體之下方;複數個升降銷,連結於桿件並以可活動的方式設置於穿孔中;一攝影組件,設置於本體的上方並配置用於產生關於本體的影像;一第一致動器,連結於桿件並配置用於控制桿件於一垂直方向上的位移;複數個第二致動器,各自連結於升降銷並配置用於控制升降銷於一水平方向上的位移;以及一控制模組,電性連結於攝影組件與第二致動器,其中控制模組根據攝影組件所產生的影像發出一控制訊號至第二致動器以控制升降銷在水平方向上的位移。Another embodiment of the present disclosure provides a semiconductor wafer manufacturing system, including a body configured to carry a semiconductor wafer and having a plurality of through holes; a rod located under the body; a plurality of lift pins connected to The rod is movably arranged in the perforation; a photographing assembly is disposed above the body and configured to generate an image about the body; a first actuator is connected to the rod and configured to control the rod displacement in a vertical direction; a plurality of second actuators, each connected to the lift pin and configured to control the displacement of the lift pin in a horizontal direction; and a control module electrically connected to the photographing element and the first Two actuators, wherein the control module sends a control signal to the second actuator according to the image generated by the photographing element to control the displacement of the lift pin in the horizontal direction.

以下的揭露內容提供許多不同的實施例或範例,以實施本揭露的不同特徵而本說明書以下的揭露內容是敘述各個構件及其排列方式的特定範例,以求簡化發明的說明。當然,這些特定的範例並非用以限定本揭露。例如,若是本說明書以下的揭露內容敘述了將一第一特徵形成於一第二特徵之上或上方,即表示其包含了所形成的上述第一特徵與上述第二特徵是直接接觸的實施例,亦包含了尚可將附加的特徵形成於上述第一特徵與上述第二特徵之間,而使上述第一特徵與上述第二特徵可能未直接接觸的實施例。另外,本揭露的說明中不同範例可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。The following disclosure provides many different embodiments or examples for implementing different features of the present disclosure, and the following disclosure of this specification describes specific examples of various components and their arrangements in order to simplify the description of the invention. Of course, these specific examples are not intended to limit the present disclosure. For example, if the following disclosure of this specification describes that a first feature is formed on or over a second feature, it means that it includes an embodiment in which the first feature and the second feature are formed in direct contact with each other. , and also includes embodiments in which additional features may be formed between the first and second features, so that the first and second features may not be in direct contact. In addition, repeated reference symbols and/or words may be used in different examples in the description of the present disclosure. These repeated symbols or words are used for the purpose of simplicity and clarity, and are not used to limit the relationship between the various embodiments and/or the appearance structures.

再者,為了方便描述圖式中一元件或特徵部件與另一(複數)元件或(複數)特徵部件的關係,可使用空間相關用語,例如“在...之下”、“下方”、“下部”、“上方”、“上部”及類似的用語等。可以理解的是,除了圖式所繪示的方位之外,空間相關用語涵蓋使用或操作中的裝置的不同方位。所述裝置也可被另外定位(例如,旋轉90度或者位於其他方位),並對應地解讀所使用的空間相關用語的描述。可以理解的是,在所述方法之前、期間及之後,可提供額外的操作步驟,且在某些方法實施例中,所述的某些操作步驟可被替代或省略。Furthermore, for convenience in describing the relationship of one element or feature to another (plural) element or (plural) feature in the drawings, spatially relative terms such as "under", "under", "Lower", "upper", "upper" and similar terms, and the like. It will be understood that, in addition to the orientation depicted in the figures, spatially relative terms encompass different orientations of the device in use or operation. The device may also be otherwise oriented (eg, rotated 90 degrees or at other orientations) and the description of the spatially relative terms used interpreted accordingly. It will be appreciated that additional operational steps may be provided before, during, and after the described method, and that certain operational steps described may be replaced or omitted in certain method embodiments.

應注意的是,此處所討論的實施例可能未必敘述出可能存在於結構內的每一個部件或特徵。舉例來說,圖式中可能省略一個或多個部件,例如當部件的討論說明可能足以傳達實施例的各個樣態時可能將其從圖式中省略。再者,此處所討論的方法實施例可能以特定的進行順序來討論,然而在其他方法實施例中,可以以任何合理的順序進行。It should be noted that the embodiments discussed herein may not necessarily recite every component or feature that may be present within a structure. For example, one or more components may be omitted from the drawings, eg, when the discussion of a component may sufficiently convey aspects of the embodiments, it may be omitted from the drawings. Furthermore, the method embodiments discussed herein may be discussed in a particular order of execution, while in other method embodiments, they may be performed in any reasonable order.

第1圖顯示根據一些實施例的用於加工半導體晶圓5的半導體晶圓製造系統1的示意圖。第1圖中的半導體晶圓製造系統1包括裝載端口2、加載鎖定室(load lock chamber)3、機器手臂6、多個加工工具10、一個或多個計量室8和控制模組90。FIG. 1 shows a schematic diagram of a semiconductor wafer fabrication system 1 for processing semiconductor wafers 5 in accordance with some embodiments. The semiconductor wafer fabrication system 1 in FIG. 1 includes a load port 2 , a load lock chamber 3 , a robotic arm 6 , a plurality of processing tools 10 , one or more metrology chambers 8 and a control module 90 .

根據一些實施例,半導體晶圓5由矽、鍺或其他半導體材料所製成。根據一些實施例,半導體晶圓5由複合半導體所製成,如碳化矽(SiC)、砷化鎵(GaAs)、砷化銦(InAs)或磷化銦(InP)。根據一些實施例,半導體晶圓5由合金半導體所製成,如矽鍺(SiGe)、矽鍺碳(SiGeC)、磷砷化鎵(GaAsP)或磷化銦鎵(GaInP)。根據一些實施例,半導體晶圓5包括一晶膜層。舉例來說,半導體晶圓5具有一晶膜層覆蓋於大型半導體(bulk semiconductor)上。根據一些實施例,半導體晶圓5可為矽絕緣體(silicon-on-insulator;SOI)或鍺絕緣體(germanium-on-insulator;GOI)基板。According to some embodiments, the semiconductor wafer 5 is made of silicon, germanium or other semiconductor materials. According to some embodiments, the semiconductor wafer 5 is made of a compound semiconductor, such as silicon carbide (SiC), gallium arsenide (GaAs), indium arsenide (InAs) or indium phosphide (InP). According to some embodiments, the semiconductor wafer 5 is made of an alloy semiconductor, such as silicon germanium (SiGe), silicon germanium carbon (SiGeC), gallium arsenide phosphide (GaAsP) or gallium indium phosphide (GaInP). According to some embodiments, the semiconductor wafer 5 includes a crystalline film layer. For example, the semiconductor wafer 5 has a crystal film layer covering a bulk semiconductor. According to some embodiments, the semiconductor wafer 5 may be a silicon-on-insulator (SOI) or germanium-on-insulator (GOI) substrate.

半導體晶圓5上可包括有多個裝置元件。舉例而言,形成於半導體晶圓5上的裝置元件可包括一電晶體,例如:金氧半導體場效電晶體(metal oxide semiconductor field effect transistors (MOSFET))、互補式金氧半導體電晶體(complementary metal oxide semiconductor (CMOS) transistors)、雙載子接面電晶體(bipolar junction transistors (BJT))、高電壓電晶體、高頻電晶體、P型場效電晶體(p-channel and/or n-channel field-effect transistors (PFET))或者P型場效電晶體(n-channel field-effect transistors (NFET)等,以及或者其他元件。半導體晶圓5上的多個裝置元件已經經過多個加工製程,例如沈積、蝕刻、離子植入、光刻、退火、以及或者其他製程。A plurality of device elements may be included on the semiconductor wafer 5 . For example, the device elements formed on the semiconductor wafer 5 may include a transistor, such as metal oxide semiconductor field effect transistors (MOSFETs), complementary metal oxide semiconductor transistors (MOSFETs) metal oxide semiconductor (CMOS) transistors), bipolar junction transistors (BJT), high voltage transistors, high frequency transistors, p-channel and/or n- channel field-effect transistors (PFET) or n-channel field-effect transistors (NFET), etc., and or other components. The various device components on the semiconductor wafer 5 have undergone various processing steps , such as deposition, etching, ion implantation, photolithography, annealing, and or other processes.

裝載端口2配置用於支撐並停靠晶圓載具4,以便於將半導體晶圓5送入半導體晶圓製造系統1中,以及隨後將其從半導體晶圓製造系統1中移出。晶圓載具4配置用於輸送多個半導體晶圓,例如6個晶圓、12個晶圓、24個晶圓等。晶圓載具4可以是用於裝載每個直徑為18mm的半導體晶圓的標準機械接口(Standard Mechanical Interface,SMIF)。或者,晶圓載具4可以是前開式晶圓傳送盒(Front Opening Unified Pod,FOUP),其可以用於裝載300mm或450mm的半導體晶圓或具有更大直徑的半導體晶圓。然而,不排除其他類型和/或尺寸的晶圓載具。The load port 2 is configured to support and dock the wafer carrier 4 to facilitate the feeding and subsequent removal of the semiconductor wafers 5 into the semiconductor wafer fabrication system 1 . The wafer carrier 4 is configured to transport a plurality of semiconductor wafers, eg, 6 wafers, 12 wafers, 24 wafers, and the like. The wafer carrier 4 may be a Standard Mechanical Interface (SMIF) for loading semiconductor wafers each having a diameter of 18 mm. Alternatively, the wafer carrier 4 may be a Front Opening Unified Pod (FOUP), which may be used to load 300mm or 450mm semiconductor wafers or semiconductor wafers with larger diameters. However, other types and/or sizes of wafer carriers are not excluded.

加載鎖定室3設置在半導體晶圓製造系統1和裝載端口2之間。加載鎖定室3配置用於將半導體晶圓製造系統1中的氣壓與外部環境隔離來保存半導體晶圓製造系統1中的壓力。當來自晶圓載具4的半導體晶圓5送入至加載鎖定室3中時,加載鎖定室3的門被密封。如此一來,氣密的環境建構於加載鎖定室3中。加載鎖定室3可以藉由改變內部的氣體含量而產生與半導體晶圓製造系統1內匹配的壓力。當達到正確的氣壓時,機械手臂6可以自加載鎖定室3搬運半導體晶圓5。機械手臂6在加載鎖定室3,加工工具10和計量室8之間傳送晶圓。機械手臂6可操作以在加工之前將半導體晶圓5定位並放置到加工工具10中,並且在加工之後將半導體晶圓5從加工工具10中移除。The load lock chamber 3 is provided between the semiconductor wafer fabrication system 1 and the load port 2 . The load lock chamber 3 is configured to preserve the pressure in the semiconductor wafer fabrication system 1 by isolating the air pressure in the semiconductor wafer fabrication system 1 from the external environment. When the semiconductor wafers 5 from the wafer carrier 4 are fed into the load lock chamber 3, the door of the load lock chamber 3 is sealed. In this way, an airtight environment is established in the load lock chamber 3 . The load lock chamber 3 can generate a pressure matched with that in the semiconductor wafer fabrication system 1 by changing the gas content inside. When the correct air pressure is reached, the robot arm 6 can transport the semiconductor wafer 5 from the load lock chamber 3 . Robot arm 6 transfers wafers between load lock chamber 3 , process tool 10 and metrology chamber 8 . Robotic arm 6 is operable to position and place semiconductor wafer 5 into processing tool 10 prior to processing and to remove semiconductor wafer 5 from processing tool 10 after processing.

加工工具10配置用於執行一或多種半導體加工製程,例如等離子體加工、化學氣相沉積(CVD)、原子層沉積(ALD)、物理氣相沉積(PVD)、退火、乾式蝕刻、脫氣、預清潔、清潔、後清潔等。計量室8配置為在加工之前或之後測量晶圓的各種性質。在一些實施例中,一個或多個計量室8被集成在一個或多個加工工具10中。第1圖中雖然顯示五個加工工具10和兩個計量室8,但其餘數量的加工工具10和/或計量室8皆包括在本揭露的範圍內。同樣地,在一些實施例中,半導體晶圓製造系統1中包括一個以上的機械手臂6和/或負載鎖定腔室3。控制模組90被配置為控制晶圓的加工、運送和測量。下文中將參照第6圖進一步描述控制模組90的細節特徵。The processing tool 10 is configured to perform one or more semiconductor processing processes, such as plasma processing, chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD), annealing, dry etching, degassing, Pre-cleaning, cleaning, post-cleaning, etc. The metrology chamber 8 is configured to measure various properties of the wafer before or after processing. In some embodiments, one or more metering chambers 8 are integrated into one or more process tools 10 . Although five processing tools 10 and two metering chambers 8 are shown in FIG. 1 , the remaining number of processing tools 10 and/or metering chambers 8 are included within the scope of the present disclosure. Likewise, in some embodiments, the semiconductor wafer fabrication system 1 includes more than one robot arm 6 and/or a load lock chamber 3 . The control module 90 is configured to control the processing, transport and measurement of the wafers. The detailed features of the control module 90 will be further described below with reference to FIG. 6 .

第2圖顯示根據一些實施例的加工工具10的局部元件的示意圖。在一些實施例中,加工工具10為一電漿反應腔室,並用於執行包括電漿蝕刻加工等半導體晶圓加工程序。然而,加工工具10不限於執行上述加工,加工工具10可用於執行任何半導體晶圓的製程加工。雖然本揭露的實施例以此特定架構來表達,但可理解本揭露也可應用在其他各種不同的架構和設計上。另外,此加工工具10只是一個簡單的圖式表達,加工工具10的部分元件並沒有展示出來。舉例來說,閥門、密封組件和其他類似物品都沒有被展示出。熟悉此項技藝的人都可以理解這些和其他組成加工工具10的部分都可包含於其中。FIG. 2 shows a schematic diagram of partial elements of a machining tool 10 in accordance with some embodiments. In some embodiments, the processing tool 10 is a plasma reaction chamber and is used to perform semiconductor wafer processing procedures including plasma etching processing. However, the processing tool 10 is not limited to performing the above-described processing, and the processing tool 10 may be used to perform the processing of any semiconductor wafer. Although the embodiments of the present disclosure are expressed in this particular architecture, it is to be understood that the present disclosure may also be applied to various other architectures and designs. In addition, the processing tool 10 is only a simple schematic representation, and some elements of the processing tool 10 are not shown. For example, valves, seal assemblies and other similar items are not shown. Those skilled in the art will understand that these and other components that make up the machining tool 10 may be incorporated therein.

如第2圖所示,加工工具10包含反應腔11、上電極組件12、射頻線圈組14、晶圓座20、攝影組件140及控制模組90。反應腔11定義用於執行加工製程的區域。在一些實施例中,反應腔11包括一反應腔壁111和一反應腔底112。反應腔壁111由反應腔底112的邊緣垂直地延伸。在一些實施例中,在反應腔壁111上可具有可選擇性密封之一狹縫活門,使其方便將半導體晶圓5送入和送出加工工具10。在一些實施例中,反應腔底112包括一抽氣口(未圖式)用以將氣體由反應腔11中抽出。舉例而言,一抽氣系統(包括如節流閥和真空幫浦等)可連接在反應腔底112的抽氣口上。一旦該狹縫活門被密封起來,便可操作抽氣系統來汲取並維持反應腔11內的真空。As shown in FIG. 2 , the processing tool 10 includes a reaction chamber 11 , an upper electrode assembly 12 , a radio frequency coil assembly 14 , a wafer seat 20 , a photographing assembly 140 and a control module 90 . The reaction chamber 11 defines an area for performing machining processes. In some embodiments, the reaction chamber 11 includes a reaction chamber wall 111 and a reaction chamber bottom 112 . The reaction chamber wall 111 extends vertically from the edge of the reaction chamber bottom 112 . In some embodiments, there may be a selectively sealable slit shutter on the reaction chamber wall 111 to facilitate transport of the semiconductor wafer 5 into and out of the processing tool 10 . In some embodiments, the reaction chamber bottom 112 includes a gas extraction port (not shown) for extracting gas from the reaction chamber 11 . For example, a pumping system (including a throttle valve and a vacuum pump, etc.) can be connected to the pumping port of the bottom 112 of the reaction chamber. Once the slit valve is sealed, the pumping system can be operated to draw and maintain the vacuum within the reaction chamber 11 .

上電極組件12位於反應腔11的上方,且包括一平板電極121及一環型電極122。平板電極121位於反應腔11的上方末端,環型電極122設置於平板電極121與反應腔壁111之間。在一些實施例中,平板電極121定義有用於分配氣體的噴頭120。如此配置,平板電極121可作為用以將氣體分配至反應腔11中的一個組件,並與一氣體來源(未圖式)耦合。此氣體來源含有用來加工反應腔11內的先驅物或製程氣體。在一些實施例中,平板電極121連接至直流電源(例如接地)。在一些實施例中,平板電極121、反應腔壁111和一反應腔底112係一同連接至接地。The upper electrode assembly 12 is located above the reaction chamber 11 and includes a flat electrode 121 and a ring electrode 122 . The plate electrode 121 is located at the upper end of the reaction chamber 11 , and the ring electrode 122 is disposed between the plate electrode 121 and the reaction chamber wall 111 . In some embodiments, the plate electrode 121 defines a showerhead 120 for distributing the gas. So configured, the plate electrode 121 may serve as a component for distributing gas into the reaction chamber 11, coupled to a gas source (not shown). The gas source contains precursors or process gases used to process the reaction chamber 11 . In some embodiments, the plate electrode 121 is connected to a DC power source (eg, ground). In some embodiments, the plate electrode 121, the reaction chamber wall 111 and a reaction chamber bottom 112 are all connected to ground together.

在一些實施例中,射頻線圈組14環繞環型電極122並耦接至第一射頻電源15,並藉由第一射頻電源15所提供之射頻電力,產生並維持反應腔11中的電漿18。在一實施例中,第一射頻電源15為一高頻射頻電源。第一射頻電源15係經由一阻抗匹配電路16與射頻線圈組14相連接,用以增強製程氣體的解離和電漿密度。舉例而言,阻抗匹配電路16可包含一或更多的電容器、誘導器和其他電路零件。第一射頻電源15以大約在2MHz或以上的頻率輸送射頻電力供給射頻線圈組14,但本揭露並不盡此為限。在一些實施例中,第一射頻電源15的偏壓約介於-30K至+30K伏特,其操作時的脈衝寬度(pulse width)約介於5至300微秒,但不限定於此。In some embodiments, the RF coil set 14 surrounds the ring electrode 122 and is coupled to the first RF power source 15 , and generates and maintains the plasma 18 in the reaction chamber 11 by the RF power provided by the first RF power source 15 . . In one embodiment, the first radio frequency power supply 15 is a high frequency radio frequency power supply. The first RF power source 15 is connected to the RF coil assembly 14 via an impedance matching circuit 16 for enhancing the dissociation and plasma density of the process gas. For example, impedance matching circuit 16 may include one or more capacitors, inducers, and other circuit components. The first RF power source 15 supplies RF power to the RF coil assembly 14 at a frequency of about 2 MHz or above, but the present disclosure is not limited thereto. In some embodiments, the bias voltage of the first RF power source 15 is about -30K to +30K volts, and the pulse width during operation thereof is about 5 to 300 microseconds, but is not limited thereto.

如第2圖所示,晶圓座20係位於反應腔11之反應腔底112上,且設置用以承載半導體晶圓5。在一些實施例中,環型電極122與射頻線圈組14作為加工工具10的頂部電極,而晶圓座20則作為下方電極。晶圓座20其可為適合支撐晶圓之任何構造,例如靜電夾盤或真空夾盤。As shown in FIG. 2 , the wafer holder 20 is located on the reaction chamber bottom 112 of the reaction chamber 11 , and is configured to carry the semiconductor wafer 5 . In some embodiments, the ring electrode 122 and the RF coil assembly 14 are used as the top electrode of the processing tool 10, and the wafer holder 20 is used as the lower electrode. The wafer holder 20 may be of any configuration suitable for supporting wafers, such as an electrostatic chuck or a vacuum chuck.

根據本揭露的一些實施例,晶圓座20包括一本體21及一支撐組件22。本體21包括一頂面211作為半導體晶圓5的支撐表面,其外型通常與位於其上方要支撐的半導體晶圓5之外型相符合。舉例來說,晶圓座20的頂面211通常為圓形的並用於支撐實質上為圓形的半導體晶圓5。在一些實施例中,晶圓座20的頂面211具有較半導體晶圓5較大的面積。在一實施例中,本體21的表面與晶圓溫度控制系統(未圖示)連接,例如電阻加熱線圈及/或連接一加熱或冷卻流體系統的流體通道。本體21可包含用於加工工具10之任一材料。例如,本體21的材料包含鋼、其他具導電性的金屬或合金。在一些實施例,本體21包含真空系統以用於將半導體晶圓5固持定位。在一些實施例中,本體21為一靜電式晶圓座(Electrostatic. Chuck,ESC)。According to some embodiments of the present disclosure, the wafer holder 20 includes a body 21 and a support member 22 . The body 21 includes a top surface 211 as a support surface for the semiconductor wafer 5 , the shape of which generally conforms to the shape of the semiconductor wafer 5 to be supported above it. For example, the top surface 211 of the wafer holder 20 is generally circular and is used to support the substantially circular semiconductor wafer 5 . In some embodiments, the top surface 211 of the wafer seat 20 has a larger area than the semiconductor wafer 5 . In one embodiment, the surface of the body 21 is connected to a wafer temperature control system (not shown), such as resistive heating coils and/or fluid channels connected to a heating or cooling fluid system. The body 21 may comprise any material used in the machining tool 10 . For example, the material of the body 21 includes steel, other conductive metals or alloys. In some embodiments, the body 21 includes a vacuum system for holding the semiconductor wafer 5 in place. In some embodiments, the body 21 is an electrostatic wafer holder (Electrostatic. Chuck, ESC).

支撐組件22用於在半導體晶圓5送入至本體21上方時支撐半導體晶圓5。在一些實施例中,支撐組件22包括一桿件221、一延伸部222及多個升降銷223。在半導體晶圓5送入至本體21上方時,支撐組件22移動至一抬升位置(如第9圖所示),以支撐半導體晶圓5位於本體21上方,並且隨後下降至一下降位置(如第4圖所示),使半導體晶圓放置於本體21的上表面211之上。關於支撐組件22的位置操控將於後方關於方法S100的說明中進一步詳述。The support assembly 22 is used to support the semiconductor wafer 5 when the semiconductor wafer 5 is fed over the body 21 . In some embodiments, the support assembly 22 includes a rod 221 , an extension portion 222 and a plurality of lift pins 223 . When the semiconductor wafer 5 is transported above the body 21, the support assembly 22 moves to a raised position (as shown in FIG. 9) to support the semiconductor wafer 5 above the body 21, and then descends to a lowered position (as shown in FIG. 9). 4 ), the semiconductor wafer is placed on the upper surface 211 of the body 21 . The position manipulation of the support assembly 22 will be described in further detail in the description of the method S100 later.

在一些實施例中,桿件221位於本體21的下方並在一垂直方向(例如:Z軸方向)上延伸,且延伸部222連結於桿件221的一端。延伸部222的數量可對應於升降銷223的數量並各自由桿件221的一端輻射狀朝外延伸。升降銷223連結於該延伸部222並垂直向上延伸以插入本體21當中。在另一些實施例中,上述延伸部222的段部及升降銷223的數量皆為3個,但本揭露並不僅此為限。在另一些實施例中,延伸部222省略設置,桿件221與升降銷223在一直線上垂直延伸。In some embodiments, the rod member 221 is located below the body 21 and extends in a vertical direction (eg, the Z-axis direction), and the extension portion 222 is connected to one end of the rod member 221 . The number of the extension parts 222 may correspond to the number of the lift pins 223 and each extends radially outward from one end of the rod 221 . The lift pin 223 is connected to the extension portion 222 and extends vertically upward to be inserted into the body 21 . In other embodiments, the number of the segments of the extension portion 222 and the lift pins 223 are both three, but the present disclosure is not limited thereto. In other embodiments, the extension portion 222 is omitted, and the rod member 221 and the lift pin 223 extend vertically on a straight line.

請同時參照第3圖及第4圖。第3圖顯示本揭露一些實施例中具有半導體晶圓5放置於其上的晶圓座20的上視圖,第4圖顯示第3圖的晶圓座20在A-A截線上的剖面圖。在一些實施例中,本體21具有多個穿孔210。穿孔210貫穿本體21的上表面211以及下表面212,升降銷223可活動的方式設置於穿孔210當中。應當理解的是,隨然在第3圖所示的實施例中,本體21具有三個穿孔210用於容納三個升降銷223,但本揭露並不僅此為限。本體21具有較多或較少的穿孔以容納不同數量的升降銷223皆屬於本揭露的範圍。在一實施例中,每一升降銷223的寬度W1與對應的穿孔210的寬度W2的比值介於0.25至0.75之間,由於上述比值較傳統晶圓座中升降銷與穿孔的比值更小,故可增加升降銷223在穿孔210中的位移量。Please refer to Figure 3 and Figure 4 at the same time. FIG. 3 shows a top view of the wafer seat 20 with the semiconductor wafer 5 placed thereon according to some embodiments of the present disclosure, and FIG. 4 shows a cross-sectional view of the wafer seat 20 of FIG. 3 along the line A-A. In some embodiments, the body 21 has a plurality of perforations 210 . The through holes 210 penetrate through the upper surface 211 and the lower surface 212 of the main body 21 , and the lift pins 223 are movably disposed in the through holes 210 . It should be understood that, in the embodiment shown in FIG. 3 , the body 21 has three through holes 210 for accommodating three lift pins 223 , but the present disclosure is not limited thereto. It is within the scope of the present disclosure that the body 21 has more or less through holes to accommodate different numbers of lift pins 223 . In one embodiment, the ratio of the width W1 of each lift pin 223 to the width W2 of the corresponding through hole 210 is between 0.25 and 0.75. Since the above ratio is smaller than the ratio of the lift pin to the through hole in the conventional wafer holder, Therefore, the displacement of the lift pins 223 in the through holes 210 can be increased.

在一些實施例中,如第4圖所示,支撐組件22更包括有多個致動器,例如第一致動器224及多個第二致動器225。第一致動器224配置用於驅動支撐組件22在垂直方向(Z軸方向)上的移動,且多個第二致動器225各自配置用於驅動升降銷223相對於延伸部222在水平方向上的移動。在一些實施例中,第一致動器224包括一旋轉馬達並連結於桿件221的底端。桿件221的外表面設置有螺紋。當第一致動器224帶動桿件221轉動時,桿件221進行垂直方向(Z軸方向)上的移動。在一實施例中,第一致動器224是根據來自控制模組90的控制訊號進行驅動,進而對桿件221的垂直移動距離進行控制。In some embodiments, as shown in FIG. 4 , the support assembly 22 further includes a plurality of actuators, such as a first actuator 224 and a plurality of second actuators 225 . The first actuator 224 is configured to drive the movement of the support assembly 22 in the vertical direction (Z-axis direction), and the plurality of second actuators 225 are each configured to drive the lift pins 223 in the horizontal direction relative to the extension 222 move on. In some embodiments, the first actuator 224 includes a rotary motor and is coupled to the bottom end of the rod 221 . The outer surface of the rod 221 is provided with threads. When the first actuator 224 drives the rod 221 to rotate, the rod 221 moves in the vertical direction (Z-axis direction). In one embodiment, the first actuator 224 is driven according to the control signal from the control module 90 to control the vertical movement distance of the rod 221 .

在一些實施例中,多個第二致動器225各自設置於延伸部222與升降銷223的連接處。第二致動器225可各自包括一或多個微型馬達。舉例而言,第二致動器225包括一球型馬達以對升降銷223的位移進行驅動。或者,第二致動器225包括二個微型的線性馬達交互堆疊,其中一者用於驅動升降銷223在X軸方向上的位移,且另一者用於驅動升降銷223在Y軸上的位移。在一實施例中,第二致動器225是根據來自控制模組90的控制訊號進行驅動,進而對升降銷223的水平移動距離進行控制。In some embodiments, the plurality of second actuators 225 are respectively disposed at the connection between the extension portion 222 and the lift pin 223 . The second actuators 225 may each include one or more micromotors. For example, the second actuator 225 includes a ball motor to drive the displacement of the lift pin 223 . Alternatively, the second actuator 225 includes two micro linear motors stacked alternately, one of which is used to drive the displacement of the lift pin 223 in the X-axis direction, and the other is used to drive the lift pin 223 to move along the Y-axis. displacement. In one embodiment, the second actuator 225 is driven according to the control signal from the control module 90 to control the horizontal movement distance of the lift pin 223 .

在一實施例中,升降銷223與半導體晶圓5接觸的表面包括粗糙表面,以增加升降銷223與半導體晶圓5之間的摩擦力。舉例而言,如第5A圖所示,升降銷223包括一柱體226,在柱體226的頂端2261形成有一粗糙結構227。粗糙結構227可刻印於頂端2261之上。或者,粗糙結構227利用黏貼的方式固定於頂端2261。在另一示例中,升降銷223a之整體的外表面皆具有粗糙結構,並不限於與半導體晶圓5接觸之表面。In one embodiment, the surface of the lift pins 223 in contact with the semiconductor wafer 5 includes a rough surface, so as to increase the frictional force between the lift pins 223 and the semiconductor wafer 5 . For example, as shown in FIG. 5A , the lift pin 223 includes a column 226 , and a rough structure 227 is formed on the top 2261 of the column 226 . Roughness 227 may be imprinted on top 2261 . Alternatively, the rough structure 227 is fixed to the top 2261 by means of sticking. In another example, the entire outer surface of the lift pins 223 a has a rough structure, and is not limited to the surface in contact with the semiconductor wafer 5 .

再次參照第1圖,在一些實施例,第二射頻電源17耦接至晶圓座20的本體21。第二射頻電源17為一低頻射頻電源,以大約在0.5至10KHz的頻率輸送射頻電力供給晶圓座20,但不限定於此。在一些實施例中,第二射頻電源17的偏壓約介於-0.2至10千伏特,其操作時的脈衝寬度(pulse width)約介於20至100微秒,但不限定於此。在一實施例中,藉由頂部電極(環型電極122與射頻線圈組14)和下方電極(晶圓座20)間之一偏壓,引導電漿18的離子衝擊至半導體晶圓5的表面,但本揭露並不僅此為限。在一些實施例,第二射頻電源17亦可為一直流偏壓源。Referring again to FIG. 1 , in some embodiments, the second RF power source 17 is coupled to the body 21 of the wafer seat 20 . The second radio frequency power supply 17 is a low frequency radio frequency power supply, which supplies radio frequency power to the wafer seat 20 at a frequency of about 0.5 to 10 KHz, but is not limited thereto. In some embodiments, the bias voltage of the second RF power source 17 is about -0.2 to 10 kV, and the pulse width during operation thereof is about 20 to 100 microseconds, but not limited thereto. In one embodiment, ions of the plasma 18 are guided to impact the surface of the semiconductor wafer 5 by a bias voltage between the top electrode (ring electrode 122 and the RF coil assembly 14 ) and the lower electrode (wafer holder 20 ). , but this disclosure is not limited to this. In some embodiments, the second RF power source 17 can also be a DC bias voltage source.

在一些實施例中,攝影組件40設置於晶圓座20上方的任意位置並用於產生關於晶圓座20的影像。在一實施例中,攝影組件40包括一相機,用於產生關於晶圓座20的靜態影像或是動態影像。攝影組件40將關於晶圓座20的影像資料傳送至控制模組90中進行影像分析,以決定升降銷223的位移距離。In some embodiments, the camera assembly 40 is positioned anywhere above the wafer seat 20 and is used to generate images about the wafer seat 20 . In one embodiment, the camera assembly 40 includes a camera for generating a still image or a moving image of the wafer seat 20 . The photographing unit 40 transmits the image data about the wafer seat 20 to the control module 90 for image analysis, so as to determine the displacement distance of the lift pins 223 .

第6圖顯示本揭露之半導體晶圓製造系統1的部分元件的方塊圖。在一些實施例中,控制模組90包括處理器91和記憶體92。處理器91配置為執行和/或解釋儲存在記憶體92中的一組或多組指令。在一些實施例中,處理器91是微處理器(MCP)中央處理器(CPU)、多處理器、分佈式處理系統、專用集成電路(ASIC)和/或合適的處理器。FIG. 6 shows a block diagram of some components of the semiconductor wafer fabrication system 1 of the present disclosure. In some embodiments, the control module 90 includes a processor 91 and a memory 92 . Processor 91 is configured to execute and/or interpret one or more sets of instructions stored in memory 92 . In some embodiments, processor 91 is a microprocessor (MCP) central processing unit (CPU), a multiprocessor, a distributed processing system, an application specific integrated circuit (ASIC), and/or a suitable processor.

記憶體92包括用於儲存數據和/或指令以供處理器91執行的隨機存取記憶體或其他動態存儲設備。在一些實施例中,記憶體92用於在執行製造加工中儲存加工數值、臨時變量或其他的中間訊息。舉例而言,記憶體92是配製用於儲存由攝影組件40產生的影像訊息以及/或者記憶體92是配置用於儲存關於半導體晶圓5正確放置於晶圓座20的影像資料。Memory 92 includes random access memory or other dynamic storage devices for storing data and/or instructions for execution by processor 91 . In some embodiments, the memory 92 is used to store process values, temporary variables, or other intermediate information during the execution of the manufacturing process. For example, the memory 92 is configured to store image information generated by the camera element 40 and/or the memory 92 is configured to store image data regarding the proper placement of the semiconductor wafer 5 in the wafer seat 20 .

在一些實施例中,記憶體92包括唯讀記憶體或其他靜態存儲設備,用於儲存用於處理器91的靜態信息和指令。在一些實施例中,記憶體92儲存半導體晶圓5正中設置於晶圓夾20上方的位置資訊。在一些實施例中,記憶體92是電子的、磁性、光學、電磁、紅外線和/或半導體系統(或裝置或設備)。例如,記憶體92包括半導體或固態記憶體、磁帶、可移動計算機硬碟、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、光碟和/或記憶體。In some embodiments, memory 92 includes read-only memory or other static storage device for storing static information and instructions for processor 91 . In some embodiments, the memory 92 stores the position information of the center of the semiconductor wafer 5 disposed above the wafer holder 20 . In some embodiments, memory 92 is an electronic, magnetic, optical, electromagnetic, infrared and/or semiconductor system (or device or device). For example, memory 92 includes semiconductor or solid state memory, magnetic tape, removable computer hard disks, random access memory (RAM), read only memory (ROM), optical disks, and/or memory.

在一些實施例中,如第6圖所示,來自攝影組件40的影像資料95輸出至控制模組90進行分析,以確定半導體晶圓5相對於晶圓座20的偏移量。隨後,控制模組90根據半導體晶圓5相對於晶圓座20的偏移量發送一控制訊號96至支撐組件22的致動器,例如第一致動器224(第4圖)或第二致動器225(第4圖),以控制支撐組件22的位移。在另一些實施例中,攝影組件40包括用於執行計算的專用處理器或硬體,並且輸出關於半導體晶圓5相對於晶圓座20的偏移量的分析訊號至控制模組90,隨後,控制模組90根據上述分析訊號發送一控制訊號96至支撐組件22的致動器。In some embodiments, as shown in FIG. 6 , the image data 95 from the camera unit 40 is output to the control module 90 for analysis to determine the offset of the semiconductor wafer 5 relative to the wafer seat 20 . Then, the control module 90 sends a control signal 96 to the actuators of the support assembly 22 , such as the first actuator 224 ( FIG. 4 ) or the second actuator, according to the offset of the semiconductor wafer 5 relative to the wafer holder 20 . An actuator 225 (FIG. 4) controls the displacement of the support assembly 22. In other embodiments, the camera unit 40 includes a dedicated processor or hardware for performing calculations, and outputs an analysis signal about the offset of the semiconductor wafer 5 relative to the wafer seat 20 to the control module 90, and then , the control module 90 sends a control signal 96 to the actuator of the support assembly 22 according to the analysis signal.

第7圖顯示根據本揭露一些實施例製造半導體晶圓的方法S100的流程圖。為了舉例,該流程以第1、8-13圖的示意圖來說明。在不同的實施例中,部分階段可以替換或是消去。以下說明僅為示例性的且並非希望限制後方申請專利範圍中所記載的內容。可以理解的是,在由第7圖圖示的步驟之前、期間及之後提供附加步驟,並且所述方法的附加實施例可以替換或減少如下所述的一些操作,並且如下所述的操作的順序可為互換的。FIG. 7 shows a flowchart of a method S100 of fabricating a semiconductor wafer according to some embodiments of the present disclosure. For the sake of example, the flow is illustrated with the schematic diagrams in Figs. 1 and 8-13. In different embodiments, some stages may be replaced or eliminated. The following description is exemplary only and is not intended to limit what is described in the scope of the following claims. It will be appreciated that additional steps are provided before, during, and after the steps illustrated by Figure 7, and that additional embodiments of the method may replace or reduce some of the operations described below, and the order of operations described below Interchangeable.

製造半導體晶圓的方法S100包括操作S110,移動晶圓座20的升降銷223至一抬升位置。在一實施例中,在半導體晶圓5移入至加工工具10之前,晶圓座20上方並未放置半導體晶圓。並且,晶圓座20的第一制動器224根據控制模組90的控制訊號對支撐組件22,將支撐組件22的高度從第4圖所示的下降位置移動至第8圖所示的抬升位置。在下降位置時,支撐組件22的升降銷223的頂端2230位於本體21的上表面211下方。在抬升位置時,支撐組件22的升降銷223的頂端2230位於本體21的上表面211上方,並與本體21的上表面211相隔一間距。The method S100 of manufacturing a semiconductor wafer includes operation S110 , moving the lift pins 223 of the wafer holder 20 to a lift position. In one embodiment, before the semiconductor wafer 5 is moved into the processing tool 10 , no semiconductor wafer is placed over the wafer seat 20 . In addition, the first brake 224 of the wafer holder 20 moves the height of the support assembly 22 from the lowered position shown in FIG. 4 to the raised position shown in FIG. 8 to the support assembly 22 according to the control signal of the control module 90 . In the lowered position, the top end 2230 of the lift pin 223 of the support assembly 22 is located below the upper surface 211 of the body 21 . In the raised position, the top end 2230 of the lift pin 223 of the support assembly 22 is located above the upper surface 211 of the main body 21 and is spaced apart from the upper surface 211 of the main body 21 by a distance.

製造半導體晶圓的方法S100還包括操作S120,將半導體晶圓5移動至晶圓座20上方並放置半導體晶圓5於升降銷223之上。在一實施例中,如第9圖所示,在晶圓座20的升降銷223位於抬升位置之後,半導體晶圓5可藉由機械手臂6移入至加工工具10當中位於晶圓座20上方的位置。接著,機械手臂6下降半導體晶圓5的高度使半導體晶圓5與升降銷223的頂端2230接觸。機械手臂6的下降動作會持續使所有的升降銷223皆與半導體晶圓5接觸,且半導體晶圓5與機械手臂6分離之後才停止。如此一來,如第10圖所示,半導體晶圓5放置於升降銷223之上且受升降銷223所支撐。接著,機械手臂6退出加工工具10,以搬運其他半導體晶圓5進入其他加工工具10或自其他加工工具10移出。The method S100 for manufacturing a semiconductor wafer further includes operation S120 , moving the semiconductor wafer 5 to the top of the wafer seat 20 and placing the semiconductor wafer 5 on the lift pins 223 . In one embodiment, as shown in FIG. 9 , after the lift pins 223 of the wafer holder 20 are located at the raised position, the semiconductor wafer 5 can be moved into the processing tool 10 by the robot arm 6 and located above the wafer holder 20 . Location. Next, the robot arm 6 lowers the height of the semiconductor wafer 5 to make the semiconductor wafer 5 contact the top ends 2230 of the lift pins 223 . The descending action of the robot arm 6 keeps all the lift pins 223 in contact with the semiconductor wafer 5 , and stops after the semiconductor wafer 5 is separated from the robot arm 6 . In this way, as shown in FIG. 10 , the semiconductor wafer 5 is placed on the lift pins 223 and supported by the lift pins 223 . Next, the robot arm 6 exits the processing tool 10 to transport other semiconductor wafers 5 into or out of the other processing tool 10 .

製造半導體晶圓的方法S100還包括操作S130,利用攝影組件40產生關於半導體晶圓5及晶圓座20的影像。在一實施例中,攝影組件40是在晶圓座20的升降銷223位於抬升位置時對半導體晶圓5及晶圓座20進行攝影,並產生關於半導體晶圓5及晶圓座20的影像資訊。第11圖顯示在一實施例中攝影組件40所產生關於半導體晶圓5及晶圓座20的影像M。The method S100 of fabricating a semiconductor wafer further includes operation S130 , generating an image of the semiconductor wafer 5 and the wafer seat 20 by using the photographing device 40 . In one embodiment, the photographing unit 40 is to photograph the semiconductor wafer 5 and the wafer holder 20 when the lift pins 223 of the wafer holder 20 are at the raised position, and generate images of the semiconductor wafer 5 and the wafer holder 20 News. FIG. 11 shows an image M of the semiconductor wafer 5 and the wafer seat 20 generated by the camera unit 40 in one embodiment.

在一些實施例中,半導體晶圓5在送入至加工工具10會放置於一方向控制器(orienter,未圖示)進行定位,之後才藉由機械手臂6送入至加工工具10當中。當方向控制器的調整產生誤差時,由機械手臂6送入至加工工具10的半導體晶圓5將不會正中設置於晶圓座20上方。於是,如第9圖的影像M所示,晶圓座20的中心C1與半導體晶圓5的中心C2發生偏移。若未修正此偏移而直接對半導體晶圓5進行加工,可能導致加工均勻度下降的問題發生。因此,為避免此問題,本揭露的實施例的製造半導體晶圓的方法S100更包括以下步驟以對半導體晶圓5的位置進行修正。In some embodiments, the semiconductor wafer 5 is placed in an orientation controller (orienter, not shown) for positioning after being fed into the processing tool 10 , and then is fed into the processing tool 10 by the robotic arm 6 . When an error occurs in the adjustment of the direction controller, the semiconductor wafer 5 fed into the processing tool 10 by the robot arm 6 will not be positioned above the wafer holder 20 in the center. Then, as shown in the image M of FIG. 9 , the center C1 of the wafer holder 20 and the center C2 of the semiconductor wafer 5 are displaced. If the semiconductor wafer 5 is directly processed without correcting the offset, the problem of lowering the processing uniformity may occur. Therefore, in order to avoid this problem, the method S100 for manufacturing a semiconductor wafer according to an embodiment of the present disclosure further includes the following steps to correct the position of the semiconductor wafer 5 .

在操作S140當中,計算半導體晶圓5的偏移資訊。在一實施例當中,半導體晶圓5的偏移資訊是透過分析攝影組件40所產生關於半導體晶圓5及晶圓座20的影像而進行。舉例而言,如第11圖所示,在攝影組件40產生關於半導體晶圓5及晶圓座20的影像M之後,攝影組件40本身的處理器或控制模組90的處理器將分析影像M中半導體晶圓5的邊緣51與晶圓座20的邊緣213在多個位置的偏移資訊。In operation S140, the offset information of the semiconductor wafer 5 is calculated. In one embodiment, the offset information of the semiconductor wafer 5 is obtained by analyzing the images of the semiconductor wafer 5 and the wafer seat 20 generated by the camera unit 40 . For example, as shown in FIG. 11 , after the camera element 40 generates the image M about the semiconductor wafer 5 and the wafer seat 20 , the processor of the camera element 40 itself or the processor of the control module 90 will analyze the image M Offset information of the edge 51 of the middle semiconductor wafer 5 and the edge 213 of the wafer seat 20 at multiple positions.

在一實施例中,攝影組件40本身的處理器或控制模組90的處理器產生的偏移資訊包括四個半導體晶圓的位置偏移量D1、D2、D3、D4。位置偏移量D1代表半導體晶圓5的邊緣51相對於本體21的邊緣213上的參考點P1的偏移量。位置偏移量D2代表半導體晶圓5的邊緣51相對於本體21的邊緣213上的參考點P2的偏移量。位置偏移量D3代表半導體晶圓5的邊緣51相對於本體21的邊緣213上的參考點P3的偏移量。位置偏移量D4代表半導體晶圓5的邊緣51相對於本體21的邊緣213上的參考點P4的偏移量。參考點P1與參考點P3分別位於晶圓座20中心C1的正X方向與負X方向,且參考點P2與參考點P4分別位於晶圓座20中心C1的負Y方向與正Y方向。上述X方向與Y方向可與第二致動器225的調控操數的X方向與Y方向平行。In one embodiment, the offset information generated by the processor of the camera unit 40 or the processor of the control module 90 includes the position offsets D1 , D2 , D3 , and D4 of the four semiconductor wafers. The position offset D1 represents the offset of the edge 51 of the semiconductor wafer 5 with respect to the reference point P1 on the edge 213 of the body 21 . The positional offset D2 represents the offset of the edge 51 of the semiconductor wafer 5 with respect to the reference point P2 on the edge 213 of the body 21 . The position offset D3 represents the offset of the edge 51 of the semiconductor wafer 5 relative to the reference point P3 on the edge 213 of the body 21 . The position offset D4 represents the offset of the edge 51 of the semiconductor wafer 5 with respect to the reference point P4 on the edge 213 of the body 21 . The reference point P1 and the reference point P3 are respectively located in the positive X direction and the negative X direction of the center C1 of the wafer seat 20 , and the reference point P2 and the reference point P4 are respectively located in the negative Y direction and the positive Y direction of the center C1 of the wafer seat 20 . The above-mentioned X direction and Y direction may be parallel to the X direction and the Y direction of the control operand of the second actuator 225 .

可以理解的是,雖然上述實施例中產生四個半導體晶圓的位置偏移量D1、D2、D3、D4,但本揭露的實施例並不僅此為限。在其餘實施例中,攝影組件40本身的處理器或控制模組90的處理器可以產生更多或更少關於半導體晶圓的偏移量的資訊。在另一實施例中,攝影組件40本身的處理器或控制模組90的處理器僅產生位置偏移量D1與位置偏移量D2,而未產生位置偏移量D3與位置偏移量D4。在又一實施例中,攝影組件40本身的處理器或控制模組90的處理器不產生位置偏移量D1、D2、D3、D4,而是將半導體晶圓5的邊緣51的影像資訊與儲存於資料庫當中的位置資訊進行比較。上述位置資訊呈現半導體晶圓5的邊緣51正中放置於晶圓座20上時的位置。It can be understood that, although the position offsets D1 , D2 , D3 , and D4 of the four semiconductor wafers are generated in the above embodiments, the embodiments of the present disclosure are not limited thereto. In other embodiments, the processor of the camera assembly 40 itself or the processor of the control module 90 may generate more or less information about the offset of the semiconductor wafer. In another embodiment, the processor of the photographing component 40 itself or the processor of the control module 90 only generates the position offset D1 and the position offset D2, but does not generate the position offset D3 and the position offset D4 . In yet another embodiment, the processor of the camera element 40 itself or the processor of the control module 90 does not generate the position offsets D1 , D2 , D3 , D4 , but compares the image information of the edge 51 of the semiconductor wafer 5 with the image information of the edge 51 of the semiconductor wafer 5 . Compare the location information stored in the database. The above position information represents the position when the edge 51 of the semiconductor wafer 5 is placed on the wafer holder 20 in the center.

在操作S150當中,判斷半導體晶圓的位置偏移量是否介於可接受範圍。在一實施例當中,上述四個半導體晶圓的位置偏移量D1、D2、D3、D4各自與儲存於資料庫當中的既定參數進行比較,並且當比較結果顯示位置偏移量D1、D2、D3、D4與既定參數之間的差異是否大於一閥值。此閥值可表示升降銷223在各個方向上與穿孔210邊緣相隔的間距。若位置偏移量D1、D2、D3、D4與既定參數之間的差異大於上述閥值時,代表半導體晶圓5的偏移量過大,無法通過調整升降銷223的位置進行校正。反之,則可通過升降銷223的位置進行校正。In operation S150, it is determined whether the positional offset of the semiconductor wafer is within an acceptable range. In one embodiment, the positional offsets D1, D2, D3, and D4 of the four semiconductor wafers are respectively compared with the predetermined parameters stored in the database, and when the comparison result shows the positional offsets D1, D2, Whether the difference between D3, D4 and the predetermined parameter is greater than a threshold. The threshold value may represent the distance between the lift pin 223 and the edge of the through hole 210 in all directions. If the difference between the position offsets D1 , D2 , D3 , D4 and the predetermined parameters is greater than the above-mentioned threshold, it means that the offset of the semiconductor wafer 5 is too large and cannot be corrected by adjusting the position of the lift pins 223 . On the contrary, the correction can be performed by the position of the lift pin 223 .

若半導體晶圓5的位置偏移資訊(或位置偏移量)超出可接受範圍內,製造半導體晶圓的方法S100進行至操作S180,發出警訊。控制模組90在接獲警訊通知後,控制模組90可驅動機器手臂6再次進入加工工具10當中,並將半導體晶圓5自升降銷223移除並送至方向控制器進行定位,隨後製造半導體晶圓的方法S100重複至步驟S120。If the position shift information (or the position shift amount) of the semiconductor wafer 5 exceeds the acceptable range, the method S100 of manufacturing the semiconductor wafer proceeds to operation S180 to issue an alarm. After the control module 90 receives the alarm notification, the control module 90 can drive the robot arm 6 to enter the processing tool 10 again, and remove the semiconductor wafer 5 from the lift pins 223 and send it to the direction controller for positioning. The method S100 of manufacturing a semiconductor wafer repeats to step S120.

若半導體晶圓5的位置偏移資訊(或位置偏移量)超出可接受範圍內,製造半導體晶圓的方法S100進行至操作S160,根據位置偏移量D1、D2、D3、D4發送驅動訊號至連結於升降銷223的第二致動器225,使第二致動器225驅動半導體晶圓5相對晶圓座20的位移。在一實施例中,第二致動器225的調控參數包括X方向上的位移量與Y方向上的位移量。If the position shift information (or the position shift amount) of the semiconductor wafer 5 is out of the acceptable range, the method S100 for manufacturing a semiconductor wafer proceeds to operation S160 , and a driving signal is sent according to the position shift amounts D1 , D2 , D3 , and D4 To the second actuator 225 connected to the lift pins 223 , the second actuator 225 drives the displacement of the semiconductor wafer 5 relative to the wafer holder 20 . In one embodiment, the control parameters of the second actuator 225 include the displacement amount in the X direction and the displacement amount in the Y direction.

在一些實施例中,第二致動器225在X方向上的位移量的計算方式包括將位置偏移量D1與位置偏移量D3進行數值比較,以決定第二致動器225朝正X方向移動或朝負X方向移動;以及將位置偏移量D1與位置偏移量D3其中數值較大減去一參考間距,以決定該方向上的位移量。舉例而言,位置偏移量D1為3mm,位置偏移量D3為1mm,參考間距為2 mm。由於位置偏移量D1大於位置偏移量D3,故決定第二致動器225朝正X方向移動,且位移量為1 mm(亦即,3 mm-2 mm)。In some embodiments, the calculation method of the displacement of the second actuator 225 in the X direction includes numerically comparing the position offset D1 with the position offset D3, so as to determine that the second actuator 225 faces the positive X direction. moving in the direction or in the negative X direction; and subtracting a reference distance from the larger value of the position offset D1 and the position offset D3 to determine the displacement in this direction. For example, the position offset D1 is 3mm, the position offset D3 is 1mm, and the reference spacing is 2mm. Since the position shift amount D1 is greater than the position shift amount D3, it is determined that the second actuator 225 moves in the positive X direction, and the displacement amount is 1 mm (ie, 3 mm-2 mm).

在一些實施例中,第二致動器225在Y方向上的位移量的計算方式包括將位置偏移量D2與位置偏移量D4進行數值比較,以決定第二致動器225朝正Y方向移動或朝負Y方向移動;以及將位置偏移量D2與位置偏移量D4其中數值較大減去一參考間距,以決定該方向上的位移量。舉例而言,位置偏移量D2為3mm,位置偏移量D4為1mm,參考間距為2 mm。由於位置偏移量D2大於位置偏移量D4,故決定第二致動器225朝負Y方向移動,且位移量為1 mm(亦即,3 mm-2 mm)。In some embodiments, the calculation method of the displacement amount of the second actuator 225 in the Y direction includes comparing the position offset D2 and the position offset D4 numerically, so as to determine that the second actuator 225 is facing the positive Y direction. moving in the direction or in the negative Y direction; and subtracting a reference distance from the larger value of the position offset D2 and the position offset D4 to determine the displacement in the direction. For example, the position offset D2 is 3mm, the position offset D4 is 1mm, and the reference spacing is 2mm. Since the position shift amount D2 is greater than the position shift amount D4, it is determined that the second actuator 225 moves in the negative Y direction, and the displacement amount is 1 mm (ie, 3 mm-2 mm).

升降銷223根據位置偏移量進行位移後,如第12圖所示,升降銷223會相對於穿孔210的中心偏移。在一實施例中,升降銷223進行移動後,升降銷223緊貼於穿孔210的側壁。並且,半導體晶圓5相對於晶圓座20的邊緣21在不同方向上的間距D5與間距D6將調整為相同。After the lift pin 223 is displaced according to the positional offset, as shown in FIG. 12 , the lift pin 223 is displaced relative to the center of the hole 210 . In one embodiment, after the lift pin 223 moves, the lift pin 223 is in close contact with the side wall of the through hole 210 . In addition, the distances D5 and D6 of the semiconductor wafer 5 relative to the edge 21 of the wafer seat 20 in different directions are adjusted to be the same.

在部分實施例中,如第5A圖與第5B圖所示,升降銷223或升降銷223a與半導體晶圓5接觸的表面具有粗糙結構,故當升降銷223或升降銷223a進行位移時,升降銷223或升降銷223a與半導體晶圓5之間具有較高的摩擦力,故可避免升降銷223或升降銷223a相對於半導體晶圓5產生滑動。In some embodiments, as shown in FIGS. 5A and 5B , the surface of the lift pins 223 or the lift pins 223 a in contact with the semiconductor wafer 5 has a rough structure, so when the lift pins 223 or the lift pins 223 a are displaced, the lift pins 223 or 223 a are lifted The pins 223 or the lift pins 223 a and the semiconductor wafer 5 have high frictional force, so that the lift pins 223 or the lift pins 223 a can be prevented from sliding relative to the semiconductor wafer 5 .

在操作S160完成之後,製造半導體晶圓的方法S100持續至操作S170,移動晶圓座20的升降銷223自抬升位置至下降位置。在一實施例中,攝影組件40更配置用於在操作S160完成之後確認間距D5與間距D6是否相同。若判定為不同,製造半導體晶圓的方法S100可重複執行操作S140-S160。若判定為相同,控制模組90發出控制訊號至第一驅動器224,將支撐組件22的位置自如第12圖所示的抬升位置移動至如第13圖所示的下降位置。After the operation S160 is completed, the method of manufacturing a semiconductor wafer S100 continues to the operation S170, in which the lift pins 223 of the wafer holder 20 are moved from the raised position to the lowered position. In one embodiment, the photographing assembly 40 is further configured to confirm whether the distance D5 and the distance D6 are the same after the operation S160 is completed. If it is determined to be different, the method S100 for manufacturing a semiconductor wafer may repeatedly perform operations S140-S160. If it is determined to be the same, the control module 90 sends a control signal to the first driver 224 to move the position of the support assembly 22 from the raised position shown in FIG. 12 to the lowered position shown in FIG. 13 .

在操作S170完成之後,加工工具10即可開始對半導體晶圓5的加工。在一實施例中,加工工具10對半導體晶圓5的加工為電漿蝕刻加工,由於半導體晶圓5正中設置於晶圓座20上方,半導體晶圓5的溫度與偏壓等參數可以通過晶圓座20正確進行調整,故電漿蝕刻加工的均勻度因此可獲得改善。另一方面,由於半導體晶圓5正中設置於晶圓座20上方,電漿對周圍元件(例如:對焦環(focusing ring))的侵蝕效率可以維持一致,故可延長該等元件的使用壽命。After the operation S170 is completed, the processing tool 10 can start processing the semiconductor wafer 5 . In one embodiment, the processing of the semiconductor wafer 5 by the processing tool 10 is a plasma etching process. Since the semiconductor wafer 5 is disposed above the wafer holder 20 in the center, the parameters such as the temperature and the bias voltage of the semiconductor wafer 5 can be determined by the wafer. The round seat 20 is adjusted correctly, so that the uniformity of the plasma etching process can be improved accordingly. On the other hand, since the semiconductor wafer 5 is centrally disposed above the wafer seat 20, the plasma erosion efficiency of surrounding elements (eg, focusing rings) can be maintained uniformly, thereby prolonging the service life of these elements.

第14圖顯示根據本揭露一些實施例的加工元件10b的部分元件的示意圖。第14圖所顯示的實施例中與第3圖顯示的實施例中相同的元件將施予相同的標號,且其特徵將不再重複,以簡化說明。在一實施例中,加工元件10b與加工元件10的差異在於,加工元件10b包括多個攝影組件,例如攝影組件41b、42b、43b、44b。攝影組件41b、42b、43b、44b可各自用於產生關於晶圓座20的本體21的邊緣213上的參考點P1、P2、P3、P4的影像,並將所產生的影像資料傳送至控制模組90。通過多個攝影組件41b、42b、43b、44b產生關於半導體晶圓5與晶圓座20的影像,可使上述製造半導體晶圓的方法S100應用於大尺寸半導體晶圓的加工工具中,而不會因為攝影組件拍攝角度而受到限制。FIG. 14 shows a schematic diagram of some elements of the processing element 10b according to some embodiments of the present disclosure. Elements in the embodiment shown in FIG. 14 that are the same as those in the embodiment shown in FIG. 3 will be given the same reference numerals, and their features will not be repeated to simplify the description. In one embodiment, processing element 10b differs from processing element 10 in that processing element 10b includes a plurality of photographic assemblies, such as photographic assemblies 41b, 42b, 43b, 44b. The photographing components 41b, 42b, 43b, and 44b can each be used to generate images about the reference points P1, P2, P3, and P4 on the edge 213 of the body 21 of the wafer seat 20, and transmit the generated image data to the control module. Group 90. The images of the semiconductor wafer 5 and the wafer seat 20 are generated by the plurality of photographing elements 41b, 42b, 43b, 44b, so that the above-mentioned method S100 for manufacturing a semiconductor wafer can be applied to a processing tool for large-sized semiconductor wafers without It will be limited by the shooting angle of the camera unit.

本揭露的半導體晶圓製造系統藉由攝影組件產生關於半導體晶圓與晶圓座的影像,並藉由上述影像決定用於支撐半導體晶圓的升降銷的位移量,進而改善半導體晶圓相對於晶圓座本體的偏移問題。如此一來,後續施加於半導體晶圓的加工均勻度將可獲得改善。The semiconductor wafer manufacturing system of the present disclosure generates images about the semiconductor wafer and the wafer seat by means of a camera, and determines the displacement of the lift pins for supporting the semiconductor wafer based on the images, thereby improving the relative relationship between the semiconductor wafer and the wafer. Offset problem of wafer seat body. In this way, the processing uniformity subsequently applied to the semiconductor wafer will be improved.

上文概述若干實施例之特徵或實例,使得熟習此項技術者可更好地理解本揭示案的態樣。熟習此項技術者應瞭解,可輕易使用本揭示案作為設計或修改其他製程及結構的基礎,以便實施本文所介紹之實施例或實例的相同目的及/或實現相同優勢。熟習此項技術者亦應認識到,此類等效結構並未脫離本揭示案之精神及範疇,且可在不脫離本揭示案之精神及範疇的情況下產生本文的各種變化、替代及更改。The foregoing outlines features or examples of several embodiments so that those skilled in the art may better understand aspects of the present disclosure. Those skilled in the art should appreciate that the present disclosure may be readily used as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments or examples described herein. Those skilled in the art should also realize that such equivalent structures do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions and alterations herein can be made without departing from the spirit and scope of the present disclosure .

1:半導體晶圓製造系統 2:裝載端口 3:加載鎖定室 4:晶圓載具 5:半導體晶圓 51:邊緣 6:機器手臂 8:計量室 10:加工工具 10b:加工工具 11:反應腔 111:反應腔壁 112:反應腔底 12:上電極組件 120:噴頭 121:平板電極 122:環型電極 14:射頻線圈組 15:第一射頻電源 16:阻抗匹配電路 17:第二射頻電源 18:電漿 20:晶圓座 21:本體 211:上表面 212:下表面 213:邊緣 210:穿孔 22:支撐組件 221:桿件 222:延伸部 223:升降銷 223a:升降銷 2230:頂端 224:致動器(第一致動器) 225:致動器(第二致動器) 226:柱體 2261:頂端 227:粗糙結構 40:攝影組件 41b:攝影組件 42b:攝影組件 43b:攝影組件 44b:攝影組件 90:控制模組 91:處理器 92:記憶體 S100:製造半導體晶圓的方法 S110:操作 S120:操作 S130:操作 S140:操作 S150:操作 S160:操作 S170:操作 S180:操作 C1:中心 C2:中心 D1:位置偏移量 D2:位置偏移量 D3:位置偏移量 D4:位置偏移量 D5:距離 D6:距離 M:影像 P1:參考點 P2:參考點 P3:參考點 P4:參考點1: Semiconductor Wafer Manufacturing System 2: Load port 3: Load Lock Chamber 4: Wafer carrier 5: Semiconductor wafers 51: Edge 6: Robot arm 8: Measuring room 10: Machining tools 10b: Machining tools 11: Reaction chamber 111: reaction chamber wall 112: Bottom of the reaction chamber 12: Upper electrode assembly 120: Nozzle 121: Flat electrode 122: Ring electrode 14: RF coil set 15: The first RF power supply 16: Impedance matching circuit 17: Second RF power supply 18: Plasma 20: Wafer holder 21: Ontology 211: Upper surface 212: Lower Surface 213: Edge 210: Perforation 22: Support components 221: Rod 222: Extensions 223: Lifting pin 223a: Lifting pins 2230: Top 224: Actuator (First Actuator) 225: Actuator (Second Actuator) 226: Cylinder 2261: top 227: Rough Structure 40: Photography Components 41b: Photographic Components 42b: Photographic Components 43b: Photographic Components 44b: Photographic Components 90: Control Module 91: Processor 92: memory S100: Method of Manufacturing Semiconductor Wafers S110: Operation S120: Operation S130: Operation S140: Operation S150: Operation S160: Operation S170: Operation S180: Operation C1: Center C2: Center D1: Position offset D2: Position offset D3: Position offset D4: Position offset D5: Distance D6: Distance M: video P1: Reference point P2: Reference point P3: Reference point P4: Reference point

當結合附圖閱讀時,根據以下詳細描述可更好地理解本揭示案的態樣。應注意,根據工業標準實踐,各種特徵未按比例繪製。事實上,為論述清楚,各特徵的尺寸可任意地增加或縮小。 第1圖顯示根據本揭露一些實施例中用於加工一半導體晶圓的一半導體晶圓製造系統的示意圖。 第2圖顯示根據本揭露一些實施例中一加工工具的局部元件的示意圖。 第3圖顯示根據本揭露一些實施例中具有一半導體晶圓放置於其上的一晶圓座的上視圖。 第4圖顯示第3圖的晶圓座在A-A截線上的剖面圖。 第5A圖顯示根據本揭露一些實施例中一升降銷的示意圖。 第5B圖顯示根據本揭露另一些實施例中一升降銷的示意圖。 第6圖顯示根據本揭露一些實施例中一半導體晶圓製造系統的部分元件的方塊圖。 第7圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的流程圖。 第8圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的部分操作的示意圖,其中升降銷位於抬升位置。 第9圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的部分操作的示意圖,其中半導體晶圓藉由機械手臂放置於升降銷之上。 第10圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的部分操作的示意圖,其中半導體晶圓放置於升降銷之上且相較於晶圓座偏移設置。 第11圖顯示根據本揭露一些實施例中攝影組件所產生的影像。 第12圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的部分操作的示意圖,其中半導體晶圓放置於升降銷之上且相對晶圓座正中設置。 第13圖顯示根據本揭露一些實施例的製造半導體晶圓的方法的部分操作的示意圖,其中半導體晶圓放置於晶圓座的本體的上表面。 第14圖顯示根據本揭露一些實施例的加工元件的部分元件的示意圖。Aspects of the present disclosure may be better understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that in accordance with industry standard practice, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 shows a schematic diagram of a semiconductor wafer fabrication system for processing a semiconductor wafer in accordance with some embodiments of the present disclosure. FIG. 2 shows a schematic diagram of partial elements of a machining tool according to some embodiments of the present disclosure. FIG. 3 shows a top view of a wafer carrier with a semiconductor wafer placed thereon in accordance with some embodiments of the present disclosure. FIG. 4 shows a cross-sectional view of the wafer holder of FIG. 3 along the line A-A. FIG. 5A shows a schematic diagram of a lift pin according to some embodiments of the present disclosure. FIG. 5B shows a schematic diagram of a lift pin according to other embodiments of the present disclosure. FIG. 6 shows a block diagram of some components of a semiconductor wafer fabrication system in accordance with some embodiments of the present disclosure. FIG. 7 shows a flowchart of a method of fabricating a semiconductor wafer according to some embodiments of the present disclosure. FIG. 8 shows a schematic diagram of a portion of the operation of a method of fabricating a semiconductor wafer according to some embodiments of the present disclosure, wherein the lift pins are in a raised position. FIG. 9 shows a schematic diagram of part of operations of a method of fabricating a semiconductor wafer according to some embodiments of the present disclosure, wherein the semiconductor wafer is placed on lift pins by a robotic arm. FIG. 10 shows a schematic diagram of a portion of the operation of a method of fabricating a semiconductor wafer according to some embodiments of the present disclosure, wherein the semiconductor wafer is placed on the lift pins and offset from the wafer seat. FIG. 11 shows an image produced by a camera assembly according to some embodiments of the present disclosure. 12 is a schematic diagram illustrating part of operations of a method of fabricating a semiconductor wafer according to some embodiments of the present disclosure, wherein the semiconductor wafer is placed on the lift pins and centered relative to the wafer holder. FIG. 13 is a schematic diagram illustrating a portion of operations of a method of fabricating a semiconductor wafer, wherein the semiconductor wafer is placed on the upper surface of the body of the wafer holder, according to some embodiments of the present disclosure. FIG. 14 shows a schematic diagram of some elements of a processing element according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) none Foreign deposit information (please note in the order of deposit country, institution, date and number) none

S100:製造半導體晶圓的方法 S100: Method of Manufacturing Semiconductor Wafers

S110:操作 S110: Operation

S120:操作 S120: Operation

S130:操作 S130: Operation

S140:操作 S140: Operation

S150:操作 S150: Operation

S160:操作 S160: Operation

S170:操作 S170: Operation

S180:操作 S180: Operation

Claims (9)

一種製造半導體晶圓的方法,包括:移動一晶圓座的複數個升降銷自一下降位置移動至一抬升位置;將一半導體晶圓移動至該晶圓座上方並放置該半導體晶圓在位於該抬升位置的該等升降銷之上;利用一攝影組件產生關於該半導體晶圓及該晶圓座的一影像;根據該影像計算該半導體晶圓的一位置偏移資訊,其中該半導體晶圓的該位置偏移資訊包括該晶圓座的一第一參考點和該半導體晶圓的一邊緣之間的一第一偏移量、該晶圓座的一第二參考點和該半導體晶圓的該邊緣之間的一第二偏移量、該晶圓座的一第三參考點和該半導體晶圓的該邊緣之間的一第三偏移量,以及該晶圓座的一第四參考點和該半導體晶圓的該邊緣之間的一第四偏移量;判斷該半導體晶圓的該位置偏移資訊是否介於可接受範圍;以及當該位置偏移資訊未落入該可接受範圍內時,將該第一偏移量和該第三偏移量進行數值比較以得到一第一參考間距,並將該第二偏移量和該第四偏移量進行數值比較以得到一第二參考間距,根據該第一參考間距和該第二參考間距發送一驅動訊號至連結於該升降銷的一致動器,使該致動器驅動該升降銷的位移,進而改變該半導體晶圓相對該晶圓座的位置。 A method of manufacturing a semiconductor wafer, comprising: moving a plurality of lift pins of a wafer holder from a lowered position to a raised position; moving a semiconductor wafer over the wafer holder and placing the semiconductor wafer on a On the lift pins at the elevated position; use a camera to generate an image of the semiconductor wafer and the wafer seat; calculate a position offset information of the semiconductor wafer according to the image, wherein the semiconductor wafer The position offset information includes a first offset between a first reference point of the wafer seat and an edge of the semiconductor wafer, a second reference point of the wafer seat and the semiconductor wafer a second offset between the edges of the wafer seat, a third offset between a third reference point of the wafer seat and the edge of the semiconductor wafer, and a fourth offset of the wafer seat a fourth offset between the reference point and the edge of the semiconductor wafer; determining whether the position offset information of the semiconductor wafer is within an acceptable range; and when the position offset information does not fall within the acceptable range When it is within the acceptance range, compare the first offset with the third offset to obtain a first reference distance, and compare the second offset with the fourth offset numerically to obtain A second reference pitch, according to the first reference pitch and the second reference pitch, a driving signal is sent to an actuator connected to the lift pin, so that the actuator drives the displacement of the lift pin, thereby changing the semiconductor chip The position of the circle relative to this wafer holder. 如請求項1所述之製造半導體晶圓的方法,更包括:在該致動器移動該等升降銷後,將該等升降銷自該抬升位置至該下降位置;其中在該抬升位置時,該升降銷的一頂端位於該晶圓座的一本體的一上表面上方;在該下降位置時,該升降銷的該頂端位於該本體的該上表面下方。 The method for manufacturing a semiconductor wafer as claimed in claim 1, further comprising: after the actuator moves the lift pins, moving the lift pins from the lift position to the lower position; wherein in the lift position, A top end of the lift pin is located above an upper surface of a body of the wafer holder; in the descending position, the top end of the lift pin is located below the upper surface of the body. 如請求項1所述之製造半導體晶圓的方法,更包括:當該半導體晶圓的該位置偏移資訊未落入該可接受範圍時,發出一警訊。 The method for manufacturing a semiconductor wafer as claimed in claim 1, further comprising: when the position offset information of the semiconductor wafer does not fall within the acceptable range, sending an alarm. 如請求項1所述之製造半導體晶圓的方法,其中該致動器可至少於二個不同方向上進行位移。 The method of manufacturing a semiconductor wafer as claimed in claim 1, wherein the actuator can be displaced in at least two different directions. 一種半導體晶圓製造系統,包括:一本體,配置用於乘載一半導體晶圓且具有複數個穿孔,該本體的一邊緣具有一第一參考點、一第二參考點、一第三參考點,和一第四參考點,其中該第一參考點和該第三參考點為自該本體的一中心沿著一第一方向和該本體的該邊緣的交點,該第二參考點和該第四參考點為自該本體的該中心沿著一第二方向和該本體的該邊緣的交點,該第一 方向垂直於該第二方向;一桿件,位於該本體之下方;複數個升降銷,連結於該桿件並以可活動的方式設置於該等穿孔中;複數個攝影組件,設置於該本體的上方並配置用於分別產生該本體的該邊緣上的該第一參考點、該第二參考點、該第三參考點,和該第四參考點的影像,其中該些攝影組件不重疊該本體,其中該些攝影組件配置於:計算該本體的該第一參考點和該半導體晶圓的一邊緣之間的一第一偏移量、該本體的該第二參考點和該半導體晶圓的該邊緣之間的一第二偏移量、該本體的該第三參考點和該半導體晶圓的該邊緣之間的一第三偏移量,以及該本體的該第四參考點和該半導體晶圓的該邊緣之間的一第四偏移量;將該第一偏移量和該第三偏移量進行數值比較以得到一第一參考間距,並將該第二偏移量和該第四偏移量進行數值比較以得到一第二參考間距;一第一致動器,連結於該桿件並配置用於控制該桿件於一垂直方向上的位移;複數個第二致動器,各自連結於該等升降銷並配置用於控制該等升降銷於一水平方向上的位移;以及一控制模組,電性連結於該些攝影組件與該第二致動器,其中該控制模組根據該些攝影組件所產生的該第一參考間距和該第二參考間距發出一控制訊號至該第二致動器,且 該第二致動器根據該控制訊號控制該等升降銷在該水平方向上的位移。 A semiconductor wafer manufacturing system, comprising: a body configured to carry a semiconductor wafer and having a plurality of through holes, an edge of the body has a first reference point, a second reference point, and a third reference point , and a fourth reference point, wherein the first reference point and the third reference point are the intersections from a center of the body along a first direction and the edge of the body, the second reference point and the first The four reference points are the intersections from the center of the body along a second direction and the edge of the body, the first The direction is perpendicular to the second direction; a rod is located below the main body; a plurality of lifting pins are connected to the rod and are movably arranged in the through holes; a plurality of photographic components are arranged in the main body and is configured to generate images of the first reference point, the second reference point, the third reference point, and the fourth reference point on the edge of the body, respectively, wherein the photographic elements do not overlap the a body, wherein the photographing components are configured to: calculate a first offset between the first reference point of the body and an edge of the semiconductor wafer, the second reference point of the body and the semiconductor wafer a second offset between the edges of the body, a third offset between the third reference point of the body and the edge of the semiconductor wafer, and the fourth reference point of the body and the a fourth offset between the edges of the semiconductor wafer; the first offset and the third offset are numerically compared to obtain a first reference spacing, and the second offset and The fourth offset is numerically compared to obtain a second reference distance; a first actuator is connected to the rod and configured to control the displacement of the rod in a vertical direction; a plurality of second coincidences actuators, respectively connected to the lift pins and configured to control the displacement of the lift pins in a horizontal direction; and a control module, electrically connected to the photography components and the second actuator, wherein The control module sends a control signal to the second actuator according to the first reference distance and the second reference distance generated by the photographing elements, and The second actuator controls the displacement of the lift pins in the horizontal direction according to the control signal. 如請求項5所述之半導體晶圓製造系統,其中該升降銷的一頂端具有一粗糙結構,該粗糙結構與該半導體晶圓直接接觸。 The semiconductor wafer manufacturing system of claim 5, wherein a top of the lift pin has a rough structure, and the rough structure is in direct contact with the semiconductor wafer. 如請求項5所述之半導體晶圓製造系統,其中該等第二致動器用於控制該等升降銷在該水平方向上二個垂直分量的位移。 The semiconductor wafer fabrication system of claim 5, wherein the second actuators are used to control displacements of the lift pins in two vertical components in the horizontal direction. 如請求項5所述之半導體晶圓製造系統,其中該控制模組,電性連結於每一該等攝影組件,並根據該等攝影組件所產生的影像發出該控制訊號至該第二致動器。 The semiconductor wafer fabrication system as claimed in claim 5, wherein the control module is electrically connected to each of the camera elements, and sends the control signal to the second actuation according to the images generated by the camera elements device. 如請求項5所述之半導體晶圓製造系統,其中該升降銷的寬度與該穿孔的寬度的比值介於0.25至0.75之間。 The semiconductor wafer manufacturing system of claim 5, wherein a ratio of the width of the lift pin to the width of the through hole is between 0.25 and 0.75.
TW109113851A 2020-04-24 2020-04-24 Semiconductor wafer fabrication system and method of fabricating semiconductor wafer TWI771671B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109113851A TWI771671B (en) 2020-04-24 2020-04-24 Semiconductor wafer fabrication system and method of fabricating semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109113851A TWI771671B (en) 2020-04-24 2020-04-24 Semiconductor wafer fabrication system and method of fabricating semiconductor wafer

Publications (2)

Publication Number Publication Date
TW202141670A TW202141670A (en) 2021-11-01
TWI771671B true TWI771671B (en) 2022-07-21

Family

ID=80783234

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109113851A TWI771671B (en) 2020-04-24 2020-04-24 Semiconductor wafer fabrication system and method of fabricating semiconductor wafer

Country Status (1)

Country Link
TW (1) TWI771671B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056857A1 (en) * 2006-09-05 2008-03-06 Tokyo Electron Limited Substrate transfer device, substrate processing apparatus and substrate transfer method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080056857A1 (en) * 2006-09-05 2008-03-06 Tokyo Electron Limited Substrate transfer device, substrate processing apparatus and substrate transfer method

Also Published As

Publication number Publication date
TW202141670A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
US9355876B2 (en) Process load lock apparatus, lift assemblies, electronic device processing systems, and methods of processing substrates in load lock locations
TWI765922B (en) Pin lifter assembly with small gap
CN110352479B (en) In-situ semiconductor processing chamber temperature device
JP2016512925A (en) Processing system, apparatus and method adapted for substrate processing in electronic device manufacturing
TWI588631B (en) A method for controlling processing temperature in semiconductor fabrication, a method for processing a semiconductor wafer, and a processing apparatus for processing a semiconductor wafer
US20160307742A1 (en) Edge ring for bevel polymer reduction
US9230835B2 (en) Integrated platform for fabricating n-type metal oxide semiconductor (NMOS) devices
US11538706B2 (en) System and method for aligning a mask with a substrate
JP2017517877A (en) Method and apparatus for rapidly cooling a substrate
WO2019028254A1 (en) Method and system for moving a substrate
US20210375650A1 (en) High temperature and vacuum isolation processing mini-environments
US20220051921A1 (en) Method for mask and substrate alignment
US9199805B2 (en) Processing system and processing method
US11542592B2 (en) Film forming system and method for forming film on substrate
TWI771671B (en) Semiconductor wafer fabrication system and method of fabricating semiconductor wafer
US11380573B2 (en) Structure for automatic in-situ replacement of a part of an electrostatic chuck
US11056277B2 (en) Magnetized substrate carrier apparatus with shadow mask for deposition
US20200168442A1 (en) Focus ring height adjusting device and wafer etching apparatus including the same
CN113555310A (en) Semiconductor wafer manufacturing system and method of manufacturing semiconductor wafer
US11637004B2 (en) Alignment module with a cleaning chamber
US10867816B2 (en) Method and apparatus for wafer backside cooling
US11955355B2 (en) Isolated volume seals and method of forming an isolated volume within a processing chamber
TWI853870B (en) Magnetized substrate carrier apparatus with shadow mask for deposition, and process chamber including the same
TW202226895A (en) Inductively coupled plasma apparatus and method for operating the same
CN112687603A (en) Semiconductor device manufacturing system