TWI768655B - Electronic device with power-off partition and method thereof - Google Patents

Electronic device with power-off partition and method thereof Download PDF

Info

Publication number
TWI768655B
TWI768655B TW110101513A TW110101513A TWI768655B TW I768655 B TWI768655 B TW I768655B TW 110101513 A TW110101513 A TW 110101513A TW 110101513 A TW110101513 A TW 110101513A TW I768655 B TWI768655 B TW I768655B
Authority
TW
Taiwan
Prior art keywords
power
signal
domain
electronic device
standby
Prior art date
Application number
TW110101513A
Other languages
Chinese (zh)
Other versions
TW202213037A (en
Inventor
童旭榮
林裕彬
宋廉祥
程偉良
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to US17/470,586 priority Critical patent/US11662800B2/en
Publication of TW202213037A publication Critical patent/TW202213037A/en
Application granted granted Critical
Publication of TWI768655B publication Critical patent/TWI768655B/en

Links

Images

Landscapes

  • Power Sources (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Brushes (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

The present disclosure provides an electronic device with power-off partition and method thereof. The electronic device with power-off partition includes a signal transmitting module, two repeater modules, and a working module. Each repeater module includes a first power domain, a second power domain, and a transceiver circuit which is in the first domain. A transmission path between the first power domain and the second power domain is maintained at a logic state while the second power domain is in a power off mode. The transceiver circuit of one of the two repeater modules sends a standby encoded signal by encoding a standby signal obtained from the signal transmitting module. The transceiver circuit of the other repeater module sends a standby decoded signal by decoding the standby encoded signal. The working module sends, according to the standby decoded signal, a power off signal to the transceiver circuit of the two repeater modules so that the second power domain, in response to the power off signal, is in the power off mode.

Description

具有斷電分區的電子裝置及其分區斷電的方法Electronic device with power-off partition and method for power-off by partition

本發明是有關於一種電子裝置的斷電技術,尤其是一種具有斷電分區的電子裝置及其分區斷電的方法。 The present invention relates to a power-off technology for an electronic device, in particular to an electronic device with a power-off partition and a method for power-off of the partition.

在電子裝置的運作中,為了減少能源消耗,通常會將電子裝置中的每個電子元件(例如積體電路)分別區分成多個電源域(power domain),並會將電子裝置中未使用之部分的電源域關閉,只保留部分的電源域開啟以用於喚醒電子裝置使其工作(例如用於喚醒電子裝置中其他被關閉的電源域,以使該些先前被關閉的電源域執行其對應的工作)。因此在同一時間點,會有處於供電模式的一個電源域(於此稱為第一電源域),以及處於不供電(斷電)模式的另一個電源域(於此稱為第二電源域)。 In the operation of electronic devices, in order to reduce energy consumption, each electronic component (such as an integrated circuit) in the electronic device is usually divided into a plurality of power domains, and the unused parts in the electronic device are divided into multiple power domains. Part of the power domains are turned off, and only part of the power domains are left on to wake up the electronic device to work (for example, to wake up other turned off power domains in the electronic device, so that the previously turned off power domains can perform their corresponding work). So at the same point in time, there will be one power domain in powered mode (referred to herein as the first power domain) and another power domain in unpowered (power down) mode (referred to herein as the second power domain) .

然而,當第二電源域斷電時,為避免未知訊號(例如雜訊)從第二電源域進入至第一電源域,而干擾到第一電源域內部的邏輯運作,一般會在第一電源域與第二電源域之間設有一隔離單元(isolation cell),以避免供電及斷電之不同電源域互相干擾。此外,為了準確的避免未知訊號從第二電源域進入至第一電源域,需精確的設計致能隔離單元的時間以隔離第一電源域與第二電源域之間的訊號傳輸(例如,致 能太早會導致第一電源域及第二電源域之間訊號無法相通,致能太晚又會讓未知訊號干擾到第一電源域,導致隔離單元會失去作用)。 However, when the second power domain is powered off, in order to prevent unknown signals (such as noise) from entering the first power domain from the second power domain and disturbing the internal logic operation of the first power domain, the first power An isolation cell is arranged between the domain and the second power domain to avoid mutual interference between different power domains of power supply and power off. In addition, in order to accurately prevent unknown signals from entering the first power domain from the second power domain, it is necessary to precisely design the time for enabling the isolation unit to isolate the signal transmission between the first power domain and the second power domain (for example, causing If it is enabled too early, the signals between the first power supply domain and the second power supply domain will not be able to communicate, and if enabled too late, unknown signals will interfere with the first power supply domain, causing the isolation unit to lose its function).

當電子裝置內部新增元件時,由於每個用於喚醒電子裝置使其工作的電源域之間的訊號路徑發生變動,因此需重新設計每個隔離單元的致能時間,亦即每新增一個元件至電子裝置中即需更改一次電子裝置中的系統設計(例如,重新設計用於喚醒電子裝置的電源域之間的訊號路徑以及隔離單元的致能時間),以仍可準確的避免未知訊號從斷電的電源域進入至供電的電源域,導致設計電路的人員之工作量的增加。 When new components are added in the electronic device, since the signal paths between the power domains used to wake the electronic device to work are changed, the enabling time of each isolation unit needs to be redesigned, that is, each time a new one is added. When components are added to the electronic device, the system design in the primary electronic device needs to be changed (for example, the signal path between the power domains used to wake up the electronic device and the enabling time of the isolation unit are redesigned), so that unknown signals can still be accurately avoided. From the power domain that is powered off to the power domain that is powered, the workload of the person designing the circuit is increased.

鑒於上述,本發明提供一種具有斷電分區的電子裝置及其分區斷電的方法,可在無需更動電子裝置的原系統設計的情形下,即可避免未知訊號從斷電的電源域進入至供電的電源域。 In view of the above, the present invention provides an electronic device with a power-off partition and a method for power-off of the partition, which can prevent unknown signals from entering the power supply domain from the power-off power domain without changing the original system design of the electronic device. power domain.

依據一些實施例,具有斷電分區的電子裝置包含一訊號發送模組、二個中繼模組以及一工作模組。訊號發送模組發送一待機訊號。每一個中繼模組包含一第一電源域、一第二電源域以及一收發電路。在第二電源域處於一斷電模式時,第一電源域與第二電源域之間的一傳輸路徑維持在一邏輯準位。收發電路位於第一電源域內。二個中繼模組的其中之一的收發電路編碼自訊號發送模組獲得的待機訊號而發送一待機編碼訊號,另一中繼模組的收發電路解碼待機編碼訊號而發送一待機解碼訊號。工作模組根據待機解碼訊號而發送一斷電訊號至二個中繼模組的收發電路,以使二個中繼模組的第二電源域響應斷電訊號而 處於斷電模式。 According to some embodiments, an electronic device with a power-off partition includes a signal sending module, two relay modules and a working module. The signal sending module sends a standby signal. Each relay module includes a first power domain, a second power domain and a transceiver circuit. When the second power domain is in a power-down mode, a transmission path between the first power domain and the second power domain is maintained at a logic level. The transceiver circuit is located in the first power domain. The transceiver circuit of one of the two relay modules encodes the standby signal obtained from the signal sending module to send a standby encoded signal, and the transceiver circuit of the other repeater module decodes the standby encoded signal and sends a standby decoded signal. The working module sends a power-off signal to the transceiver circuits of the two repeater modules according to the standby decoding signal, so that the second power domain of the two repeater modules responds to the power-off signal. is in power-down mode.

依據一些實施例,電子裝置的分區斷電方法,其中電子裝置包含一訊號發送模組、二個中繼模組以及一工作模組,每一個中繼模組包含一第一電源域、一第二電源域以及位於第一電源域內的一收發電路。電子裝置的分區斷電方法包含以二個中繼模組的其中之一的收發電路編碼來自訊號發送模組的一待機訊號而發送一待機編碼訊號;以另一中繼模組的收發電路解碼待機編碼訊號而發送一待機解碼訊號;以及以工作模組根據待機解碼訊號而發送一斷電訊號至二個中繼模組的收發電路,以使二個中繼模組的第二電源域響應斷電訊號而處於一斷電模式。在每一個中繼模組的第二電源域處於斷電模式時,每一個中繼模組的第一電源域與第二電源域之間的一傳輸路徑維持在一邏輯準位。 According to some embodiments, a partition power-off method for an electronic device, wherein the electronic device includes a signal sending module, two relay modules, and a working module, each relay module includes a first power domain, a first Two power domains and a transceiver circuit located in the first power domain. The partition power-off method of the electronic device includes encoding a standby signal from the signal sending module with the transceiver circuit of one of the two relay modules and sending a standby encoded signal; decoding with the transceiver circuit of the other relay module The standby encoding signal is used to send a standby decoding signal; and the working module sends a power-off signal to the transceiver circuits of the two relay modules according to the standby decoding signal, so that the second power domain of the two relay modules responds The power-off signal is in a power-off mode. When the second power domain of each relay module is in the power-off mode, a transmission path between the first power domain and the second power domain of each relay module is maintained at a logic level.

綜上所述,依據本發明之實施例,藉由電子裝置的中繼模組中的一電源域斷電時,其與未斷電的電源域之間的傳輸路徑穩定維持在一邏輯準位上,而避免斷電之電源域會有未知訊號(包含雜訊)進入到另一電源域中而干擾其邏輯運作,以維持電子裝置本身之正常運作。因此,不需使用隔離單元,所以無需繁瑣的隔離設定流程,致使當電子裝置新增元件時亦無需更改其系統設計,即可達到喚醒電子裝置及待機電子裝置的功能,因而大幅降低電子裝置的設計成本及設計時程。 To sum up, according to the embodiments of the present invention, when a power domain in a relay module of an electronic device is powered off, the transmission path between the power domain and the unpowered power domain is stably maintained at a logic level On the other hand, to prevent the power domain from power failure, unknown signals (including noise) will enter into another power domain to interfere with its logic operation, so as to maintain the normal operation of the electronic device itself. Therefore, there is no need to use an isolation unit, so there is no need for a cumbersome isolation setting process, so that when an electronic device adds components, it does not need to change its system design, so that the functions of waking up the electronic device and standby electronic device can be achieved, thus greatly reducing the electronic device. Design cost and design schedule.

100:電子裝置 100: Electronics

110:訊號發送模組 110: Signal sending module

120A:第一中繼模組 120A: The first relay module

121A:第一收發電路 121A: The first transceiver circuit

123A:第一電源域 123A: First Power Domain

125A:第二電源域 125A: Second Power Domain

127A:傳輸路徑 127A: Transmission path

10:第一連接墊 10: First connection pad

12:第二連接墊 12: Second connection pad

14:弱推動電路 14: Weak push circuit

120B:第二中繼模組 120B: The second relay module

121B:第二收發電路 121B: Second transceiver circuit

123B:第一電源域 123B: First Power Domain

125B:第二電源域 125B: Second Power Domain

127B:傳輸路徑 127B: Transmission path

130,130’:工作模組 130, 130’: Work mods

132,132’:第三電源域 132, 132': third power domain

134,134’:第四電源域 134,134’: Fourth Power Domain

200:電源 200: Power

S202~S216:步驟 S202~S216: Steps

[圖1]係為本發明一實施例之具有斷電分區的電子裝置的方塊示意圖。 1 is a schematic block diagram of an electronic device with a power-off partition according to an embodiment of the present invention.

[圖2]係為本發明一實施例之電子裝置的分區斷電方法的流程示意圖。 FIG. 2 is a schematic flowchart of a partition power-off method for an electronic device according to an embodiment of the present invention.

[圖3]係為本發明一實施例之電子裝置的分區斷電方法的流程示意圖。 FIG. 3 is a schematic flowchart of a partition power-off method for an electronic device according to an embodiment of the present invention.

[圖4]係為本發明一實施例之具有斷電分區的電子裝置的方塊示意圖。 4 is a schematic block diagram of an electronic device with a power-off partition according to an embodiment of the present invention.

[圖5]係為本發明一實施例之第一中繼模組的方塊示意圖。 5 is a schematic block diagram of a first relay module according to an embodiment of the present invention.

在本文中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,硬體製造商可能會用不同的名詞來稱呼同一個元件。應以元件在功能上的差異來作為區分的準則,並不以名稱的差異來作為區分元件的方式。在本文中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。此外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段,因此,若文中描述一第一裝置耦接於一第二裝置,則代表第一裝置可直接電氣連接於第二裝置,或者透過其他裝置或連接手段間接地電氣連接至第二裝置。 Certain terms are used herein to refer to specific elements. It should be understood by those of ordinary skill in the art that hardware manufacturers may refer to the same element by different nouns. The difference in function of the elements should be used as a criterion for distinguishing, and the difference in name should not be used as a way of distinguishing the elements. The "include" mentioned in this article is an open-ended term, so it should be interpreted as "including but not limited to". In addition, the word "coupled" herein includes any direct and indirect electrical connection means, thus, if a first device is described as being coupled to a second device, it means that the first device can be directly electrically connected to the second device device, or indirectly electrically connected to a second device through other devices or connecting means.

參照圖1,圖1係為本發明一實施例之具有斷電分區的電子裝置100的方塊示意圖。具有斷電分區的電子裝置100包含一訊號發送模組110、二個中繼模組(於後稱為第一中繼模組120A及第二中繼模組120B)以及一工作模組130。在此實施例中係以二個中繼模組(第一中繼模組120A及第二中繼模組120B)為例,但本發明並不限於此,電子裝置100還可具備更多的中繼模組數量。第一中繼模組120A耦接訊號發送模組110,第二中繼模組120B耦接第一中繼模組120A以及工作模組130。第一中繼模組120A及第二中繼模組120B用以協助訊號發送模組110與工作模組130之間的訊號傳輸,以延長訊號發送模組110與工作模組130之間的訊號路徑,致使於電子裝置100中訊號發送模組110與工作 模組130可以以彼此相距較遠的方式來配置。訊號發送模組110用以發送訊號並透過第一中繼模組120A及第二中繼模組120B而傳送至工作模組130,以使工作模組130解析該訊號後執行對應的動作。所述電子裝置100可以是分離式電視。所述訊號發送模組110例如但不限於紅外線遙控器、麥克風、無線網路遙控裝置(例如支援無線網路的行動裝置、筆記型電腦、平板電腦等)、觸控式遙控裝置等輸入裝置。所述工作模組130例如但不限於嵌入式控制器、中央處理器、微處理器、特定應用積體電路、或系統單晶片等運算電路。所述第一中繼模組120A及第二中繼模組120B例如但不限於特定應用積體電路、橋接器等用於延長訊號路徑的電路。 Referring to FIG. 1 , FIG. 1 is a schematic block diagram of an electronic device 100 having a power-off partition according to an embodiment of the present invention. The electronic device 100 with a power-off partition includes a signal sending module 110 , two relay modules (hereinafter referred to as a first relay module 120A and a second relay module 120B) and a working module 130 . In this embodiment, two relay modules (the first relay module 120A and the second relay module 120B) are used as examples, but the present invention is not limited to this, and the electronic device 100 may also have more Number of relay modules. The first relay module 120A is coupled to the signal sending module 110 , and the second relay module 120B is coupled to the first relay module 120A and the working module 130 . The first relay module 120A and the second relay module 120B are used to assist the signal transmission between the signal sending module 110 and the working module 130 to extend the signal between the signal sending module 110 and the working module 130 path, so that the signal sending module 110 in the electronic device 100 works with the The modules 130 may be arranged in a manner that is relatively distant from each other. The signal sending module 110 is used for sending a signal and sending it to the working module 130 through the first relay module 120A and the second relay module 120B, so that the working module 130 analyzes the signal and executes a corresponding action. The electronic device 100 may be a separate TV. The signal sending module 110 is, for example, but not limited to, an infrared remote controller, a microphone, a wireless network remote control device (such as a mobile device supporting wireless network, a notebook computer, a tablet computer, etc.), a touch control remote control device and other input devices. The working module 130 is, for example, but not limited to, an embedded controller, a central processing unit, a microprocessor, an application-specific integrated circuit, or an arithmetic circuit such as a system-on-chip. The first relay module 120A and the second relay module 120B are, for example, but not limited to, application-specific integrated circuits, bridges, and other circuits for extending signal paths.

每個中繼模組包含兩個電源域,於此稱第一電源域及第二電源域。例如,第一中繼模組120A包含第一電源域123A及第二電源域125A;第二中繼模組120B包含第一電源域123B及第二電源域125B。基於一些目的(例如省電),兩個電源域的供電狀態可以是不同的,例如其中一者斷電,另一者正常供電。每個中繼模組還包含位於第一電源域的收發電路。例如,第一中繼模組120A包含第一收發電路121A;第二中繼模組120B包含第二收發電路121B。第一收發電路121A用以對第一中繼模組120A外部接收與輸出訊號;第二收發電路121B用以對第二中繼模組120B外部接收與輸出訊號。在此實施例中,係以每個中繼模組具有二個電源域為例,但本發明並不限於此,每個中繼模組還可具備更多的電源域數量。 Each relay module includes two power domains, which are referred to as the first power domain and the second power domain. For example, the first relay module 120A includes a first power domain 123A and a second power domain 125A; the second relay module 120B includes a first power domain 123B and a second power domain 125B. For some purposes (eg, power saving), the power states of the two power domains may be different, eg, one is powered off and the other is powered normally. Each relay module further includes a transceiver circuit located in the first power domain. For example, the first relay module 120A includes a first transceiver circuit 121A; the second relay module 120B includes a second transceiver circuit 121B. The first transceiver circuit 121A is used for externally receiving and outputting signals to the first relay module 120A; the second transceiver circuit 121B is used for externally receiving and outputting signals to the second relay module 120B. In this embodiment, it is taken as an example that each relay module has two power domains, but the invention is not limited to this, and each relay module can also have more power domains.

在一些實施例中,第一電源域123A,123B及第二電源域 125A,125B可以為處理單元、模組、電路、電路的一部份或是不同電路的任意組合。舉例來說,第一電源域123A,123B若為與喚醒及待機電子裝置100相關的電路,則第一電源域123A,123B具有收發電路(第一收發電路121A及第二收發電路121B),且第一收發電路121A及第二收發電路121B中的處理單元為用以處理喚醒與待機電子裝置100的相關訊號;而第二電源域125A,125B可以為包含處理主要功能的處理單元。由於基於一些目的(例如省電),可以將資料處理能力較高或較耗電的電源域斷電,而將資料處理能力較低或較不耗電的電源域正常供電,以在一些情形下(例如喚醒電子裝置100以從省電轉為滿載),能透過被正常供電的電源域來恢復供電給先前被斷電之資料處理能力較高或較耗電的電源域。例如,前述第一收發電路121A及第二收發電路121B中處理喚醒與待機電子裝置100的相關訊號的處理單元相較於前述處理主要功能的處理單元,可以為資料處理能力相對較低的處理單元。例如第一收發電路121A及第二收發電路121B中的處理單元為小中央處理單元(例如8051處理器,或者無中央處理器),而第二電源域125A,125B的處理主要功能的處理單元為大中央處理單元(例如ARM處理器)。 In some embodiments, the first power domain 123A, 123B and the second power domain 125A, 125B can be processing units, modules, circuits, parts of circuits, or any combination of different circuits. For example, if the first power domains 123A and 123B are circuits related to wake-up and standby of the electronic device 100, the first power domains 123A and 123B have transceiver circuits (a first transceiver circuit 121A and a second transceiver circuit 121B), and The processing units in the first transceiver circuit 121A and the second transceiver circuit 121B are used to process the related signals of waking up and standby the electronic device 100; and the second power domains 125A, 125B may be processing units including processing main functions. For some purpose (such as power saving), the power domain with higher data processing capability or more power consumption can be powered off, and the power domain with lower data processing capability or less power consumption can be powered normally, so that in some cases (For example, to wake up the electronic device 100 to switch from power saving to full load), power can be restored to the power domain with higher data processing capability or more power consumption that was previously powered off through the power domain that is normally powered. For example, the processing units in the first transceiving circuit 121A and the second transceiving circuit 121B that process the signals related to the wake-up and standby electronic device 100 may be processing units with relatively low data processing capabilities compared to the processing units that process the main functions. . For example, the processing units in the first transceiver circuit 121A and the second transceiver circuit 121B are small central processing units (eg, 8051 processor, or no central processing unit), while the processing units in the second power domains 125A and 125B that process main functions are Large central processing unit (eg ARM processor).

圖2係為本發明一實施例之電子裝置的分區斷電方法的流程示意圖。所述電子裝置的分區斷電方法適用於具有斷電分區的的電子裝置100來執行,可避免同一中繼模組中的某一電源域在斷電時不會干擾另一個電源域。於後將以第一電源域123A,123B為與喚醒及待機電子裝置100相關的電路,第二電源域125A,125B為處理主要功能的相關電路來說明。第一電源域123A,123B係處於一供電模式(power on mode),使第一電源域123A,123B內的電路或元件有被正常供電而運作,第二電源域125A,125B係可處於供電模式或是斷電模式(power off mode),使第二電源域125A,125B處於供電模式下被正常供電而運作,處於不供電的斷電模式下可達到省電之目的。 FIG. 2 is a schematic flowchart of a partition power-off method for an electronic device according to an embodiment of the present invention. The partition power-off method of the electronic device is applicable to the electronic device 100 having the power-off partition, which can prevent one power domain in the same relay module from interfering with another power domain when the power is off. In the following, the first power domains 123A, 123B are the circuits related to waking up and standby of the electronic device 100, and the second power domains 125A, 125B are the related circuits processing main functions. The first power domains 123A, 123B are in a power on mode (power on) mode), so that the circuits or components in the first power domains 123A, 123B are normally powered to operate, and the second power domains 125A, 125B can be in power supply mode or power off mode, so that the second power supply The domains 125A and 125B are normally powered to operate in the power supply mode, and the purpose of power saving can be achieved in the power-off mode without power supply.

請同時參照圖1及圖2。首先,以二中繼模組的其中之一(於此為第一中繼模組120A)的收發電路(第一收發電路121A)編碼來自訊號發送模組110的一待機訊號,而發送一待機編碼訊號(步驟S202)。具體來說,當欲節省電子裝置100的能源時或欲停止使用電子裝置100時(例如欲使電子裝置100待機),訊號發送模組110發送一待機訊號至第一中繼模組120A。第一中繼模組120A的第一收發電路121A中的訊號收發模組接收到待機訊號後,第一收發電路121A中耦接訊號收發模組的處理單元根據一預設編碼規則對待機訊號進行編碼而產生一待機編碼訊號,並透過第一收發電路121A的訊號收發模組輸出待機編碼訊號。所述編碼可例如但不限於不歸零(Non return to Zero,NRZ)編碼、歸零(Return to Zero,RZ)編碼、曼徹斯特編碼、差分曼徹斯特編碼、交替轉換(Alternating Mark Inversion,AMI)編碼、雙二進位編碼、不歸零反向(Non return Zero inverted,NRZI)編碼、雙極性歸零編碼等。所述待機訊號可以是例如但不限於Wifi訊號、D-MAC訊號、鍵盤掃描訊號、紅外線訊號(Infrared Data Association,IRDA)等方式發送的訊號。在一些實施例中,訊號收發模組可以是無線訊號收發模組或有線訊號收發模組。無線訊號收發模組可例如但不限於Wifi收發模組、藍芽收發模組等。有線訊號收發模組可由實體連接線路來實現。 Please refer to Figure 1 and Figure 2 at the same time. First, use the transceiver circuit (the first transceiver circuit 121A) of one of the two repeater modules (here, the first repeater module 120A) to encode a standby signal from the signal sending module 110 to transmit a standby signal encode the signal (step S202). Specifically, when the energy of the electronic device 100 is to be saved or when the electronic device 100 is to be stopped (eg, the electronic device 100 is to be in standby), the signal sending module 110 sends a standby signal to the first relay module 120A. After the signal transceiver module in the first transceiver circuit 121A of the first relay module 120A receives the standby signal, the processing unit coupled to the signal transceiver module in the first transceiver circuit 121A processes the standby signal according to a preset encoding rule. After encoding, a standby encoding signal is generated, and the standby encoding signal is output through the signal transceiver module of the first transceiver circuit 121A. The encoding can be, for example, but not limited to, Non return to Zero (NRZ) encoding, Return to Zero (RZ) encoding, Manchester encoding, Differential Manchester encoding, Alternating Mark Inversion (AMI) encoding, Bi-binary encoding, Non return Zero inverted (NRZI) encoding, Bipolar return to zero encoding, etc. The standby signal may be, for example, but not limited to, a Wifi signal, a D-MAC signal, a keyboard scan signal, an infrared signal (Infrared Data Association, IRDA), and the like. In some embodiments, the signal transceiving module may be a wireless signal transceiving module or a wired signal transceiving module. The wireless signal transceiver module can be, for example, but not limited to, a Wifi transceiver module, a Bluetooth transceiver module, and the like. The wired signal transceiver module can be realized by a physical connection line.

接著,以另一中繼模組(於此為第二中繼模組120B)的收發電路(第二收發電路121B)解碼待機編碼訊號,而發送一待機解碼訊號(步驟S204)。具體來說,第二中繼模組120B的第二收發電路121B的訊號收發模組自第一中繼模組120A的第一收發電路121A接收待機編碼訊號。在接收到待機編碼訊號後,第二收發電路121B中耦接訊號收發模組的處理單元根據一預設解碼規則對待機編碼訊號進行解碼而產生一待機解碼訊號(亦即還原前述待機訊號),並透過第二收發電路121B的訊號收發模組輸出待機解碼訊號。在一些實施例中,預設解碼規則對應於預設編碼規則。例如預設編碼規則為曼徹斯特編碼,則預設解碼規則為曼徹斯特解碼。 Next, the transceiver circuit (the second transceiver circuit 121B) of another repeater module (here, the second repeater module 120B) decodes the standby encoded signal and sends a standby decoded signal (step S204). Specifically, the signal transceiving module of the second transceiving circuit 121B of the second relay module 120B receives the standby encoded signal from the first transceiving circuit 121A of the first relay module 120A. After receiving the standby encoded signal, the processing unit coupled to the signal transceiver module in the second transceiver circuit 121B decodes the standby encoded signal according to a preset decoding rule to generate a standby decoded signal (ie, restores the aforementioned standby signal), The standby decoding signal is output through the signal transceiver module of the second transceiver circuit 121B. In some embodiments, the preset decoding rules correspond to preset encoding rules. For example, the preset encoding rule is Manchester encoding, and the preset decoding rule is Manchester decoding.

在產生待機解碼訊號後,以工作模組130根據待機解碼訊號而發送一斷電訊號至二中繼模組(第一中繼模組120A及第二中繼模組120B)的收發電路(第一收發電路121A及第二收發電路121B),以使二中繼模組的第二電源域(第二電源域125A,125B)響應斷電訊號而處於一斷電模式(步驟S206)。具體來說,工作模組130解析待機解碼訊號中所載的資訊而獲得欲使電子裝置100待機的資訊(例如,紅外線遙控裝置的待機按鈕被按下的待機指令、無線遙控裝置的待機指令、麥克風的語音待機指令等),並發送斷電訊號至第一收發電路121A及第二收發電路121B,以使第二電源域125A,125B響應斷電訊號而處於不供電的斷電模式,以節省電子裝置100的能源。 After the standby decoding signal is generated, the working module 130 sends a power-off signal to the transceiver circuits (the first and second relay modules) of the two relay modules (the first relay module 120A and the second relay module 120B) according to the standby decoding signal. A transceiver circuit 121A and a second transceiver circuit 121B), so that the second power domains (second power domains 125A, 125B) of the two relay modules are in a power-off mode in response to the power-off signal (step S206). Specifically, the working module 130 analyzes the information contained in the standby decoded signal to obtain the information to make the electronic device 100 stand by (for example, the standby command for pressing the standby button of the infrared remote control device, the standby command for the wireless remote control device, Voice standby command of the microphone, etc.), and send a power-off signal to the first transceiver circuit 121A and the second transceiver circuit 121B, so that the second power domains 125A, 125B respond to the power-off signal and are in a power-off mode that does not supply power to save energy. The energy source of the electronic device 100 .

在第二電源域125A,125B處於斷電模式時,第一電源域123A,123B與第二電源域125A,125B之間的傳輸路徑127A,127B維持 在一邏輯位準。具體來說,在電子裝置100處於一般工作狀態下,第一電源域123A,123B及第二電源域125A,125B皆處於供電模式下,使第一電源域123A,123B及第二電源域125A,125B內的電路或元件有被正常供電而運作,且此時的第二電源域125A,125B可以透過傳輸路徑127A,127B傳送訊號至第一電源域123A,123B。而在電子裝置100處於省電狀態(例如待機狀態)下,第一電源域123A,123B仍維持處於供電模式,第二電源域125A,125B響應斷電訊號而處於不供電的斷電模式。此時,可透過維持邏輯準位的電路元件來將傳輸路徑127A,127B穩定維持在一邏輯準位(logic state),且因為在傳輸路徑127A,127B上的訊號都維持在邏輯準位,所以斷電之第二電源域125A,125B可能產生的未知訊號(包含雜訊)就無法經過傳輸路徑127A,127B而進入至第一電源域123A,123B中,致使第一電源域123A,123B得以維持本身之正常邏輯運作,而不會受到斷電之第二電源域125A,125B的干擾。 When the second power domains 125A, 125B are in the power-down mode, the transmission paths 127A, 127B between the first power domains 123A, 123B and the second power domains 125A, 125B are maintained at a logical level. Specifically, when the electronic device 100 is in a normal working state, the first power domains 123A, 123B and the second power domains 125A, 125B are all in the power supply mode, so that the first power domains 123A, 123B and the second power domains 125A, The circuits or components in 125B are normally powered and operate, and the second power domains 125A, 125B can transmit signals to the first power domains 123A, 123B through the transmission paths 127A, 127B. When the electronic device 100 is in a power saving state (eg, a standby state), the first power domains 123A, 123B remain in the power supply mode, and the second power domains 125A, 125B are in a power-off mode in which no power is supplied in response to the power-off signal. At this time, the transmission paths 127A and 127B can be stably maintained at a logic state through the circuit elements maintaining the logic level. Unknown signals (including noise) that may be generated by the power-off second power domains 125A, 125B cannot enter the first power domains 123A, 123B through the transmission paths 127A, 127B, so that the first power domains 123A, 123B are maintained The normal logic operation of itself will not be disturbed by the second power domains 125A, 125B that are powered off.

請同時參照圖1及圖3。圖3係為本發明一實施例之電子裝置的分區斷電方法的流程示意圖。在一些實施例中,在第二電源域125A,125B處於斷電模式後,當欲喚醒電子裝置100使其工作時,以二中繼模組的其中之一(於此為第一中繼模組120A)的收發電路(第一收發電路121A)編碼來自訊號發送模組110的一喚醒訊號,而發送一喚醒編碼訊號(步驟S210)。具體來說,當欲喚醒電子裝置100使其工作時,訊號發送模組110發送一喚醒訊號至第一中繼模組120A。為了能喚醒電子裝置100,第一電源域123A在電子裝置100為省電狀態時(例如第二電源域125A處於斷電模式)仍處於供電模式,因而第一中繼模組 120A的第一收發電路121A仍可接收訊號。第一中繼模組120A的第一收發電路121A的訊號收發模組接收到喚醒訊號後,第一收發電路121A中耦接訊號收發模組的處理單元根據一預設編碼規則對喚醒訊號進行編碼而產生一喚醒編碼訊號,並透過第一收發電路121A的訊號收發模組輸出喚醒編碼訊號。 Please refer to Figure 1 and Figure 3 at the same time. FIG. 3 is a schematic flowchart of a partition power-off method for an electronic device according to an embodiment of the present invention. In some embodiments, after the second power domains 125A and 125B are in the power-off mode, when the electronic device 100 is to be woken up to work, one of the two relay modules (here, the first relay module is used) The transceiver circuit (the first transceiver circuit 121A) of the group 120A) encodes a wake-up signal from the signal sending module 110, and sends a wake-up encoded signal (step S210). Specifically, when the electronic device 100 is to be woken up to work, the signal sending module 110 sends a wake-up signal to the first relay module 120A. In order to wake up the electronic device 100, the first power domain 123A is still in the power supply mode when the electronic device 100 is in a power saving state (for example, the second power domain 125A is in the power-off mode), so the first relay module The first transceiver circuit 121A of 120A can still receive signals. After the signal transceiver module of the first transceiver circuit 121A of the first relay module 120A receives the wake-up signal, the processing unit of the first transceiver circuit 121A coupled to the signal transceiver module encodes the wake-up signal according to a preset encoding rule A wake-up code signal is generated, and the wake-up code signal is output through the signal transceiver module of the first transceiver circuit 121A.

在一些實施例中,喚醒訊號可為與待機訊號是相同類型的訊號,例如待機訊號為Wifi訊號,則喚醒訊號亦為Wifi訊號,但本發明並不以此為限,喚醒訊號可為與待機訊號是不同類型的訊號。在一些實施例中,對喚醒訊號使用的預設編碼規則可不同於對待機訊號使用的預設編碼規則。例如,在對喚醒訊號進行編碼時,可將代表喚醒資訊的一標頭(header)(例如邏輯值為0的一個位元的資料)加入至喚醒編碼訊號;在對待機訊號進行編碼時,可將代表待機資訊的標頭(例如邏輯值為1的一個位元的資料)加入至待機編碼訊號。但本發明並不限於此,對喚醒訊號使用的預設編碼規則可相同於對待機訊號使用的預設編碼規則。 In some embodiments, the wake-up signal can be the same type of signal as the standby signal. For example, if the standby signal is a Wifi signal, the wake-up signal is also a Wifi signal, but the present invention is not limited to this. The wake-up signal can be the same as the standby signal. Signals are different types of signals. In some embodiments, the default encoding rules used for wake-up signals may be different from the default encoding rules used for standby signals. For example, when encoding the wake-up signal, a header representing the wake-up information (such as a bit of data with a logic value of 0) can be added to the wake-up encoding signal; when encoding the standby signal, it can be A header representing standby information (eg, one-bit data with a logical value of 1) is added to the standby encoded signal. However, the present invention is not limited to this, and the default encoding rule used for the wake-up signal may be the same as the default encoding rule used for the standby signal.

接著,以另一中繼模組(於此為第二中繼模組120B)的收發電路(第二收發電路121B)解碼喚醒編碼訊號,而發送一喚醒解碼訊號(步驟S212)。具體來說,為了能喚醒電子裝置100,第一電源域123B在電子裝置100為省電狀態時(例如第二電源域125B處於斷電模式)仍處於供電模式,因而第二中繼模組120B的第二收發電路121B仍可接收訊號。第二中繼模組120B的第二收發電路121B的訊號收發模組自第一中繼模組120A的第一收發電路121A接收喚醒編碼訊號。在接收到喚醒 編碼訊號後,第二收發電路121B中耦接訊號收發模組的處理單元根據一預設解碼規則對喚醒編碼訊號進行解碼而產生一喚醒解碼訊號(亦即還原前述喚醒訊號),並透過第二收發電路121B的訊號收發模組輸出喚醒解碼訊號。其中,用於解碼喚醒編碼訊號的預設解碼規則可以對應於用於編碼喚醒訊號的預設編碼規則。 Then, the transceiver circuit (the second transceiver circuit 121B) of another relay module (here, the second relay module 120B) decodes the wake-up coded signal and sends a wake-up decoded signal (step S212). Specifically, in order to wake up the electronic device 100, the first power domain 123B is still in the power supply mode when the electronic device 100 is in a power saving state (for example, the second power domain 125B is in the power-off mode), so the second relay module 120B The second transceiver circuit 121B can still receive signals. The signal transceiving module of the second transceiving circuit 121B of the second relay module 120B receives the wake-up code signal from the first transceiving circuit 121A of the first relay module 120A. wakeup received After encoding the signal, the processing unit coupled to the signal transceiver module in the second transceiver circuit 121B decodes the wake-up encoded signal according to a preset decoding rule to generate a wake-up decoded signal (ie, restores the aforementioned wake-up signal), and passes the second The signal transceiver module of the transceiver circuit 121B outputs the wake-up decoding signal. The default decoding rule for decoding the wake-up encoded signal may correspond to the default encoding rule for encoding the wake-up signal.

在產生喚醒解碼訊號後,以工作模組130根據喚醒解碼訊號而發送一供電訊號至二中繼模組(第一中繼模組120A及第二中繼模組120B)的收發電路(第一收發電路121A及第二收發電路121B),以使二中繼模組的第二電源域(第二電源域125A,125B)響應供電訊號而處於一供電模式(步驟S214)。具體來說,工作模組130解析喚醒解碼訊號中所載的資訊而獲得欲喚醒電子裝置100使其工作的資訊(例如,紅外線遙控裝置的喚醒按鈕被按下的喚醒指令、無線遙控裝置的喚醒指令、麥克風的語音喚醒指令等),並發送供電訊號至第一收發電路121A及第二收發電路121B,以使第二電源域125A,125B響應供電訊號而從不供電的斷電模式轉換為供電的供電模式,致使電子裝置100進入工作狀態(步驟S216)。在電子裝置100進入工作狀態後,回去執行步驟S202,以等待下一次的待機訊號,以再次進入省電狀態。 After the wake-up decoding signal is generated, the working module 130 sends a power supply signal to the transceiver circuit (the first relay module 120A and the second relay module 120B) of the two relay modules (the first relay module 120A and the second relay module 120B) according to the wake-up decoding signal. The transceiver circuit 121A and the second transceiver circuit 121B), so that the second power domains (the second power domains 125A, 125B) of the two relay modules are in a power supply mode in response to the power supply signal (step S214). Specifically, the working module 130 analyzes the information contained in the wake-up decoding signal to obtain the information to wake the electronic device 100 to work (for example, the wake-up command of the wake-up button of the infrared remote control device being pressed, the wake-up of the wireless remote control device command, voice wake-up command of the microphone, etc.), and send a power supply signal to the first transceiver circuit 121A and the second transceiver circuit 121B, so that the second power domain 125A, 125B responds to the power supply signal. the power supply mode, so that the electronic device 100 enters the working state (step S216 ). After the electronic device 100 enters the working state, go back to step S202 to wait for the next standby signal to enter the power saving state again.

參照圖3及圖4。圖4係為本發明一實施例之具有斷電分區的電子裝置100的方塊示意圖。在一些實施例中,在產生待機解碼訊號後,以工作模組130響應待機解碼訊號而進入待機模式(步驟S208)。在產生喚醒解碼訊號後,以工作模組130響應喚醒解碼訊號而進入工作模式(步驟S216)。具體來說,工作模組130包含第三電源域132及第 四電源域134。第三電源域132為用以執行喚醒電子裝置100及待機電子裝置100的程序的電路。例如第三電源域132為用以接收待機解碼訊號與喚醒解碼訊號以及發送斷電訊號與供電訊號的電路。因而第三電源域132在電子裝置100為工作狀態或省電狀態時皆處於供電模式。第四電源域134為用以執行主要功能的電路(例如控制電子裝置100中其他元件的運作的電路)。工作模組130響應待機解碼訊號而切斷對第四電源域134的供電(即,第四電源域134處於斷電模式),以進入待機模式,而達到省電效果,並發出斷電訊號以使第二電源域125A,125B處於斷電模式。在第二電源域125A,125B處於斷電模式時,工作模組130響應喚醒解碼訊號而恢復對第四電源域134的供電(即,第四電源域134處於供電模式),以進入工作模式,而恢復所有資料與訊號的處理功能,並發出供電訊號以使第二電源訊號從斷電模式轉換為供電模式,致使電子裝置100恢復所有處理功能。 Referring to FIGS. 3 and 4 . FIG. 4 is a schematic block diagram of an electronic device 100 having a power-off partition according to an embodiment of the present invention. In some embodiments, after the standby decoding signal is generated, the working module 130 enters the standby mode in response to the standby decoding signal (step S208 ). After the wake-up decoding signal is generated, the working module 130 enters the working mode in response to the wake-up decoding signal (step S216). Specifically, the working module 130 includes the third power domain 132 and the third power domain 132 . Four power domains 134 . The third power domain 132 is a circuit for executing the procedures of waking up the electronic device 100 and standby the electronic device 100 . For example, the third power domain 132 is a circuit for receiving the standby decoding signal and the wake-up decoding signal, and sending the power-off signal and the power-supply signal. Therefore, the third power domain 132 is in the power supply mode when the electronic device 100 is in the working state or the power saving state. The fourth power domain 134 is a circuit for performing main functions (eg, a circuit for controlling the operation of other components in the electronic device 100 ). The working module 130 cuts off the power supply to the fourth power domain 134 in response to the standby decoding signal (ie, the fourth power domain 134 is in the power-off mode) to enter the standby mode to achieve the power saving effect, and sends a power-off signal to The second power domains 125A, 125B are placed in power down mode. When the second power domains 125A and 125B are in the power-off mode, the working module 130 restores the power supply to the fourth power domain 134 in response to the wake-up decoding signal (ie, the fourth power domain 134 is in the power-on mode) to enter the working mode, Then, the processing functions of all data and signals are restored, and a power supply signal is sent to convert the second power signal from the power-off mode to the power-supply mode, so that the electronic device 100 restores all processing functions.

在一些實施例中,步驟S206及步驟S208的順序可以對調,或是實質地同時進行。步驟S214及步驟S216的順序可以對調,或是實質地同時進行。 In some embodiments, the order of step S206 and step S208 may be reversed, or performed substantially simultaneously. The order of step S214 and step S216 may be reversed, or may be performed substantially simultaneously.

在一些實施例中,訊號發送模組110與第一中繼模組120A之間設置有另一工作模組130’,其可被工作模組130控制電力的供應。換言之,電子裝置100中的內部元件的電力供應情形可僅受一個工作模組(如工作模組130)所控制。具體來說,工作模組130’響應工作模組130發出的斷電訊號而進入待機模式,響應工作模組130發出的供電訊號而進入工作模式。舉例來說,工作模組130’包含第三電源域132’及第四 電源域134’。第三電源域132’為用以執行喚醒電子裝置100及待機電子裝置100的程序的電路。例如第三電源域132’的電路為用以接收來自訊號發送模組110的待機解碼訊號與喚醒解碼訊號,發送待機解碼訊號與喚醒解碼訊號至第一中繼模組120A,以及接收來自工作模組130的斷電訊號及供電訊號。因而第三電源域132’在電子裝置100為工作狀態或省電狀態時皆處於供電模式。第四電源域134’為用以執行主要功能的電路(例如執行工作模組130’中主要工作的電路)。第四電源域134’響應斷電訊號而處於斷電模式,響應供電訊號而從斷電模式轉換為供電模式,以達到省電的目的。於此實施例中,工作模組130’可為顯示裝置的控制裝置,第四電源域134’為處理影像顯示的電路,工作模組130可為電視主機控制裝置以控制電子裝置100的內部元件的電力供應,第四電源域134可以為處理輸出至工作模組130’的影像視訊訊號的電路。藉由不同工作模組(工作模組130,130’)之間的中繼模組(第一中繼模組120A,120B)可以延長不同工作模組之間的訊號路徑,以使不同工作模組可以以彼此相距較遠的方式來配置。 In some embodiments, another working module 130' is disposed between the signal sending module 110 and the first relay module 120A, and the power supply can be controlled by the working module 130. In other words, the power supply situation of the internal components in the electronic device 100 can be controlled by only one working module (eg, the working module 130 ). Specifically, the working module 130' enters the standby mode in response to the power-off signal sent by the working module 130, and enters the working mode in response to the power supply signal sent by the working module 130. For example, the working module 130' includes a third power domain 132' and a fourth Power Domain 134'. The third power domain 132' is a circuit for executing the procedures of waking up the electronic device 100 and standby the electronic device 100. For example, the circuit of the third power domain 132' is used to receive the standby decoding signal and the wake-up decoding signal from the signal sending module 110, send the standby decoding signal and the wake-up decoding signal to the first relay module 120A, and receive signals from the working mode Power-off signal and power-on signal of group 130. Therefore, the third power domain 132' is in the power supply mode when the electronic device 100 is in the working state or the power saving state. The fourth power domain 134' is a circuit for performing main functions (for example, a circuit performing main work in the work module 130'). The fourth power domain 134' is in the power-off mode in response to the power-off signal, and switches from the power-off mode to the power-on mode in response to the power-off signal, so as to achieve the purpose of power saving. In this embodiment, the working module 130 ′ can be a control device of the display device, the fourth power domain 134 ′ is a circuit processing image display, and the working module 130 can be a TV host control device to control the internal components of the electronic device 100 The fourth power domain 134 may be a circuit for processing the image and video signals output to the working module 130'. Through the relay modules (the first relay modules 120A, 120B) between the different work modules (the work modules 130, 130'), the signal paths between the different work modules can be extended, so that the different work modules can are arranged in such a way that they are far apart from each other.

在一些實施例中,如圖4所示,第一電源域123A,123B及第二電源域125A,125B連接一電源200,以被供應電力。在一些實施例中,第三電源域132,132’及第四電源域134,134’也可連接電源200,以被供應電力。電源200在電子裝置100為工作狀態或省電狀態時皆會供應電力至第一電源域123A,123B及第三電源域132,132’。在一些實施例中,第二電源域125A,125B及第四電源域134,134’與電源200之間可以配合設置一開關(圖中未示),以切斷或恢復電源200對第二電源域 125A,125B及第四電源域134,134’的供電。所述開關例如但不限於電子開關(例如由電晶體實現的開關)。 In some embodiments, as shown in FIG. 4 , the first power domains 123A, 123B and the second power domains 125A, 125B are connected to a power source 200 to be supplied with power. In some embodiments, the third power domains 132, 132' and the fourth power domains 134, 134' may also be connected to the power source 200 to be supplied with power. The power supply 200 supplies power to the first power domains 123A, 123B and the third power domains 132, 132' when the electronic device 100 is in the working state or the power saving state. In some embodiments, a switch (not shown) may be arranged between the second power domains 125A, 125B and the fourth power domains 134, 134' and the power supply 200 to cut off or restore the power supply 200 to the second power domain 125A, 125B and the power supply of the fourth power domains 134, 134'. The switch is, for example, but not limited to, an electronic switch (eg, a switch implemented by a transistor).

在一些實施例中,在步驟S206中,電源200響應斷電訊號而停止供電給第二電源域125A,125B,以使第二電源域125A,125B處於斷電模式。具體來說,電源200響應來自第一收發電路121A與第二收發電路121B或工作模組130的斷電訊號而致動開關,以切斷對第二電源域125A,125B的供電,而使第二電源域125A,125B處於斷電模式,且其內的電路或元件未被供電。所述斷電訊號可為致動開關的高位準訊號或低位準訊號。在一些實施例中,電源200還可以響應斷電訊號而致動開關以停止供電給工作模組130’的第四電源域134’。電源200還可以響應待機解碼訊號而致動開關以停止供電給工作模組130的第四電源域134,以使工作模組130進入待機模式(步驟S208)。 In some embodiments, in step S206, the power supply 200 stops supplying power to the second power domains 125A, 125B in response to the power-off signal, so that the second power domains 125A, 125B are in a power-off mode. Specifically, the power supply 200 activates the switch in response to the power-off signal from the first transceiver circuit 121A and the second transceiver circuit 121B or the working module 130 to cut off the power supply to the second power supply domains 125A and 125B, so that the The two power domains 125A, 125B are in a power-down mode, and the circuits or components therein are not powered. The power-off signal can be a high-level signal or a low-level signal for actuating the switch. In some embodiments, the power supply 200 can also actuate a switch to stop supplying power to the fourth power domain 134' of the working module 130' in response to the power-off signal. The power supply 200 can also actuate a switch to stop supplying power to the fourth power domain 134 of the working module 130 in response to the standby decoding signal, so that the working module 130 enters the standby mode (step S208 ).

在一些實施例中,在步驟S214中,電源200響應供電訊號而從停止供電轉為恢復供電給第二電源域125A,125B,以使第二電源域125A,125B處於供電模式。具體來說,電源200響應來自第一收發電路121A與第二收發電路121B或工作模組130的供電訊號而再次致動開關,以重新恢復對第二電源域125A,125B的供電,而使第二電源域125A,125B處於供電模式,且其內的電路或元件被供電。所述供電訊號可為再次致動開關的高位準訊號或低位準訊號。在一些實施例中,電源200還可以響應供電訊號而再次致動開關以恢復供電給工作模組130’的第四電源域134’。電源200還可以響應喚醒解碼訊號而再次致動開關以恢復供電給工作模組130的第四電源域134,以使工作模組130進入工作 模式(步驟S216)。 In some embodiments, in step S214, the power supply 200 switches from stopping power supply to restoring power supply to the second power domains 125A, 125B in response to the power supply signal, so that the second power domains 125A, 125B are in the power supply mode. Specifically, the power supply 200 activates the switch again in response to the power supply signal from the first transceiver circuit 121A and the second transceiver circuit 121B or the working module 130 to restore the power supply to the second power domains 125A and 125B, so that the first The two power domains 125A, 125B are in power mode, and the circuits or components within them are powered. The power supply signal may be a high level signal or a low level signal for re-actuating the switch. In some embodiments, the power supply 200 can also actuate the switch again in response to the power supply signal to restore power to the fourth power domain 134' of the working module 130'. The power supply 200 can also actuate the switch again in response to the wake-up decoding signal to restore power to the fourth power domain 134 of the working module 130, so that the working module 130 can enter into work mode (step S216).

在前述實施例中,電源200為設置於第一中繼模組120A及第二中繼模組120B中,但本發明並不以此為限,電源200可以設置於電子裝置100的其他內部元件中(例如工作模組130)或是電子裝置100外部。所述電源200例如但不限於電池、外接式電源供應器(例如電源適配器)等。 In the foregoing embodiment, the power source 200 is disposed in the first relay module 120A and the second relay module 120B, but the present invention is not limited to this, and the power source 200 may be disposed in other internal components of the electronic device 100 inside (eg, the working module 130 ) or outside the electronic device 100 . The power source 200 is, for example, but not limited to, a battery, an external power supply (eg, a power adapter), and the like.

在前述實施例中,第一電源域123A,123B及第二電源域125A,125B所連接的電源200是相同的電源。在一些實施例中,第一電源域123A,123B及第二電源域125A,125B所連接的電源200可以是不同的電源,在此所稱之不同的電源係指第一電源域123A,123B所連接的電源200及第二電源域125A,125B所連接的電源200可以被獨立控制或是來自不同的電源供應端,且這些電源200可以具有相同電壓準位的輸出電壓或是具有不同電壓準位的輸出電壓。在一些實施例中,工作模組130,130’的第三電源域132,132’及第四電源域134,134’所連接的電源200可以是相同的電源或不同的電源。 In the aforementioned embodiments, the power sources 200 connected to the first power domains 123A, 123B and the second power domains 125A, 125B are the same power source. In some embodiments, the power sources 200 connected to the first power domains 123A, 123B and the second power domains 125A, 125B may be different power sources. The connected power supply 200 and the connected power supplies 200 of the second power domains 125A, 125B can be controlled independently or from different power supply terminals, and these power supplies 200 can have output voltages of the same voltage level or have different voltage levels the output voltage. In some embodiments, the power sources 200 connected to the third power domains 132, 132' and the fourth power domains 134, 134' of the working modules 130, 130' may be the same power source or different power sources.

參照圖5,圖5係為本發明一實施例之第一中繼模組120A的方塊示意圖。於後為了方便說明每個中繼模組中內部的電路方塊圖,而僅以一個中繼模組(於此為第一中繼模組120A)為示例來說明,換言之第二中繼模組120B中內部的電路方塊圖可以相同或相似於第一中繼模組120A中內部的電路方塊圖。 Referring to FIG. 5 , FIG. 5 is a schematic block diagram of a first relay module 120A according to an embodiment of the present invention. In the following, for the convenience of explaining the circuit block diagram inside each relay module, only one relay module (here, the first relay module 120A) is used as an example for description, in other words, the second relay module The circuit block diagram inside 120B may be the same or similar to the circuit block diagram inside the first relay module 120A.

在一些實施例中,第一中繼模組120A具有相鄰之第一電源域123A及第二電源域125A,但本發明並不以此為限,第一電源域123A 及第二電源域125A可以不相鄰。第一中繼模組120A更包含一弱推動電路14,位於第一電源域123A內,且訊號連接至傳輸路徑127A。弱推動電路14用以產生一電壓準位訊號以穩定維持傳輸路徑127A的邏輯準位。 In some embodiments, the first relay module 120A has the adjacent first power domain 123A and the second power domain 125A, but the invention is not limited to this, the first power domain 123A And the second power domain 125A may not be adjacent. The first relay module 120A further includes a weak push circuit 14 located in the first power domain 123A, and the signal is connected to the transmission path 127A. The weak push circuit 14 is used for generating a voltage level signal to stably maintain the logic level of the transmission path 127A.

在一些實施例中,第一電源域123A具有一第一連接墊10,第二電源域125A具有一第二連接墊12,且第二連接墊12透過連接線路電性連接至第一連接墊10,以形成傳輸路徑127A。弱推動電路14亦位於第一電源域123A內,並電性連接第一連接墊10,以透過第一連接墊10訊號連接傳輸路徑127A。在電子裝置100處於一般工作狀態下,第一電源域123A及第二電源域125A皆處於供電模式下,且此時的第二電源域125A可以依序透過第二連接墊12、傳輸路徑127A、第一連接墊10傳送訊號至第一電源域123A。而在電子裝置100處於省電狀態(例如待機狀態)下,第一電源域123A仍維持處於供電模式,第二電源域125A響應斷電訊號而處於斷電模式。此時,弱推動電路14可以透過第一連接墊10輸出一電壓準位訊號而將傳輸路徑127A穩定維持在一邏輯準位,以使第一連接墊10不會發生浮接(floating)的情形,且斷電之第二電源域125A可能產生的未知訊號就無法經過傳輸路徑127A而進入至第一電源域123A中,致使第一電源域123A不會受到斷電之第二電源域125A的干擾。 In some embodiments, the first power domain 123A has a first connection pad 10 , the second power domain 125A has a second connection pad 12 , and the second connection pad 12 is electrically connected to the first connection pad 10 through connecting lines , to form the transmission path 127A. The weak push circuit 14 is also located in the first power domain 123A, and is electrically connected to the first connection pad 10 for signal connection to the transmission path 127A through the first connection pad 10 . When the electronic device 100 is in a normal working state, the first power domain 123A and the second power domain 125A are both in the power supply mode, and the second power domain 125A can pass through the second connection pad 12 , the transmission path 127A, The first connection pad 10 transmits the signal to the first power domain 123A. When the electronic device 100 is in a power saving state (eg, a standby state), the first power domain 123A remains in the power supply mode, and the second power domain 125A is in the power off mode in response to the power off signal. At this time, the weak push circuit 14 can output a voltage level signal through the first connection pad 10 to stably maintain the transmission path 127A at a logic level, so that the first connection pad 10 does not float. , and the unknown signal that may be generated by the power-off second power domain 125A cannot enter the first power domain 123A through the transmission path 127A, so that the first power domain 123A will not be disturbed by the power-off second power domain 125A .

在一些實施例中,弱推動電路14係為一弱拉高電路(weakly pull-high circuit)或一弱拉低電路(weakly pull-low circuit)。其中,當弱推動電路14為弱拉低電路時,其產生的電壓準位 訊號為一下拉電壓訊號,並將傳輸路徑127A之邏輯準位維持在一低邏輯準位,此低邏輯準位係為0(例如,弱拉低電路透過連接參考接地端的一下拉電阻產生下拉電壓訊號,以維持傳輸路徑127A之邏輯準位在一低邏輯準位);當弱推動電路14為弱拉高電路時,其產生的電壓準位訊號為一上拉電壓訊號,並將傳輸路徑127A之邏輯準位維持在一高邏輯準位,此高邏輯準位係為1(例如,弱拉高電路透過連接操作電壓端的一上拉電阻產生上拉電壓訊號,以維持傳輸路徑127A之邏輯準位在一高邏輯準位)。所述操作電壓端可為電子裝置100或第一中繼模組120A的系統電壓。 In some embodiments, the weak push circuit 14 is a weakly pull-high circuit or a weakly pull-low circuit. Among them, when the weak push circuit 14 is a weak pull-down circuit, the voltage level generated by it The signal is a pull-down voltage signal, and maintains the logic level of the transmission path 127A at a low logic level, which is 0 (for example, a weak pull-down circuit generates a pull-down voltage through a pull-down resistor connected to the reference ground terminal. signal to maintain the logic level of the transmission path 127A at a low logic level); when the weak push circuit 14 is a weak pull-up circuit, the voltage level signal generated by it is a pull-up voltage signal, and the transmission path 127A is The logic level is maintained at a high logic level, which is 1 (for example, the weak pull-up circuit generates a pull-up voltage signal through a pull-up resistor connected to the operating voltage terminal to maintain the logic level of the transmission path 127A). bit at a high logic level). The operating voltage terminal may be the system voltage of the electronic device 100 or the first relay module 120A.

在一些實施例中,弱推動電路14可以由一通用型輸入輸出電路(GPIO circuit)來實現。舉例來說,由於本發明之第二電源域125A與第一電源域123A之間的傳輸路徑127A為單向的,因此,本發明可將通用型輸入輸出電路分別設定為在第二電源域125A內使用之通用型輸出(GPO)電路及在第一電源域123A內使用之通用型輸入(GPI)電路使用,且位於第一電源域123A內之通用型輸入輸出電路係作為弱推動電路14。其中,通用型輸入輸出電路係為類比電路,係受到第一電源域123A或第二電源域125A之內部數位邏輯所控制。 In some embodiments, the weak push circuit 14 may be implemented by a general-purpose input-output circuit (GPIO circuit). For example, since the transmission path 127A between the second power domain 125A and the first power domain 123A of the present invention is unidirectional, the present invention can set the general-purpose input and output circuits as the second power domain 125A respectively. The general purpose output (GPO) circuit used in the first power domain 123A and the general purpose input (GPI) circuit used in the first power domain 123A are used, and the general purpose input and output circuit in the first power domain 123A is used as the weak push circuit 14 . The general-purpose input-output circuit is an analog circuit, which is controlled by the internal digital logic of the first power domain 123A or the second power domain 125A.

續,在電子裝置100於一般工作狀態下(正常供電),第二電源域125A欲輸出的輸出資料會透過通用型輸出電路中的輸出緩衝器及輸入輸出腳位,再經過傳輸路徑127A傳送給第一電源域123A,而第一電源域123A則透過通用型輸入電路中的輸入輸出腳位及輸入緩衝器而接收到前述輸出資料,以作為第一電源域123A的輸入資料。在電 子裝置100於省電狀態下,第一電源域123A仍維持處於供電模式,第二電源域125A則處於斷電模式。此時,第一電源域123A中作為弱推動電路14的通用型輸入電路可以弱下拉(weakly pull low)(或是弱上拉(weakly pull up))而產生下拉電壓訊號(或是上拉電壓訊號),並透過通用型輸入電路的輸入輸出腳位將傳輸路徑127A穩定維持在低邏輯準位(或是高邏輯準位)。因而在電子裝置100於省電狀態下時,可避免未知訊號從第二電源域125A進入第一電源域123A而干擾第一電源域123A的正常運作。 Continued, when the electronic device 100 is in a normal working state (normal power supply), the output data to be output by the second power domain 125A will pass through the output buffer and the input/output pins in the general-purpose output circuit, and then be transmitted to the transmission path 127A. The first power domain 123A receives the aforementioned output data through the input and output pins and input buffers in the general-purpose input circuit as the input data of the first power domain 123A. on electricity When the sub-device 100 is in the power saving state, the first power domain 123A is still in the power supply mode, and the second power domain 125A is in the power-off mode. At this time, the general-purpose input circuit as the weak push circuit 14 in the first power domain 123A can weakly pull down (or weakly pull up) to generate a pull-down voltage signal (or pull-up voltage) signal), and the transmission path 127A is stably maintained at a low logic level (or a high logic level) through the input and output pins of the general-purpose input circuit. Therefore, when the electronic device 100 is in the power saving state, unknown signals can be prevented from entering the first power domain 123A from the second power domain 125A and disturbing the normal operation of the first power domain 123A.

在一些實施例中,工作模組130,130’的第三電源域132,132’與第四電源域134,134’之間亦具有傳輸路徑,並在工作模組130,130’進入待機模式時,該傳輸路徑維持在一邏輯準位,以避免未知訊號從第四電源域134,134’進入第三電源域132,132’而干擾第三電源域132,132’的正常運作。在一些實施例中,工作模組130,130’亦可以包含位於第三電源域132,132’的弱推動電路,以使傳輸路徑透過弱推動電路所產生的電壓準位訊號而維持在一邏輯準位。 In some embodiments, there is also a transmission path between the third power domain 132, 132' and the fourth power domain 134, 134' of the working modules 130, 130', and when the working modules 130, 130' enter the standby mode, the transmission path is maintained at a The logic level is used to prevent unknown signals from entering the third power domains 132, 132' from the fourth power domains 134, 134' to interfere with the normal operation of the third power domains 132, 132'. In some embodiments, the working modules 130, 130' may also include weak push circuits located in the third power domains 132, 132', so that the transmission path is maintained at a logic level through the voltage level signals generated by the weak push circuits.

綜上所述,依據本發明之實施例,藉由電子裝置的中繼模組中的一電源域斷電時,其與未斷電的電源域之間的傳輸路徑穩定維持在一邏輯準位上,而避免斷電之電源域會有未知訊號(包含雜訊)進入到另一電源域中而干擾其邏輯運作,以維持電子裝置本身之正常運作。因此,不需使用隔離單元,所以無需繁瑣的隔離設定流程,致使當電子裝置新增元件時亦無需更改其系統設計,即可達到喚醒電子裝置及待機電子裝置的功能,因而大幅降低電子裝置的設計成本及設計時程。 To sum up, according to the embodiments of the present invention, when a power domain in a relay module of an electronic device is powered off, the transmission path between the power domain and the unpowered power domain is stably maintained at a logic level On the other hand, to prevent the power domain from power failure, unknown signals (including noise) will enter into another power domain to interfere with its logic operation, so as to maintain the normal operation of the electronic device itself. Therefore, there is no need to use an isolation unit, so there is no need for a cumbersome isolation setting process, so that when an electronic device adds components, it does not need to change its system design, so that the functions of waking up the electronic device and standby electronic device can be achieved, thus greatly reducing the electronic device. Design cost and design schedule.

100:電子裝置 100: Electronics

110:訊號發送模組 110: Signal sending module

120A:第一中繼模組 120A: The first relay module

121A:第一收發電路 121A: The first transceiver circuit

123A:第一電源域 123A: First Power Domain

125A:第二電源域 125A: Second Power Domain

127A:傳輸路徑 127A: Transmission path

120B:第二中繼模組 120B: The second relay module

121B:第二收發電路 121B: Second transceiver circuit

123B:第一電源域 123B: First Power Domain

125B:第二電源域 125B: Second Power Domain

127B:傳輸路徑 127B: Transmission path

130:工作模組 130: Working Mods

Claims (10)

一種具有斷電分區的電子裝置,包含: 一訊號發送模組,發送一待機訊號; 二中繼模組,每一該中繼模組包含: 一第一電源域; 一第二電源域,其中在該第二電源域處於一斷電模式時,該第一電源域與該第二電源域之間的一傳輸路徑維持在一邏輯準位;以及 一收發電路,位於該第一電源域內,其中,該二中繼模組的其中之一的該收發電路編碼自該訊號發送模組獲得的該待機訊號而發送一待機編碼訊號,另一該中繼模組的該收發電路解碼該待機編碼訊號而發送一待機解碼訊號;以及 一工作模組,根據該待機解碼訊號而發送一斷電訊號至該二中繼模組的該收發電路,以使該二中繼模組的該第二電源域響應該斷電訊號而處於該斷電模式。 An electronic device with a power-off partition, comprising: a signal sending module to send a standby signal; Two relay modules, each of which includes: a first power domain; a second power domain, wherein when the second power domain is in a power-down mode, a transmission path between the first power domain and the second power domain is maintained at a logic level; and a transceiver circuit located in the first power domain, wherein the transceiver circuit of one of the two relay modules encodes the standby signal obtained from the signal transmission module to transmit a standby encoded signal, and the other The transceiver circuit of the relay module decodes the standby encoded signal to send a standby decoded signal; and A working module sends a power-off signal to the transceiver circuits of the two relay modules according to the standby decoding signal, so that the second power domain of the two relay modules is in the power-off signal in response to the power-off signal Power down mode. 如請求項1所述之具有斷電分區的電子裝置,其中該第一電源域係處於一供電模式。The electronic device having a power-off partition as claimed in claim 1, wherein the first power domain is in a power supply mode. 如請求項1所述之具有斷電分區的電子裝置,其中該第一電源域及該第二電源域連接一電源,該電源響應該斷電訊號而停止供電給該第二電源域,以使該第二電源域處於該斷電模式。The electronic device with a power-off partition as claimed in claim 1, wherein the first power domain and the second power domain are connected to a power supply, and the power supply stops supplying power to the second power domain in response to the power-off signal, so that the The second power domain is in the power down mode. 如請求項1所述之具有斷電分區的電子裝置,其中該訊號發送模組發送一喚醒訊號,該二中繼模組的其中之一的該收發電路編碼自該訊號發送模組獲得的該喚醒訊號而發送一喚醒編碼訊號,另一該中繼模組的該收發電路解碼該喚醒編碼訊號而發送一喚醒解碼訊號,該工作模組根據該喚醒解碼訊號而發送一供電訊號至該二中繼模組的該收發電路,以使該二中繼模組的該第二電源域響應該供電訊號而處於一供電模式。The electronic device with a power-off partition as claimed in claim 1, wherein the signal sending module sends a wake-up signal, and the transceiver circuit of one of the two relay modules encodes the signal obtained from the signal sending module The wake-up signal sends a wake-up coded signal, the transceiver circuit of the other relay module decodes the wake-up coded signal and sends a wake-up decoding signal, and the working module sends a power supply signal to the two middles according to the wake-up decoding signal The transceiver circuit of the relay module enables the second power domain of the two relay modules to be in a power supply mode in response to the power supply signal. 如請求項4所述之具有斷電分區的電子裝置,其中該工作模組響應該待機解碼訊號而進入一待機模式,並響應該喚醒解碼訊號而進入一工作模式。The electronic device with a power-off partition according to claim 4, wherein the working module enters a standby mode in response to the standby decoding signal, and enters a working mode in response to the wake-up decoding signal. 如請求項4所述之具有斷電分區的電子裝置,其中該第一電源域及該第二電源域連接一電源,該電源響應該供電訊號而從停止供電轉為恢復供電給該第二電源域,以使該第二電源域處於該供電模式。The electronic device with a power-off partition as claimed in claim 4, wherein the first power domain and the second power domain are connected to a power supply, and the power supply changes from stopping power supply to restoring power supply to the second power supply in response to the power supply signal domain so that the second power domain is in the power supply mode. 如請求項1所述之具有斷電分區的電子裝置,其中該第一電源域具有一第一連接墊,該第二電源域具有一第二連接墊,該第二連接墊電性連接至該第一連接墊,以形成該傳輸路徑。The electronic device having a power-off partition as claimed in claim 1, wherein the first power domain has a first connection pad, the second power domain has a second connection pad, and the second connection pad is electrically connected to the the first connection pad to form the transmission path. 如請求項1所述之具有斷電分區的電子裝置,其中每一該中繼模組更包含一弱推動電路,位於該第一電源域內,在該第二電源域處於該斷電模式時,該傳輸路徑透過該弱推動電路產生的一電壓準位訊號而維持在該邏輯準位。The electronic device with a power-off partition as claimed in claim 1, wherein each of the relay modules further includes a weak push circuit located in the first power domain, when the second power domain is in the power-off mode , the transmission path is maintained at the logic level through a voltage level signal generated by the weak push circuit. 如請求項8所述之具有斷電分區的電子裝置,其中該弱推動電路為一弱拉低電路,該電壓準位訊號為一下拉電壓訊號,該邏輯準位為一低邏輯準位。The electronic device with power-off partition as claimed in claim 8, wherein the weak push circuit is a weak pull-down circuit, the voltage level signal is a pull-down voltage signal, and the logic level is a low logic level. 一種電子裝置的分區斷電方法,該電子裝置包含一訊號發送模組、二中繼模組以及一工作模組,每一該中繼模組包含一第一電源域、一第二電源域以及位於該第一電源域內的一收發電路,該電子裝置的分區斷電方法包含: 以該二中繼模組的其中之一的該收發電路編碼來自該訊號發送模組的一待機訊號而發送一待機編碼訊號; 以另一該中繼模組的該收發電路解碼該待機編碼訊號而發送一待機解碼訊號;以及 以該工作模組根據該待機解碼訊號而發送一斷電訊號至該二中繼模組的該收發電路,以使該二中繼模組的該第二電源域響應該斷電訊號而處於一斷電模式,其中在每一該中繼模組的該第二電源域處於該斷電模式時,每一該中繼模組的該第一電源域與該第二電源域之間的一傳輸路徑維持在一邏輯準位。 A partition power-off method for an electronic device, the electronic device includes a signal sending module, two relay modules and a working module, each of the relay modules includes a first power domain, a second power domain, and A transceiver circuit located in the first power domain, and the method for partitioning power off of the electronic device includes: encoding a standby signal from the signal sending module with the transceiver circuit of one of the two relay modules to send a standby encoded signal; using the transceiver circuit of another relay module to decode the standby encoded signal to send a standby decoded signal; and The working module sends a power-off signal to the transceiver circuits of the two relay modules according to the standby decoding signal, so that the second power domain of the two relay modules is in a state in response to the power-off signal power-down mode, wherein when the second power domain of each relay module is in the power-down mode, a transmission between the first power domain and the second power domain of each relay module The path is maintained at a logic level.
TW110101513A 2020-09-16 2021-01-14 Electronic device with power-off partition and method thereof TWI768655B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/470,586 US11662800B2 (en) 2020-09-16 2021-09-09 Electronic device with power-off partition and partition-based power-off method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063079059P 2020-09-16 2020-09-16
US63/079,059 2020-09-16

Publications (2)

Publication Number Publication Date
TW202213037A TW202213037A (en) 2022-04-01
TWI768655B true TWI768655B (en) 2022-06-21

Family

ID=80824509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101513A TWI768655B (en) 2020-09-16 2021-01-14 Electronic device with power-off partition and method thereof

Country Status (2)

Country Link
CN (1) CN114265493A (en)
TW (1) TWI768655B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130037004A (en) * 2011-10-05 2013-04-15 주식회사 케이티 System and method of cutting off stand-by power in smart electric device
TWI454899B (en) * 2007-11-05 2014-10-01 Mediatek Inc Electronic system and power control method thereof
TWI505083B (en) * 2013-01-21 2015-10-21 Hon Hai Prec Ind Co Ltd Power control circuit and elelctronic device with power control circuit
WO2017135523A1 (en) * 2016-02-06 2017-08-10 조계옥 Power supply apparatus having standby power control function, and power supply method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7162654B1 (en) * 2001-01-04 2007-01-09 3Pardata, Inc. Isolation of I2C buses in a multiple power domain environment using switches
US9374089B2 (en) * 2011-12-05 2016-06-21 Mediatek Inc. Isolation cell
US9621383B1 (en) * 2015-11-06 2017-04-11 Monolithic Power Systems, Inc. Digital isolator and the method thereof
US10601217B2 (en) * 2017-04-27 2020-03-24 Qualcomm Incorporated Methods for detecting an imminent power failure in time to protect local design state
US20190163254A1 (en) * 2017-11-30 2019-05-30 Nvidia Corporation Core off sleep mode with low exit latency

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI454899B (en) * 2007-11-05 2014-10-01 Mediatek Inc Electronic system and power control method thereof
KR20130037004A (en) * 2011-10-05 2013-04-15 주식회사 케이티 System and method of cutting off stand-by power in smart electric device
TWI505083B (en) * 2013-01-21 2015-10-21 Hon Hai Prec Ind Co Ltd Power control circuit and elelctronic device with power control circuit
WO2017135523A1 (en) * 2016-02-06 2017-08-10 조계옥 Power supply apparatus having standby power control function, and power supply method thereof

Also Published As

Publication number Publication date
CN114265493A (en) 2022-04-01
TW202213037A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US9189048B2 (en) Circuit having a low power mode
US6754692B2 (en) Configurable power distribution circuit
JP2006318380A (en) Circuit system
US20090193157A1 (en) Link state detection system for network cable
JPH09120380A (en) Method and apparatus for turning on of power of computer-based system via network interface
TWI464596B (en) System and method for facilitating communication between components in a portable electronic device and portable electronic devices
CN101145078A (en) Information processing apparatus and resume control method
KR20030042056A (en) Card type device capable of being used in secondary battery and host for using the card type device
US20110099389A1 (en) Stand-by power system for information handling systems
US6802018B2 (en) Method and apparatus to directly access a peripheral device when central processor operations are suspended
US11662800B2 (en) Electronic device with power-off partition and partition-based power-off method therefor
US11372470B2 (en) Control system for controlling intelligent system to reduce power consumption based on bluetooth device
TWI768655B (en) Electronic device with power-off partition and method thereof
JP2004078881A (en) Circuit and operation system for integrated interface between personal digital assistant (pda) and radio communication
JP7300667B2 (en) Energy saving hub
CN112069121A (en) MCU control GPU server Switch board system and control method
CN109842402B (en) Low-power-consumption isolation circuit and method and chip thereof
US7321980B2 (en) Software power control of circuit modules in a shared and distributed DMA system
CN107248853A (en) New small area clock independence SRPG circuit systems
JP4527097B2 (en) Network interface
TWI736434B (en) Front chip for data transmission system
CN105760334B (en) Universal serial bus hub, method for operating the same and display
CN112578890A (en) Server device capable of remotely controlling node power supply
CN117971325A (en) Awakening method and chip circuit
JP4057360B2 (en) Multi-function IC card and control method thereof