TWI766046B - Vibration system control device and workpiece conveying device - Google Patents
Vibration system control device and workpiece conveying device Download PDFInfo
- Publication number
- TWI766046B TWI766046B TW107121238A TW107121238A TWI766046B TW I766046 B TWI766046 B TW I766046B TW 107121238 A TW107121238 A TW 107121238A TW 107121238 A TW107121238 A TW 107121238A TW I766046 B TWI766046 B TW I766046B
- Authority
- TW
- Taiwan
- Prior art keywords
- vibration
- frequency
- vibration system
- target frequency
- phase difference
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G27/00—Jigging conveyors
- B65G27/10—Applications of devices for generating or transmitting jigging movements
- B65G27/32—Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Jigging Conveyors (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Abstract
提供一種適用於零件進料器或超音波馬達等利用了振動之裝置,而可穩定、高效率地令它們驅動之振動系統的控制裝置。 設計成一種將複數個振動系統(1、2)透過共通的驅動指令予以驅動時被利用之物,振動系統(1、2)各自具有共振頻率(f1、f2),目標頻率設定手段(31),在該些共振頻率(f1、f2)之間設定目標頻率(fm);及追蹤手段(32),令驅動指令的頻率(fv)追蹤此目標頻率設定手段(31)設定的目標頻率(fm)。Provided is a control device for a vibration system that can stably and efficiently drive devices using vibration such as parts feeders and ultrasonic motors. It is designed to be used when a plurality of vibration systems (1, 2) are driven by a common drive command, and the vibration systems (1, 2) each have a resonance frequency (f1, f2), and the target frequency setting means (31) , set the target frequency (fm) between the resonance frequencies (f1, f2); and the tracking means (32), so that the frequency (fv) of the drive command tracks the target frequency (fm) set by the target frequency setting means (31) ).
Description
本發明有關適用於零件進料器或超音波馬達等利用了振動之裝置,而可穩定、高效率地令它們驅動之振動系統的控制裝置及工件搬送裝置。 The present invention relates to a control device and a workpiece conveying device suitable for a vibration system that can drive them stably and efficiently in devices using vibrations such as parts feeders and ultrasonic motors.
習知,有如橢圓振動零件進料器或超音波馬達等這般具有複數個振動系統,而令它們以單一的頻率驅動藉此發揮種種機能之裝置。在此,所謂複數個振動系統,包含複數個構造物所成之振動系統、或具有複數個振動方向之振動系統、同一構造物之複數個振動模態,的任一種。 Conventionally, devices such as elliptical vibrating parts feeders or ultrasonic motors have a plurality of vibrating systems, and they are driven at a single frequency to perform various functions. Here, the term “plurality of vibrational systems” includes any one of a vibrational system formed by a plurality of structures, a vibrational system having a plurality of vibrational directions, and a plurality of vibrational modes of the same structure.
這樣的裝置中,為令其有效率地振動,多會以成為接近該些複數個振動系統的共振頻率之值之方式來進行設計、調整,而以它們的共振頻率附近的頻率來驅動。此外,有人提出一種控制,是因應複數個當中的一個振動系統的共振頻率來調節驅動頻率(例如參照專利文獻1、2)。
In such a device, in order to vibrate efficiently, it is often designed and adjusted so as to have a value close to the resonance frequency of the plurality of vibration systems, and is driven at a frequency near their resonance frequency. In addition, there has been proposed a control that adjusts the drive frequency in accordance with the resonance frequency of one vibration system among a plurality of them (for example, refer to
專利文獻1揭示超音波馬達的驅動電路,係構成為,以和驅動狀態相應的電壓(從驅動檢測用的壓電
元件得到的電壓)、與對壓電體的施加電壓(對2個電極當中的一方的施加電壓)之相位差會成為事先設定好的相位差之方式,來控制驅動頻率。
另一方面,專利文獻2揭示橢圓振動零件進料器的驅動控制裝置,係構成為,以水平方向振動與垂直方向振動的其中一方的振幅會成為最大之方式,來設定輸出頻率。
On the other hand,
[專利文獻1]日本特公平07-2023號公報 [Patent Document 1] Japanese Patent Publication No. 07-2023
[專利文獻2]日本特開平11-227926號公報 [Patent Document 2] Japanese Patent Application Laid-Open No. 11-227926
然而,如圖12所示,各振動系統的共振頻率嚴格說來並不一致,而有偏差。此外,當由於溫度變化等而共振頻率變化的情形下,各振動系統的共振頻率未必會同樣地變化,料想偏差亦可能變大。 However, as shown in FIG. 12 , the resonance frequencies of the respective vibration systems do not strictly match, but vary. In addition, when the resonance frequency changes due to a temperature change or the like, the resonance frequency of each vibration system does not necessarily change in the same way, and it is expected that the variation may become larger.
因此,習知的基於一個振動系統的共振頻率來調整驅動頻率之控制中,由於共振頻率的偏差的影響,裝置全體的效率不會成為最大。此外,各振動系統的振動的響應放大率(response magnification)的差距會變大,料想會發生在一部分的振動系統為了造出必要的振幅而必需 有過大的振盪力、或在一部分的振動系統振幅不足等種種問題。 Therefore, in the conventional control for adjusting the drive frequency based on the resonance frequency of one vibration system, the overall efficiency of the device is not maximized due to the influence of the variation in the resonance frequency. In addition, the difference in response magnification of the vibration of each vibration system increases, which is expected to occur in some of the vibration systems. It is necessary to generate the necessary amplitude. There are various problems such as excessive oscillation force or insufficient amplitude in a part of the vibration system.
本發明是以有效解決該些問題為目的。 The present invention aims to effectively solve these problems.
本發明為解決該問題,係採取下述手段。 In order to solve this problem, the present invention adopts the following means.
也就是說,本發明之振動系統的控制裝置,係將複數個振動系統透過共通的驅動指令予以驅動時被利用,其特徵為,前述各振動系統各自具有共振頻率,具備:目標頻率設定手段,在該些共振頻率之間設定目標頻率;及追蹤手段,令前述驅動指令的頻率追蹤前述目標頻率設定手段設定的目標頻率;而構成。 That is, the control device of the vibration system of the present invention is used when a plurality of vibration systems are driven by a common drive command, wherein each of the vibration systems has a resonance frequency, and includes: target frequency setting means, A target frequency is set between the resonant frequencies; and a tracking means is formed to make the frequency of the drive command track the target frequency set by the target frequency setting means.
若依此方式構成,則不會偏坦一部分的共振頻率而能夠以取得全體性的平衡之頻率來驅動各振動系統。又,即使振動系統的共振頻率由於溫度等而變化之情形下,仍可以追蹤此之頻率來驅動振動系統。 If configured in this way, each vibration system can be driven at a frequency that achieves overall balance without biasing a part of the resonance frequency. Also, even if the resonance frequency of the vibration system changes due to temperature or the like, the vibration system can be driven by tracking the frequency.
在此情形下,較佳是,前述目標頻率設定手段,係以前述各振動系統的相位與前述驅動指令的相位之間會成為規定的相位關係之方式來設定前述目標頻率,前述追蹤手段,係進行將前述驅動指令的頻率設為前述目標頻率之反饋控制。 In this case, preferably, the target frequency setting means sets the target frequency such that the phase of each vibration system and the phase of the drive command have a predetermined phase relationship, and the tracking means is Feedback control is performed to set the frequency of the drive command to the target frequency.
像這樣,若設計成透過相位來設定目標頻率,便不必搜索共振頻率,因此能夠不中斷驅動而持續控制。 In this way, if the target frequency is set by the phase, there is no need to search for the resonance frequency, so that the control can be continued without interruption of the driving.
具體而言,理想是,前述目標頻率設定手段,具備:相位差設定器,設於各振動系統;及相位差檢測器,檢測各振動系統中檢測到的相位與前述驅動指令的相位之相位差;及加法器,將前述各振動系統每一者的設定相位差與前述檢測相位差之偏差予以相加;基於藉由此加法器加算而成之合成偏差來生成前述驅動指令。 Specifically, it is preferable that the target frequency setting means includes: a phase difference setter provided in each vibration system; and a phase difference detector for detecting a phase difference between the phase detected in each vibration system and the phase of the drive command and an adder that adds the deviation between the set phase difference of each of the vibration systems and the detected phase difference; and generates the drive command based on the combined deviation added by the adder.
若依此方式構成,則不必使用相位搜索共振頻率,故能夠將控制裝置的構成簡化。 With this configuration, it is not necessary to use the phase search for the resonance frequency, so that the configuration of the control device can be simplified.
又,合適是,前述各振動系統中,前述相位差檢測器,將前述驅動指令的訊號與來自前述振動檢測器的檢測訊號予以相乘而取出直流成分,將其標準化(normalization),藉此檢測相位差。 Moreover, it is suitable that in each of the vibration systems, the phase difference detector multiplies the signal of the drive command and the detection signal from the vibration detector to extract the DC component, and normalizes it to detect phase difference.
若依此方式構成,則不必以零交叉檢測等這般高解析力來進行取樣,因此可確實地檢測相位關係(∴取出直流成分而予以標準化之效果)。若依此方式構成,則即使當在各振動系統振幅相異之情形下,仍可除去其所造成之影響而進行確實的相位差檢測。 With this configuration, it is not necessary to perform sampling with high resolution such as zero-cross detection, etc., and therefore the phase relationship can be detected reliably (∴ effect of extracting and normalizing the DC component). If configured in this way, even when the amplitudes of the vibration systems are different, the influence of the vibration systems can be removed and the phase difference detection can be performed reliably.
此外,另較佳是,前述目標頻率設定手段,係檢測前述各振動系統的振動頻率而將目標頻率設定於其之間,前述追蹤手段,係進行將前述驅動指令的頻率設為前述目標頻率之反饋控制。 Further, preferably, the target frequency setting means detects the vibration frequencies of the respective vibration systems and sets target frequencies therebetween, and the tracking means performs a process of setting the frequency of the drive command to the target frequency. feedback control.
若依此方式構成,則例如相位檢測困難的對象物中,仍能夠不倚賴相位而透過振動頻率相對簡單地設定目標頻率。 With this configuration, the target frequency can be relatively easily set through the vibration frequency without depending on the phase, for example, in an object for which phase detection is difficult.
又,若將以上的控制裝置適用於具備:搬送部,將工件以載置之狀態予以搬送;及行進波產生手段,藉由相位相異的駐波被合成而產生用來令前述搬送部撓曲振動(flexural vibration)之行進波;之工件搬送裝置,而設計成藉由上述控制裝置來控制此工件搬送裝置的行進波產生手段,則可使其以高效率發揮穩定的搬送能力。 Furthermore, if the above-mentioned control device is applied, it is provided with: a conveying unit for conveying the workpiece in a mounted state; and a traveling wave generating means for generating the deflection of the conveying unit by synthesizing standing waves of different phases. The traveling wave of flexural vibration; the workpiece conveying device is designed to control the traveling wave generating means of the workpiece conveying device by the above-mentioned control device, so that it can exert a stable conveying capability with high efficiency.
按照以上說明之本發明,能夠提供一種當適用於零件進料器或超音波馬達等利用了振動之裝置的情形下,可穩定、高效率地令它們驅動之新穎有用的振動系統的控制裝置及工件搬送裝置。 According to the present invention described above, when it is applied to a device using vibration such as a parts feeder or an ultrasonic motor, it is possible to provide a novel and useful vibration system control device that can drive them stably and efficiently, and Workpiece transfer device.
1(1x):第一振動系統 1(1x): First Vibration System
2(2x):第二振動系統 2(2x): Second Vibration System
11:第一振盪器 11: First oscillator
12:第一放大器 12: First Amplifier
14:第一振動檢測器 14: First Vibration Detector
15:第一相位差檢測器 15: The first phase difference detector
21:第二振盪器 21: Second oscillator
22:第二放大器 22: Second amplifier
23:移相器 23: Phaser
24:第二振動檢測器 24: Second vibration detector
25:第二相位差檢測器 25: Second phase difference detector
30:加法器 30: Adder
31:目標頻率設定手段 31: Target frequency setting means
32:追蹤手段(驅動指令生成部) 32: Tracking means (drive command generation part)
31A1:第一相位差設定器 31A1: The first phase difference setter
32B1:第二相位差設定器 32B1: The second phase difference setter
C:振動系統的控制裝置 C: Control device for vibration system
f1、f2:共振頻率 f1, f2: resonance frequency
fm:目標頻率 fm: target frequency
fv:驅動頻率(驅動指令的頻率) fv: drive frequency (frequency of drive command)
T1、t1、t2:搬送部 T1, t1, t2: conveying part
BZ、LZ:行進波產生手段 BZ, LZ: means of generating traveling waves
PF:工件搬送裝置(零件進料器) PF: Workpiece transfer device (parts feeder)
[圖1]本發明一實施形態之振動系統的控制裝置示意方塊圖。 1 is a schematic block diagram of a control device of a vibration system according to an embodiment of the present invention.
[圖2]圖1的一部分具體示意方塊圖。 [Fig. 2] A part of Fig. 1 is a specific schematic block diagram. [Fig.
[圖3]圖2的一部分更具體示意方塊圖。 [FIG. 3] A part of FIG. 2 is a more specific schematic block diagram.
[圖4]複數個振動系統中的共振頻率與驅動指令的頻率之關係示意波德圖(Bode plot)。 [ Fig. 4] Fig. 4 is a schematic Bode plot of the relationship between the resonance frequency and the frequency of the drive command in a plurality of vibration systems.
[圖5]用來說明同實施形態中的目標頻率之和圖4的一部分相對應之波德圖。 [ Fig. 5 ] A Bode diagram corresponding to a part of Fig. 4 which is the sum of the target frequencies in the embodiment.
[圖6]用來說明同實施形態中當不進行標準化的情形 下的問題之比較圖。 [Fig. 6] It is used to explain the case where standardization is not performed in the same embodiment. Below is a comparison chart of the problem.
[圖7]本發明之振動系統的控制裝置的變形例示意圖。 [ Fig. 7] Fig. 7 is a schematic diagram of a modification of the control device of the vibration system of the present invention.
[圖8]本發明之振動系統的控制裝置的另一變形例示意圖。 [ Fig. 8] Fig. 8 is a schematic diagram of another modification of the control device of the vibration system of the present invention.
[圖9]作為本發明之工件搬送裝置的構成例之零件進料器示意圖。 [ Fig. 9] Fig. 9 is a schematic diagram of a parts feeder as a configuration example of the workpiece conveying device of the present invention.
[圖10]對於構成同零件進料器之缽饋送器的控制方塊圖。 [Fig. 10] A control block diagram for the bowl feeder constituting the same parts feeder.
[圖11]對於構成同零件進料器之線性進料器的控制方塊圖。 [Fig. 11] A control block diagram for the linear feeder constituting the same parts feeder.
[圖12]用來說明和本發明對比之習知的控制之圖。 [FIG. 12] A diagram for explaining a conventional control in comparison with the present invention.
以下,參照圖面說明本發明之一實施形態。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
圖1為將本實施形態之振動系統的控制裝置C以方塊圖表示而成者。此控制裝置C,帶有第一、第二振動系統1、2,而具有各振動系統1、2的共振頻率f1、f2會落在相近值這樣的振動部(1x、2x)。作為像這樣共振頻率f1、f2落在相近值這樣的振動系統,例如可舉出以複數個振動模態來振盪具有空間相位差之複數處,藉此使行進波產生之零件進料器等的超音波振動系統、或透過往XYZ方向之振動來使橢圓振動產生之平面搬送裝置等的彈簧-質量-阻尼振動系統等。
FIG. 1 is a block diagram showing a control device C of the vibration system according to the present embodiment. This control device C includes the first and
具體而言,第一、第二振動系統1,2,各自藉由第一、第二振盪器11、21而被振盪。
Specifically, the first and
藉由發訊器等的驅動指令生成部32a而生成之頻率可變而為正弦波或矩形波等的周期訊號,會藉由第一、第二放大器12、22被放大而被輸入給第一、第二振盪器11、21。有關第二振盪器21,係被輸入將來自驅動指令生成部32的周期訊號於移相器23將相位錯開而藉由第二放大器22予以放大而成者,以便賦予以第一振動系統1為基準之相對的相位差。
A periodic signal such as a sine wave or a rectangular wave, which is generated by the drive
也就是說,來自驅動指令生成部32的周期訊號,會被輸入至第一放大器12,並且藉由移相器23將相位錯開而被輸入至第二放大器22。
That is, the periodic signal from the driving
在此,若為通常的控制,通例是構成為,在檢測第一振動系統1的振動波形之位置設置第一振動檢測器14,並且設置第一相位差檢測器15來輸入藉由驅動指令生成部32生成之周期訊號與藉由第一振動檢測器14檢測之訊號,以在此處該相位差△Φ1會成為90°之方式來藉由目標頻率設定手段31調整頻率,而控制驅動指令生成部32。同時,會構成為將該驅動頻率藉由移相器23來改變相位而驅動第二振動系統2。
Here, in general control, the
然而,如前述般藉由第一振動系統1的共振頻率f1來驅動全體之控制,於第二振動系統2中會成為偏離共振頻率f2之驅動,因此在與第一振動系統1之間響應放大率的差距會變大,料想會發生為了在第二振動系統2
造出必要的振幅而第二放大器22必需要過大的振盪力、或振幅不足等種種問題。這在設計成藉由第二振動系統2的共振頻率f2來驅動全體的情形下狀況亦同。
However, as described above, the control of driving the whole by the resonant frequency f1 of the
鑑此本實施形態,是也於第二振動系統2側,在檢測該第二振動系統2的振動波形之位置設置第二振動檢測器24,並且設置第二相位差檢測器25來輸入藉由驅動指令生成部32被生成而藉由移相器23被相位調整後之周期訊號與藉由第二驅動檢測器24檢測之訊號而檢測相位差△Φ2,將此相位差和前述的第一相位差檢測器15的相位差一起輸入至目標頻率設定手段31。
In view of this, in the present embodiment, also on the side of the
目標頻率設定手段(頻率調整器)31,由第一、第二相位差檢測器15、25的輸出Φ1、Φ2,將第一振動系統1與第二振動系統2的共振頻率f1、f2之頻率訂為目標頻率fm而調節藉由驅動指令生成部32被生成之驅動指令的頻率fv。
The target frequency setting means (frequency adjuster) 31 determines the frequencies of the resonance frequencies f1 and f2 of the
像這樣,於調節驅動指令的頻率fv之際,目標頻率設定手段31是使用複數個振動系統1,2各自的指令一響應間相位差來設定頻率。然後,以驅動指令生成部32作為追蹤手段,令驅動頻率fv追蹤該目標頻率fm。
In this way, when adjusting the frequency fv of the drive command, the target frequency setting means 31 uses the phase difference between the command and the response of each of the plurality of
針對目標頻率設定手段31與追蹤手段32,更具體而言是採用如圖2般的構成。 More specifically, the target frequency setting means 31 and the tracking means 32 are configured as shown in FIG. 2 .
目標頻率設定手段31,具備第一、第二相位差設定器31A1、31B1,藉由減法器30a、30b各自求出與第一、第二相位差檢測器15、25的輸出訊號之偏差。對於
各自之偏差,能夠藉由調整增益調整部31A2、31B2來調整權重。
The target frequency setting means 31 includes first and second phase difference setters 31A1 and 31B1, and uses
然後,以藉由加法器30c將第一、第二偏差訊號相加而成之訊號(以下稱為合成偏差)作為當做驅動指令的基礎之反饋訊號,此反饋訊號從目標頻率設定手段31被輸出。 Then, a signal obtained by adding the first and second deviation signals by the adder 30c (hereinafter referred to as a composite deviation) is used as a feedback signal as the basis of the driving command, and the feedback signal is output from the target frequency setting means 31 .
本發明之追蹤手段亦即驅動指令生成部32,為了輸入反饋訊號而使驅動指令的驅動頻率fv追蹤中間頻率fm,係藉由PI控制器32a來自動調節發訊器32b(VCO:Voltage controlled oscillator)的頻率,而輸出驅動指令。
The tracking means of the present invention, that is, the driving
針對相位差檢測器15、25,採用如圖3般的構成。
The
也就是說,在此相位差檢測器15、25設有用來從藉由第一、第二振動檢測器14、24被檢測出的訊號來檢測振動振幅之振幅檢測器15a、25a。此外,將被輸入給振動系統1、2之周期訊號、與藉由振動檢測器14、24被檢測之訊號藉由乘法器15b、25b予以相乘,通過低通濾波器15c、25c來截止高頻成分。其後設置除法器15d、25d,將來自低通濾波器15c、25c的輸出訊號除以來自振幅檢測器15a、25a的輸出訊號而予以標準化(normalization)。
That is, the
若像這樣構成,例如假設增益調節器31A2、32A2的增益各自為1,第一相位差設定器15及第二相位差設定器25的設定皆為-90°,則當第一偏差△Φ1或第二偏差△Φ2會處於一方變大時另一方變小之關係,因此結果而
言,驅動指令的頻率會持穩在第一偏差△Φ1成為0的頻率與第二偏差△Φ2成為0的頻率之間的頻率。也就是說,能夠以對於第一振動系統1最佳的頻率f與對於第二振動系統2最佳的頻率f之間的頻率fm,亦即取得了平衡的頻率來驅動第一振動系統1及第二振動系統2。
In this configuration, for example, assuming that the gains of the gain adjusters 31A2 and 32A2 are each 1, and the settings of the first
為了說明這一點,以下設想第一、第二振動系統1、2以單純的彈簧-質量-阻尼系統來表現,而以在振動檢測器14、24檢測振動位移這樣的裝置為例,以各自共振頻率f1、f2之間的頻率來驅動。
In order to illustrate this point, it is assumed that the first and
將第一、第二相位差設定器31A1、31B1中的設定值訂為-90°。也就是說,設定成於各自於共振頻率下偏差會成為0。在此情形下,某一頻率下的偏差△Φ1(=-90°-Φ1)與△Φ2(=-90°-Φ2)會成為圖4所示般的值。依此圖,△Φ1與△Φ2的大小相等而符號成為相反這樣的頻率fm,存在於2個振動系統1、2的共振頻率f1、f2之間。是故,若將驅動指令的頻率fv調整成合成偏差△Φ1+△Φ2會成為0這樣的頻率,則能夠以2個共振頻率f1、f2之間的頻率fm來驅動(參照圖5)。此時,圖4中的驅動頻率fv,會持穩在第一振動系統的共振頻率f1與第二振動系統的共振頻率f2之中間頻率fm一帶。
The set values in the first and second phase difference setting devices 31A1 and 31B1 are set to -90°. That is, it is set so that the deviation becomes 0 at each resonance frequency. In this case, the deviations ΔΦ1 (=-90°-Φ1) and ΔΦ2 (=-90°-Φ2) at a certain frequency become the values shown in Fig. 4 . According to this figure, the frequency fm in which ΔΦ1 and ΔΦ2 are equal in magnitude and opposite in sign exists between the resonance frequencies f1 and f2 of the two
上述的目標頻率設定手段31係自動設定這樣的頻率,藉由追蹤手段32讓驅動頻率fv追蹤該目標頻率fm。另,若藉由增益調節器31A2、32B2調整對於2個偏差的增益,則亦可進行按比例之設定而以雖在2個共振頻率 f1、f2之間但更靠近一方的共振頻率f1(f2)之頻率來驅動。 The above-described target frequency setting means 31 automatically sets such a frequency, and the drive frequency fv is traced to the target frequency fm by the tracking means 32 . In addition, if the gain for two deviations is adjusted by the gain adjusters 31A2 and 32B2, it is also possible to perform proportional setting so that the two resonance frequencies are It is driven by the frequency of the resonance frequency f1 (f2) which is between f1 and f2 but closer to one.
在此,講述當將相位差檢測器15、25設計成如圖3般的構成之情形下的作用。
Here, the operation in the case where the
若將第一、第二驅動指令訊號各自訂為cosωt、cos(ωt-Φe),將藉由第一、第二振動檢測器14,24而被輸出的位移之檢測訊號訂為v1cos(ωt+Φ1)、v2cos(ωt-Φe+Φ2),則將驅動指令訊號與檢測訊號相乘而成之訊號成為以下般。
If the first and second driving command signals are respectively set as cosωt and cos(ωt-Φe), the displacement detection signals output by the first and
若通過低通濾波器15c、25c而僅取出直流成分,則各自成為(1/2)v1cosΦ1、(1/2)v2cosΦ2。再藉由除法器15d、25d予以標準化,藉此便得到不和v1、v2相依而和cosΦ1、cosΦ2成比例之訊號。cosΦ1、cosΦ2各自藉由共振頻率f1、f2而成為0,在共振頻率f、f2附近以1~-1單調地變化。是故,若以成為cosΦA+cosΦB=0之方式調整目標頻率fm,便能以2個振動系統1、2的共振頻率f1、f2之間(中間一帶)的頻率來驅動。
When only the DC component is extracted by the low-
反之,設想當不進行標準化之情形,也就是說以v1cosΦ1+v2cosΦ2成為0之方式來進行了控制之情形。2個振動系統的振動振幅v1、v2係藉由各自的共振頻率而取最大值,因此v1cosΦ1與v2cosΦ2不會成為單調的變化。 圖6為將v1cosΦ1、v2cosΦ2、v1cosΦ1+v2cosΦ2繪製而成之曲線。v1cosΦ1+v2cosΦ2,除了共振頻率f、f2的中間的頻率fm以外還存在成為0之點,此外值的變化的方向(圖表的斜率)會因頻率而異。因此,容易變得以偏離共振頻率的中間值fm之頻率被驅動,或控制變得不穩定(驅動頻率偏離目標值而發散)。藉由進行標準化會解決這樣的問題,控制會變得容易。 Conversely, assume a case where normalization is not performed, that is, a case where control is performed so that v1cosΦ1+v2cosΦ2 becomes 0. Since the vibration amplitudes v1 and v2 of the two vibration systems take the maximum values according to their respective resonance frequencies, v1cosΦ1 and v2cosΦ2 do not change monotonically. Fig. 6 is a curve drawn by v1cosΦ1, v2cosΦ2, v1cosΦ1+v2cosΦ2. v1cosΦ1+v2cosΦ2, in addition to the frequency fm in the middle of the resonance frequencies f and f2, there is a point at which it becomes 0, and the direction of the change of the value (the slope of the graph) varies depending on the frequency. Therefore, it is easy to drive at a frequency deviating from the intermediate value fm of the resonance frequency, or the control becomes unstable (the drive frequency deviates from the target value and diverges). By standardizing, such problems will be solved, and control will become easier.
依以上,按照本實施形態之振動系統的控制裝置C,在第一驅動系統1與第二驅動系統2之間,振動的響應放大率之差距會變小,而難以發生在一方的振動系統f1(f2)必需要過大的振盪力這類問題、或一方的振動系統f1(f2)的振幅不足這類問題。
As described above, according to the control device C of the vibration system of the present embodiment, the difference in the response magnification ratio of vibration between the
此外,比起以一方的共振頻率f1(f2)來驅動全體這樣的情形,可獲得就全體而言必要的電力會變小之優點、或因頻率受到自動調整而變得免去搜索第一、第二振動系統1、2的共振頻率f1、f2這樣的工夫之優點。
In addition, compared with the case where the whole is driven by one resonance frequency f1 (f2), the advantage that the electric power necessary for the whole is reduced, or the frequency is automatically adjusted, it becomes unnecessary to search for the first, Advantages of time such as resonant frequencies f1, f2 of the
以上已說明了本發明之一實施形態,但各部的具體的構成並不僅限定於上述的實施形態。 One embodiment of the present invention has been described above, but the specific configuration of each part is not limited to the above-described embodiment.
例如,即使當振動系統有3個以上這樣的情形下,藉由使用將針對各自的系統被輸出的偏差訊號予以相加而成之訊號來控制,便不會偏坦一部分的共振頻率而能夠以取得全體性的平衡之頻率來驅動。 For example, even when there are three or more vibration systems, by using a signal obtained by adding the deviation signals outputted for each system, it is possible to control a part of the resonance frequency without flattening a part of the resonance frequency. Driven by frequencies that achieve total balance.
此外,上述實施形態中,針對第一、第二相位差檢測器15、25的輸出各者,是於第一、第2相位差設
定器31A1、31B1取與設定值之偏差,但亦可如圖7所示,對於將第一、第二相位差檢測器15、25的輸出予以相加而成之訊號於相位差設定131a取與設定值之偏差。在此情形下,相位差設定器只需1個。
In addition, in the above-described embodiment, the outputs of the first and second
此外,上述實施形態中雖使用了PI控制,但不限於此,能夠採用將合成偏差設為0這樣各式各樣的控制手法。
In addition, although PI control was used in the said embodiment, it is not limited to this, Various control methods can be employ|adopted for making a synthetic|
此外,藉由振動檢測器檢測之物,亦可為振動位移、振動速度、振動加速度的任一者。 In addition, the thing detected by the vibration detector may be any of vibration displacement, vibration velocity, and vibration acceleration.
此外,亦可控制成不以共振頻率,而是以從其起算偏離了規定量之頻率來驅動。為此,可調整相位差設定器31A1、31A2的設定相位差。 In addition, it may be controlled so as not to drive at the resonance frequency but at a frequency deviated from the resonance frequency by a predetermined amount. For this reason, the set phase difference of the phase difference setters 31A1 and 31A2 can be adjusted.
此外,被輸入至相位差檢測器15、25之驅動指令,只要相位差是相同訊號則亦可為任一段的訊號。例如,圖2等中雖對第一相位差檢測器15輸入來自發訊器32之輸出訊號,但亦可輸入來自第一放大器12之輸出訊號。
In addition, the drive command input to the
此外,本發明中,雖僅講述驅動頻率之控制方法,但亦可設想併用將各振動系統的振幅保持在設定好的大小之固定振幅控制等。在此情形下,藉由將振幅保持在一定,可達成更穩定的驅動。此外,圖3般的構成的情形下,能夠將使用了標準化之振幅檢測器的輸出訊號亦使用於固定振幅控制。 In addition, in the present invention, although only the control method of the drive frequency is described, it is also conceivable to use a fixed amplitude control or the like for keeping the amplitude of each vibration system at a set value in combination. In this case, by keeping the amplitude constant, more stable driving can be achieved. In addition, in the case of the configuration shown in FIG. 3 , the output signal of the amplitude detector using the normalization can also be used for constant amplitude control.
此外,於能夠視為共振頻率下的最大振幅大略相等之振動系統中,如圖8所示,亦可構成為藉由頻率
檢測器215、225檢測各振動系統的振動頻率而將此輸入至目標頻率設定手段231,透過頻率差設定器231a來設定目標頻率fm,而構成為追蹤手段232進行將驅動指令的頻率fv設為目標頻率fm之反饋控制。
In addition, in a vibration system that can be regarded as having approximately the same maximum amplitude at the resonant frequency, as shown in FIG.
The
像這樣,當能夠將最大振幅大略相等設為前提之情形下,即使不倚賴相位也能夠透過振動頻率來相對簡單地設定目標頻率。 In this way, when the maximum amplitude can be assumed to be approximately equal, the target frequency can be set relatively simply by the vibration frequency without depending on the phase.
若使用以上這樣的控制裝置C,以透過共通的驅動指令來驅動被配置於具有空間相位差之複數處而互相帶有相位差被振盪之複數個振動系統,藉此使行進波在路徑(track)上產生之方式來構成工件搬送裝置,則可防止行進波比之降低,而以高效率使裝置運轉。 If the above-mentioned control device C is used, a plurality of vibration systems arranged at a plurality of places having a spatial phase difference and oscillated with a phase difference from each other are driven by a common drive command, thereby allowing the traveling wave to travel on a track (track). ) to construct the workpiece conveying device, the reduction of the traveling wave ratio can be prevented, and the device can be operated with high efficiency.
也就是說,當使用行進波來搬送工件之情形下,比起其他裝置特別要求設計/調整成使得驅動頻率成為趨近共振頻率之值。但,使用了行進波之搬送中的頻帶為高頻(例:超音波),因此習知之控制方法中響應會來不及。也就是說,難以實現效率良好的控制。 That is, in the case of conveying a workpiece using a traveling wave, it is particularly required to design/adjust such that the driving frequency becomes a value close to the resonance frequency compared to other devices. However, since the frequency band during conveyance using the traveling wave is high frequency (eg, ultrasonic wave), the response of the conventional control method is too late. That is, it is difficult to achieve efficient control.
此外,作為使用了此行進波之搬送裝置的驅動源,多會使用壓電體,但由於對壓電體施加之電壓的影響,會有壓電體本身成為熱源,而招致溫度變化等之可能性。故,此溫度變化等所造成之共振頻率的變化所導致之偏差會變大,而無法將裝置全體的效率提高到最大限度。鑑此,藉由適用本發明,便能使其以高效率發揮穩定的搬送能力。 In addition, piezoelectric bodies are often used as drive sources for conveying devices using such traveling waves. However, due to the influence of the voltage applied to the piezoelectric bodies, the piezoelectric bodies themselves may become heat sources, which may cause temperature changes. sex. Therefore, the variation due to the change of the resonance frequency due to the temperature change or the like becomes large, and the efficiency of the whole device cannot be maximized. In view of this, by applying the present invention, it is possible to exhibit a stable conveying capability with high efficiency.
圖9揭示工件搬送裝置的一例亦即零件進料器PF。此零件進料器PF,係由令被投入的工件沿著螺旋搬送部T1爬坡之缽饋送器Bf、及對於從此缽饋送器Bf被排出的工件藉由整列搬送部t1進行整列或方向判別等而僅令正確姿勢的工件通過並且令不適當的工件透過返回搬送部t2返回至缽饋送器Bf之線性進料器Lf所構成。 FIG. 9 shows the parts feeder PF, which is an example of the workpiece conveying device. The parts feeder PF is composed of the bowl feeder Bf that makes the workpieces to be loaded climb up the slope along the screw conveyance portion T1, and the alignment and direction determination of the workpieces discharged from the bowl feeder Bf by the alignment conveyance portion t1. It consists of the linear feeder Lf which passes only the workpiece|work of a correct posture, and returns an inappropriate workpiece|work to the bowl feeder Bf through the return conveyance part t2.
其中缽饋送器Bf,如圖10所示,是構成為行進波產生手段BZ,對於進料器本體底面的圓環狀的振動區域當中,位於第一區域而以0°模態振動之第一振動系統1的振動部1x、及位於第二區域而以90°模態振動之第二振動系統的振動部2x,透過使用了壓電元件之第一振盪器11及第二振盪器12予以振盪,藉此相位相異的駐波會被合成,藉此產生用來令前述搬送部T1撓曲振動(flexural vibration)之行進波。又,當將上述控制裝置C適用於此缽饋送器Bf之情形下,可構成為藉由在圖1等亦有揭示之第一、第二放大器12、22而被放大的周期訊號係被輸入至行進波產生手段BZ的第一、第二振盪器11、21,而第一、第二振動系統1(1x)、2(2x)的振動透過第一、第二振動檢測器14、24被取出。圖10中控制裝置C(參照圖1)的其他部分省略,控制方法和上述實施形態相同。在此情形下同樣地,控制裝置C能夠採用圖6或圖7之構成來取代圖1之構成。
Among them, the bowl feeder Bf, as shown in FIG. 10, is configured as a traveling wave generating means BZ, and is located in the first region and vibrates in a 0° mode in the annular vibration region of the bottom surface of the feeder body. The vibrating
當驅動這樣的零件進料器PF之情形下,通例是各振盪部1x、2x下的共振頻率近乎視為相同來驅動,若
在振動部1x、2x的底面貼附壓電元件則會由於壓電元件的發熱而複數個振盪點下的共振頻率會變化數個%,而有駐波比降低而明顯損及搬送效率之可能性,但藉由透過控制裝置C之控制,便可有效解決該問題。
In the case of driving such a part feeder PF, as a general practice, the resonant frequencies of the
另一方面,圖9的線性進料器Lf,如圖11所示,是構成為行進波產生手段LZ,對於進料器本體底面的長圓狀的振動區域當中,位於第一區域而以0°模態振動之第一振動系統1的振動部1x、及位於第二區域而以90°模態振動之第二振動系統的振動部2x,透過使用了壓電元件之第一振盪器11及第二振盪器12予以振盪,藉此相位相異的駐波會被合成,藉此產生用來令前述搬送部t1、t2撓曲振動之行進波。又,當將上述控制裝置C適用於此線性進料器Lf之情形下同樣地,可構成為藉由在圖1等亦有揭示之第一、第二放大器12、22而被放大的周期訊號係被輸入至行進波產生手段LZ的第一、第二振盪器11、21,而第一、第二振動系統1(1x)、2(2x)的振動透過第一、第二振動檢測器14、24被取出。圖11中控制裝置C(參照圖1)的其他部分省略,控制方法和上述實施形態相同。在此情形下同樣地,控制裝置C能夠採用圖6或圖7之構成來取代圖1之構成。
On the other hand, as shown in FIG. 11, the linear feeder Lf in FIG. 9 is configured as a traveling wave generating means LZ, and is located in the first region and at 0° with respect to the oval vibration region of the bottom surface of the feeder body. The
依此方式,同樣會發揮和上述相同的作用效果。 In this way, the same effects as those described above are also exhibited.
此外,使用以上這樣的控制裝置,將於XYZ方向動作之複數個振動系統在共通的驅動指令之下以所需 的相位差來驅動,藉此即使構成為令平面狀的搬送部上的工件在XY平面內搬送之工件搬送裝置,仍可使其以高效率發揮穩定的搬送能力。 In addition, by using the above-mentioned control device, a plurality of vibration systems to be operated in the XYZ directions can be operated in the required manner under a common drive command. Even if it is configured as a workpiece conveying device that conveys the workpiece on the flat conveying section in the XY plane, it can be driven with high efficiency and stable conveying capability.
其他的構成,在不脫離本發明要旨之範圍內亦可有各種變形。 Other configurations can be variously modified without departing from the gist of the present invention.
1(1x)‧‧‧第一振動系統 1(1x)‧‧‧First Vibration System
2(2x)‧‧‧第二振動系統 2(2x)‧‧‧Second vibration system
11‧‧‧第一振盪器 11‧‧‧First Oscillator
12‧‧‧第一放大器 12‧‧‧First Amplifier
14‧‧‧第一振動檢測器 14‧‧‧First Vibration Detector
15‧‧‧第一相位差檢測器 15‧‧‧First Phase Difference Detector
21‧‧‧第二振盪器 21‧‧‧Second oscillator
22‧‧‧第二放大器 22‧‧‧Second amplifier
23‧‧‧移相器 23‧‧‧Phase Shifter
24‧‧‧第二振動檢測器 24‧‧‧Second vibration detector
25‧‧‧第二相位差檢測器 25‧‧‧Second Phase Difference Detector
31‧‧‧目標頻率設定手段 31‧‧‧Target frequency setting method
32‧‧‧追蹤手段(驅動指令生成部) 32‧‧‧Tracking Means (Drive Command Generation Section)
C‧‧‧振動系統的控制裝置 C‧‧‧Control device for vibration system
fm‧‧‧目標頻率 fm‧‧‧target frequency
fv‧‧‧驅動頻率(驅動指令的頻率) fv‧‧‧drive frequency (frequency of drive command)
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-203034 | 2017-10-20 | ||
JP2017203034A JP6882685B2 (en) | 2017-10-20 | 2017-10-20 | Vibration system control device and work transfer device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201917080A TW201917080A (en) | 2019-05-01 |
TWI766046B true TWI766046B (en) | 2022-06-01 |
Family
ID=66230053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW107121238A TWI766046B (en) | 2017-10-20 | 2018-06-21 | Vibration system control device and workpiece conveying device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6882685B2 (en) |
KR (1) | KR102558399B1 (en) |
CN (1) | CN109693914B (en) |
TW (1) | TWI766046B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3984921B1 (en) * | 2020-10-14 | 2023-06-21 | B&R Industrial Automation GmbH | Vibrating conveyor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1389384A (en) * | 2001-06-04 | 2003-01-08 | Ykk株式会社 | Part feeding device and its control method |
CN1722599A (en) * | 2004-07-02 | 2006-01-18 | 精工爱普生株式会社 | Drive method for piezoelectric actuator, drive apparatus for piezoelectric actuator, electronic device |
CN101207342A (en) * | 2006-12-21 | 2008-06-25 | 奥林巴斯株式会社 | Ultrasonic motor |
TW201708085A (en) * | 2015-08-24 | 2017-03-01 | Sinfonia Technology Co Ltd | Workpiece conveyance device for enabling a miniaturized workpiece to be conveyed at a high speed until reaching a subsidiary engineering device without enlarging the noises |
US20170082828A1 (en) * | 2014-05-14 | 2017-03-23 | Canon Kabushiki Kaisha | Vibration type driving apparatus, interchangeable lens and imaging apparatus including vibration type driving apparatus, and method for adjusting vibration type driving apparatus |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH072023A (en) | 1992-04-07 | 1995-01-06 | Tadao Nishikawa | Vertically vibrating device for side mirror |
JPH09308274A (en) * | 1996-05-15 | 1997-11-28 | Canon Inc | Vibrating motor |
JPH11227926A (en) | 1998-02-10 | 1999-08-24 | Shinko Electric Co Ltd | Drive control device of elliptic vibration parts feeder |
WO2005086337A1 (en) * | 2004-03-10 | 2005-09-15 | Seiko Epson Corporation | Piezoelectric actuator drive device, electronic device, drive method thereof, drive control program thereof, and recording medium containing the program |
CN1981427B (en) * | 2004-07-07 | 2011-06-01 | 精工爱普生株式会社 | Piezoelectric actuator and device |
JP2006094591A (en) * | 2004-09-22 | 2006-04-06 | Olympus Corp | Ultrasonic motor and its operation method |
-
2017
- 2017-10-20 JP JP2017203034A patent/JP6882685B2/en active Active
-
2018
- 2018-06-21 TW TW107121238A patent/TWI766046B/en active
- 2018-07-24 KR KR1020180085704A patent/KR102558399B1/en active IP Right Grant
- 2018-08-20 CN CN201810949152.4A patent/CN109693914B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1389384A (en) * | 2001-06-04 | 2003-01-08 | Ykk株式会社 | Part feeding device and its control method |
CN1722599A (en) * | 2004-07-02 | 2006-01-18 | 精工爱普生株式会社 | Drive method for piezoelectric actuator, drive apparatus for piezoelectric actuator, electronic device |
CN101207342A (en) * | 2006-12-21 | 2008-06-25 | 奥林巴斯株式会社 | Ultrasonic motor |
US20170082828A1 (en) * | 2014-05-14 | 2017-03-23 | Canon Kabushiki Kaisha | Vibration type driving apparatus, interchangeable lens and imaging apparatus including vibration type driving apparatus, and method for adjusting vibration type driving apparatus |
TW201708085A (en) * | 2015-08-24 | 2017-03-01 | Sinfonia Technology Co Ltd | Workpiece conveyance device for enabling a miniaturized workpiece to be conveyed at a high speed until reaching a subsidiary engineering device without enlarging the noises |
Also Published As
Publication number | Publication date |
---|---|
KR20190044488A (en) | 2019-04-30 |
KR102558399B1 (en) | 2023-07-24 |
JP2019076802A (en) | 2019-05-23 |
JP6882685B2 (en) | 2021-06-02 |
TW201917080A (en) | 2019-05-01 |
CN109693914A (en) | 2019-04-30 |
CN109693914B (en) | 2021-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8508104B2 (en) | Piezoelectric actuator driver circuit | |
JP2005227234A (en) | Angular velocity sensor | |
KR102428116B1 (en) | Apparatus for conveying work | |
KR100392261B1 (en) | Elliptical vibration device | |
KR20090074788A (en) | Arrangement for measuring a rate of rotation using a vibration sensor | |
US10418962B2 (en) | System and method for resonator amplitude control | |
TWI766046B (en) | Vibration system control device and workpiece conveying device | |
JP3730467B2 (en) | Ultrasonic vibrator and composite vibration generating ultrasonic vibrator | |
JP6820484B2 (en) | Vibration system control device and work transfer device | |
TWI769300B (en) | Vibration system control device and workpiece conveying device | |
JPH08168274A (en) | Vibration device and ultrasonic motor | |
JPS63234881A (en) | Driving device for ultrasonic motor | |
SU612356A1 (en) | Self-tuning electromechanical resonance system | |
JP2020025412A (en) | Actuator driving circuit and electronic apparatus | |
JP2008148435A (en) | Piezoelectric substance oscillator | |
JP2004043055A (en) | Control device for elliptic vibration device | |
KR20090007041A (en) | Reverse vibration dual mass elements typed micro gyroscope and control method thereof | |
JPH03265474A (en) | Drive circuit for standing oscillation wave motor | |
JPH1151657A (en) | Excitation circuit for piezo-electric vibration type angular velocity sensor | |
JPH10157827A (en) | Elliptically vibrating device | |
JP2013059231A (en) | Ultrasonic linear motor and drive/guide device |