JPH09308274A - Vibrating motor - Google Patents

Vibrating motor

Info

Publication number
JPH09308274A
JPH09308274A JP8120225A JP12022596A JPH09308274A JP H09308274 A JPH09308274 A JP H09308274A JP 8120225 A JP8120225 A JP 8120225A JP 12022596 A JP12022596 A JP 12022596A JP H09308274 A JPH09308274 A JP H09308274A
Authority
JP
Japan
Prior art keywords
vibration
elastic body
vibration motor
phase difference
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8120225A
Other languages
Japanese (ja)
Inventor
Hironobu Takano
裕宣 高野
Masami Sugimori
正巳 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8120225A priority Critical patent/JPH09308274A/en
Priority to US08/855,607 priority patent/US5955819A/en
Publication of JPH09308274A publication Critical patent/JPH09308274A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a vibrating motor which has a wide driving frequency range and is very efficient by serially connecting an inductance element with an electrode which applies a frequency signal to an elastic body and setting the value of the inductance element to a specified one. SOLUTION: Frequency signals are applied to energy converting elements 2a, 2b which are provided in an elastic body 1 to produce first vibration and second vibration which cross the first one and these two kinds of vibrations are synthesized to obtain driving force. At that point, inductance elements 9, 10 are serially connected to electrodes 4a-4d which apply frequency signals to the elastic body 1. The values of the inductance elements 9, 10 are so set that dθ(f)=θ1 (f)-θ2 (f) may satisfy -π/2<dθ(f)<π/2 or dθ(f)<π/2, where a phase of the current for the driving voltage of the first vibration is θ1 (f) and that of the second one is θ2 (f) and a difference between the two phases is dθ(f).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は定在波により駆動力
を得る定在波型振動モータ、特にその駆動回路に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a standing wave type vibration motor which obtains a driving force by a standing wave, and more particularly to a drive circuit thereof.

【0002】[0002]

【従来の技術】最近、注目を集めている進行波型振動モ
ータは、周知のように低速駆動が容易で高トルクが得ら
れるという特徴を有しており、既に光学機器等の分野に
おいて商品化されている。
2. Description of the Related Art Recently, a traveling wave type vibration motor, which has been attracting attention, has a feature that it can be easily driven at a low speed and a high torque can be obtained. Has been done.

【0003】この振動モータは、一般的に数十〜数百ボ
ルトの電圧を圧電振動体に印加する必要があるので、印
加電圧をコイル等のインダクタンス素子を用いて昇圧
し、これを駆動電圧としている。
In this vibration motor, since it is generally necessary to apply a voltage of several tens to several hundreds of volts to the piezoelectric vibrating body, the applied voltage is boosted using an inductance element such as a coil, and this is used as a drive voltage. There is.

【0004】この手法は、専ら進行波型振動モータにお
いてのみ用いられているものであり、仮に定在波型振動
モータに用いても印加電圧の昇圧という目的になるだろ
う。しかしながら、本出願人の検討の結果、コイル等の
インダクタンス素子の選定の方法によっては、新たな効
果を得られることがわかった。
This method is used exclusively in a traveling wave type vibration motor, and even if it is used in a standing wave type vibration motor, it will serve the purpose of boosting the applied voltage. However, as a result of the study by the applicant, it was found that a new effect can be obtained depending on the method of selecting the inductance element such as the coil.

【0005】そこで、以下にその効果について定在波型
振動モータの従来例を踏まえながら説明する。
Therefore, the effect will be described below with reference to a conventional example of a standing wave vibration motor.

【0006】従来、定在波振動を利用した振動モータと
して、弾性体に発生した定在波を用いる定在波型振動モ
ータが知られている。これは、弾性体に一体的に設けた
振動素子に特定周波数の電圧を印加することで、弾性体
に屈曲振動と縦振動を励起させ、弾性体、あるいは振動
素子に設けた運動抽出体を介して駆動力を得るものであ
る。
Conventionally, as a vibration motor utilizing standing wave vibration, a standing wave type vibration motor using a standing wave generated in an elastic body is known. This is to apply a voltage of a specific frequency to a vibrating element provided integrally with the elastic body to excite flexural vibration and longitudinal vibration in the elastic body, and through the elastic body or the motion extractor provided in the vibrating element. To obtain driving force.

【0007】図7を用いて定在波型振動モータの駆動原
理について簡単に説明する。図7において、71は弾性
部材からなる弾性体、72a、72bは弾性体71に縦
振動と屈曲振動を励起させるための電気−機械エネルギ
ー変換素子としての圧電振動体で矢印は分極方向を示し
ている。73a、73bは弾性体71に一体的に設けら
れた運動抽出体、74a、74b、74c、74dは圧
電振動体72a、72bに特定周波数の電圧を印加する
ための電極、75は移動体である。また、76は移動体
75を運動抽出体73a、73bに所定の押圧力で押圧
するための押圧バネ、77は押圧バネ76の押圧力によ
って発生する押圧バネ76と移動体75との摩擦力を低
減するためのベアリングである。
The driving principle of the standing wave type vibration motor will be briefly described with reference to FIG. In FIG. 7, 71 is an elastic body made of an elastic member, 72a and 72b are piezoelectric vibrating bodies as electric-mechanical energy conversion elements for exciting the elastic body 71 to longitudinal vibration and bending vibration, and arrows indicate polarization directions. There is. 73a and 73b are motion extractors integrally provided on the elastic body 71, 74a, 74b, 74c and 74d are electrodes for applying a voltage of a specific frequency to the piezoelectric vibrating bodies 72a and 72b, and 75 is a moving body. . Further, 76 is a pressing spring for pressing the moving body 75 against the motion extracting bodies 73a, 73b with a predetermined pressing force, and 77 is a frictional force between the pressing spring 76 and the moving body 75 generated by the pressing force of the pressing spring 76. This is a bearing to reduce the amount.

【0008】前述のような構成において、電極74aと
74dに対して74bと74cに互いに90°位相の異
なる特定周波数の電圧(図中では、sin、cosと記
載)を印加すると、圧電振動体72a、72bはその駆
動周波数で伸縮を繰り返す。この圧電振動体72a、7
2bの伸縮によって、弾性体71に縦振動と屈曲振動が
励起され、さらにはこれらの合成振動により運動抽出体
73a、73bはそれぞれ同方向に回転する楕円運動を
行う。そこで、この運動抽出体73a、73bに移動体
75を押圧バネ76で押圧接触させれば、移動体75は
例えば矢印方向に移動する。
In the above-described structure, when voltages of specific frequencies having 90 ° different phases (described as sin and cos in the figure) are applied to the electrodes 74a and 74d at 74b and 74c, the piezoelectric vibrating body 72a. , 72b repeats expansion and contraction at the drive frequency. This piezoelectric vibrating body 72a, 7
By the expansion and contraction of 2b, longitudinal vibration and bending vibration are excited in the elastic body 71, and further, by the combined vibration of these, the motion extractors 73a and 73b perform elliptic motions rotating in the same direction. Therefore, when the moving body 75 is pressed against the motion extracting bodies 73a and 73b by the pressing spring 76, the moving body 75 moves in the arrow direction, for example.

【0009】尚、図では屈曲振動は4次モード、縦振動
は1次モードとしたが、駆動力を得られればこれに限る
ものではない。
Although the bending vibration is shown as a fourth mode and the longitudinal vibration is shown as a first mode in the figure, it is not limited to this as long as a driving force can be obtained.

【0010】[0010]

【発明が解決しようとする課題】前述したように、定在
波型振動モータは二つの振動モード(従来例では屈曲振
動と縦振動としたが、これに限るものではない)をある
駆動周波数で同時に共振させるため、二つの振動モード
の共振周波数がほぼ一致するような形状とする必要があ
る。
As described above, the standing wave type vibration motor has two vibration modes (bending vibration and longitudinal vibration in the conventional example, but is not limited thereto) at a certain driving frequency. In order to resonate at the same time, it is necessary to have a shape such that the resonance frequencies of the two vibration modes substantially match.

【0011】しかしながら、形状そのものは機械加工で
高精度にできても、材料の有する異方性や、弾性体と圧
電振動素子とを一体化する際の接着剤の厚みのバラツ
キ、接着剤の硬化条件による硬化後の硬さのバラツキ等
により、図9に示すように二つの振動モードの共振周波
数をほぼ一致させることは非常に困難である。なお、図
9は、図7に示した定在波型振動モータを図8に示すよ
うな等価回路に置き換え、そのアドミッタンス特性の絶
対値|Y|を表したものである。図9において、91は
屈曲振動のアドミッタンスの絶対値|Y1 |、92は縦
振動のアドミッタンスの絶対値|Y2 |を表す。屈曲振
動のアドミッタンスの絶対値|Y1 |は周波数f1 で極
大値をとり、縦振動のアドミッタンスの絶対値|Y2
は周波数f2 で極大値を取る。
However, even if the shape itself can be machined with high accuracy, the anisotropy of the material, the variation in the thickness of the adhesive when the elastic body and the piezoelectric vibrating element are integrated, and the hardening of the adhesive. It is very difficult to make the resonance frequencies of the two vibration modes substantially coincide with each other as shown in FIG. 9 due to variations in hardness after curing depending on the conditions. Note that FIG. 9 shows the absolute value | Y | of the admittance characteristic by replacing the standing wave vibration motor shown in FIG. 7 with an equivalent circuit shown in FIG. In FIG. 9, reference numeral 91 represents the absolute value | Y 1 | of flexural vibration admittance, and 92 represents the absolute value | Y 2 | of longitudinal vibration admittance. The absolute value of the admittance of bending vibration | Y 1 | has a maximum value at the frequency f 1 , and the absolute value of the admittance of longitudinal vibration | Y 2 |
Takes a maximum at frequency f 2 .

【0012】図10は、図8に示した等価回路の電圧に
対する電流の位相特性を示したものである。図10にお
いて、93は屈曲振動の位相特性θ1 (f)、94は縦
振動の位相特性θ2 (f)を表す。そして、このような
共振特性を有する定在波型振動モータは、図11に示す
ように二つの振動モードそれぞれの電圧に対する電流の
位相θ1 (f)93及びθ2 (f)94から導かれる縦
振動と屈曲振動の電流の位相差dθ(f)95(θ1
(f)−θ2 (f))が二つの共振周波数の間で180
degを越える。尚、図11は図10の等価回路での位
相特性に対して実際上のモータで屈曲振動と縦振動が9
0degの位相差を有する点を考慮して図10の特性か
ら90deg位相シフトした実際上の特性を示すもので
ある。その結果、二つの共振周波数の間と、その前後の
周波数とでは、振動子に発生する楕円運動の回転方向が
異なり、図12に示すように推力(速度)の得られる駆
動可能な周波数範囲が狭くなってしまい、また効率も悪
くなるという問題があった。
FIG. 10 shows the phase characteristic of current with respect to voltage in the equivalent circuit shown in FIG. In FIG. 10, 93 represents the phase characteristic θ 1 (f) of bending vibration, and 94 represents the phase characteristic θ 2 (f) of longitudinal vibration. Then, the standing wave type vibration motor having such a resonance characteristic is derived from the current phases θ 1 (f) 93 and θ 2 (f) 94 with respect to the voltage in each of the two vibration modes, as shown in FIG. Current difference between longitudinal vibration and bending vibration dθ (f) 95 (θ 1
(F) -θ 2 (f)) is 180 between the two resonance frequencies.
exceeds deg. Note that, in FIG. 11, in comparison with the phase characteristics in the equivalent circuit of FIG.
FIG. 11 shows an actual characteristic obtained by shifting the phase by 90 deg from the characteristic of FIG. 10 in consideration of the point having a phase difference of 0 deg. As a result, the direction of rotation of the elliptic motion generated in the oscillator is different between the two resonance frequencies and the frequencies before and after the resonance frequency, and the drivable frequency range in which the thrust (velocity) is obtained as shown in FIG. There was a problem that it became narrower and the efficiency became worse.

【0013】そこで、発明の目的は、駆動周波数範囲の
広い、しかも高効率な定在波型振動モータを提供するこ
とにある。
Therefore, an object of the present invention is to provide a standing wave type vibration motor having a wide driving frequency range and high efficiency.

【0014】[0014]

【課題を解決するための手段】本出願に係る発明の目的
を実現する構成は、弾性体に振動体を一体的に設け、前
記振動体に特定周波数の電圧を印加することで、弾性体
に第一の振動とこれを直行する第二の振動を励起させ、
これらの合成振動を弾性体、または振動体に設けた運動
抽出体を介して駆動力として得る定在波型振動モータに
おいて、振動体に特定周波数の電圧を印加する駆動用電
極にインダクタンス素子を直列に接続し、その際の超音
波モータの等価回路における二つの振動モードそれぞれ
の電圧に対する電流の位相θ1 (f)及びθ2 (f)か
ら導かれる位相差dθ(f)が所定範囲に入るようにイ
ンダクタンス素子をセットしたもので、従来の定在波型
振動モータに比べ駆動周波数範囲が広がり、高効率な定
在波型振動モータが実現できる。
The structure for achieving the object of the invention according to the present application is such that an elastic body is integrally provided with a vibrating body, and a voltage of a specific frequency is applied to the vibrating body to apply the voltage to the elastic body. Exciting the first vibration and the second vibration orthogonal to this,
In a standing wave type vibration motor that obtains these synthetic vibrations as a driving force through an elastic body or a motion extractor provided in the vibrating body, an inductance element is connected in series to a driving electrode that applies a voltage of a specific frequency to the vibrating body. , And the phase difference dθ (f) derived from the current phases θ 1 (f) and θ 2 (f) with respect to the voltage in each of the two vibration modes in the equivalent circuit of the ultrasonic motor at that time falls within a predetermined range. By setting the inductance element as described above, the driving frequency range is widened as compared with the conventional standing wave type vibration motor, and a highly efficient standing wave type vibration motor can be realized.

【0015】又、請求項1の本発明は、弾性体に電気−
機械エネルギー変換素子部を配し、該変換素子部に対し
て周波信号を印加させ、弾性体に第一の振動と該第一の
振動に直行する第二の振動を励起させ、これらの合成振
動にて駆動力を得る、振動モーターにおいて、前記弾性
体に対して前記周波信号を印加する電極に対して直列に
インダクタンス素子を接続するとともに、該インダクタ
ンス素子の値として、前記振動モーターの等価回路にお
ける前記第一の振動と第二の振動のそれぞれの駆動電圧
に対する電流の位相θ1 (f)及びθ2 (f)との位相
差dθ(f)=θ1 (f)−θ2 (f)が−π/2<d
θ(f)<π/2又はdθ(f)<π/2を満たす値に
設定した振動モーターを提供して上記の目的を達成する
ものである。
According to the present invention of claim 1, the elastic body is electrically
A mechanical energy conversion element section is arranged, a frequency signal is applied to the conversion element section, and the elastic body is excited with a first vibration and a second vibration orthogonal to the first vibration, and a combined vibration of these vibrations. In the vibration motor that obtains the driving force by, the inductance element is connected in series to the electrode that applies the frequency signal to the elastic body, and the value of the inductance element is used in the equivalent circuit of the vibration motor. Phase difference dθ (f) = θ 1 (f) −θ 2 (f) between the phases θ 1 (f) and θ 2 (f) of the current with respect to the driving voltage of each of the first vibration and the second vibration. Is -π / 2 <d
The vibration motor set to a value satisfying θ (f) <π / 2 or dθ (f) <π / 2 is provided to achieve the above object.

【0016】請求項2の本発明は、弾性体に電気−機械
エネルギー変換素子部を配し、該変換素子部に対して周
波信号を印加させ、弾性体に第一の振動と該第一の振動
に直行する第二の振動を励起させ、これらの合成振動に
て駆動力を得る、振動モーターにおいて、前記弾性体に
対して前記周波信号を印加する電極に対して直列にイン
ダクタンス素子を接続するとともに、該インダクタンス
素子の値として、前記振動モーターの前記第一の振動と
第二の振動の位相差を考慮した際の、前記第一の振動と
第二の振動のそれぞれの駆動電圧に対する電流の位相θ
1 (f)及びθ2 (f)との位相差dθ(f)=θ1
(f)−θ2 (f)が−a−π/2<dθ(f)<π/
2+a又はdθ(f)<π/2+a(aは第一の振動と
第二の振動の位相差)を満たす値に設定した振動モータ
ー提供して請求項1と同様に上記の目的を達成するもの
である。
According to the second aspect of the present invention, the electromechanical energy conversion element section is arranged on the elastic body, and a frequency signal is applied to the conversion element section, and the elastic body undergoes the first vibration and the first vibration. In a vibration motor, a second vibration that is orthogonal to the vibration is excited and a driving force is obtained by these combined vibrations. In a vibration motor, an inductance element is connected in series to an electrode that applies the frequency signal to the elastic body. Together with the value of the inductance element, when considering the phase difference between the first vibration and the second vibration of the vibration motor, of the current for each drive voltage of the first vibration and the second vibration Phase θ
Phase difference between 1 (f) and θ 2 (f) dθ (f) = θ 1
(F) −θ 2 (f) is −a−π / 2 <dθ (f) <π /
A vibration motor having a value satisfying 2 + a or dθ (f) <π / 2 + a (a is a phase difference between the first vibration and the second vibration) is provided to achieve the above-mentioned object in the same manner as in claim 1. Is.

【0017】[0017]

【発明の実施の形態】以下に本発明に係る振動モーター
を説明する。図1は、本発明に係るモーターの回路図で
ある。図1において、1は弾性部材からなる弾性体、2
a、2bは弾性体1に縦振動と屈曲振動を励起させるた
めの電気−機械エネルギー変換素子としての圧電もしく
は電歪振動体で分極は図7に示した分極処理がなされて
いる。4a、4b、4c、4dは圧電もしくは電歪振動
体2a、2bに特定周波数の電圧を印加するための電極
である。尚、弾性体1と圧電もしくは電歪振動体2a、
2bとは、接着剤等により結合状態にあり、振動子3を
形成する。また、5は特定周波数の電圧を発生するため
の発振器、6は90deg移相器、7および8は増幅器
である。また、図1に示したように本モータは2相駆動
であり、各相に加えられる交番電圧の位相が90deg
移相器で±90degずれる以外は第1相4a、4dと
第2相間4b、4cとで差はない。
BEST MODE FOR CARRYING OUT THE INVENTION A vibration motor according to the present invention will be described below. FIG. 1 is a circuit diagram of a motor according to the present invention. In FIG. 1, 1 is an elastic body made of an elastic member, 2
Reference numerals a and 2b are piezoelectric or electrostrictive vibrating bodies as electro-mechanical energy conversion elements for exciting the elastic body 1 for longitudinal vibration and bending vibration, and the polarization is subjected to the polarization treatment shown in FIG. Reference numerals 4a, 4b, 4c, and 4d are electrodes for applying a voltage of a specific frequency to the piezoelectric or electrostrictive vibrating bodies 2a and 2b. The elastic body 1 and the piezoelectric or electrostrictive vibrating body 2a,
2b is in a bonded state with an adhesive or the like, and forms the vibrator 3. Further, 5 is an oscillator for generating a voltage of a specific frequency, 6 is a 90 deg phase shifter, and 7 and 8 are amplifiers. Further, as shown in FIG. 1, this motor is a two-phase drive, and the phase of the alternating voltage applied to each phase is 90 deg.
There is no difference between the first phases 4a and 4d and the second phases 4b and 4c except that the phase shifter shifts ± 90 deg.

【0018】図2は、図1の振動モータを等価回路で表
したものである。超振動モータの等価回路は、機械的共
振部分のRLC直列回路(抵抗値R1 の等価抵抗11、
自己インダクタンスL1 の等価コイル12、静電容量C
1 の等価コンデンサ13)と、並列に接続された振動子
1の固有静電容量Cd のコンデンサ14より構成されて
いる。さらに、15は振動モータの等価回路に直列に接
続されたコイル等のインダクタンス素子Le である。
尚、等価回路における振動モータの機械的共振部分のR
LC直列回路部分R1 、L1 、C1 は屈曲振動と縦振動
とでは異なる値をとる。
FIG. 2 shows an equivalent circuit of the vibration motor shown in FIG. The equivalent circuit of the super vibration motor is an RLC series circuit (equivalent resistance 11 of resistance value R 1 ,
Equivalent coil 12 with self-inductance L 1 and capacitance C
1 equivalent capacitor 13) and a capacitor 14 having the intrinsic capacitance C d of the vibrator 1 connected in parallel. Further, 15 is an inductance element L e such as a coil connected in series to the equivalent circuit of the vibration motor.
In addition, R of the mechanical resonance portion of the vibration motor in the equivalent circuit
The LC series circuit portions R 1 , L 1 and C 1 have different values for bending vibration and longitudinal vibration.

【0019】図3は、図2に示した振動モータの等価回
路からそのアドミッタンス特性の絶対値|Y|を表した
ものである。図3において、16は屈曲振動のアドミッ
タンスの絶対値|Y1 |、17は縦振動のアドミッタン
スの絶対値|Y2 |を表す。屈曲振動のアドミッタンス
の絶対値|Y1 |は周波数f′1 で極大値をとり、縦振
動のアドミッタンスの絶対値|Y2 |は周波数f′2
極大値をとる。これらは何れも、振動モータに直列に接
続されたインダクタンスLe の影響で図に示したはじめ
の機械的共振周波数より低い周波数となる。
FIG. 3 shows the absolute value | Y | of the admittance characteristic of the equivalent circuit of the vibration motor shown in FIG. In FIG. 3, 16 represents the absolute value | Y 1 | of bending vibration admittance, and 17 represents the absolute value | Y 2 | of longitudinal admittance. The absolute value | Y 1 | of flexural vibration admittance has a maximum value at the frequency f ′ 1 and the absolute value | Y 2 | of longitudinal admittance has a maximum value at the frequency f ′ 2 . All of these have frequencies lower than the initial mechanical resonance frequency shown in the figure due to the influence of the inductance L e connected in series to the vibration motor.

【0020】図4は、図2に示した等価回路の電圧に対
する電流の位相特性を示したものである。図において、
18は屈曲振動の位相特性θ1 (f)、19は縦振動の
位相特性θ2 (f)を表す。
FIG. 4 shows the phase characteristics of current with respect to voltage in the equivalent circuit shown in FIG. In the figure,
Reference numeral 18 represents a phase characteristic θ 1 (f) of bending vibration, and 19 represents a phase characteristic θ 2 (f) of longitudinal vibration.

【0021】図5は、図11と同様に実際のモーターで
は屈曲振動が縦振動に対して90degの位相差を有す
ることを考慮して屈曲振動の位相特性θ1 (f)と縦振
動の位相特性θ2 (f)から各振動間の位相差dθ
(f)を示したものである。図において、20は位相差
dθ(f)を表す。図5からわかるように、各振動の共
振点付近では位相差dθ(f)が180degを越える
周波数帯域がない。一般に、移動体の速度は弾性体の屈
曲振動と縦振動の瞬時値に比例し、屈曲振動と縦振動の
振幅の瞬時値は振動子を構成する圧電体に流れる電流に
比例するので、これは振動の共振点付近では振動子に発
生する楕円運動の回転方向が変わらないことを示す。
Similar to FIG. 11, FIG. 5 shows the phase characteristic θ 1 (f) of the bending vibration and the phase of the longitudinal vibration in consideration of the fact that the bending vibration has a phase difference of 90 deg with respect to the longitudinal vibration in the actual motor. From the characteristic θ 2 (f), the phase difference between each vibration dθ
It is what (f) was shown. In the figure, 20 represents the phase difference dθ (f). As can be seen from FIG. 5, there is no frequency band where the phase difference dθ (f) exceeds 180 deg near the resonance point of each vibration. Generally, the velocity of the moving body is proportional to the instantaneous values of the bending vibration and the longitudinal vibration of the elastic body, and the instantaneous value of the amplitude of the bending vibration and the longitudinal vibration is proportional to the current flowing in the piezoelectric body that constitutes the vibrator. It is shown that the rotation direction of the elliptic motion generated in the oscillator does not change near the resonance point of the vibration.

【0022】次に、図6はこの場合の推力(速度)特性
を示したものである。振動モータに直列に接続されたイ
ンダクタンスLe の影響で、駆動電圧が一定で電流がイ
ンダクタンスLe のない従来に比べ大幅に大きくなるの
で、推力も大幅に大きくなる。しかも、共振点付近では
振動子に発生する楕円運動の回転方向が変わらないの
で、従来の超音波モータのように共振点より低い駆動周
波数において急激に動作が不安定になったり、最悪の場
合突然動作を停止したりといった現象が緩和している。
Next, FIG. 6 shows thrust (speed) characteristics in this case. Due to the influence of the inductance L e connected in series to the vibration motor, the driving voltage is constant and the current is significantly larger than in the conventional case without the inductance L e , so the thrust is also greatly increased. Moreover, since the rotation direction of the elliptical motion generated in the oscillator does not change near the resonance point, the operation suddenly becomes unstable at a driving frequency lower than the resonance point as in the conventional ultrasonic motor, or suddenly in the worst case. Phenomena such as stopping the operation are alleviated.

【0023】この様に、インダクタンスLe の値を上記
のモーターの等価回路での屈曲振動の位相差特性と縦振
動の位相差特性の位相差dθ(f)を−π/2<dθ
(f)<π/2又はdθ(f)<π/2となる様に設定
することで、共振点付近での回転方向の変更などを防止
できる。なお、上記の位相差は等価回路での位相差で表
しているが、実際のモーターでは屈曲振動と縦振動の位
相差が90degあるので上記の位相差dθ(f)とし
ては、実際上のモーターでは、この屈曲振動と縦振動の
位相差を考慮して−π<dθ(f)<π又はdθ(f)
<πとなる様に設定することとなる。
In this way, the value of the inductance L e is the phase difference dθ (f) between the phase difference characteristic of bending vibration and the phase difference characteristic of longitudinal vibration in the equivalent circuit of the above-mentioned motor, −π / 2 <dθ
By setting (f) <π / 2 or dθ (f) <π / 2, it is possible to prevent the rotation direction from being changed near the resonance point. The above phase difference is represented by the phase difference in the equivalent circuit. However, since the phase difference between bending vibration and longitudinal vibration is 90 deg in an actual motor, the above phase difference dθ (f) is the actual motor difference. Then, in consideration of the phase difference between the bending vibration and the longitudinal vibration, -π <dθ (f) <π or dθ (f)
<Π will be set.

【0024】また、屈曲振動と縦振動の位相差が90d
egとなる理由は、電気−機械エネルギー変換素子に対
して90deg位相異なる信号を印加しているためであ
り、上記の変換素子に対して90deg以外の位相差信
号を印加した場合は、屈曲振動と縦振動の位相差が90
degではなくなるのでこの場合は、上記位相差dθ
(f)を−a−π/2<dθ(f)<π/2+a又はd
θ(f)<π/2+a(aは屈曲と縦振動の位相差)に
設定すれば良い。
Further, the phase difference between bending vibration and longitudinal vibration is 90d.
The reason why it becomes eg is that signals having a phase difference of 90 deg are applied to the electromechanical energy conversion element, and when a phase difference signal other than 90 deg is applied to the conversion element, bending vibration is generated. The phase difference of longitudinal vibration is 90
In this case, the phase difference dθ
(F) is -a-π / 2 <dθ (f) <π / 2 + a or d
It may be set to θ (f) <π / 2 + a (a is the phase difference between bending and longitudinal vibration).

【0025】尚、本実施例では、弾性体に発生させる振
動モードを屈曲振動と縦振動としたが、駆動力が得られ
ればこれに限るものではない。
In this embodiment, the vibration modes generated in the elastic body are the bending vibration and the longitudinal vibration, but it is not limited to this as long as the driving force can be obtained.

【0026】[0026]

【発明の効果】以上の様に請求項1の発明によれば、共
振周波数の付近でも回転方向が変化することなく駆動さ
せることができ、駆動周波数範囲が広がり、高効率に振
動モーターを提供できる。請求項2の発明によれば、請
求項1と同様に高効率な振動モーターを提供できる。
As described above, according to the invention of claim 1, it can be driven without changing the rotation direction even near the resonance frequency, the driving frequency range is widened, and the vibration motor can be provided with high efficiency. . According to the second aspect of the present invention, it is possible to provide a vibration motor with high efficiency as in the first aspect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る定在波型振動モータの駆動回路を
示す回路図。
FIG. 1 is a circuit diagram showing a drive circuit of a standing wave type vibration motor according to the present invention.

【図2】本発明に係る定在波型振動モータの一つの振動
モードを示す等価回路図。
FIG. 2 is an equivalent circuit diagram showing one vibration mode of the standing wave type vibration motor according to the present invention.

【図3】図2に示した定在波型振動モータのアドミッタ
ンス特性を示す図。
FIG. 3 is a diagram showing admittance characteristics of the standing wave type vibration motor shown in FIG.

【図4】図2に示した定在波型振動モータの位相特性を
示す図。
FIG. 4 is a diagram showing phase characteristics of the standing wave type vibration motor shown in FIG.

【図5】図2に示した定在波型振動モータの位相差特性
を示す図。
5 is a diagram showing a phase difference characteristic of the standing wave type vibration motor shown in FIG.

【図6】図2に示した定在波型振動モータの推力特性を
示す図。
6 is a diagram showing thrust characteristics of the standing wave type vibration motor shown in FIG.

【図7】定在波型振動モータの構成要素を説明する図。FIG. 7 is a diagram illustrating components of a standing wave type vibration motor.

【図8】従来の定在波型振動モータの一つの振動モード
を示す等価回路図。
FIG. 8 is an equivalent circuit diagram showing one vibration mode of a conventional standing wave vibration motor.

【図9】図8に示した定在波型振動モータのアドミッタ
ンス特性を示す図。
9 is a diagram showing admittance characteristics of the standing wave type vibration motor shown in FIG.

【図10】図8に示した定在波型振動モータの位相特性
を示す図。
10 is a diagram showing phase characteristics of the standing wave type vibration motor shown in FIG.

【図11】図8に示した定在波型振動モータの位相差特
性を示す図。
11 is a diagram showing a phase difference characteristic of the standing wave type vibration motor shown in FIG.

【図12】図8に示した定在波型振動モータの推力特性
を示す図。
12 is a diagram showing thrust characteristics of the standing wave type vibration motor shown in FIG.

【符号の説明】[Explanation of symbols]

1 弾性体 2a、2b 圧電振動体 3 振動子 4a、4b、4c、4d 電極 5 発振器 6 90°移相器 7、8 増幅器 9、10 インダクタンス素子 1 elastic body 2a, 2b piezoelectric vibrating body 3 vibrator 4a, 4b, 4c, 4d electrode 5 oscillator 6 90 ° phase shifter 7, 8 amplifier 9, 10 inductance element

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 弾性体に電気−機械エネルギー変換素子
部を配し、該変換素子部に対して周波信号を印加させ、
弾性体に第一の振動と該第一の振動に直行する第二の振
動を励起させ、これらの合成振動にて駆動力を得る、振
動モーターにおいて、 前記弾性体に対して前記周波信号を印加する電極に対し
て直列にインダクタンス素子を接続するとともに、該イ
ンダクタンス素子の値として、前記振動モーターの等価
回路における前記第一の振動と第二の振動のそれぞれの
駆動電圧に対する電流の位相θ1 (f)及びθ2 (f)
との位相差dθ(f)=θ1 (f)−θ2 (f)が−π
/2<dθ(f)<π/2又はdθ(f)<π/2を満
たす値に設定したことを特徴とする振動モーター。
1. An electromechanical energy conversion element part is arranged on an elastic body, and a frequency signal is applied to the conversion element part.
A vibration motor that excites a first vibration and a second vibration orthogonal to the first vibration in an elastic body to obtain a driving force by a combined vibration of these vibrations. The frequency signal is applied to the elastic body. An inductance element is connected in series to the electrode to be used, and as the value of the inductance element, the current phase θ 1 (for each drive voltage of the first vibration and the second vibration in the equivalent circuit of the vibration motor is f) and θ 2 (f)
And the phase difference dθ (f) = θ 1 (f) −θ 2 (f) is −π
A vibration motor having a value satisfying / 2 <dθ (f) <π / 2 or dθ (f) <π / 2.
【請求項2】 弾性体に電気−機械エネルギー変換素子
部を配し、該変換素子部に対して周波信号を印加させ、
弾性体に第一の振動と該第一の振動に直行する第二の振
動を励起させ、これらの合成振動にて駆動力を得る、振
動モーターにおいて、 前記弾性体に対して前記周波信号を印加する電極に対し
て直列にインダクタンス素子を接続するとともに、該イ
ンダクタンス素子の値として、前記振動モーターの前記
第一の振動と第二の振動の位相差を考慮した際の、前記
第一の振動と第二の振動のそれぞれの駆動電圧に対する
電流の位相θ1 (f)及びθ2 (f)との位相差dθ
(f)=θ1 (f)−θ2 (f)が−a−π/2<dθ
(f)<π/2+a又はdθ(f)<π/2+a(aは
第一の振動と第二の振動の位相差)を満たす値に設定し
たことを特徴とする振動モーター。
2. An electromechanical energy conversion element part is arranged on an elastic body, and a frequency signal is applied to the conversion element part,
A vibration motor that excites a first vibration and a second vibration orthogonal to the first vibration in an elastic body to obtain a driving force by a combined vibration of these vibrations. The frequency signal is applied to the elastic body. While connecting the inductance element in series to the electrode to be, as the value of the inductance element, when considering the phase difference between the first vibration and the second vibration of the vibration motor, the first vibration and Phase difference dθ between the current phases θ 1 (f) and θ 2 (f) of the second vibration with respect to each drive voltage.
(F) = θ 1 (f) −θ 2 (f) is −a−π / 2 <dθ
A vibration motor characterized by being set to a value satisfying (f) <π / 2 + a or dθ (f) <π / 2 + a (a is the phase difference between the first vibration and the second vibration).
【請求項3】 前記第一の振動は屈曲振動であり、第二
の振動は縦振動である請求項1または請求項2に記載の
振動モーター。
3. The vibration motor according to claim 1, wherein the first vibration is bending vibration and the second vibration is longitudinal vibration.
【請求項4】 弾性体の一方の面に第一と第二の電気−
機械エネルギー変換素子部を配し、他方の面に第三と第
四の電気−機械エネルギー変換素子部を第一と第三の素
子部が対向し、第二と第四の素子部が対向する様に配す
るとともに、第一と第四の素子部に第一の周波信号を印
加し、第二と第三の素子部に第一の周波信号に対して位
相が異なる周波信号を印加する請求項3に記載の振動モ
ーター。
4. The first and second electric wires on one surface of the elastic body.
The mechanical energy conversion element part is arranged, and the third and fourth electro-mechanical energy conversion element parts are arranged on the other surface, the first and third element parts are opposed to each other, and the second and fourth element parts are opposed to each other. The first frequency signal is applied to the first and fourth element parts, and the frequency signal having a phase different from that of the first frequency signal is applied to the second and third element parts. The vibration motor according to Item 3.
【請求項5】 前記第一の振動と第二の振動の位相差a
は90度である請求項2に記載の振動モーター。
5. A phase difference a between the first vibration and the second vibration.
The vibration motor according to claim 2, wherein is 90 degrees.
JP8120225A 1996-05-15 1996-05-15 Vibrating motor Withdrawn JPH09308274A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8120225A JPH09308274A (en) 1996-05-15 1996-05-15 Vibrating motor
US08/855,607 US5955819A (en) 1996-05-15 1997-05-13 Standing-wave vibration motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8120225A JPH09308274A (en) 1996-05-15 1996-05-15 Vibrating motor

Publications (1)

Publication Number Publication Date
JPH09308274A true JPH09308274A (en) 1997-11-28

Family

ID=14780979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8120225A Withdrawn JPH09308274A (en) 1996-05-15 1996-05-15 Vibrating motor

Country Status (1)

Country Link
JP (1) JPH09308274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078165A1 (en) * 2001-03-27 2002-10-03 Seiko Epson Corporation Piezoelectric actuator and its drive circuit
CN101872016A (en) * 2009-03-31 2010-10-27 株式会社电装 Ultrasonic sensor
CN109693914A (en) * 2017-10-20 2019-04-30 昕芙旎雅有限公司 The control device and Work carrying device of vibrational system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078165A1 (en) * 2001-03-27 2002-10-03 Seiko Epson Corporation Piezoelectric actuator and its drive circuit
US6841919B2 (en) 2001-03-27 2005-01-11 Seiko Epson Corporation Piezoactuator and drive circuit therefor
USRE40709E1 (en) 2001-03-27 2009-05-12 Seiko Epson Corporation Piezoactuator and drive circuit therefor
CN101872016A (en) * 2009-03-31 2010-10-27 株式会社电装 Ultrasonic sensor
CN109693914A (en) * 2017-10-20 2019-04-30 昕芙旎雅有限公司 The control device and Work carrying device of vibrational system

Similar Documents

Publication Publication Date Title
US5200665A (en) Ultrasonic actuator
US4933590A (en) Ultrasonic motor
JPH10507900A (en) Piezoelectric motor
US5955819A (en) Standing-wave vibration motor
JP2000184759A (en) Oscillatory actuator driver
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH04281373A (en) Vibration wave motor
JP3526298B2 (en) Vibrating body and vibration wave driving device
JPH0217877A (en) Oscillator and ultrasonic motor using this oscillator
JPH09308274A (en) Vibrating motor
JP3441585B2 (en) Ultrasonic motor and method of driving ultrasonic motor
JPH0311983A (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
Tani et al. Development of a new type piezoelectric micromotor
JP4594034B2 (en) Vibration type driving device, its control device and its control method
JP2513241B2 (en) Ultrasonic motor
JP3658120B2 (en) Drive circuit for vibration type drive device and vibration type actuator device
JP2972433B2 (en) Ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JPH03273878A (en) Supersonic motor
JPH01177878A (en) Oscillatory wave motor
JP2699299B2 (en) Ultrasonic motor drive circuit
JPH0833370A (en) Ultrasonic motor
JP2817992B2 (en) Starting the vibration wave motor
JP2716423B2 (en) Vibration generator
JP2558661B2 (en) Ultrasonic motor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805