TWI765975B - Adjusting interior lighting based on dynamic glass tinting - Google Patents

Adjusting interior lighting based on dynamic glass tinting Download PDF

Info

Publication number
TWI765975B
TWI765975B TW107106439A TW107106439A TWI765975B TW I765975 B TWI765975 B TW I765975B TW 107106439 A TW107106439 A TW 107106439A TW 107106439 A TW107106439 A TW 107106439A TW I765975 B TWI765975 B TW I765975B
Authority
TW
Taiwan
Prior art keywords
window
room
light
windows
tintable
Prior art date
Application number
TW107106439A
Other languages
Chinese (zh)
Other versions
TW201838945A (en
Inventor
羅伯特 T 羅茲畢基
艾瑞齊 R 克拉溫
布蘭登 蒂尼阿諾
涅提 特里克
強 高登 海伯特 馬修
Original Assignee
美商唯景公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商唯景公司 filed Critical 美商唯景公司
Publication of TW201838945A publication Critical patent/TW201838945A/en
Application granted granted Critical
Publication of TWI765975B publication Critical patent/TWI765975B/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B2009/2464Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds featuring transparency control by applying voltage, e.g. LCD, electrochromic panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

Controllers and methods for automatically controlling color in a workplace based on controlling artificial lighting and tinting of tintable windows.

Description

基於動態玻璃著色調整內部照明Adjust interior lighting based on dynamic glass shading

本文中揭示之某些實施例係關於用於控制一或多個可著色窗及/或其他建築物系統之控制器及方法。 Certain embodiments disclosed herein relate to controllers and methods for controlling one or more tintable windows and/or other building systems.

電致變色為材料在被置於不同電子狀態(通常因為經歷了電壓變化)時在光學性質上展現出可逆之電化學介導的變化的現象。該光學性質通常為顏色、透射率、吸收率及反射率中之一或多者。一種眾所周知之電致變色材料為氧化鎢(WO3)。氧化鎢為其中藉由電化學還原來進行顏色轉變(透明變為藍色)之陰極電致變色材料。 Electrochromism is the phenomenon in which materials exhibit reversible electrochemically mediated changes in optical properties when placed in different electronic states (usually as a result of experiencing a voltage change). The optical property is typically one or more of color, transmittance, absorbance, and reflectance. A well-known electrochromic material is tungsten oxide (WO3 ) . Tungsten oxide is a cathodic electrochromic material in which the color conversion (transparent to blue) occurs by electrochemical reduction.

電致變色材料可合併至(例如)家用、商用及其他用途之窗中。可藉由在電致變色材料中引致變化而改變此類窗之顏色、透射率、吸收率及/或反射率,亦即,電致變色窗為可用電子方式變暗或變亮之窗。向窗之電致變色裝置施加的小電壓將會使其變暗,且反轉該電壓會使其變亮。此能力允許控制穿過窗之光的量,且使電致變色窗有機會用作節能裝置。 Electrochromic materials can be incorporated into windows for, for example, domestic, commercial, and other uses. The color, transmittance, absorbance, and/or reflectivity of such windows can be altered by inducing changes in the electrochromic material, ie, electrochromic windows are windows that can be electronically darkened or brightened. A small voltage applied to the electrochromic device of the window will darken it, and reversing the voltage will brighten it. This capability allows control of the amount of light passing through the window, and gives the electrochromic window the opportunity to act as an energy-saving device.

雖然電致變色在20世紀60年代被發現,但遺憾的係,儘管電致變色技術、設備及製造及/或使用電致變色裝置之相關方法近來取得了許多進步,但電致變色裝置且尤其係電致變色窗仍遇到各種問題且尚未開始實現 其巨大之商業潛力。 Although electrochromism was discovered in the 1960s, unfortunately, despite the many recent advances in electrochromic technology, equipment, and related methods of making and/or using electrochromic devices, electrochromic devices, and especially The electrochromic window still encounters various problems and has not yet begun to realize its huge commercial potential.

某些態樣係關於用於調整建築物系統(例如,基於動態玻璃著色來調整內部照明)以維持環境條件之方法及系統。一個態樣係關於用於調整內部照明以藉由房間中之一或多個已著色窗增強顏色顯現及/或偏移對比率的控制邏輯。 Certain aspects relate to methods and systems for adjusting building systems (eg, adjusting interior lighting based on dynamic glass tinting) to maintain environmental conditions. One aspect relates to control logic for adjusting interior lighting to enhance color presentation and/or offset contrast ratios through one or more tinted windows in a room.

在本文中闡述薄膜光學裝置(例如,用於窗之電致變色裝置)及用於使用此類裝置來控制可著色窗之轉變及其他功能的方法及控制器。某些實施例包括具有兩個或更多個著色(或賦色)區之一電致變色窗,該等著色區(例如)由單片電致變色裝置塗層形成為實體上分開之區或在該單片裝置塗層中建立著色區。可藉助於用於向電致變色裝置施加電位之構件及/或藉由相鄰著色區之間的電阻區域及/或藉由將該裝置在實體上分叉成著色區來界定著色區。舉例而言,一組匯流條可經組態以跨該單片電致變色裝置之單獨著色區中之每一者施加電位以選擇性地使區著色。方法亦可應用於具有一或多個可著色窗之組,其中個別窗獨立於其他窗而著色以便最大化佔用者體驗,亦即,眩光控制、熱舒適性等。 Described herein are thin film optical devices (eg, electrochromic devices for windows) and methods and controllers for using such devices to control transitions and other functions of tintable windows. Certain embodiments include an electrochromic window having two or more tinted (or color-imparting) regions formed, for example, from a monolithic electrochromic device coating as physically separate regions or Colored regions are established in the monolithic device coating. Colored regions can be defined by means of means for applying a potential to the electrochromic device and/or by resistive regions between adjacent colored regions and/or by physically bifurcating the device into colored regions. For example, a set of bus bars can be configured to apply a potential across each of the individually colored regions of the monolithic electrochromic device to selectively color the regions. The method can also be applied to groups with one or more tintable windows, where individual windows are tinted independently of the others in order to maximize the occupant experience, ie, glare control, thermal comfort, etc.

某些態樣係關於隔熱玻璃單元(IGU),該隔熱玻璃單元包括第一窗片,該第一窗片包括安置於第一透明基板上之第一電致變色裝置且包括複數個可獨立控制之著色區及在相鄰之可獨立控制之著色區之間的電阻區域。該IGU進一步包括第二窗片及在該第一窗片與該第二窗片之間的間隔件。在一種情況中,該第二窗片包括安置於第二透明基板上之第二電致變色裝置。在一種情況中,該IGU進一步包括位於(例如)IGU之頂部部分中的採光區,其中該採光區包括保持於脫色狀態以允許太陽光穿過該第一窗 片及該第二窗片的一或多個著色區。 Certain aspects relate to insulated glass units (IGUs) including a first window including a first electrochromic device disposed on a first transparent substrate and including a plurality of optional Independently controllable shaded regions and resistive regions between adjacent independently controllable shaded regions. The IGU further includes a second window and a spacer between the first window and the second window. In one case, the second window includes a second electrochromic device disposed on a second transparent substrate. In one case, the IGU further includes a daylighting area, eg, in a top portion of the IGU, wherein the daylighting area includes remaining in a discolored state to allow sunlight to pass through the first window sheet and one or more tinted regions of the second window.

一個態樣係關於一種自動地控制具有一或多個可著色窗之房間中之光顏色的方法。該方法包括判定對該房間中之人工內部照明的調整以獲得所要光顏色及經由通信網路發送調整該人工內部照明之控制信號。基於該一或多個可著色窗中之每一者的當前著色狀態來判定該等調整。在一個實例中,該房間中之該所要光顏色與減小佔用區域中之對比率使之處於可接受範圍內或低於最大對比率相關聯。 One aspect relates to a method of automatically controlling the color of light in a room having one or more tintable windows. The method includes determining adjustments to artificial interior lighting in the room to obtain a desired light color and sending control signals over a communication network to adjust the artificial interior lighting. The adjustments are determined based on the current shading state of each of the one or more shading windows. In one example, the desired light color in the room is associated with reducing the contrast ratio in the occupied area to within an acceptable range or below a maximum contrast ratio.

一個態樣係關於一種用於自動地控制具有一或多個可著色窗之房間中之光顏色的控制器。該控制器包括:一電腦可讀媒體,該電腦可讀媒體具有控制邏輯;以及一處理器,該處理器經由一通信網路與該電腦可讀媒體及與該一或多個可著色窗通信。該控制邏輯經組態以:判定對該房間中之人工內部照明之調整以在該房間中獲得一所要光顏色,其中基於該一或多個可著色窗之一當前著色狀態來判定該等調整;以及經由該通信網路發送調整該人工內部照明之控制信號。 One aspect relates to a controller for automatically controlling the color of light in a room having one or more tintable windows. The controller includes: a computer-readable medium having control logic; and a processor in communication with the computer-readable medium and with the one or more shadeable windows via a communication network . The control logic is configured to: determine adjustments to artificial interior lighting in the room to obtain a desired light color in the room, wherein the adjustments are determined based on a current tint state of one of the one or more tintable windows ; and sending control signals for adjusting the artificial interior lighting via the communication network.

一個態樣係關於一種控制具有一或多個可著色窗之工作場所中的場景之環境因素的方法。該方法包括:判定工作場所之一類型及佔用之一類型;基於建築物系統之控制的可用性來界定一組環境因素;基於該工作場所之該類型及佔用之該類型來計算該場景之該等環境因素的目標等級;判定用於獲得該等環境因素之該等目標等級的對該等建築物系統之調整,其中基於該一或多個可著色窗之當前著色等級來判定該等調整;以及經由一通信網路發送調整該等建築物系統之控制信號。 One aspect relates to a method of controlling environmental factors of a scene in a workplace having one or more tintable windows. The method includes: determining a type of workplace and a type of occupancy; defining a set of environmental factors based on the availability of controls for building systems; calculating the types of the scene based on the type of workplace and the type of occupancy target levels of environmental factors; determining adjustments to the building systems for obtaining the target levels of the environmental factors, wherein the adjustments are determined based on the current tint level of the one or more tintable windows; and Control signals for adjusting the building systems are sent via a communication network.

一個態樣係關於一種用於自動地控制具有一或多個可著色窗之工作場所中的場景之環境因素的控制器。該控制器包括:一電腦可讀媒體,該 電腦可讀媒體具有控制邏輯;以及一處理器,該處理器經由一通信網路與該電腦可讀媒體及與該一或多個可著色窗通信。該控制邏輯經組態以:判定該工作場所中之佔用;判定工作場所之一類型及佔用之一類型;基於建築物系統之控制的可用性來界定該場景中之一組環境因素;基於該工作場所之該類型及佔用之該類型來計算該場景之該等環境因素的目標等級;判定用於獲得該等環境因素之該等目標等級的對該等建築物系統之調整,其中基於該一或多個可著色窗之當前著色等級來判定該等調整;以及經由一通信網路發送調整該等建築物系統之控制信號。 One aspect relates to a controller for automatically controlling environmental factors of a scene in a workplace having one or more tintable windows. The controller includes: a computer-readable medium, the The computer-readable medium has control logic; and a processor in communication with the computer-readable medium and with the one or more shadeable windows via a communication network. The control logic is configured to: determine occupancy in the workplace; determine a type of workplace and a type of occupancy; define a set of environmental factors in the scenario based on the availability of controls for building systems; based on the work the type of premises and the type of occupancy to calculate the target levels of the environmental factors for the scene; determine the adjustments to the building systems used to obtain the target levels of the environmental factors based on the one or The adjustments are determined by the current tinting levels of a plurality of tintable windows; and control signals to adjust the building systems are sent via a communication network.

將在下文參考圖式來更詳細地闡述此等及其他特徵及實施例。 These and other features and embodiments are set forth in greater detail below with reference to the drawings.

150:房間 150: Room

152:第一人造光源 152: The first artificial light source

154:第二人造光源 154: Second artificial light source

156:第三人造光源 156: Third Artificial Light Source

160:可著色窗 160: Tintable Windows

162:第一部分 162: Part One

170:佔用區域 170: Occupied area

180:第二部分 180: Part Two

190:第三部分 190: Part Three

250:房間 250: Room

252:第一人造光源 252: The first artificial light source

254:第二人造光源 254: Second Artificial Light Source

256:第三人造光源 256: Third Artificial Light Source

260:可著色窗 260: Tintable Windows

270:佔用區域 270: Occupied area

280:第二部分 280: Part II

290:第三部分 290: Part Three

292:第一部分 292: Part One

300:多區可著色窗 300: Multi-zone tinted windows

302:第一著色區 302: First coloring area

304:著色區 304: Shading Area

306:著色區 306: Shading Area

308:著色區 308: Shading Area

310:著色區 310: Shading Area

350:房間 350: Room

450:房間 450: Room

460:多區可著色窗 460: Multi-zone tintable windows

462:第一著色區 462: First Shading Zone

464:第二著色區 464: Second Shading Zone

466:著色梯度區域 466: Shading Gradient Areas

550:房間 550: Room

690:多區可著色窗 690: Multi-Zone Tintable Windows

692:頂部部分 692: Top section

693:第一著色區 693: First Shading Zone

694:第一著色區 694: First Shading Zone

695:區域 695: Area

696:第二著色區 696: Second Shading Zone

697:第三著色區 697: Third Shading Zone

698:第二著色區 698: Second Shading Zone

699:房間 699: Room

710:房間 710: Room

712:多區可著色窗 712: Multi-zone tintable windows

730:右側房間 730: Right room

732:第二多區可著色窗 732: Second multi-zone tintable window

800:房間 800: room

1500:裝置 1500: Device

1550:控制器 1550: Controller

1555:微處理器 1555: Microprocessor

1560:脈寬調變器 1560: Pulse Width Modulator

1565:信號調節模組 1565: Signal Conditioning Module

1570:可讀媒體 1570: Readable Media

1575:組態檔案 1575: Configuration file

1580:網路 1580: Internet

1600:建築物管理系統(BMS) 1600: Building Management Systems (BMS)

1601:建築物 1601: Buildings

1602:主窗控制器 1602: Main window controller

1603:主網路控制器 1603: Main Network Controller

1605a:中間網路控制器 1605a: Intermediate Network Controller

1605b:中間網路控制器 1605b: Intermediate Network Controller

1610:端或葉控制器 1610: End or Leaf Controller

1632:安全系統 1632: Security Systems

1634:加熱/通風/空氣調節(HVAC)系統 1634: Heating/Ventilation/Air Conditioning (HVAC) Systems

1636:照明系統 1636: Lighting Systems

1642:電力系統 1642: Power Systems

1644:電梯或其他輸送系統 1644: Elevator or other conveying system

1650:窗系統 1650: Window System

1700:系統 1700: System

1701:電致變色裝置 1701: Electrochromic Devices

1703:主窗控制器 1703: Main window controller

1705:中間網路控制器 1705: Intermediate Network Controller

1710:端或葉窗控制器 1710: End or louver controller

1712:多感測器裝置 1712: Multi-sensor device

1740:通信網路 1740: Communication Network

1790:壁開關 1790: Wall Switch

1800:建築物網路 1800: Building Networks

1805:主網路控制器 1805: Main Network Controller

1810:照明控制面板 1810: Lighting Control Panel

1815:BMS 1815: BMS

1820:安全控制系統 1820: Security Control Systems

1825:使用者控制台 1825: User Console

1830:加熱、通風及空氣調節(HVAC)系統 1830: Heating, Ventilation and Air Conditioning (HVAC) Systems

1835:燈 1835: Lamp

1840:安全感測器 1840: Security Sensor

1845:門鎖 1845: Door Lock

1850:攝影機 1850: Camera

1855:可著色窗 1855: Tintable Windows

1940:窗控制器 1940: Window Controller

1945:電壓調整器 1945: Voltage regulator

1950:窗 1950: Windows

1952:著色區 1952: Shading Zone

2062:著色區 2062: Shading Area

2070:子控制器(SWC) 2070: Sub-Controller (SWC)

2100:方法 2100: Methods

2110:操作 2110: Operation

2120:操作 2120: Operation

2130:操作 2130:Operation

2140:操作 2140:Operation

2150:操作 2150:Operation

2160:操作 2160:Operation

2170:操作 2170:Operation

2180:操作 2180:Operation

2200:流程圖 2200: Flowchart

2220:操作 2220:Operation

2230:操作 2230:Operation

2250:操作 2250:Operation

2260:操作 2260:Operation

2400:房間 2400: Room

2410:多區窗 2410: Multi-zone window

2412:第一著色區 2412: First Shading Zone

2414:第二著色區 2414: Second Shading Zone

2416:第一二維光投射 2416: First 2D Light Casting

2418:第二二維光投射 2418: Second 2D Light Casting

2420:第二二維光投射 2420: Second 2D Light Casting

2422:第二二維光投射 2422: Second 2D Light Casting

2426:第一二維光投射 2426: First 2D Light Casting

2428:第二二維光投射 2428: Second 2D Light Casting

2450:方向/佔用區域 2450: Orientation/Occupied Area

2460:方向 2460:Direction

2470:方向 2470:Direction

2700:流程圖 2700: Flowchart

2710:操作 2710: Operation

2720:操作 2720:Operation

2730:操作 2730:Operation

2740:操作 2740:Operation

2750:操作 2750:Operation

2760:步驟 2760: Steps

圖1A為根據一實施方案的、具有可著色窗之房間的透視圖之示意圖。 1A is a schematic diagram of a perspective view of a room with tintable windows, according to one embodiment.

圖1B為根據一實施方案的、圖1A中之房間之透視圖的示意圖且該示意圖包括對比度之繪示。 FIG. 1B is a schematic diagram of a perspective view of the room in FIG. 1A and includes a depiction of contrast, according to one embodiment.

圖1C為根據一實施方案的、圖1A中之房間之透視圖的示意圖且該示意圖包括藉由來自內部人工照明之光照偏移的圖1B中之對比度的繪示。 FIG. 1C is a schematic diagram of a perspective view of the room in FIG. 1A and includes a depiction of the contrast in FIG. 1B shifted by illumination from internal artificial lighting, according to one embodiment.

圖2A為根據一實施方案的房間之透視圖的示意圖,該示意圖包括對比度之繪示。 2A is a schematic diagram of a perspective view of a room including a depiction of contrast, according to an embodiment.

圖2B為根據一實施方案的、圖2A中之房間之透視圖的示意圖,該示意圖包括藉由來自內部照明之光照偏移的對比度之繪示。 2B is a schematic diagram of a perspective view of the room in FIG. 2A including a depiction of contrast by illumination shift from interior lighting, according to one embodiment.

圖3為根據一實施例的具有五個著色區之可著色窗的示意圖,其中按橫框窗組態頂部著色區處於較亮著色狀態。 3 is a schematic diagram of a tintable window with five tinting regions according to an embodiment, wherein the top tinting region is in a brighter tinting state according to the horizontal frame window configuration.

圖4為根據一實施例的具有兩個著色區及在該等著色區之間具有著色 梯度之電阻區域的多區可著色窗之示意圖,在該等著色區中頂部著色區處於比底部著色區亮之著色狀態。 4 is a schematic diagram of a multi-zone tintable window with two tinting zones and resistive zones with tinting gradients between the tinting zones, where the top tinting zone is higher than the bottom tinting zone, according to one embodiment Bright shaded state.

圖5為根據一實施例的四個垂直堆疊之可著色窗的示意圖,其中中間之可著色窗處於較亮著色狀態。 5 is a schematic diagram of four vertically stacked tintable windows, with the middle tintable window in a brighter tinted state, according to one embodiment.

圖6為根據一實施例的呈IGU形式之多區可著色窗之實例的示意圖,其中頂部區域具有將光引導向房間後部之一連串光管。 6 is a schematic diagram of an example of a multi-zone tintable window in the form of an IGU with a top region having a series of light pipes directing light towards the rear of the room, according to an embodiment.

圖7為根據實施例的一建築物之左側房間及右側房間的示意圖,根據採光組態之態樣,每一房間具有一可著色窗。 7 is a schematic diagram of a left room and a right room of a building according to an embodiment, each room has a tinted window according to the lighting configuration.

圖8A為根據一實施例的具有若干可著色多區窗之模型化建築物的視圖。 8A is a view of a modeled building with tintable multi-zone windows, according to an embodiment.

圖8B圖8A所示之模型化建築物的另一視圖。 Figure 8B is another view of the modeled building shown in Figure 8A .

圖9為根據一實施例的在6月21日、9月21日及12月21日來自穿過房間中之多區窗之日光的採光眩光機率(DGP)的圖。 9 is a graph of Daylighting Glare Probability (DGP) from sunlight passing through multiple zone windows in a room on June 21, September 21, and December 21, according to one embodiment.

圖10為根據一實施例的在6月21日、9月21日及12月21日房間中之室內亮度級的圖。 10 is a graph of indoor brightness levels in a room on June 21, September 21, and December 21, according to an embodiment.

圖11為根據一實施例的雙區可著色窗之著色排程的圖表,該圖表包括照度級及DGP等級。 11 is a graph of a shading schedule for a dual-zone tintable window, the graph including illuminance levels and DGP levels, according to an embodiment.

圖12為根據一實施例的用於具有兩個區之多區窗及用於具有三個區之多區窗之著色排程的圖表。 12 is a diagram of a shading schedule for a multi-region window with two regions and for a multi-region window with three regions, according to one embodiment.

圖13示出根據實施例的具有採光區模擬之房間的兩個圖示。 Figure 13 shows two illustrations of a room with daylighting simulations according to an embodiment.

圖14示出具有按5”之步長變化之採光著色區尺寸的所模擬房間中之綠色-藍色賦色及亮度之圖表。 Figure 14 shows a graph of green-blue tint and luminance in a simulated room with daylight tint size varying in steps of 5".

圖15繪示根據一實施例的窗控制器之組件的簡化方塊圖。 15 shows a simplified block diagram of components of a window controller according to one embodiment.

圖16繪示根據一實施例的BMS之一實施例之示意圖。 16 shows a schematic diagram of an embodiment of a BMS according to an embodiment.

圖17為根據實施例的用於控制一建築物之一或多個可著色窗之功能的系統之組件的方塊圖。 17 is a block diagram of components of a system for controlling the function of one or more tintable windows in a building, according to an embodiment.

圖18繪示根據一實施方案的用於建築物之建築物網路之實施例的方塊圖。 18 illustrates a block diagram of an example of a building network for a building, according to an implementation.

圖19為根據一實施例的並聯連接至多個電壓調整器之窗控制器的示意圖。 19 is a schematic diagram of a window controller connected to multiple voltage regulators in parallel, according to an embodiment.

圖20為根據一實施例的串聯連接至多個子控制器之窗控制器的示意圖。 20 is a schematic diagram of a window controller connected in series to multiple sub-controllers, according to an embodiment.

圖21為根據實施例的用於作出用於控制多區可著色窗或多個可著色窗之多個著色區之著色決策的控制方法之流程圖。 21 is a flowchart of a control method for making shading decisions for controlling a multi-zone tintable window or multiple shading zones of multiple tintable windows, according to an embodiment.

圖22為根據實施例的實施用於調整人工內部照明以增強具有一或多個可著色窗之房間中之內部顯現顏色的控制邏輯之方法的流程圖。 22 is a flow diagram of a method of implementing control logic for adjusting artificial interior lighting to enhance interior appearing color in a room with one or more tintable windows, according to an embodiment.

圖23為根據一實施例之手動控制面板的像片。 23 is a photograph of a manual control panel according to one embodiment.

圖24A為根據一實施例的具有多區窗及穿過著色區之光投射的房間之視圖的示意圖。 24A is a schematic diagram of a view of a room with multi-zone windows and light projection through shading zones, according to one embodiment.

圖24B為根據一實施例的具有穿過著色區之光投射的圖24A中之房間的視圖之示意圖。 24B is a schematic diagram of a view of the room of FIG. 24A with light projection through a shading zone, according to one embodiment.

24C為根據一實施例的具有穿過著色區之光投射的圖24A中之房間的視圖之示意圖。 24C is a schematic diagram of a view of the room of FIG. 24A with light projection through a shaded region, according to one embodiment.

圖25為根據一實施方案的量測到之照度對量測到之色溫的圖。 25 is a graph of measured illuminance versus measured color temperature, according to one embodiment.

圖26為根據一實施方案的示出各種類型之工作場所的建築物之示意圖。 26 is a schematic diagram of a building showing various types of workplaces, according to an embodiment.

圖27為根據一實施方案的繪示用於一方法之控制邏輯的流程圖,該方法設計及維持在工作場所中提供佔用者滿意度及舒適性等級之環境等級的場景。 27 is a flow diagram illustrating control logic for a method of designing and maintaining scenarios in a workplace that provide environmental levels of occupant satisfaction and comfort levels, according to an implementation.

在以下闡述中,陳述眾多具體細節以便提供對所呈現實施例之透徹理解。可在無此等具體細節中之一些或全部的情況下實踐所揭示實施例。在其他情況中,未詳細地闡述眾所周知之控制操作以免不必要地掩蓋所揭示實施例。雖然將結合特定實施例來闡述所揭示實施例,但將理解不希望限制所揭示實施例。本文中闡述之某些實施例雖然未如此限制但特別適合用於電致變色裝置。相對於用於控制一或多個可著色窗或控制多區窗中之著色區的技術來闡述某些實施例。將理解,此等技術亦可用於使可著色窗組(或區)中、多區窗中或此類窗之組合中的個別窗著色。另外地或另選地,此等技術可用於控制各種建築物系統,包括具有一或多個可著色窗之系統。 In the following description, numerous specific details are set forth in order to provide a thorough understanding of the presented embodiments. The disclosed embodiments may be practiced without some or all of these specific details. In other instances, well-known control operations have not been described in detail so as not to unnecessarily obscure the disclosed embodiments. While the disclosed embodiments will be described in conjunction with specific embodiments, it will be understood that limitations of the disclosed embodiments are not intended. Certain embodiments described herein, although not so limited, are particularly suitable for use in electrochromic devices. Certain embodiments are described with respect to techniques for controlling one or more tintable windows or controlling shading regions in a multi-region window. It will be appreciated that these techniques may also be used to tint individual windows in groups (or zones) of tintable windows, in multi-zone windows, or in a combination of such windows. Additionally or alternatively, these techniques may be used to control various building systems, including systems having one or more tintable windows.

I.對可著色窗之介紹I. Introduction to Shaderable Windows

本文中闡述之某些實施方案係關於控制可著色窗(例如,電致變色窗)之著色及其他功能。在一些實施方案中,可著色窗呈隔熱玻璃單元之形式,該隔熱玻璃單元包括兩個或更多個窗片及密封於該等窗片之間的間隔件。每一可著色窗具有至少一個可著色窗片/窗板,該至少一個可著色窗片/窗板具有光學可切換裝置。本文中相對於具有電致變色窗片之可著色窗來闡述一些實例,該電致變色窗片具有安置於透明基板(諸如玻璃)上之電致變色裝置。在一個實施方案中,電致變色窗片具有一單片電致變色裝置,該電致變色裝置安置於基板之處於可著色窗之可見區域中的至少一部 分上。製作具有多個著色區之電致變色窗片的方法之詳細實例可見於標題為「Multi-Zone EC Windows」且在2013年3月13日提交之美國專利申請案第14/137,644號(頒佈為美國專利第9,341,912號)中,該申請案特此以引用方式整體併入。 Certain implementations described herein relate to controlling the tinting and other functions of tintable windows (eg, electrochromic windows). In some embodiments, the tintable window is in the form of an insulating glass unit that includes two or more windows and a spacer sealed between the windows. Each tintable window has at least one tintable window/panel with an optically switchable device. Some examples are set forth herein with respect to tintable windows having electrochromic windows having electrochromic devices disposed on a transparent substrate, such as glass. In one embodiment, the electrochromic window has a monolithic electrochromic device disposed on at least a portion of the substrate in the visible area of the tintable window points. A detailed example of a method of making electrochromic windows with multiple colored zones can be found in US Patent Application Serial No. 14/137,644, entitled "Multi-Zone EC Windows," filed March 13, 2013 (issued as US Patent No. 9,341,912), which application is hereby incorporated by reference in its entirety.

如上文所提到,本文中討論之某些技術與控制可著色(例如,在一區及/或多區窗中)及/或控制建築物中之其他系統的功能有關。 As mentioned above, some of the techniques discussed herein are related to controlling the functionality of tintable (eg, in one-zone and/or multi-zone windows) and/or controlling other systems in a building.

- 多區窗中之電阻區域 - Resistive area in multi-area window

本文中討論之一些技術與獨立地控制多區可著色窗(諸如多區電致變色窗)中之著色(或賦色)區中之每一者有關。「電阻區域」(本文中有時亦被稱作「電阻區」)一般係指電致變色裝置中之一區域,在該區域中,該電致變色裝置之一或多個層之功能受損(部分地或完全地),但裝置功能跨越電阻區並未切斷。在一個實施方案中,電致變色窗片之著色區藉助相鄰著色區之間的電阻區域藉由用於向電致變色裝置施加電位以獨立地控制著色區中之著色的技術而界定。舉例而言,單組匯流條或多組不同匯流條可經組態而能夠獨立地向每一著色區獨立地施加電位以藉此選擇性地使其著色。關於上文提到之電阻區域,此區域允許單個單片電致變色裝置之相鄰著色區的獨立可控著色,而不會損害電阻區域自身中之著色功能性。亦即,電阻區域可著色。此等技術之一個優點為不使用切穿著色區之間的電致變色裝置之劃片線。此等劃片線可能會產生電致變色裝置之非功能區域,該等非功能區域可能會在著色時在窗之可見區域中產生視覺上可感知之亮線。反而,電阻區域可在保持於不同著色狀態之相鄰著色區之間具有平緩之著色梯度。此著色梯度使相鄰著色區之間的著色轉變融合以使著色區之間的過渡區域之外觀變柔和。 Some of the techniques discussed herein relate to independently controlling each of the tinting (or color imparting) regions in a multi-region tintable window, such as a multi-region electrochromic window. A "resistive region" (also sometimes referred to herein as a "resistive region") generally refers to an area in an electrochromic device in which the function of one or more layers of the electrochromic device is impaired (partially or completely), but the device function is not cut off across the resistive region. In one embodiment, the tinted regions of an electrochromic window are defined by resistive regions between adjacent tinted regions by a technique for applying a potential to an electrochromic device to independently control the tinting in the tinted regions. For example, a single set of bus bars or multiple sets of different bus bars can be configured to independently apply a potential to each colored region independently to thereby selectively color it. With regard to the resistive region mentioned above, this region allows independently controllable coloring of adjacent colored regions of a single monolithic electrochromic device without compromising the coloring functionality in the resistive region itself. That is, the resistive regions can be colored. One advantage of these techniques is that no scribe lines are used to cut through the electrochromic device between the colored areas. These scribe lines may create non-functional areas of the electrochromic device that may, when tinted, produce visually perceptible bright lines in the visible area of the window. Instead, resistive regions may have a gentle color gradient between adjacent colored regions that remain in different colored states. This shading gradient blends shading transitions between adjacent shading regions to soften the appearance of transition regions between shading regions.

在一些實例中,多區窗在單片電致變色裝置之相鄰著色區之間的區域中具有電阻區域。此等電阻區域可實現更均一之著色正面,例如,在與匯流條供電機制結合使用時。在某些實例中,電阻區域相對較窄,具有在約1mm與1000nm寬之間的寬度,或相對較寬,具有在約1mm與約10mm寬之間的寬度。在大多數情況中,電阻區域中之電致變色材料著色,使得其不會留下習知雷射隔離劃片線通常會留下之亮線對比效應。因此,在其他實例中,電阻區域可(例如)寬於1mm、寬於10mm、寬於15mm等。 In some examples, the multi-region window has resistive regions in the regions between adjacent colored regions of the monolithic electrochromic device. These resistive regions can achieve a more uniformly colored front side, for example, when used in conjunction with a busbar power supply mechanism. In certain examples, the resistive region is relatively narrow, having a width between about 1 mm and 1000 nm wide, or relatively wide, having a width between about 1 mm and about 10 mm wide. In most cases, the electrochromic material in the resistive region is colored so that it does not leave the bright line contrast effect that conventional laser isolation scribe lines typically leave behind. Thus, in other examples, the resistive region may be, for example, wider than 1 mm, wider than 10 mm, wider than 15 mm, and the like.

電阻區域能夠著色之原因係因為其並非電致變色裝置在實體上分叉成兩個裝置,而是在實體上修改單個電致變色裝置及/或其在電阻區域內之相關聯透明導體。電阻區域為電致變色裝置之一區域,在該區域中,該裝置之活性,具體而言為電阻率及/或對離子移動之阻力大於電致變色裝置之其餘部分。因此,可修改透明導體中之一者或兩者使其在電阻區域中具有增加之電阻率,及/或可修改電致變色裝置堆疊,使得離子移動在電阻區域中相對於相鄰著色區中之電致變色裝置堆疊要慢。在此電阻區域中,電致變色裝置仍運作、著色及脫色,但相對於電致變色裝置之其餘部分以較慢之速率及/或以較小之著色強度來進行。舉例而言,電阻區域可與相鄰著色區中之電致變色裝置的其餘部分一樣充分地著色,但電阻區域比相鄰著色區著色要慢得多。在另一實例中,電阻區域可能不如相鄰著色區般充分地著色,或按著色梯度來著色。 The reason why the resistive region can be colored is because it is not the electrochromic device that physically bifurcates into two devices, but the physical modification of a single electrochromic device and/or its associated transparent conductor within the resistive region. A resistive region is a region of an electrochromic device in which the device's activity, specifically resistivity and/or resistance to ion movement, is greater than the rest of the electrochromic device. Thus, one or both of the transparent conductors can be modified to have increased resistivity in resistive regions, and/or the electrochromic device stack can be modified so that ions move in resistive regions relative to adjacent colored regions The stacking of electrochromic devices is slow. In this resistive region, the electrochromic device is still functioning, colored and decolorized, but at a slower rate and/or with less coloration intensity relative to the rest of the electrochromic device. For example, resistive regions may be colored as fully as the rest of the electrochromic device in adjacent colored regions, but resistive regions are colored much more slowly than adjacent colored regions. In another example, resistive regions may not be as fully colored as adjacent colored regions, or colored in a color gradient.

在標題為「MULTI-ZONE EC WINDOWS」且在2016年5月25日提交之美國專利申請案15/039,370及標題為「MULTI-ZONE EC WINDOWS」且在2014年12月18日提交之國際PCT申請案 PCT/US14/71314中闡述多區電致變色窗之電阻區域及其他特徵的詳情,該兩件申請案特此以引用方式整體併入。 In US Patent Application 15/039,370 entitled "MULTI-ZONE EC WINDOWS" and filed on May 25, 2016 and International PCT Application entitled "MULTI-ZONE EC WINDOWS" and filed on December 18, 2014 case Details of resistive regions and other features of multi-zone electrochromic windows are set forth in PCT/US14/71314, both of which are hereby incorporated by reference in their entirety.

II.著色考慮因素II. Coloring Considerations

控制一或多個可著色窗之著色狀態及其他建築物系統之動機係為了佔用者好及/或僅出於建築物之考慮,例如,能量節省、功率要求及類似者。此處,「佔用者」一般係指有一或多個可著色窗被控制之特定房間或其他空間中的一個或多個個體,且「建築物」一般係指建築物管理系統(BMS)及照明、HVAC及其他建築物系統。與佔用有關之動機包括(例如)如可能會受房間中之照明及一已著色窗或一組已著色窗之美感影響的整體健康。動機包括(例如)控制來自照射至佔用者之工作場所上之直射太陽光的眩光、透過窗向建築物外部看之可見性(其「視野」)、可著色窗之顏色及房間中之相關聯光顏色,及調整著色狀態以阻擋直射太陽光進入房間中或使直射太陽光透射至房間中而獲得之熱舒適性。雖然佔用者可能想要大體上避免眩光照射至其工作場所,但其亦可能想要允許一些太陽光穿過窗以獲得自然照明。在相較於來自(例如)白熾、發光二極體(LED)或螢光照明之人工照明,佔用者更喜歡太陽光時,情況可能如此。此外,已發現,某些可著色窗在其較暗之著色狀態下可能會對房間賦予過多之藍色。可藉由允許一部分未經過濾之日光進入房間及/或藉由人工照明來偏移此藍色。與建築物有關之使用者動機包括經由減少加熱、空氣調節及照明而降低能量使用。舉例而言,吾人可能想要使窗著色以使某量之太陽光透射穿過窗,使得需要較少能量來進行人工照明及/或加熱。吾人亦可能想要採集太陽光以收集太陽能且補償加熱需求。 The motivation for controlling the tint state of one or more tintable windows and other building systems is for the good of the occupants and/or solely for building considerations, eg, energy savings, power requirements, and the like. Here, "occupier" generally refers to one or more individuals in a specific room or other space where one or more tinted windows are controlled, and "building" generally refers to the building management system (BMS) and lighting , HVAC and other building systems. Motivations related to occupancy include, for example, overall health such as may be affected by the lighting in the room and the aesthetics of a tinted window or group of tinted windows. Motivations include, for example, control of glare from direct sunlight impinging on an occupant's workplace, visibility through windows to the outside of the building (its "field of view"), color of tintable windows, and correlation in rooms Light color, and thermal comfort by adjusting the tinting state to block direct sunlight into the room or transmit direct sunlight into the room. While an occupant may want to generally avoid glare hitting his workplace, he may also want to allow some sunlight to pass through the window for natural lighting. This may be the case when the occupant prefers sunlight over artificial lighting from, for example, incandescent, light emitting diode (LED) or fluorescent lighting. Additionally, it has been found that certain tintable windows may impart too much blue to a room in their darker tinted state. This blue can be offset by allowing a portion of unfiltered sunlight into the room and/or by artificial lighting. User motivations associated with buildings include reducing energy use through reductions in heating, air conditioning and lighting. For example, we may want to tint a window to transmit a certain amount of sunlight through the window so that less energy is required for artificial lighting and/or heating. We may also want to harvest sunlight to harvest solar energy and compensate for heating needs.

另一考慮因素(或許係建築物管理者與佔用者共同的)與安全問題有 關。就此而言,可能希望窗著色成較暗的,使得房間外部之人無法看到佔用者。或者,可能希望窗處於清透狀態,使得(例如)建築物外部之鄰居或警察能看到建築物內部以識別任何惡意行為。舉例而言,使用者或建築物運營者可將窗置於「緊急模式」,在一種情況中,該緊急模式可使窗變清透。 Another consideration (perhaps shared by building managers and occupiers) is related to safety issues. close. In this regard, it may be desirable to tint the windows darker so that those outside the room cannot see the occupants. Alternatively, it may be desirable for the windows to be clear so that, for example, neighbors outside the building or the police can see inside the building to identify any malicious activity. For example, a user or building operator may place a window in "emergency mode," which, in one instance, causes the window to clear.

A.眩光控制A. Glare Control

在許多情況中,眩光避免可能係對可著色窗做出著色決定的多達95%之原因。在2015年5月7日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之國際PCT申請案第PCT/US15/29675號中詳細地闡述了考慮到眩光避免而對可著色窗做出著色決定的方法之實例,該申請案特此以引用方式整體併入。在此等方法中,使用以名稱Intelligence®獲得商標之專用控制邏輯(由Milpitas,California之View,Inc.製造),在邏輯模組A之操作中處理眩光。在模組A中,決定基於藉由透過窗射入房間中之太陽輻射導致之穿透深度或眩光區域來判定是否調整可著色窗之著色狀態。若其中太陽輻射照射房間之穿透深度或眩光區域與佔用者之位置或可能位置(佔用區域)重疊,則立面中之可著色窗保持於或轉變至較暗著色狀態以便減少此佔用區域上之眩光。現有演算法以其他使用者舒適性考慮因素為代價基於眩光使(例如)與建築物空間相關聯之整組窗著色。 In many cases, glare avoidance may account for as much as 95% of tinting decisions for tintable windows. Methods for making tinting decisions for tintable windows with glare avoidance in mind are set forth in detail in International PCT Application No. PCT/US15/29675, filed on May 7, 2015 and entitled "CONTROL METHOD FOR TINTABLE WINDOWS" example, this application is hereby incorporated by reference in its entirety. In these methods, glare is handled in the operation of logic module A using proprietary control logic (manufactured by View, Inc. of Milpitas, California) trademarked under the name Intelligence®. In module A, a decision is made whether to adjust the tinting state of a tintable window based on the penetration depth or glare area caused by solar radiation entering the room through the window. If the penetration depth or glare area where solar radiation hits the room overlaps with the location or possible location of the occupant (occupancy area), the tintable windows in the facade remain or transition to a darker tint state in order to reduce the exposure to this occupancy area of glare. Existing algorithms tint, for example, entire sets of windows associated with a building space based on glare at the expense of other user comfort considerations.

本文中之方法藉由使一組可著色窗中之一或多個窗及/或一或多個多區窗之個別著色區獨立地著色(例如)以解決眩光同時亦允許自然日光進入空間中且因此同時解決多個使用者舒適性問題及/或建築物系統要求而向著色決策提供粒度及靈活性。舉例而言,減少眩光為通常與減少建築物之加熱負荷、增加自然照明等不一致之目標。在冬天,例如,可藉由使可著 色窗變清透以允許更多太陽輻射進入房間而減少加熱系統用於對房間加熱之能量,使可著色窗變清透亦可能會在佔用區域中產生眩光情形。在本文中闡述之某些組態中,可控制多區可著色窗(或一組窗中之個別窗)以藉由將該窗(或一組窗中之子集)中被置於變暗著色之區域限制於減少佔用者在房間中之位置或可能位置上之眩光的彼等著色區來解決此問題。雖然本文中相對於控制多區可著色窗中之著色區來闡述許多實例,但將理解,類似技術將應用於多個可著色窗之總成,每一可著色窗具有一或多個著色區。舉例而言,可控制可著色窗之總成以將該窗總成中被置於變暗著色之區域限制於減少在佔用區域上之眩光的彼等可著色窗及/或可著色窗內之著色區。 The methods herein address glare by independently tinting one or more windows in a set of tintable windows and/or individual tinting zones of one or more multi-zone windows, for example, to address glare while also allowing natural daylight to enter the space And thus provide granularity and flexibility to coloring decisions by simultaneously addressing multiple user comfort issues and/or building system requirements. For example, reducing glare is a goal that is often inconsistent with reducing heating loads on buildings, increasing natural lighting, and the like. In winter, for example, by making Clearing tinted windows allows more solar radiation to enter the room and reduces the amount of energy the heating system uses to heat the room. Clearing tinted windows can also create glare situations in occupied areas. In certain configurations described herein, a multi-zone tintable window (or individual windows in a group of windows) can be controlled to be shaded by placing the window (or a subset of a group of windows) in a darkened tint This problem is solved by restricting the area to those shaded areas that reduce glare at the occupant's position or potential position in the room. While many examples are set forth herein with respect to controlling shading regions in a multi-region tintable window, it will be understood that similar techniques would apply to assemblies of multiple tintable windows, each tintable window having one or more tinting regions . For example, an assembly of tintable windows can be controlled to limit the areas in the window assembly that are placed in dark tinting to those within and/or within the tintable windows that reduce glare on the occupied area. Shaded area.

B.調整色覺B. Adjusting color vision

用於以特定方式控制可著色窗之其他實施方案可能會減少著色或脫色狀態之窗的色覺及/或穿過著色或脫色狀態之窗的光之顏色的色覺。此等實施方案利用將對與特定著色狀態相關聯之非所要顏色的感知降至最低的光學性質。 Other implementations for controlling the tintable window in a particular manner may reduce the color perception of the window in the tinted or depigmented state and/or the color perception of the color of the light passing through the window in the tinted or depigmented state. These implementations utilize optical properties that minimize the perception of unwanted colors associated with a particular colored state.

作為一個實例,光學可切換裝置(例如,電致變色裝置)之變暗著色狀態可具有佔用者可感知到之藍色。然而,若房間中之已著色窗與更多日光照射之清透區窗並置,則佔用者可能較不會注意到已著色窗之藍色。舉例而言,特定窗可處於較暗之著色狀態且可能會向佔用者顯現為藍色。在眩光減少著色組態之一個實施方案中,可將相鄰或鄰近之窗置於清透狀態,只要其不會歸因於其相對位置而對佔用者產生眩光便可。穿過清透窗之光可減少佔用者原本可能會感知到的藍色之感知。 As one example, a dimmed tinted state of an optically switchable device (eg, an electrochromic device) may have a blue color perceptible to an occupant. However, if tinted windows in a room are juxtaposed with more daylight clear area windows, the occupants may be less aware of the blue color of the tinted windows. For example, certain windows may be in a darker tinted state and may appear blue to an occupant. In one embodiment of the glare-reducing tinting configuration, adjacent or adjacent windows can be placed in a clear state as long as they do not cause glare to occupants due to their relative positions. Light passing through clear windows reduces the perception of blue that occupants might otherwise perceive.

在另一實施方案中,擴散光源(諸如黏附至可著色窗之擴散或散射膜) 可減少已著色窗中之藍色的感知。舉例而言,擴散或散射膜可安置於IGU之電致變色窗片的配對窗片上。在另一實例中,擴散或散射膜可安置於無光學可切換裝置(諸如電致變色裝置)之窗片的表面上。 In another embodiment, diffusing the light source (such as a diffusing or diffusing film adhered to the tintable window) Reduces the perception of blue in shaded windows. For example, a diffusing or diffusing film can be placed on the counterpart window of the electrochromic window of the IGU. In another example, a diffusing or diffusing film can be disposed on the surface of a window without optically switchable devices, such as electrochromic devices.

C.光採集C. Light Collection

其他著色組態可涉及最大化光採集。光採集係來自窗外部之太陽輻射藉以轉換成電能以供窗、建築物使用或用於其他目的的概念。可使用在窗之適當部分上(諸如在IGU之配對窗片上)之光伏膜、其他光伏結構或其他光採集結構來完成光採集。在一個實例中,藉由設置於電致變色窗之中或之上的光伏電池來完成光採集。 Other shading configurations may involve maximizing light collection. Light harvesting is the concept by which solar radiation from the outside of a window is converted into electrical energy for use in windows, buildings, or for other purposes. Light harvesting can be accomplished using photovoltaic films, other photovoltaic structures, or other light harvesting structures on appropriate portions of the window, such as on the counterpart windows of the IGU. In one example, light harvesting is accomplished by photovoltaic cells disposed in or on the electrochromic window.

一個考慮因素為光伏電池或其他光採集結構在被收集之入射光以法線或近似法線方向進入時可能最有效。可藉由在該窗中設有一結構來促進此情形,該結構對該窗上之入射光重定向使之以法線或近似法線方向照射光伏電池而最大化能量產生。在一些情況中,可在可著色窗之一部分上使用光擴散器或水平引導結構來將光引導至窗之適當部分上(諸如配對窗片上)的光伏膜、其他光伏結構或其他光採集結構上。 One consideration is that photovoltaic cells or other light harvesting structures may be most effective when the incident light being collected enters in a normal or near normal direction. This can be facilitated by having a structure in the window that redirects incident light on the window to strike the photovoltaic cell in a normal or near-normal direction to maximize energy production. In some cases, a light diffuser or horizontal directing structure may be used on a portion of a tintable window to direct light onto a photovoltaic film, other photovoltaic structure, or other light harvesting structure on an appropriate portion of the window, such as a mating window .

另一考慮因素為在正常情形中可能希望配對窗片上之光伏膜儘可能地透明。然而,製造成透明之光伏膜在將太陽光轉換成電能時與較不透明之膜或不僅是不透明膜而更是或許使光更大程度地散射之膜相比通常相對效率低下。認識到,在窗之一區域中可能存在通常負責防止房間中之眩光情形且因此通常必須要著色的某些著色區,及/或在此區域外部可能存在在其中佔用者通常將能夠觀看外部環境之某些區。在一個實施方案中,此區域中之著色區具有相較於此區域外部之區對光採集更有效但散射程度更大或較不透明之光伏膜。在另一實施方案中,此區域中之著色區具有光伏 膜,而此區域外部之區不具有光伏膜。 Another consideration is that under normal circumstances it may be desirable for the photovoltaic film on the mating window to be as transparent as possible. However, photovoltaic films fabricated to be transparent are often relatively inefficient at converting sunlight into electrical energy compared to less transparent films, or not only opaque films, but possibly more scattering of light. Recognize that there may be certain tinted areas in an area of the window that are generally responsible for preventing glare situations in the room and therefore generally have to be tinted, and/or outside this area there may be areas where occupants will normally be able to view the external environment some areas. In one embodiment, the colored regions in this region have photovoltaic films that are more efficient at light harvesting but more diffuse or less transparent than regions outside of this region. In another embodiment, the colored regions in this region have photovoltaic film, and the area outside this area does not have a photovoltaic film.

關於由於窗之上部區域產生大多數眩光而在該區中水平地引導、反射、散射或擴散入射光之情形,類似地,根據另一實施方案,可著色窗之上部區域可配備有更有效,但光學上令人不怎麼愉悅之類型的光伏膜。 Similarly, according to another embodiment, the upper region of the tintable window may be equipped with a more efficient, But an optically unpleasant type of photovoltaic film.

- IGU窗片面上之光伏電池的示例性位置 - Exemplary placement of photovoltaic cells on the IGU window face

在某些實施方案中,一可著色窗包括光伏(PV)電池/面板。該PV面板可位於該窗上之任何地方,只要其能夠吸收太陽能便可。舉例而言,PV面板可完全地或部分地位於窗之可見區域中,及/或完全地或部分地位於窗之框架中/上。具有PV電池/面板之電致變色窗的實例之詳情可見於標題為「PHOTOVOLTAIC-ELECTROCHROMIC WINDOWS」且在2016年3月25日提交之美國臨時專利申請案62/247,719中,該申請案特此以引用方式整體併入。 In certain embodiments, a tintable window includes photovoltaic (PV) cells/panels. The PV panel can be located anywhere on the window as long as it can absorb solar energy. For example, PV panels may be located fully or partially in the visible area of the window, and/or fully or partially in/on the frame of the window. Details of examples of electrochromic windows with PV cells/panels can be found in US Provisional Patent Application 62/247,719, entitled "PHOTOVOLTAIC-ELECTROCHROMIC WINDOWS", filed March 25, 2016, which is hereby incorporated by reference The way is integrated as a whole.

PV電池/面板可實施為遮蓋可著色窗之窗片的一或多個表面的薄膜。在某些實施方案中,可著色窗呈具有兩個個別窗片(窗板)之IGU的形式,每一窗片具有兩個表面(未算上邊緣)。自建築物之外部向內算起,第一表面(亦即,外窗板之面向外之表面)可被稱作表面1(S1),下一個表面(亦即,外窗板之面向內之表面)可被稱作表面2(S2),下一個表面(亦即,內窗板之面向外之表面)可被稱作表面3(S3),且剩餘表面(亦即,內窗板之面向內之表面)可被稱作表面4(S4)。可在表面1-4中之任何一或多者上實施PV薄膜。 The PV cell/panel can be implemented as a film covering one or more surfaces of the tintable window pane. In certain embodiments, the tintable window is in the form of an IGU with two individual windows (windows), each of which has two surfaces (not counting the edges). Counting from the outside of the building inward, the first surface (ie, the outward facing surface of the outer window panel) may be referred to as surface 1 (S1), and the next surface (ie, the inward facing surface of the outer window panel) may be referred to as surface 1 (S1). surface) may be referred to as surface 2 (S2), the next surface (ie, the outwardly facing surface of the inner glazing) may be referred to as surface 3 (S3), and the remaining surface (ie, the facing surface of the inner glazing) The inner surface) may be referred to as surface 4 (S4). PV thin films may be implemented on any one or more of surfaces 1-4.

在某些實例中,將PV膜施加至IGU或其他多窗片窗總成中之窗片表面中之至少一者。合適PV膜之實例可購自Santa Barbara,CA之Next Energy Technologies Inc.。在一些情況中,PV膜可為有機半傳導墨水, 且可印刷/塗佈至表面上。 In certain examples, the PV film is applied to at least one of the window surfaces in an IGU or other multi-window window assembly. Examples of suitable PV films are available from Next Energy Technologies Inc. of Santa Barbara, CA. In some cases, the PV film can be an organic semiconductive ink, And can be printed/coated onto surfaces.

習知上,在PV電池預計與多區電致變色窗結合使用之情況下,EC裝置相對於PV電池/面板朝向建築物內部定位,使得在EC裝置處於著色狀態時,EC裝置不會減少PV電池/面板收集之能量。因而,可在外窗板(窗片)之面向外之表面上,例如,在IGU之表面1上,實施PV電池/面板。然而,某些敏感性PV電池不能暴露於外部環境條件且因此無法可靠地在面向外之表面上實施。舉例而言,PV電池可能會對氧氣及濕度敏感。 Conventionally, where PV cells are expected to be used in conjunction with multi-zone electrochromic windows, the EC device is positioned toward the interior of the building relative to the PV cells/panels so that the EC device does not reduce the PV when the EC device is in a tinted state. Energy collected by the battery/panel. Thus, the PV cells/panels can be implemented on the outwardly facing surface of the outer glazing (windows), eg, on the surface 1 of the IGU. However, some sensitive PV cells cannot be exposed to external environmental conditions and therefore cannot be reliably implemented on outward facing surfaces. For example, PV cells can be sensitive to oxygen and humidity.

為了解決此類PV膜之空氣及水敏感性,可將膜定位於表面2或3上,如此幫助防止該膜暴露於氧氣及濕度。在一些情況中,電致變色材料之堆疊位於表面3上且PV薄膜位於表面2上。在另一實例中,電致變色材料之堆疊位於表面2上且PV膜位於表面3上。 To address the air and water sensitivity of such PV films, the film may be positioned on surface 2 or 3, thus helping to prevent exposure of the film to oxygen and humidity. In some cases, the stack of electrochromic materials is on surface 3 and the PV film is on surface 2 . In another example, the stack of electrochromic materials is on surface 2 and the PV film is on surface 3 .

在一個態樣中,PV膜位於S3上,且多區窗具有在S2上有多個著色區之電致變色裝置。在此種情況中,一或多個區可保持於脫色著色狀態,諸如在允許自然光高程度地進入房間中之採光著色區中(例如,按橫框窗組態)。在此種情況中,將太陽光饋至S3上之PV膜,而其他區(例如,按橫框窗組態,為下部窗)可保持著色,例如,以進行眩光控制。在此種情況中,PV膜接收太陽光且不需要光。 In one aspect, the PV film is on S3 and the multi-zone window has an electrochromic device with multiple tinted zones on S2. In such a case, one or more zones may remain in a depigmented tinted state, such as in daylight tinted zones that allow a high degree of natural light into the room (eg, in a sash window configuration). In this case, sunlight is fed to the PV film on S3, while other areas (eg, in a sash window configuration, the lower window) can remain tinted, eg, for glare control. In this case, the PV film receives sunlight and does not require light.

4.對比率4. Contrast ratio

如本文中所使用,「對比率」係指自藉由多個光源照亮之表面反射的光之強度的對比。在大多數實例中相對於藉由多個光源照明之表面的兩個區域(被稱作「第一部分」及「第二部分」)來闡述對比率。第一部分係指主要藉由提供具有第一強度之光照的第一光源照亮之區域。第二部分係指第一部分附近或周圍之區域,該區域藉由具有與第一強度不同之第二強度 的光照來照亮。在一個實例中,透射穿過處於最暗著色狀態之電致變色窗之孔隙的為黃色之光在房間裏之桌子的頂面上產生藍色之光投射。透射穿過電致變色窗之光具有比照亮桌面之環境光高的強度。在啟動人工光之前,在藉由房間中之環境光照亮的桌子區域之第一部分與相鄰之第二部分中自桌子上之光投射反射之藍光之間存在強度對比。隨後,啟動提供紅光及黃光之人造光源來照亮桌面。桌面反射來自藍光之光投射與來自人造光源之紅光及黃光的光以自該第一部分反射藍光、紅光及黃光。桌面亦在主要藉由人造光源照亮之第二部分中反射紅光及黃光。來自人工照明之紅光及黃光可偏移或「洗掉」自第一部分與第二部分反射之光之間的對比。 As used herein, "contrast ratio" refers to the contrast in the intensity of light reflected from a surface illuminated by multiple light sources. Contrast ratios are described in most instances with respect to two regions of the surface (referred to as "first portion" and "second portion") illuminated by multiple light sources. The first portion refers to the area illuminated primarily by the first light source providing illumination with the first intensity. The second part refers to the area near or around the first part by having a second intensity different from the first intensity light to illuminate. In one example, yellow light transmitted through the aperture of the electrochromic window in the darkest tinted state produces a blue light projection on the top surface of a table in a room. The light transmitted through the electrochromic window has a higher intensity than the ambient light illuminating the table top. Before the artificial light was activated, there was an intensity contrast between a first portion of the table area illuminated by ambient light in the room and the blue light projected from the light on the table in an adjacent second portion. Then, the artificial light source providing red and yellow light is activated to illuminate the table top. The tabletop reflects light from blue light projection and red and yellow light from artificial light sources to reflect blue, red and yellow light from the first portion. The table top also reflects red and yellow light in a second portion that is mainly illuminated by artificial light sources. The red and yellow light from artificial lighting can shift or "wash out" the contrast between the light reflected from the first and second portions.

圖1A-1C繪示了根據實施方案之房間150之透視圖的示意圖,該房間具有在建築物外部與房間150內部之間的垂直牆壁中之可著色窗160。可著色窗160如圖所示處於變暗著色狀態。房間150亦具有位於房間150之垂直牆壁上的第一人造光源152、第二人造光源154及第三人造光源156。房間150亦具有佔用區域170,例如,桌子或另一工作場所。在此實例中,佔用區域170被界定為房間150之地板上的二維區域。在一個實施方案中,第一、第二及第三人造光源152、154及156中之一或多者可為可調人工照明,該可調人工照明可被調為各種設置,諸如波長範圍、照度及/或照明方向。 1A-1C depict schematic diagrams of perspective views of a room 150 with tintable windows 160 in vertical walls between the exterior of the building and the interior of the room 150 , according to an embodiment. Tintable window 160 is shown in a darkened shaded state. The room 150 also has a first artificial light source 152 , a second artificial light source 154 and a third artificial light source 156 located on the vertical walls of the room 150 . Room 150 also has an occupied area 170 , eg, a desk or another workplace. In this example, occupied area 170 is defined as a two-dimensional area on the floor of room 150 . In one implementation, one or more of the first, second, and third artificial light sources 152, 154, and 156 may be adjustable artificial lighting that can be adjusted to various settings, such as wavelength range, Illuminance and/or direction of illumination.

圖1A中所示之第一種情形中,太陽光(繪示為實線箭頭)如圖所示照射處於著色狀態之可著色窗160。透射穿過可著色窗160之光(繪示為虛線箭頭)在房間150之地板的第一部分162處產生二維光投射。在此種情形中,關閉第一人造光源152、第二人造光源154及第三人造光源156。房間中之環境光照亮房間150在第一部分162周圍之第二部分180中之地板。透射穿過可著色窗之光具有比照亮地板之環境光高的強度。來自主要藉由透 射穿過可著色窗之光照亮之較亮第一部分162的反射光與來自主要藉由環境光照亮之第二部分180的反射光存在強度對比(對比率)。在此種情形中,在第一部分162與第二部分180之間的界面處之對比未處於佔用區域170中。 In the first situation shown in FIG. 1A , sunlight (shown as a solid arrow) illuminates the tintable window 160 in a tinted state as shown. Light transmitted through tintable window 160 (shown as dashed arrows) produces a two-dimensional light projection at first portion 162 of the floor of room 150 . In this case, the first artificial light source 152 , the second artificial light source 154 and the third artificial light source 156 are turned off. Ambient light in the room illuminates the floor of the room 150 in the second portion 180 surrounding the first portion 162 . The light transmitted through the tintable window has a higher intensity than the ambient light illuminating the floor. There is an intensity contrast (contrast ratio) between the reflected light from the brighter first portion 162 illuminated primarily by light transmitted through the tintable window and the reflected light from the second portion 180 illuminated primarily by ambient light. In this case, the contrast at the interface between the first portion 162 and the second portion 180 is not in the occupied area 170 .

圖1B中所示之第二種情形中,太陽光(繪示為實線箭頭)如圖所示照射處於著色狀態之可著色窗160,且關閉第一人造光源152、第二人造光源154及第三人造光源156。在此第二種情形中,太陽在天空中比在第一種情形中高。透射穿過可著色窗160之光(繪示為虛線箭頭)產生二維光投射,該二維光投射照亮房間150之地板上的第一部分162。第一部分162與佔用區域170重疊。透射穿過可著色窗之光具有比照亮地板之環境光高的強度。來自主要藉由該光投射照亮之較亮第一部分162的反射光與來自第一部分162周圍之第二部分180的反射光存在強度對比(對比率)。在此種情形中,在第一部分162與第二部分180之間的界面處之對比處於佔用區域170中。 In the second case shown in FIG. 1B , sunlight (shown as a solid arrow) illuminates the tinted window 160 in a tinted state as shown, and the first artificial light source 152 and the second artificial light source 154 are turned off and a third artificial light source 156 . In this second situation, the sun is higher in the sky than in the first situation. Light transmitted through tintable window 160 (shown as dashed arrows) produces a two-dimensional light projection that illuminates first portion 162 of the floor of room 150 . The first portion 162 overlaps the occupied area 170 . The light transmitted through the tintable window has a higher intensity than the ambient light illuminating the floor. There is an intensity contrast (contrast ratio) between the reflected light from the brighter first portion 162 illuminated primarily by the light projection and the reflected light from the second portion 180 surrounding the first portion 162 . In this case, the contrast at the interface between the first portion 162 and the second portion 180 is in the occupied area 170 .

圖1C中所示之第三種情形繪示了如圖1B中所示之照明情形,但增加藉由方向箭頭繪示之第一人造光源152的啟動。在此種情形中,第一人造光源152照亮地板之二維第三部分190,偏移或「洗掉」來自圖1B中所示之第一部分162與第二部分180之反射光之間的對比。 The third situation shown in FIG. 1C illustrates the lighting situation as shown in FIG. 1B , but with the addition of the activation of the first artificial light source 152 shown by the directional arrows. In this case, the first artificial light source 152 illuminates the two-dimensional third portion 190 of the floor, offsetting or "washing out" the reflected light from the first portion 162 and the second portion 180 shown in FIG. 1B . Compared.

圖2A-2B繪示了根據實施方案之房間250之透視圖的示意圖,該房間具有在建築物外部與房間250內部之間的垂直牆壁中之可著色窗260。可著色窗260處於變暗著色狀態。房間250亦具有位於房間250之垂直牆壁中的第一人造光源252、第二人造光源254及第三人造光源256。房間250亦具有佔用區域270,例如,桌子或另一工作場所。在此實例中,佔用區域 270被界定為房間250之地板上的二維區域。在一個實施方案中,第一、第二及第三人造光源252、254及256中之一或多者可為可調人工照明,該可調人工照明可被調為各種設置,諸如波長範圍、照度及/或照明方向。 2A-2B depict schematic diagrams of perspective views of a room 250 with tintable windows 260 in vertical walls between the exterior of the building and the interior of the room 250 , according to an embodiment. Shaderable window 260 is in a darkened shaded state. The room 250 also has a first artificial light source 252 , a second artificial light source 254 and a third artificial light source 256 located in the vertical walls of the room 250 . Room 250 also has an occupied area 270 , eg, a desk or another workplace. In this example, occupied area 270 is defined as a two-dimensional area on the floor of room 250 . In one implementation, one or more of the first, second, and third artificial light sources 252, 254, and 256 may be adjustable artificial lighting that can be adjusted to various settings, such as wavelength range, Illuminance and/or direction of illumination.

圖2A中所示之第四種情形中,太陽光(繪示為虛線箭頭)如圖所示照射處於著色狀態之可著色窗260。在此第四種情形中,透射穿過可著色窗260之光(繪示為實線箭頭)在房間250之地板上與具有可著色窗260之垂直牆壁很接近的第一部分266處產生二維光投射。第三人造光源256被啟動且照亮地板之第二部分292。第二部分292與佔用區域270重疊。透射穿過可著色窗260之光具有比照亮在第一部分266周圍的地板之第三部分280的環境光高的強度。來自第二部分292與第三部分280之反射光存在強度對比。 In the fourth situation shown in FIG. 2A , sunlight (shown as dashed arrows) illuminates the tintable window 260 in a tinted state as shown. In this fourth scenario, the light transmitted through the tintable window 260 (shown as a solid arrow) creates a two-dimensionality at the first portion 266 of the floor of the room 250 that is in close proximity to the vertical wall with the tintable window 260 light projection. The third artificial light source 256 is activated and illuminates the second portion 292 of the floor. The second portion 292 overlaps the occupied area 270 . The light transmitted through the tintable window 260 has a higher intensity than ambient light illuminating the third portion 280 of the floor around the first portion 266 . The reflected light from the second portion 292 and the third portion 280 have an intensity contrast.

圖2B中所示之第五種情形繪示了如圖2A中所示之類似照明情形,但增加來自藉由方向箭頭繪示之第一人造光源152的照明。在此種情形中,第一人造光源152被啟動且照亮地板之二維第四部分290,偏移來自圖2A中所示之第二部分292與第三部分280之反射光之間的對比。 The fifth scenario shown in Figure 2B illustrates a similar lighting scenario as illustrated in Figure 2A , but with the addition of illumination from the first artificial light source 152 illustrated by the directional arrows. In this case, the first artificial light source 152 is activated and illuminates a two-dimensional fourth portion 290 of the floor, offset from the contrast between the reflected light from the second portion 292 and the third portion 280 shown in FIG. 2A .

某些實施例涉及判定及傳送建築物系統之新設置(諸如可著色窗之著色狀態)及人工照明之設置的控制邏輯,其中藉由該控制邏輯判定該等新設置以減小佔用區域(諸如桌子或其他工作表面)中之對比率。舉例而言,該控制邏輯可判定可調人造光源之設置以將其調為紅光及黃光之波長及/或可著色窗之較亮著色等級以減小穿過已著色窗之光投射中之藍色的深度。在此實例中,來自人造光源之紅光與黃光之組合與穿過已著色窗之光投射之藍光組合以產生紅光、黃光及藍光,例如,較接近於自然光光譜之光譜內容。此組合減小了主要藉由藍光之光投射照亮之區域與藉由人造光源照亮之區域之間的顏色及強度之對比。 Certain embodiments relate to control logic that determines and communicates new settings for building systems (such as the tint status of tinted windows) and settings for artificial lighting, wherein the new settings are determined by the control logic to reduce footprint (such as table or other work surface). For example, the control logic may determine the setting of the tunable artificial light source to tune it to the wavelengths of red and yellow light and/or the brighter tint level of the tintable window to reduce blue in the light cast through the tinted window color depth. In this example, the combination of red and yellow light from artificial light sources is combined with the blue light projected through the tinted window to produce red, yellow, and blue light, eg, spectral content closer to the natural light spectrum. This combination reduces the contrast in color and intensity between areas illuminated primarily by blue light projection and areas illuminated by artificial light sources.

在某些實施方案中,該控制邏輯基於佔用區域中之當前對比率來調整建築物系統之功能,該當前對比率係根據來自建築物系統之回饋而判定。舉例而言,可基於佔用區域中之當前照度來判定佔用區域中之對比率,該當前照度係依據以下一或多者來判定:來自建築物中之一或多個感測器(例如,攝影機、熱感測器等)之量測結果、人工照明之當前設置及位置等。可使用光譜儀(諸如,例如,由Sekonic ®製造之市售C-7000 spectromaster)來量測環境光之照度及顏色。該控制邏輯調整建築物系統之功能以將佔用區域中之對比率調整為可接受等級。舉例而言,可調整建築物系統,使得對比率低於在可接受範圍內或低於最大極限值。作為另一實例,可調整建築物系統,使得基於人工照明之照度的查找表使對比率維持於可接受等級內,該人工照明可用於偏移來自穿過具有不同著色等級之電致變色窗的光投射之反射光。 In some implementations, the control logic adjusts the function of the building system based on the current contrast ratio in the occupied area, the current contrast ratio being determined based on feedback from the building system. For example, the contrast ratio in the occupied area may be determined based on the current illuminance in the occupied area, the current illuminance being determined as a function of one or more of the following: from one or more sensors in the building (eg, a camera , thermal sensors, etc.), the current setting and location of artificial lighting, etc. A spectrometer such as, for example, the commercially available C-7000 spectromaster manufactured by Sekonic® can be used to measure the illuminance and color of ambient light. The control logic adjusts the function of the building system to adjust the contrast ratio in the occupied area to an acceptable level. For example, building systems can be adjusted so that the contrast ratio is below an acceptable range or below a maximum limit. As another example, a building system can be adjusted so that a look-up table based on the illuminance of artificial lighting, which can be used to offset the amount of light from passing through electrochromic windows with different levels of tinting, maintains the contrast ratio within an acceptable level. Reflected light from light projection.

將在本揭示案之其他小節中闡述為了佔用者好及/或僅為了建築物而控制一或多個可著色窗之著色狀態及其他建築物系統的其他考慮因素。舉例而言,包括晝夜節律調整之佔用者健康為下文討論之考慮因素。 Other considerations for controlling the tint state of one or more tintable windows and other building systems for the benefit of occupants and/or the building only are set forth in other subsections of this disclosure. For example, occupant health including circadian rhythm adjustment is a consideration discussed below.

B.用於眩光控制及/或其他考慮因素之著色組態的實例B. Examples of Shading Configurations for Glare Control and/or Other Considerations

在本小節中在大多數情況中參考多區可著色窗來闡述用於眩光減少之組態的實例。將理解,此等實例亦可類似地應用於一組可著色窗或多區窗與單片可著色窗之組合。 Examples of configurations for glare reduction are described in this section with reference to multi-zone tintable windows in most cases. It will be appreciated that these examples may similarly apply to a set of tintable windows or a combination of multi-zone windows and a single tintable window.

a)藉由採光進行眩光控制a) Glare control by daylighting

在一個特定眩光減少組態中,控制一多區可著色窗以將著色區置於(保持於或轉變至)變暗狀態,該等著色區處於該可著色窗中可減少佔用者之位置或可能位置上之眩光的區域中,同時將該多區可著色窗之其他著色 區置於較亮之著色狀態以允許環境光進入以(例如)減少加熱/照明。此組態可用於「採光」。如本文中使用,「採光」一般係指使用自然光來滿足照明要求及潛在之顏色偏移同時減輕佔用者之潛在視覺不適(諸如,例如,由眩光造成)的建築策略。眩光可來自照射至佔用者之工作場所上或射入佔用者眼睛中之直射太陽光。本文中闡述之此組態及其他採光實例可提供多種好處,包括歸因於房間中增加之自然光導致視覺感知變化而減少來自已著色區中之光的藍色。如上文所提到,將理解,此等實例亦類似地應用於保持於或轉變至變暗之一或多個可著色窗,同時其他可著色窗保持於較亮之著色狀態,以實現採光。 In one particular glare reduction configuration, a multi-zone tintable window is controlled to place (keep in or transition to) a dimmed state, the tinted zones being in the tintable window at positions that reduce occupancy or In the area of glare at possible locations, while the other shading of the multi-zone tintable window Zones are placed in a brighter shaded state to allow ambient light in to, for example, reduce heating/illumination. This configuration can be used for "daylighting". As used herein, "daylighting" generally refers to architectural strategies that use natural light to meet lighting requirements and potential color shifts while alleviating potential visual discomfort to occupants, such as, for example, caused by glare. Glare can come from direct sunlight hitting the occupant's workplace or into the occupant's eyes. This configuration and other daylighting examples set forth herein can provide a number of benefits, including a reduction in blue from light in shaded areas due to changes in visual perception caused by increased natural light in the room. As mentioned above, it will be appreciated that these examples also apply similarly to maintaining or transitioning to darkening one or more tintable windows, while the other tintable windows remain in a brighter tinted state for daylighting.

- 下部區域處之較量著色 -Battle coloring at the lower area

在此組態中,控制一多區可著色窗或一組可著色窗,使得下部區域比其他區域亮。在此眩光控制組態之一個實例中,控制垂直牆壁中之一多區窗的下部著色區使之著色成比該多區窗中之一或多個上部著色窗亮。作為此眩光控制組態之另一實例,控制垂直牆壁中之下部可著色窗使之著色成比該垂直牆壁中之一或多個上部可著色窗亮。例如,在太陽在天空中處於中間位置至高位置且該下部區域可處於低位置使得以使直射太陽光不會深深射入房間中且因此不會在位於窗附近之佔用區域中產生眩光的角度來接收太陽光的情形中,可使用該控制組態。在此種情況中,可使下部區域變清透或以允許最多光進入房間中且最小化加熱房間所需之熱負荷的方式來控制下部區域,同時可使中間及/或頂部區域變暗以減少佔用區域上之眩光。 In this configuration, a multi-zone tintable window or group of tintable windows is controlled so that the lower area is brighter than the other areas. In one example of this glare control configuration, the lower tinted region of a multi-zone window in a vertical wall is controlled to be brighter than one or more of the upper tinted windows in the multi-zone window. As another example of such a glare control configuration, the lower tintable windows in a vertical wall are controlled to be brighter than one or more upper tintable windows in the vertical wall. For example, at an angle where the sun is mid-to-high in the sky and the lower area can be low so that direct sunlight does not penetrate deeply into the room and therefore does not create glare in occupied areas located near windows In the case of receiving sunlight, this control configuration can be used. In this case, the lower area can be cleared or controlled in a way that allows the most light into the room and minimizes the heat load required to heat the room, while the middle and/or top areas can be darkened to Reduces glare on occupied areas.

- 頂部區域處之較亮著色 - Brighter shading at the top area

在此組態中,控制一多區可著色窗或一組可著色窗,使得頂部區域 比下部區域亮。舉例而言,可使著色區(或頂部處之多個著色區)著色成比該多區可著色窗之一或多個著色區或該窗之頂部區域亮。在另一實例中,該窗之頂部區域可僅具有透明基板(無光學可切換裝置)。作為另一實例,控制垂直牆壁之頂部區域中的上部可著色窗使之著色成比垂直牆壁中之一或多個其他可著色窗亮。在此等實例中,較亮之頂部區域可藉由允許自然環境光高程度地進入房間中同時在垂直牆壁附近控制眩光來以與「橫框窗」類似之方式起作用。本文中闡述之此實例及其他採光實例可提供多種好處,包括歸因於房間中增加之自然光導致視覺感知變化而減少來自穿過已著色區/窗之光的藍色。 In this configuration, control a multi-zone tintable window or group of tintable windows such that the top zone Brighter than the lower area. For example, a tinted region (or tinted regions at the top) can be tinted brighter than one or more tinted regions of the multi-region tintable window or the top region of the window. In another example, the top area of the window may have only the transparent substrate (no optically switchable devices). As another example, the upper tintable window in the top region of the vertical wall is controlled to be tinted brighter than one or more other tintable windows in the vertical wall. In these examples, the brighter top area may function in a similar fashion to "horizontal windows" by allowing a high degree of ambient light into the room while controlling glare near vertical walls. This and other lighting examples set forth herein may provide various benefits, including a reduction in blue color from light passing through tinted areas/windows due to changes in visual perception caused by increased natural light in the room.

圖3為根據一實施例的具有一多區可著色窗300之此實例的示意圖,該多區可著色窗具有五個著色區。多區可著色窗300位於建築物之內部與外部之間、在房間350之外部垂直牆壁中。多區可著色窗300包括在窗300之頂部處的第一著色區302及在第一著色區302下方之四個其他著色區304306308310 3 is a schematic diagram of this example with a multi-zone tintable window 300 having five tint zones, according to an embodiment. Multi-zone tintable windows 300 are located between the interior and exterior of the building, in the exterior vertical walls of room 350 . The multi-zone tintable window 300 includes a first tinting zone 302 at the top of the window 300 and four other tinting zones 304 , 306 , 308 , and 310 below the first tinting zone 302 .

圖3中示出之所示情形中,太陽在天空中處於高位置。在此情形中,控制著色區,使得第一著色區302處於第一著色狀態,亦即,最亮之著色狀態(例如,脫色或清透狀態),且其他著色區304306308310處於比該第一著色狀態暗之第二著色狀態。就所示之著色控制組態而言,第一著色區302允許來自高空之太陽的自然光進入房間中同時防止來自投射至具有桌子及佔用者之佔用區域上之直射太陽光的眩光。反而,穿過第一著色區302之直射太陽光將眩光投射(藉由箭頭繪示)至房間之未佔用區域上。雖然在此所示實例中使用五個區,但可使用其他數目及佈置之著色區。 In the situation shown in Figure 3 , the sun is high in the sky. In this case, the tinting regions are controlled such that the first tinting region 302 is in the first tinting state, that is, the brightest tinting state (eg, decolorized or clear state), and the other tinting regions 304 , 306 , 308 , and 310 are is in a second shaded state darker than the first shaded state. With the tinting control configuration shown, the first tinting zone 302 allows natural light from the sun overhead to enter the room while preventing glare from direct sunlight projected on the occupied area with the table and occupants. Instead, direct sunlight passing through the first tinting zone 302 casts glare (depicted by arrows) onto unoccupied areas of the room. Although five regions are used in the example shown here, other numbers and arrangements of shaded regions may be used.

在此眩光組態之另一實例中,一多區可著色窗可包括無光學裝置之僅頂部透明基板部分及具有光學可切換裝置之底部部分,該光學可切換裝置具有一或多個著色區。舉例而言,該多區可著色窗可具有一單片電致變色裝置,其中在該窗之底部部分處具有一或多個著色區且在頂部處具有一採光透明基板條帶。 In another example of this glare configuration, a multi-zone tintable window can include only a top transparent substrate portion with no optical devices and a bottom portion with an optically switchable device with one or more tinted zones . For example, the multi-zone tintable window can have a monolithic electrochromic device with one or more tinted zones at the bottom portion of the window and a strip of light-transmitting transparent substrate at the top.

在此眩光組態之另一實例中及可能在用於其他目的之其他組態中,根據一實施例,一多區可著色窗包括一或多個著色區,可控制該一或多個著色區以使之具有自一側至相對側之著色梯度。在一種情況中,頂部著色區具有在一側以脫色著色狀態開始且著色朝相對側增加之著色梯度。亦即,不會如實體上分開之區中般存在著色之突然改變,在實體上分開之區中,區之間的高對比可能會使終端使用者分心且對終端使用者無吸引力。 In another example of this glare configuration, and possibly other configurations for other purposes, according to one embodiment, a multi-zone tintable window includes one or more tinting zones that can be controlled zone so that it has a tinting gradient from one side to the opposite side. In one case, the top tint zone has a tint gradient that starts in a depigmented tint state on one side and increases the tint toward the opposite side. That is, there is no sudden change in coloration as in physically separated regions where high contrast between regions may be distracting and unappealing to the end user.

圖4為根據一實施例的具有一多區可著色窗460之此實例的示意圖,該多區可著色窗具有一著色梯度。多區可著色窗460位於建築物之內部與外部之間、房間450之外部垂直牆壁中。多區可著色窗460包括在窗450之頂部處的第一著色區462及在第一著色區462下方之第二著色區464。在所繪示圖示中,第一著色區462處於第一著色狀態,該第一著色狀態為最亮之著色狀態(例如,脫色狀態),且第二著色區464處於比該第一著色狀態暗之第二著色狀態。就所示之著色而言,第一著色區462允許來自高空之太陽的自然光進入房間中同時防止來自投射至具有桌子及坐著之佔用者的所示佔用區域上之直射太陽光的眩光。穿過第一著色區462之直射太陽光將眩光投射(藉由箭頭繪示)至房間後部之未佔用區域上。在此特定實例中,多區可著色窗460亦具有著色梯度區域466,該著色梯度區域包括具有一寬度之電阻區域。著色梯度區域466具有在相鄰之第一著色區462與 第二著色區464之著色狀態之間的一著色梯度。亦即,可量測著色梯度距離(或寬度),例如,自%T開始變化之一個區的開頭,經過且包括朝相鄰區中%T之變化、在該第二區之%T變成恆定之處結束。在一個態樣中,該梯度部分之寬度為約10”。在另一態樣中,該梯度部分之寬度係在2”至15”之範圍中。在另一態樣中,該梯度部分之寬度係在10”至15”之範圍中。在一個態樣中,該梯度部分之寬度為約5”。在一個態樣中,該梯度部分之寬度為約2”。在一個態樣中,該梯度部分之寬度為約15”。在一個態樣中,該梯度部分之寬度為約20”。在一個態樣中,該梯度部分之寬度為約20”。在一個態樣中,該梯度部分之寬度為至少約10”。在一個態樣中,該梯度部分之寬度為至少約16”。在一個態樣中,該梯度部分之寬度覆蓋該多區可著色窗之整個寬度或大致整個寬度。在此種情況中,該窗可具有跨過整個窗自亮至暗之連續梯度。在另一態樣中,該梯度部分之寬度小於5吋。 FIG. 4 is a schematic diagram of this example with a multi-zone tintable window 460 with a shading gradient, according to an embodiment. Multi-zone tintable windows 460 are located in the exterior vertical walls of room 450 between the interior and exterior of the building. The multi-zone tintable window 460 includes a first tinting zone 462 at the top of the window 450 and a second tinting zone 464 below the first tinting zone 462 . In the illustrated illustration, the first colored region 462 is in a first colored state, which is the brightest colored state (eg, a decolorized state), and the second colored region 464 is in a brighter colored state than the first colored state. Dark second shaded state. For the tinting shown, the first tinting zone 462 allows natural light from the sun aloft to enter the room while preventing glare from direct sunlight projected onto the occupancy area shown with tables and seated occupants. Direct sunlight passing through the first tinting zone 462 casts glare (depicted by arrows) onto unoccupied areas at the rear of the room. In this particular example, the multi-zone tintable window 460 also has a tinted gradient region 466 that includes a resistive region having a width. Shading gradient region 466 has a shading gradient between the shading states of adjacent first shading region 462 and second shading region 464 . That is, the tinting gradient distance (or width) can be measured, e.g., from the beginning of a zone that changes from %T, through and including the change to %T in an adjacent zone, where the %T becomes constant in the second zone place ends. In one aspect, the gradient portion has a width of about 10". In another aspect, the gradient portion has a width in the range of 2" to 15". In another aspect, the gradient portion has a width in the range of 2" to 15". The width is in the range of 10" to 15". In one aspect, the gradient portion is about 5" wide. In one aspect, the gradient portion is about 2" wide. In one aspect, the gradient portion is about 15" wide. In one aspect, the gradient portion is about 20" wide. In one aspect, the gradient portion is about 20" wide. In one aspect, the gradient portion is at least about 10" wide. In one aspect, the gradient portion is at least about 16" wide. In one aspect, the width of the gradient portion covers the entire width or substantially the entire width of the multi-region tintable window. In this case, the window may have a continuous gradient from light to dark across the entire window. In another aspect, the gradient portion is less than 5 inches wide.

- 較亮著色之中間區域 - Brighter shaded middle area

雖然在眩光減少組態中可著色窗之著色的某些實例已將頂部區域或下部區域置於較亮之著色狀態,但其他實例可使頂部或下部區域變暗以控制眩光同時使頂部區域與底部區域之間的一或多個中間區域變清透或將其置於較亮之著色狀態。在此種情況中,可控制一多區可著色窗或一組可著色窗,使得一或多個著色區/窗之中間區域比其他區域亮。舉例而言,位於房間中之極低或極高處之多區可著色窗可具有使一中間區或多個中間區變清透或將其置於較亮之著色狀態的著色組態。作為另一實例,跨過多個樓層(例如,單個房間中之開放夾層或閣樓)之單個多區可著色窗可具有使一中間區或多個中間區變清透之著色組態。作為另一實例,控制垂直牆壁之中間區域中的一或多個可著色窗使之著色成比垂直牆壁中之其他可著色 窗亮。 While some examples of tinting the tintable window in a glare reduction configuration have placed the top or lower area in a lighter shaded state, other examples may darken the top or lower area to control glare while making the top area and One or more intermediate regions between the bottom regions are cleared or placed in a lighter shaded state. In this case, a multi-zone tintable window or group of tintable windows can be controlled such that the intermediate areas of one or more tinted zones/windows are brighter than the other areas. For example, a multi-zone tintable window located very low or very high in a room may have a tinting configuration that clears an intermediate zone or zones or places it in a brighter tinted state. As another example, a single multi-zone tintable window spanning multiple floors (eg, an open mezzanine or attic in a single room) may have a tinting configuration that clears an intermediate zone or zones. As another example, controlling one or more tintable windows in an intermediate region of a vertical wall to be tinted more than other tintable windows in the vertical wall Window bright.

圖5為根據一態樣的具有三個可著色窗502504506之房間550的示意圖。該房間具有有兩張桌子之第二夾層樓及有單張桌子之下層樓。可著色窗502504506垂直地佈置且位於建築物之內部與外部之間、在房間550之外部垂直牆壁中。在此圖示中,中間可著色窗504處於第一著色狀態(例如,脫色狀態),且其他可著色窗502506處於比第一著色狀態暗之第二著色狀態。就所示著色而言,中間可著色窗504允許來自太陽之自然光進入房間550中在佔用區域之間的地方以減少照明/加熱負荷。此著色亦防止來自投射至夾層樓及下層樓上之佔用區域上的直射太陽光之眩光。 5 is a schematic diagram of a room 550 having three tintable windows 502 , 504 , and 506 , according to one aspect. The room has a second mezzanine with two tables and a lower level with a single table. Tintable windows 502 , 504 and 506 are arranged vertically and are located between the interior and exterior of the building, in the exterior vertical walls of room 550 . In this illustration, the middle tintable window 504 is in a first tinted state (eg, a decolorized state), and the other tintable windows 502 and 506 are in a second tinted state that is darker than the first tinted state. For the tinting shown, intermediate tintable windows 504 allow natural light from the sun to enter room 550 between occupied areas to reduce lighting/heating loads. This tinting also prevents glare from direct sunlight projected onto the mezzanine and the occupied areas on the lower floors.

雖然眩光減少組態中之多區可著色窗的許多實例在本文中係相對於沿著窗之長度佈置的多個全寬度著色區來進行闡述,但其他實例可包括沿著窗之寬度佈置的全長度著色區。或者,預計到,一多區可著色窗可包括與窗之長度及寬度上之位置的二維陣列對應之矩形著色區(數位化設計)。 While many examples of multi-zone tintable windows in glare reduction configurations are described herein with respect to multiple full-width tinted zones arranged along the length of the window, other examples may include Full length shaded area. Alternatively, it is contemplated that a multi-zone tintable window may include rectangular tinting zones (digital design) corresponding to a two-dimensional array of positions over the length and width of the window.

b)具有多個窗片之窗b) Windows with multiple slats

在某些實施方案中,一可著色窗包括呈(例如)隔熱玻璃單元(IGU)之形式的多個窗片,該IGU具有密封於窗片之間的間隔件。另一實例為積層構造。本文中相對於所示實例示出及闡述之任何著色組態可用於IGU或積層構造之單個窗片或一或多個窗片。 In certain embodiments, a tintable window includes a plurality of windows in the form of, for example, insulating glass units (IGUs) having spacers sealed between the windows. Another example is a build-up construction. Any of the tinting configurations shown and described herein with respect to the illustrated examples can be used for a single pane or one or more panes of an IGU or laminate construction.

在一個眩光減少著色組態中,一可著色窗包括與一第二配對窗片組合之第一可著色窗片,該第二配對窗片具有多個著色區或單個著色區。在此著色組態中,穿過多個窗片之光的組合透射率可用於提供比單個窗片低之透射率。舉例而言,穿過其中兩個窗片著色至最暗著色狀態之區域中的兩個可著色窗片的減小之透射率等級可為1% T以下。穿過組合之多個已 著色窗片之區域的此減小之透射率可用於在多區可著色窗中提供增加之眩光控制。亦即,低於1%之透射率可為某些終端使用者所要的,例如,以進一步減少眩光。在此等情況中,可在需要時使用具有多個窗片之可著色窗來減少低於1%之透射率。 In one glare reduction tinting configuration, a tintable window includes a first tintable window in combination with a second mating window having multiple tinted zones or a single tinted zone. In this tinted configuration, the combined transmittance of light through multiple windows can be used to provide a lower transmittance than a single window. For example, the reduced transmittance rating through the two tintable windows in the region where the two windows are tinted to the darkest tinted state may be 1% T or less. Passing through multiple combinations This reduced transmittance of areas of the tinted window can be used to provide increased glare control in multi-zone tintable windows. That is, a transmittance of less than 1% may be desirable for some end users, eg, to further reduce glare. In such cases, tintable windows with multiple windows can be used to reduce transmission below 1% if desired.

在此著色組態之一個實施方案中,一多區可著色窗呈具有多個窗片之IGU的形式,每一窗片具有可著色以減少眩光之一或多個著色區。在一年/一天中之某些時間,該窗之上部區域之著色為適當的,因為太陽處於某一高度使得穿過該上部區域之太陽光為穿過接收太陽光之窗之所有部分的眩光之主要原因。在其他情況中,該多區可著色窗之其他區域亦可得益於此著色。舉例而言,下部部分可能亦得益於此著色。 In one embodiment of this tinting configuration, a multi-zone tintable window is in the form of an IGU having a plurality of panes, each pane having one or more tinting zones that can be tinted to reduce glare. At certain times of the year/day, the tinting of the upper area of the window is appropriate because the sun is at an altitude such that sunlight passing through the upper area is a glare through all parts of the window that receives the sun main reason. In other cases, other areas of the multi-zone tintable window may also benefit from this shading. For example, the lower part may also benefit from this coloration.

根據一個態樣,一多區窗中藉由控制方法判定為最適合於著色以減少眩光之區域為佔用者不具有良好之視覺潛力的彼等區域。換言之,當佔用者位於其在房間中通常所處之位置時,若其可看到窗戶外面,例如,以查看天氣狀況,則為所要的。在一個實例中,該控制方法判定將某些著色區之著色狀態保持於或轉變至較暗之著色狀態以控制佔用區域上之眩光,只要該等已著色區之區域不會阻擋佔用者之視野。 According to one aspect, the areas of a multi-area window that are determined by the control method to be most suitable for tinting to reduce glare are those areas that do not have good visual potential for the occupant. In other words, it is desirable if an occupant can see out of the window, for example, to check weather conditions, when he is at his usual position in the room. In one example, the control method determines to maintain or transition the shaded state of certain shaded areas to a darker shaded state to control glare over the occupied areas, as long as the areas of the shaded areas do not obstruct the occupant's view .

在某些實施方案中,控制呈IGU形式之多區可著色窗使之具有使眩光控制與減少之能量消耗平衡的著色狀態。在一種情況中,該IGU之配對窗片可具有被設計成總是或幾乎總是減少眩光之一或多個著色區。雖然配對窗片一般係指IGU之任何基板,但在一種情況中,配對窗片為IGU的上面無光學可切換裝置(例如,電致變色裝置)之基板。 In certain embodiments, a multi-zone tintable window in the form of an IGU is controlled to have a tinted state that balances glare control with reduced energy consumption. In one case, the counterpart window of the IGU may have one or more tinted areas designed to always or almost always reduce glare. While a mating window generally refers to any substrate of an IGU, in one instance, a mating window is the substrate of the IGU without an optically switchable device (eg, an electrochromic device) thereon.

c)太陽光之方向控制c) Direction control of sunlight

在一個態樣中,IGU中之配對窗片或可能一些其他結構可被設計成在 水平方向上引導太陽光,而不管太陽相對於窗位置之相對高度如何。用於在水平方向上引導光之機構可包括在IGU內部或IGU外部中或與配對窗片相關聯之一組極細之板條或百葉窗結構。在一個實例中,小機械百葉窗可建置於配對窗片之電可控區域中以對光重定向。作為另一實例,一連串光管可駐留於IGU外部或內部(窗片之間的區域)以在實質上水平之方向上引導太陽光。圖6為根據一實施例的在房間699之垂直牆壁中的呈IGU之形式的多區可著色窗690之實例的示意圖。該IGU包括內EC窗片與外EC窗片及在該等窗片之間的間隔件(未圖示)。內EC窗片包括第一著色區693、第二著色區696及第三著色區697。外EC窗片包括第一著色區694及第二著色區698。在窗690之頂部部分692中,該等窗片之間的區域695具有一連串光管,該等光管包括用於傳送光之反射內表面。在其他實施例中,區域695可包括光散射元件、反射器、擴散器、微型遮蔽件(或類似MEMS裝置)或類似者。在此著色組態中,使著色區693694變清透以允許太陽光透射,同時對光進行引導或防止光照射於佔用者身上且因此避免眩光情形,同時仍允許自然光進入該空間中。在此組態中,太陽光穿過在頂部部分692處之外EC窗片之外表面處的著色區694、傳送通過該等光管,且傳輸通過處於清透狀態之內EC窗片的著色區693。在一些情況中,如所繪示,光可被稍稍引導至房間之後部。就所示之著色組態而言,窗690之頂部部分692允許來自高空位置之太陽的自然光進入房間同時防止來自具有桌子及佔用者之佔用區域上之直射太陽光的眩光。 In one aspect, the paired windows in the IGU, or possibly some other structure, can be designed to direct sunlight in a horizontal direction, regardless of the relative height of the sun relative to the window position. The means for directing light in a horizontal direction may include a set of very thin slats or louver structures in the interior of the IGU or exterior of the IGU or in association with a mating window. In one example, small mechanical shutters can be built into the electrically controllable areas of the mating windows to redirect light. As another example, a series of light pipes may reside outside or inside the IGU (the area between the windows) to direct sunlight in a substantially horizontal direction. 6 is a schematic diagram of an example of a multi-zone tintable window 690 in the form of an IGU in a vertical wall of a room 699 , according to one embodiment. The IGU includes inner and outer EC windows and spacers (not shown) between the windows. The inner EC window includes a first tinted area 693 , a second tinted area 696 , and a third tinted area 697 . The outer EC window includes a first tinted area 694 and a second tinted area 698 . In the top portion 692 of the window 690 , the area 695 between the windows has a series of light pipes including reflective inner surfaces for transmitting light. In other embodiments, region 695 may include light scattering elements, reflectors, diffusers, micro-shields (or similar MEMS devices), or the like. In this tinted configuration, tinted areas 693 and 694 are made clear to allow sunlight to transmit while directing or preventing light from hitting the occupant and thus avoiding glare situations, while still allowing natural light to enter the space. In this configuration, sunlight passes through the tinting zone 694 at the outer surface of the EC window outside the top portion 692 , passes through the light pipes, and transmits through the tinting of the inner EC window in the clear state District 693 . In some cases, as depicted, the light may be directed slightly to the back of the room. With the tinted configuration shown, the top portion 692 of the window 690 allows natural light from the sun in an overhead location to enter the room while preventing glare from direct sunlight on the occupied area with tables and occupants.

在另一實施方案中,IGU之一或多個窗片可具有有擴散光源之區域,使得照射於此區域上之光擴散或散射以便消除佔用區域上之潛在眩光。可藉由將擴散膜或光引導膜施加至該區域來達成擴散或散射。此等膜含有許 多散射中心或其他通路以允許光進入但同時減少佔用區域上之直射光線。 In another embodiment, one or more windows of the IGU may have an area with diffused light sources such that light impinging on this area is diffused or scattered so as to eliminate potential glare on the occupied area. Diffusion or scattering can be achieved by applying a diffuser or light directing film to the area. These films contain many Multiple scattering centers or other pathways to allow light in but at the same time reduce direct light on the occupied area.

d)具有非EC膜之多區窗d) Multi-region windows with non-EC films

在某些實施方案中,可著色窗包括電致變色裝置或其他光學可切換裝置。在一個實施方案中,該可著色窗包括光學可切換裝置及光伏膜。在另一實施方案中,可著色窗包括光學可切換裝置及熱致變色材料層及/或光致變色材料層。對具有熱致變色或光致變色材料之可著色窗的一些闡述可見於標題為「MULTI-PANE DYNAMIC WINDOW AND METHOD FOR MAKING SAME」且在2008年6月25日提交之美國專利申請案第12/145,892號(現為美國專利第8,514,476號)中,該申請案特此以引用方式整體地併入。 In certain embodiments, the tintable window includes an electrochromic device or other optically switchable device. In one embodiment, the tintable window includes an optically switchable device and a photovoltaic film. In another embodiment, a tintable window includes an optically switchable device and a layer of thermochromic material and/or a layer of photochromic material. Some descriptions of tintable windows with thermochromic or photochromic materials can be found in U.S. Patent Application Serial No. 12/ 145,892 (now US Pat. No. 8,514,476), which application is hereby incorporated by reference in its entirety.

e)採光著色組態之其他實例e) Other Examples of Lighting Shading Configurations

某些態樣係關於具有保持於脫色著色狀態之至少一個著色區或可著色窗(採光著色區/窗)之著色組態。採光著色區/窗允許自然光進入房間中同時藉由使其他著色區/窗著色來控制房間中之眩光/溫度。此等態樣係針對來自佔用者/建築物之動機。第一,採光著色區/窗可增加房間光照。亦即,較暗之著色狀態可能會讓佔用者感覺房間過暗。佔用者可能想要讓更多光進入房間中,同時在太陽照射在立面上時仍控制眩光。第二,採光著色區/窗可改良房間之光顏色。亦即,較暗之著色狀態可使房間中之光看起來為有色的(例如,藍色)。佔用者可能想要維持更自然之房間顏色,同時進行著色以控制眩光。第三,採光著色區/窗可改良透過窗之視覺及佔用者與外界之聯繫。佔用者可能想要在窗處於較暗著色狀態時識別當前天氣或其他戶外條件。第四,採光著色區/窗可維持眩光/熱量控制。亦即,其他著色區/窗將著色以保護佔用者不受眩光影響且防止來自太陽輻射之 熱量。 Certain aspects pertain to tinting configurations with at least one tinting zone or tintable window (lighting tinting zone/window) remaining in a depigmented tinted state. Daylight tinting zones/windows allow natural light into the room while controlling glare/temperature in the room by tinting other tinting zones/windows. These aspects are for motives from the occupier/building. First, daylight tinting areas/windows increase the light in the room. That is, a darker tint state may make the room feel too dark for the occupant. Occupants may want to let more light into the room while still controlling glare when the sun hits the facade. Second, daylight tinting areas/windows can improve the color of the light in the room. That is, a darker tint state can make the light in the room appear colored (eg, blue). Occupants may want to maintain a more natural room color while tinting to control glare. Third, daylighting tinting zones/windows can improve vision through the window and the occupant's connection to the outside world. An occupant may want to recognize the current weather or other outdoor conditions when the window is in a darker tint state. Fourth, daylight tinted areas/windows maintain glare/heat control. That is, other tinted areas/windows will be tinted to protect occupants from glare and from solar radiation. heat.

在某些態樣中,多區窗之採光著色區之寬度足以允許足夠之自然光進入房間中以減少房間中之光顏色(例如,藍色)同時仍提供眩光/加熱控制。在一個態樣中,採光著色區之寬度為約5”。在另一態樣中,採光著色區之寬度小於22”。在另一態樣中,採光著色區之寬度係在約10”與21”之間。在一個態樣中,採光著色區之寬度為約15”。 In some aspects, the daylighting tinting zone of the multi-zone window is wide enough to allow sufficient natural light into the room to reduce light color (eg, blue) in the room while still providing glare/heating control. In one aspect, the width of the daylighting tint is about 5". In another aspect, the width of the daylighting tint is less than 22". In another aspect, the width of the daylighting tint is between about 10" and 21". In one aspect, the width of the daylighting tint is about 15".

圖7示出根據採光著色組態之態樣的具有第一多區可著色窗712之左側房間710及具有第二多區可著色窗732之右側房間730。左側之房間710中之第一多區可著色窗712具有在窗台水平面以上之兩個著色區。右側之房間730中之第二多區可著色窗732具有在窗台水平面以上之三個著色區。在第一多區可著色窗712與第二多區可著色窗732中,在窗台水平面以下之下部部分為不可著色的。在一種情況中,該下部部分可為不具有光學可切換裝置之透明基板。在兩個房間710730中,頂部著色區如圖所示處於清透狀態以允許日光穿過該著色區進入房間中,此與圖3中所示之橫框窗實例類似。具有兩個著色區之第一多區可著色窗712可具有比三區窗低之製造及設計複雜性。 7 shows a left side room 710 with a first multi-zone tintable window 712 and a right side room 730 with a second multi-zone tintable window 732 according to one aspect of the daylighting tinting configuration. The first multi-zone tintable window 712 in the room 710 on the left has two tinting zones above the level of the sill. The second multi-zone tintable window 732 in the room 730 on the right has three tinting zones above the level of the sill. In the first multi-zone tintable window 712 and the second multi-zone tintable window 732 , the lower portion is not tintable below the level of the sill. In one case, the lower portion may be a transparent substrate without an optically switchable device. In both rooms 710 , 730 , the top shaded area is shown in a clear state to allow sunlight to pass through the shaded area into the room, similar to the sash window example shown in FIG . A first multi-zone tintable window 712 with two tinting zones can have lower manufacturing and design complexity than a three-zone window.

圖8A包括根據說明採光著色組態之一實施例的在房間800中具有若干可著色多區窗的模型化建築物之平面圖及側視(南立面)圖。圖8B包括圖8A中所示之模型化建築物之房間800的透視圖。每一多區窗具有兩個著色區,第一頂部著色區及第二中間著色區。下部區域為不具有光學可切換裝置之透明基板。在所示實例中,上部著色區處於比中間著色區亮之狀態以允許日光穿過上部著色區進入房間中。 8A includes plan and side (south elevation) views of a modeled building with tintable multi-zone windows in room 800 according to one embodiment illustrating a daylighting shading configuration. Figure 8B includes a perspective view of room 800 of the modeled building shown in Figure 8A . Each multi-zone window has two shaded areas, a first top shaded area and a second middle shaded area. The lower region is a transparent substrate without optically switchable devices. In the example shown, the upper shaded area is in a brighter state than the middle shaded area to allow sunlight to pass through the upper shaded area into the room.

圖9為根據一實施例的在6月21日、9月21日及12月21日來自穿過圖7 中所示之多區窗的太陽光在房間之第1排及第2排座位處之日光眩光機率(DGP)的圖。該多區窗具有兩個著色區。圖10為相對於圖9所闡述之房間中的兩個著色區的在6月21日、9月21日及12月21日以呎燭光(FC)計的在桌子水平面處之室內亮度級的圖。 FIG. 9 shows sunlight from passing through the multi-zone windows shown in FIG. 7 at row 1 and row 2 seats of a room on June 21, September 21, and December 21, according to one embodiment. Graph of the Daylight Glare Probability (DGP) of . The multi-zone window has two shaded zones. FIG. 10 is a plot of room brightness levels at table level in foot candles (FC) for June 21, September 21, and December 21 relative to the two shaded zones in the room illustrated in FIG. 9 . picture.

圖11圖7中所示之兩區可著色窗之著色排程的圖,該圖包括照度級及DGP值。如所示,自一時間段,向著色區提供足夠之眩光控制及採光。 在年末一天之中午需要最暗著色狀態(著色4)。 FIG. 11 is a graph of the shading schedule for the two-zone tintable window shown in FIG. 7 , the graph including illuminance levels and DGP values. As shown, from a period of time, sufficient glare control and lighting is provided to the shaded area. The darkest shaded state (shading 4) is required at noon on the year-end day.

圖12為具有兩個區及具有三個區之多區窗的著色排程之圖。與兩個區相比,三個區提供更多著色選擇。下部視覺僅可有時著色以稍降低眩光但不會影響亮度級。 12 is a diagram of a shading schedule for a multi-region window with two regions and three regions. Three zones offer more tinting options than two zones. Lower vision can only be tinted at times to reduce glare slightly without affecting brightness levels.

圖13示出具有多區可著色窗之房間的兩個視圖之模擬的圖示,該等多區可著色窗具有寬度為15”之採光著色區。 Figure 13 shows an illustration of a simulation of two views of a room with multi-zone tintable windows having daylighting tinting zones 15" wide.

圖14示出具有寬度為5”之採光著色區之模擬房間中的綠色-藍色賦色及亮度的圖。採光區之寬度的第一個5”造成了房間顏色之最大增量差異。一個實施例為向在房間空間與房間外部之間具有可著色窗之房間提供採光的方法,該方法包括允許未著色窗長度之至少5”在該可著色窗之長度的其餘部分著色時允許少於5%之太陽光譜從中透射穿過。 Figure 14 shows a graph of green-blue coloration and luminance in a simulated room with a daylighting tint zone of width 5". The first 5" of the width of the daylighting zone caused the largest incremental difference in room color. One embodiment is a method of providing daylighting to a room having a tintable window between the room space and the exterior of the room, the method comprising allowing at least 5" of the length of the untinted window to allow less when the remainder of the length of the tintable window is tinted. 5% of the solar spectrum is transmitted therethrough.

III.控制器III. Controller

在一些實施例中,一或多個控制器可向建築物系統供電或發送其他控制信號來控制該等建築物系統之功能。在一些情況中,舉例而言,控制器可對可著色窗之一或多個電致變色裝置供電。本文中闡述之控制器不限於具有對一個(或多個)裝置供電之功能的彼等控制器,為了進行控制,該等控制器與該(等)裝置相關聯。亦即,電源可與該控制器分開,其中該控 制器具有其自己之電源且指導來自獨立電源之電力向該(等)裝置之施加。然而,將電源與該控制器一起包括且對控制器進行組態以直接對裝置供電為方便的,因為免於需要用於對裝置供電之單獨接線。 In some embodiments, one or more controllers may supply power or send other control signals to building systems to control the function of those building systems. In some cases, for example, the controller may power one or more electrochromic devices of the tintable window. The controllers set forth herein are not limited to those controllers having the function of powering the device(s) with which they are associated in order to control. That is, the power supply can be separate from the controller, where the controller The controller has its own power source and directs the application of power to the device(s) from the independent power source. However, it is convenient to include a power supply with the controller and configure the controller to power the device directly, as it avoids the need for separate wiring for powering the device.

在一些情況中,一控制器為獨立控制器,該獨立控制器經組態以控制單個系統(諸如電致變色窗或電致變色窗區之一或多個電致變色裝置)之功能,而無需將該控制器整合至建築物控制網路或建築物管理系統(BMS)中。在其他情況中,如本小節中進一步闡述,該控制器整合至建築物控制網路或BMS中。 In some cases, a controller is a stand-alone controller that is configured to control the function of a single system, such as an electrochromic window or one or more electrochromic devices of an electrochromic window zone, while There is no need to integrate the controller into the building control network or building management system (BMS). In other cases, as further explained in this subsection, the controller is integrated into the building control network or BMS.

A.控制器組件之實例A. Instances of Controller Components

圖15繪示控制器1550之一些組件及藉由控制器1550控制的建築物系統之裝置1500的簡化方塊圖。被實施來控制光學可切換裝置之類似控制器組件的更多詳情可見於均在2012年4月17日提交之標題為為「CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS」的美國專利申請案13/449,248及13/449,251中以及在2012年4月17日提交之標題為為「CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES」的美國專利申請案13/449,235(公佈為美國專利第8,705,162號)中;以上所有申請案特此以引用方式整體併入。 15 shows a simplified block diagram of some components of the controller 1550 and a device 1500 of a building system controlled by the controller 1550 . More details of similar controller assemblies implemented to control optically switchable devices can be found in US Patent Applications 13/449,248 and 13, both filed April 17, 2012, entitled "CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS" /449,251 and in US Patent Application 13/449,235 (published as US Patent No. 8,705,162), filed April 17, 2012, entitled "CONTROLLING TRANSITIONS IN OPTICALLY SWITCHABLE DEVICES"; all of which are hereby incorporated by reference The way is integrated as a whole.

圖15中,控制器1550之所示組件包括微處理器1555或其他處理器、脈寬調變器1560(PWM)、信號調節模組1565及具有組態檔案1575之電腦可讀媒體(例如,記憶體)1570。控制器1550經由網路1580(有線或無線)與一或多個裝置1500電子通信以向該一或多個裝置1500發送控制指令。在一些實施例中,控制器1550可為經由網路(有線或無線)與主控制器通信之局部控制器。 In FIG. 15 , the illustrated components of the controller 1550 include a microprocessor 1555 or other processor, a pulse width modulator 1560 (PWM), a signal conditioning module 1565 , and a computer-readable medium having a configuration file 1575 (eg, , memory) 1570 . The controller 1550 is in electronic communication with one or more devices 1500 via a network 1580 (wired or wireless) to send control commands to the one or more devices 1500 . In some embodiments, the controller 1550 may be a local controller that communicates with the main controller via a network (wired or wireless).

在一些實施例中,來自感測器之輸出可輸入至信號調節模組1565。該輸入可呈傳至信號調節模組1565之電壓信號的形式。信號調節模組1565將輸出信號傳遞至微處理器1555或其他處理器。微處理器1555或其他處理器基於各種資料,諸如來自組態檔案1575之資訊、來自信號調節模組1565之輸出、超控值或其他資料,來判定該(等)裝置之控制等級。微處理器1555接著向PWM 1560發送指令以經由網路1580向建築物系統之一或多個裝置施加電壓及/或電流來控制其功能。 In some embodiments, the output from the sensor may be input to the signal conditioning module 1565 . This input may be in the form of a voltage signal to signal conditioning module 1 565 . The signal conditioning module 1565 passes the output signal to the microprocessor 1555 or other processor. The microprocessor 1555 or other processor determines the level of control of the device(s) based on various data, such as information from the configuration file 1575 , output from the signal conditioning module 1565 , override values, or other data. Microprocessor 1555 then sends instructions to PWM 1560 to apply voltage and/or current to one or more devices of the building system via network 1580 to control its function.

在一個實例中,微處理器1555可指示PWM 1560向窗之電致變色裝置施加電壓及/或電流以使其轉變至四個或更多個不同著色狀態中之任一者。在一種情況中,該電致變色裝置可轉變至闡述為以下各者之至少八個不同著色等級:0(最亮)、5、10、15、20、25、30及35(最暗)。該等著色等級可與透射穿過電致變色窗之光的視覺透射率值及太陽得熱係數(SHGC)值線性對應。舉例而言,使用以上八個著色等級,最亮著色等級0可對應於SHGC值0.80,著色等級5可對應於SHGC值0.70,著色等級10可對應於SHGC值0.60,著色等級15可對應於SHGC值0.50,著色等級20可對應於SHGC值0.40,著色等級25可對應於SHGC值0.30,著色等級30可對應於SHGC值0.20,且著色等級35(最暗)可對應於SHGC值0.10。如將在下文中討論,透射穿過已著色窗之光可在房間中賦予顏色。顏色之深度將視著色等級而定。 In one example, the microprocessor 1555 may instruct the PWM 1560 to apply a voltage and/or current to the electrochromic device of the window to transition it to any of four or more different colored states. In one case, the electrochromic device can be transitioned to at least eight different coloration levels described as: 0 (brightest), 5, 10, 15, 20, 25, 30, and 35 (darkest). These tint levels can correspond linearly to the values of visual transmittance and solar heat gain coefficient (SHGC) of light transmitted through the electrochromic window. For example, using the eight shading levels above, the brightest shading level 0 may correspond to a SHGC value of 0.80, a shading level of 5 may correspond to a SHGC value of 0.70, a shading level of 10 may correspond to a SHGC value of 0.60, and a shading level of 15 may correspond to an SHGC value of 0.60 A value of 0.50, a shading level of 20 may correspond to a SHGC value of 0.40, a shading level of 25 may correspond to a SHGC value of 0.30, a shading level of 30 may correspond to a SHGC value of 0.20, and a shading level of 35 (darkest) may correspond to a SHGC value of 0.10. As will be discussed below, light transmitted through tinted windows can impart color in a room. The depth of the color will depend on the tint level.

在一些情況中,該控制器控制一或多個可著色窗,諸如電致變色窗。在一種情況中,電致變色窗之電致變色裝置中之至少一者或全部為固態及無機之電致變色裝置。在一種情況中,電致變色窗為如在2010年8月5日提交且標題為「Multipane Electrochromic Windows」之美國專利申 請案序列號12/851,514(現為美國專利第8,705,162號)中闡述的多態電致變色窗,該申請案特此以引用方式整體併入。 In some cases, the controller controls one or more tintable windows, such as electrochromic windows. In one case, at least one or all of the electrochromic devices of the electrochromic window are solid state and inorganic electrochromic devices. In one case, the electrochromic window is as in US Patent Application filed on August 5, 2010 and entitled "Multipane Electrochromic Windows" The polymorphic electrochromic window described in Application Serial No. 12/851,514 (now US Patent No. 8,705,162), which is hereby incorporated by reference in its entirety.

控制器1550或與控制器1550通信之主控制器可採用控制邏輯來基於各種資料判定控制等級。控制器1550可指示PWM 1560基於所判定之控制等級來向一或多個裝置施加電壓及/或電流或否則發送控制信號。 The controller 1550 or a master controller in communication with the controller 1550 may employ control logic to determine the level of control based on various data. Controller 1550 may instruct PWM 1560 to apply voltage and/or current to one or more devices or otherwise send control signals based on the determined control level.

B.建築物管理系統(BMS)B. Building Management System (BMS)

本文中闡述之控制器適合於與建築物管理系統(BMS)整合。BMS為安裝於建築物中的監測及控制建築物之機械設備及電氣設備的基於電腦之控制系統,諸如加熱、通風及空氣調節系統(亦被稱作「HVAC系統」)、照明系統、電力系統(例如,無線電力系統)、窗系統(諸如可著色窗之一或多個區)、輸送系統(諸如電梯系統)、應急系統(諸如消防系統)、安全系統及其他建築物系統。BMS由硬體(包括藉由通信通道連至一或多個電腦之互連件)及用於根據由佔用者及/或由建築物管理者設定之偏好來維持建築物中之條件的相關聯軟體組成。舉例而言,可使用區域網路(諸如乙太網)來實施BMS。該軟體可基於(例如)網際網路協定及/或開放標準。一個實例為來自Tridium,Inc.(位於Richmond,Virginia)之軟體。通常用於BMS之一種通信協定為BACnet(建築物自動化及控制網路)。 The controller described herein is suitable for integration with a building management system (BMS). A BMS is a computer-based control system installed in a building that monitors and controls the mechanical and electrical equipment of a building, such as heating, ventilation and air conditioning systems (also known as "HVAC systems"), lighting systems, electrical systems (eg, wireless power systems), window systems (such as one or more zones of tintable windows), conveyor systems (such as elevator systems), emergency systems (such as fire protection systems), security systems, and other building systems. The BMS is associated by hardware (including interconnects to one or more computers via communication channels) and used to maintain conditions in the building according to preferences set by the occupants and/or by the building manager software composition. For example, a BMS may be implemented using a local area network such as Ethernet. The software may be based, for example, on Internet Protocol and/or open standards. An example is software from Tridium, Inc. (located in Richmond, Virginia). One communication protocol commonly used for BMS is BACnet (Building Automation and Control Network).

BMS在大型建築物中最常見,且通常至少用於控制建築物內之環境條件。舉例而言,BMS可控制建築物內之溫度、亮度級、色溫、對比率、聲級或其他聲品質、空氣品質(諸如二氧化碳含量及/或顆粒物含量)、濕度等級及其他條件。通常,有許多機械裝置藉由BMS控制,諸如加熱器、空氣調節器、鼓風機、通風孔及類似者。為了控制建築物環境,BMS可開啟及關閉或以其他方式將建築物系統中之此等裝置控制為特定 等級。典型之現代BMS的核心功能係為建築物之佔用者維持舒適之環境(例如,視覺舒適性、熱舒適性、聲舒適性、空氣品質等)同時最小化能量成本/需求。因此,現代BMS不僅用於監測及控制,且亦用於最佳化各種系統之間的配合,例如,以節約能量及降低建築物運營成本。 BMS is most common in large buildings and is usually used at least to control the environmental conditions within the building. For example, a BMS can control temperature, brightness level, color temperature, contrast ratio, sound level or other sound quality, air quality (such as carbon dioxide levels and/or particulate matter levels), humidity levels, and other conditions within a building. Typically, there are many mechanical devices controlled by the BMS, such as heaters, air conditioners, blowers, vents, and the like. In order to control the building environment, the BMS may turn on and off or otherwise control these devices in the building system to specific grade. The core function of a typical modern BMS is to maintain a comfortable environment (eg, visual comfort, thermal comfort, acoustic comfort, air quality, etc.) for the occupants of the building while minimizing energy costs/demands. Therefore, modern BMSs are used not only for monitoring and control, but also for optimizing the cooperation between various systems, eg, to save energy and reduce building operating costs.

圖16繪示BMS 1600之一實施例的示意圖,該BMS與建築物1601之許多系統通信(無線或有線)且管理該等系統,該等系統包括安全系統1632、加熱/通風/空氣調節(HVAC)系統1634、照明系統1636、電力系統1642、電梯或其他輸送系統1644、消防或其他應急系統1645、與可著色窗相關聯之窗系統1650及類似者。安全系統1632可包括磁卡存取、旋轉柵門、螺線管驅動之門鎖、監控攝影機及其他資產或佔用者定位裝置、防盜自動警鈴、金屬偵測器及類似者。消防或其他應急系統1645可包括警報及包括水管道控制之滅火系統。照明系統1636可包括內部照明、外部照明、緊急警報燈、緊急出口標誌及緊急樓層疏散照明。電力系統1642可包括主電源、備用發電機、不斷電供應系統(UPS)電網、電力產生系統(諸如光伏電力系統)及類似者。在其他實施例中,BMS可管理建築物系統之其他組合。 16 depicts a schematic diagram of one embodiment of a BMS 1600 that communicates (wirelessly or wired) with and manages a number of systems in a building 1601 , including security systems 1632 , heating/ventilation/air conditioning (HVAC) ) system 1634 , lighting system 1636 , electrical system 1642 , elevator or other conveying system 1644 , fire or other emergency system 1645 , window system 1650 associated with tintable windows, and the like. Security systems 1632 may include magnetic card access, turnstiles, solenoid actuated door locks, surveillance cameras and other asset or occupant locating devices, burglar alarms, metal detectors, and the like. Fire or other emergency systems 1645 may include alarms and fire suppression systems including water line controls. Lighting system 1636 may include interior lighting, exterior lighting, emergency warning lights, emergency exit signs, and emergency floor evacuation lighting. Power systems 1642 may include primary power sources, backup generators, uninterruptible power supply (UPS) grids, power generation systems such as photovoltaic power systems, and the like. In other embodiments, the BMS can manage other combinations of building systems.

圖16中示出之所示實例中,BMS 1600藉由向主窗控制器3202發送控制信號來控制窗系統1650。在此實例中,主窗控制器3202被繪示為控制器之分散式網路,該分散式網路包括主網路控制器1603、中間網路控制器1605a1605b及端或葉控制器1610。端或葉控制器1610可類似於相對於圖15所闡述之窗控制器1550、相對於圖19所闡述之窗控制器1940或相對於圖20所闡述之窗控制器790。在一個實例中,主網路控制器1603可接近於BMS 1600,且建築物1601之每一樓層或其他區域可具有中間網路 控制器1605a1605b中之一者,而每一可著色窗或可著色窗之區具有其自己之端控制器1610。在此實例中,端或葉控制器1610中之每一者控制建築物1601之特定可著色窗或可著色窗之特定區。 In the illustrated example shown in FIG. 16 , BMS 1600 controls window system 1650 by sending control signals to master window controller 3202 . In this example, main window controller 3202 is shown as a distributed network of controllers that includes main network controller 1603 , intermediate network controllers 1605a and 1605b , and end or leaf controller 1610 . The end or leaf controller 1610 may be similar to the window controller 1550 described with respect to FIG. 15 , the window controller 1940 described with respect to FIG. 19 , or the window controller 790 described with respect to FIG. 20 . In one example, the main network controller 1603 may be proximate to the BMS 1600 , and each floor or other area of the building 1601 may have one of the intermediate network controllers 1605a and 1605b , while each tinted window or The area of the tintable window has its own end controller 1610. In this example, each of the end or leaf controllers 1610 controls a particular tintable window or a particular area of a tintable window of the building 1601 .

端或葉控制器1610中之每一者可處於與其控制之可著色窗分開的位置,或可整合至該可著色窗中。為簡單起見,僅將建築物1601之十個可著色窗繪示為藉由主窗控制器3202控制。在典型情形中,建築物中可能有較大數目之可著色窗藉由主窗控制器3202控制。主窗控制器3202無需為窗控制器之分散式網路。舉例而言,如上文所闡述,控制單個可著色窗或可著色窗之單個區之功能的單個端控制器亦落入本文中揭示之實施例的範疇內。 Each of the end or leaf controllers 1610 can be in a separate location from the tintable window it controls, or can be integrated into the tintable window. For simplicity, only the ten tintable windows of building 1601 are shown as being controlled by master window controller 3202 . In a typical situation, there may be a larger number of tintable windows in a building controlled by the master window controller 3202 . The master window controller 3202 need not be a distributed network of window controllers. For example, as set forth above, a single end controller that controls the function of a single tintable window or a single region of a tintable window also falls within the scope of the embodiments disclosed herein.

在一個態樣中,BMS或另一控制器經由通信網路自建築物處之一或多個感測器接收感測器資料。對於外部感測器,建築物可包括在建築物之屋頂上之外部感測器。或者,建築物可包括與每一外部窗相關聯之外部感測器或在建築物之每一側上的外部感測器。在建築物之每一側上的外部感測器可隨著太陽在一天中改變位置而追蹤建築物之側上的輻照度。作為另一實例,具有多個感測器(諸如光感測器、紅外線感測器、環境溫度感測器及其他感測器)之多感測器裝置可位於建築物處,例如,在屋頂上。另外地或另選地,BMS可自其他建築物系統接收回饋資料。在一種情況中,BMS可接收關於佔用者在建築物中之存在及位置的資料。藉由合併來自各種建築物系統之資料,BMS可提供(例如)增強的:1)環境控制、2)能量節省、3)安全性、4)控制選擇之靈活性、5)歸因於對其他系統之較少依賴且因此對其他系統之較少維護而使其他系統之可靠性及可用壽命提高、6)資訊可用性及診斷、7)人員之有效利用及來自人員之較高生產力, 及此等情況之各種組合,因為可自動地控制該等系統。 In one aspect, the BMS or another controller receives sensor data from one or more sensors at the building via a communication network. For external sensors, the building may include external sensors on the roof of the building. Alternatively, the building may include exterior sensors associated with each exterior window or exterior sensors on each side of the building. External sensors on each side of the building can track the irradiance on the side of the building as the sun changes position throughout the day. As another example, a multi-sensor device with multiple sensors (such as light sensors, infrared sensors, ambient temperature sensors, and other sensors) may be located at buildings, eg, on rooftops superior. Additionally or alternatively, the BMS may receive feedback data from other building systems. In one case, the BMS may receive information about the presence and location of occupants in the building. By incorporating data from various building systems, a BMS can provide, for example, enhanced: 1) environmental control, 2) energy savings, 3) safety, 4) flexibility in control options, 5) attributable to other Less reliance on systems and therefore less maintenance of other systems resulting in increased reliability and useful life of other systems, 6) Information availability and diagnostics, 7) Effective utilization of personnel and higher productivity from personnel, and various combinations of these, as these systems can be automatically controlled.

建築物系統有時可根據每日、每月、每季度或每年之排程來運作。舉例而言,照明控制系統、窗系統、HVAC及安全系統可考慮到人們在工作日期間何時處於建築物中而按照24小時排程來操作。在晚上,建築物可進入能量節省模式,且在白天,系統可以最小化建築物之能量消耗同時為佔用者提供舒適性的方式來操作。作為另一實例,該等系統在假期內可關掉或進入能量節省模式。排程資訊可與地理資訊組合。地理資訊可包括建築物之緯度及經度。地理資訊亦可包括關於建築物之每一側面向之方向的資訊。使用此類資訊,可以不同方式來控制在建築物之不同側的不同房間。 Building systems can sometimes operate on a daily, monthly, quarterly or annual schedule. For example, lighting control systems, window systems, HVAC, and security systems may operate on a 24-hour schedule considering when people are in the building during the workday. At night, the building may enter an energy saving mode, and during the day, the system may operate in a manner that minimizes the building's energy consumption while providing occupant comfort. As another example, the systems may be turned off or entered into an energy saving mode during a vacation. Scheduling information can be combined with geographic information. The geographic information may include the latitude and longitude of the building. The geographic information may also include information about the direction each side of the building is facing. Using this information, different rooms on different sides of the building can be controlled in different ways.

圖17為根據實施例的用於控制建築物(例如,圖16中所示之建築物1601)之一或多個可著色窗的電致變色裝置1701之功能(例如,轉變至不同著色等級)的系統1700之組件的方塊圖。系統1700可為藉由BMS(例如,圖16中所示之BMS 1600)管理的建築物系統中之一者或可獨立於BMS來操作。系統1700包括主窗控制器1703,該主窗控制器可向該一或多個可著色窗發送控制信號以控制其功能。系統1700亦包括與主窗控制器1703電子通信之網路1740。可經由網路1740向主窗控制器1703傳送用於控制可著色窗之功能的該控制邏輯、其他控制邏輯及指令及/或感測器及其他資料。網路1740可為有線或無線網路(例如,雲端網路)。在一個實施例中,網路1740可與BMS通信以允許BMS經由網路1740向建築物中之可著色窗發送用於控制可著色窗之指令。 17 is a function of an electrochromic device 1701 for controlling one or more tintable windows of a building (eg, building 1601 shown in FIG. 16 ) (eg, transitioning to a different tinting level), according to an embodiment A block diagram of the components of the system 1700 . System 1700 may be one of the building systems managed by a BMS (eg, BMS 1600 shown in Figure 16 ) or may operate independently of a BMS. System 1700 includes a master window controller 1703 that can send control signals to the one or more tintable windows to control their function. The system 1700 also includes a network 1740 in electronic communication with the master window controller 1703 . The control logic, other control logic and instructions and/or sensors and other data for controlling the functionality of the tintable windows may be communicated to the master window controller 1703 via the network 1740 . The network 1740 can be a wired or wireless network (eg, a cloud network). In one embodiment, the network 1740 can communicate with the BMS to allow the BMS to send instructions to control the tintable windows in the building via the network 1740 .

系統1700亦包括該一或多個可著色窗(未圖示)之EC裝置1701及可選之壁開關1790,該等EC裝置與壁開關與主窗控制器1703電子通信。在此 所示實例中,主窗控制器1703可向EC裝置1701發送控制信號以控制具有EC裝置1701之可著色窗的著色等級。每一壁開關1790亦與EC裝置1701及主窗控制器1703通信。終端使用者(例如,具有可著色窗之房間的佔用者)可使用壁開關1790來控制具有EC裝置1701之可著色窗的著色等級及其他功能。 The system 1700 also includes the one or more tintable windows (not shown) EC devices 1701 and optional wall switches 1790 , which are in electronic communication with the main window controller 1703 . In the example shown here, the master window controller 1703 may send a control signal to the EC device 1701 to control the tint level of a tintable window with the EC device 1701 . Each wall switch 1790 also communicates with the EC device 1701 and the main window controller 1703 . An end user (eg, an occupant of a room with tintable windows) can use wall switch 1790 to control the tint level and other functions of a tintable window with EC device 1701 .

圖17中,主窗控制器1703被繪示為窗控制器之分散式網路,該分散式網路包括主網路控制器1703、與主網路控制器1703通信之複數個中間網路控制器1705及多個複數個端或葉窗控制器1710。每複數個端或葉窗控制器1710與單個中間網路控制器1705通信。雖然主窗控制器1703被示出為窗控制器之分散式網路,但在其他實施例中,主窗控制器1703亦可為控制單個可著色窗之功能的單個窗控制器。圖17中之系統1700的組件在某些方面可類似於相對於圖16所闡述之組件。舉例而言,主網路控制器1703可類似於主網路控制器1303,且中間網路控制器1705可類似於中間網路控制器1705圖17中之分散式網路中的每一窗控制器可包括處理器(例如,微處理器)及與該處理器電通信之電腦可讀媒體。 In FIG. 17 , the main window controller 1703 is shown as a distributed network of window controllers, the distributed network includes the main network controller 1703 and a plurality of intermediate networks in communication with the main network controller 1703 Controller 1705 and a plurality of terminal or louver controllers 1710 . Each terminal or louver controller 1710 communicates with a single intermediate network controller 1705 . Although the master window controller 1703 is shown as a distributed network of window controllers, in other embodiments, the master window controller 1703 may also be a single window controller that controls the functionality of a single tintable window. The components of system 1700 in FIG. 17 may be similar in some respects to those described with respect to FIG. 16 . For example, main network controller 1703 may be similar to main network controller 1303 , and intermediate network controller 1705 may be similar to intermediate network controller 1705 . Each window controller in the distributed network of Figure 17 may include a processor (eg, a microprocessor) and a computer-readable medium in electrical communication with the processor.

圖17中,每一葉或端窗控制器1710與單個可著色窗之EC裝置1701通信以控制建築物中之彼可著色窗的著色等級。在IGU之情況中,葉或端窗控制器1710可與IGU之多個窗片上的EC裝置1701通信以控制該IGU之著色等級。在其他實施例中,每一葉或端窗控制器1710可與(例如)窗之區中的複數個可著色窗通信。葉或端窗控制器1710可整合至可著色窗中或可與其控制之可著色窗分開。圖17中之葉及端窗控制器1710可類似於圖16中之端或葉控制器1610In Figure 17 , each leaf or end window controller 1710 communicates with a single tintable window EC device 1701 to control the tint level of that tintable window in the building. In the case of an IGU, a leaf or end window controller 1710 may communicate with EC devices 1701 on a plurality of windows of an IGU to control the tint level of the IGU. In other embodiments, each leaf or end window controller 1710 may communicate with a plurality of tintable windows, eg, in a region of windows. The leaf or end window controller 1710 may be integrated into the tintable window or may be separate from the tintable window it controls. Leaf and end window controller 1710 in FIG. 17 may be similar to end or leaf controller 1610 in FIG. 16 .

每一壁開關1790可由終端使用者(例如,房間之佔用者)操作以控制 與壁開關1790通信之可著色窗的著色等級及其他功能。終端使用者可操作壁開關1790以向相關聯可著色窗中之EC裝置1701傳送控制信號。在一些情況中,來自壁開關1790之此等信號可超控來自主窗控制器1703之信號。在其他情況(例如,高需求情況)中,來自主窗控制器1703之控制信號可超控來自壁開關1790之控制信號。每一壁開關1790亦與葉或端窗控制器1710通信以將關於自壁開關1790發送之控制信號(例如,時間、日期、所請求之著色等級等)的資訊發回主窗控制器1703。在一些情況中,可手動操作壁開關1790。在其他情況中,可由終端使用者使用遠端裝置(例如,行動電話、平板電腦等)發送具有控制信號之無線通信(例如,使用紅外線(IR)及/或射頻(RF)信號)來無線地控制壁開關1790。在一些情況中,壁開關1790可包括無線協定晶片,諸如藍芽、EnOcean、WiFi、Zigbee及類似者。雖然圖17中繪示之壁開關1790位於牆壁上,但系統1700之其他實施例可具有位於房間中別處之開關。系統1700亦包括多感測器裝置1712,該多感測器裝置經由通信網路1740與一或多個控制器電子通信,以便向該(等)控制器傳送感測器讀數及/或經篩選之感測器值。 Each wall switch 1790 is operable by an end user (eg, an occupant of a room) to control the tint level and other functions of the tintable window in communication with the wall switch 1790 . The end user can operate the wall switch 1790 to transmit a control signal to the EC device 1701 in the associated tintable window. In some cases, these signals from wall switch 1790 may override signals from master window controller 1703 . In other situations (eg, high demand situations), the control signal from the master window controller 1703 may override the control signal from the wall switch 1790 . Each wall switch 1790 also communicates with the leaf or end window controller 1710 to send information back to the master window controller 1703 regarding the control signals sent from the wall switch 1790 (eg, time, date, tint level requested, etc.). In some cases, wall switch 1790 may be manually operated. In other cases, wireless communications (eg, using infrared (IR) and/or radio frequency (RF) signals) with control signals may be sent wirelessly by the end user using a remote device (eg, mobile phone, tablet, etc.) Control wall switch 1790 . In some cases, the wall switch 1790 may include a wireless protocol chip, such as Bluetooth, EnOcean, WiFi, Zigbee, and the like. Although the wall switch 1790 shown in Figure 17 is located on the wall, other embodiments of the system 1700 may have switches located elsewhere in the room. The system 1700 also includes a multi-sensor device 1712 in electronic communication with one or more controllers via a communication network 1740 for transmitting sensor readings and/or screening to the controller(s) the sensor value.

圖18繪示用於建築物之建築物網路1800之實施例的方塊圖。如上文所指出,建築物網路1800可採用任何數目之不同通信協定,包括BACnet。如所示,建築物網路1800包括主網路控制器1805、照明控制面板1810、BMS 1815、安全控制系統1820及使用者控制台1825。建築物中之此等不同控制器及系統可用於接收來自建築物之HVAC系統1830、燈1835、安全感測器1840、門鎖1845、攝影機1850及可著色窗1855之輸入及/或控制HVAC系統1830、燈1835、安全感測器1840、門鎖1845、攝影機1850及可著色窗1855 18 shows a block diagram of an embodiment of a building network 1800 for buildings. As noted above, building network 1800 may employ any number of different communication protocols, including BACnet. As shown, building network 1800 includes main network controller 1805 , lighting control panel 1810 , BMS 1815 , security control system 1820 , and user console 1825 . These various controllers and systems in a building can be used to receive input from and/or control the HVAC system 1830 , lights 1835 , security sensors 1840 , door locks 1845 , cameras 1850 , and tintable windows 1855 from the building's HVAC system 1830 1830 , lights 1835 , security sensors 1840 , door locks 1845 , cameras 1850 and tinted windows 1855 .

主網路控制器1805可以與相對於圖17所闡述之主網路控制器3403類似之方式起作用。照明控制面板1810可包括用於控制內部照明、外部照明、緊急警報燈、緊急出口標誌及緊急樓層疏散照明之電路。照明控制面板1810亦可包括在建築物之房間中的佔用感測器。BMS 1815可包括電腦伺服器,該電腦伺服器自網路1800之其他系統及控制器接收資料及向網路1800之其他系統及控制器發出命令。舉例而言,BMS 1815可自主網路控制器1805、照明控制面板1810及安全控制系統1820中之每一者接收資料且向主網路控制器1805、照明控制面板1810及安全控制系統1820中之每一者發出命令。安全控制系統1820可包括磁卡存取、旋轉柵門、螺線管驅動之門鎖、監控攝影機、防盜自動警鈴、金屬偵測器及類似者。使用者控制台1825可為可由建築物管理者用於為對建築物之不同系統進行之控制、監測、最佳化及排除故障操作進行排程的電腦終端。來自Tridium,Inc.之軟體可產生來自用於使用者控制台1225之不同系統的資料之視覺表示。 The master network controller 1805 may function in a similar manner to the master network controller 3403 described with respect to FIG. 17 . Lighting control panel 1810 may include circuitry for controlling interior lighting, exterior lighting, emergency warning lights, emergency exit signs, and emergency floor evacuation lighting. Lighting control panel 1810 may also include occupancy sensors in rooms of the building. BMS 1815 may include computer servers that receive data from and issue commands to other systems and controllers of network 1800 . For example, the BMS 1815 may receive data from each of the main network controller 1805 , the lighting control panel 1810 , and the security control system 1820 and send data to each of the main network controller 1805 , the lighting control panel 1810 , and the security control system 1820 Each issued an order. Security control system 1820 may include magnetic card access, turnstiles, solenoid actuated door locks, surveillance cameras, burglar alarms, metal detectors, and the like. User console 1825 may be a computer terminal that may be used by a building manager to schedule control, monitoring, optimization, and troubleshooting operations for the various systems of the building. Software from Tridium, Inc. can generate visual representations of data from different systems for the user console 1225 .

該等不同控制中之每一者可控制不同類型之裝置/設備。主網路控制器1805控制窗1855。照明控制面板1810控制燈1835。BMS 1815可控制HVAC 1830。安全控制系統1820控制安全感測器1840、門鎖1845及攝影機1850。可在作為建築物網路1800之部分的所有不同裝置/設備及控制器之間交換及/或共用資料。 Each of these different controls can control a different type of device/equipment. The main network controller 1805 controls the window 1855 . Lighting control panel 1810 controls lights 1835 . BMS 1815 can control HVAC 1830 . The security control system 1820 controls the security sensor 1840 , the door lock 1845 and the camera 1850 . Data can be exchanged and/or shared among all the different devices/equipment and controllers that are part of the building network 1800 .

C.用於獨立控制多個著色區之窗控制器的實例C. An instance of a window controller for independently controlling multiple shading areas

在某些態樣中,可使用單個窗控制器或多個窗控制器來獨立地控制一多區可著色窗之單個電致變色裝置的多個區或一區中之多個可著色窗。在第一設計中,單個窗控制器與多個電壓調整器電通信。在第二設計中, 主窗控制器與多個子控制器電通信。在一些情況中,每一多區可著色窗包括一記憶體、晶片或卡,該記憶體、晶片或卡儲存關於窗之資訊,該資訊包括實體特性、生產資訊(日期、地點、製作參數、批號等)及類似者。該記憶體、晶片或卡可為機載窗控制器之部分或並非機載窗控制器之部分,例如,在與窗控制器連接之線束、尾纖及/或連接器中。在本文中闡述控制多區可著色窗之窗控制器,不管是在窗上還是作為窗之部分。在標題為「MULTIPURPOSE CONTROLLER FOR MULTISTATE WINDOWS」且在2011年3月16日提交之美國專利申請案13/049,756及標題為「SELF-CONTAINED EC IGU」且在2015年11月24日提交之美國專利申請案14/951,410中闡述可包括於記憶體中之其他資訊,該兩件申請案出於所有目的以引用方式併入本文中。 In some aspects, a single window controller or multiple window controllers can be used to independently control multiple zones of a single electrochromic device of a multi-zone tintable window or multiple tintable windows in a zone. In a first design, a single window controller is in electrical communication with multiple voltage regulators. In the second design, The main window controller is in electrical communication with the plurality of sub-controllers. In some cases, each multi-zone tintable window includes a memory, chip, or card that stores information about the window, including physical characteristics, production information (date, location, fabrication parameters, batch number, etc.) and the like. The memory, chip or card may or may not be part of the onboard window controller, eg, in the wiring harness, pigtails, and/or connectors to the window controller. A window controller that controls a multi-zone tintable window, either on or as part of a window, is described herein. In U.S. Patent Application 13/049,756, entitled "MULTIPURPOSE CONTROLLER FOR MULTISTATE WINDOWS," filed March 16, 2011, and U.S. Patent Application, "SELF-CONTAINED EC IGU," filed November 24, 2015 Additional information that may be included in memory is set forth in 14/951,410, which is incorporated herein by reference for all purposes.

- 控制器設計1 - Controller Design 1

如上文所提及,根據第一設計,一窗控制器連接至其控制之多個電壓調整器。每一電壓調整器與著色區中之一者電通信。在一個實施例中,該等電壓調整器為機載的,亦即,為窗總成之部分,例如,在隔熱玻璃單元之二次密封中。該等電壓調整器可與控制器實體上分開,或為控制器之部分,不管該控制器是機載的還是與窗分開。窗控制器與每一電壓調整器電通信以能夠獨立地指示每一電壓調整器向其自己之著色區遞送電壓。每一電壓調整器向特定著色區中之兩個匯流條中之僅一者遞送電流。此設計涉及多個電壓調整器,每一著色區一個電壓調整器,且所有電壓調整器經由通信匯流排(未繪示)共同藉由單個窗控制器控制。 As mentioned above, according to the first design, a window controller is connected to a plurality of voltage regulators it controls. Each voltage regulator is in electrical communication with one of the shaded regions. In one embodiment, the voltage regulators are on-board, ie, part of the window assembly, eg, in the secondary sealing of the insulating glazing unit. The voltage regulators may be physically separate from the controller, or part of the controller, whether the controller is onboard or separate from the window. A window controller is in electrical communication with each voltage regulator to be able to independently instruct each voltage regulator to deliver a voltage to its own shaded region. Each voltage regulator delivers current to only one of the two bus bars in a particular colored region. This design involves multiple voltage regulators, one for each shading zone, and all voltage regulators are collectively controlled by a single window controller via a communication bus (not shown).

圖19為根據此第一設計的具有連接至五(5)個電壓調整器1945之窗控制器1940的控制系統之示意圖。每一電壓調整器1945電連接至窗1950之 對應著色區1952之匯流條中的一者且電連接至窗控制器1940。在此實例中,窗控制器1940指示每一電壓調整器1945獨立地向其自己之著色區1952遞送電壓。每一電壓調整器1945向其著色區1952上之兩個匯流條中之僅一者遞送電流。以此方式,每一區1952可相對於其他區1952獨立地著色。 19 is a schematic diagram of a control system with a window controller 1940 connected to five (5) voltage regulators 1945 according to this first design. Each voltage regulator 1945 is electrically connected to one of the bus bars of the corresponding shaded region 1952 of the window 1950 and to the window controller 1940 . In this example, the window controller 1940 instructs each voltage regulator 1945 to deliver voltage to its own shaded region 1952 independently. Each voltage regulator 1945 delivers current to only one of the two bus bars on its shaded region 1952 . In this way, each zone 1952 can be colored independently with respect to other zones 1952 .

此第一設計之另一結構特徵為該等電壓調整器中之每一者係針對或連接至該多區電致變色裝置之各別區中的匯流條中之僅一者。該等區中與電壓經調整之匯流條相反的匯流條全部自窗控制器接收相同電壓。若該等著色區中之一者需要以與其他區相反之方向驅動,則此提出挑戰,因為若施加至其他區之電壓與此類反轉後極性不一致,則兩個匯流條上之極性不可反轉。 Another structural feature of this first design is that each of the voltage regulators is directed to or connected to only one of the bus bars in respective regions of the multi-region electrochromic device. The bus bars in the zones that are opposite the voltage regulated bus bars all receive the same voltage from the window controller. This presents a challenge if one of the colored regions needs to be driven in the opposite direction to the other regions, because if the voltages applied to the other regions are not of the same polarity after such reversal, the polarities on the two bus bars cannot be Invert.

在此種設計中,每一電壓調整器為簡單設計,該設計具有用於按窗控制器指示施加電壓之邏輯(例如,儲存於記憶體上且被擷取來藉由處理器執行之指令)。局部窗控制器包括具有用於實施規則之指令的邏輯,該等指令包括:1)與較高級之窗控制器通信,2)在必要時減少電力,3)及判定將向個別著色區中之每一者施加之實際電壓。作為與較高級窗控制器通信之一實例,局部窗控制器可接收用於將個別區中之每一者置於各別著色狀態的指令。該窗控制器接著可解譯此資訊且決定如何藉由施加適當驅動電壓、保持時間、斜坡曲線、保持電壓等來驅動轉變而最好地達成此結果。在2012年4月17日提交且標題為「CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS」之美國專利申請案13/449,248中及在2012年4月17日提交且標題為「CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS」之美國專利申請案13/449,251 中闡述用於驅動光學可切換窗中之轉變的控制指令之詳情,該兩件申請案特此以引用方式整體併入。 In this design, each voltage regulator is a simple design with logic to apply voltage as directed by the window controller (eg, instructions stored on memory and retrieved for execution by the processor) . The local window controller includes logic with instructions for implementing rules including: 1) communicating with higher level window controllers, 2) reducing power if necessary, 3) determining which The actual voltage applied by each. As one example of communicating with a higher-level window controller, a local window controller may receive instructions for placing each of the individual regions into individual shaded states. The window controller can then interpret this information and decide how to best achieve this result by applying the appropriate drive voltages, hold times, ramp profiles, hold voltages, etc. to drive the transitions. In U.S. Patent Application 13/449,248, filed April 17, 2012, and entitled "CONTROLLER FOR OPTICALLY-SWITCHABLE WINDOWS" Patent Application 13/449,251 Details of the control commands used to drive transitions in optically switchable windows are set forth in , both applications are hereby incorporated by reference in their entirety.

- 控制器設計2 - Controller Design 2

在第二設計中,使用單獨之子控制器來控制著色區中之每一者。在此種設計中,該等子控制器自主窗控制器接收總體著色指令。舉例而言,主(上級)窗控制器可向子控制器發送具有著色指令之信號以驅動特定著色區轉變至新著色狀態。該子控制器包括記憶體,該記憶體包括用於驅動轉變之控制指令,該等控制指令包括判定驅動轉變所需之適當驅動電壓、保持時間、斜坡曲線等之指令。用於多區窗之主窗控制器與控制網路上之較高級控制實體通信,主窗控制器亦用於將來自電源之電力降至適於子控制器執行其功能之適當程度。 In a second design, a separate sub-controller is used to control each of the shaded regions. In this design, the sub-controllers receive overall shading instructions from the main window controller. For example, a master (upper level) window controller may send a signal with a shading command to a sub-controller to drive a particular shading region to transition to a new shading state. The sub-controller includes memory including control commands for drive transitions, including commands to determine appropriate drive voltages, hold times, ramp profiles, etc. required for drive transitions. The master window controller for the multi-zone window communicates with higher-level control entities on the control network, and the master window controller also serves to reduce power from the power source to an appropriate level for the sub-controllers to perform their functions.

在此種設計中,每一子控制器具有引至其負責之各別著色區之每一匯流條的引線。以此方式,可獨立地控制用於每一區之一對匯流條上的極性。若著色區中之一者需要以與其他區之極性相反的極性來驅動,則藉由此設計,可反轉該兩個匯流條上之極性。此為相較於第一設計之優點,因為每一區可獨立地著色或變清透。 In this design, each sub-controller has leads to each bus bar of the respective shaded area it is responsible for. In this way, the polarity on a pair of bus bars for one of each zone can be independently controlled. If one of the colored regions needs to be driven with a polarity opposite to that of the other regions, by this design, the polarity on the two bus bars can be reversed. This is an advantage over the first design because each zone can be colored or cleared independently.

圖20為根據此第二設計的連接至五個子控制器(SWC)2070之單個窗控制器的示意圖。每一子控制器2070具有引至對應著色區2062之匯流條的兩個引線。在此實例中,SWC 2070與連接至主窗控制器2080之一連串SWC 2070之末端處的一個SWC 2070串聯地電連接。在此實例中,窗控制器2080向子控制器2070發送具有著色指令之信號以驅動其相關聯之著色區2062的轉變。 20 is a schematic diagram of a single window controller connected to five sub-controllers (SWCs) 2070 according to this second design. Each sub-controller 2070 has two leads that lead to the bus bars of the corresponding shaded region 2062 . In this example, the SWC 2070 is electrically connected in series with one SWC 2070 at the end of a series of SWCs 2070 connected to the main window controller 2080 . In this example, the window controller 2080 sends a signal with a shading instruction to the sub-controller 2070 to drive the transition of its associated shading region 2062 .

D.光伏電力D. Photovoltaic power

在某些實施方案中,一可著色窗(例如,電致變色窗)包括光伏(PV)膜或其他光採集裝置。該光採集裝置採集能量,轉換太陽能以向窗控制器及/或其他窗裝置提供電力或供儲存於電池中。 In certain embodiments, a tintable window (eg, an electrochromic window) includes a photovoltaic (PV) film or other light harvesting device. The light harvesting device harvests energy, converts solar energy to provide power to window controllers and/or other window devices or for storage in batteries.

E.機載窗控制器E. Airborne window controller

在一些態樣中,一可著色窗具有在該窗上之窗控制器。在2015年11月24日提交之標題為為「SELF-CONTAINTED EC IGU」的美國專利申請案第14/951,410號中闡述機載窗控制器之實例的詳情,該申請案特此以引用方式整體併入。 In some aspects, a tintable window has a window controller on the window. Details of an example of an airborne window controller are set forth in US Patent Application Serial No. 14/951,410, entitled "SELF-CONTAINTED EC IGU," filed on November 24, 2015, which is hereby incorporated by reference in its entirety. enter.

F.無線供電F. Wireless power supply

根據一個態樣,可(例如)經由射頻、磁感應、雷射、微波能等來無線地對多區窗供電。關於無線供電窗之組件的詳情可見於在2017年9月21日提交之標題為為「WIRELESS POWERED ELECTROCHROMIC WINDOWS」的國際PCT申請案PCT/US17/52798中,該申請案特此以引用方式整體併入。 According to one aspect, the multi-zone window may be powered wirelessly, eg, via radio frequency, magnetic induction, laser, microwave energy, or the like. Details regarding components for wireless power windows can be found in International PCT Application PCT/US17/52798, filed September 21, 2017, entitled "WIRELESS POWERED ELECTROCHROMIC WINDOWS," which is hereby incorporated by reference in its entirety .

在一個態樣中,一多區可著色窗包括射頻(RF)天線,該射頻天線將RF能轉換成用於對該多區可著色窗中之一或多個著色區之轉變供電的電位。該RF天線可位於該多區窗之框架中或位於另一結構(例如,隔熱玻璃單元之間隔件)中。舉例而言,RF天線可位於具有多個窗片之隔熱玻璃單元之間隔件中,其中至少一個窗片包括多區電致變色裝置。RF天線自RF發射器接收RF信號。在一種情況中,RF發射器向多個RF天線提供RF信號。在標題為「WINDOW ANTENNAS」且在2015年11月24日提交之PCT申請案PCT/US15/62387中闡述關於天線之實例的詳情,該申請案特此以引用方式整體併入。 In one aspect, a multi-zone tintable window includes a radio frequency (RF) antenna that converts RF energy to a potential for powering the transition of one or more tinting zones in the multi-zone tintable window. The RF antenna may be located in the frame of the multi-zone window or in another structure (eg, a spacer between insulating glass units). For example, RF antennas may be located in spacers between insulating glass units having a plurality of windows, at least one of which includes a multi-zone electrochromic device. The RF antenna receives RF signals from the RF transmitter. In one case, an RF transmitter provides RF signals to multiple RF antennas. Details regarding examples of antennas are set forth in PCT application PCT/US15/62387, entitled "WINDOW ANTENNAS" and filed on November 24, 2015, which is hereby incorporated by reference in its entirety.

IV.用於控制可著色窗及/或其他建築物系統之功能的控制邏輯IV. Control Logic for Controlling the Functions of Tintable Windows and/or Other Building Systems

在某些實施方案中,用於判定窗之組(區)之著色決策的控制邏輯可類似於用於判定一窗中之多個著色區或一組窗中之個別窗之著色決策的控制邏輯來操作。亦即,用於多個窗之控制邏輯根據每一窗之位置及方向來判定該窗之著色狀態。用於一窗之多個區的控制邏輯將根據該窗之每一區之位置及方向來判定該區之著色狀態。用於判定多個窗之著色決策及將該等窗轉變至所判定之著色狀態的控制邏輯之實例可見於在2015年5月5日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之PCT申請案PCT/US15/29675中,該申請案特此以引用方式整體併入。在某些態樣中,如本文中所闡述,此控制邏輯之某些操作可適合於判定多個著色區之著色決策且根據該等著色決策對轉變供電。 In some implementations, the control logic used to determine shading decisions for groups (regions) of windows may be similar to the control logic used to determine shading decisions for multiple shading regions in a window or individual windows in a group of windows to operate. That is, the control logic for multiple windows determines the shaded state of each window based on the position and orientation of that window. The control logic for multiple regions of a window will determine the shaded state of each region of the window based on the location and orientation of that region. An example of control logic for determining shading decisions for multiple windows and transitioning those windows to the determined shading state can be found in the PCT application filed on May 5, 2015 and entitled "CONTROL METHOD FOR TINTABLE WINDOWS" In PCT/US15/29675, this application is hereby incorporated by reference in its entirety. In some aspects, as set forth herein, certain operations of this control logic may be adapted to determine shading decisions for multiple shading regions and power transitions according to those shading decisions.

在一些態樣中,控制邏輯可適合於解決特定著色區內及/或相鄰著色區之間的著色之視覺過渡。舉例而言,該控制邏輯可包括判定某些著色狀態之邏輯,該等著色狀態在不同區中之不同著色狀態之間產生強烈對比或在區與區之間產生顏色之擴散融合(例如,使用電阻區域技術)。如上文所討論,可使用相鄰著色區之間的電阻區域(而非實體分叉)來在相鄰區之間產生著色梯度。該著色梯度一般存在於電阻區域之寬度上,且因此視覺過渡愈緩和,電阻區域之寬度愈大。該控制邏輯可適合於考慮電阻區域中之著色梯度及/或可適合於沿著著色區之匯流條的長度施加梯度電壓以在著色區(或單片EC裝置膜)內產生著色梯度。在一個實例中,匯流條可漸縮以沿著長度施加梯度電壓且產生沿長度之著色梯度。在另一態樣中,控制邏輯可適合於控制具有多個著色區之窗以判定將跨越該多個區融合顏色之著色狀態。在一個態樣中,控制邏輯可適合於控制一連串相鄰區之著色狀 態,使得自需要為特別暗之區至需要為特別清透之區的轉變不會很突然。 In some aspects, control logic may be adapted to address visual transitions of shading within a particular shaded region and/or between adjacent shaded regions. For example, the control logic may include logic to determine certain shading states that produce strong contrasts between different shading states in different regions or that produce a diffuse blend of colors from region to region (eg, using Resistive Area Technology). As discussed above, resistive regions (rather than physical bifurcations) between adjacent tinted regions can be used to create tinting gradients between adjacent regions. The tinting gradient generally exists over the width of the resistive region, and thus the smoother the visual transition, the greater the width of the resistive region. The control logic may be adapted to account for tinting gradients in the resistive region and/or may be adapted to apply gradient voltages along the length of the bus bars of the tinting region to create a tinting gradient within the tinting region (or monolithic EC device film). In one example, the bus bars can be tapered to apply a gradient voltage along the length and create a color gradient along the length. In another aspect, the control logic may be adapted to control a window having multiple shaded regions to determine the shaded state in which colors will be fused across the multiple regions. In one aspect, the control logic may be adapted to control the shading state of a series of adjacent regions state, so that the transition from the area that needs to be particularly dark to the area that needs to be particularly clear will not be very abrupt.

控制邏輯之另一修改可涉及用於應用除了眩光控制、視野、自然照明、佔用者熱舒適性、建築物能量管理等常見考慮因素之外的與多區窗之額外特徵相關聯的考慮因素的單獨例程(例如,除了PCT申請案PCT/US15/29675之模組A-D之外的模組,該申請案闡述了如上文闡述之Intelligence®的態樣)。舉例而言,若光採集為動機,則可能必須要在控制邏輯上建置額外模組來解決該額外考慮因素。在一些情況中,用於解決著色區之該額外特徵或功能的功能性在用於常見考慮因素之處理管線中所處之次序可能為無關緊要的。舉例而言,Intelligence®模組未必需要在一種情況中按以下次序操作:A→B→C→D。將理解,可能的情況係,在其他情況中,該等模組之執行次序並不重要。 Another modification of the control logic may involve the application of considerations associated with additional features of multi-zone windows in addition to common considerations such as glare control, field of view, natural lighting, occupant thermal comfort, building energy management, etc. Individual routines (eg, modules other than modules A-D of PCT application PCT/US15/29675, which sets forth aspects of Intelligence® as set forth above). For example, if light harvesting is the motivation, additional modules may have to be built on the control logic to address this additional consideration. In some cases, the order in which the functionality to address the additional features or functionality of the shading region is placed in the processing pipeline for common considerations may not matter. For example, Intelligence® modules do not necessarily need to operate in the following order in one case: A→B→C→D. It will be appreciated that it may be the case that, in other cases, the order of execution of the modules is not critical.

控制邏輯亦可經調整以考慮跨多個區之高度局部化之眩光控制。舉例而言,此情況可藉由在PCT申請案PCT/US15/29675中更詳細闡述的對控制邏輯之模組A的修改來解決。 The control logic can also be adjusted to account for highly localized glare control across multiple zones. For example, this situation can be resolved by a modification of module A of the control logic as described in more detail in PCT application PCT/US15/29675.

在上文闡述了可對一或多個多區可著色窗之多個著色區之著色轉變供電的窗控制器之不同設計。在一些態樣中,一著色區可具有兩個著色狀態:第一融合著色狀態及第二變暗著色狀態。在其他態樣中,一著色區可具有四個著色狀態。在其他態樣中,一著色區可具有四個以上著色狀態。 Different designs of window controllers that can power tint transitions of multiple tinting zones of one or more multi-zone tintable windows are described above. In some aspects, a shaded region may have two shaded states: a first fused shaded state and a second darkened shaded state. In other aspects, a shaded region may have four shaded states. In other aspects, a colored region may have more than four colored states.

A.用於多個著色區/窗之著色控制邏輯的實例A. Example of shading control logic for multiple shading regions/windows

圖21包括繪示根據實施例之方法2100的流程圖,該流程圖示出了用於進行多個著色區/窗之著色決策的操作。此控制邏輯可用於判定多個窗及/或一或多個可著色窗中之多個著色區或其組合的著色決策。用於此控制邏輯之指令儲存於記憶體中且可藉由(例如)窗控制器(諸如在本文中特 別係相對於圖19圖20示出及闡述之窗控制器)來擷取及執行。該控制邏輯包括用於如該流程圖中所示進行所示之著色決策以判定多個著色區/窗之著色等級的兩個指令。該控制邏輯亦包括用於獨立地控制該等著色區/窗以使其轉變至所判定之著色等級的指令。在某些態樣中,此控制邏輯之操作可適合於判定著色決策以實施本文中闡述之著色組態。 FIG. 21 includes a flowchart illustrating a method 2100 illustrating operations for making shading decisions for multiple shading regions/windows, according to an embodiment. This control logic may be used to determine shading decisions for multiple windows and/or multiple shaded regions in one or more shadeable windows, or a combination thereof. The instructions for this control logic are stored in memory and can be retrieved and executed by, for example, a window controller such as the one shown and described herein in particular with respect to FIGS. 19 and 20 . The control logic includes two instructions for making the shading decisions shown to determine the shading levels of the plurality of shading regions/windows as shown in the flowchart. The control logic also includes instructions for independently controlling the shading regions/windows to transition to the determined shading level. In some aspects, the operation of this control logic may be adapted to determine shading decisions to implement the shading configurations set forth herein.

在操作2110中,計算在窗之緯度及經度座標處及在特定時刻ti時之日期及當天時間時太陽之位置。該等緯度及經度座標可為來自組態檔案之輸入。該日期及當天時間可基於藉由計時器提供之當前時間。 In operation 2110 , the position of the sun at the latitude and longitude coordinates of the window and the date and time of day at a particular time ti is calculated. These latitude and longitude coordinates may be input from a configuration file. The date and time of day may be based on the current time provided by the timer.

在操作2120中,計算在操作2110中使用之特定時刻時穿過該等區/窗中之每一者透射入房間中之直射太陽光的量。基於在操作2110中計算出之太陽位置及每一區/窗之組態來計算該太陽光量(例如,穿透深度)。區/窗組態包括多種資訊,諸如窗之位置、窗之尺寸、窗之定向(亦即,面向方向)及任何外部遮擋之詳情。該區/窗組態資訊為來自與該區/窗相關聯之組態檔案的輸入。 In operation 2120 , the amount of direct sunlight transmitted into the room through each of the zones/windows at the particular moment used in operation 2110 is calculated. The amount of sunlight (eg, penetration depth) is calculated based on the sun position calculated in operation 2110 and the configuration of each zone/window. The zone/window configuration includes various information such as the location of the window, the size of the window, the orientation of the window (ie, the direction it faces), and details of any external occlusions. The area/window configuration information is input from the configuration file associated with the area/window.

在操作2130中,判定房間中之輻照度等級。在一些情況中,基於晴空條件來計算輻照度等級以判定晴空輻照度。基於來自組態檔案之窗定向且基於建築物之緯度及經度來判定晴空輻照度等級。此等計算亦可基於在操作2110中使用之特定時刻時的當天時間及日期。公眾可獲得之軟體(諸如RADIANCE程式,其為開放原始碼程式)可提供用於判定晴空輻照度之計算。另外,輻照度等級可基於一或多個感測器讀數。舉例而言,房間中之光感測器可取判定房間中之實際輻照度的定期讀數。 In operation 2130 , the irradiance level in the room is determined. In some cases, irradiance levels are calculated based on clear sky conditions to determine clear sky irradiance. The clear sky irradiance level is determined based on the window orientation from the configuration file and based on the latitude and longitude of the building. These calculations can also be based on the time and date of the day at the particular time used in operation 2110 . Publicly available software, such as the RADIANCE program, which is an open source program, can provide calculations for determining clear air irradiance. Additionally, the irradiance level may be based on one or more sensor readings. For example, a light sensor in a room may take periodic readings that determine the actual irradiance in the room.

在操作2140中,控制邏輯判定房間是否被佔用。控制邏輯可基於一或多種類型之資訊來作出其決定,該等資訊包括(例如)排程資訊、佔用感 測器資料、資產追蹤資訊、經由遙控器或牆壁單元(諸如圖23中所示)來自使用者之啟動資料等。舉例而言,若排程資訊指示佔用者很可能在房間中,諸如在典型工作時間期間,則控制邏輯可判定房間被佔用。作為另一實例,若排程資訊指示為假期/週末,則控制邏輯可判定房間未被佔用。作為另一實例,控制邏輯可基於來自佔用感測器之讀數來判定房間被佔用。在另一實例中,若佔用者已在牆壁單元或遙控器之手動控制面板處輸入指示佔用之資訊,則控制邏輯可判定房間被佔用。在另一實例中,控制邏輯可基於自資產追蹤裝置(諸如RFID標籤)接收到之資訊來判定房間被佔用(佔用)。在此實例中,不追蹤佔用者自身。經由與佔用者之資產上的裝置或與佔用感測器一起工作之如低能耗藍牙(BLE)等系統將佔用感測器包括在房間中,控制邏輯可判定房間是否被佔用。 In operation 2140 , the control logic determines whether the room is occupied. The control logic may base its decisions on one or more types of information including, for example, scheduling information, occupancy sensor data, asset tracking information, via remote controls or wall units (such as shown in Figure 23 ) Activation data from users, etc. For example, control logic may determine that the room is occupied if the scheduling information indicates that the occupant is likely to be in the room, such as during typical business hours. As another example, if the schedule information indicates a holiday/weekend, the control logic may determine that the room is not occupied. As another example, the control logic may determine that a room is occupied based on readings from an occupancy sensor. In another example, the control logic may determine that the room is occupied if the occupant has entered information indicating occupancy at the manual control panel of the wall unit or remote control. In another example, the control logic may determine that a room is occupied (occupied) based on information received from an asset tracking device, such as an RFID tag. In this example, the occupants themselves are not tracked. Control logic may determine whether the room is occupied via the inclusion of an occupancy sensor in the room with a device on the occupant's property or a system such as Bluetooth Low Energy (BLE) working with the occupancy sensor.

若在操作2140中判定房間未被佔用,則控制邏輯為每一區/窗選擇對加熱/冷卻建築物之能量控制排定優先次序的著色等級(操作2150)。在一些情況中,在選擇著色等級時可考慮其他因素,諸如安全性或其他安全問題。使用在操作2140中判定之著色等級使區/窗轉變。控制邏輯接著返回至操作211021202130,此通常係週期性地進行。 If it is determined in operation 2140 that the room is not occupied, the control logic selects, for each zone/window, a shading level that prioritizes energy control to heat/cool the building (operation 2150 ). In some cases, other factors, such as safety or other safety concerns, may be considered when selecting a tint level. The region/window is transformed using the shading level determined in operation 2140 . Control logic then returns to operations 2110 , 2120 , and 2130 , which are typically performed periodically.

若在操作2140中判定房間被佔用,則控制邏輯判定使用者是否已選擇模式(操作2160)或是否基於佔用分佈圖為特定佔用者選擇模式。舉例而言,使用者(例如,佔用者或建築物運營者)可在遙控器或牆壁單元(諸如圖23中所示)上之使用者介面處選擇模式。在一些情況中,GUI可具有被設計用於選擇模式之按鈕(例如,圖符),例如,採光圖符。模式之一些實例包括:作為使用者界定之模式的「採光模式」、「均一模式」、「健康模式」、「緊急模式」。舉例而言,使用者可界定具有特定著色組態之「使用 者1-模式1」。 If it is determined in operation 2140 that the room is occupied, control logic determines whether the user has selected a mode (operation 2160 ) or whether a mode has been selected for a particular occupant based on the occupancy profile. For example, a user (eg, an occupant or building operator) may select a mode at a user interface on a remote control or wall unit (such as shown in Figure 23 ). In some cases, the GUI may have buttons (eg, icons) designed to select modes, eg, daylight icons. Some examples of modes include: "Lighting Mode", "Uniform Mode", "Health Mode", "Emergency Mode" as user-defined modes. For example, a user may define "User 1 - Mode 1" with a specific coloring configuration.

若在操作2160中判定使用者已選擇了模式,則控制邏輯基於該模式為每一區/窗選擇一著色等級(操作2170)。舉例而言,若已開啟「採光模式」,則該著色等級可基於按如下優先次序之以下因素來判定著色等級:避免眩光及允許自然光穿過採光區域進入房間中。使用在操作2160中選擇之著色等級使區/窗轉變。控制邏輯接著返回至操作211021202130,此通常係週期性地進行。 If it is determined in operation 2160 that the user has selected a mode, control logic selects a shading level for each region/window based on the mode (operation 2170 ). For example, if "daylighting mode" is turned on, the tinting level may be determined based on the following factors in order of priority: avoiding glare and allowing natural light to pass through the daylighting area into the room. The region/window is transformed using the shading level selected in operation 2160 . Control logic then returns to operations 2110 , 2120 , and 2130 , which are typically performed periodically.

在一些情況中,穿過每一區/窗之太陽光的三維投射經計算為透射至房間中之直射太陽光的量及判定具有該區/窗之房間中是否存在眩光條件。在下文中相對於圖24A圖24B圖24C來討論對光投射及基於光投射判定眩光條件之討論。 In some cases, the three-dimensional projection of sunlight through each zone/window is calculated as the amount of direct sunlight transmitted into the room and a determination of whether a glare condition exists in the room with that zone/window. A discussion of light projection and determination of glare conditions based on light projection is discussed below with respect to Figures 24A , 24B , and 24C .

若在操作2160中判定使用者尚未選擇模式,則控制邏輯基於按以下優先次序之因素為每一區/窗選擇一著色等級:1)眩光控制、2)能量控制及3)採光(操作2180)。在一些情況中,亦可將其他次要因素考慮進著色等級之選擇中,該等次要因素包括以下一或多者:用於防止快速轉變之時間延遲、演色性、著色梯度、基於歷史資料之回饋、佔用者對外部環境之觀看及光採集。舉例而言,當佔用者處於其在房間中通常所處之位置時,佔用者可能希望看到窗外,例如,以查看天氣狀況。若在進行著色決策時將佔用者對外部環境之觀看考慮在內,則控制邏輯可判定雖然特定著色區/窗之變暗著色狀態將避免眩光,但將使用較低著色等級以提供對外部環境之更清楚觀看。 If it is determined in operation 2160 that the user has not selected a mode, the control logic selects a tint level for each zone/window based on factors in the following order of priority: 1) glare control, 2) energy control, and 3) daylighting (operation 2180 ) . In some cases, other secondary factors may also be considered in the selection of shading levels, including one or more of the following: time delay to prevent rapid transitions, color rendering, shading gradients, based on historical data feedback, occupant viewing of the external environment and light harvesting. For example, when an occupant is in his usual position in a room, the occupant may wish to look out the window, eg, to check weather conditions. If the occupant's view of the external environment is taken into account when making shading decisions, the control logic may decide that although the darkened shading state of a particular shading area/window will avoid glare, a lower shading level will be used to provide better visibility to the external environment to watch more clearly.

在一個實施例中,計算穿過每一區/窗之太陽光的三維投射以判定透射至房間中之直射太陽光的量及判定具有該區/窗之房間中是否存在眩光 條件。在下文中相對於圖24A圖24B圖24C來討論對光投射及基於光投射判定眩光條件之討論。 In one embodiment, the three-dimensional projection of sunlight through each zone/window is calculated to determine the amount of direct sunlight transmitted into the room and to determine if glare conditions exist in the room with that zone/window. A discussion of light projection and determination of glare conditions based on light projection is discussed below with respect to Figures 24A , 24B , and 24C .

在操作2180中,為了判定適於在操作2120中判定之眩光量的著色等級,控制邏輯可使用佔用查找表來基於與該區/窗相關聯之空間類型、在操作2120中計算出之眩光量及該區/窗之接受角度來為該區/窗選擇適當之著色等級。空間類型及佔用查找表被提供為來自特定窗之組態檔案的輸入。佔用查找表之實例具有用於眩光量與空間類型之不同組合的不同著色等級。舉例而言,佔用查找表可具有八(8)個著色等級,包括0(最亮)、5、10、15、20、25、30及35(最亮)。最亮著色等級0對應於SHGC值0.80,著色等級5對應於SHGC值0.70,著色等級10對應於SHGC值0.60,著色等級15對應於SHGC值0.50,著色等級20對應於SHGC值0.40,著色等級25對應於SHGC值0.30,著色等級30對應於SHGC值0.20,且著色等級35(最暗)對應於SHGC值0.10。在此實例中,佔用查找表具有三個空間類型:桌子1、桌子2及門廳,及六個眩光量(例如,太陽光穿過該區/窗進入房間中之穿透深度)。用於接近於窗之桌子1的著色等級高於用於遠離窗之桌子2的著色等級以在桌子較接近於窗時防止眩光。此類佔用查找表之所示實例可見於2015年5月5日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之PCT/US15/29675中。 In operation 2180 , to determine a tint level suitable for the amount of glare determined in operation 2120 , the control logic may use an occupancy lookup table to determine the amount of glare calculated in operation 2120 based on the type of space associated with the zone/window and the acceptance angle of the area/window to select the appropriate shading level for the area/window. A space type and occupancy lookup table is provided as input from a window-specific configuration file. Examples of occupancy lookup tables have different tinting levels for different combinations of glare amount and space type. For example, the occupancy lookup table may have eight (8) tinting levels, including 0 (brightest), 5, 10, 15, 20, 25, 30, and 35 (brightest). The brightest shading level 0 corresponds to an SHGC value of 0.80, shading level 5 corresponds to an SHGC value of 0.70, shading level 10 corresponds to an SHGC value of 0.60, shading level 15 corresponds to an SHGC value of 0.50, shading level 20 corresponds to an SHGC value of 0.40, and shading level 25 corresponds to an SHGC value of 0.50. Corresponding to an SHGC value of 0.30, shading level 30 corresponds to an SHGC value of 0.20, and shading level 35 (darkest) corresponds to an SHGC value of 0.10. In this example, the occupancy lookup table has three space types: table 1, table 2, and hallway, and six glare amounts (eg, the penetration depth of sunlight through the area/window into the room). The tinting level for the table 1 close to the window is higher than the tinting level for the table 2 further away from the window to prevent glare when the table is closer to the window. An illustrated example of such an occupancy lookup table can be found in PCT/US15/29675, filed May 5, 2015, and entitled "CONTROL METHOD FOR TINTABLE WINDOWS."

在一個實施例中,控制邏輯可基於在操作2130中判定之輻照度等級來減小基於在操作2120中判定之眩光量判定的著色等級。舉例而言,控制邏輯可接收輻照度之感測器讀數,該等讀數指示多雲條件存在。在此種情況中,控制邏輯可減小被判定為與眩光條件相關聯之區/窗的著色等級。 In one embodiment, the control logic may reduce the tint level determined based on the amount of glare determined in operation 2120 based on the irradiance level determined in operation 2130 . For example, the control logic may receive sensor readings of irradiance that indicate the presence of cloudy conditions. In such a case, the control logic may reduce the tint level of the area/window determined to be associated with the glare condition.

在操作2180中,控制邏輯接著基於第二優先次序,亦即,建築物中之能量控制,來判定是否改變適合於該眩光量之所選著色等級。舉例而言,若外部溫度極高,使得冷卻負荷較高,則控制邏輯可增加一或多個區/窗中之著色等級以減少冷卻負荷。作為另一實例,若外部溫度極冷,則控制邏輯可減少一或多個區/窗中之著色等級同時在原本將會在佔用區域上造成眩光之區/窗中維持變暗著色狀態。控制邏輯接著基於第三優先次序,亦即,採光,來判定是否改變著色等級,同時考慮到建築物中之能量控制且在原本將會在佔用區域上造成眩光之區/窗中維持變暗著色狀態。使用在操作2180中判定之著色等級使區/窗轉變。控制邏輯接著返回至操作211021202130,此通常係週期性地進行。 In operation 2180 , the control logic then determines whether to change the selected tint level appropriate for the amount of glare based on the second priority, ie, energy control in the building. For example, if the outside temperature is so high that the cooling load is high, the control logic may increase the tint level in one or more zones/windows to reduce the cooling load. As another example, if the outside temperature is extremely cold, the control logic may reduce the tint level in one or more areas/windows while maintaining a darkened tint state in areas/windows that would otherwise cause glare on the occupied area. The control logic then decides whether to change the tinting level based on the third priority, daylighting, taking into account energy control in the building and maintaining darkened tinting in areas/windows that would otherwise cause glare on the occupied area state. The region/window is transformed using the shading level determined in operation 2180 . Control logic then returns to operations 2110 , 2120 , and 2130 , which are typically performed periodically.

B.用於改良佔用者健康狀況之因素B. Factors used to improve the health of occupants

根據一些態樣,控制邏輯被設計成控制可著色窗之著色及其他建築物系統之功能以藉由為特定佔用者及相關聯空間維持視覺舒適性、熱舒適性、聲舒適性、空氣品質及其他舒適性因素來改良佔用者之健康狀況。舉例而言,所討論之控制邏輯可藉由避免佔用者之位置或可能位置上的眩光、維持與佔用者之視覺舒適性相關聯的亮度級及色溫、藉由調整自然照明及/或調整窗之著色及房間中之相關聯光顏色來最小化房間中之對比率來維持視覺舒適性。在下文討論用於避免眩光之其他技術。另外地或另選地,控制邏輯可控制著色狀態之間轉變之速率。此外,某些著色組態可控制處於不同著色狀態之相鄰著色區之間的著色梯度及/或特定著色內之著色梯度。在上文討論了用於控制相鄰區之間及特定區內之著色梯度的一些組態。在上文亦討論了針對避免佔用者之位置或可能位置上之眩光、增加房間中之自然照明及/或窗之顏色及房間中之相關聯光顏色的一些組態。 According to some aspects, the control logic is designed to control the tinting of tinting windows and the function of other building systems by maintaining visual comfort, thermal comfort, acoustic comfort, air quality, and Other comfort factors to improve the health of the occupant. For example, the control logic in question can be achieved by avoiding glare at the occupant's location or potential location, maintaining brightness levels and color temperature associated with the occupant's visual comfort, by adjusting natural lighting and/or adjusting windows The tint of the room and the associated light color in the room are used to minimize the contrast ratio in the room to maintain visual comfort. Other techniques for avoiding glare are discussed below. Additionally or alternatively, control logic may control the rate of transitions between shaded states. In addition, certain shading configurations may control shading gradients between adjacent shading regions in different shading states and/or within a particular tint. Some configurations for controlling tint gradients between adjacent regions and within specific regions are discussed above. Some configurations for avoiding glare at the location or potential location of the occupant, increasing natural lighting in the room and/or the color of the windows and associated light color in the room are also discussed above.

1.使用光之被動或主動操縱的眩光避免1. Use passive or active manipulation of light to avoid glare

在某些實施方案中,一多區窗包括用於對穿過窗之光進行被動或主動操縱以確保在佔用區域上無眩光及控制熱負荷同時允許持續採光進入房間中的一或多種技術。此等技術可與控制該多區窗之著色一起起作用。 In certain embodiments, a multi-zone window includes one or more techniques for passively or actively manipulating light passing through the window to ensure glare-free and control thermal loads on the occupied area while allowing continuous daylighting into the room. These techniques can work in conjunction with controlling the shading of the multi-region window.

在一個態樣中,該窗可具有對進入房間中之光之方向的主動或被動控制。此類技術之一些實例包括微型遮蔽件、六邊形格子、光管、IR鏡或IR反射器、吸收IR或反射IR之膜。在一個實例中,窗被設計成確保光在進入房間中時藉由使用微型遮蔽件或六邊形格子或薄膜塗層來引導成平行的。此等技術可用於允許自然光進入建築物中同時避免眩光、控制熱量及允許對光操縱、提供使用自然採光之有利演色性。在一個實例中,呈IGU形式之多區窗在兩個窗片之間的區域中具有光管。該等光管係在該等窗片之著色區附近的區域中。兩個著色區為了持續採光而均處於清透狀態以傳遞入射外表面之太陽光。 In one aspect, the window may have active or passive control of the direction of light entering the room. Some examples of such technologies include micro-masks, hexagonal lattices, light pipes, IR mirrors or IR reflectors, films that absorb or reflect IR. In one example, the windows are designed to ensure that light is directed parallel as it enters the room by using micro-screens or hexagonal lattices or thin film coatings. These techniques can be used to allow natural light into buildings while avoiding glare, controlling heat and allowing light manipulation, providing favorable color rendering using natural daylight. In one example, a multi-zone window in the form of an IGU has a light pipe in the area between the two windows. The light pipes are in areas adjacent to the tinted areas of the windows. Both shaded areas are in a clear state for continuous lighting to transmit sunlight incident on the outer surface.

在另一態樣中,呈IGU形式之多區窗在該IGU之兩個窗片之間的區域中包括一或多個IR鏡或IR反射器。在一個實例中,該等鏡/反射器位於與可保持於清透狀態之一或多個著色區對齊之區域中,以在太陽光在該區域處入射於外表面時允許持續採光進入房間中。 In another aspect, a multi-zone window in the form of an IGU includes one or more IR mirrors or IR reflectors in the region between the two windows of the IGU. In one example, the mirrors/reflectors are located in an area that aligns with one or more tinted areas that can remain in a clear state to allow continuous daylighting into the room when sunlight is incident on the exterior surfaces at that area .

在另一態樣中,具有電致變色裝置之多區窗包括吸收IR或反射IR之膜以控制進入建築物中之熱且具有對進入房間中之光之方向的主動或被動控制。 In another aspect, a multi-zone window with an electrochromic device includes an IR absorbing or reflecting IR film to control heat entering a building and have active or passive control of the direction of light entering a room.

- 微型遮蔽件 -Micro shields

在具有微型遮蔽件之實施方案中,該等微型遮蔽件或該窗可經鉸接以調整進入房間中之光的方向。舉例而言,該等微型遮蔽件可經鉸接以對 其定向而引導光自天花板彈開及/或保持平行。在一個實例中,多區窗為圓形的且可(至少)在其安裝於其中之牆壁之平面中旋轉,以便在太陽位置及方位角改變時採集光,例如,以在太陽位置改變時在相同方向上引導光。該圓形窗可另外具有可控地鉸接之微型遮蔽件以改變其定向而確保整天之恰當無眩光採光。在標題為「MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES」且在2015年5月15日提交之美國專利申請案第14/443,353號中闡述微型遮蔽件及MEMS裝置之一些詳情,該申請案特此以引用方式整體併入。 In implementations with micro-screens, the micro-screens or the window can be hinged to adjust the direction of light entering the room. For example, the micro-shrouds can be hinged to It is oriented to direct the light to bounce off the ceiling and/or remain parallel. In one example, the multi-zone window is circular and can be rotated (at least) in the plane of the wall in which it is mounted to collect light as the sun's position and azimuth change, eg, to Direct the light in the same direction. The circular window may additionally have controllably hinged micro shades to vary its orientation to ensure proper glare-free lighting throughout the day. Some details of miniature shields and MEMS devices are set forth in US Patent Application Serial No. 14/443,353, entitled "MULTI-PANE WINDOWS INCLUDING ELECTROCHROMIC DEVICES AND ELECTROMECHANICAL SYSTEMS DEVICES," filed on May 15, 2015, which application It is hereby incorporated by reference in its entirety.

具有微型遮蔽件之多區窗將通常安裝於無微型遮蔽件之可著色窗/區上方,且安裝於佔用者之高度以上,以幫助確保佔用者身上決不會有任何眩光。若該窗具有入射光之主動或被動瞄準,則可調整微型遮蔽件之角度以修改該角度來確保即便其放置於佔用者之高度以下亦不會有眩光。 Multi-zone windows with micro shades will typically be installed above tintable windows/zones without micro shades and above the height of the occupant to help ensure that there is never any glare on the occupant. If the window has active or passive targeting of the incident light, the angle of the micro-shield can be adjusted to modify the angle to ensure that there is no glare even if it is placed below the height of the occupant.

在一些情況中,可基於來自房間中之攝影機或感測器(諸如佔用感測器)之輸入來控制具有用於光之被動或主動操縱之技術的多區窗。當與房間中之攝影機或感測器耦接時,此組態可使用主動瞄準來在希望時最佳地加熱房間。另外,與內部主動或被動反射表面耦接,該系統可採集光且將其引導至建築物之其他區域。舉例而言,可使用光管將光傳送至其他區域或僅藉由在牆壁中開孔以允許光較深地射入建築物中來將光引導至其他區域。 In some cases, multi-zone windows with techniques for passive or active manipulation of light can be controlled based on input from cameras or sensors in the room, such as occupancy sensors. When coupled with cameras or sensors in the room, this configuration can use active aiming to optimally heat the room when desired. Additionally, coupled with internal active or passive reflective surfaces, the system can collect and direct light to other areas of the building. For example, light pipes can be used to transmit light to other areas or directed to other areas simply by opening holes in the walls to allow the light to penetrate deeper into the building.

2.演色性及經修改之色溫2. Color rendering and modified color temperature

可著色窗之著色可改變透射穿過可著色窗之光的量及透射至房間中之內部光的波長光譜及相關聯顏色。本文中闡述之一些著色組態具有提供 入射光之偏好光譜選擇的技術。此等技術可增強照明以平衡室內顯現之顏色與適當波長中之自然光的量以改良視覺舒適性、晝夜節律調整及相關聯之生理反應。舉例而言,可著色窗可包括濾光層,該濾光層控制自然日光透射穿過窗。此等技術可改良進入房間中之入射日光的顏色及光譜及佔用者之舒適性、視覺感知、心情及健康。一些技術可改變房間中之光的CCT(相關色溫)及CRI(演色性指數)以使入射光顏色較接近於自然光。 The tinting of the tintable window can change the amount of light transmitted through the tintable window and the wavelength spectrum and associated color of the interior light transmitted into the room. Some of the shading configurations described in this article have the ability to provide A technique for the selection of the preferred spectrum of incident light. These techniques can enhance lighting to balance the color appearing in the room with the amount of natural light in appropriate wavelengths to improve visual comfort, circadian rhythm adjustment, and associated physiological responses. For example, a tintable window may include a filter layer that controls the transmission of natural sunlight through the window. These techniques can improve the color and spectrum of incident sunlight entering a room and occupant comfort, visual perception, mood and health. Some techniques can alter the CCT (Correlated Color Temperature) and CRI (Color Rendering Index) of the light in the room to make the incident light color closer to natural light.

一種著色組態提供自然照明與經過濾之光。此等組態亦可使用人工照明來增強及/或調整CCT及/或CRI。其他方法僅提供經過濾之光及人工照明來增強及/或調整CCT及/或CRI。 A tinted configuration provides natural lighting and filtered light. These configurations may also use artificial lighting to enhance and/or adjust CCT and/or CRI. Other methods provide only filtered light and artificial illumination to enhance and/or adjust CCT and/or CRI.

- 使用顏色平衡為佔用者實現較佳照明 - Use color balance to achieve optimal lighting for occupants

如上文所概述,所闡述之方法需要在某些區域中著色而不在其他區域中著色,例如,一多區可著色窗之某些區或一組可著色窗中之某些窗,以為佔用者減少眩光同時允許環境光進入,亦即,所謂之「採光」,採光使用自然光來滿足照明要求及顏色偏移(顏色平衡),例如,來自賦予佔用者之空間的、可著色窗之不想要的藍色。一般而言,相較於來自(例如)白熾、發光二極體(LED)或螢光照明之人工照明,佔用者更喜歡自然太陽光。然而,隨著LED照明技術之進步,更大範圍之照明可能性、波長、頻率、顏色、強度或流明範圍、及類似者為可能的。特定實施例使用LED照明技術來偏移佔用者之空間中歸因於來自可著色窗之透射光而導致的藍色或其他不想要之顏色。在某些實施例中,對可著色窗之控制包括對LED照明之控制以校正此感知到及顯現之顏色而產生佔用者更喜歡之環境照明條件。此等方法可改良進入房間中之入射日光的顏色及光譜及佔用者之舒適性、視覺感知、心情及健康。一些方法改變房間中之光的CCT(相關色溫) 及CRI(演色性指數)以使入射光顏色較接近於自然光。 As outlined above, the method set forth requires tinting in some areas and not others, eg, some areas of a multi-zone tintable window or some windows in a group of tintable windows, for occupants Reduces glare while allowing ambient light in, so-called "daylighting", which uses natural light to meet lighting requirements and color shifts (color balance), e.g., unwanted from tinted windows from space given to occupants blue. Generally, occupants prefer natural sunlight to artificial lighting from, for example, incandescent, light emitting diode (LED), or fluorescent lighting. However, as LED lighting technology advances, a wider range of lighting possibilities, wavelengths, frequencies, colors, intensities or lumen ranges, and the like, are possible. Certain embodiments use LED lighting technology to offset blue or other unwanted colors in the occupant's space due to transmitted light from tintable windows. In certain embodiments, control of the tintable window includes control of LED lighting to correct for this perceived and displayed color to produce ambient lighting conditions that are preferred by the occupant. These methods can improve the color and spectrum of incident sunlight entering a room and the comfort, visual perception, mood and health of the occupant. Some ways to change the CCT (Correlated Color Temperature) of the light in the room and CRI (color rendering index) to make the incident light color closer to natural light.

在一些實施例中,使用LED照明來增強來自自然光源之採光,例如,在進入房間中之自然光的量、角度或其他因素使自然照明不足以偏移來自穿過可著色窗的經過濾之光的顏色時。舉例而言,電致變色窗可改變進入房間之自然光的光譜頻寬、顏色及量。藉由提供對入射光之較佳光譜選擇,吾人可提供增強照明以平衡內部顯現之顏色與在適當頻率中之所需自然光的量以確保視覺舒適性及(例如)晝夜節律調整及改良之生理反應。 In some embodiments, LED lighting is used to enhance daylighting from natural light sources, eg, where the amount, angle, or other factors of natural light entering the room are such that the natural lighting is insufficient to offset filtered light from passing through tintable windows color time. For example, electrochromic windows can change the spectral bandwidth, color, and amount of natural light entering a room. By providing a better spectral selection of incident light, we can provide enhanced lighting to balance the color of the interior appearance with the required amount of natural light in the appropriate frequency to ensure visual comfort and, for example, circadian rhythm adjustment and improved physiology reaction.

在某些實施例中,將LED照明用作自然光之替代以便達成採光;亦即,當僅穿過已著色窗之經過濾之光可用時,調整LED照明以補償藉由可著色窗賦予的不想要之顏色。舉例而言,情況可能係,某些佔用者需要在著色方面均一之窗立面,亦即,多區窗,或者自美學觀點來看,使某些窗著色而不使其他窗著色係非所要的。在一個實施例中,對來自均一地著色之一窗或一組窗的經過濾之光(亦即,不使用某些窗或區來允許採光進入以偏移顏色)的顏色及光特性進行量測或基於可著色窗之已知過濾特性來進行計算。基於所獲得之值,使用LED照明來偏移不想要之顏色或其他光特性以便提高佔用者舒適性。一些方法改變房間中之光的CCT(相關色溫)及CRI(演色性指數)以使環境光顏色較接近於自然光之顏色。 In some embodiments, LED lighting is used as a replacement for natural light in order to achieve daylighting; that is, when only filtered light through tinted windows is available, LED lighting is adjusted to compensate for the unwanted effects imparted by tinted windows Want the color. For example, it may be the case that certain occupants require window facades that are uniform in tinting, i.e., multi-zone windows, or that tinting some windows and not others is undesirable from an aesthetic point of view of. In one embodiment, the color and light properties of filtered light from a window or group of windows that are uniformly colored (ie, certain windows or areas are not used to allow daylight in to shift color) are quantified measured or calculated based on the known filtering properties of the shadeable window. Based on the values obtained, LED lighting is used to shift unwanted colors or other light characteristics in order to improve occupant comfort. Some methods alter the CCT (Correlated Color Temperature) and CRI (Color Rendering Index) of the light in the room so that the color of the ambient light is closer to that of natural light.

在此等實施例中,經由預測演算法對入射光(具有或不具有自然光)模型化或藉由室內感測器(例如,在牆壁上,例如,在諸如相對於圖23所闡述之牆壁單元中,或在允許光進入該空間中的可著色窗中之一或多者中)來直接量測入射光(具有或不具有自然光)。在一個實例中,在可著色窗處於較少著色(較少吸收)狀態時,使用LED照明來維持較高色溫,且在可著色窗處於較多著色(較多吸收)狀態時,藉由LED照明來賦予較低色溫(例 如,較偏黃色)以便在該空間中維持較接近於自然照明之CRI。在下文在本說明書之「晝夜節律調整」及「健康模式」小節中闡述此等實施例之其他態樣。 In these embodiments, incident light (with or without natural light) is modeled via predictive algorithms or by indoor sensors (eg, on a wall, eg, in a wall unit such as that described with respect to FIG. 23 ). , or in one or more of the tintable windows that allow light into the space) to directly measure incident light (with or without natural light). In one example, LED lighting is used to maintain a higher color temperature when the tintable window is in a less tinted (less absorbing) state, and by LEDs when the tintable window is in a more tinted (more absorbing) state Lighting to impart a lower color temperature (eg, more yellowish) in order to maintain a CRI closer to natural lighting in the space. Other aspects of these embodiments are described below in the "Circadian Adjustment" and "Health Mode" subsections of this specification.

- 晝夜節律調整 - Circadian rhythm adjustment

在某些著色組態中,控制(例如,藉由濾光片)著色以將入射光之波長光譜改變為適當之光波長而調整晝夜節律且因此有益於佔用者。 In some coloring configurations, the coloring is controlled (eg, by a filter) to change the wavelength spectrum of incident light to the appropriate light wavelengths to adjust the circadian rhythm and thus benefit the occupant.

在一種技術中,控制(例如,藉由濾光片)著色以將入射光之波長光譜改變為佔用者較喜歡之顯現顏色。此種技術允許控制LED照明或其他照明以將此感知到及顯現之顏色校正為對佔用者較佳之照明條件。藉由控制處於適當之一個波長/多個波長的某量之自然採光的透射,可調整晝夜節律,此可有益於佔用者之康健及健康。 In one technique, the coloration is controlled (eg, by a filter) to change the wavelength spectrum of incident light to the color of appearance preferred by the occupant. This technique allows LED lighting or other lighting to be controlled to correct this perceived and displayed color to lighting conditions that are better for the occupant. By controlling the transmission of a certain amount of natural light at the appropriate wavelength/wavelengths, the circadian rhythm can be adjusted, which can benefit the health and wellness of the occupant.

在此等組態中,控制邏輯可具有預測太陽輻射之量及方向的操作,或者房間中之感測器可量測太陽輻射之量及方向。舉例而言,房間中位於牆壁或窗上之輻照度感測器可向窗控制器發送具有定期量測結果之信號。在一種情況中,此感測器可能要被證明為足夠靈敏的(如在健康護理環境中)/被測試及校準以保證正確之結果。或者,吾人可自照明系統獲得此資訊。 In such configurations, the control logic may have operations to predict the amount and direction of solar radiation, or sensors in the room may measure the amount and direction of solar radiation. For example, an irradiance sensor located on a wall or window in a room can send a signal with periodic measurements to the window controller. In one case, the sensor may have to be proven sensitive enough (eg, in a healthcare environment)/tested and calibrated to ensure correct results. Alternatively, we can obtain this information from the lighting system.

為了提供晝夜節律智慧照明,窗可具有特定感測器,該感測器具有帶隙濾波器及時間追蹤器,以保證該窗在一天中之特定時間內提供所需自然光之恰當光譜。此可藉由穿過窗之日光及/或藉由增強之內部照明提供,其中已請求該內部照明以提供恰當量之適當波長的照明。 In order to provide circadian smart lighting, the window can have a specific sensor with a bandgap filter and time tracker to ensure that the window provides the proper spectrum of natural light required at specific times of the day. This can be provided by sunlight through the windows and/or by enhanced interior lighting that has been requested to provide the right amount of illumination of the appropriate wavelengths.

- 「健康模式」 - "Health Mode"

此外,內部光之顏色可能會基於空間之功能而對不同空間中之佔用 者的行為具有影響。控制邏輯可具有用於控制經過濾之自然光或增強之內部照明以有益於佔用者之心情及行為的單獨邏輯模組。此模組之操作可視房間中佔用者所處之空間的功能而不同地起作用。在一些情況中,使用者可能夠在使用者控制面板上選擇「健康模式」以根據被設計成改善佔用者之心情及行為的此模組來控制房間中之光。 In addition, the color of the interior light may be occupied in different spaces based on the function of the space The behavior of the person has an impact. The control logic may have separate logic modules for controlling filtered natural light or enhanced interior lighting to benefit the mood and behavior of the occupants. The operation of this module functions differently depending on the function of the space in which the occupant is located in the room. In some cases, the user may be able to select a "wellness mode" on the user control panel to control the light in the room according to this module designed to improve the mood and behavior of the occupants.

在一些情況中,控制邏輯可適合於預測外部照明之波長及強度且接著將其與當前著色等級光譜特性組合且預測進入房間中之入射日光的光譜分佈。可(例如)使用天氣服務及基於太陽計算器計算出之太陽角度來預測外部照明之波長及強度。 In some cases, the control logic may be adapted to predict the wavelength and intensity of the external lighting and then combine this with the current tint level spectral characteristics and predict the spectral distribution of incident sunlight entering the room. The wavelength and intensity of external lighting can be predicted, for example, using a weather service and the sun angle calculated based on a sun calculator.

經由與佔用者身上之裝置或與佔用感測器一起工作之如BLE等系統將佔用感測器包括在房間中,控制邏輯可相對於佔用分佈圖來選擇是否控制採光及窗。 By including an occupancy sensor in the room via a device on the occupant or a system such as BLE that works with the occupancy sensor, the control logic can choose whether to control daylighting and windows relative to the occupancy profile.

或者,若房間具有能夠記錄房間中之亮度及光譜的攝影機,則可使用攝影機影像來判定是否存在佔用者、佔用者處於何處及為了校正EC過濾光將需要對內部光進行何種偏移或改變。此攝影機亦可經校準以確保就一天中之時間及特定位置而言佔用者獲得適量之適當光譜以有益於其晝夜節律。或者,藉由使用在天花板或每一燈中之大量感測器,可使用感測器資料來來驗證佔用者、是否佔用了特定位置及所需照明之顏色顯現以及有益於佔用者之晝夜節律的適量光譜。 Alternatively, if the room has a camera capable of recording the luminance and spectrum in the room, the camera image can be used to determine if an occupant is present, where the occupant is, and what offset or shift the interior light will need to be made to correct for the EC filtered light. Change. The camera can also be calibrated to ensure that occupants get the right amount of the appropriate spectrum for the time of day and specific location to benefit their circadian rhythm. Alternatively, by using a large number of sensors in the ceiling or in each light, the sensor data can be used to verify the occupant, whether a particular location is occupied and the color appearance of the desired lighting and the benefits of the occupant's circadian rhythm. Moderate spectrum.

基於健康考慮因素之著色決策係基於一或多個因素,包括:(1)具有適當波長光譜的房間中之照明,以調整佔用者之晝夜節律;(2)判定佔用位置以驗證該佔用者遇到之照明及暴露時間;(3)基於預定顏色顯現來提供房間中之內部光的適當演色性指數以校正EC IGU之經過濾光顏色;(4) 房間中之內部光的相關色溫,以基於預定CCT量來校正EC IGU之經過濾光顏色,可應用該光顏色來改良指定內部空間中之光的心理作用;(5)考慮獨特感測器,該等感測器被證明為支持照明之適當光譜分佈以有益於佔用者之晝夜節律;以及(6)照明目標,該等照明目標基於是否有佔用者受照明影響而改變,該照明係藉由內部照明或EC IGU之經過濾光來控制。 Coloration decisions based on health considerations are based on one or more factors, including: (1) lighting in the room with the appropriate wavelength spectrum to adjust the occupant's circadian rhythm; (2) determination of occupancy location to verify that the occupant encounters The lighting and exposure time to arrive; (3) provide an appropriate color rendering index of the interior light in the room based on a predetermined color appearance to correct the filtered light color of the EC IGU; (4) The correlated color temperature of the interior light in the room to correct the filtered light color of the EC IGU based on a predetermined CCT amount, which can be applied to improve the psychological effect of light in a given interior space; (5) Considering unique sensors, The sensors are shown to support the proper spectral distribution of lighting to benefit the occupant's circadian rhythm; and (6) lighting targets that change based on whether any occupants are affected by the lighting by Internal lighting or filtered light control of the EC IGU.

C.用於控制可著色窗之著色的控制邏輯之實例C. Example of Control Logic for Controlling Shading of Shaderable Window

在某些實施方案中,控制邏輯包括判定及控制可著色窗(例如,電致變色窗)中之著色以考慮佔用者舒適性及/或能量節省考慮因素的操作。在一些情況中,控制邏輯包括多個邏輯模組。將藉由一個邏輯模組判定之著色等級及/或其他計算輸入至另一邏輯模組以計算藉由所有模組判定之最終著色等級。若應用超控,則可使用超控值作為最終著色等級。一旦控制邏輯判定最終著色等級,則控制邏輯發送具有著色指令之控制信號以將可著色窗轉變至該最終著色等級。具有經組態以判定可著色窗之著色等級的邏輯模組之控制邏輯的實例可見於在2015年5月5日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之國際PCT申請案PCT/US15/29675中,該申請案特此以引用方式整體併入。具有經組態以判定可著色窗之著色等級的邏輯模組之控制邏輯的另一實例可見於在2017年7月7日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之國際PCT申請案PCT/US16/41344中,該申請案特此以引用方式整體併入。 In certain implementations, the control logic includes operations to determine and control tinting in a tintable window (eg, an electrochromic window) to take into account occupant comfort and/or energy saving considerations. In some cases, the control logic includes multiple logic modules. The shading levels and/or other calculations determined by one logic module are input to another logic module to calculate the final shading levels determined by all modules. If an override is applied, the override value can be used as the final shading level. Once the control logic determines the final shading level, the control logic sends a control signal with a shading instruction to transition the shadeable window to the final shading level. An example of control logic with a logic module configured to determine the tint level of a tintable window can be found in International PCT Application PCT/US15/, filed May 5, 2015 and entitled "CONTROL METHOD FOR TINTABLE WINDOWS" 29675, this application is hereby incorporated by reference in its entirety. Another example of control logic with a logic module configured to determine the tint level of a tintable window can be found in International PCT Application PCT/ In US 16/41344, this application is hereby incorporated by reference in its entirety.

在一些實施方案中,控制邏輯使用三個邏輯模組(本文中亦被稱作「模組A」、「模組B」及「模組C」)中之一或多者來判定在建築物之內部與外部之間的可著色窗之著色等級。每一控制邏輯模組可基於一未來時間 來判定著色等級。舉例而言,計算中使用之未來時間可為在接收到著色指令之後足以允許完成轉變的未來時間。在此實例中,控制器可在實際轉變之前在當前時間發送著色指令。在轉變完成之前,窗將轉變至彼時所要之著色等級。 In some implementations, the control logic uses one or more of three logic modules (also referred to herein as "Module A," "Module B," and "Module C") to determine whether a building is in The tint level of the tintable windows between the inside and the outside. Each control logic module can be based on a future time to determine the coloring level. For example, the future time used in the calculation may be a future time sufficient to allow the transition to complete after the shading instruction is received. In this example, the controller may send shading instructions at the current time before the actual transition. Before the conversion is complete, the window will be converted to the desired shading level at that time.

模組A可用於根據穿過可著色窗射至佔用區域或佔用者之活動區域上的直射太陽光來判定考慮佔用者舒適性之著色等級。基於在特定時刻直射太陽光射入房間中的計算出之穿透深度及房間中之空間類型(例如,窗附近之桌子、門廳等)來判定著色等級。在一個實例中,計算未來時間時之穿透深度以考慮到使窗轉變至新著色狀態所花之時間。可使用公眾可獲得之程式來基於一天中之時間、一年中之時間以及建築物之緯度及經度來計算太陽之位置。第一模組可基於窗之幾何形狀(例如,窗尺寸)、其在房間中之位置及定向、窗外之任何翅片或其他外部遮蔽及太陽之計算出之位置(例如,針對特定的一天中之時間及日期的直射太陽光之角度)來計算穿透深度。每一空間類型與不同著色等級相關聯,以實現佔用者舒適性。舉例而言,若活動為關鍵活動,諸如在桌子或電腦處完成辦公室之工作,且桌子位於窗附近,則所要著色等級可高於桌子遠離窗時之著色等級。作為另一實例,若活動為非關鍵的,諸如在門廳中之活動,則所要著色等級可低於具有桌子之相同空間之著色等級。將藉由模組A計算出之著色等級輸入至模組B。 Module A may be used to determine a tinting level for occupant comfort based on direct sunlight passing through a tintable window onto the occupied area or occupant's active area. The tinting level is determined based on the calculated penetration depth of direct sunlight into the room at a particular time and the type of space in the room (eg, table near windows, hallway, etc.). In one example, the penetration depth at future time is calculated to take into account the time it takes for the window to transition to the new shaded state. A publicly available program can be used to calculate the position of the sun based on the time of day, the time of year, and the latitude and longitude of buildings. The first module may be based on the geometry of the window (eg, window size), its position and orientation in the room, any fins or other external shades outside the window, and the calculated position of the sun (eg, for a particular day). the angle of direct sunlight at the time and date) to calculate the penetration depth. Each space type is associated with different levels of coloration for occupant comfort. For example, if the activity is a critical activity, such as doing office work at a desk or computer, and the desk is near a window, the desired tint level may be higher than when the desk is farther away from the window. As another example, if the activity is non-critical, such as in a foyer, the desired tint level may be lower than that of the same space with a table. Input the coloring level calculated by module A to module B.

模組B之控制邏輯可用於基於在晴空條件下透射穿過窗之輻照度(亦被稱作「晴空輻照度」)來判定著色等級。輻射可來自藉由大氣中之分子及微粒散射之太陽光。可使用一程式(諸如開放原始碼程式RADIANCE程式)來基於建築物之緯度及經度、一年中之一天及一天中之時間以及窗之 定向來計算晴空輻照度。在一個實例中,模組B可用於判定比自模組A輸入之著色等級暗的著色等級且傳輸比在最大晴空輻照度下針對基準玻璃計算出的要傳輸之熱量少的熱量。最大晴空輻照度為針對晴空條件所計算出的所有時間之最高等級之輻照度。在一個實例中,模組C接著使用基準玻璃之太陽得熱係數(基準SHGC)及計算出之最大晴空輻照度來判定著色等級。模組B逐漸地增加在模組A中計算出之著色等級且取使得內部輻射小於或等於基準內部輻照度(基準SHGC×最大晴空輻照度)之著色等級。將在模組B中計算出之著色等級及計算出之晴空輻照度輸入至模組C中。 The control logic of module B can be used to determine the tinting level based on the irradiance transmitted through the window under clear sky conditions (also referred to as "clear sky irradiance"). Radiation can come from sunlight scattered by molecules and particles in the atmosphere. A program, such as the open-source program RADIANCE program, can be used to generate data based on the latitude and longitude of the building, the day of the year and time of day, and the window Orientation to calculate clear sky irradiance. In one example, Module B can be used to determine a tint level that is darker than the tint level input from Module A and transmits less heat than would be calculated for the reference glass at maximum clear air irradiance. Maximum clear sky irradiance is the highest level of irradiance at all times calculated for clear sky conditions. In one example, Module C then uses the solar heat gain coefficient of the reference glass (reference SHGC) and the calculated maximum clear sky irradiance to determine the tint level. Module B gradually increases the tinting level calculated in Module A and takes the tinting level such that the internal irradiance is less than or equal to the reference internal irradiance (reference SHGC x maximum clear sky irradiance). Input the coloring level calculated in module B and the calculated clear sky irradiance into module C.

模組C中之控制邏輯可用於基於即時外部輻照度來判定著色等級,該即時外部輻照度係基於照射可著色窗之直射或反射光。該即時外部輻照度考慮到可能被在模組B中進行之晴空計算中未考慮到之物件(諸如建築物或天氣條件(例如,雲))阻擋或自該等物件反射之光。可基於以下一或多者來計算即時外部輻照度:藉由外部感測器取得之量測結果、經由通信網路接收到之天氣預報資料、建築物處之所判定雲量條件等。一般而言,模組B之控制邏輯將判定使藉由模組A判定之著色等級變暗(或不改變)之著色等級,且模組C之控制邏輯將判定使藉由模組B判定之著色等級變亮(或不改變)之著色等級。 Control logic in module C may be used to determine tinting levels based on real-time external irradiance based on direct or reflected light hitting the tintable window. The real-time external irradiance accounts for light that may be blocked by or reflected from objects such as buildings or weather conditions (eg, clouds) that are not accounted for in the clear sky calculations performed in module B. The real-time external irradiance may be calculated based on one or more of the following: measurements obtained by external sensors, weather forecast data received via a communication network, determined cloud cover conditions at the building, and the like. In general, the control logic of module B will determine the shading level that darkens (or does not change) the shading level determined by module A, and the control logic of module C will determine the shading level determined by module B The tint level at which the tint level is lightened (or not changed).

模組C中之控制邏輯可基於外部輻照度及可著色窗之當前著色等級來判定房間中之內部輻照度。舉例而言,模組C可使用以下方程式基於晴空輻照度計算來判定計算出之內部輻照度:計算出之內部輻照度=著色等級SHGC×計算出之晴空輻照度。模組C可使用以下方程式基於外部感測器讀數或其他外部資料來計算即時內部輻照度:即時內部輻照度=著色等級SHGC×輻照度讀數。在一個實施方案中,模組C使用以上方程式來計算 在可著色窗具有在模組B中判定之著色等級時房間之內部輻照度且接著基於來自B之著色等級來判定滿足即時內部輻照度小於或等於計算出之內部輻照度之條件的著色等級。 Control logic in module C may determine the interior irradiance in the room based on the exterior irradiance and the current tint level of the tintable windows. For example, module C can determine the calculated internal irradiance based on the clear sky irradiance calculation using the following equation: Calculated internal irradiance=shading level SHGC×calculated clear sky irradiance. Module C may calculate the instant internal irradiance based on external sensor readings or other external data using the following equation: Instant Internal Irradiance = Shading Level SHGC x Irradiance Reading. In one embodiment, Module C is calculated using the above equation The interior irradiance of the room when the tintable window has the tint level determined in Module B and then based on the tint level from B determines the tint level that satisfies the condition that the instant interior irradiance is less than or equal to the calculated interior irradiance.

模組B及/或模組C可判定除了佔用者舒適性之外亦考慮到能量節約之著色等級。此等模組可藉由將處於所判定之著色等級的可著色窗之效能與基準玻璃或其他標準參考窗進行比較來判定與特定著色等級相關聯之能量節省。使用此參考窗之目的可為確保控制邏輯符合市政建築規章之要求或在建築物之場所中使用之參考窗的其他要求。通常,市政當局使用習知低發射率玻璃來界定參考窗以控制建築物中之空氣調節負荷的量。作為參考窗如何納入控制邏輯中之實例,該邏輯可經設計,使得穿過給定可著色窗之輻照度決不會大於穿過如藉由各別市政當局指定之參考窗的最大輻照度。在所揭示之實施例中,控制邏輯可使用處於特定著色等級之可著色窗的SHGC值及參考窗之SHGC來判定使用該著色等級之能量節省。一般而言,SHGC之值為透射穿過該窗之所有波長的入射光之小部分。雖然在許多實施例中闡述了基準玻璃,但可使用其他標準參考窗。一般而言,參考窗(例如,基準玻璃)之SHGC為一變數,該變數對於不同之地理位置及窗定向而可為不同的,且基於藉由各別市政當局指定之規章要求。 Module B and/or Module C may determine a tint level that also considers energy savings in addition to occupant comfort. These modules can determine the energy savings associated with a particular tint level by comparing the performance of tintable windows at the determined tint level to a reference glass or other standard reference window. The purpose of using this reference window may be to ensure that the control logic complies with the requirements of municipal building regulations or other requirements for reference windows used on the premises of a building. Conventionally, municipalities use conventional low emissivity glass to define reference windows to control the amount of air conditioning load in a building. As an example of how reference windows are incorporated into control logic, the logic can be designed such that the irradiance through a given tintable window is never greater than the maximum irradiance through the reference window as specified by the respective municipality. In the disclosed embodiment, the control logic may use the SHGC value of the shading window at a particular shading level and the SHGC of the reference window to determine the energy savings of using that shading level. In general, the value of SHGC is the fraction of all wavelengths of incident light transmitted through the window. Although a reference glass is illustrated in many embodiments, other standard reference windows may be used. In general, the SHGC of a reference window (eg, reference glass) is a variable that can be different for different geographic locations and window orientations, and is based on regulatory requirements specified by individual municipalities.

一旦模組A、B及C判定最終著色等級,則控制邏輯可接收使超控值用作最終著色值的超控。一種類型之超控為房間之佔用者進行之手動超控,該佔用者判定特定著色等級(超控值)為所要的。可能存在手動超控自身被超控之情形。超控之另一實例為高需求(或峰值負荷)超控,該高需求超控與減少建築物中之能量消耗之設施要求相關聯。一旦控制邏輯判定最終著色等級,則控制邏輯發送具有著色指令之控制信號以將可著色窗轉變 至該最終著色等級。 Once modules A, B, and C determine the final shading level, control logic may receive an override that causes the override value to be used as the final shading value. One type of override is a manual override by an occupant of the room who determines that a particular tint level (override value) is desired. There may be situations where the manual override itself is overridden. Another example of an override is a high demand (or peak load) override associated with facility requirements to reduce energy consumption in a building. Once the control logic determines the final shading level, the control logic sends a control signal with a shading instruction to transition the shadeable window to this final shade level.

D.用於調整人工內部照明及/或著色之控制邏輯D. Control logic for adjusting artificial interior lighting and/or shading

如上文所提到,電致變色窗或其他可著色窗之著色可改變透射穿過已著色窗之光的波長光譜及相關聯顏色以在房間中顯現顏色。舉例而言,處於較暗著色狀態之某些電致變色窗可在房間中賦予藍色。本文中闡述之某些技術涉及用於控制人工內部照明以增強來自房間中之一或多個電致變色窗或其他可著色窗之內部所顯現顏色的控制邏輯。此等技術可用於控制房間內部之演色性指數(CRI)及/或相關色溫(CCT)的等級以便(例如)改良視覺舒適性、調整晝夜節律等。CRI為內部照明向人眼精確地顯現物件之所有顏色的能力之量測值。通常,按0至百分之100之尺度來量測CRI值,其中CRI值愈高,顏色顯現愈好。CCT為可見光譜中之照明之顏色特性的溫度量測值。CCT值通常係以凱氏度(K)來量測。 As mentioned above, tinting of electrochromic or other tintable windows can change the wavelength spectrum and associated color of light transmitted through the tinted window to appear color in a room. For example, certain electrochromic windows in a darker tinted state can impart a blue color in a room. Certain techniques described herein relate to control logic for controlling artificial interior lighting to enhance the color appearing from the interior of one or more electrochromic or other tintable windows in a room. These techniques can be used to control the level of Color Rendering Index (CRI) and/or Correlated Color Temperature (CCT) within a room to, for example, improve visual comfort, adjust circadian rhythms, and the like. CRI is a measure of the ability of interior lighting to accurately visualize all colors of an object to the human eye. Generally, the CRI value is measured on a scale of 0 to 100 percent, wherein the higher the CRI value, the better the color rendering. CCT is a temperature measurement of the color properties of illumination in the visible spectrum. CCT values are usually measured in degrees Kjeldahl (K).

在某些實施方案中,技術涉及判定房間之內部CRI之當前值的控制邏輯,且若當前值並非所要值,則發送控制信號以調整人工內部照明而增強內部照明以顯現所要內部CRI。另外地或另選地,某些實施方案判定房間之內部CCT的當前值及/或調整內部照明以顯現所要之內部CCT。在此等技術中,基於來自位於建築物外部之外部感測器、位於房間中之內部感測器的輸入及/或在房間內部與建築物外部之間的一或多個電致變色窗之著色狀態來判定內部CRI/CCT之當前值。可實施之外部感測器類型之一些實例包括紅外線感測器、環境溫度感測器及可見光光感測器。在具有一或多個外部感測器之實施方案中,外部感測器大體上被定位成與具有該房間之建築物外部之環境接觸。在一些情況中,外部感測器位於電致變色窗附近之立面上,例如,以判定窗處之輻照度等級以便判定窗外之外部 CRI/CCT。在另一種情況中,外部感測器可位於建築物之屋頂上。在其他情況中,外部感測器可位於不同建築物處。在一些情況中,可使用外部感測器資料來預報天氣條件且將天氣預報資料傳送至控制器,該控制器向人工內部照明發送控制信號以進行調整及/或向電致變色窗發送控制信號以轉變著色。在標題為「MULTI-SENSOR」之美國專利申請案15/287,646中詳細地闡述可在多感測器裝置中使用的外部感測器之佈置的實例,該申請案特此以引用方式整體併入。此類多感測器裝置可安裝於建築物之屋頂上。在一個實施方案中,該多感測器裝置包括由具有不同定向之沿徑向取向且面向外之光感測器、垂直面朝上之光感測器、一或多個IR感測器及溫度感測器組成之環。在一個實例中,可使用來自IR感測器及溫度感測器之讀數來判定雲量條件。另外地或另選地,可使用來自不同之沿徑向取向之光感測器的輻照度讀數來計算與該等光感測器之定向不同之定向上的輻照度值。使用此種技術,可使用來自不同之沿徑向取向之光感測器的外部輻照度來判定取另一定向之窗的外部輻照度。在2016年4月7日提交之標題為為「COMBI-SENSOR SYSTEMS」的PCT公開案PCT/US15/52822中闡述此類技術之一實例,該申請案特此以引用方式整體併入。可藉由此等技術實施之內部感測器的一些實例包括可見光光感測器、溫度感測器及可用於計算房間之內部CRI及窗外部之CRI的其他感測器。內部感測器可位於房間內之各種合適位置,諸如,例如,在人工內部照明處或附近、在佔用者活動區域(諸如桌面或會議桌桌面)處或附近、牆壁等。另外,用於量測CRI且可用作用於量測內部CRI之內部感測器或用於量測外部CRI之外部感測器的市售裝置之實例為藉由Konica Minolta®製造之CL-70F CRI亮度計。另一實例為藉由Sekonic製造之C-700 SpectroMaster。 In certain implementations, techniques involve control logic that determines a current value of the interior CRI of the room, and if the current value is not the desired value, sending a control signal to adjust artificial interior lighting to enhance interior lighting to reveal the desired interior CRI. Additionally or alternatively, certain embodiments determine the current value of the interior CCT of the room and/or adjust interior lighting to visualize the desired interior CCT. In these techniques, based on input from external sensors located outside the building, internal sensors located in the room, and/or one or more electrochromic windows between the interior of the room and the exterior of the building Shading state to determine the current value of the internal CRI/CCT. Some examples of external sensor types that can be implemented include infrared sensors, ambient temperature sensors, and visible light light sensors. In implementations with one or more external sensors, the external sensors are generally positioned in contact with the environment outside the building with the room. In some cases, an external sensor is located on a facade near the electrochromic window, eg, to determine the irradiance level at the window in order to determine what is outside the window CRI/CCT. In another case, the external sensor may be located on the roof of the building. In other cases, the external sensors may be located at different buildings. In some cases, external sensor data may be used to forecast weather conditions and communicated to a controller that sends control signals to artificial interior lighting to make adjustments and/or to electrochromic windows Color by transformation. An example of an arrangement of external sensors that may be used in a multi-sensor device is set forth in detail in US Patent Application 15/287,646, entitled "MULTI-SENSOR," which is hereby incorporated by reference in its entirety. Such multi-sensor devices can be installed on the roofs of buildings. In one embodiment, the multi-sensor device includes a radially oriented and outward-facing photo sensor with different orientations, a vertically facing photo sensor, one or more IR sensors, and A ring of temperature sensors. In one example, readings from an IR sensor and a temperature sensor may be used to determine cloud cover conditions. Additionally or alternatively, irradiance readings from different radially oriented photosensors may be used to calculate irradiance values at orientations other than those of the photosensors. Using this technique, the external irradiance from a different radially oriented photosensor can be used to determine the external irradiance of a window in another orientation. An example of one such technique is set forth in PCT Publication PCT/US15/52822, filed April 7, 2016, entitled "COMBI-SENSOR SYSTEMS," which is hereby incorporated by reference in its entirety. Some examples of interior sensors that can be implemented by such techniques include visible light sensors, temperature sensors, and other sensors that can be used to calculate CRI inside a room and CRI outside a window. Interior sensors may be located at various suitable locations within the room, such as, for example, at or near artificial interior lighting, at or near occupant activity areas such as table tops or conference table tops, walls, and the like. Additionally, an example of a commercially available device for measuring CRI that can be used as an internal sensor for measuring internal CRI or an external sensor for measuring external CRI is the CL-70F CRI manufactured by Konica Minolta® Luminance meter. Another example is the C-700 SpectroMaster manufactured by Sekonic.

此等技術可用於各種類型之人工內部照明,包括(例如)白熾照明、發光二極體(LED)及/或螢光照明。可在此等實施方案中使用之人工內部照明的市售實例為藉由Phillips®製造之hueTM個人無線照明系統。可使用之人工內部照明的另一市售實例為藉由nanoleaf®製造之Aurora Lighting Smarter KitTMThese techniques can be used for various types of artificial interior lighting, including, for example, incandescent lighting, light emitting diode (LED), and/or fluorescent lighting. A commercially available example of artificial interior lighting that can be used in these embodiments is the hue personal wireless lighting system manufactured by Phillips®. Another commercially available example of artificial interior lighting that can be used is the Aurora Lighting Smarter Kit manufactured by nanoleaf®.

下面係示出可藉由控制邏輯使用來控制房間中之內部CRI的輸入之組合的四種示例性情形之圖表。雖然參考單個電致變色窗來闡述此等情形之控制邏輯,但將理解,本揭示案並非限制性的且此控制邏輯可用於具有多個電致變色窗或其他可著色窗之房間。 Below are diagrams showing four exemplary scenarios in which combinations of inputs to an internal CRI in a room can be controlled by the control logic. While the control logic for these situations is described with reference to a single electrochromic window, it will be understood that the present disclosure is not limiting and this control logic may be used in rooms with multiple electrochromic or other tintable windows.

Figure 107106439-A0305-02-0063-1
Figure 107106439-A0305-02-0063-1

在第一種情形中,僅基於電致變色窗之著色狀態來控制內部CRI。不使用來自任何內部或外部感測器之輸入來控制內部CRI。在一個實施方案 中,將電致變色窗之每一著色狀態映射至特定內部CRI值或內部CRI值之範圍(例如,在查找表中)。可(例如)藉由量測所述產品玻璃之各種著色狀態下之CRI值來提前計算此等值。控制邏輯判定映射至所要CRI值/範圍的電致變色窗之著色狀態。舉例而言,最暗著色狀態(例如,1% T)可映射至與在房間中顯現藍色對應之內部CRI值。在此實施方案中,對內部CRI值/範圍之控制可不取決於對電致變色窗外部之光條件的瞭解。其可取決於(例如)房間是否被佔用,更具體而言,燈是否開著。可基於玻璃之著色狀態將所要CRI預設為使用者偏好。舉例而言,當著色狀態處於某一等級時且被使用者佔用之房間中的燈開著,則可自動地調整內部光以提供預設CRI。該照明調整可在玻璃之著色狀態達到之後進行,或可在玻璃之著色狀態改變期間動態地改變照明。在此種模式中不需要輸入感測器讀數,因為不主動地量測CRI,而是基於量測及/或計算基於使用者偏好來提前預設。不量測外部條件(雖然與內部CRI相關),亦即,因為玻璃處於特定著色狀態,假定外部照明條件保證玻璃如此著色,因此僅基於玻璃之著色狀態來調整CRI。 In the first case, the internal CRI is controlled based only on the tinting state of the electrochromic window. No input from any internal or external sensors is used to control the internal CRI. in one embodiment , each tinting state of an electrochromic window is mapped to a specific internal CRI value or range of internal CRI values (eg, in a look-up table). These values can be calculated in advance, for example, by measuring the CRI values in various colored states of the product glass. The control logic determines the tint state of the electrochromic window mapped to the desired CRI value/range. For example, the darkest shading state (eg, 1% T) can be mapped to an internal CRI value corresponding to the appearance of blue in the room. In this embodiment, control of the internal CRI value/range may not depend on knowledge of the light conditions outside the electrochromic window. It may depend, for example, on whether the room is occupied, and more specifically, whether the lights are on. The desired CRI can be preset as a user preference based on the tinting state of the glass. For example, when the tint state is at a certain level and the lights in a room occupied by the user are on, the interior light can be automatically adjusted to provide a preset CRI. This lighting adjustment can be made after the tint state of the glass is reached, or the lighting can be dynamically changed during a change in the tint state of the glass. There is no need to enter sensor readings in this mode because the CRI is not actively measured, but pre-set based on user preference based on measurements and/or calculations. External conditions are not measured (although related to internal CRI), ie, since the glass is in a particular tint state, the CRI is adjusted based only on the tint state of the glass, assuming external lighting conditions warrant the glass so tinted.

在某些實施例中,使用感測器讀數來增強CRI調整成所要值之精確性。舉例而言,在第二種情形中,使用來自房間中之一或多個內部感測器的量測結果來控制房間之內部CRI值。不使用來自任何外部感測器之量測結果或電致變色窗之著色狀態來判定內部CRI值。由於電致變色玻璃在外部光穿過該玻璃時使外部光發生變換,因此在此實施例中,外部照明條件為不相干的,使用一或多個內部感測器來判定內部照明條件且相應地調整內部照明條件以獲得恰當/所要之CRI。可將佔用感測器與光感測器一起使用來增強CRI調整。舉例而言,若房間當前未被佔用,則可避免CRI調整 或進行對佔用者次佳且(例如)較符合照明系統之能量節省的CRI調整。當房間被佔用時,使用照明之CRI調整可超控潛在之能量節省設置,而支持用於佔用者之最佳CRI。在一個實施方案中,可校準或設計一或多個內部感測器以量測房間之內部CRI。在另一實施方案中,可(例如)在查找表中將內部感測器量測結果之範圍映射至內部CRI值(或範圍)。控制邏輯在此實例中判定內部感測器量測結果係在特定範圍內且判定與彼範圍相關聯之CRI值。在此第二種情形中,基於內部感測量測結果來調整人工內部照明。來自內部感測器之量測結果控制對人工內部照明進行之調整。在一些實施例中,用內部感測器量測結果作為輸入來僅將內部CRI調整為使用者偏好以獲得所要結果。在另一實施例中,控制邏輯將所量測到之內部CRI值與恰當/所要值相比較且若存在差異,則控制信號基於該差異來調整人工內部照明以增強房間中之內部照明。 In some embodiments, sensor readings are used to enhance the accuracy with which the CRI is adjusted to a desired value. For example, in the second scenario, measurements from one or more internal sensors in the room are used to control the internal CRI value of the room. The internal CRI value is not determined using measurements from any external sensors or the tinting state of the electrochromic window. Since the electrochromic glass transforms external light as it passes through the glass, in this embodiment, the external lighting conditions are incoherent and one or more internal sensors are used to determine the internal lighting conditions and respond accordingly Adjust the interior lighting conditions appropriately to obtain the proper/desired CRI. An occupancy sensor can be used with a light sensor to enhance CRI adjustment. For example, CRI adjustments can be avoided if the room is not currently occupied Or make a CRI adjustment that is sub-optimal to the occupant and, for example, more consistent with the energy savings of the lighting system. When a room is occupied, using the CRI adjustment of lighting can override potential energy saving settings in favor of optimal CRI for the occupant. In one embodiment, one or more interior sensors can be calibrated or designed to measure the interior CRI of a room. In another implementation, a range of internal sensor measurements can be mapped to internal CRI values (or ranges), eg, in a look-up table. The control logic determines in this example that the internal sensor measurements are within a particular range and determines the CRI value associated with that range. In this second case, the artificial interior lighting is adjusted based on interior sensing measurements. Measurements from internal sensors control adjustments to artificial interior lighting. In some embodiments, the internal sensor measurements are used as input to adjust only the internal CRI to user preference to obtain the desired result. In another embodiment, the control logic compares the measured internal CRI value to the proper/desired value and if there is a difference, the control signal adjusts the artificial interior lighting based on the difference to enhance the interior lighting in the room.

在第三種情形中,使用來自一或多個外部感測器之量測結果及著色狀態來獲得房間之所要內部CRI值(本文中亦被稱作「內部CRI」)。控制邏輯計算或量測(例如,利用多感測器裝置)外部CRI(本文中亦被稱作「外部CRI」)。基於電致變色玻璃之著色狀態,控制邏輯藉由基於外部CRI及所述玻璃之已知光吸收及顏色改變特性來計算內部CRI來將外部CRI變換成內部CRI。接著,控制邏輯向人工照明(例如,LED照明)發送信號以調至房間中之較佳或定製CRI值(若所計算出之內部CRI尚未處於較佳等級,則邏輯進行此比較)。在此第三種情形中,不使用來自內部感測器之量測結果。由於電致變色玻璃在外部光穿過已著色玻璃時使外部光發生變換,因此可基於外部CRI之量測結果及玻璃之著色狀態來計算內部CRI。不需要內部照明條件。外部CRI可基於藉由一或多個外部感測器取 得之量測結果。在一個實施方案中,該一或多個外部感測器可經校準或設計以量測窗附近及/或大體上建築物區域附近之外部CRI。在另一實施方案中,可(例如)在查找表中將外部感測器量測結果之範圍映射至外部CRI值(或範圍)。控制邏輯使用外部CRI值及玻璃之著色狀態特性來獲得內部CRI值且接著對其進行調整以匹配所要值(若其尚未與之匹配)。在一個實施方案中,可將著色狀態與外部CRI值之不同組合映射至特定內部CRI值。舉例而言,假定窗之簾牆全處於相同著色狀態,可獲得一個內部CRI,但若窗簾牆中之一或多個窗著色至不同著色狀態,則獲得不同內部CRI值且可藉由相應地改變內部照明來調整該內部CRI值。在一個實施例中,僅根據基於窗之狀態及量測到之外部CRI之計算值來調整內部CRI。在另一實施例中,控制邏輯將所計算出之內部CRI值與所要結果進行比較。在另一實施例中,控制邏輯將所量測到之內部CRI值與恰當/所要值相比較且若存在差異,則控制信號基於該差異來調整人工內部照明以增強房間中之內部照明。 In a third scenario, measurements from one or more external sensors and the shading state are used to obtain the desired internal CRI value for the room (also referred to herein as "internal CRI"). The control logic calculates or measures (eg, using a multi-sensor device) the external CRI (also referred to herein as "external CRI"). Based on the tinting state of the electrochromic glass, the control logic converts the external CRI to the internal CRI by calculating the internal CRI based on the external CRI and the known light absorption and color change characteristics of the glass. Next, the control logic sends a signal to artificial lighting (eg, LED lighting) to adjust to a better or custom CRI value in the room (if the calculated internal CRI is not already at a better level, the logic makes this comparison). In this third case, measurements from internal sensors are not used. Since the electrochromic glass transforms the external light as it passes through the tinted glass, the internal CRI can be calculated based on the measurement of the external CRI and the tinted state of the glass. Internal lighting conditions are not required. External CRI can be based on acquisition by one or more external sensors get the measurement results. In one implementation, the one or more external sensors may be calibrated or designed to measure external CRI near a window and/or generally near a building area. In another implementation, a range of external sensor measurements can be mapped to external CRI values (or ranges), eg, in a lookup table. The control logic uses the external CRI value and the tint state characteristic of the glass to obtain the internal CRI value and then adjusts it to match the desired value (if it does not already match). In one embodiment, different combinations of shading states and external CRI values can be mapped to specific internal CRI values. For example, one internal CRI can be obtained assuming that the curtain wall of windows are all in the same tinting state, but if one or more windows in the curtain wall are tinted to a different tinting state, a different internal CRI value is obtained and can be obtained by corresponding Change the internal lighting to adjust this internal CRI value. In one embodiment, the internal CRI is adjusted only according to the calculated value based on the state of the window and the measured external CRI. In another embodiment, the control logic compares the calculated internal CRI value to the desired result. In another embodiment, the control logic compares the measured internal CRI value to the proper/desired value and if there is a difference, the control signal adjusts the artificial interior lighting based on the difference to enhance the interior lighting in the room.

在第四種情形中,控制邏輯使用使用者輸入來基於來自一或多個外部感測器之量測結果及/或基於來自一或多個內部感測器之量測結果來判定是否控制房間中之內部CRI。亦即,第二種情形與第三種情形之組合,例如,基於使用者偏好及/或方法之精確性(內部感測器、外部感測器或兩者),該精確性可取決於內部及外部CRI量測精確性(其可隨照明條件及彼等條件(例如,對於外部感測器,陰天條件)中之感測器的精確性或有效性而變)。若使用者輸入選擇將要使用外部感測器,則根據上文闡述之第三種情形,控制邏輯使用來自一或多個外部感測器之量測結果來判定房間中之內部CRI。若使用者輸入選擇將使用內部感測器,則根據上文闡述之第 二種情形,控制邏輯使用來自一或多個內部感測器之量測結果來判定內部CRI。控制邏輯接著發送控制信號來調整人工內部照明以增強房間中之內部照明使之為或接近所要內部CRI。在其他實施例中,使用感測器來判定外部CRI,且因此可藉由計算或藉助於內部感測器量測結果來進行內部CRI之更精確判定。使用者基於預設標準來選擇偏好或演算法,無論是否使用內部感測器和外部感測器中之一者或兩者來判定外部及/或內部照明條件作為輸入以判定恰當之內部CRI。第四實施例之重要性為感測器(內部及/或外部)在某些環境條件中比在其他環境條件中更有用。舉例而言,情況可能係,在陰天條件在外部占主導地位時,外部感測器效率較低而無法提供精確資料供輸入至控制邏輯,且僅使用內部感測器來判定及調整內部CRT更精確。 In a fourth scenario, the control logic uses user input to determine whether to control the room based on measurements from one or more external sensors and/or based on measurements from one or more internal sensors Inside CRI. That is, a combination of the second case and the third case, for example, based on user preference and/or the accuracy of the method (internal sensor, external sensor, or both), which may depend on the internal and external CRI measurement accuracy (which can vary with lighting conditions and the accuracy or effectiveness of the sensors in those conditions (eg, for external sensors, cloudy conditions)). If the user input selects that an external sensor is to be used, then according to the third scenario described above, the control logic uses the measurements from one or more external sensors to determine the internal CRI in the room. If the user input selects to use the internal sensor, then according to the above In both cases, the control logic uses measurements from one or more internal sensors to determine the internal CRI. The control logic then sends control signals to adjust the artificial interior lighting to enhance the interior lighting in the room at or near the desired interior CRI. In other embodiments, a sensor is used to determine the external CRI, and thus a more accurate determination of the internal CRI can be made by calculation or by means of internal sensor measurements. The user selects a preference or algorithm based on preset criteria, whether to use either or both of the internal sensors and external sensors to determine external and/or internal lighting conditions as input to determine the appropriate internal CRI. The importance of the fourth embodiment is that the sensors (internal and/or external) are more useful in some environmental conditions than in others. For example, it may be the case that when cloudy conditions are dominant externally, the external sensor is inefficient to provide accurate data for input to the control logic, and only the internal sensor is used to determine and adjust the internal CRT more accurate.

雖然在上文就調整人工內部照明使得房間中之照明處於或接近所要內部CRI來闡述此四種情形,但將理解,在其他實施例中,調整人上內部照明可用於更改房間中之照明以匹配CRI及CCT、或CCT之特定預設值。 While these four scenarios are described above in terms of adjusting the artificial interior lighting so that the lighting in the room is at or near the desired interior CRI, it will be appreciated that in other embodiments, adjusting the on-person interior lighting may be used to alter the lighting in the room to Match CRI and CCT, or a specific default value of CCT.

在調整人工內部照明之此等技術的某些實施方案中,使用者可輸入用於調整人工內部照明之設置。在一個實施方案中,在第四種情形中,使用者可判定是否使用內部及/或外部感測器來控制房間之內部CRI。舉例而言,使用者可為建築物系統管理員,該管理員在房間中無內部感測器時或在內部感測器不可操作時選擇使用外部感測器。在另一實施方案中,使用者提供在房間中使用之CRI及/或CCT設置。使用者可在(例如)行動裝置、牆壁裝置(諸如,例如,圖23中所示)或經由通信網路與執行控制邏輯之一或多個控制器通信的其他合適計算裝置之使用者介面上輸入該等設置。在一些情況中,使用者可輸入不同之較佳CRI及/或CCT設置之排程以在一天 中之不同時間及一年中之某些天使用。在其他情況中,使用者可輸入超控設置。在另一實施方案中,使用者可選擇使用哪種類型之感測器輸入或感測器輸入之組合來判定房間之內部CRI。舉例而言,根據第三種情形,使用者可選擇使用天氣預報資料來判定內部CRI,其中天氣預報資料係得自外部感測器之特定組合。在一些情況中,此等外部感測器可位於單獨建築物處且天氣預報資料經由通信網路傳送至具有該房間之建築物處的控制器。在某些實施方案中,控制軟體自動地將環境天氣條件作為輸入而納入考慮來調整內部CRI及是否使用外部及/或內部感測器。 In certain implementations of these techniques for adjusting artificial interior lighting, a user may input settings for adjusting artificial interior lighting. In one embodiment, in the fourth scenario, the user can determine whether to use internal and/or external sensors to control the interior CRI of the room. For example, a user may be a building system administrator who chooses to use external sensors when there are no internal sensors in the room or when internal sensors are inoperable. In another embodiment, the user provides CRI and/or CCT settings for use in the room. The user may be on the user interface of, for example, a mobile device, a wall device (such as, for example, shown in FIG. 23 ), or other suitable computing device that communicates with one or more controllers executing control logic via a communication network Enter these settings. In some cases, the user may enter a schedule of different preferred CRI and/or CCT settings for use at different times of the day and certain days of the year. In other cases, the user may enter override settings. In another embodiment, the user can select which type or combination of sensor inputs to use to determine the interior CRI of the room. For example, according to the third scenario, the user may choose to use weather forecast data obtained from a specific combination of external sensors to determine the internal CRI. In some cases, these external sensors may be located at a separate building and the weather forecast data is communicated via a communication network to a controller at the building with the room. In certain implementations, the control software automatically takes into account ambient weather conditions as input to adjust the internal CRI and whether to use external and/or internal sensors.

在一個實施方案中,控制邏輯自使用者輸入之歷史資料中獲知。舉例而言,房間中之一或多個使用者輸入CRI/CCT設置的例子及該輸入之相關聯時間(一年中之一天及一天中之時間)可儲存於記憶體中作為歷史資料。可評估歷史資料之趨勢以預測未來時間時之適當CRI/CCT設置。舉例而言,房間之佔用者可在一週中之每個工作日相同之時間每天選擇特定CRI設置。控制邏輯將此資訊儲存為歷史資料、評估該歷史資料作為趨勢及在下一週之工作日期間在該相同時間時(或就在該時間之前)將所要內部CRI等級設置為此設置。以此方式,控制邏輯可自動地調整其CRI/CCT設置使之適應使用者偏好。 In one embodiment, the control logic is learned from historical data entered by the user. For example, examples of CRI/CCT settings entered by one or more users in a room and the associated time of that entry (day of year and time of day) may be stored in memory as historical data. Trends in historical data can be assessed to predict appropriate CRI/CCT settings at future times. For example, an occupant of a room may select a particular CRI setting each day at the same time each weekday of the week. The control logic stores this information as historical data, evaluates the historical data as a trend, and sets the desired internal CRI level to this setting at the same time (or just before) during the next week's workday. In this way, the control logic can automatically adjust its CRI/CCT settings to suit user preferences.

根據某些實施方案,以上情形之控制邏輯合併至預測性邏輯中,該預測性邏輯判定一或多個電致變色窗之著色狀態及/或對內部照明之調整以獲得在未來時間時之所要內部CRI。在以上小節中闡述了可用於計算一或多個電致變色窗之著色狀態以考慮到佔用者舒適性及/或能量考慮因素的、可購自Milpitas,California之View,Inc.的Intelligence®之邏輯模組模組A、模組B及模組C的實例。在2015年5月7日提交且標題為 「CONTROL METHOD FOR TINTABLE WINDOWS」之美國專利申請案15/347,677中闡述用於判定電致變色窗之著色狀態的其他預測性控制邏輯之另一實例,該申請案特此以引用方式整體併入。 According to certain implementations, the control logic for the above situations is incorporated into predictive logic that determines the tint state of one or more electrochromic windows and/or adjusts the interior lighting to achieve the desired outcome at a future time. Internal CRI. The Intelligence® available from View, Inc. of Milpitas, California, that can be used to calculate the tint state of one or more electrochromic windows to take into account occupant comfort and/or energy considerations is described in the subsection above. Instances of logical modules Module A, Module B, and Module C. Submitted on May 7, 2015 and titled Another example of other predictive control logic for determining the tinting state of an electrochromic window is set forth in US Patent Application 15/347,677, "CONTROL METHOD FOR TINTABLE WINDOWS," which is hereby incorporated by reference in its entirety.

圖22為根據實施例之一方法的流程圖2200,該方法實施用於控制具有一或多個電致變色窗之房間之內部CRI的預測性控制邏輯。雖然相對於電致變色窗闡述此方法,但該方法可用其他可著色窗實施。在操作2220中,控制邏輯使用模組A、B及C中之一或多者來計算在未來時間房間中之一或多個電致變色窗的著色等級。在一種情況中,計算中使用之未來時間可為在接收到具有著色指令之控制信號之後允許窗完成轉變的將來足夠遠之時間。在以上小節中闡述了關於模組A、B及C之詳情。模組A、B及C輸出在未來時間一或多個電致變色窗之著色等級、感測器讀數(內部及/或外部)、包括定向之窗組態、一天中之時間、一年中之一天、視情況存在之天氣條件及由該等模組使用之其他資料。 22 is a flowchart 2200 of a method implementing predictive control logic for controlling interior CRI in a room having one or more electrochromic windows, according to an embodiment. Although this method is described with respect to electrochromic windows, the method can be implemented with other tintable windows. In operation 2220 , the control logic uses one or more of modules A, B, and C to calculate a tint level for one or more electrochromic windows in the room at a future time. In one case, the future time used in the calculation may be sufficiently far in the future to allow the window to complete the transition after receiving the control signal with the shading instruction. Details about modules A, B, and C are described in the subsections above. Modules A, B, and C output the tint level of one or more electrochromic windows in the future, sensor readings (internal and/or external), including directional window configuration, time of day, time of year day, weather conditions as appropriate, and other information used by these modules.

在操作2230中,預測性控制邏輯判定未來時間時之所要/恰當內部CRI。在某些實施方案中,所要內部CRI預設為使用者偏好。在一個實例中,所要內部CRI可基於用於控制房間中之人工內部照明的使用者輸入之歷史資料的趨勢。作為另一實例,所要內部CRI可為使用者輸入之超控值。另外地或另選地,所要內部CRI可基於排程資訊。在一些情況中,此排程可藉由使用者判定或調整。在其他情況中,控制邏輯可基於歷史資料來調整排程。 In operation 2230 , the predictive control logic determines the desired/appropriate internal CRI at a future time. In certain embodiments, the desired internal CRI is preset as a user preference. In one example, the desired interior CRI may be based on trends in historical data of user input for controlling artificial interior lighting in a room. As another example, the desired internal CRI may be a user-entered override value. Additionally or alternatively, the desired internal CRI may be based on scheduling information. In some cases, this schedule can be determined or adjusted by the user. In other cases, the control logic may adjust the schedule based on historical data.

在操作2250中,控制邏輯判定對內部照明及/或電致變色窗之著色狀態的調整以獲得房間中之所要/恰當內部CRI。舉例而言,控制邏輯可判定要啟動之燈的類型、要啟動之一或多種顏色或燈、所啟動之燈的強度等級 設置、所啟動之燈的位置、要啟動之燈的數目及佈置等。 In operation 2250 , the control logic determines adjustments to the interior lighting and/or tint state of the electrochromic windows to obtain the desired/appropriate interior CRI in the room. For example, the control logic may determine the type of lights to activate, one or more colors or lights to activate, the intensity level setting of the lights to activate, the location of the lights to activate, the number and arrangement of lights to activate, etc. .

一旦判定調整,則控制邏輯發送用於調整房間中之人工內部照明及/或電致變色窗之著色狀態的控制信號(操作2260)。方法接著再回到操作2220Once the adjustment is determined, the control logic sends a control signal for adjusting the artificial interior lighting and/or the tint state of the electrochromic window in the room (operation 2260 ). The method then returns to operation 2220 again.

在根據第一種情形之實施方案中,基於一或多個電致變色窗之著色狀態來判定房間之內部CRI。在一個實例中,當來自模組A、B及C之著色狀態為某一等級,且在使用者佔用之房間中內部照明開啟時,控制邏輯自動地判定調整且發送控制信號來自動地調整內部燈以提供使用者預設之內部CRI。 In an implementation according to the first scenario, the interior CRI of the room is determined based on the tinting state of one or more electrochromic windows. In one example, when the tint status from modules A, B, and C is at a certain level, and the interior lighting is on in a room occupied by a user, the control logic automatically determines the adjustment and sends a control signal to automatically adjust the interior Lights to provide user-preset internal CRI.

根據第二種情形之實施方案,使用來自房間中之一或多個內部感測器的量測結果來判定房間之內部CRI值。在一個實例中,控制邏輯自動地判定對內部照明及/或著色等級之調整,該等調整將CRI值調整為所要等級。 According to an implementation of the second case, measurements from one or more interior sensors in the room are used to determine the interior CRI value of the room. In one example, the control logic automatically determines adjustments to interior lighting and/or shading levels that adjust the CRI value to the desired level.

根據第三種情形之實施方案,可使用來自一或多個外部感測器之量測結果來基於一或多個電致變色窗之著色等級來判定變換成內部CRI之外部CRI。舉例而言,假定窗之簾牆全處於相同著色狀態,可獲得一個內部CRI,但若窗之簾牆中之一或多個窗著色至不同著色狀態,則獲得不同之內部CRI值且可藉由相應地改變內部照明來調整該不同之內部CRI值。在一個實施例中,僅根據基於窗之著色狀態及量測到之外部CRI之計算值來調整內部CRI。 According to a third scenario implementation, measurements from one or more external sensors may be used to determine the external CRI converted to the internal CRI based on the tint level of the one or more electrochromic windows. For example, if a curtain wall of windows is all in the same shading state, one internal CRI can be obtained, but if one or more windows in the curtain wall of windows are tinted to a different tinting state, a different internal CRI value is obtained and can be borrowed from The different internal CRI values are adjusted by changing the internal illumination accordingly. In one embodiment, the internal CRI is only adjusted based on the calculated value based on the tint state of the window and the measured external CRI.

根據第四種情形之實施方案,如上文相對於第一種及第二種情形所闡述,可使用來自一或多個外部感測器及/或內部感測器之量測結果來判定內部CRI且判定調整。 According to an implementation of the fourth scenario, as described above with respect to the first and second scenarios, measurements from one or more external sensors and/or internal sensors may be used to determine the internal CRI and make adjustments.

在某些實施方案中,基於該四種情形,具有模組A、B及C之預測性控制邏輯亦包括超控邏輯模組。在此實施方案中,超控邏輯模組可調整(超控)藉由模組A、B及C判定的一或多個電致變色窗之著色狀態及/或調整內部照明以在房間中獲得所要CRI。舉例而言,在實施第三種情形時,控制邏輯可判定是否使用自模組A、B及C輸出之著色狀態,窗之簾牆將在未來時間處於最暗著色狀態。在此種情況中,為了獲得恰當之CRI,內部照明將需要在未來時間時調整為高強度設置。控制邏輯亦可判定若窗之子集保持於較低著色狀態,則可在內部照明未開啟之情況下獲得恰當CRI。在此實例中,控制邏輯可判定要在未來時間將窗之子集調整為較低著色狀態且不調整內部照明。 In certain implementations, based on the four scenarios, the predictive control logic with modules A, B, and C also includes an override logic module. In this implementation, the override logic module can adjust (override) the tint state of one or more electrochromic windows determined by modules A, B, and C and/or adjust the interior lighting to obtain in the room desired CRI. For example, when implementing the third scenario, the control logic can determine whether to use the shading state output from modules A, B, and C, the curtain wall of the window will be in the darkest shading state in the future time. In this case, in order to obtain a proper CRI, the interior lighting will need to be adjusted to a high intensity setting at a future time. The control logic may also determine that if the subset of windows remains in a lower shading state, then proper CRI can be obtained without the interior lighting turned on. In this example, the control logic may decide to adjust the subset of windows to a lower shading state at a future time and not adjust the interior lighting.

E.佔用輸入及佔用者位置之動態感知E. Dynamic perception of occupancy input and occupant location

在某些實施方案中,使用控制邏輯來控制多區可著色窗之每一著色區、窗之組(或區)中之個別窗或其組合的著色狀態。在一些情況中,控制邏輯首先判定具有該窗之房間是被佔用還是未被佔用。控制邏輯可基於一或多個資料,諸如,例如,排程資訊、佔用感測器資料、資產追蹤資訊或其他佔用者追蹤資料、經由遙控器或諸如圖23中所示之牆壁單元來自使用者之啟動資料等中之一或多者,來作出其判定。遙控器可呈手持式裝置(諸如智慧電話)之形式或可為計算裝置(諸如膝上型電腦)。舉例而言,若排程資訊指示佔用者很可能在房間中,則控制邏輯可判定房間被佔用。作為另一實例,控制邏輯可基於來自佔用感測器之讀數來判定房間被佔用。在另一實例中,若佔用者已在牆壁單元或遙控器之手動控制面板處輸入指示佔用之資訊,則控制邏輯可判定房間被佔用。 In certain implementations, control logic is used to control the shading state of each shading zone of a multi-zone tintable window, individual windows in a group (or zone) of windows, or a combination thereof. In some cases, the control logic first determines whether the room with the window is occupied or unoccupied. The control logic may be based on one or more data, such as, for example, scheduling information, occupancy sensor data, asset tracking information or other occupant tracking data, from a user via a remote control or a wall unit such as shown in FIG. 23 One or more of the activation data, etc., to make its determination. The remote control may be in the form of a handheld device such as a smart phone or may be a computing device such as a laptop. For example, control logic may determine that the room is occupied if the scheduling information indicates that the occupant is likely to be in the room. As another example, the control logic may determine that a room is occupied based on readings from an occupancy sensor. In another example, the control logic may determine that the room is occupied if the occupant has entered information indicating occupancy at the manual control panel of the wall unit or remote control.

若房間被佔用,則控制邏輯判定在被佔用或可能被佔用之區域中是 否存在眩光條件。控制邏輯基於佔用者在房間中之位置來判定著色區之著色狀態。舉例而言,可判定著色狀態以避免可能大概被佔用或被佔用之桌子或其他區域上的眩光。在一些情況中,佔用者之當前位置係基於自佔用查找表擷取之資訊。在其他情況中,佔用者之當前位置係基於來自感測器(例如,佔用感測器)之信號中的資料。感測器可產生具有佔用者在房間中之位置的信號。窗控制器可接收該信號。作為另一實例,使用者可(例如)經由房間中之控制面板來提供關於佔用者在房間中之位置的資料。 If the room is occupied, the control logic determines whether the occupied or potentially occupied area is Whether there is a glare condition. The control logic determines the shaded state of the shaded area based on the occupant's position in the room. For example, the tinting state can be determined to avoid glare on tables or other areas that may be presumably occupied or occupied. In some cases, the current location of the occupant is based on information retrieved from an occupancy lookup table. In other cases, the occupant's current location is based on data in signals from sensors (eg, occupancy sensors). The sensor may generate a signal with the location of the occupant in the room. The window controller can receive this signal. As another example, the user may provide information regarding the location of the occupant in the room, eg, via a control panel in the room.

圖23為根據一實施例的具有手動控制面板之牆壁單元的實例的像片。 23 is a photograph of an example of a wall unit with a manual control panel, according to an embodiment.

在某些態樣中,一種控制方法判定具有採光著色區之多區可著色窗中的著色區之著色狀態。在此等情況中,該控制方法判定最大化採光同時控制來自進入房間之太陽輻射之眩光及/或熱負荷的著色狀態。在某些態樣中,使用者可使用控制面板(例如,房間中之手動控制面板或電腦介面)來選擇「採光模式」或「均一模式」、另一預定模式或藉由使用者定製之模式。舉例而言,使用者可能夠為房間中之窗的區定製不同著色狀態,例如,「使用者1-模式1」。在「採光模式」下,該控制方法為窗之採光著色區判定清透著色狀態或比其他著色區亮之著色狀態。在「均一模式」下,該控制方法基於不同於用於採光之標準來判定區之著色狀態。 In some aspects, a control method determines the shading status of shading regions in a multi-region tintable window having daylight tinting regions. In these cases, the control method determines the tint state of maximizing daylighting while controlling glare and/or heat load from solar radiation entering the room. In some aspects, the user may use a control panel (eg, a manual control panel or a computer interface in the room) to select a "lighting mode" or "uniform mode", another predetermined mode, or a user-customized model. For example, a user may be able to customize different tinting states for areas of windows in a room, eg, "User 1 - Mode 1". In the "lighting mode", the control method is to determine the clear coloring state or the coloring state that is brighter than other coloring areas for the lighting coloring area of the window. In the "uniform mode", the control method determines the shaded state of an area based on criteria other than those used for daylighting.

E.多區偏好/佔用模式之回饋獲知E. Feedback learning of multi-zone preference/occupancy mode

在某些態樣中,用於控制著色區/窗之著色狀態的控制邏輯係基於對偏好及佔用模式之回饋獲知。舉例而言,如藉由感測器判定、來自使用者輸入等的佔用者在不同時間/日期時之位置可儲存為佔用模式。此等在不同時間/日期時之佔用位置可用於預測佔用者在未來時間之位置。該控制 方法可接著基於所預測之佔用者位置來控制著色狀態。 In some aspects, the control logic for controlling the shading state of the shading region/window is learned based on feedback of preferences and occupancy patterns. For example, the location of the occupant at different times/dates as determined by sensors, from user input, etc. can be stored as an occupancy pattern. These occupancy positions at different times/dates can be used to predict where the occupants will be at future times. the control The method may then control the shading state based on the predicted occupant location.

作為另一實例,可儲存為不同著色區在某些時間選擇某些著色狀態之使用者輸入。使用者之此等著色選擇可用於預測房間中可能希望之著色狀態。該控制方法可接著根據使用者所希望之此等預測著色狀態來控制著色狀態。 As another example, user input for selecting certain shaded states at certain times for different shaded regions may be stored. Such shading choices by the user can be used to predict the shading state that may be desired in the room. The control method can then control the shading states according to the predicted shading states desired by the user.

F.用於判定眩光條件的進入房間中之光投射F. Light projection into the room for determining glare conditions

在某些實施方案中,控制邏輯包括藉由計算房間中來自著色區之光的三維投射來判定穿過著色區之直射太陽光是否在佔用區域中產生眩光條件的指令。光之三維投射可被視為房間中外部光直接射入房間中的光之體積。舉例而言,三維投射可藉由穿過多區窗之著色區的來自太陽之平行光線界定。進入房間中之三維投射的方向係基於太陽方位角及/或太陽高度,可基於一天中之時間及窗之經度及緯度座標藉由太陽計算器來計算太陽方位角及/或太陽高度。光之三維投射可用於判定與房間中之佔用區域的相交。該控制邏輯判定特定平面處之光投射且判定光投射或與光投射相關聯之眩光區域與佔用區域重疊的量。若光投射係在佔用區域之外,則判定不存在眩光情形。在2015年5月5日提交且標題為「CONTROL METHOD FOR TINTABLE WINDOWS」之PCT申請案PCT/US15/29675中闡述使用光之三維投射來判定眩光情形的控制邏輯之詳情,該申請案特此以引用方式整體併入。 In certain embodiments, the control logic includes instructions for determining whether direct sunlight passing through the shading zone creates a glare condition in the occupied area by calculating the three-dimensional projection of light from the shading zone in the room. The three-dimensional projection of light can be thought of as a volume of light in a room where external light directly enters the room. For example, a three-dimensional projection can be defined by parallel rays from the sun passing through the shaded regions of a multi-region window. The direction of the 3D projection into the room is based on the sun azimuth and/or sun height, which can be calculated by a solar calculator based on the time of day and the longitude and latitude coordinates of the window. The three-dimensional projection of light can be used to determine the intersection with the occupied area in the room. The control logic determines the light projection at a particular plane and determines the amount by which the light projection or glare area associated with the light projection overlaps the occupied area. If the light projection is outside the occupied area, it is determined that there is no glare situation. Details of control logic for determining glare conditions using three-dimensional projection of light are set forth in PCT application PCT/US15/29675, filed on May 5, 2015 and entitled "CONTROL METHOD FOR TINTABLE WINDOWS", which application is hereby incorporated by reference The way is integrated as a whole.

圖24A圖24B圖24C為根據一實施例的各自具有房間(垂直牆壁未示出)2400之透視圖的示意圖,該房間具有在建築物外部與房間2400內部之間的垂直牆壁中的多區窗2410,該多區窗具有第一著色區2412及第二著色區2414圖24A圖24B圖28C分別示出三種不同之太陽光情形, 其中太陽光以與太陽之不同位置相關聯的三個不同方向245024602470(繪示為虛線箭頭)照射穿過多區窗2410。在所示實例中,房間2400具有為佔用者之位置或可能位置的佔用區域2450。佔用區域2450可為(例如)桌子或另一工作場所。在此實例中,佔用區域2450被界定為房間2400之地板上的二維區域。在圖24A、圖24B圖28C中示出之所示實例中之每一者中,太陽光(繪示為方向箭頭)照射多區窗2410之第一著色區2412及第二著色區2414 Figures 24A , 24B , and 24C are schematic diagrams each having perspective views of a room (vertical walls not shown) 2400 with multiple vertical walls between the exterior of the building and the interior of the room 2400 , according to one embodiment. A zone window 2410 , the multi-zone window has a first tinting zone 2412 and a second tinting zone 2414 . Figures 24A , 24B , and 28C show three different sunlight scenarios, respectively, in which sunlight shines through multiple zones in three different directions 2450 , 2460 , 2470 (shown as dashed arrows) associated with different positions of the sun Windows 2410 . In the example shown, room 2400 has an occupied area 2450 that is the location or possible location of the occupant. Occupied area 2450 may be, for example, a desk or another workplace. In this example, occupied area 2450 is defined as a two-dimensional area on the floor of room 2400 . In each of the illustrated examples shown in FIGS. 24A, 24B, and 28C , sunlight (shown as directional arrows) illuminates the first tinted area 2412 and the second tinted area 2414 of the multi-zone window 2410 .

根據一個態樣,控制邏輯基於太陽之位置判定穿過兩個著色區24122414中之每一者及穿過房間2400之光的投射。控制邏輯判定穿過兩個著色區24122414中之每一者的光與包括二維佔用區域2450之平面的交點處之二維光投射,該平面與房間2400之地板的表面共面。在圖24A中,繪示穿過第一著色區2412之第一二維光投射2416,且繪示穿過房間2400之地板上之第二著色區2414的第二二維光投射2418。在圖24B中,繪示穿過第一著色區2412之第一二維光投射2416,且繪示穿過房間2400之地板上之第二著色區2414的第二二維光投射2420。在圖24C中,繪示穿過第一著色區2412之第一二維光投射2426,且繪示穿過房間2400之地板上之第二著色區2414的第二二維光投射2428。控制邏輯接著判定來自著色區之二維光投射是否與佔用區域相交。若二維光投射與佔用區域相交,則控制邏輯將對應著色區置於(保持於或轉變至)變暗著色狀態。雖然示出兩個著色區,但將理解,使用類似方法,額外區及/或不同位置之著色區將適用。 According to one aspect, the control logic determines the projection of light through each of the two shaded regions 2412 , 2414 and through the room 2400 based on the position of the sun. The control logic determines the two-dimensional light projection at the intersection of the light passing through each of the two shaded regions 2412 , 2414 with a plane including the two-dimensional footprint 2450 that is coplanar with the surface of the floor of the room 2400 . In FIG. 24A , a first two-dimensional light projection 2416 is shown through a first shaded area 2412 , and a second two-dimensional light projection 2418 is shown through a second shaded area 2414 on the floor of the room 2400 . In FIG. 24B , a first two-dimensional light projection 2416 is shown through a first shaded area 2412 , and a second two-dimensional light projection 2420 is shown through a second shaded area 2414 on the floor of the room 2400 . In FIG. 24C , a first two-dimensional light projection 2426 is shown through a first shaded area 2412 , and a second two-dimensional light projection 2428 is shown through a second shaded area 2414 on the floor of the room 2400 . The control logic then determines whether the two-dimensional light projection from the shaded area intersects the occupied area. If the two-dimensional lightcast intersects the occupied area, the control logic places (remains in or transitions to) the darkened shaded state for the corresponding shaded area. Although two shaded areas are shown, it will be understood that additional areas and/or shaded areas in different locations would apply using a similar approach.

圖24A中所示之第一種情形中,例如,穿過著色區24122414之二維光投射24162416均未與佔用區域2450相交。在此種情況中,將著 色區24122414置於清透狀態。 In the first case shown in FIG. 24A , for example, none of the two-dimensional light projections 2416 , 2416 passing through the shaded areas 2412 , 2414 intersect the occupied area 2450 . In this case, the colored areas 2412 , 2414 are placed in a clear state.

圖24B中所示之第二種情形中,第一二維光投射2420與佔用區域2450相交,且第二二維光投射2422不與佔用區域2450相交。在此種情形中,將第一著色區2412置於變暗著色狀態以避免眩光情形。由於第二二維光投射2422未與佔用區域2450相交,因此將第二著色區2414置於清透狀態。 In the second situation shown in FIG. 24B , the first two-dimensional light projection 2420 intersects the occupation area 2450 and the second two-dimensional light projection 2422 does not intersect the occupation area 2450 . In this case, the first tinted region 2412 is placed in a darkened tinted state to avoid glare conditions. Since the second two-dimensional light projection 2422 does not intersect the occupied area 2450 , the second shaded area 2414 is placed in a clear state.

圖24C中所示之第三種情形中,第一二維光投射2426及第二二維光投射2428與佔用區域2450相交。在此種情形中,將第一著色區2412及第二著色區2414置於變暗著色狀態以在佔用區域2450上避免眩光情形。 In the third situation shown in FIG. 24C , the first two-dimensional light projection 2426 and the second two-dimensional light projection 2428 intersect the occupied area 2450 . In this case, the first tinted area 2412 and the second tinted area 2414 are placed in a darkened tinted state to avoid glare conditions on the occupied area 2450 .

雖然圖24A、圖24B圖24C中之所示實例包括多區可著色窗,但類似技術亦將應用於單獨且相鄰之可著色窗。舉例而言,房間可具有在建築物外部與房間內部之間的垂直牆壁中之兩個單獨且相鄰之可著色窗。使用控制邏輯,基於太陽之位置引導來自每一可著色窗之光的三維投射穿過房間。控制邏輯判定佔用區域之平面處的穿過每一窗之二維光投射。控制邏輯接著判定來自每一窗之二維光投射是否與佔用區域相交。若該二維光投射與佔用區域相交,則控制邏輯將對應窗置於(保持於或轉變至)變暗著色狀態。 Although the example shown in Figures 24A, 24B, and 24C includes multi-zone tintable windows, similar techniques would also apply to separate and adjacent tintable windows. For example, a room may have two separate and adjacent tintable windows in the vertical walls between the building exterior and the room interior. Using control logic, the three-dimensional projection of light from each tintable window is directed across the room based on the position of the sun. The control logic determines the two-dimensional light projection through each window at the plane of the occupied area. The control logic then determines whether the two-dimensional light projection from each window intersects the occupied area. If the two-dimensional lightcast intersects the occupied area, the control logic places (remains in or transitions to) the corresponding window into a darkened shaded state.

G.用於控制眩光、環境光等級及顏色及/或對比率之控制邏輯G. Control Logic for Glare, Ambient Light Level and Color and/or Contrast Ratio

某些實施例係關於調整人工照明及/或可著色窗之著色以在佔用區域中提供相對恆定之亮度級及環境光譜內容的控制邏輯。通常,該控制邏輯調整人工照明及/或可著色窗之著色,使得照射佔用區域中之物件之表面的組合光與自然光譜類似,使得所照亮之物件反映其真實之顏色。雖然通常設為自然光譜,但可或者為當前佔用者定製環境光譜內容以提供(例如) 撫慰光、光療法以調整晝夜節律或提供恢復愈療等。藉由調整可著色窗之著色狀態,控制邏輯可控制穿過可著色窗之直射太陽光(眩光)及藉由穿過窗之光投射賦予之顏色(例如,藍光)。藉由調整人工照明,控制邏輯可偏移眩光之效應且調整環境顏色。對著色狀態與人工照明之組合控制可在佔用區域中提供處於所要等級的相對恆定之環境光等級及光譜內容。 Certain embodiments relate to control logic that adjusts artificial lighting and/or tinting of tintable windows to provide a relatively constant brightness level and ambient spectral content in an occupied area. Typically, the control logic adjusts the tinting of artificial lighting and/or tintable windows so that the combined light illuminating the surfaces of objects in the occupied area is similar to the natural spectrum, so that the illuminated objects reflect their true colors. While typically set to natural spectrum, ambient spectral content can either be customized for the current occupant to provide (for example) Soothing light, light therapy to adjust circadian rhythms or provide restorative healing, etc. By adjusting the tinting state of the tintable window, the control logic can control both the direct sunlight (glare) passing through the tintable window and the color imparted by light projection through the window (eg, blue light). By adjusting the artificial lighting, the control logic can offset the effects of glare and adjust the color of the environment. The combined control of tinting state and artificial lighting can provide a relatively constant ambient light level and spectral content at a desired level in the occupied area.

在一個態樣中,控制邏輯可控制可調人工照明以調整光照之顏色(波長範圍)、照度級及/或照明方向。可選擇此等調整以藉由減少眩光及改良環境光譜內容及/或減小佔用區域中之對比率來增加佔用者舒適性。舉例而言,控制邏輯可控制可調人工照明之波長及流明/照度設置以偏移佔用區域中之對比率。可調室內人工照明之實例為Lithonia Lighting ®出售之BLT系列可調白光LED,該LED可調至在0至1000勒克斯(100%)之間變化的不同照度級及在2700凱氏與6500凱氏之間調整的顏色。另外地或另選地,該可調人工照明可具有處於不同位置之多個光源及/或具有可移動以改變光方向之光源。控制邏輯可控制人工照明之各種光源以照亮某些區域。舉例而言,可調整室內人工照明以將光引導至具有受穿過著色窗之外部眩光影響的佔用者之佔用區域。反射光為自人工光反射之光與光投射之組合以在佔用區域中產生更均一之強度及顏色。此可減少佔用者感知到之眩光,如此可增加佔用者舒適性及生產力。 In one aspect, the control logic can control the tunable artificial lighting to adjust the color (wavelength range), illumination level, and/or direction of illumination of the illumination. These adjustments can be selected to increase occupant comfort by reducing glare and improving ambient spectral content and/or reducing contrast ratios in the occupied area. For example, the control logic can control the wavelength and lumen/illuminance settings of the tunable artificial lighting to shift the contrast ratio in the occupied area. An example of tunable indoor artificial lighting is the BLT series of tunable white LEDs sold by Lithonia Lighting®, which are tunable to different illumination levels varying from 0 to 1000 lux (100%) and at 2700 Kjeldahl and 6500 Kjeldahl color to adjust between. Additionally or alternatively, the tunable artificial lighting may have multiple light sources in different positions and/or have light sources that can be moved to change the direction of the light. The control logic can control the various light sources of artificial lighting to illuminate certain areas. For example, indoor artificial lighting can be adjusted to direct light to occupied areas with occupants affected by external glare through tinted windows. Reflected light is a combination of light reflected from artificial light and light projection to produce a more uniform intensity and color in the occupied area. This may reduce glare perceived by the occupant, which may increase occupant comfort and productivity.

如本文中所使用,「負設置」係指可調人造光源之設置,該設置提供在偏移來自穿過已著色窗之光之顏色的波長範圍中之光照。舉例而言,若處於其最暗狀態之可著色窗向穿過該窗之光賦予藍色,則負設置之偏移顏色將為紅光或紅光與黃光之組合。在此實例中,負設置中之可調人造光源將提供紅光或紅光與黃光之光照。在一個態樣中,控制邏輯對可調室內人 工照明啟動負設置以將光引導至具有穿過已著色窗之光投射的佔用區域,以偏移來自該光投射之眩光及顏色之效應。 As used herein, a "negative setting" refers to a setting of a tunable artificial light source that provides illumination in a wavelength range that is shifted from the color of light passing through a tinted window. For example, if a tintable window in its darkest state imparts blue color to light passing through the window, the offset color for a negative setting would be red light or a combination of red and yellow light. In this example, the tunable artificial light source in the negative setting would provide illumination of red light or red and yellow light. In one aspect, the control logic is Lighting enables a negative setting to direct light to an occupied area with light cast through a tinted window to offset the effects of glare and color from the light cast.

減小藉由不同強度之不同照明源照亮之表面的各部分之間的界面處之強烈對比可提高佔用者之視覺舒適性。在某些實施方案中,控制邏輯基於根據來自建築物系統之回饋判定之區域中的當前對比率來調整建築物系統之功能。舉例而言,可基於一區域(諸如佔用區域或其他周圍區域)中之光的當前照度及/或顏色來判定該區域中之對比率。可藉由以下一或多者來判定當前照度及顏色:來自建築物中之一或多個感測器(例如,攝影機、熱感測器等)之量測結果、人工照明之當前設置及位置等。具有可量測環境光之照度及顏色之感測器的裝置之實例為光譜儀,諸如,例如,由Sekonic ®製造之市售C-7000 spectromaster。控制邏輯調整建築物系統之功能以將該區域中之對比率調整為可接受等級。舉例而言,可調整該等建築物系統,使得對比率低於可接受範圍內或低於最大極限值。作為另一實例,可調整該等建築物系統,使得基於人工照明之照度及顏色的查找表來使對比率維持於可接受等級內,該人工照明可用於偏移來自穿過具有不同著色等級之電致變色窗的光投射之反射光。 Reducing the sharp contrast at the interface between portions of a surface illuminated by different illumination sources of different intensities can improve occupant visual comfort. In certain embodiments, the control logic adjusts the function of the building system based on the current contrast ratio in the area determined based on feedback from the building system. For example, the contrast ratio in an area, such as an occupied area or other surrounding area, may be determined based on the current illuminance and/or color of the light in the area. The current illuminance and color can be determined by one or more of the following: measurements from one or more sensors in the building (eg, cameras, thermal sensors, etc.), the current setting and location of artificial lighting Wait. An example of a device with a sensor that can measure the illuminance and color of ambient light is a spectrometer, such as, for example, the commercially available C-7000 spectromaster manufactured by Sekonic®. The control logic adjusts the function of the building system to adjust the contrast ratio in the area to an acceptable level. For example, the building systems can be adjusted so that the contrast ratio is below an acceptable range or below a maximum limit. As another example, the building systems can be adjusted such that the contrast ratio is maintained within an acceptable level based on a look-up table of illuminance and color of artificial lighting that can be used to offset changes from passing through buildings with different levels of coloration. Reflected light from the light projection of an electrochromic window.

圖25為根據一實施方案的量測到之照度(勒克斯)對量測到之色溫(凱氏)的圖。該圖示出三個不同區域:闡述為溫暖且彩色、看起來紅色之上部區域、闡述為令人愉悅之中間區域及闡述為冷且暗、看起來藍色之下部區域。該圖包括在人工照明按全亮度等級開啟且設置為2700凱氏時在下午12:30在與處於最暗著色狀態之窗相距0呎、2呎、4呎及6呎之四個距離處取得之照度及色溫的量測值之四個點。若人工照明關閉,則照度及色溫將可能位於下部區域中。如所示,在人工照明開啟時之量測結果偏移藍 光,將量測到之照度及色溫帶至中間區域及上部區域中。查找表之實例包括內部人工光設置(按凱氏計之色溫及按勒克斯計之亮度級),該等內部人工光設置將在與已著色窗相距不同距離之佔用區域中在一天中之特定時間時針對不同著色狀態使對比率維持於可接受等級內。在一個態樣中,控制邏輯可使用此類查找表來判定將使對比率維持於可接受等級內的內部人工光之設置。 25 is a graph of measured illuminance (lux) versus measured color temperature (Kjeldahl), according to an embodiment. The figure shows three distinct regions: an upper region illustrated as warm and colorful, looking red, a middle region illustrated as pleasing, and a lower region illustrated as cool and dark, looking blue. The image includes four distances of 0 feet, 2 feet, 4 feet, and 6 feet from the window in the darkest tint state at 12:30 PM with artificial lighting turned on at full brightness level and set to 2700 Kelvin The four points of the measured value of illuminance and color temperature. If artificial lighting is turned off, the illuminance and color temperature will likely be in the lower area. As shown, the measurement results when the artificial lighting is on shifts the blue light, bringing the measured illuminance and color temperature into the middle and upper regions. Examples of look-up tables include interior artificial light settings (color temperature in Kjeldahl and brightness levels in lux) that would be at specific times of day in occupied areas at different distances from the tinted window Contrast ratios are maintained within acceptable levels for different coloring states. In one aspect, control logic may use such a look-up table to determine internal artificial light settings that will maintain the contrast ratio within acceptable levels.

在某些實施方案中,控制邏輯基於自建築物系統接收到之回饋來對人工照明之設置及可著色窗之著色狀態進行調整以便在佔用區域中提供為佔用者特別設計或更一般地為工作場所設計之亮度級及環境光譜內容。該回饋可包括(例如)可著色窗之當前著色狀態、關於佔用區域或工作場所中佔用者之存在或可能存在的資料、環境光之照度及顏色的所量測到之等級、關於佔用者之資料(諸如年齡、性別及晝夜節律)、關於佔用區域或工作場所之資訊等。此回饋資訊可來自關於藉由建築物系統取得之資料的讀數或判定或可來自基於歷史資料之排程資訊。控制邏輯可調整人工照明及著色以產生為佔用者或工作場所之使用環境(例如,居住的、一般的、商用的)定製之特定光譜內容及亮度級。將在下一小節中闡述關於此控制邏輯之更多詳情。 In certain implementations, the control logic adjusts artificial lighting settings and tinting states of tinted windows based on feedback received from building systems to provide occupant-specific design or, more generally, work in occupied areas The brightness level and ambient spectral content of the site design. The feedback may include, for example, the current tinting state of the tintable window, information about the presence or potential presence of occupants in the occupied area or workplace, measured levels of illuminance and color of ambient light, information about occupants Information (such as age, gender and circadian rhythm), information about occupied areas or workplaces, etc. This feedback information may come from readings or determinations regarding data obtained by building systems or may come from scheduling information based on historical data. The control logic can adjust artificial lighting and shading to produce specific spectral content and brightness levels customized for the occupant or the use environment of the workplace (eg, residential, general, commercial). More details on this control logic will be explained in the next subsection.

在一個態樣中,可使用與參考圖22闡述之方法類似的方法來實施用於控制具有一或多個可著色窗之房間的佔用區域中之對比率的邏輯。在此種方法中,控制邏輯使用模組A、B及C中之一或多者來計算在未來時間房間中之一或多個可著色窗的著色等級。在一種情況中,計算中使用之未來時間可為在接收到具有著色指令之控制信號之後允許窗完成轉變的將來足夠遠之時間。模組A、B及C輸出未來時間一或多個可著色窗之著色等級、 感測器讀數(內部及/或外部)、包括定向、一天中之時間、一年中之一天的窗組態、視情況存在之天氣條件及藉由該等模組使用之其他資料。預測性控制邏輯判定未來時間時之可接受對比率。控制邏輯接著判定對內部照明及/或可著色窗之著色狀態的調整來在房間中獲得低於或處於可接受等級之對比率。舉例而言,控制邏輯可判定要啟動之燈的類型、要啟動之一或多種顏色或燈、所啟動之燈的強度等級設置、所啟動之燈的位置、要啟動之燈的數目及佈置等。一旦判定調整,則控制邏輯發送用於調整房間中之人工內部照明及/或電致變色窗之著色狀態的控制信號,且接著方法再返回至模組A、B及C。 In one aspect, the logic for controlling the contrast ratio in the occupied area of a room with one or more tintable windows may be implemented using a method similar to that described with reference to FIG. 22 . In this method, the control logic uses one or more of modules A, B, and C to calculate the shading level of one or more tintable windows in the room at a future time. In one case, the future time used in the calculation may be sufficiently far in the future to allow the window to complete the transition after receiving the control signal with the shading instruction. Modules A, B and C output the tint level of one or more tintable windows in the future, sensor readings (internal and/or external), including orientation, time of day, window configuration for day of year , weather conditions as appropriate and other information used by these modules. Predictive control logic determines acceptable contrast ratios at future times. The control logic then determines adjustments to the interior lighting and/or the tint state of the tintable windows to achieve a contrast ratio in the room below or at an acceptable level. For example, the control logic may determine the type of lights to activate, one or more colors or lights to activate, the intensity level setting of the lights to activate, the location of the lights to activate, the number and arrangement of lights to activate, etc. . Once an adjustment is determined, the control logic sends control signals for adjusting the artificial interior lighting and/or the tint state of the electrochromic windows in the room, and the method then returns to modules A, B, and C again.

H.用於佔用者設計之場景的控制邏輯H. Control logic for scenes designed by occupants

某些實施例係關於維持被設計成在工作場所中提供佔用者滿意度及舒適等級(諸如視覺舒適性、熱舒適性、聲舒適性及空氣品質)的環境因素之場景的控制邏輯。該控制邏輯藉由對該等建築物系統之設置進行調整來維持該等環境因素。該控制邏輯基於自(例如)建築物系統、佔用者、建築物管理系統等接收到之各種回饋來設計環境因素。可使用之回饋的一些實例包括可著色窗之當前著色狀態、關於佔用者之存在或可能存在的資料、環境光之照度及顏色的量測到之等級、關於佔用者之資料(諸如年齡、性別及晝夜節律)、雜訊資料、環境溫度資料、空氣品質資料、關於可用建築物系統之資料等。藉由該回饋,該控制邏輯判定佔用,該佔用包括一或多個佔用者在工作場所中之存在及位置。該控制邏輯基於多種資訊,諸如排程資訊、感測器量測結果、來自佔用者之輸入或來自映射系統之資料,來判定佔用。此類映射系統之實例包括用於傳送射頻、微波或其他電磁波之發射器及接收器。所接收到之傳輸可用於映射工作場所中之佔用者及其 他物件的當前位置。該控制邏輯亦開發用於每一佔用者及/或工作場所之使用案例以判定用於判定場景之參數,諸如佔用者類型、工作場所類型、周圍環境之暫時組成(照度級、環境光顏色、雜訊級、空氣品質等)、停留持續時間、建築物考慮因素(諸如能量及成本)及可用於改變周圍環境之現有建築物系統。基於使用案例,控制邏輯設計一場景,該場景包括所有環境因素、或某部分之環境因素,此取決於哪些技術或控制在工作場所處起作用。可將環境因素分組到多種類別中,諸如,例如,熱設置、視覺設置、聲設置及空氣品質設置。工作場所中之停留持續時間為一些環境因素(諸如雜訊及空氣品質)之考慮因素。對於每一佔用者及/或工作場所,控制邏輯判定將在該場景中使用之環境因素且判定所述環境因素之目標等級。藉由判定針對該使用案例設計之等級來設計此等等級以滿足佔用者需要或預期。控制邏輯接著判定建築物系統之任何新控制設置且(例如)經由BMC或BAC向建築物系統傳送該等新設置。 Certain embodiments relate to control logic for maintaining scenarios designed to provide occupant satisfaction and levels of comfort in the workplace for environmental factors such as visual comfort, thermal comfort, acoustic comfort, and air quality. The control logic maintains the environmental factors by adjusting the settings of the building systems. The control logic designs environmental factors based on various feedback received from, eg, building systems, occupants, building management systems, and the like. Some examples of feedback that can be used include the current tinting status of tintable windows, information about the presence or potential presence of occupants, measured levels of ambient light and color, information about occupants (such as age, gender, etc.) and circadian rhythms), noise data, ambient temperature data, air quality data, data on available building systems, etc. From the feedback, the control logic determines occupancy, which includes the presence and location of one or more occupants in the workplace. The control logic determines occupancy based on a variety of information, such as scheduling information, sensor measurements, input from occupants, or data from a mapping system. Examples of such mapping systems include transmitters and receivers for transmitting radio frequency, microwave or other electromagnetic waves. The received transmission can be used to map occupants in the workplace and their the current position of other objects. The control logic is also developed for each occupant and/or workplace use case to determine the parameters used to determine the scene, such as occupant type, workplace type, temporal composition of the surrounding environment (illuminance level, ambient light color, noise levels, air quality, etc.), dwell duration, building considerations such as energy and cost, and existing building systems that can be used to alter the surrounding environment. Based on the use case, the control logic designs a scenario that includes all environmental factors, or a portion of the environmental factors, depending on which technologies or controls are at work at the workplace. Environmental factors may be grouped into various categories such as, for example, thermal settings, visual settings, acoustic settings, and air quality settings. The duration of stay in the workplace is a consideration for some environmental factors such as noise and air quality. For each occupant and/or workplace, the control logic determines the environmental factor to be used in the scenario and determines a target level for that environmental factor. These levels are designed to meet occupant needs or expectations by determining which levels are designed for that use case. The control logic then determines any new control settings for the building system and communicates those new settings to the building system, eg, via the BMC or BAC.

在一個態樣中,使用來自業界最好之實踐之資料來初始化特定使用案例之場景且接著基於來自佔用者、建築物管理系統及/或業界之回饋來修改該等場景。控制邏輯基於新環境因素來修改或更新該等場景。舉例而言,控制邏輯可接收來自具有未預料到之設置之建築物的回饋,該等設置提供更好地匹配或超過佔用者對工作場所設置之預期的非直觀「樂事」。 In one aspect, use-case-specific scenarios are initialized using data from industry best practices and then modified based on feedback from occupants, building management systems, and/or industry. Control logic modifies or updates these scenarios based on new environmental factors. For example, the control logic may receive feedback from buildings with unexpected settings that provide non-intuitive "joys" that better match or exceed occupant expectations for workplace settings.

在另一態樣中,控制邏輯可基於來自當前佔用者之輸入,諸如基於在使用者介面處對佔用者之一連串詢問,來初始化特定使用案例之場景。 In another aspect, the control logic may initiate scenarios for a particular use case based on input from the current occupant, such as based on a series of queries to the occupant at the user interface.

在一個態樣中,基於來自佔用者、建築物系統、建築物管理系統、業界及任何其他合適回饋源之回饋來修改特定使用案例之場景。舉例而言,該控制邏輯可接收來自佔用者的關於特定場景之環境因素的超控或正 面或負面回饋。該控制邏輯可基於該回饋來判定場景之環境因素的新等級。 In one aspect, the scenarios for a particular use case are modified based on feedback from occupants, building systems, building management systems, industry, and any other suitable feedback sources. For example, the control logic may receive overrides or positives from occupants regarding environmental factors for a particular scene. positive or negative feedback. The control logic may determine a new level of environmental factors of the scene based on the feedback.

工作場所類型之一些實例包括私人辦公室、庇護所、角落、集中思考間、思考間、小型會議室、開放辦公室、喧鬧地區、等候區、過渡區、會議室、創造性思考空間、門廳、廣場、餐廳及辦公空間。圖26為根據一實施方案示出各種類型之工作場所的建築物之示意圖。在所示實例中,工作場所被分組為包括工作站及矮桌之「個人工作之工作場所」、包括個人沙發、會議桌及小型會議室之「開放合作之工作場所」、包括編輯室、談話間、思考間、會客間、會議間及會議室之「封閉會議工作場所」、包括儲物櫃、複印機及食品儲藏室之「局部支持工作場所」及包括休息室、保健室及招待室之「公共區域工作場所」。 Some examples of workplace types include private offices, sanctuaries, corners, focus rooms, thinking rooms, huddle rooms, open offices, noisy areas, waiting areas, transition areas, meeting rooms, creative thinking spaces, foyers, plazas, restaurants and office space. 26 is a schematic diagram of a building showing various types of workplaces, according to one embodiment. In the example shown, workplaces are grouped into "personal workplaces" including workstations and low tables, "open collaborative workplaces" including personal sofas, conference tables, and small meeting rooms, editorial rooms, conversation booths , "enclosed meeting workplaces" for thinking rooms, guest rooms, meeting rooms and meeting rooms, "partial support workplaces" including lockers, photocopiers and food pantries, and "communal workplaces" including restrooms, health rooms and reception rooms Regional Workplace".

控制邏輯部分基於工作場所之類型來判定使用案例。舉例而言,私人辦公室通常用於重點任務或創造性活動。結果,私人辦公室需要具有溫暖溫度及暖色環境光之環境設置的場景。除了為了獲得最大效能而設計場景之外,場景亦可被設計成匹配佔用者對考慮周全之工作場所的預期。舉例而言,餐廳需要具有充滿活力且鼓勵溝通及社交之亮度級(照度)及背景雜訊的場景。在此實例中,佔用者對餐廳中之場景的預期將為較明亮、較嘈雜及較酷。 The control logic determines the use case in part based on the type of workplace. For example, private offices are often used for focused tasks or creative activities. As a result, private offices require scenes with ambient settings of warm temperatures and warm ambient light. In addition to designing scenarios for maximum performance, scenarios can also be designed to match occupant expectations for a well-considered workplace. For example, a restaurant needs a scene with light levels (illuminance) and background noise that are vibrant and encourage communication and socialization. In this example, the occupant's expectation for the scene in the restaurant will be brighter, noisier, and cooler.

私人辦公室一般係指用於不分散精力地集中精力工作或休整的區域。私人辦公室可為(例如)開放平面中之封閉空間、半庇護式或遮蔽空間。針對私人辦公室中之視覺舒適性設計之場景的環境因素之一實例包括500勒克斯至700勒克斯(低)之亮度級及4000K(暖)之色溫。針對私人辦公室中之視覺舒適性設計之場景的環境因素之另一實例包括1000勒克斯 至2000勒克斯(高)之亮度級及6000K(冷)之色溫。針對私人辦公室中之熱舒適性設計之場景的環境因素之一實例包括25℃(暖)之溫度。針對私人辦公室中之聲舒適性設計之環境因素的一實例包括45dB之聲級及75%之隱私指數。針對私人辦公室中之聲舒適性設計之場景的環境因素之另一實例包括35dB之聲級及95%之隱私指數。針對私人辦公室中之空氣品質設計之場景的環境因素之一實例包括500ppm之CO2含量。 A private office generally refers to an area used to concentrate work or rest without distraction. Private offices can be, for example, enclosed spaces, semi-sheltered or sheltered spaces in an open plan. One example of environmental factors for a scene designed for visual comfort in a private office includes a brightness level of 500 lux to 700 lux (low) and a color temperature of 4000 K (warm). Another example of environmental factors of a scene designed for visual comfort in a private office includes a brightness level of 1000 lux to 2000 lux (high) and a color temperature of 6000 K (cold). One example of an environmental factor for a scenario designed for thermal comfort in a private office includes a temperature of 25°C (warm). An example of an environmental factor designed for sound comfort in a private office includes a sound level of 45dB and a privacy index of 75%. Another example of environmental factors for a scenario designed for sound comfort in a private office includes a sound level of 35dB and a privacy index of 95%. One example of an environmental factor for a scenario designed for air quality in a private office includes a CO2 content of 500 ppm.

與私人辦公室類似,思考間或小型會議室亦指用於不分散精力地集中精力工作或休整的區域。思考間或小型會議室被設計成佔用者比私人辦公室具有較少隱私。思考間或小型會議室亦可為開放平面中之封閉空間、半庇護式或遮蔽空間。針對思考間或小型會議室中之視覺舒適性設計之場景的環境因素之一實例包括1000勒克斯至2000勒克斯(高)之亮度級及6000K(冷)之色溫。針對思考間或小型會議室中之熱舒適性設計之場景的環境因素之一實例包括22℃至25℃(中等)之亮度級。針對思考間或小型會議室中之聲舒適性設計之場景的環境因素之一實例包括55dB至75dB之聲級及55%之隱私指數。針對思考間或小型會議室中之空氣品質控制設計之場景的環境因素之一實例包括500ppm之CO2含量。 Similar to a private office, a thinking room or small meeting room refers to an area used to concentrate work or relax without distraction. Thinking rooms or small meeting rooms are designed so that occupants have less privacy than private offices. Thinking rooms or small meeting rooms can also be enclosed spaces, semi-sheltered or sheltered spaces in an open plan. One example of environmental factors for a scene designed for visual comfort in a thinking room or small conference room includes a brightness level of 1000 lux to 2000 lux (high) and a color temperature of 6000 K (cold). An example of an environmental factor for a scenario designed for thermal comfort in a thinking room or small conference room includes a brightness level of 22°C to 25°C (moderate). An example of an environmental factor for a scenario designed for sound comfort in a thinking room or small conference room includes a sound level of 55dB to 75dB and a privacy index of 55%. An example of an environmental factor for a scenario where air quality control design in a room or small conference room is considered includes a CO 2 content of 500 ppm.

等候區或過渡區一般係指與會議室及/或私人辦公室相鄰的等待/聚集之區域。等候區或過渡區被設計用於具有可見性及半隱私交流之短暫停留。針對等候區或過渡區中之視覺舒適性設計之場景的環境因素之一實例包括500勒克斯至1500勒克斯(高)之亮度級及4500至6000K(冷)之色溫。針對等候區或過渡區中之熱舒適性設計之場景的環境因素之一實例包括22℃至25℃(中等)之亮度級。針對等候區或過渡區中之聲舒適性設計之場景的環境因素之一實例包括55dB之聲級及50%至75%之隱私指數。針 對等候區或過渡區中之空氣品質控制設計之場景的環境因素之一實例包括1500ppm之CO2含量。 Waiting or transition areas generally refer to waiting/gathering areas adjacent to meeting rooms and/or private offices. Waiting or transition areas are designed for short stops with visible and semi-private communication. An example of an environmental factor for a scene designed for visual comfort in a waiting area or transition area includes a brightness level of 500 lux to 1500 lux (high) and a color temperature of 4500 to 6000 K (cold). One example of an environmental factor for a scene designed for thermal comfort in a waiting area or transition area includes a light level of 22°C to 25°C (moderate). An example of an environmental factor for a scenario designed for acoustic comfort in a waiting area or transition area includes a sound level of 55dB and a privacy index of 50% to 75%. One example of an environmental factor for a scenario designed for air quality control in a waiting area or transition area includes a CO2 content of 1500 ppm.

會議室一般係指需要適當之光及高信號雜訊比的用於進行分享及討論之區域。針對會議室中之視覺舒適性設計之場景的環境因素之一實例包括500勒克斯至1500勒克斯(高)之亮度級及3500至4500K(中等)之色溫。針對會議室中之熱舒適性設計之場景的環境因素之一實例為20℃至23℃(中等)之亮度級。針對會議室中之聲舒適性設計之場景的環境因素之一實例包括44dB至55dB之聲級及80%至95%之隱私指數。針對會議室中之空氣品質控制設計之場景的環境因素之一實例包括1000ppm之CO2含量。 A conference room is generally an area for sharing and discussion that requires appropriate light and a high signal-to-noise ratio. One example of environmental factors for a scene designed for visual comfort in a conference room includes a brightness level of 500 lux to 1500 lux (high) and a color temperature of 3500 to 4500 K (medium). One example of an environmental factor for a scenario designed for thermal comfort in a conference room is a brightness level of 20°C to 23°C (moderate). One example of environmental factors for a scenario designed for sound comfort in a conference room includes a sound level of 44dB to 55dB and a privacy index of 80% to 95%. One example of an environmental factor for a scenario designed for air quality control in a conference room includes a CO 2 content of 1000 ppm.

公共辦公室、門廳或社交場所一般係指建築物之主要人流彙集處之動態、社交環境,其中混合及連接優先於隱私或工作輸出。針對公共辦公室、門廳或社交場所中之視覺舒適性設計之場景的環境因素之一實例包括500勒克斯至1500勒克斯(高)之亮度級及4000K至6000K(中等)之色溫。針對公共辦公室、門廳或社交場所中之熱舒適性設計之場景的環境因素之一實例為22℃至25℃(中等)之亮度級。針對公共辦公室、門廳或社交場所中之聲舒適性設計之場景的環境因素之一實例包括55dB至70dB之聲級及25%之隱私指數。針對公共辦公室、門廳或社交場所中之空氣品質控制設計之場景的環境因素之一實例包括1500ppm至3000ppm之CO2含量。 A public office, foyer, or social space generally refers to a dynamic, social environment at the main confluence of people in a building, where mixing and connection take precedence over privacy or work output. An example of an environmental factor for a scene designed for visual comfort in a public office, foyer or social place includes a brightness level of 500 lux to 1500 lux (high) and a color temperature of 4000K to 6000K (medium). One example of an environmental factor for a scene designed for thermal comfort in public offices, foyers or social spaces is a light level of 22°C to 25°C (moderate). One example of environmental factors for a scenario designed for sound comfort in a public office, foyer or social venue includes a sound level of 55dB to 70dB and a privacy index of 25%. One example of an environmental factor for a scenario designed for air quality control in public offices, hallways or social spaces includes CO2 levels of 1500 ppm to 3000 ppm.

圖27為繪示設計及維持在工作場所中提供佔用者滿意度及各種舒適性等級(諸如,例如,視覺舒適性、熱舒適性、聲舒適性及空氣品質)之環境因素之場景的方法之控制邏輯之流程圖2700。該控制邏輯可藉由一或多個控制器執行。工作場所可為建築物中之房間或房間中之區域。在操作 2710中,該控制邏輯接收來自佔用者、建築物內之資產或建築物系統(諸如,例如,用於控制工作場所中之一或多個可著色窗之著色狀態的窗控制器、HVAC系統、用於控制人工照明(內部及/或外部)之照明系統、安全系統、一或多個感測器、映射系統、雜訊及聲音控制系統等)之回饋。舉例而言,可自佔用者隨身攜帶之資產(諸如智慧電話或其他智慧裝置)接收回饋。作為另一實例,佔用者可經由智慧裝置、手動控制面板(例如,圖23中所示之裝置)或其他裝置來將回饋輸入至控制邏輯。可藉由該控制邏輯使用之回饋的一些實例包括工作場所中之一或多個可著色窗的當前著色狀態、關於一或多個佔用者在工作場所中之存在或可能存在的資料、環境光之照度及顏色之量測結果或其他感測器讀數、佔用者資料、環境溫度資料、空氣品質資料、雜訊或其他聲資料、關於可用建築物系統之資訊等。在一個態樣中,可藉由一或多個模組之預測性控制邏輯(諸如參考圖22所闡述)來判定該一或多個可著色窗之著色狀態。佔用者資料之一些實例包括年齡、性別、職業、晝夜節律、活動、生命徵象等。在一個態樣中,該控制邏輯使用生命徵象來判定佔用者之晝夜節律。參考圖16圖18詳細地闡述了建築物系統之一些實例。參考圖15圖19圖20詳細地闡述了窗控制器之一些實例。通常經由通信網路來接收來自建築物系統之回饋。 27 is a diagram illustrating a method for designing and maintaining a scenario in a workplace that provides occupant satisfaction and environmental factors for various levels of comfort, such as, for example, visual comfort, thermal comfort, acoustic comfort, and air quality Flowchart 2700 of the control logic. The control logic may be implemented by one or more controllers. A workplace may be a room in a building or an area in a room. In operation 2710 , the control logic receives information from an occupant, an asset within a building, or a building system (such as, for example, a window controller, HVAC, HVAC for controlling the tint state of one or more tintable windows in the workplace) Feedback from systems, lighting systems for controlling artificial lighting (internal and/or external), security systems, one or more sensors, mapping systems, noise and sound control systems, etc.). For example, feedback can be received from an asset that is carried by the occupant, such as a smart phone or other smart device. As another example, the occupant may input feedback to the control logic via a smart device, a manual control panel (eg, the device shown in Figure 23 ), or other devices. Some examples of feedback that can be used by this control logic include the current tinting state of one or more tintable windows in the workplace, information about the presence or likely presence of one or more occupants in the workplace, ambient light Illuminance and color measurements or other sensor readings, occupant data, ambient temperature data, air quality data, noise or other acoustic data, information about available building systems, etc. In one aspect, the shaded state of the one or more shadeable windows may be determined by predictive control logic of one or more modules, such as described with reference to FIG. 22 . Some examples of occupant data include age, gender, occupation, circadian rhythm, activity, vital signs, and the like. In one aspect, the control logic uses vital signs to determine the occupant's circadian rhythm. Some examples of building systems are set forth in detail with reference to FIGS. 16 and 18 . Some examples of window controllers are described in detail with reference to FIGS. 15 , 19 and 20 . Feedback from building systems is typically received via a communication network.

基於在操作2710中接收到之回饋,該控制邏輯判定佔用(2720),包括一或多個佔用者在工作場所中之存在及位置。該控制邏輯可基於資訊,諸如當前時間、排程資料、感測器資料、來自佔用者之輸入、來自佔用者隨身攜帶之資產的信號中之資料及來自映射系統之資料,來判定佔用。在一個態樣中,可使用建築物中射頻、微波或其他電磁波之發射器及接收器的映射系統來映射工作場所中存在之佔用者及其他物件之當前位置。在 2017年9月19日提交且標題為「WINDOW ANTENNAS FOR EMITTING RADIO FREQUENCY SIGNALS」之美國專利申請案15/709,339中闡述基於窗天線之此類映射系統的實例,該申請案特此以引用方式整體併入。在另一態樣中,該控制邏輯可基於排程資料及當前時間來判定佔用者有很高之機率係在該工作場所中。在另一態樣中,特定佔用者隨身攜帶之資產(例如,行動電話)具有發射器,該發射器發送在建築物中之接收器處被接收之射頻信號。基於接收到之信號,建築物管理系統或其他控制器判定佔用者之存在及位置且將具有此資訊之信號傳送給實施該控制邏輯之控制器。 Based on the feedback received in operation 2710 , the control logic determines occupancy ( 2720 ), including the presence and location of one or more occupants in the workplace. The control logic may determine occupancy based on information such as current time, schedule data, sensor data, input from the occupant, data from signals from assets carried with the occupant, and data from the mapping system. In one aspect, a mapping system of transmitters and receivers of radio frequency, microwave or other electromagnetic waves in a building may be used to map the current locations of occupants and other objects present in the workplace. An example of such a window antenna based mapping system is set forth in US Patent Application 15/709,339, filed September 19, 2017, and entitled "WINDOW ANTENNAS FOR EMITTING RADIO FREQUENCY SIGNALS," which is hereby incorporated by reference in its entirety. enter. In another aspect, the control logic may determine that there is a high probability that an occupant is in the workplace based on the schedule data and the current time. In another aspect, an asset (eg, a mobile phone) carried by a particular occupant has a transmitter that transmits radio frequency signals that are received at receivers in the building. Based on the received signal, the building management system or other controller determines the presence and location of the occupant and transmits a signal with this information to the controller implementing the control logic.

在操作2730中,該控制邏輯開發用於特定佔用者及/或工作場所之使用案例。該使用案例包括以下一或多者:工作場所中之佔用的類型、工作場所中之活動的類型、工作場所之類型、周圍環境之暫時組成、佔用者停留之持續時間、任何建築物考慮因素(諸如能量節約)、建築物系統或可用於改變環境因素之其他技術的控制之類型及可用性。佔用之類型包括多種資訊,諸如一或多個佔用者之年齡、性別、職業、晝夜節律及生命徵象。活動之類型可為(例如)工作、塗刷、畫畫、會客、進餐、私人思考、睡覺、休息、閒逛、等候、聚集等。周圍環境之暫時組成包括多種參數,諸如環境光之照度及顏色、對比率、雜訊、溫度、濕度及空氣品質。 In operation 2730 , the control logic develops a use case for a particular occupant and/or workplace. The use case includes one or more of the following: type of occupancy in the workplace, type of activity in the workplace, type of workplace, temporary composition of the surrounding environment, duration of occupant stay, any building considerations ( type and availability of controls such as energy conservation), building systems, or other technologies that can be used to alter environmental factors. The type of occupancy includes information such as age, gender, occupation, circadian rhythm, and vital signs of one or more occupants. The type of activity can be, for example, working, painting, drawing, meeting guests, eating, private reflection, sleeping, resting, hanging out, waiting, gathering, and the like. The temporary composition of the surrounding environment includes various parameters such as the illuminance and color of the ambient light, contrast ratio, noise, temperature, humidity and air quality.

在操作2740中,該控制邏輯針對該使用案例判定被設計用於提高工作場所中之佔用者滿意度及舒適性(例如,視覺、熱、聲及/或空氣品質)的環境因素之場景。在一個態樣中,除了佔用者滿意度及舒適性之外,亦將建築物考慮因素納入考慮。該控制邏輯至少部分基於建築物系統或可用於改變周圍環境之其他技術的類型及控制來判定該場景中將包括哪些環境因 素。在一個態樣中,該控制邏輯在判定是否包括雜訊及空氣品質因素時亦考慮停留持續時間。舉例而言,若停留持續時間小於5分鐘,則該控制邏輯可能不包括雜訊及空氣品質環境因素。對於該場景中之每一環境因素,該控制邏輯判定目標設置或等級。將環境因素分組到多個類別中,包括,例如,熱設置、視覺設置、聲設置及空氣品質設置。熱設置之實例包括溫度、氣流及濕度之目標等級。視覺設置之一些實例包括環境光之照度及顏色、對比率及炫光之目標等級。舉例而言,對比率之目標等級可為保持低於最大可接受對比率或為可接受範圍內之值。聲設置包括聲級或雜訊級及隱私指數,該隱私指數為房間中之牆壁及開放空間之因素。隱私指數反映了在工作場所中具有會話保密性之能力。空氣品質設置之一些實例包括(例如)CO2及/或一或多種污染物(諸如CO、O3、NO2、SO2、PM10、PM2.5及鉛)之含量。在上文提供了針對各種類型之工作場所包括亮度級(照度)、色溫、聲級、隱私指數及空氣品質之目標環境因素的場景之一些實例。 In operation 2740 , the control logic determines, for the use case, scenarios for environmental factors designed to improve occupant satisfaction and comfort (eg, visual, thermal, acoustic, and/or air quality) in the workplace. In one aspect, building considerations are taken into account in addition to occupant satisfaction and comfort. The control logic determines which environmental factors are to be included in the scene based at least in part on the type and control of building systems or other technologies available to alter the surrounding environment. In one aspect, the control logic also considers dwell duration when determining whether to include noise and air quality factors. For example, if the dwell duration is less than 5 minutes, the control logic may not include noise and air quality environmental factors. For each environmental factor in the scene, the control logic determines a target setting or level. Group environmental factors into categories including, for example, thermal settings, visual settings, acoustic settings, and air quality settings. Examples of thermal settings include target levels of temperature, airflow, and humidity. Some examples of visual settings include illuminance and color of ambient light, contrast ratio, and target level of glare. For example, a target level of contrast ratio may remain below a maximum acceptable contrast ratio or a value within an acceptable range. Acoustic settings include sound level or noise level and privacy index, which is a factor of walls and open spaces in a room. The Privacy Index reflects the ability to have conversational confidentiality in the workplace. Some examples of air quality settings include, for example, levels of CO 2 and/or one or more pollutants such as CO, O 3 , NO 2 , SO 2 , PM 10 , PM 2.5 and lead. Some examples of scenarios for target environmental factors including brightness level (illuminance), color temperature, sound level, privacy index, and air quality for various types of workplaces are provided above.

該控制邏輯藉由將特定使用案例之全部或大多數參數與與儲存於資料庫中之場景相關聯之使用案例匹配來判定該特定使用案例之環境因素的場景。若該資料庫不具有匹配場景,則控制邏輯初始化該場景之環境因素。在一個實例中,該控制邏輯使用來自業界最好之實踐之資料來初始化特定使用案例之場景的環境因素。在另一實例中,該控制邏輯(例如)藉由詢問佔用者以獲得較佳環境設置來使用來自佔用者之資料來初始化場景。在另一實例中,該控制邏輯使用來自具有該使用案例中之一組類似參數之佔用者的資料來初始化場景。在一個實施方案中,在該控制邏輯判定特定使用案例之環境因素的第一場景之後,該控制邏輯基於來自具有未預料到 之設置之建築物的額外回饋來進一步修改環境因素以產生第二場景,該等設置提供更好地匹配或超過佔用者對工作場所設置之預期的非直觀「樂事」。將在操作2740中判定之場景保存至資料庫。 The control logic determines the context of environmental factors for a particular use case by matching all or most of the parameters of the particular use case with the use cases associated with the scenarios stored in the database. If the database does not have a matching scene, the control logic initializes the contextual factors for the scene. In one example, the control logic uses data from industry best practices to initialize environmental factors for a specific use case scenario. In another example, the control logic uses data from the occupant to initialize the scene, eg, by querying the occupant for the best environment settings. In another example, the control logic uses data from an occupant with a similar set of parameters in the use case to initialize the scene. In one embodiment, after the control logic determines a first scenario of environmental factors for a particular use case, the control logic further modifies the environmental factors to generate a second scenario based on additional feedback from buildings with unanticipated settings , these settings provide non-intuitive "joys" that better match or exceed occupant expectations of workplace settings. The scene determined in operation 2740 is saved to the database.

在一個態樣中,基於來自佔用者、建築物系統、建築物管理系統、業界及任何其他合適回饋源之回饋來修改特定使用案例之場景。舉例而言,該控制邏輯可接收來自佔用者的關於特定場景之環境等級的超控或正面或負面回饋。該控制邏輯可基於該回饋來判定場景之環境因素的新等級。 In one aspect, the scenarios for a particular use case are modified based on feedback from occupants, building systems, building management systems, industry, and any other suitable feedback sources. For example, the control logic may receive an override or positive or negative feedback from an occupant regarding the environmental level of a particular scene. The control logic may determine a new level of environmental factors of the scene based on the feedback.

在操作2750中,該控制邏輯判定各種建築物系統之控制設置,該等控制設置將產生在操作2740中針對佔用者或工作場所設計之場景的目標環境等級。舉例而言,該控制邏輯可使用查找表來判定將產生目標環境因素之適當控制設置。 In operation 2750 , the control logic determines the control settings for various building systems that will result in the target environmental level for the scenario designed in operation 2740 for the occupant or workplace. For example, the control logic may use a look-up table to determine the appropriate control settings that will result in the target environmental factor.

在操作2760中,該控制邏輯將該等控制設置傳送至各種建築物系統建築物系統之控制器或建築物管理系統或建築物管控系統。該控制邏輯接著返回至操作2710In operation 2760 , the control logic communicates the control settings to the controllers of the various building systems building systems or building management systems or building management systems. The control logic then returns to operation 2710 .

雖然在本文中相對於獨立地控制多區可著色窗之多個著色區來闡述某些實施例,但將理解,類似技術可應用於控制可著色窗組中之多個可著色窗(多區或單區)。舉例而言,建築物可具有在建築物之立面上或房間中之可著色窗的總成。本文中闡述之技術可用於獨立地控制該總成之可著色窗。亦即,每一可著色窗可具有一或多個著色區,且該等技術獨立地控制該總成中之可著色窗的著色區。 While certain embodiments are described herein with respect to independently controlling multiple shading zones of a multi-zone tintable window, it will be appreciated that similar techniques can be applied to control multiple tintable windows in a set of tintable windows (multi-zone tintable windows). or single zone). For example, a building may have an assembly of tintable windows on the facade of the building or in a room. The techniques described herein can be used to independently control the tintable windows of the assembly. That is, each tintable window may have one or more tinted regions, and the techniques independently control the tinted regions of the tintable windows in the assembly.

應理解,可使用電腦軟體以模組化或整合方式將如上文所闡述之本發明實施為控制邏輯之形式。基於本文中提供之揭示內容及教示,熟習此 項技術者將知道及瞭解用於使用硬體及硬體與軟體之組合來實施本發明的其他方式及/或方法。 It should be understood that the invention as set forth above may be implemented in the form of control logic using computer software in a modular or integrated manner. Based on the disclosures and teachings provided herein, familiarize yourself with this Those skilled in the art will know and appreciate other ways and/or methods for implementing the present invention using hardware and combinations of hardware and software.

可使用(例如)習知或物件導向技術使用任何合適之電腦語言,諸如,例如,Java、C++或Python來將本申請案中闡述之軟體組件或功能中之任一者實施為將藉由處理器執行之軟體程式碼。該軟體程式碼可作為一連串指令或命令儲存於電腦可讀媒體上,諸如隨機存取記憶體(RAM)、唯讀記憶體(ROM)、磁媒體(諸如硬碟或軟磁碟)或光媒體(諸如CD-ROM)。任何此類電腦可讀媒體可駐留於單個計算設備之上或之內,且可存在於系統或網路內之不同計算設備之上或之內。 Any of the software components or functions described in this application may be implemented using, for example, conventional or object-oriented techniques using any suitable computer language, such as, for example, Java, C++, or Python to be processed by software code to be executed by the server. The software code may be stored as a series of instructions or commands on a computer-readable medium, such as random access memory (RAM), read only memory (ROM), magnetic media (such as a hard disk or floppy disk), or optical media ( such as CD-ROM). Any such computer-readable medium can reside on or within a single computing device and can exist on or within different computing devices within a system or network.

雖然已稍詳細地闡述了前文揭示之實施例以方便理解,但所闡述之實施例將被視為說明性而非限制。熟習此項技術者將顯而易見,可在所附申請專利範圍之範疇內實踐某些改變及修改。 While the foregoing disclosed embodiments have been described in some detail to facilitate understanding, the described embodiments are to be regarded as illustrative and not restrictive. It will be apparent to those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.

在不脫離本揭示案之範疇的情況下,來自任何實施例之一或多個特徵可與任何其他實施例之一或多個特徵組合。另外,在不脫離本揭示案之範疇的情況下,可對任何實施例進行修改、添加或省去。在不脫離本揭示案之範疇的情況下,可根據特定需要而將任何實施例之組件整合或分開。 One or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the present disclosure. In addition, modifications, additions, or omissions may be made to any of the embodiments without departing from the scope of the present disclosure. The components of any embodiment may be integrated or separated according to particular needs without departing from the scope of the present disclosure.

2700‧‧‧流程圖 2700‧‧‧Flowchart

2710‧‧‧操作 2710‧‧‧Operation

2720‧‧‧操作 2720‧‧‧Operation

2730‧‧‧操作 2730‧‧‧Operation

2740‧‧‧操作 2740‧‧‧Operation

2750‧‧‧操作 2750‧‧‧Operation

2760‧‧‧操作 2760‧‧‧Operation

Claims (23)

一種控制具有一或多個可著色窗(tintable window)之一房間中之光顏色的方法,該方法包括:判定用於該房間中之人工內部照明的一或多個新設置,其中該一或多個新設置經組態以獲得在該房間中之一所要光顏色,其中該一或多個新設置係使用該一或多個可著色窗之至少一者之一當前著色狀態(current tint state)來判定;以及經由一通信網路發送控制信號以將該人工內部照明調整至該一或多個新設置。 A method of controlling the color of light in a room having one or more tintable windows, the method comprising: determining one or more new settings for artificial interior lighting in the room, wherein the one or the A plurality of new settings are configured to obtain a desired light color in the room, wherein the one or more new settings use a current tint state of at least one of the one or more tintable windows ) to determine; and sending control signals via a communication network to adjust the artificial interior lighting to the one or more new settings. 如請求項1之方法,其中該一或多個新設置經組態以提供一所要演色性指數(CRI)值。 The method of claim 1, wherein the one or more new settings are configured to provide a desired color rendering index (CRI) value. 如請求項2之方法,其進一步包括:使用(i)由一或多個外部感測器取得之量測結果或(ii)晴空輻照度(clear sky irradiance)來計算一外部CRI值;及使用該一或多個可著色窗之該至少一者之該當前著色狀態來將該外部CRI值變換為一當前內部CRI值;以及其中該一或多個新設置經判定以將該當前內部CRI值改變為該所要CRI值。 The method of claim 2, further comprising: calculating an external CRI value using (i) measurements obtained by one or more external sensors or (ii) clear sky irradiance; and using the current shading state of the at least one of the one or more shadeable windows to convert the external CRI value to a current internal CRI value; and wherein the one or more new settings are determined to the current internal CRI value Change to the desired CRI value. 如請求項3之方法,其中該一或多個外部感測器係一多感測器裝置之 一部份,該多感測器裝置(I)安裝至包括該房間之一建築物的一屋頂或(II)位於包含該一或多個可著色窗之該建築物之一立面(facade)上。 The method of claim 3, wherein the one or more external sensors are part of a multi-sensor device In part, the multi-sensor device is (I) mounted to a roof of a building that includes the room or (II) located on a facade of the building that includes the one or more tintable windows superior. 如請求項2之方法,其中該一或多個新設置係使用在該房間中之一當前內部CRI值來判定,且其中該當前內部CRI值係自天氣預報資料(weather feed data)來判定。 The method of claim 2, wherein the one or more new settings are determined using a current internal CRI value in the room, and wherein the current internal CRI value is determined from weather feed data. 如請求項2之方法,其中該一或多個新設置係使用該房間中之一當前內部CRI值來判定,且其中該當前內部CRI值係使用由一或多個內部感測器取得之量測結果來判定。 The method of claim 2, wherein the one or more new settings are determined using a current internal CRI value in the room, and wherein the current internal CRI value is determined using quantities obtained by one or more internal sensors to determine the results. 如請求項6之方法,其中該一或多個內部感測器(I)在操作期間位於在該房間中之一佔用者的一活動區域中或(II)位在該人工內部照明處或在該人工內部照明附近。 The method of claim 6, wherein the one or more interior sensors are (I) located during operation in an active area of an occupant in the room or (II) located at the artificial interior lighting or at The artificial interior lighting is nearby. 如請求項1之方法,其進一步包括判定是使用來自(I)一或多個外部感測器還是(II)一或多個內部感測器之量測以作為用於該人工內部照明之該一或多個新設置之判定中之輸入。 The method of claim 1, further comprising determining whether to use measurements from (I) one or more external sensors or (II) one or more internal sensors for the artificial interior lighting Input in the determination of one or more new settings. 如請求項2之方法,其中該所要CRI值係使用來自使用者輸入之歷史資料來判定。 The method of claim 2, wherein the desired CRI value is determined using historical data from user input. 如請求項2之方法,其中該所要CRI值係使用自一牆壁單元處或一遠 端控制處所接收之使用者輸入來判定。 The method of claim 2, wherein the desired CRI value is used from a wall unit or a remote Determined by user input received at the terminal control. 如請求項1之方法,其中將該人工內部照明調整至該一或多個新設置之該調整包括調整下列一或多者:(i)一種顏色或多種顏色,(ii)一或多個區域中之燈之啟動,及(iii)一或多個光強度等級。 The method of claim 1, wherein the adjusting of the artificial interior lighting to the one or more new settings comprises adjusting one or more of: (i) a color or colors, (ii) one or more areas the activation of the lamps in, and (iii) one or more light intensity levels. 如請求項2之方法,其進一步包括:使用晴空輻照度來計算一外部CRI值;以及使用該一或多個可著色窗之該一或多者之該當前著色狀態來將該外部CRI值變換為一當前內部CRI值。 The method of claim 2, further comprising: using clear sky irradiance to calculate an external CRI value; and using the current shading state of the one or more of the one or more shadeable windows to transform the external CRI value is a current internal CRI value. 如請求項12之方法,其進一步包括使用一太陽位置及一窗組態(window configuration)來判定該晴空輻照度。 The method of claim 12, further comprising using a sun position and a window configuration to determine the clear sky irradiance. 如請求項2之方法,其進一步包括:使用該所要CRI值來判定該一或多個可著色窗之一新著色狀態;以及經由該通信網路提供將該一或多個可著色窗之著色轉變至該新著色狀態的指令。 The method of claim 2, further comprising: using the desired CRI value to determine a new shading state of the one or more tintable windows; and providing shading of the one or more tintable windows via the communication network Command to transition to this new shaded state. 如請求項1之方法,其中該一或多個可著色窗中之每一者為一電致變 色窗(electrochromic window)。 The method of claim 1, wherein each of the one or more tintable windows is an electrovariable electrochromic window. 如請求項1之方法,其中調整該人工內部照明至該一或多個新設置經組態以獲得在一可接受範圍內或低於一最大對比率之一佔用區域中之一對比率。 The method of claim 1, wherein adjusting the artificial interior lighting to the one or more new settings is configured to obtain a contrast ratio in an occupied area within an acceptable range or below a maximum contrast ratio. 如請求項1之方法,其中用於該人工內部照明之該一或多個新設置經組態以產生來自該人工內部照明之具有一第一波長範圍之光照,該第一波長範圍與傳送穿過處於該當前著色狀態之該等可著色窗中之該至少一者之光的一第二波長範圍互補。 The method of claim 1, wherein the one or more new settings for the artificial interior lighting are configured to generate illumination from the artificial interior lighting having a first wavelength range that is related to transmission through is complementary to a second wavelength range of light passing through the at least one of the tintable windows in the current tint state. 如請求項1之方法,其中用於該人工內部照明之該一或多個新設置經組態以(I)減小在該房間之一佔用區域中之一對比率或(II)產生光照,該光照結合來自傳送穿過處於該當前著色狀態之該等可著色窗中之至少一者的光產生在該房間中之該所要光顏色。 The method of claim 1, wherein the one or more new settings for the artificial interior lighting are configured to (I) reduce a contrast ratio in an occupied area of the room or (II) generate illumination, The lighting produces the desired color of light in the room in combination with light transmitted through at least one of the tintable windows in the current tint state. 如請求項1之方法,其中用於該人工內部照明之該一或多個新設置經組態以產生光照,該光照結合來自傳送穿過處於該當前著色狀態之該等可著色窗中之該至少一者的光提供(i)具有紅光、藍光及綠光之一光譜內容(spectral content)或(ii)與自然光相關聯之一光譜內容。 The method of claim 1, wherein the one or more new settings for the artificial interior lighting are configured to generate lighting in combination with the lighting from the tintable windows transmitted through the current shading state The light of at least one provides (i) a spectral content of red, blue and green light or (ii) a spectral content associated with natural light. 如請求項1之方法,其進一步包括:判定該一或多個可著色窗之一新著色狀態;以及 經由該通信網路發送將該一或多個可著色窗調整為該新著色狀態的控制信號;其中使該人工內部照明調整至該一或多個新設置之該等調整及使該一或多個可著色窗調整至該新著色狀態之該等調整經組態以產生一組合光照,該組合光照具有(i)紅光、藍光及綠光之一光譜內容或(ii)與自然光相關聯之一光譜內容。 The method of claim 1, further comprising: determining a new shading state of the one or more tintable windows; and sending control signals via the communication network to adjust the one or more tintable windows to the new tinted state; wherein the adjustments that cause the artificial interior lighting to be adjusted to the one or more new settings and the one or more The adjustments of a tintable window to the new tint state are configured to produce a combined illumination having either (i) a spectral content of red, blue, and green or (ii) associated with natural light a spectral content. 如請求項1之方法,其進一步包括至少部分基於傳送穿過該至少一可著色窗之光之顏色(hue)以判定該一或多個新設置,該光之該顏色係使用該至少一可著色窗之該當前著色狀態而判定。 The method of claim 1, further comprising determining the one or more new settings based at least in part on a hue of light transmitted through the at least one tintable window, the color of the light using the at least one tintable window Determined based on the current shading state of the shading window. 一種用於控制在具有一或多個可著色窗之一房間中之光顏色之控制器,該控制器包括:一電腦可讀媒體,其具有控制邏輯;以及電路,其與該電腦可讀媒體及與該一或多個可著色窗通信,其中該控制邏輯經組態以:判定或引導判定用於該房間中之人工內部照明的一或多個新設置,其中該一或多個新設置經組態以獲得在該房間中之一所要光顏色且該一或多個新設置係使用該一或多個可著色窗之至少一者之一當前著色狀態來判定;以及發送或引導發送控制信號以將該人工內部照明調整至該一或多個新設置。 A controller for controlling the color of light in a room having one or more tintable windows, the controller comprising: a computer-readable medium having control logic; and circuitry associated with the computer-readable medium and in communication with the one or more tintable windows, wherein the control logic is configured to: determine or direct determination of one or more new settings for artificial interior lighting in the room, wherein the one or more new settings being configured to obtain a desired light color in the room and the one or more new settings determined using a current tint state of at least one of the one or more tintable windows; and sending or directing send control signal to adjust the artificial interior lighting to the one or more new settings. 如請求項22之控制器,其中該控制邏輯經進一步組態以至少部分基於傳送穿過該一或多個可著色窗之光之顏色以判定或引導判定該一或多個新設置,該光之該顏色係使用該一或多個可著色窗之該當前著色狀態而判定。The controller of claim 22, wherein the control logic is further configured to determine or direct determination of the one or more new settings based at least in part on the color of light transmitted through the one or more tintable windows, the light The color is determined using the current shaded state of the one or more shadeable windows.
TW107106439A 2017-02-27 2018-02-26 Adjusting interior lighting based on dynamic glass tinting TWI765975B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762464299P 2017-02-27 2017-02-27
US62/464,299 2017-02-27

Publications (2)

Publication Number Publication Date
TW201838945A TW201838945A (en) 2018-11-01
TWI765975B true TWI765975B (en) 2022-06-01

Family

ID=63254110

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107106439A TWI765975B (en) 2017-02-27 2018-02-26 Adjusting interior lighting based on dynamic glass tinting
TW111117328A TWI800374B (en) 2017-02-27 2018-02-26 Adjusting interior lighting based on dynamic glass tinting

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111117328A TWI800374B (en) 2017-02-27 2018-02-26 Adjusting interior lighting based on dynamic glass tinting

Country Status (5)

Country Link
EP (1) EP3586574A4 (en)
CN (1) CN110476485B (en)
CA (1) CA3054786A1 (en)
TW (2) TWI765975B (en)
WO (1) WO2018157063A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9645465B2 (en) 2011-03-16 2017-05-09 View, Inc. Controlling transitions in optically switchable devices
US8705162B2 (en) 2012-04-17 2014-04-22 View, Inc. Controlling transitions in optically switchable devices
US9454055B2 (en) 2011-03-16 2016-09-27 View, Inc. Multipurpose controller for multistate windows
WO2013059674A1 (en) 2011-10-21 2013-04-25 View, Inc. Mitigating thermal shock in tintable windows
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US10048561B2 (en) 2013-02-21 2018-08-14 View, Inc. Control method for tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US9638978B2 (en) 2013-02-21 2017-05-02 View, Inc. Control method for tintable windows
MX350468B (en) 2012-08-28 2017-09-07 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments.
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
AU2015223112B2 (en) 2014-02-28 2020-07-09 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
TWI746446B (en) 2015-07-07 2021-11-21 美商唯景公司 Viewcontrol methods for tintable windows
US11255722B2 (en) 2015-10-06 2022-02-22 View, Inc. Infrared cloud detector systems and methods
WO2019046580A1 (en) 2017-08-30 2019-03-07 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
WO2020055872A1 (en) 2018-09-14 2020-03-19 Delos Living Llc Systems and methods for air remediation
CA3123310A1 (en) * 2018-12-20 2020-06-25 Sollum Technologies Inc. Method and system of supplementing the spectral content of illuminating light based on a target illumination spectrum
WO2020176503A1 (en) * 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
WO2020198183A1 (en) 2019-03-25 2020-10-01 Delos Living Llc Systems and methods for acoustic monitoring
TWI720652B (en) * 2019-10-15 2021-03-01 潤弘精密工程事業股份有限公司 Method and system for processing building energy information
US11630927B2 (en) 2019-10-15 2023-04-18 Ruentex Engineering & Construction Co., Ltd. Method and system for processing building energy information
CN111194126A (en) * 2020-02-24 2020-05-22 北方工业大学 Interactive sunshade system and method based on personnel positioning
CN111441705B (en) * 2020-04-03 2022-03-11 哈尔滨工业大学 Building self-adaptive skin shading system capable of sensing user behaviors and control method
CN111474797B (en) * 2020-05-08 2024-01-30 深圳市光羿科技有限公司 Control method of electrochromic glass and electrochromic glass
CN112996202A (en) * 2021-03-05 2021-06-18 浙江理工大学 Indoor illumination control system and regulation and control method based on energy conservation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296081A1 (en) * 2006-10-17 2010-11-25 Chromogenics Ab Indoor light balancing
CN202110359U (en) * 2011-05-25 2012-01-11 王麒 Intelligent nanometer glass
TW201231789A (en) * 2011-01-21 2012-08-01 E Ink Holdings Inc Smart window and smart window system using the same
CN103370986A (en) * 2010-12-16 2013-10-23 法国圣戈班玻璃厂 System for controlling active glazing units for managing the colour of light in a building
US20140236323A1 (en) * 2013-02-21 2014-08-21 View, Inc. Control method for tintable windows
US20150092259A1 (en) * 2013-10-01 2015-04-02 Sage Electrochromics, Inc. Control System For Color Rendering Of Optical Glazings

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086195A2 (en) * 2003-03-24 2004-10-07 Lutron Electronics Co., Inc. System to control daylight and artificial illumination and sun glare in a space
US8723467B2 (en) * 2004-05-06 2014-05-13 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US8836263B2 (en) * 2004-05-06 2014-09-16 Mechoshade Systems, Inc. Automated shade control in connection with electrochromic glass
US8368992B2 (en) * 2006-03-03 2013-02-05 Gentex Corporation Electro-optical element including IMI coatings
CN101395521B (en) * 2006-03-03 2010-09-29 金泰克斯公司 Improved thin-film coatings, electro-optic elements and assemblies incorporating these elements
CN101678209A (en) * 2007-05-31 2010-03-24 皇家飞利浦电子股份有限公司 Method and system for providing illumination and physiological stimuli
WO2009044330A1 (en) * 2007-10-02 2009-04-09 Koninklijke Philips Electronics N.V. Lighting system, and method and computer program for controlling the lighting system
EP2566303B1 (en) * 2011-09-02 2018-02-28 Nxp B.V. Lighting system
CN104429162B (en) * 2012-05-24 2017-10-03 皇家飞利浦有限公司 Particularly for the illuminator of the delirium reduction in Intensive Care Therapy room
MX350468B (en) * 2012-08-28 2017-09-07 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments.
CN106103191B (en) * 2014-02-28 2018-03-30 庞巴迪公司 For controlling method, system and the recording medium of illumination
RU2688844C2 (en) * 2014-05-09 2019-05-22 Вью, Инк. Method of controlling tinted windows
CN105549293B (en) * 2016-03-08 2019-09-27 北京工业大学 A kind of design building method of human engineering Intelligent window system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100296081A1 (en) * 2006-10-17 2010-11-25 Chromogenics Ab Indoor light balancing
CN103370986A (en) * 2010-12-16 2013-10-23 法国圣戈班玻璃厂 System for controlling active glazing units for managing the colour of light in a building
TW201231789A (en) * 2011-01-21 2012-08-01 E Ink Holdings Inc Smart window and smart window system using the same
CN202110359U (en) * 2011-05-25 2012-01-11 王麒 Intelligent nanometer glass
US20140236323A1 (en) * 2013-02-21 2014-08-21 View, Inc. Control method for tintable windows
US20150092259A1 (en) * 2013-10-01 2015-04-02 Sage Electrochromics, Inc. Control System For Color Rendering Of Optical Glazings

Also Published As

Publication number Publication date
EP3586574A1 (en) 2020-01-01
CN110476485B (en) 2023-05-23
CN110476485A (en) 2019-11-19
EP3586574A4 (en) 2021-01-06
TWI800374B (en) 2023-04-21
WO2018157063A1 (en) 2018-08-30
TW202306919A (en) 2023-02-16
CA3054786A1 (en) 2018-08-30
TW201838945A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
TWI765975B (en) Adjusting interior lighting based on dynamic glass tinting
US11950340B2 (en) Adjusting interior lighting based on dynamic glass tinting
US20230004059A1 (en) Methods of controlling multi-zone tintable windows
US11635666B2 (en) Methods of controlling multi-zone tintable windows
US20230152654A1 (en) Methods of controlling multi-zone tintable windows
TWI823168B (en) Viewcontrol methods for tintable windows
TWI797288B (en) Control methods and systems using external 3d modeling and schedule-based computing
CN111061110B (en) Control method for tintable windows
Fernandes et al. Lighting energy savings potential of split-pane electrochromic windows controlled for daylighting with visual comfort
JP2019057504A (en) Control system for color rendering of optical glazings
JP2016516921A (en) Control method for tint adjustable window
KR20150003271A (en) Controlling transitions in optically switchable devices
Gentile et al. Evaluation of integrated daylighting and electric lighting design projects: Lessons learned from international case studies
CA2985603A1 (en) Energy-efficient integrated lighting, daylighting, and hvac with electrochromic glass
US20240103332A1 (en) Controlling transitions in optically switchable devices
Kolås Performance of daylight redirecting venetian blinds for sidelighted spaces at high latitudes
Mardaljevic et al. Electrochromic glazing in buildings: A case study
WO2023220438A1 (en) Intelligence
Lee et al. Electrochromic Window Demonstration at the 911 Federal Building, 911 Northeast 11th Avenue, Portland, Oregon
Aries et al. Lighting and daylighting for visual comfort and energy efficiency
Maskarenjd et al. Evaluation of integrated daylighting and electric lighting design projects: lessons 2 learned from international case studies 3