TWI765480B - 具最大功率點追蹤之充電系統 - Google Patents

具最大功率點追蹤之充電系統 Download PDF

Info

Publication number
TWI765480B
TWI765480B TW109144810A TW109144810A TWI765480B TW I765480 B TWI765480 B TW I765480B TW 109144810 A TW109144810 A TW 109144810A TW 109144810 A TW109144810 A TW 109144810A TW I765480 B TWI765480 B TW I765480B
Authority
TW
Taiwan
Prior art keywords
switch
control signal
voltage
signal
electrically connected
Prior art date
Application number
TW109144810A
Other languages
English (en)
Other versions
TW202225896A (zh
Inventor
王朝欽
蘇柏愷
李宗哲
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW109144810A priority Critical patent/TWI765480B/zh
Application granted granted Critical
Publication of TWI765480B publication Critical patent/TWI765480B/zh
Publication of TW202225896A publication Critical patent/TW202225896A/zh

Links

Images

Abstract

一種具最大功率點追蹤之充電系統包含一發電單元、一降壓轉換器及一自適應定電流模式控制單元,該發電單元用以輸出一輸出電流,該降壓轉換器電性連接該發電單元以接收該輸出電流,該降壓轉換器用以輸出一儲能電流至一儲能單元,該自適應定電流模式控制單元之一電流感測器用以感測該降壓轉換器之該儲能電流為一感測電壓,該自適應定電流模式控制單元之一最大功率追蹤控制器電性連接該電流感測器以接收該感測電壓,該最大功率追蹤控制器根據該感測電壓產生一控制訊號,該自適應定電流模式控制單元之一PWM訊號產生器電性連接該最大功率追蹤控制器以接收該控制訊號,且該PWM訊號產生器依據該控制訊號輸出一最大功率PWM控制訊號。

Description

具最大功率點追蹤之充電系統
本發明是關於一種充電系統,特別是關於一種具最大功率點追蹤之充電系統。
太陽能發電及風力發電為目前再生能源中估比最大的兩種發電類型,但由於太陽能及風能受到氣候及環境的影響而相當不穩定,特別是太陽能電池因為其發電特性,在不同光照度下有著不同的特性曲線,而需要使用最大功率點追蹤令太陽能電池在不同的特性曲線下皆可達到最大功率輸出,因此,如何整合最大功率追蹤於充電系統中,使得充電系統能夠適用於各式太陽能電池為太陽能充電系統的重要課題之一。
本發明的主要目的在於藉由自適應定電流模式控制單元追蹤發電單元的最大功率點,而能夠讓發電單元在最大功率點對儲能單元進行定電流充電,以提高充電系統的整體效率。
本發明之一種具最大功率點追蹤之充電系統包含一發電單元、一降壓轉換器及一自適應定電流模式控制單元,該發電單元用以輸出一輸出電流, 該降壓轉換器電性連接該發電單元以接收該輸出電流,該降壓轉換器用以輸出一儲能電流至一儲能單元,該自適應定電流模式控制單元具有一電流感測器、一最大功率追蹤控制器及一PWM訊號產生器,該電流感測器用以感測該降壓轉換器之該儲能電流為一感測電壓,該最大功率追蹤控制器電性連接該電流感測器以接收該感測電壓,該最大功率追蹤控制器根據該感測電壓產生一控制訊號,該PWM訊號產生器電性連接該最大功率追蹤控制器以接收該控制訊號,且該PWM訊號產生器依據該控制訊號輸出一最大功率PWM控制訊號,該最大功率PWM控制訊號用以控制該降壓轉換器之一第一功率開關及一第二功率開關。
本發明之該具最大功率點追蹤之充電系統藉由該自適應定電流模式控制單元之該電流感測器偵測該儲能電流的大小,並以該最大功率追蹤控制器以該儲能電流的大小追蹤該發電單元的最大功率點而輸出該控制訊號,該PWM訊號產生器透過該控制訊號對該降壓轉換器進行控制,達成對該儲能單元進行最大功率之定電流充電,可有效提高對該儲能單元的充電效率。
請參閱第1圖,其為本發明之一實施例,一種具最大功率點追蹤之充電系統100的電路圖,該具最大功率點追蹤之充電系統100包含一發電單元110、一降壓轉換器120、一自適應定電流模式控制單元130、一定電壓模式控制單元140、一或閘150及一非交疊電路160。該發電單元110用以輸出一輸出電流I pv及一輸出電壓V pv,在本實施例中,該發電單元110為一太陽能電池,但在其他實施例中,該發電單元110亦可為其他需要進行最大功率點追蹤之發電裝置,本發明並不在此限。
該降壓轉換器120電性連接該發電單元110以接收該輸出電流I pv及該輸出電壓V pv,該降壓轉換器120轉換該輸出電流I pv及該輸出電壓V pv為一儲能電流I BAT,並以該儲能電流I BAT對一儲能單元BAT進行充電。在本實施例中,該降壓轉換器120具有一第一功率開關MP、一第二功率開關MN及一輸出電感L o,該第一功率開關MP之兩端分別電性連接該發電單元110及該輸出電感L o,該第二功率開關MN之兩端分別電性連接該輸出電感L o及一接地端,該輸出電感L o電性連接該儲能單元BAT,該第一功率開關MP及該第二功率開關MN分別受一第一控制訊號D_P及一第二控制訊號D_N控制其導通或截止,讓該輸出電感L o進行儲能或放電而達成降壓轉換。其中,該第一功率開關MP導通且該第二功率開關MN截止時,該輸出電感L o進入儲能時間,該輸出電感L o的電感電流增加,相對地,該第一功率開關MP截止且該第二功率開關MN導通時,該輸出電感L o進入放電時間,該輸出電感L o的電感電流減少。
請參閱第1圖,該自適應定電流模式控制單元130具有一電流感測器131、一最大功率追蹤控制器132及一PWM訊號產生器133。該電流感測器131用以感測該降壓轉換器120輸出至該儲能單元BAT之該儲能電流I BAT為一感測電壓V sen,由於該感測電壓V sen與該發電單元110的輸出功率成正比,因此該最大功率追蹤控制器132及該PWM訊號產生器133能夠藉由該感測電壓V sen調整該降壓轉換器120而追蹤該發電單元110的最大功率點。該最大功率追蹤控制器132電性連接該電流感測器131以接收該感測電壓V sen,該最大功率追蹤控制器132根據該感測電壓V sen產生一控制訊號Q(n),該PWM訊號產生器133電性連接該最大功率追蹤控制器132以接收該控制訊號Q(n),且該PWM訊號產生器133依據該控制訊號Q(n)輸出一最大功率PWM控制訊號V MPPT_PWM,該最大功率PWM控制訊號V MPPT_PWM用以控制該降壓轉換器120之該第一功率開關MP及該第二功率開關MN。
請參閱第1及2圖,該最大功率追蹤控制器132具有一取樣電路132a、一比較電路132b及一控制訊號產生電路132c,該取樣電路132a接收一三角波及時脈產生器170產生之一第一時脈訊號clk1及一第二時脈訊號clk2,且該取樣電路132a分別被該第一時脈訊號clk1及該第二時脈訊號clk2觸發而取樣不同時間下之該感測電壓V sen為一第一取樣電壓V sam1及一第二取樣電壓V sam2。在本實施例中,該取樣電路132a具有一第一開關TG1、一第一取樣電容C1、一第二開關TG2及一第二取樣電容C2,該第一開關TG1電性連接該電流感測器131及該第一取樣電容C1,該第一開關TG1被該第一時脈訊號clk1觸發而導通時,該感測電壓V sen對該第一取樣電容C1充電而產生該第一取樣電壓V sam1。該第二開關TG2電性連接電流感測器131及該第二取樣電容C2,該第二開關TG2被該第二時脈訊號clk2觸發而導通時,該感測電壓V sen對該第二取樣電容C2充電而產生該第二取樣電壓V sam2。較佳的,在本實施例中,該第一開關TG1及該第二開關TG2為傳輸閘(Transmission gate),可用以避免該感測電壓V sen經過該第一開關TG1及該第二開關TG2時產生電壓降而有誤差,讓該第一取樣電壓V sam1及該第二取樣電壓V sam2的取樣更加精準。由於傳輸閘是以一PMOS電晶體及一NMOS電晶體構成,因此該第一開關TG1是被該第一時脈訊號clk1及一反向之第一時脈訊號
Figure 02_image001
控制其導通或截止,該反向之第一時脈訊號
Figure 02_image001
可由該第一時脈訊號clk1經由一反向器(圖未繪出)反向而得,該第二開關TG2是被該第二時脈訊號clk2及一反向之第二時脈訊號
Figure 02_image003
控制其導通或截止,該反向之第二時脈訊號
Figure 02_image003
可由該第二時脈訊號clk2經由一反向器(圖未繪出)反向而得。請參閱第3圖,其為該第一時脈訊號clk1、該第二時脈訊號clk2及一第三時脈訊號clk3的時序圖,當該第一時脈訊號clk1為高電位時,該第二時脈訊號clk2為低電位,因此,該第一開關TG1導通且該第二開關TG2截止使該感測電壓V sen僅對該第一取樣電容C1充電而產生該第一取樣電壓V sam1。相對地,當該第二時脈訊號clk2為高電位時,該第一時脈訊號clk1為低電位,因此,該第二開關TG2導通且該第一開關TG1截止使該感測電壓V sen僅對該第二取樣電容C2充電而產生該第二取樣電壓V sam2,並藉由該第一時脈訊號clk1及該第二時脈訊號clk2的時序控制,可讓該取樣電路132a分別取樣不同時間下之該感測電壓V sen的電位大小。
請參閱第2圖,該比較電路132b電性連接該取樣電路132a以接收該第一取樣電壓V sam1及該第二取樣電壓V sam2,且該比較電路132b比較該第一取樣電壓V sam1及該第二取樣電壓V sam2的電位大小而輸出一比較控制訊號C(n)。在本實施例中,該比較電路132b具有一比較器cmp1、一反向器Inv、一第三開關TG3及一第四開關TG4,該比較器cmp1電性連接該取樣電路132a以接收該第一取樣電壓V sam1及該第二取樣電壓V sam2,且該比較器cmp1輸出一比較訊號C。其中,該比較器cmp1之正端電性連接該第一取樣電容C1以接收該第一取樣電壓V sam1,該比較器cmp1之負端電性連接該第二取樣電容C2以接收該第二取樣電壓V sam2
該第三開關TG3電性連接該比較器cmp1以接收該比較訊號C,該第三開關TG3被該第一時脈訊號clk1觸發而導通,使該比較電路132b輸出之該比較控制訊號C(n)為該比較訊號C。該反向器Inv電性連接該比較器cmp1以接收該比較訊號C,且該反向器Inv輸出一反向之比較訊號
Figure 02_image005
,該第四開關TG4電性連接該反向器Inv以接收該反向之比較訊號
Figure 02_image005
,該第四開關TG4被該第二時脈訊號clk2觸發而導通,使該比較電路132b輸出之該比較控制訊號C(n)為該反向之比較訊號
Figure 02_image005
。在本實施例中,該第三開關TG3及該第四開關TG4為傳輸閘,用以避免該比較訊號C或該反向之比較訊號
Figure 02_image005
在通過該第三開關TG3或第四開關TG4時產生電壓差而導致後端電路誤判的情形發生,其中,該第三開關TG3受該第一時脈訊號clk1及該反向之第一時脈訊號
Figure 02_image001
控制,該第四開關TG4受該第二時脈訊號clk2及該反向之第二時脈訊號
Figure 02_image007
控制。
該比較電路132b輸出之該比較控制訊號C(n)是用以表示目前週期之該儲能電流I BAT與前一週期之該儲能電流I BAT的變化趨勢,當該比較控制訊號C(n)為高電位時表示變化趨勢為往上,也表示該發電單元110的輸出功率增加,該比較控制訊號C(n)為低電位時表示變化趨勢為往下,也表示該發電單位110的輸出功率減少。
請參閱第2圖,該控制訊號產生電路132c電性連接該比較電路132b以接收該比較控制訊號C(n),且該控制訊號產生電路132c輸出該控制訊號Q(n)。在本實施例中,該控制訊號產生電路132c具有一反互斥或閘XNOR及一正反器DFF1,該反互斥或閘XNOR電性連接該比較電路132b,該反互斥或閘XNOR接收該比較控制訊號C(n)及該控制訊號Q(n)並輸出一下週期控制訊號Q(n+1),該正反器DFF1之一輸入端接收該下週期控制訊號Q(n+1),該正反器DFF1之一時脈輸入端接收該第三時脈訊號clk3,該正反器DFF1之一輸出端輸出該控制訊號Q(n)。其中該控制訊號Q(n)表示本週期對該降壓轉換器120的調整趨勢,該下週期控制訊號Q(n+1)則表示下週期對該降壓轉換器120的調整趨勢。
請參閱第2圖,該PWM訊號產生器133具有一第五開關sw1、一第六開關sw2、一第七開關sw3、一第八開關sw4、一充電電容C CC及一比較器cmp2,該第五開關sw1及該第六開關sw2接收該控制訊號Q(n)並受該控制訊號Q(n)控制,該第七開關sw3電性連接該第五開關sw1及一電壓源V DD,且該第七開關sw3經由一反向器Inv受一反向之第三時脈訊號
Figure 02_image009
控制,該第七開關sw3導通時該第五開關sw1經由該第七開關sw3連接至該電壓源V DD。該第八開關sw4電性連接該第六開關sw2及該接地端,且該第八開關sw4受該第三時脈訊號clk3控制,該第八開關sw4導通時該第六開關sw2經由該第八開關sw4連接至該接地端。該充電電容C CC電性連接該第五開關sw1及該第六開關sw2,該第五開關sw1導通且該第六開關sw2截止時,該電壓源V DD經由該第五開關sw1對該充電電容C CC使該充電電容C CC之一充電電壓V CC上升。反之,該第五開關sw1截止且該第六開關sw2導通時,該充電電容C CC經由該第六開關sw2放電使該充電電容C CC之該充電電壓V CC下降。該比較器cmp2電性連接該充電電容C CC以接收該充電電壓V CC,且該比較器cmp2用以比較該充電電壓V CC及一三角波電壓V ramp的電位大小而輸出該最大功率PWM控制訊號V MPPT_PWM
請參閱第2及3圖,在本實施例中,該第五開關sw1及該第七開關sw3為PMOS電晶體,該第六開關sw2及該第八開關sw4為NMOS電晶體,若該控制訊號Q(n)為1時,該第五開關sw1截止、該第六開關sw2導通,因此在該第三時脈訊號clk3觸發該第八開關sw4導通時,該充電電容C CC之該充電電壓V CC會經由該第六開關sw2及該第八開關sw4放電而下降。相對地,若該控制訊號Q(n)為0時,該第五開關sw1導通、該第六開關sw2截止,因此在反向之第三時脈訊號
Figure 02_image009
觸發該第七開關sw3導通時,該電壓源V DD會經由該第七開關sw3及該第五開關sw1對該充電電容C CC充電使得該充電電壓V CC的電位上升。
由於該比較器cmp2之正端接收該三角波電壓V ramp,該比較器cmp2之負端接收該充電電壓V CC,且該三角波電壓V ramp的波型呈三角形,因此,當該充電電容C CC之該充電電壓V CC的電位越小時,該比較器cmp2輸出之該最大功率PWM控制訊號V MPPT_PWM之責任週期上升,使得該第一功率開關MP的導通時間減少,讓該電感電流下降。當該充電電容C CC之該充電電壓V CC的電位越大時,該比較器cmp2輸出之該最大功率PWM控制訊號V MPPT_PWM之責任週期下降,使得該第一功率開關MP的導通時間增加,讓該電感電流上升。
雖然藉由對該最大功率PWM控制訊號V MPPT_PWM之責任週期的調整能夠改變該發電單元110的輸出功率大小以進行最大功率點追蹤,但每次的調整並不能確定都可調整至最大功率點,也可能越過最大功率點而讓該發電單元110的輸出功率下降,因此,該最大功率追蹤控制器132之該控制訊號產生電路132c藉由該控制訊號Q(n)及該比較控制訊號C(n)產生該下週期控制訊號Q(n+1),以確保下週期能夠朝向該最大功率點調整,而達成爬波法的最大功率追蹤。其中,該控制訊號產生電路132c之爬波法的真值表如下表所示:
Q(n) C(n) Q(n+1)
0 0 1
0 1 0
1 0 0
1 1 1
當該控制訊號Q(n)為0的調整趨勢時,該比較控制訊號C(n)為0表示此調整趨勢下的輸出功率下降,因此該下週期控制訊號Q(n+1)轉換為1的調整趨勢;當該控制訊號Q(n)為0的調整趨勢時,該比較控制訊號C(n)為1表示此調整趨勢下的輸出功率上升,因此該下週期控制訊號Q(n+1)同樣為0的調整趨勢;當該控制訊號Q(n)為1的調整趨勢時,該比較控制訊號C(n)為0表示此調整趨勢下的輸出功率下降,因此該下週期控制訊號Q(n+1)轉換為0的調整趨勢;當該控制訊號Q(n)為1的調整趨勢時,該比較控制訊號C(n)為1表示此調整趨勢下的輸出功率上升,因此該下週期控制訊號Q(n+1)同樣為1的調整趨勢,可知本實施例確實能藉由該控制訊號產生電路132c之該反互斥或閘XNOR及該正反器DFF1達成爬波法之最大功率追蹤。
請參閱第1圖,該定電壓模式控制單元140接收該儲能單元BAT之一儲能電壓V BAT、一滿額電壓V full及一時脈訊號clk,該定電壓模式控制單元140根據該儲能電壓V BAT、該滿額電壓V full及該時脈訊號clk輸出一PFM控制訊號V PFM。請參閱第4圖,在本實施例中,該定電壓模式控制單元140具有一比較器cmp3、一正反器DFF2及一或閘141,該比較器cmp3接收該儲能電壓V BAT及該滿額電壓V full並輸出一比較訊號至該正反器DFF2之輸入端,該正反器DFF2之一時脈接收端接收該時脈訊號clk,該正反器DFF2輸出一訊號至該或閘141,該或閘141另接收該時脈訊號clk並輸出該PFM控制訊號V PFM。該定電壓模式控制單元140在該儲能單元BAT之該儲能電壓V BAT小於該滿額電壓V full時,該比較器cmp3輸出低電位觸發該正反器DFF2輸出低電位之訊號,使得該PFM控制訊號V PFM的電位與該時脈訊號clk相同。反之,在該儲能單元BAT之該儲能電壓V BAT大於該滿額電壓V full時,該比較器cmp3輸出高電位觸發該正反器DFF2輸出高電位之訊號,使得該PFM控制訊號V PFM的電位與該正反器DFF2之輸出訊號相同為高電位。
請參閱第1圖,該或閘150電性連接該自適應定電流模式控制單元130及該定電壓模式控制單元140以接收該最大功率PWM控制訊號V MPPT_PWM及該PFM控制訊號V PFM,且該或閘150輸出一或閘訊號OR,該或閘訊號OR的電位由該最大功率PWM控制訊號V MPPT_PWM及該PFM控制訊號V PFM決定。其中,當該儲能電壓V BAT小於該滿額電壓V full時,由於該PFM控制訊號V PFM的責任週期與該時脈訊號clk相同,且遠小於該最大功率PWM控制訊號V MPPT_PWM的責任週期而被遮蔽,該或閘訊號OR的電位會與該最大功率PWM控制訊號V MPPT_PWM相同,此時該降壓轉換器120進入最大功率定流控制模式。當該儲能電壓V BAT大於該滿額電壓V full時,由於該PFM控制訊號V PFM的責任週期大於該最大功率PWM控制訊號V MPPT_PWM的責任週期,該或閘訊號OR的電位會與該PFM控制訊號V PFM相同,此時該降壓轉換器120進入最大功率定流控制模式,藉此讓該具最大功率點追蹤之充電系統100達成雙模式之充電模式的切換。
請參閱第1圖,為了避免該第一功率開關MP還未完全關閉時該第二功率開關MN就導通,本實施例透過該非交疊電路160將該第一功率開關MP的截止時間與該第二功率開關MN的導通時間錯開,該非交疊電路160電性連接該或閘150以接收該或閘訊號OR,且該非交疊電路160根據該或閘訊號OR分別輸出該第一控制訊號D_P及該第二控制訊號D_N。其中,該第一控制訊號D_P經由一電壓位準轉換器180傳送至該降壓轉換器120之該第一功率開關MP進行控制,該第二控制訊號D_N經由一零電流偵測器190傳送至該第二功率開關MN進行控制。
本發明之該具最大功率點追蹤之充電系統100藉由該自適應定電流模式控制單元130之該電流感測器131偵測該儲能電流I BAT大小,並以該最大功率追蹤控制器132以該儲能電流I BAT大小追蹤該發電單元110的最大功率點而輸出該控制訊號Q(n),該PWM訊號產生器133透過該控制訊號Q(n)對該降壓轉換器120進行控制,達成對該儲能單元BAT進行最大功率之定電流充電,可有效提高對該儲能單元BAT的充電效率。
本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。
100:具最大功率點追蹤之充電系統
110:發電單元
120:降壓轉換器
130:自適應定電流模式控制單元
131:電流感測器
132:最大功率追蹤控制器
132a:取樣電路
132b:比較電路
132c:控制訊號產生電路
133:PWM訊號產生器
140:定電壓模式控制單元
141:或閘
150:或閘
160:非交疊電路
170:三角波及時脈產生器
180:電壓位準轉換器
190:零電流偵測器
VDD:電壓源
BAT:儲能單元
Vsen:感測電壓
Ipv:輸出電流
VMPPT_PWM:最大功率PWM控制訊號
Q(n):控制訊號
clk:時脈訊號
clk1:第一時脈訊號
Figure 02_image001
:反向之第一時脈訊號
clk2:第二時脈訊號
Figure 02_image007
:反向之第二時脈訊號
clk3:第三時脈訊號
Figure 02_image009
:反向之第三時脈訊號
Vsam1:第一取樣電壓
Vsam2:第二取樣電壓
C(n):比較控制訊號
Q(n+1):下週期控制訊號
TG1:第一開關
C1:第一取樣電容
TG2:第二開關
C2:第二取樣電容
cmp1,2,3:比較器
C:比較訊號
Inv:反向器
TG3:第三開關
TG4:第四開關
XNOR:反互斥或閘
DFF1,2:正反器
sw1:第五開關
sw2:第六開關
CCC:充電電容
VCC:充電電壓
sw3:第七開關
sw4:第八開關
VBAT:儲能電壓
Vfull:滿額電壓
IBAT:儲能電流
Vpv:輸出電壓
MP:第一功率開關
MN:第二功率開關
Lo:輸出電感
D_P:第一控制訊號
D_N:第二控制訊號
Figure 02_image005
:反向之比較訊號
Vramp:三角波電壓
VPFM:PFM控制訊號
OR:或閘訊號
VX:節點電壓
第1圖:依據本發明之一實施例,一種具最大功率點追蹤之充電系統的電路圖。
第2圖:依據本發明之一實施例,一最大功率追蹤控制器及一PWM訊號產生器的電路圖。
第3圖:依據本發明之一實施例,一第一時脈訊號、一第二時脈訊號及一第三時脈訊號的時序圖。
第4圖:依據本發明之一實施例,一定電壓模式控制單元的電路圖。
100:具最大功率點追蹤之充電系統
110:發電單元
120:降壓轉換器
130:自適應定電流模式控制單元
131:電流感測器
132:最大功率追蹤器
133:PWM訊號產生器
140:定電壓模式控制單元
150:或閘
160:非交疊電路
170:三角波及時脈產生器
180:電壓位準轉換器
IPV:輸出電流
VPV:輸出電壓
MP:第一功率開關
VX:節點電壓
MN:第二功率開關
Lo:輸出電感
IBAT:儲能電流
VBAT:儲能電壓
BAT:儲能單元
D_P:第一控制訊號
D_N:第二控制訊號
Vsen:感測電壓
clk1:第一時脈訊號
clk2:第二時脈訊號
clk3:第三時脈訊號
Vramp:三角波電壓
Q(n):控制訊號
clk:時脈訊號
Vfull:滿額電壓
VMPPT_PWM:最大功率PWM控制訊號
VPFM:PFM控制訊號
OR:或閘訊號

Claims (9)

  1. 一種具最大功率點追蹤之充電系統,其包含:一發電單元,用以輸出一輸出電流;一降壓轉換器,電性連接該發電單元以接收該輸出電流,該降壓轉換器用以輸出一儲能電流至一儲能單元;以及一自適應定電流模式控制單元,具有一電流感測器、一最大功率追蹤控制器及一PWM訊號產生器,該電流感測器用以感測該降壓轉換器之該儲能電流為一感測電壓,該最大功率追蹤控制器電性連接該電流感測器以接收該感測電壓,該最大功率追蹤控制器根據該感測電壓產生一控制訊號,該PWM訊號產生器電性連接該最大功率追蹤控制器以接收該控制訊號,且該PWM訊號產生器依據該控制訊號輸出一最大功率PWM控制訊號,該最大功率PWM控制訊號用以控制該降壓轉換器之一第一功率開關及一第二功率開關,其中該最大功率追蹤控制器具有一取樣電路、一比較電路及一控制訊號產生電路,該取樣電路接收一第一時脈訊號及一第二時脈訊號,且該取樣電路分別被該第一時脈訊號及該第二時脈訊號觸發而取樣該感測電壓為一第一取樣電壓及一第二取樣電壓,該比較電路電性連接該取樣電路以接收該第一取樣電壓及該第二取樣電壓,且該比較電路比較該第一取樣電壓及該第二取樣電壓的電位大小而輸出一比較控制訊號,該控制訊號產生電路電性連接該比較電路以接收該比較控制訊號,且該控制訊號產生電路輸出該控制訊號。
  2. 如請求項1之具最大功率點追蹤之充電系統,其中該取樣電路具有一第一開關、一第一取樣電容、一第二開關及一第二取樣電容,該第一開關電性連接電流感測器及該第一取樣電容,該第一開關被該第一時脈訊號觸發而導 通,使該感測電壓對該第一取樣電容充電而產生該第一取樣電壓,該第二開關電性連接電流感測器及該第二取樣電容,該第二開關被該第二時脈訊號觸發而導通,使該感測電壓對該第二取樣電容充電而產生該第二取樣電壓。
  3. 如請求項1之具最大功率點追蹤之充電系統,其中該比較電路具有一比較器、一反向器、一第三開關及一第四開關,該比較器電性連接該取樣電路以接收該第一取樣電壓及該第二取樣電壓,且該比較器輸出一比較訊號,該第三開關電性連接該比較器以接收該比較訊號,該第三開關被該第一時脈訊號觸發而導通,使該比較電路輸出之該比較控制訊號為該比較訊號,該反向器電性連接該比較器以接收該比較訊號,且該反向器輸出一反向之比較訊號,該第四開關被該第二時脈訊號觸發而導通,使該比較電路輸出之該比較控制訊號為該反向之比較訊號。
  4. 如請求項3之具最大功率點追蹤之充電系統,其中該第三開關及該第四開關為傳輸閘,該第三開關受該第一時脈訊號及一反向之第一時脈訊號控制,該第四開關受該第二時脈訊號及一反向之第二時脈訊號控制。
  5. 如請求項1之具最大功率點追蹤之充電系統,其中該控制訊號產生電路具有一反互斥或閘及一正反器,該反互斥或閘電性連接該比較電路,該反互斥或閘接收該比較控制訊號及該控制訊號並輸出一下週期控制訊號,該正反器之一輸入端接收該下週期控制訊號,該正反器之一時脈輸入端接收一第三時脈訊號,該正反器之一輸出端輸出該控制訊號。
  6. 如請求項1之具最大功率點追蹤之充電系統,其中該PWM訊號產生器具有一第五開關、一第六開關、一充電電容及一比較器,該第五開關及該第六開關接收該控制訊號並受該控制訊號控制,該充電電容電性連接該第五開 關及該第六開關,該第五開關導通且該第六開關截止時,一電壓源經由該第五開關對該充電電容使該充電電容之一充電電壓上升,該第五開關截止且該第六開關導通時,該充電電容經由該第六開關放電使該充電電容之該充電電壓下降,該比較器電性連接該充電電容以接收該充電電壓,且該比較器用以比較該充電電壓及一三角波電壓的電位大小而輸出該最大功率PWM控制訊號。
  7. 如請求項6之具最大功率點追蹤之充電系統,其中該控制訊號產生電路具有一第七開關及一第八開關,該第七開關電性連接該第五開關及一電壓源,且該第七開關受一反向之第三時脈訊號控制,該第七開關導通時該第五開關經由該第七開關連接至該電壓源,該第八開關電性連接該第六開關及一接地端,且該第八開關受一第三時脈訊號控制,該第八開關導通時該第六開關經由該第八開關連接至該接地端。
  8. 如請求項7之具最大功率點追蹤之充電系統,其中該第五開關及該第七開關為PMOS電晶體,該第六開關及該第八開關為NMOS電晶體。
  9. 如請求項1之具最大功率點追蹤之充電系統,其另包含一定電壓模式控制單元、一或閘及一非交疊電路,該定電壓模式控制單元接收該儲能單元之一儲能電壓、一滿額電壓及一時脈訊號,該定電壓模式控制單元根據該儲能電壓、該滿額電壓及該時脈訊號輸出一PFM控制訊號,該或閘電性連接該自適應定電流模式控制單元及該定電壓模式控制單元以接收該最大功率PWM控制訊號及該PFM控制訊號,且該或閘輸出一或閘訊號,該非交疊電路電性連接該或閘以接收該或閘訊號,且該非交疊電路根據該或閘訊號分別輸出一第一控制訊號及一第二控制訊號至該降壓轉換器之該第一功率開關及該第二功率開關。
TW109144810A 2020-12-17 2020-12-17 具最大功率點追蹤之充電系統 TWI765480B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109144810A TWI765480B (zh) 2020-12-17 2020-12-17 具最大功率點追蹤之充電系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109144810A TWI765480B (zh) 2020-12-17 2020-12-17 具最大功率點追蹤之充電系統

Publications (2)

Publication Number Publication Date
TWI765480B true TWI765480B (zh) 2022-05-21
TW202225896A TW202225896A (zh) 2022-07-01

Family

ID=82594271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109144810A TWI765480B (zh) 2020-12-17 2020-12-17 具最大功率點追蹤之充電系統

Country Status (1)

Country Link
TW (1) TWI765480B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101635540A (zh) * 2009-08-18 2010-01-27 河海大学 一种光伏发电最大功率点跟踪装置及其跟踪方法
WO2010138491A2 (en) * 2009-05-27 2010-12-02 Miasole Method of battery charging and power control in conjunction with maximum power point tracking
EP2282392A1 (en) * 2009-07-31 2011-02-09 Nxp B.V. A battery charger for a photovoltaic system, a controller therefor and a method of controlling the same
WO2011136143A1 (ja) * 2010-04-28 2011-11-03 太陽誘電株式会社 電力変換装置
US20120025752A1 (en) * 2010-07-28 2012-02-02 Triune Ip Llc Battery charger
CN102403928A (zh) * 2010-12-27 2012-04-04 董密 一种光伏电能优化的最大功率点跟踪控制方法及其系统
US20120268063A1 (en) * 2011-04-25 2012-10-25 Intersil Americas LLC Charging system with adaptive power management
TW201405273A (zh) * 2012-07-26 2014-02-01 Mohamed Papa Talla Fall 能量轉換裝置和方法
CN104122929A (zh) * 2014-07-02 2014-10-29 珠海格力电器股份有限公司 最大功率点跟踪控制方法及系统
US20150333553A1 (en) * 2014-05-15 2015-11-19 Intel Corporation Battery charger for different power sources
CN106681423A (zh) * 2016-10-17 2017-05-17 国网重庆市电力公司电力科学研究院 一种光伏电池的最大功率点跟踪方法和装置
US20170366039A1 (en) * 2016-06-16 2017-12-21 Yu Qin Electric vehicle fast charging station with solar energy system and it's method
TW201816537A (zh) * 2016-10-18 2018-05-01 龍華科技大學 一種太陽能發電系統之最大功率追蹤裝置
TW201839540A (zh) * 2017-04-20 2018-11-01 台達電子工業股份有限公司 最大功率點追蹤方法與最大功率點追蹤系統
CN108874017A (zh) * 2018-08-22 2018-11-23 海南电网有限责任公司电力科学研究院 一种光伏发电系统的最大功率点跟踪方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010138491A2 (en) * 2009-05-27 2010-12-02 Miasole Method of battery charging and power control in conjunction with maximum power point tracking
EP2282392A1 (en) * 2009-07-31 2011-02-09 Nxp B.V. A battery charger for a photovoltaic system, a controller therefor and a method of controlling the same
US20110031926A1 (en) * 2009-07-31 2011-02-10 Nxp B.V. Battery charger for a phtovoltaic system, a controller therefor and a method of controlling the same
CN101635540A (zh) * 2009-08-18 2010-01-27 河海大学 一种光伏发电最大功率点跟踪装置及其跟踪方法
WO2011136143A1 (ja) * 2010-04-28 2011-11-03 太陽誘電株式会社 電力変換装置
US20120025752A1 (en) * 2010-07-28 2012-02-02 Triune Ip Llc Battery charger
CN102403928A (zh) * 2010-12-27 2012-04-04 董密 一种光伏电能优化的最大功率点跟踪控制方法及其系统
US20120268063A1 (en) * 2011-04-25 2012-10-25 Intersil Americas LLC Charging system with adaptive power management
TW201405273A (zh) * 2012-07-26 2014-02-01 Mohamed Papa Talla Fall 能量轉換裝置和方法
US20150333553A1 (en) * 2014-05-15 2015-11-19 Intel Corporation Battery charger for different power sources
CN104122929A (zh) * 2014-07-02 2014-10-29 珠海格力电器股份有限公司 最大功率点跟踪控制方法及系统
US20170366039A1 (en) * 2016-06-16 2017-12-21 Yu Qin Electric vehicle fast charging station with solar energy system and it's method
CN106681423A (zh) * 2016-10-17 2017-05-17 国网重庆市电力公司电力科学研究院 一种光伏电池的最大功率点跟踪方法和装置
TW201816537A (zh) * 2016-10-18 2018-05-01 龍華科技大學 一種太陽能發電系統之最大功率追蹤裝置
TW201839540A (zh) * 2017-04-20 2018-11-01 台達電子工業股份有限公司 最大功率點追蹤方法與最大功率點追蹤系統
CN108874017A (zh) * 2018-08-22 2018-11-23 海南电网有限责任公司电力科学研究院 一种光伏发电系统的最大功率点跟踪方法

Also Published As

Publication number Publication date
TW202225896A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
TWI492511B (zh) 升降壓變換器及其控制器和控制方法
US8085011B1 (en) Boost regulator using synthetic ripple regulation
CN101212178B (zh) 电流模式控制型开关稳压器及其动作控制方法
US20170288440A1 (en) Secondary control device and charging system having the same
CN109634348B (zh) 一种适用于双源能量收集系统的最大功率同步追踪电路
WO2012016401A1 (zh) 死区时间自适应控制的开关级电路
CN211127582U (zh) 电子转换器和集成电路
US20140062443A1 (en) Dc-dc converter and control method thereof
Liu et al. A P&O MPPT with a novel analog power-detector for WSNs applications
CN112104203B (zh) 开关限流电路及电源芯片
CN114531016A (zh) 一种开关变换器及其过零检测电路和过零检测方法
Lee et al. 20V HV energy harvesting circuit with ACC/CV mode and MPPT control for a 5 W solar panel
Ozaki et al. A 0.21-V minimum input, 73.6% maximum efficiency, fully integrated voltage boost converter with MPPT for low-voltage energy harvesters
US10116211B2 (en) Power converter with adaptive zero-crossing current detection
US20170117730A1 (en) Efficient supercapacitor charging technique by a hysteretic charging scheme
CN116111840A (zh) 一种高效率快速瞬态响应的双相Buck电路电源管理芯片
TWI765480B (zh) 具最大功率點追蹤之充電系統
TW202022526A (zh) 功率轉換器
CN210246607U (zh) 工作模式可重构的能量收集控制电路及dc-dc转换器
TWI502845B (zh) 具有執行珍惜能源與回收能源概念之光電打嗝充電器之光電系統及其充電方法
TW200428775A (en) Method and apparatus for determining the switching state of a transistor
Liu et al. An 83mA 96.8% Peak Efficiency 3-Level Boost Converter with Full-Range Auto-Capacitor-Calibrating Pulse Frequency Modulation
US11876443B2 (en) Hybrid switched-capacitor converter
Wu et al. Wide-input-voltage-range and high-efficiency energy harvester with a 155-mV startup voltage for solar power
CN112532047B (zh) 开关电源芯片及系统