CN116111840A - 一种高效率快速瞬态响应的双相Buck电路电源管理芯片 - Google Patents

一种高效率快速瞬态响应的双相Buck电路电源管理芯片 Download PDF

Info

Publication number
CN116111840A
CN116111840A CN202211610114.9A CN202211610114A CN116111840A CN 116111840 A CN116111840 A CN 116111840A CN 202211610114 A CN202211610114 A CN 202211610114A CN 116111840 A CN116111840 A CN 116111840A
Authority
CN
China
Prior art keywords
signal
module
phase
source
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211610114.9A
Other languages
English (en)
Inventor
何乐年
陈颜烨
钱福悦
奚剑雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Yuexin Microelectronics Co ltd
Zhejiang University ZJU
Original Assignee
Hangzhou Yuexin Microelectronics Co ltd
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Yuexin Microelectronics Co ltd, Zhejiang University ZJU filed Critical Hangzhou Yuexin Microelectronics Co ltd
Priority to CN202211610114.9A priority Critical patent/CN116111840A/zh
Publication of CN116111840A publication Critical patent/CN116111840A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种高效率快速瞬态响应的双相Buck电路电源管理芯片,包括基准电路模块、保护模块、过零检测模块、模式选择模块、时钟生成模块、软启动模块、误差放大器、负载切换检测电路、电流采样模块、下斜坡发生器、迟滞比较器、控制逻辑与驱动模块、相数切换模块、均流模块以及四个片内功率开关管。本发明电源管理芯片能够迅速响应负载变化,自适应地调整开通的相数和系统工作模式;与传统电压控制Buck电路电源管理芯片相比,本发明在负载突变时具有较快的响应速度和较低的过冲电压,提高了芯片在全负载范围内的效率,解决了发热集中问题,提高了系统的安全性和可靠性。

Description

一种高效率快速瞬态响应的双相Buck电路电源管理芯片
技术领域
本发明属于集成电路技术领域,具体涉及一种高效率快速瞬态响应的双相Buck电路电源管理芯片。
背景技术
电源管理芯片是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片,一般由外围电路和控制电路组成。外围电路一般包括至少两个半导体元件组成的开关,一个储能元件(如电感,电容)以及输出滤波器;控制电路则是通过控制半导体元件开关的开通或闭合将输入电压经过芯片转换后均匀稳定地传递给输出端,供后级负载使用。
图1所示为传统的电压控制Buck电路,误差放大器放大反馈电压VFB与参考电压VREF的差值产生一个模拟误差信号VEA,VEA通过补偿模块的调整作为PWM比较器的输入VC并与斜坡电压Vramp进行比较,得到功率开关管Sp1、Sn1的控制信号。在大负载电流,快速负载变换的情况下,传统的Buck电路由于功率开关管导通损耗的迅速增大,系统效率会迅速下降,瞬态响应速度也将受到电压环带宽的限制;同时传统的Buck电路只有一个开关支路,可靠性难以保证。
为了提高效率,文献[Mi Z,Low Q,iek L.A high efficiency synchronous buckconverter with adaptive dead-time control[C]//International Symposium onIntegrated Circuits.IEEE,2017]提出了一种自适应死区时间控制技术,可以消除由体二极管导通,电感反向电流等引起的功率损耗从而提高效率,但是由于引入的死区控制器,动态延迟发生器等电路的功耗在轻载时不可忽略导致轻载效率迅速下降,无法实现全负载高效率。为了提高响应速度,文献[Bari S,Qiang L,Lee F C.Fast adaptive on timecontrol for transient performance improvement[C]//Applied Power ElectronicsConference&Exposition.IEEE,2015]提出通过检测输出负载阶跃情况的方式来改变导通时间进而减小输出电压下冲和过冲,但这种方法仅适用于PFM控制的Buck电路且功耗较大,具有一定的局限性。
发明内容
鉴于上述,本发明提供了一种高效率快速瞬态响应的双相Buck电路电源管理芯片,能够在提高系统可靠性和瞬态响应速度的同时,在全负载范围内都实现了高效率。
一种高效率快速瞬态响应的双相Buck电路电源管理芯片,包括:
双相Buck电路中的四个功率开关管Mp1、Mp2、Mn1和Mn2,集成在片内;
保护模块,用于检测双相Buck电路的负载电流和输出电压Vout,并根据检测结果通过比较生成保护信号;
过零检测模块,用于检测功率开关管Mp1的漏端电压,并将其与功率地进行比较,生成电感电流过零信号;
模式选择模块,用于检测一个开关周期内功率开关管Mp1的关断时间,生成模式选择信号,包括两种模式即正常工作模式和低功耗模式;当关断时间大于预设延时,则输出对应低功耗模式的模式选择信号;
基准电路模块,根据所述模式选择信号在外部给定使能信号为高电平时,生成并为片内提供基准电压VREF
软启动模块,其在芯片上电时产生一软启动电压VST
误差放大器,根据软启动电压VST在芯片软启动完成后,放大基准电压VREF与反馈电压VFB的差值,从而生成输出电压VEA;所述反馈电压VFB为输出电压Vout经电阻分压后得到;
负载切换检测电路,通过检测反馈电压VFB的大小判断负载状况,从而输出过冲响应信号OSR和欠冲响应信号USR;
时钟生成模块,根据过冲响应信号OSR和欠冲响应信号USR在外部给定复位信号为低电平时,生成两个相位差为180°的极低占空比的时钟信号CLK1和CLK2
电流采样模块,用于采集两相电感电流纹波并将其转化成电压信号Vramp1和Vramp2
均流模块,用于放大两相电感电流的差值,生成一对幅值与该电流差值正相关的差分电流均衡电压VCB1和VCB2
两个下斜坡发生器,根据输出电压VEA和Vout生成两个分别与CLK1和CLK2同频率同相位差的下斜坡信号Vslope1和Vslope2
两个迟滞比较器B1和B2,具有两对正反相输入端,其中B1的一对正反相输入端分别接Vslope1和Vramp1,另一对正反相输入端分别接VCB2和VCB1,输出端产生比较信号Vcomp1;B2的一对正反相输入端分别接Vslope2和Vramp2,另一对正反相输入端分别接VCB1和VCB2,输出端产生比较信号Vcomp2
相数切换模块,用于将负载电流与给定的参考值进行比较,生成相数切换信号;
控制逻辑模块,根据电感电流过零信号、相数切换信号、保护信号以及比较信号Vcomp1和Vcomp2,通过控制逻辑生成Mp1、Mp2、Mn1、Mn2的栅极驱动信号,进而通过驱动电路控制这些功率开关管通断。
进一步地,当负载电流大于预设的电流阈值或输出电压超出预设的正常范围时,所述保护模块生成的保护信号为高电平,其他情况下均为低电平。
进一步地,当负载电流大于参考值时,所述相数切换模块生成的相数切换信号为低电平,其他情况下均为高电平。
进一步地,所述模式选择模块包括一个延时模块Delay1、一个反相器INV1,一个D触发器D1、两个或门OR1和OR2、一个N位加减计数器CT1以及一个RS触发器RS1,其中:Delay1的输入端与INV1的输入端相连并接功率开关管Mp1的栅极驱动信号,Delay1的输出端与D1的输入端相连,INV1的输出端与D1的时钟端相连,D1的正相输出端与OR1的第一输入端相连,D1的反相输出端与OR2的第一输入端相连,OR1的第二输入端和OR2的第二输入端接Mp1的栅极驱动信号,OR1的输出端与CT1的减数端相连,OR2的输出端与CT1的加数端相连,CT1的借位端与RS1的R输入端相连,CT1的进位端与RS1的S输入端相连,RS1的输出端生成模式选择信号。
进一步地,所述N位加减计数器CT1以上升沿触发,其加数端每接收一个上升沿计数值加1,减数端每接收一个上升沿计数值减1,计数值上下限分别为2N和0,当计数值累加到2N后进位端输出高电平,否则为低电平;当计数值累减到0后借位端输出高电平,否则为低电平。
进一步地,所述时钟生成模块包括一个振荡器、一个D触发器DF1、一个反相器I1、一个延时模块DL1、一个异或门XOR1、六个与门AND1~AND6、两个二选一选择器MUX1和MUX2以及两个三位计数器CA1和CA2,其中振荡器自生成一个2倍开关频率的振荡信号VOSC,DF1的输入端与反相输出端相连,DF1的时钟端接振荡信号VOSC,DF1的正相输出端与I1的输入端、XOR1的第一输入端、AND1的第一输入端以及DL1的输入端相连,DL1的输出端与XOR1的第二输入端相连,XOR1的输出端与AND1的第二输入端以及AND2的第一输入端相连,I1的输出端与AND2的第二输入端相连,AND1的输出端与CA1的输入端以及AND3的第一输入端相连,CA1的输出端与AND3的第二输入端相连,AND2的输出端与CA2的输入端以及AND4的第一输入端相连,CA2的输出端与AND4的第二输入端相连,MUX1和MUX2的第一输入端接振荡信号VOSC,AND3的输出端与MUX1的第二输入端相连,AND4的输出端与MUX2的第二输入端相连,MUX1和MUX2的选择端接欠冲响应信号USR,AND5和AND6的第一输入端接过冲响应信号OSR,MUX1的输出端与AND5的第二输入端相连,AND5的输出端生成时钟信号CLK1,MUX2的输出端与AND6的第二输入端相连,AND6的输出端生成时钟信号CLK2
进一步地,所述三位计数器CA1和CA2均为上升沿触发,CA1和CA2的输入端每接收一个上升沿计数值加1,CA1和CA2的计数值累加到8后输出端产生高电平,否则产生低电平。
进一步地,所述下斜坡发生器包括一个偏置电流源、11个PMOS管P1~P11、9个NMOS管N1~N9、一个电阻Res1以及一个电容Cap1,其中P1的源极与P2的源极、P3的源极、P4的源极、P5的源极以及P11的源极相连并接电源电压VDD,P1的栅极与P1的漏极、P2的栅极、P3的栅极以及偏置电流源的输入端相连,偏置电流源的输出端与N1的源极、N2的源极、N3的源极、N7的源极、N8的源极、N9的源极以及Res1的一端相连并接电源地VSS,P2的漏极与P8的源极以及P9的源极相连,P8的栅极接输出电压Vout,P8的漏极与N1的漏极、N1的栅极以及N2的栅极相连,P9的漏极与N2的漏极以及N3的栅极相连,P9的栅极与N4的源极以及Res1的另一端相连,P3的漏极与N3的漏极以及N4的栅极相连,P4的栅极与P5的栅极、P4的漏极以及P6的源极相连,P6的栅极与P7的栅极、P6的漏极以及N4的漏极相连,P5的漏极与P7的源极相连,P7的漏极与N5的漏极、N5的栅极以及N6的栅极相连,N5的源极与N7的漏极、N7的栅极以及N8的栅极相连,N8的漏极与N6的源极相连,N6的漏极与Cap1的一端以及P10的漏极相连并生成下斜坡信号Vslope1或Vslope2,Cap1的另一端与P10的源极相连并接输出电压VEA,P10的栅极与P11的漏极以及N9的漏极相连,P11的栅极与N9的栅极相连并接时钟信号CLK1或CLK2
进一步地,当比较信号Vcomp1为高电平且保护信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mp1的栅极驱动信号为低电平,其他情况下为高电平;当比较信号Vcomp2为高电平且保护信号、相数切换信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mp2的栅极驱动信号为低电平,其他情况下为高电平;当比较信号Vcomp1为低电平且保护信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mn1的栅极驱动信号为高电平,其他情况下为低电平;当比较信号Vcomp2为低电平且保护信号、相数切换信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mn2的栅极驱动信号为高电平,其他情况下为低电平。
基于上述技术方案,本发明具有以下有益技术效果:
1.本发明电源管理芯片能够根据负载情况自适应地调整开通的相数以及系统工作模式,在全负载范围内实现高效率。
2.本发明电源管理芯片在双相工作时负载电流均流,减轻发热集中问题。
3.本发明电源管理芯片能及时感应负载变化并使两路开关支路同时做出响应,具有较快的响应速度和较低的过冲电压。
4.本发明电源管理芯片具备上电软启动功能,在正常工作时具备过压,欠压和过流保护功能,提高了系统工作的稳定性。
附图说明
图1为传统电压控制Buck电路的结构示意图。
图2为本发明电源管理芯片的结构示意图。
图3为时钟生成模块的电路结构示意图。
图4(a)为负载从重载切换成轻载时的关键信号波形示意图。
图4(b)为负载从轻载切换成重载时的关键信号波形示意图。
图5为下斜坡发生器的电路结构示意图。
图6为模式选择模块的电路结构示意图。
图7为本发明电源管理芯片效率的仿真结果示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图2所示,本发明双相Buck电路电源管理芯片适用于大电流场合,其设有电源输入脚(Vin)、输出电压脚(Vout)、接地脚(GND)、两个反馈纹波脚(Vramp1和Vramp2)和两个开关脚(VSW1和VSW2);该电源管理芯片包括基准电路模块、保护模块、过零检测模块、模式选择模块、时钟生成模块、误差放大器、负载切换检测电路、电流采样模块、下斜坡发生器、迟滞比较器、控制逻辑与驱动模块、相数切换模块、均流模块和四个片内开关管Mp1、Mp2和Mn1、Mn2
作为该芯片的典型应用,电源输入脚(Vin)接入芯片内各个模块,产生芯片内各个模块正常工作的电源电位;外接地电位经由接地脚(GND),接入芯片内各个模块,产生芯片内各个模块正常工作的参考地电位。
两个开关SW脚(VSW1和VSW2),分别接在功率开关管Mp1和Mn1、功率开关管Mp2和Mn2之间,采样功率开关管间电平,同时将开关管间电平输入过零检测模块,过零检测模块的输出接在控制逻辑模块,实现功率开关管下边管Mn1和Mn2的零电流关断,减少开关损耗。
两个反馈纹波脚(Vramp1和Vramp2),分别接在反馈电阻RF1和反馈电容CF1、反馈电阻RF2和反馈电容CF2之间,产生两个反馈纹波(Vramp1和Vramp2)分别接入两个主比较器的一个负端。Vramp1和Vramp2的直流分量为Vout,Vramp1的交流分量为
Figure BDA0003993610600000061
Vramp2的交流分量为
Figure BDA0003993610600000062
如果设置
Figure BDA0003993610600000063
Figure BDA0003993610600000064
则Vramp1和Vramp2的交流分量分别正比于电感L1电流和电感L2电流的交流分量。
保护模块检测负载电流和输出电压Vout,并根据检测结果通过比较生成保护信号;当负载电流大于预设的电流阈值或输出电压超出预设的正常范围时,保护模块输出的保护信号才为高电平触发,其他时间均为低电平。
相数切换模块将负载电流与一参考值进行比较,生成相数切换信号;当负载电流高于预设的参考值时,相数切换信号才为高电平,其他时间均为低电平。
过零检测模块检测功率开关管Mp1(或Mp2)的漏端电压并与功率地进行比较,生成电感电流过零信号。
模式选择模块检测一个开关周期内功率开关管Mp1的关断时间,生成模式选择信号LP(正常工作模式或低功耗模式)提供给基准电路模块;关断时间大于预设延时,则进入低功耗模式。
基准电路模块根据模式选择信号LP在外部给定使能信号为高电平时,生成并为片内提供基准电压VREF
软启动模块在芯片系统上电时产生一软启动电压VST提供给误差放大器。
电流采样模块用于采集带有电感电流纹波信息的电压信号Vramp1和Vramp2
误差放大器根据软启动电压VST在芯片系统上电完成后,放大基准电压VREF与反馈电压VFB(输出电压Vout经电阻分压后得到)的差值,得到输出电压VEA
负载切换检测电路根据反馈电压VFB的大小判断负载状况,输出过冲响应信号OSR和欠冲响应信号USR。
时钟生成模块根据过冲响应信号OSR和欠冲响应信号USR在外部给定复位信号为低电平时,生成两个相位差为180°的极低占空比的时钟信号CLK1和CLK2,分别输入到两个下斜坡发生器中。如图3所示,本实施方式中时钟生成模块包括一个振荡器OSC、一个D触发器DF1、一个反相器I1、一个延时模块DL1、一个异或门XOR1、六个与门AND1~AND6、两个二选一选择器MUX1~MUX2以及两个三位计数器CA1~CA2;其中,振荡器输出VOSC为一占空比极低且频率为所需时钟频率两倍的信号,D触发器DF1用于分频处理,分频后的信号CLK经过延时模块DL1延时后与原信号CLK作异或处理产生一占空比极低的信号,再分别与CLK和它的反相信号CLK_N作与处理,两个三位计数器CA1~CA2可以避免刚上电时的不稳定状态;两个数据选择器MUX1~MUX2和与门AND5~AND6根据负载检测电路的检测结果,共同决定系统时钟信号CLK1和CLK2
图4(a)为本实施方式中负载从重载切换成轻载时的关键信号波形,此时输出电压出现过冲,负载切换检测电路输出过冲使能信号OSR变为低电平,阻止时钟信号CLK1和CLK2上升沿到来,直至输出电压恢复至高阈值以下。图4(b)为本实施方式中负载从轻载切换成重载时的关键信号波形,此时输出电压出现欠冲,负载切换检测电路输出欠冲使能信号USR变为低电平,加快时钟频率使两相同时处理负载变化,直至输出电压恢复至低阈值以上。
输出电压脚(Vout)也接入芯片内下斜坡发生器中,下斜坡发生器输入误差放大器输出的稳定电压VEA和时钟生成模块产生的时钟信号CLK1和CLK2,当时钟信号上升沿到来时,下斜坡发生器产生一组斜坡信号Vslope1和Vslope2输入到主比较器的一个正端,与相应的反馈纹波信号作比较。如图5所示,本实施方式中下斜坡发生器包括一偏置电流源、11个PMOS管P1~P11、9个NMOS管N1~N9、一个电阻Res1以及一个电容Cap1;其中,PMOS管P1~P3、PMOS管P8~P9和NMOS管N1~N3组成两级运放结构,PMOS管P4~P7和NMOS管N5~N8组成cascode电流镜;每当CLK1上升沿到来时,PMOS管P10导通,初始化Vslope1,由于CLK1占空比极小,初始化操作在几ns内完成,随后Vslope1将受到斜率为
Figure BDA0003993610600000081
的放电电流影响而线性下降直至下个时钟上升沿到来;同理,每当CLK2上升沿到来时,初始化Vslope2,随后Vslope2将受到斜率为
Figure BDA0003993610600000082
的放电电流影响而线性下降直至下个时钟上升沿到来。
迟滞比较器有两对正反向输入端,其中一对接下斜坡信号Vslope1(或Vslope2)和反馈纹波Vramp1(或Vramp2),另一对接电流均衡电压VCB1和VCB2,产生比较信号输入控制逻辑电路;同时保护模块和过零检测模块的输出信号也输入至控制逻辑电路,通过控制逻辑和驱动电路生成驱动信号后输入功率开关管Mp1(或Mp2)和功率开关管Mn1(或Mn2)的栅极。
当负载发生切换时,相数切换模块检测负载变化,生成相数切换信号输入到第二相的控制逻辑电路中,控制第二相的开通或关断以实现效率的最大化;同时模式选择模块检测每周期内功率开关管Mp1的关断时间决定系统的工作模式。如图6所示,本实施方式中模式选择模块包括一个延时模块Delay1、一个反相器INV1、一个D触发器D1、两个或门OR1~OR2、一个N位加减计数器CT1以及一个RS触发器RS1;其中,DRV_HGA是功率开关管Mp1的驱动信号,如果一个周期内功率开关管Mp1的关断时间大于延时模块Delay1的延时,则每个Clk上升沿到来时D触发器D1的Q端均为高电平,此时或门OR1输出恒为高电平,N位加减计数器CT1的减法功能失效,而或门OR2输出一与DRV_HGA完全相同的脉冲信号,故N位加减计数器CT1逐周期加1。如果Q端高电平维持2N个周期,说明负载电流已经变得非常小,N位加减计数器CT1的进位信号CA会变成高电平,经过RS触发器后信号LP被置高,信号LP输入到基准电路,调整各模块偏置电流大小并关闭不必要的模块使系统进入低功耗模式。当负载跳出极轻载范围时,每个Clk上升沿到来时D触发器D1的Q端均为低电平,此时或门OR2输出恒为高电平,N位加减计数器CT1的加法功能失效,而或门OR1输出一与DRV_HGA完全相同的脉冲信号,故N位加减计数器CT1逐周期减1。如果Q端低电平维持2N个周期,说明负载电流已经变得比较大,N位加减计数器CT1的借位信号BO会变成高电平,经过RS触发器后信号LP被置低,信号LP输入到基准电路,调整各模块偏置电流大小并开启必要模块使系统进入正常工作模式。
图7为本实施方式芯片系统效率的仿真结果,系统在负载为450mA时达到峰值效率90.1%,采用相数切换模块和模式选择模块保证在全负载范围内系统效率基本高于80%,极大地提高了芯片的全负载效率。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (9)

1.一种高效率快速瞬态响应的双相Buck电路电源管理芯片,其特征在于,包括:
双相Buck电路中的四个功率开关管Mp1、Mp2、Mn1和Mn2,集成在片内;
保护模块,用于检测双相Buck电路的负载电流和输出电压Vout,并根据检测结果通过比较生成保护信号;
过零检测模块,用于检测功率开关管Mp1的漏端电压,并将其与功率地进行比较,生成电感电流过零信号;
模式选择模块,用于检测一个开关周期内功率开关管Mp1的关断时间,生成模式选择信号,包括两种模式即正常工作模式和低功耗模式;当关断时间大于预设延时,则输出对应低功耗模式的模式选择信号;
基准电路模块,根据所述模式选择信号在外部给定使能信号为高电平时,生成并为片内提供基准电压VREF
软启动模块,其在芯片上电时产生一软启动电压VST
误差放大器,根据软启动电压VST在芯片软启动完成后,放大基准电压VREF与反馈电压VFB的差值,从而生成输出电压VEA;所述反馈电压VFB为输出电压Vout经电阻分压后得到;
负载切换检测电路,通过检测反馈电压VFB的大小判断负载状况,从而输出过冲响应信号OSR和欠冲响应信号USR;
时钟生成模块,根据过冲响应信号OSR和欠冲响应信号USR在外部给定复位信号为低电平时,生成两个相位差为180°的极低占空比的时钟信号CLK1和CLK2
电流采样模块,用于采集两相电感电流纹波并将其转化成电压信号Vramp1和Vramp2
均流模块,用于放大两相电感电流的差值,生成一对幅值与该电流差值正相关的差分电流均衡电压VCB1和VCB2
两个下斜坡发生器,根据输出电压VEA和Vout生成两个分别与CLK1和CLK2同频率同相位差的下斜坡信号Vslope1和Vslope2
两个迟滞比较器B1和B2,具有两对正反相输入端,其中B1的一对正反相输入端分别接Vslope1和Vramp1,另一对正反相输入端分别接VCB2和VCB1,输出端产生比较信号Vcomp1;B2的一对正反相输入端分别接Vslope2和Vramp2,另一对正反相输入端分别接VCB1和VCB2,输出端产生比较信号Vcomp2
相数切换模块,用于将负载电流与给定的参考值进行比较,生成相数切换信号;
控制逻辑模块,根据电感电流过零信号、相数切换信号、保护信号以及比较信号Vcomp1和Vcomp2,通过控制逻辑生成Mp1、Mp2、Mn1、Mn2的栅极驱动信号,进而通过驱动电路控制这些功率开关管通断。
2.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:当负载电流大于预设的电流阈值或输出电压超出预设的正常范围时,所述保护模块生成的保护信号为高电平,其他情况下均为低电平。
3.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:当负载电流大于参考值时,所述相数切换模块生成的相数切换信号为低电平,其他情况下均为高电平。
4.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:所述模式选择模块包括一个延时模块Delay1、一个反相器INV1,一个D触发器D1、两个或门OR1和OR2、一个N位加减计数器CT1以及一个RS触发器RS1,其中:Delay1的输入端与INV1的输入端相连并接功率开关管Mp1的栅极驱动信号,Delay1的输出端与D1的输入端相连,INV1的输出端与D1的时钟端相连,D1的正相输出端与OR1的第一输入端相连,D1的反相输出端与OR2的第一输入端相连,OR1的第二输入端和OR2的第二输入端接Mp1的栅极驱动信号,OR1的输出端与CT1的减数端相连,OR2的输出端与CT1的加数端相连,CT1的借位端与RS1的R输入端相连,CT1的进位端与RS1的S输入端相连,RS1的输出端生成模式选择信号。
5.根据权利要求4所述的双相Buck电路电源管理芯片,其特征在于:所述N位加减计数器CT1以上升沿触发,其加数端每接收一个上升沿计数值加1,减数端每接收一个上升沿计数值减1,计数值上下限分别为2N和0,当计数值累加到2N后进位端输出高电平,否则为低电平;当计数值累减到0后借位端输出高电平,否则为低电平。
6.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:所述时钟生成模块包括一个振荡器、一个D触发器DF1、一个反相器I1、一个延时模块DL1、一个异或门XOR1、六个与门AND1~AND6、两个二选一选择器MUX1和MUX2以及两个三位计数器CA1和CA2,其中振荡器自生成一个2倍开关频率的振荡信号VOSC,DF1的输入端与反相输出端相连,DF1的时钟端接振荡信号VOSC,DF1的正相输出端与I1的输入端、XOR1的第一输入端、AND1的第一输入端以及DL1的输入端相连,DL1的输出端与XOR1的第二输入端相连,XOR1的输出端与AND1的第二输入端以及AND2的第一输入端相连,I1的输出端与AND2的第二输入端相连,AND1的输出端与CA1的输入端以及AND3的第一输入端相连,CA1的输出端与AND3的第二输入端相连,AND2的输出端与CA2的输入端以及AND4的第一输入端相连,CA2的输出端与AND4的第二输入端相连,MUX1和MUX2的第一输入端接振荡信号VOSC,AND3的输出端与MUX1的第二输入端相连,AND4的输出端与MUX2的第二输入端相连,MUX1和MUX2的选择端接欠冲响应信号USR,AND5和AND6的第一输入端接过冲响应信号OSR,MUX1的输出端与AND5的第二输入端相连,AND5的输出端生成时钟信号CLK1,MUX2的输出端与AND6的第二输入端相连,AND6的输出端生成时钟信号CLK2
7.根据权利要求6所述的双相Buck电路电源管理芯片,其特征在于:所述三位计数器CA1和CA2均为上升沿触发,CA1和CA2的输入端每接收一个上升沿计数值加1,CA1和CA2的计数值累加到8后输出端产生高电平,否则产生低电平。
8.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:所述下斜坡发生器包括一个偏置电流源、11个PMOS管P1~P11、9个NMOS管N1~N9、一个电阻Res1以及一个电容Cap1,其中P1的源极与P2的源极、P3的源极、P4的源极、P5的源极以及P11的源极相连并接电源电压VDD,P1的栅极与P1的漏极、P2的栅极、P3的栅极以及偏置电流源的输入端相连,偏置电流源的输出端与N1的源极、N2的源极、N3的源极、N7的源极、N8的源极、N9的源极以及Res1的一端相连并接电源地VSS,P2的漏极与P8的源极以及P9的源极相连,P8的栅极接输出电压Vout,P8的漏极与N1的漏极、N1的栅极以及N2的栅极相连,P9的漏极与N2的漏极以及N3的栅极相连,P9的栅极与N4的源极以及Res1的另一端相连,P3的漏极与N3的漏极以及N4的栅极相连,P4的栅极与P5的栅极、P4的漏极以及P6的源极相连,P6的栅极与P7的栅极、P6的漏极以及N4的漏极相连,P5的漏极与P7的源极相连,P7的漏极与N5的漏极、N5的栅极以及N6的栅极相连,N5的源极与N7的漏极、N7的栅极以及N8的栅极相连,N8的漏极与N6的源极相连,N6的漏极与Cap1的一端以及P10的漏极相连并生成下斜坡信号Vslope1或Vslope2,Cap1的另一端与P10的源极相连并接输出电压VEA,P10的栅极与P11的漏极以及N9的漏极相连,P11的栅极与N9的栅极相连并接时钟信号CLK1或CLK2
9.根据权利要求1所述的双相Buck电路电源管理芯片,其特征在于:当比较信号Vcomp1为高电平且保护信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mp1的栅极驱动信号为低电平,其他情况下为高电平;当比较信号Vcomp2为高电平且保护信号、相数切换信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mp2的栅极驱动信号为低电平,其他情况下为高电平;当比较信号Vcomp1为低电平且保护信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mn1的栅极驱动信号为高电平,其他情况下为低电平;当比较信号Vcomp2为低电平且保护信号、相数切换信号和电感电流过零信号均为低电平时,所述控制逻辑模块生成Mn2的栅极驱动信号为高电平,其他情况下为低电平。
CN202211610114.9A 2022-12-12 2022-12-12 一种高效率快速瞬态响应的双相Buck电路电源管理芯片 Pending CN116111840A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211610114.9A CN116111840A (zh) 2022-12-12 2022-12-12 一种高效率快速瞬态响应的双相Buck电路电源管理芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211610114.9A CN116111840A (zh) 2022-12-12 2022-12-12 一种高效率快速瞬态响应的双相Buck电路电源管理芯片

Publications (1)

Publication Number Publication Date
CN116111840A true CN116111840A (zh) 2023-05-12

Family

ID=86262939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211610114.9A Pending CN116111840A (zh) 2022-12-12 2022-12-12 一种高效率快速瞬态响应的双相Buck电路电源管理芯片

Country Status (1)

Country Link
CN (1) CN116111840A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117040263A (zh) * 2023-08-03 2023-11-10 北京伽略电子股份有限公司 一种软启动电路
CN117040511A (zh) * 2023-10-08 2023-11-10 深圳市思远半导体有限公司 一种切换电路及方法、dcdc

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117040263A (zh) * 2023-08-03 2023-11-10 北京伽略电子股份有限公司 一种软启动电路
CN117040263B (zh) * 2023-08-03 2024-04-12 北京伽略电子股份有限公司 一种软启动电路
CN117040511A (zh) * 2023-10-08 2023-11-10 深圳市思远半导体有限公司 一种切换电路及方法、dcdc
CN117040511B (zh) * 2023-10-08 2024-02-02 深圳市思远半导体有限公司 一种切换电路及方法、dcdc

Similar Documents

Publication Publication Date Title
Chen et al. A 50 nW-to-10 mW output power tri-mode digital buck converter with self-tracking zero current detection for photovoltaic energy harvesting
US9991794B2 (en) Hybrid capacitive-inductive voltage converter
Pilawa-Podgurski et al. Merged two-stage power converter with soft charging switched-capacitor stage in 180 nm CMOS
Xiao et al. An ultra-low-power digitally-controlled buck converter IC for cellular phone applications
US8624566B2 (en) Current-mode control switching regulator and operations control method thereof
CN116111840A (zh) 一种高效率快速瞬态响应的双相Buck电路电源管理芯片
CN112803770B (zh) 一种自适应斜坡补偿电路
Ma et al. Fast-transient PCCM switching converter with freewheel switching control
WO2009016898A1 (en) Switching regulator and method for controlling operation thereof
US9166477B2 (en) Control circuit for power converter and related control method
JP2011504356A (ja) 適応利得ステップアップ・ステップダウン方式スイッチトキャパシタdc/dcコンバータ
Zhang et al. Analysis and implementation of a high-performance-integrated KY converter
Hwang et al. A high-efficiency fast-transient-response buck converter with analog-voltage-dynamic-estimation techniques
Ting et al. A quasi-V 2 hysteretic buck converter with adaptive COT control for fast DVS and load-transient response in RF applications
CN114744869B (zh) 一种三电平降压直流变换器
Fan et al. VRSPV soft-start strategy and AICS technique for boost converters to improve the start-up performance
Chakraborty et al. Digital combination of buck and boost converters to control a positive buck-boost converter
Leoncini et al. A compact high-efficiency boost converter with time-based control, RHP zero-elimination, and tracking error compensation
US20230336078A1 (en) Dc-dc converter circuit and corresponding method of operation
Chen et al. Integrated non-inverting buck-boost DC-DC converter with average-current-mode control
Jiang et al. A digitally-controlled 2-/3-phase 6-ratio switched-capacitor DC-DC converter with adaptive ripple reduction and efficiency improvements
Su et al. A monolithic step-down SC power converter with frequency-programmable subthreshold z-domain DPWM control for ultra-low power microsystems
Luo et al. Integrated adaptive step-up/down switching DCDC converter with tri-band tri-mode digital control for dynamic voltage scaling
Nagarajan et al. Charge pump boost converter with PLL using compensator technique
Kobori et al. Automatic Current Balance for Multi-Phase Switching Converters with Ripple Control or Soft Switch

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination