TWI765433B - 用於積層製造的刮刀碰撞預測與校正方法及其系統 - Google Patents

用於積層製造的刮刀碰撞預測與校正方法及其系統 Download PDF

Info

Publication number
TWI765433B
TWI765433B TW109141478A TW109141478A TWI765433B TW I765433 B TWI765433 B TW I765433B TW 109141478 A TW109141478 A TW 109141478A TW 109141478 A TW109141478 A TW 109141478A TW I765433 B TWI765433 B TW I765433B
Authority
TW
Taiwan
Prior art keywords
collision
experimental
simulated
printing
scraper
Prior art date
Application number
TW109141478A
Other languages
English (en)
Other versions
TW202220826A (zh
Inventor
偉權 鍾
鄧凱元
林敬智
賴怡君
蔡宗汶
林得耀
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW109141478A priority Critical patent/TWI765433B/zh
Application granted granted Critical
Publication of TWI765433B publication Critical patent/TWI765433B/zh
Publication of TW202220826A publication Critical patent/TW202220826A/zh

Links

Images

Landscapes

  • Screen Printers (AREA)

Abstract

本揭露提出一種積層製造的刮刀碰撞預測與校正方法及刮刀碰撞預測與校正系統。所述刮刀碰撞預測與校正方法包括以下步驟:載入列印圖檔,以依據列印圖檔產生模擬列印物件;對模擬列印物件進行製程熱應力模擬,以取得模擬列印物件的多層模擬列印預測結果在垂直方向上每一層分別對應的多個模擬形變量;取得實驗列印物件的實驗碰撞高度;依據實驗碰撞高度來選擇所述多個模擬形變量的其中之一;依據所述多個模擬形變量的其中之一來計算一刮刀容許度;依據刮刀容許度來校正碰撞風險公式;以及依據碰撞風險公式來預測模擬列印物件與刮刀之間的碰撞風險。

Description

用於積層製造的刮刀碰撞預測與校正方法及其系統
本揭露是有關於一種風險評估技術,且特別是有關於一種用於積層製造的刮刀碰撞預測與校正方法及其系統。
隨著製造技術的演進,積層製造是目前積層製造領域的重要發展目標。然而,目前積層製造所遇到的問題在於,當積層製造的列印設備的刮刀在進行逐層列印層的鋪粉操作時,由於列印物件受熱後,列印物件將會產生形變,而使列印物件的最上層的高度與列印設備預設高度不同,進而導致刮刀在進行逐層列印層的鋪粉操作的過程中會與發生形變的列印物件進行碰撞。然而,刮刀與列印物件的碰撞會導致刮刀的使用壽命快速減少。有鑑於此,如何改善刮刀與列印物件之間的碰撞機率,以下將提出幾個實施例的解決方案。
本揭露提供一種用於積層製造的刮刀碰撞預測與校正方法及其系統,可有效評估並改善積層製造過程中的列印設備與列印物件之間的碰撞風險。
本揭露的用於積層製造的刮刀碰撞預測與校正方法包括以下步驟:載入列印圖檔,以依據列印圖檔產生模擬列印物件;對模擬列印物件進行製程熱應力模擬,以取得模擬列印物件的多層模擬列印預測結果在垂直方向上每一層對應的多個模擬形變量;取得實驗列印物件與刮刀發生碰撞的實驗碰撞高度;依據實驗碰撞高度來選擇所述多個模擬形變量的其中之一;依據所述多個模擬形變量的其中之一來計算刮刀容許度;依據刮刀容許度來校正碰撞風險公式;以及依據碰撞風險公式來預測模擬列印物件與刮刀之間的碰撞風險。
本揭露的用於積層製造的刮刀碰撞預測與校正系統包括記憶體及處理器。記憶體用以儲存模擬模組以及運算模組。處理器耦接記憶體,並且用以執行模擬模組以及運算模組,以進行以下操作。處理器載入列印圖檔,以依據列印圖檔產生模擬列印物件。處理器對模擬列印物件進行製程熱應力模擬,以取得模擬列印物件的多層模擬列印預測結果在垂直方向上每一層對應的多個模擬形變量。處理器取得實驗列印物件與刮刀發生碰撞的實驗碰撞高度。處理器依據實驗碰撞高度來選擇所述多個模擬形變量的其中之一。處理器依據所述多個模擬形變量的其中之一來計算刮刀容許 度。處理器依據刮刀容許度來校正碰撞風險公式。處理器依據碰撞風險公式來預測模擬列印物件與刮刀之間的碰撞風險。
基於上述,本揭露的積層製造的刮刀碰撞預測與校正方法及其系統可透過模擬與實驗來校正碰撞風險公式,以有效地預測積層製造過程中的刮刀與列印物件之間的碰撞風險。
為讓本揭露的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100:刮刀碰撞預測與校正系統
110:處理器
120:記憶體
121:模擬模組
122:運算模組
200:列印設備
210、230:升降平台
220:刮刀
240:雷射光源
250:反射鏡
260、270:粉末
410、1100、1100’:模擬列印物件
610:參數變化
R1~R3:區間
1110:物件本體
1120、1120’:支撐物件
P1~P3:方向
S310~S370、S510~S530、S710~S740、S810~S840:步驟
圖1是本揭露的一實施例的刮刀碰撞預測與校正系統的示意圖。
圖2是本揭露的一實施例的列印設備的列印操作示意圖。
圖3是本揭露的一實施例的刮刀碰撞預測與校正方法的流程圖。
圖4A是本揭露的一實施例的模擬列印物件的示意圖。
圖4B是本揭露的一實施例的多層模擬列印預測結果的示意圖。
圖5是本揭露的一實施例的取得實驗碰撞高度的流程圖。
圖6是本揭露的一實施例的多個扭矩參數的參數變化圖。
圖7是本揭露的另一實施例的取得實驗碰撞高度的流程圖。
圖8是本揭露的另一實施例的刮刀碰撞預測與校正方法的流 程圖。
圖9是本揭露的一實施例的刮刀碰撞預測資料的示意圖。
圖10是本揭露的一實施例的形變量與物件高度的關係圖。
圖11A是本揭露的一實施例的模擬列印物件及支撐物件的示意圖。
圖11B是本揭露的另一實施例的模擬列印物件及支撐物件的示意圖。
為了使本揭露之內容可以被更容易明瞭,以下特舉實施例做為本揭露確實能夠據以實施的範例。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟,係代表相同或類似部件。
圖1是本揭露的一實施例的刮刀碰撞預測與校正系統的示意圖。參考圖1,刮刀碰撞預測與校正系統100包括處理器110以及記憶體120。記憶體120包括模擬模組121以及運算模組122。在本實施例中,刮刀碰撞預測與校正系統100可為一種電子裝置,例如應用在個人電腦(Personal Computer,PC)、筆記型電腦(Notebook Computer)、工業電腦(Industrial PC,IPC)或雲端伺服器(Cloud Server)等,諸如此類的設備、數位系統或雲端平台,或以軟體程式形式來安裝在上述各電腦設備中,以供使用者操作電腦設備而使自動執行本揭露各實施例所提出的相關模擬、運算 及分析操作,進而實現在積層製造的列印過程中的刮刀與列印物件之間的碰撞預測與校正。
在本實施例中,處理器110可例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)、其他類似處理裝置或這些裝置的組合。記憶體120可例如是動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)、快閃記憶體(Flash memory)或非揮發性隨機存取記憶體(Non-Volatile Random Access Memory,NVRAM)等。
在本實施例中,記憶體120可預先儲存有模擬模組121以及運算模組122,並且還可載入或儲存有本揭露各實施例所述之參數資料、列印圖檔以及模擬列印物件等資料,以供處理器110存取並執行之。值得注意的是,在一實施例中,模擬模組121以及運算模組122亦可儲存在一個非暫時性電腦可讀儲存媒體(Non-transitory Computer-readable Storage Medium)當中,以透過將模擬模組121以及運算模組122載入電腦設備來實現本揭露各實施例所述的刮刀碰撞預測與校正。
圖2是本揭露的一實施例的列印設備的列印操作示意圖。參考圖1以及圖2,刮刀碰撞預測與校正系統100可電性連接列印 設備200。列印設備200可用於進行積層製造。在本實施例中,刮刀碰撞預測與校正系統100可用於列印設備200在實際進行列印操作之前,對列印圖檔進行預先修正。並且,當列印圖檔經由預先修正完成後,列印設備200可獨立存在而無需連接刮刀碰撞預測與校正系統100,並且依據經由預先修正的列印圖檔進行例印操作。在本實施例中,列印設備200可包括升降平台210、230、刮刀220、雷射光源240、反射鏡250。列印設備200還可進一步包括驅動升降平台210、230、刮刀220、雷射光源240、反射鏡250的相關驅動裝置與電路。列印設備200放置在沿著方向P1、P2延伸所形成的平面上(水平面)。升降平台210上可放置粉末260,並且刮刀220可沿著方向P1移動來進行鋪粉至升降平台230。
需先說明的是,刮刀220可循序地將粉末260沿著方向P1(水平方向)從升降平台210推移至升降平台230。在粉末260的每次推移過程之前,升降平台210沿著方向P3(垂直方向)上升,以使刮刀220可推移粉末260的至少一部份,並且升降平台230沿著相反於方向P3的方向下降,以使刮刀220可將粉末260的所述至少一部份推移至升降平台230上的列印物件的前次加熱後的最上層的上方(即粉末270)。接著,雷射光源240發射雷射光,並且雷射光經由反射鏡250的轉動或移動而對升降平台230上的粉末270的至少一部分進行加熱,而繪製列印物件。對此,由於粉末270在當前列印的最上層經加熱後(形成列印物件)可能發生形變,而使刮刀220在沿著方向P1於升降平台230上方移動 以進行鋪粉的過程中,可能會與已產生形變的列印物件發生碰撞,而導致刮刀220損壞或使用壽命降低。因此,本揭露的刮刀碰撞預測與校正系統100將進行刮刀220與列印物件之間的碰撞預測,進而透過調整列印物件的層厚或支撐物件的大小的方式來降低刮刀220與列印物件之間的碰撞機率。另外,粉末260、270可例如是金屬、塑膠、陶瓷或者以上三者的混合等,而本揭露並不加以限制。
圖3是本揭露的一實施例的刮刀碰撞預測與校正方法的流程圖。圖4A是本揭露的一實施例的模擬列印物件的示意圖。圖4B是本揭露的一實施例的多層模擬列印預測結果的示意圖。參考圖1至圖4B,在本實施例中,刮刀碰撞預測與校正系統100可執行以下步驟S310~S370,以實現碰撞預測。在步驟S310,處理器110可載入列印圖檔,以依據列印圖檔產生如圖4A的模擬列印物件410。在步驟S320,處理器110可對模擬列印物件410進行製程熱應力模擬,以取得模擬列印物件410的多層模擬預測結果在垂直方向上每一層模擬列印層(模擬數值層)分別對應的多個模擬形變量。在本實施例中,所述模擬列印層為對應模擬分析中的數值層,而所述多層模擬預測結果的每一個則分別對應每一層模擬列印層的實際製造時的成型高度的模擬結果。如圖4B所示,處理器110可從所述預測結果中取得每一層模擬列印層在垂直方向上分別對應的模擬形變量(U z )。模擬形變量(U z )為每一層模擬過程中最上層表面在垂直方向上的變形量。如圖4B所示,模擬列印物 件410的每一層模擬列印層的顏色分布可能不同,因為每一層模擬列印層受熱而產生的形變程度不一,而使每一層模擬列印層在垂直方向上分別對應的模擬形變量(U z )可能不同。
在本實施例中,處理器110對模擬列印物件410進行的製程熱應力模擬為一種準靜態過程(quasi-static)的模擬運算。模擬列印物件410的每一層模擬列印層的模擬結果會隨著模擬列印物件410的(模擬的)成型高度(或製程模擬中的不同時間點)而有所變化,其中處理器110是以模擬列印物件410的(模擬的)已成型高度作為主要變數。舉例而言,假設模擬中的模擬列印物件410具有40層模擬列印層,其中每一層模擬列印層的層厚例如是1毫米(mm)。在模擬過程中(某一模擬時間點),當處理器110目前完成模擬第5層(已成型高度5mm/40mm)時,處理器110可例如取得已成型半成品體積(即第1層至第5層)中所有位置的形變量。並且,當下模擬時間點,模擬列印物件410的目前已完成模擬的第5層(當模擬的最上層)的最上層的垂直方向P3的形變量即為本揭露的重要物理量(即以下實施例的列印圖檔中對於列印物件的每一層的相關列印參數、製程參數或列印設備200的刮刀容許度的校正依據)。
在步驟S330,處理器110可取得實驗列印物件與刮刀發生碰撞的實驗碰撞高度(
Figure 109141478-A0305-02-0010-18
)。如圖2所示,刮刀碰撞預測與校正系統100可實際先於列印設備200進行列印實驗,以實際列印實驗列印物件,並且當刮刀220與實驗列印物件發生碰撞時,處 理器110可取得實驗碰撞高度(
Figure 109141478-A0305-02-0011-8
)。在步驟S340,處理器110可依據實驗碰撞高度(
Figure 109141478-A0305-02-0011-17
)來選擇所述多個模擬形變量的其中之一。在本實施例中,處理器110可基於以下公式(1)來依據實驗碰撞高度(
Figure 109141478-A0305-02-0011-10
)來取得與其最相近的模擬碰撞高度(
Figure 109141478-A0305-02-0011-11
),其中dz為模擬列印層的層厚。接著,處理器110可依據模擬碰撞高度(
Figure 109141478-A0305-02-0011-16
)於模擬中製造高度等於模擬碰撞高度當下之上表面垂直形變量(
Figure 109141478-A0305-02-0011-14
)中選擇其最大值
Figure 109141478-A0305-02-0011-13
Figure 109141478-A0305-02-0011-1
在步驟S350,處理器110可依據所選之模擬垂直形變量(
Figure 109141478-A0305-02-0011-15
)來計算刮刀(碰撞)容許度(t r,c )。在本實施例中,處理器110可依據以下公式(2)來計算刮刀容許度(t r,c ),其中d l 為真實製程層厚。
Figure 109141478-A0305-02-0011-2
在步驟S360,處理器110可依據刮刀容許度(t r,c ),來校正如以下公式(3)的碰撞風險公式,其中參數R c,c 為碰撞機率。在本實施例中,刮刀容許度(t r,c )與刮刀種類、鋪粉機制以及刮刀驅動機制有關。對此,刮刀220為硬刮刀或軟刮刀,或者列印設備200的不同鋪粉高度,又或者列印設備200驅動刮刀220的不同施力或不同操作速度將分別對應於不同碰撞高度,因此進而影響刮刀容許度(t r,c )的數值結果。在步驟S370,處理器110可依據如以下公式(3)的碰撞風險公式來預測模擬列印物件410與刮刀220 之間的碰撞風險(碰撞機率)。換言之,當處理器110依據當前列印圖檔的特定列印物件來進行公式(3)的碰撞風險公式的校正後,校正後的公式(3)的碰撞風險公式將可有效地用於預測刮刀220與對應於當前列印圖檔的特定列印物件的列印碰撞機率。
Figure 109141478-A0305-02-0012-3
圖5是本揭露的一實施例的取得實驗碰撞高度的流程圖。圖6是本揭露的一實施例的多個扭矩參數的參數變化圖。參考圖1、圖2、圖5以及圖6,本實施例的步驟S510~S530可為上述圖3的步驟S330的詳細實施方法。在本實施例中,由於刮刀220可為硬刮刀,因此刮刀碰撞預測與校正系統100可透過分析驅動刮刀220移動的馬達的轉軸的輸出力矩變化來判斷刮刀220與實驗列印物件之間是否發生碰撞情形。具體而言,在步驟S510,處理器110可記錄馬達在列印實驗列印物件的過程中的多個馬達參數。所述多個馬達參數可例如包括馬達在列印實驗列印物件的過程中的多個扭矩參數及/或多個轉速參數。在步驟S520,處理器110可對所述多個馬達參數進行數據處理,例如正規化處理或分層處理,以產生對應於實驗列印物件的多層實驗列印層的多個扭矩參數。如圖6所示,處理器110可對所述多個馬達參數進行數據處理而產生對應於各層實驗列印層的最大扭矩參數的參數變化610。在步驟S530,處理器110可依據圖6的參數變化610的所述多個扭矩參數來判斷刮刀220與實驗列印物件發生碰撞時所對應的實驗碰撞高度。在本實施例中,處理器110可執行以下公式(4),以判斷 刮刀220與實驗列印物件之間是否發生碰撞,其中T max 為馬達最大輸出扭矩。
Figure 109141478-A0305-02-0013-4
如公式(4)的碰撞判斷參數T n ,當對應於所述多個實驗列印層的多個扭矩參數的其中之一(T)除以馬達最大輸出扭矩(T max )大於一預設閾值(例如T n >0.3)時,則處理器110判斷對應於所述多個扭矩參數的其中之一(T)的所述多個實驗列印層的其中之一發生碰撞。因此,處理器110可依據被判斷發生碰撞的所述多個實驗列印層的其中之一來取得實驗碰撞高度。
圖7是本揭露的另一實施例的取得實驗碰撞高度的流程圖。參考圖1、圖2以及圖7,本實施例的步驟S710~S740可為上述圖3的步驟S330的詳細實施方法。在本實施例中,由於刮刀220可為軟刮刀,因此刮刀碰撞預測與校正系統100可能不易偵測刮刀220與實驗列印物件之間的碰撞情形。對此,刮刀碰撞預測與校正系統100可採用影像分析的方式來判斷刮刀220與實驗列印物件之間是否發生碰撞。具體而言,刮刀碰撞預測與校正系統100可進一步包括影像擷取裝置,其中影像擷取裝置可耦接處理器110。在步驟S710,處理器110可透過影像擷取裝置取樣,以記錄實驗列印物件的多層實驗列印層的多個影像。在步驟S720,處理器110可對所述多個影像分別進行影像處理操作,以產生經處理後的多個影像。在本實施例中,影像處理操作可例如包括影像區域限縮處理、局部影像區隔處理以及二值化處理。在步驟S730,當 處理器110判斷經處理後的所述多個影像的其中之一所對應的所述多層實驗列印層的其中之一具有突起面積大於預設面積閾值時,處理器110可判斷所述多層實驗列印層的其中之一發生碰撞。在步驟S740,處理器110依據所述多個實驗列印層的其中之一來取得實驗碰撞高度。換言之,處理器110可將透過影像分析而被判斷為發生碰撞的當前列印的實驗列印層所對應的物件高度來作為實驗碰撞高度。
圖8是本揭露的另一實施例的刮刀碰撞預測與校正方法的流程圖。圖9是本揭露的一實施例的刮刀碰撞預測資料的示意圖。圖10是本揭露的一實施例的形變量與物件高度的關係圖。參考圖1、圖8至圖10,本實施例的步驟S810~S840可接續上述圖3的步驟S370。在步驟S810,處理器110可依據如上述經校正後的公式(3)的碰撞風險公式來建立如圖9所示的對應於多個列印高度的刮刀碰撞預測資料。如圖9所示,處理器110可對應模擬列印物件(如圖4A、4B的模擬列印物件410)的不同物件高度分別進行刮刀碰撞預測與校正,以取得如圖9所示對應於不同物件高度的多個刮刀碰撞機率。對此,如圖9所示,模擬列印物件在列印過程中,當物件高度為10.5毫米(mm)至18.5毫米時,模擬列印物件有90%的機率會與刮刀發生碰撞。對照圖10可知,當物件高度為10.5毫米至18.5毫米時,由於形變量將明顯增加,因此導致刮刀在鋪粉過程中容易與列印物件發生碰撞。
在本實施例中,處理器110可對於模擬列印物件的多層 模擬列印預測結果的每一層各別進行製程熱應力模擬,以取得每一層模擬列印層在垂直方向上的分別對應的模擬形變量。步驟S820,處理器110可判斷刮刀碰撞預測資料當中的所述多個碰撞風險值大於碰撞風險閾值的多個列印高度所對應的多個模擬形變量。在一實施例中,碰撞風險閾值可例如是90%。處理器110可將碰撞風險閾值大於90%的多個物件高度(10.5毫米至18.5毫米)所對應的多個模擬形變量進行進一步的判斷。
在步驟S830,處理器110可將所述多個模擬形變量當中小於形變閾值所對應的所述模擬列印物件的一部份模擬列印層進行層厚修正以及製程參數修正,其中所述製程參數可例如是雷射掃描速度、雷射功率等。在一實施例中,形變閾值可例如是0.15毫米,因此如圖10所示,物件高度10.5毫米至18.5毫米所對應的模擬形變量皆低於0.15毫米,因此在物件高度10.5毫米至18.5毫米的範圍內所對應的列印物件將可透過調整層厚以降低碰撞風險值。舉例而言,處理器110可將物件高度10毫米至18.5毫米的範圍內進一步劃分區間R1~R3,並且依據以下公式(5)~(7)對於區間R1~R3進行層厚調整。區間R1例如為物件高度10.5毫米至13毫米以及物件高度16.5毫米至18.5毫米的區間。區間R2例如為物件高度13毫米至14毫米以及物件高度16毫米至16.5毫米的區間。區間R3例如為物件高度14毫米至16毫米的區間。並且,區間R1適用於以下公式(5)的層厚調整公式(i=1),其中參數d l0為初始層厚、並且參數d l1代表第一次調整後的層厚。區間R2、 R3適用於以下公式(6)、(7)的層厚調整公式(i=2、3、4...),其中參數β可大於0.5並且小於1(0.5<β<1.0),例如在一實施例中,參數β可例如是0.8,並且參數U z 為當前模擬最上層的垂直方向上的形變量。值得注意的是,在i大於1的情況下(即i=2、3、4...),將依據第i次與第i-1次時的層厚與形變量U z 之間的關係來決定要採用公式(5)或公式(6)來定義第i+1次調整後的層厚。
d l1=(1+i)*d l0=2*d l0..............公式(5)
U z >βd li ,d l(i+1)=(1+i)*d l0..............公式(6)
U z <βd l(i-1) ,d l(i+1)=d li -d l0..............公式(7)
在步驟S840,處理器110可將所述多個模擬形變量當中大於或等於形變閾值所對應的所述模擬列印物件的另一部份模擬列印層進行支撐加強修正。換言之,當模擬形變量大於或等於形變閾值時,表示因為加熱而產生之形變無法透過修改列印層的層厚的方式來改善。因此,本實施例的處理器110將改以透過增加支撐物件的列印體積的方式來增強支撐。
另外,值得注意的是,當本揭露刮刀碰撞預測與校正系統100完成如上述步驟S810~S840的刮刀碰撞預測與校正後,經刮刀容許度校正後之列印設備200或使用相同類型刮刀之列印設備200無須再進行校正,即可對任意列印物件進行預測模擬。換言之,對於同一種刮刀而言,列印設備200僅需校正一次。爾後,若同一列印設備200使用此種刮刀來列印不同物件所採用的不同列印圖檔,亦無須再次校正。
圖11A是本揭露的一實施例的模擬列印物件及支撐物件的示意圖。圖11B是本揭露的另一實施例的模擬列印物件及支撐物件的示意圖。參考圖1、圖11A以及圖11B,如上述步驟S840,當模擬形變量大於或等於形變閾值時,本實施例的處理器110可對模擬列印物件1100的支撐物件1120的大小進行調整(即校正或修改列印圖檔)。如圖11A所示,處理器110可例如增加支撐物件1120的寬度,以使支撐物件1120可降低模擬列印物件1100的物件本體1110因受熱而朝方向P3(垂直方向)增加的形變量。反之,在另一實施例中,當模擬形變量小於形變閾值時,本實施例的處理器110可對模擬列印物件1100’的一部分進行層厚調整以及對模擬列印物件1100’的支撐物件1120’的大小進行調整(即校正或修改列印圖檔)。如圖11B所示,處理器110可例如減少支撐物件1120’的寬度,以使在實際積層製造的列印過程中,可減少(支撐物件1120’的)列印時間。
綜上所述,本揭露的積層製造的刮刀碰撞預測與校正方法及其系統可產生模擬列印物件,並且模擬列印物件在列印的加熱過程中所產生的形變,來取得模擬形變量。並且,本揭露的積層製造的刮刀碰撞預測與校正方法及其系統可偵測實驗列印物件與刮刀之間的碰撞時間,而取得實驗碰撞高度。因此,本揭露的積層製造的刮刀碰撞預測與校正方法及其系統可利用模擬形變量以及實驗碰撞高度來校正碰撞風險公式,以使校正後的碰撞風險公式可有效地預測實際列印物件與刮刀的碰撞機率與時機。並且,本揭 露的積層製造的刮刀碰撞預測與校正方法及其系統還可依據碰撞預測結果來校正列印物件的相關參數,以有效降低刮刀與列印物件在實際列印過程中發生碰撞的機率。
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露的精神和範圍內,當可作些許的更動與潤飾,故本揭露的保護範圍當視後附的申請專利範圍所界定者為準。
S310~S370:步驟

Claims (20)

  1. 一種用於積層製造的刮刀碰撞預測與校正方法,包括:載入一列印圖檔,以依據該列印圖檔產生一模擬列印物件;對該模擬列印物件進行一製程熱應力模擬,以取得該模擬列印物件的多層模擬列印預測結果在一垂直方向上每一層分別對應的多個模擬形變量;取得一實驗列印物件與一刮刀發生碰撞的一實驗碰撞高度;依據該實驗碰撞高度來選擇該些模擬形變量的其中之一;依據所選之該些模擬形變量的其中之一來計算一刮刀容許度;依據該刮刀容許度來校正一碰撞風險公式;以及依據該碰撞風險公式來預測該模擬列印物件與該刮刀之間的一碰撞風險。
  2. 如請求項1所述的刮刀碰撞預測與校正方法,其中一列印設備包括一硬刮刀,並且取得該實驗列印物件與該刮刀發生碰撞的該實驗碰撞高度的步驟包括:擷取該列印設備的多個馬達參數;對該些馬達參數進行一數據處理,以產生對應於該實驗列印物件的多層實驗列印層的多個扭矩參數;以及依據該些扭矩參數判斷該列印設備與該實驗列印物件發生碰撞時所對應的該實驗碰撞高度。
  3. 如請求項2所述的刮刀碰撞預測與校正方法,其中依據該些扭矩參數判斷該列印設備與該實驗列印物件發生碰撞時所對應的該實驗碰撞高度的步驟包括:當該多層實驗列印層的該些扭矩參數的其中之一除以一馬達最大輸出扭矩大於一預設閾值時,則判斷對應於該些扭矩參數的其中之一的該多層實驗列印層的其中之一發生碰撞;以及依據該多層實驗列印層的其中之一來取得該實驗碰撞高度。
  4. 如請求項1所述的刮刀碰撞預測與校正方法,其中一列印設備包括一軟刮刀,並且取得該實驗列印物件與該刮刀發生碰撞的該實驗碰撞高度的步驟包括:記錄該實驗列印物件的多層實驗列印層的多個影像;對該些影像分別進行一影像處理操作,以產生經處理後的多個影像;當判斷經處理後的該些影像的其中之一所對應的該多層實驗列印層的其中之一具有一突起面積大於一預設面積閾值時,判斷該多層實驗列印層的其中之一發生碰撞;以及依據該多層實驗列印層的其中之一來取得該實驗碰撞高度。
  5. 如請求項4所述的刮刀碰撞預測與校正方法,其中該影像處理操作包括一影像區域限縮處理、一局部影像區隔處理、或一二值化處理。
  6. 如請求項1所述的刮刀碰撞預測與校正方法,其中依據該實驗碰撞高度來選擇該些模擬形變量的其中之一的步驟包括:依據該實驗碰撞高度來取得與其最相近的一模擬碰撞高度;以及依據該模擬碰撞高度來選擇該些模擬形變量的其中之一。
  7. 如請求項1所述的刮刀碰撞預測與校正方法,其中依據該碰撞風險公式來預測該模擬列印物件與該刮刀之間的該碰撞風險的步驟包括:依據該碰撞風險公式來建立對應於多個列印高度的一刮刀碰撞預測資料。
  8. 如請求項7所述的刮刀碰撞預測與校正方法,還包括:判斷該刮刀碰撞預測資料當中的多個碰撞風險值大於一碰撞風險閾值的該些列印高度所對應的該些模擬形變量;以及對該些模擬形變量為小於一形變閾值的一部分所對應的該模擬列印物件的一部份模擬列印層進行一層厚修正以及一參數修正。
  9. 如請求項8所述的刮刀碰撞預測與校正方法,其中該參數修正為修改用於該積層製造的一雷射掃描速度以及一雷射功率的至少其中之一。
  10. 如請求項7所述的刮刀碰撞預測與校正方法,還包括:判斷該刮刀碰撞預測資料當中的多個碰撞風險值大於一碰撞風險閾值的該些列印高度所對應的該些模擬形變量;以及依據該些模擬形變量為大於或等於一形變閾值所對應的該模擬列印物件的另一部份模擬列印層進行一支撐加強修正。
  11. 一種用於積層製造的刮刀碰撞預測與校正系統,包括:一記憶體,用以儲存一模擬模組以及一運算模組;以及一處理器,耦接該記憶體,並且用以執行該模擬模組以及該運算模組,以進行以下操作:該處理器載入一列印圖檔,以依據該列印圖檔產生一模擬列印物件;該處理器對該模擬列印物件進行一製程熱應力模擬,以取得該模擬列印物件的多層模擬列印預測結果在一垂直方向上每一層分別對應的多個模擬形變量;該處理器取得一實驗列印物件與一刮刀發生碰撞的一實驗碰撞高度;該處理器依據該實驗碰撞高度來選擇該些模擬形變量的其中之一;該處理器依據所選之該些模擬形變量的其中之一來計算一刮刀容許度; 該處理器依據該刮刀容許度來校正一碰撞風險公式;以及該處理器依據該碰撞風險公式來預測該模擬列印物件與該刮刀之間的一碰撞風險。
  12. 如請求項11所述的刮刀碰撞預測與校正系統,其中一列印設備包括一硬刮刀,並且該處理器取得該實驗列印物件與該刮刀發生碰撞的該實驗碰撞高度的操作包括以下:該處理器擷取該列印設備的多個馬達參數;該處理器對該些馬達參數進行一數據處理,以產生對應於該實驗列印物件的多層實驗列印層的多個扭矩參數;以及該處理器依據該些扭矩參數判斷該列印設備與該實驗列印物件發生碰撞時所對應的該實驗碰撞高度。
  13. 如請求項12所述的刮刀碰撞預測與校正系統,其中該處理器依據該些扭矩參數判斷該列印設備與該實驗列印物件發生碰撞時所對應的該實驗碰撞高度的操作包括:當該多層實驗列印層的該些扭矩參數的其中之一除以一馬達最大輸出扭矩大於一預設閾值時,則該處理器判斷對應於該些扭矩參數的其中之一的該多層實驗列印層的其中之一發生碰撞;以及該處理器依據該多層實驗列印層的其中之一來取得該實驗碰撞高度。
  14. 如請求項11所述的刮刀碰撞預測與校正系統,其中一列印設備為一軟刮刀,並且該處理器取得該實驗列印物件與該刮刀發生碰撞的該實驗碰撞高度的操作包括:該處理器記錄該實驗列印物件的多層實驗列印層的多個影像;該處理器對該些影像分別進行一影像處理操作,以產生經處理後的多個影像;當該處理器判斷經處理後的該些影像的其中之一所對應的該多層實驗列印層的其中之一具有一突起面積大於一預設面積閾值時,該處理器判斷該多層實驗列印層的其中之一發生碰撞;以及該處理器依據該多層實驗列印層的其中之一來取得該實驗碰撞高度。
  15. 如請求項14所述的刮刀碰撞預測與校正系統,其中該影像處理操作包括一影像區域限縮處理、一局部影像區隔處理或一二值化處理。
  16. 如請求項11所述的刮刀碰撞預測與校正系統,其中該處理器依據該實驗碰撞高度來選擇該些模擬形變量的其中之一的操作包括:該處理器依據該實驗碰撞高度來取得與其最相近的一模擬碰撞高度;以及該處理器依據該模擬碰撞高度來選擇該些模擬形變量的其中之一。
  17. 如請求項11所述的刮刀碰撞預測與校正系統,其中該處理器依據該碰撞風險公式來預測該模擬列印物件與該刮刀之間的該碰撞風險的操作包括:該處理器依據該碰撞風險公式來建立對應於多個列印高度的一刮刀碰撞預測資料。
  18. 如請求項17所述的刮刀碰撞預測與校正系統,其中該處理器還執行以下操作:該處理器判斷該刮刀碰撞預測資料當中的多個碰撞風險值大於一碰撞風險閾值的該些列印高度所對應的該些模擬形變量;以及該處理器對該些模擬形變量為小於一形變閾值的一部分所對應的該模擬列印物件的一部份模擬列印層進行一層厚修正以及一參數修正。
  19. 如請求項18所述的刮刀碰撞預測與校正系統,其中該參數修正包括修改用於該積層製造的一雷射掃描速度以及一雷射功率的至少其中之一。
  20. 如請求項17所述的刮刀碰撞預測與校正系統,其中該處理器還執行以下操作:該處理器判斷該刮刀碰撞預測資料當中的多個碰撞風險值大於一碰撞風險閾值的該些列印高度所對應的該些模擬形變量;以及 該處理器依據該些模擬形變量為大於或等於一形變閾值所對應的該模擬列印物件的另一部份模擬列印層進行一支撐加強修正。
TW109141478A 2020-11-26 2020-11-26 用於積層製造的刮刀碰撞預測與校正方法及其系統 TWI765433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109141478A TWI765433B (zh) 2020-11-26 2020-11-26 用於積層製造的刮刀碰撞預測與校正方法及其系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109141478A TWI765433B (zh) 2020-11-26 2020-11-26 用於積層製造的刮刀碰撞預測與校正方法及其系統

Publications (2)

Publication Number Publication Date
TWI765433B true TWI765433B (zh) 2022-05-21
TW202220826A TW202220826A (zh) 2022-06-01

Family

ID=82594493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141478A TWI765433B (zh) 2020-11-26 2020-11-26 用於積層製造的刮刀碰撞預測與校正方法及其系統

Country Status (1)

Country Link
TW (1) TWI765433B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106273495A (zh) * 2016-08-29 2017-01-04 佛山职业技术学院 一种光固化机的调试处理方法及装置
WO2019094472A1 (en) * 2017-11-09 2019-05-16 Materialise N.V. System and method for build error detection in an additive manufacturing environment
TW201946767A (zh) * 2017-08-30 2019-12-16 日商沙迪克股份有限公司 層疊造型裝置及層疊造型物的製造方法
CN111406234A (zh) * 2017-11-08 2020-07-10 通用电气公司 用于构建表面映射的设备和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106273495A (zh) * 2016-08-29 2017-01-04 佛山职业技术学院 一种光固化机的调试处理方法及装置
TW201946767A (zh) * 2017-08-30 2019-12-16 日商沙迪克股份有限公司 層疊造型裝置及層疊造型物的製造方法
CN111406234A (zh) * 2017-11-08 2020-07-10 通用电气公司 用于构建表面映射的设备和方法
WO2019094472A1 (en) * 2017-11-09 2019-05-16 Materialise N.V. System and method for build error detection in an additive manufacturing environment

Also Published As

Publication number Publication date
TW202220826A (zh) 2022-06-01

Similar Documents

Publication Publication Date Title
US11150633B2 (en) System and method for automated geometric shape deviation modeling for additive manufacturing
US10719929B2 (en) Error detection in additive manufacturing processes
US20180169948A1 (en) System and method for ensuring consistency in additive manufacturing using thermal imaging
US20200038953A1 (en) Energy density mapping in additive manufacturing environments
Yavari et al. Thermal modeling in metal additive manufacturing using graph theory–Application to laser powder bed fusion of a large volume impeller
KR20160110073A (ko) 3차원 인쇄 방법 및 3차원 인쇄 장치
US11733678B2 (en) Method for determining building instructions for an additive manufacturing method, method for generating a database with correction measures for controlling the process of an additive manufacturing method
JP7056411B2 (ja) 読取装置および造形装置
CN113034382B (zh) 亮度均匀度调节方法、装置、计算机设备和可读存储介质
CN111145167A (zh) 平整度检测方法、装置、计算机设备和存储介质
KR20210095975A (ko) 인쇄 회로 기판에 실장된 부품을 검사하는 장치, 그 동작 방법 및 컴퓨터 판독 가능한 기록 매체
US20230185274A1 (en) Digital twin modeling of ic packaging structure
TWI765433B (zh) 用於積層製造的刮刀碰撞預測與校正方法及其系統
US20220088880A1 (en) Systems and methods for processing parameter selection for additive manufacturing using simulation
CN107941826B (zh) 照射量管理装置以及照射量管理方法
Wan et al. Utilizing CNN to predict homogeneous thermo-mechanical properties of conductive layers for reliability numerical analysis in electronics
US11733672B2 (en) Recoater collision prediction and correction method for additive manufacturing and system thereof
CN116727840A (zh) 一种激光打孔检测方法及检测装置
JP6692844B2 (ja) インクジェット方法及び3dプリンティング装置
US20220284154A1 (en) Thermal modeling of additive manufacturing using progressive horizontal subsections
Praniewicz et al. Bearing area curve based partitioning for the verification of theoretical supplemental geometry on additively manufactured lattice structures
CN116579907B (zh) 晶圆图像获取方法、装置、设备及可读存储介质
CN117197248B (zh) 一种电解电容方向判定方法、装置、设备及存储介质
TWI847184B (zh) 物件偵測系統及物件偵測輔助系統
TWI695773B (zh) 噴墨方法以及立體列印裝置