TWI764793B - 電源供應系統與其中之多路徑電源轉換電路 - Google Patents

電源供應系統與其中之多路徑電源轉換電路

Info

Publication number
TWI764793B
TWI764793B TW110127425A TW110127425A TWI764793B TW I764793 B TWI764793 B TW I764793B TW 110127425 A TW110127425 A TW 110127425A TW 110127425 A TW110127425 A TW 110127425A TW I764793 B TWI764793 B TW I764793B
Authority
TW
Taiwan
Prior art keywords
node
power
transistor
switch
battery
Prior art date
Application number
TW110127425A
Other languages
English (en)
Other versions
TW202234799A (zh
Inventor
劉至倫
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/581,906 priority Critical patent/US20220278617A1/en
Application granted granted Critical
Publication of TWI764793B publication Critical patent/TWI764793B/zh
Publication of TW202234799A publication Critical patent/TW202234799A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Abstract

一種電源供應系統,包括:切換式升降壓轉換器,用以切換電感器轉換第一節點上的輸入電源而於第二節點產生第一輸出電源,其中該第一輸出電源之第一輸出電壓高於、低於或等於該輸入電源的輸入電壓;電池,耦接於第三節點;第一電晶體,耦接於該第一節點與該第三節點之間;以及第二電晶體,耦接於該第二節點與該第三節點之間;其中該切換式升降壓轉換器、該第一電晶體與該第二電晶體操作而供電於負載電路及/或對該電池充電,其中當供電於該負載電路時,該負載電路以可移除的方式耦接於該第二節點。

Description

電源供應系統與其中之多路徑電源轉換電路
本發明係有關於電源供應系統,特定而言係有關於透過電晶體作為開關及/或線性充電電路之電源供應系統與其中之多路徑電源轉換電路。
圖1顯示一先前技術的充電系統1000,包括耳機充電座100與無線耳機200,耳機充電座100包括切換式充電器110、切換式升降壓轉換器120以及電池130,切換式充電器110轉換例如來自適配器(未示出)的外部電源VTA,而產生系統電源VSYS1,系統電源VSYS1可用以產生充電電源VBAT1以對電池130充電,此外,系統電源VSYS1還可通過切換式升降壓轉換器120而轉換為輸出電源(如對應於VOUT)而供電予無線耳機200,無線耳機200進一步通過線性充電器210而產生系統電源VSYS2與充電電源VBAT2,分別用以供電予無線單元220及對電池230充電。
圖2顯示對應於圖1的先前技術之耳機充電座102,其中切換式充電器110例如為降壓型切換式轉換器,通過由開關QH~QL切換電感器L2而產生系統電源VSYS1,切換式升降壓轉換器120例如由開關QA~QD切換電感器L1而產生輸出電源(VOUT) 而供電予無線耳機200。
圖1與圖2的先前技術之缺點在於,需要兩級的切換式電源轉換器,除了成本較高之外,尺寸也不易縮小。
有鑑於此,本發明即針對上述先前技術之不足,提出一種嶄新的電源供應系統與多路徑(multipath)電源轉換電路,可同時降低成本與電路尺寸。
於一觀點中,本發明提供一種電源供應系統,包括:一切換式升降壓轉換器,用以切換一電感器轉換第一節點上的一輸入電源而於一第二節點產生一第一輸出電源,其中該第一輸出電源之一第一輸出電壓高於、低於或等於該輸入電源的一輸入電壓;一電池,耦接於一第三節點;一第一電晶體,耦接於該第一節點與該第三節點之間;以及一第二電晶體,耦接於該第二節點與該第三節點之間;其中該切換式升降壓轉換器、該第一電晶體與該第二電晶體操作而供電於一負載電路及/或對該電池充電,其中當供電於該負載電路時,該負載電路以可移除的方式耦接於該第二節點。
於另一觀點中,本發明提供一種多路徑(multipath)電源轉換電路,包含:一切換式升降壓轉換器,用以轉換第一節點上的一輸入電源而於一第二節點產生一第一輸出電源,其中該第一輸出電源之一第一輸出電壓高於、低於或等於該輸入電源的一輸入電壓;一第一電晶體,耦接於該第一節點與一第三節點之間;以及一第二電晶體,耦接於該第二節點與該第三節點之間;其中該切換式升降壓轉換器、該第一電晶體與該第二電晶體操作而供電於一負載電路及/或對一電池充電,其中該電池耦接於該第三節點,其中當供電於該負載電路時,該負載電路以可移除的方式耦接於該第二節點。
於一實施例中, 於一獨立供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體以線性控制方式,轉換該第一節點上的該輸入電源而於該第三節點產生一第二輸出電源,以對該電池充電,其中該第二電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
於一實施例中,於一並聯供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
於一實施例中,於一電池供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該輸入電源對應於自該第一節點接收的該電池所提供的電源,其中該第二電晶體為不導通。
於一實施例中,於一電池充電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
於一實施例中,該切換式升降壓轉換器包括:一第一開關,耦接於該第一節點與一第一切換節點之間;一第二開關,耦接於該第一切換節點與一接地電位之間;一第三開關,耦接於一第二切換節點與該接地電位之間;以及一第四開關,耦接於該第二節點與該第二切換節點之間;其中該第一開關、該第二開關、該第三開關與該第四開關用以切換該電感器,而轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源。
於一實施例中,該輸入電源對應於自該第一節點接收的一外部電源,其中於一旁通模式下,該第一開關與該第四開關恆導通,該第二開關與該第三開關恆不導通,以電連接該第一節點與該第二節點,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該第二電晶體為不導通,藉此,該外部電源對該電池直接充電。
於一實施例中,於該旁通模式下,該外部電源對應為一恆定電流,該切換式升降壓轉換器旁通該恆定電流以對該電池直接充電。
於一實施例中,該第一電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
於一實施例中,該第二電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
本發明之優點為本發明可達到在對電池充電的同時同步供電予負載電路,且可將電池之充電電壓反饋至負載電路,且可減少開關數量及電感數量,可改善充電效率、減少功率損耗及熱耗散、縮小電路尺寸、降低成本。
底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。
發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。
圖3係根據本發明之一實施例顯示電源供應系統300之電路示意圖。如圖3所示,本發明之電源供應系統300包括多路徑電源轉換電路310。多路徑電源轉換電路310轉換第一節點N1上之輸入電源,而於第二節點N2產生第一輸出電源並於第三節點N3產生第二輸出電源。輸入電源對應於輸入電壓Vin及輸入電流Iin,第一輸出電源對應於第一輸出電壓Vo1及第一輸出電流Io1,而第二輸出電源對應於第二輸出電壓Vo2及第二輸出電流Io2。第一輸出電源可用以供電予負載電路,而第二輸出電源可用以對電池20充電。於一實施例中,如圖3所示,負載電路例如對應於至少一無線耳機200,電源供應系統300例如為可對耳機充電的一耳機充電座。無線耳機200進一步通過線性充電器210而產生系統電源VSYS2與充電電源VBAT2,系統電源VSYS2用以供電予無線單元220或其他耳機之系統與驅動電路等,充電電源VBAT2也用以對電池230充電。多路徑電源轉換電路310可用以切換電感器L之第一切換節點LX1及第二切換節點LX2之電壓以達成前述的電源轉換。
圖4係根據本發明之一具體實施例顯示電源供應系統400之電路示意圖。如圖4所示,本發明之電源供應系統400包括切換式升降壓轉換器10、電池20、第一電晶體M1及第二電晶體M2。參照圖4,多路徑電源轉換電路410包括切換式升降壓轉換器10、第一電晶體M1及第二電晶體M2。切換式升降壓轉換器10用以切換電感器L轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源。根據應用需求的不同,第一輸出電源之第一輸出電壓Vo1可配置為高於、低於或等於輸入電源的輸入電壓Vin。電池20耦接於第三節點N3。第一電晶體M1耦接於第一節點N1與第三節點N3之間,而第二電晶體M2耦接於第二節點N2與第三節點N3之間。控制訊號E及F分別用以控制第一電晶體M1及第二電晶體M2。切換式升降壓轉換器10、第一電晶體M1與第二電晶體M2操作而供電於負載電路及/或對電池20充電。當供電於負載電路時,負載電路以可移除的方式耦接於第二節點N2。於一實施例中,負載電路例如對應於至少一耳機,電源供應系統400例如為可對耳機充電的一耳機充電座。
再請繼續參照圖4,在一具體實施例中,切換式升降壓轉換器10包括開關QA、開關QB、開關QC及開關QD。開關QA耦接於第一節點N1與第一切換節點LX1之間,而開關QB耦接於第一切換節點LX1與接地電位之間。開關QC耦接於第二切換節點LX2與接地電位之間,而開關QD耦接於第二節點N2與第二切換節點LX2之間。控制訊號A、B、C及D分別用以控制開關QA~QD。開關QA~QD用以切換電感器L,而以脈寬調變方式轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源。
圖5係根據本發明之一實施例顯示電源供應系統400中之第一開關M1之電路示意圖。如圖5所示,於一實施例中,第一電晶體M1包括彼此串聯的第一子電晶體M1a與第二子電晶體M1b,第一子電晶體M1a的本體二極體D1a與第二子電晶體M1b的本體二極體D1b彼此反向耦接,以防止第一電晶體M1受控制訊號F欲控制為不導通時,可能由本體二極體所導通的電流。
圖6係根據本發明之一實施例顯示電源供應系統400中之第二開關M2之電路示意圖。如圖6所示,於一實施例中,第二電晶體M2包括彼此串聯的第一子電晶體M2a與第二子電晶體M2b,第一子電晶體M2a的本體二極體D2a與第二子電晶體M2b的本體二極體D2b彼此反向耦接,以防止第二電晶體M2受控制訊號E欲控制為不導通時,可能由本體二極體所導通的電流。
圖7係根據本發明之一實施例顯示電源供應系統400之具體實施例及操作示意圖。如圖7所示,於獨立供電模式下,切換式升降壓轉換器10轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源,以供電予負載電路。於一實施例中,第一電晶體M1例如以線性控制方式轉換第一節點N1上的輸入電源而於第三節點N3產生第二輸出電源,以對電池20充電。於另一實施例中,第一電晶體M1導通,以電連接第一節點N1至第三節點N3,以對電池20充電。如上所述,第二輸出電源對應於第二輸出電壓Vo2及第二輸出電流Io2。第二電晶體M2為不導通。輸入電源對應於自第一節點N1接收的外部電源VTA。如圖7所示,在一實施例中,第一輸出電壓Vo1與第二輸出電壓Vo2可不相同。
圖8係根據本發明之一實施例顯示電源供應系統400之具體實施例及操作示意圖。如圖8所示,當第一輸出電壓Vo1接近於電池20之充電電壓VBAT時,於並聯供電模式下,切換式升降壓轉換器10轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源,以供電予負載電路。於一實施例中,第二電晶體M2導通,以電連接第二節點N2至第三節點N3,以透過第一輸出電源對電池20充電。於另一實施例中,當第一輸出電壓Vo1與電池20之充電電壓VBAT不相近時,於並聯供電模式下,第二電晶體M2可藉由線性控制方式轉換第二節點N2上的第一輸出電源而於第三節點N3產生第二輸出電源,以對電池20充電。第一電晶體M1為不導通,輸入電源對應於自第一節點N1接收的外部電源VTA。
圖9係根據本發明之一實施例顯示電源供應系統400之具體實施例及操作示意圖。如圖9所示,當未自第一節點N1接受外部電源VTA時,於電池供電模式下,切換式升降壓轉換器10轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源,以供電予負載電路。於一實施例中,第一電晶體M1導通,以電連接第三節點N3至第一節點N1。於另一實施例中,第一電晶體M1以線性控制方式轉換第三節點N3上的第二輸出電源而於第一節點N1產生輸入電源。輸入電源對應於自第一節點N1接收的電池20所提供的電源。第二電晶體M2為不導通。
圖10係根據本發明之一實施例顯示電源供應系統400之具體實施例及操作示意圖。如圖10所示,當不存在負載電路時,於電池充電模式下,切換式升降壓轉換器10轉換第一節點N1上的輸入電源而於第二節點N2產生第一輸出電源。於一實施例中,第二電晶體M2導通,以電連接第二節點N2至第三節點N3,以透過第一輸出電源對電池20充電。於另一實施例中,第二電晶體M2以線性控制方式轉換第二節點N2上的第一輸出電源而於第三節點N3產生第二輸出電源,以對電池20充電。第一電晶體M1為不導通。輸入電源對應於自第一節點N1接收的外部電源VTA。
再請繼續參照圖10,當不存在負載電路時,於旁通模式下,開關QA與開關QD恆導通,開關QB與開關QC恆不導通,以電連接第一節點N1與第二節點N2。第一電晶體M1導通,以電連接第三節點N3至第一節點N1。第二電晶體M2為不導通,藉此,外部電源VTA對電池20直接充電。於一實施例中,於上述旁通模式下,外部電源對應為恆定電流,切換式升降壓轉換器10旁通恆定電流以對電池20直接充電。
本發明如上所述提供了一種電源供應系統及其中之多路徑電源轉換電路,可依實際需求,而提供多種供電與充電的路徑,而對電池充電及/或供電予負載電路,且可減少開關數量及電感數量,可改善充電效率、減少功率損耗及熱耗散、縮小電路尺寸、降低成本。
以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之最廣的權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。
10:切換式升降壓轉換器 100:耳機充電座 1000:充電系統 102:耳機充電座 110:切換式充電器 120:切換式升降壓轉換器 130,20:電池 200:無線耳機 210:線性充電器 220:無線單元 230:電池 300:電源供應系統 310:多路徑電源轉換電路 400:電源供應系統 410:多路徑電源轉換電路 A,B,C,D,E,F,J:控制訊號 Iin:輸入電流 Io1:第一輸出電流 Io2:第二輸出電流 L,L1,L2:電感器 LX:切換節點 LX1:第一切換節點 LX2:第二切換節點 M1:第一電晶體 M2:第二電晶體 N1:第一節點 N2:第二節點 N3:第三節點 QA,QB,QC,QD,QH,QL:開關 VBAT,VBAT1,VBAT2:充電電源 Vin:輸入電壓 Vo1:第一輸出電壓 Vo2:第二輸出電壓 VOUT:輸出電源 VSYS1,VSYS2:系統電源 VTA:外部電源
圖1顯示一先前技術的充電系統
圖2顯示對應於圖1的先前技術之耳機充電座。
圖3係根據本發明之一實施例顯示電源供應系統之電路示意圖。
圖4係根據本發明之一具體實施例顯示電源供應系統之電路示意圖。
圖5係根據本發明之一實施例顯示電源供應系統中之第一開關之電路示意圖。
圖6係根據本發明之一實施例顯示電源供應系統中之第二開關之電路示意圖。
圖7-圖10係根據本發明之一實施例顯示電源供應系統之具體實施例及操作示意圖。
10:切換式升降壓轉換器
20:電池
400:電源供應系統
410:多路徑電源轉換電路
A,B,C,D,E,F:控制訊號
Iin:輸入電流
Io1:第一輸出電流
Io2:第二輸出電流
L:電感
LX1:第一切換節點
LX2:第二切換節點
M1:第一電晶體
M2:第二電晶體
N1:第一節點
N2:第二節點
N3:第三節點
QA,QB,QC,QD:開關
VBAT:充電電源
Vin:輸入電壓
Vo1:第一輸出電壓
Vo2:第二輸出電壓
VTA:外部電源

Claims (20)

  1. 一種電源供應系統,包含: 一切換式升降壓轉換器,用以切換一電感器轉換第一節點上的一輸入電源而於一第二節點產生一第一輸出電源,其中該第一輸出電源之一第一輸出電壓高於、低於或等於該輸入電源的一輸入電壓; 一電池,耦接於一第三節點; 一第一電晶體,耦接於該第一節點與該第三節點之間;以及 一第二電晶體,耦接於該第二節點與該第三節點之間; 其中該切換式升降壓轉換器、該第一電晶體與該第二電晶體操作而供電於一負載電路及/或對該電池充電,其中當供電於該負載電路時,該負載電路以可移除的方式耦接於該第二節點。
  2. 如請求項1所述之電源供應系統,其中於一獨立供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體以線性控制方式,轉換該第一節點上的該輸入電源而於該第三節點產生一第二輸出電源,以對該電池充電,其中該第二電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  3. 如請求項1所述之電源供應系統,其中於一並聯供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  4. 如請求項1所述之電源供應系統,其中於一電池供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該輸入電源對應於自該第一節點接收的該電池所提供的電源,其中該第二電晶體為不導通。
  5. 如請求項1所述之電源供應系統,其中於一電池充電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  6. 如請求項1所述之電源供應系統,其中該切換式升降壓轉換器包括: 一第一開關,耦接於該第一節點與一第一切換節點之間; 一第二開關,耦接於該第一切換節點與一接地電位之間; 一第三開關,耦接於一第二切換節點與該接地電位之間;以及 一第四開關,耦接於該第二節點與該第二切換節點之間; 其中該第一開關、該第二開關、該第三開關與該第四開關用以切換該電感器,而轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源。
  7. 如請求項6所述之電源供應系統,其中該輸入電源對應於自該第一節點接收的一外部電源,其中於一旁通模式下,該第一開關與該第四開關恆導通,該第二開關與該第三開關恆不導通,以電連接該第一節點與該第二節點,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該第二電晶體為不導通,藉此,該外部電源對該電池直接充電。
  8. 如請求項7所述之電源供應系統,其中於該旁通模式下,該外部電源對應為一恆定電流,該切換式升降壓轉換器旁通該恆定電流以對該電池直接充電。
  9. 如請求項1所述之電源供應系統,其中該第一電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
  10. 如請求項1所述之電源供應系統,其中該第二電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
  11. 一種多路徑(multipath)電源轉換電路,包含: 一切換式升降壓轉換器,用以轉換第一節點上的一輸入電源而於一第二節點產生一第一輸出電源,其中該第一輸出電源之一第一輸出電壓高於、低於或等於該輸入電源的一輸入電壓; 一第一電晶體,耦接於該第一節點與一第三節點之間;以及 一第二電晶體,耦接於該第二節點與該第三節點之間; 其中該切換式升降壓轉換器、該第一電晶體與該第二電晶體操作而供電於一負載電路及/或對一電池充電,其中該電池耦接於該第三節點,其中當供電於該負載電路時,該負載電路以可移除的方式耦接於該第二節點。
  12. 如請求項11所述之多路徑電源轉換電路,其中於一獨立供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體以線性控制方式,轉換該第一節點上的該輸入電源而於該第三節點產生一第二輸出電源,以對該電池充電,其中該第二電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  13. 如請求項11所述之多路徑電源轉換電路,其中於一並聯供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  14. 如請求項11所述之多路徑電源轉換電路,其中於一電池供電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,以供電予該負載電路,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該輸入電源對應於自該第一節點接收的該電池所提供的電源,其中該第二電晶體為不導通。
  15. 如請求項11所述之多路徑電源轉換電路,其中於一電池充電模式下,該切換式升降壓轉換器轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源,其中該第二電晶體導通,以電連接該第一輸出電源至該第三節點,以對該電池充電,其中該第一電晶體為不導通,其中該輸入電源對應於自該第一節點接收的一外部電源。
  16. 如請求項11所述之多路徑電源轉換電路,其中該切換式升降壓轉換器包括: 一第一開關,耦接於該第一節點與一第一切換節點之間; 一第二開關,耦接於該第一切換節點與一接地電位之間; 一第三開關,耦接於一第二切換節點與該接地電位之間;以及 一第四開關,耦接於該第二節點與該第二切換節點之間; 其中該第一開關、該第二開關、該第三開關與該第四開關用以切換該電感器,而轉換該第一節點上的該輸入電源而於該第二節點產生該第一輸出電源。
  17. 如請求項16所述之多路徑電源轉換電路,其中該輸入電源對應於自該第一節點接收的一外部電源,其中於一旁通模式下,該第一開關與該第四開關恆導通,該第二開關與該第三開關恆不導通,以電連接該第一節點與該第二節點,其中該第一電晶體導通,以電連接該第三節點至該第一節點,其中該第二電晶體為不導通,藉此,該外部電源對該電池直接充電。
  18. 如請求項17所述之多路徑電源轉換電路,其中於該旁通模式下,該外部電源對應為一恆定電流,該切換式升降壓轉換器旁通該恆定電流以對該電池直接充電。
  19. 如請求項11所述之多路徑電源轉換電路,其中該第一電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
  20. 如請求項11所述之多路徑電源轉換電路,其中該第二電晶體包括彼此串聯的一第一子電晶體與一第二子電晶體,其中該第一子電晶體的本體二極體與該第二子電晶體的本體二極體彼此反向耦接。
TW110127425A 2021-02-26 2021-07-26 電源供應系統與其中之多路徑電源轉換電路 TWI764793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/581,906 US20220278617A1 (en) 2021-02-26 2022-01-22 Power supply system and multipath power converter circuit thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163154636P 2021-02-26 2021-02-26
US63/154636 2021-02-26

Publications (2)

Publication Number Publication Date
TWI764793B true TWI764793B (zh) 2022-05-11
TW202234799A TW202234799A (zh) 2022-09-01

Family

ID=82594390

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110127425A TWI764793B (zh) 2021-02-26 2021-07-26 電源供應系統與其中之多路徑電源轉換電路

Country Status (3)

Country Link
US (1) US20220278617A1 (zh)
CN (1) CN114977803A (zh)
TW (1) TWI764793B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773487B (zh) * 2021-03-23 2022-08-01 立錡科技股份有限公司 電源供應系統

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11590854B1 (en) * 2021-11-01 2023-02-28 Beta Air, Llc System and method for recharging an electric vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518969A (zh) * 2013-09-09 2016-04-20 苹果公司 具有升降压操作的电池充电器
US20170085080A1 (en) * 2015-09-17 2017-03-23 Powerventure Semiconductor Limited Power Management Circuit
TW201813235A (zh) * 2016-09-13 2018-04-01 美商英特矽爾美國有限公司 混合電源升降壓充電器
TW201836230A (zh) * 2017-03-16 2018-10-01 華碩電腦股份有限公司 充電電路及其控制方法
US20200227933A1 (en) * 2020-03-27 2020-07-16 Intel Corporation Voltage minimum active protection circuit and method of operating same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105518969A (zh) * 2013-09-09 2016-04-20 苹果公司 具有升降压操作的电池充电器
US20170085080A1 (en) * 2015-09-17 2017-03-23 Powerventure Semiconductor Limited Power Management Circuit
TW201813235A (zh) * 2016-09-13 2018-04-01 美商英特矽爾美國有限公司 混合電源升降壓充電器
TW201836230A (zh) * 2017-03-16 2018-10-01 華碩電腦股份有限公司 充電電路及其控制方法
US20200227933A1 (en) * 2020-03-27 2020-07-16 Intel Corporation Voltage minimum active protection circuit and method of operating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI773487B (zh) * 2021-03-23 2022-08-01 立錡科技股份有限公司 電源供應系統

Also Published As

Publication number Publication date
US20220278617A1 (en) 2022-09-01
CN114977803A (zh) 2022-08-30
TW202234799A (zh) 2022-09-01

Similar Documents

Publication Publication Date Title
US10298124B2 (en) Hybrid DCDC power converter with increased efficiency
US10673324B2 (en) Isolated converter with switched capacitors
TWI764793B (zh) 電源供應系統與其中之多路徑電源轉換電路
US7514910B2 (en) DC-DC converter capable of performing for wide and dynamic voltage range
TWI682625B (zh) 用於功率放大器的供應調變器的裝置及方法
JP6367337B2 (ja) 単一の制御ループを有するマルチ出力昇圧レギュレータ
TWI638514B (zh) 電源電路
WO2013155197A1 (en) Adaptive rail power amplifier technology
WO2016029489A1 (zh) 单电感正负电压输出装置
CN106549471B (zh) 功率管理电路
Jung et al. Dual-path three-level buck converter with loop-free autocalibration for flying capacitor self-balancing
TWI558084B (zh) Bidirectional power control and dual power module parallel return controller
TW202007064A (zh) 雙向dc-dc轉換器
US8269461B2 (en) Hybrid battery charger and control circuit and method thereof
US8199540B2 (en) High voltage gain power converter
US20180287496A1 (en) Inverting buck-boost power converter
JP2014075950A (ja) ブリッジ整流回路
US6744318B2 (en) Digital power amplifier
CN101989755A (zh) 混成式充电器及其控制电路和方法
TWI773487B (zh) 電源供應系統
Mapula et al. Integrated multi-channel constant current LED driver with PWM boost converter design in 0.35 µm process
US10263516B1 (en) Cascaded voltage converter with inter-stage magnetic power coupling
Jiang et al. Applying hybrid passive current-sharing components to non-isolated LED driver
KR102028480B1 (ko) 고효율 저가격 다중 출력 컨버터
CN101873066A (zh) 一种多路电源变换电路