TWI764551B - Resonant switching power converter - Google Patents

Resonant switching power converter

Info

Publication number
TWI764551B
TWI764551B TW110103440A TW110103440A TWI764551B TW I764551 B TWI764551 B TW I764551B TW 110103440 A TW110103440 A TW 110103440A TW 110103440 A TW110103440 A TW 110103440A TW I764551 B TWI764551 B TW I764551B
Authority
TW
Taiwan
Prior art keywords
resonant
current
inductor
delay time
charging
Prior art date
Application number
TW110103440A
Other languages
Chinese (zh)
Other versions
TW202220351A (en
Inventor
劉國基
楊大勇
白忠龍
Original Assignee
立錡科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 立錡科技股份有限公司 filed Critical 立錡科技股份有限公司
Priority to US17/499,252 priority Critical patent/US11742751B2/en
Application granted granted Critical
Publication of TWI764551B publication Critical patent/TWI764551B/en
Publication of TW202220351A publication Critical patent/TW202220351A/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The present invention provides a resonant switching power converter including: a first power stage circuit; a second power stage circuit; a controller; and a current sensing circuit configured to sense a first charging or discharging resonant current which flows through a first charging or discharging inductor of the first power stage circuit and sense a second charging or discharging resonant current which flows through a second charging or discharging inductor of the second power stage circuit, so as to generate corresponding first and second current sensing signals respectively, wherein the controller adjusts at least one of the following according to the first and second current sensing signals to render an output current of the first power stage circuit and an output current of the second power stage circuit in a specific ratio: a first delay time of a first charging process, a second delay time of a first discharging process, a third delay time of a second charging process, a fourth delay time of a second discharging process and two inputted voltages.

Description

諧振切換式電源轉換器Resonant Switching Power Converters

本發明係有關於一種諧振切換式電源轉換器,特定而言係有關於一種能夠達到電流平衡控制之諧振切換式電源轉換器。The present invention relates to a resonant switching power converter, in particular, to a resonant switching power converter capable of achieving current balance control.

圖1係顯示習知的電源轉換器。於充電操作中,開關Q1、Q2、Q3、Q4係導通,開關Q5、Q6、Q7、Q8、Q9、Q10係不導通,使得電容C1、C2、C3彼此串聯於輸入電壓Vin及輸出電壓Vout之間。於放電操作中,開關Q5、Q6、Q7、Q8、Q9、Q10係導通,開關Q1、Q2、Q3、Q4係不導通,使得電容C1、C2、C3彼此並聯於接地電位及輸出電壓Vout之間。此習知的電源轉換器的電容及開關會具有非常大的湧浪電流(inrush current)。因此,在其他的習知的電源轉換器中,於適當位置配置電感器與電容器形成諧振切換式電源轉換器,可降低湧浪電流,然而,當二個渠道以上習知的諧振切換式電源轉換器並聯操作時,由於電流的操作組合具有無限組解,若未適當控制,將造成電流不平衡。FIG. 1 shows a conventional power converter. During the charging operation, the switches Q1, Q2, Q3, and Q4 are turned on, and the switches Q5, Q6, Q7, Q8, Q9, and Q10 are turned off, so that the capacitors C1, C2, and C3 are connected in series with each other between the input voltage Vin and the output voltage Vout. between. During the discharge operation, the switches Q5, Q6, Q7, Q8, Q9, and Q10 are turned on, and the switches Q1, Q2, Q3, and Q4 are turned off, so that the capacitors C1, C2, and C3 are connected in parallel between the ground potential and the output voltage Vout. . The capacitors and switches of this conventional power converter have very large inrush currents. Therefore, in other conventional power converters, inductors and capacitors are arranged at appropriate positions to form a resonant switching power converter, which can reduce inrush current. When the devices are operated in parallel, since the operation combination of the current has infinite solutions, if it is not properly controlled, the current will be unbalanced.

有鑑於此,本發明即針對上述先前技術之不足,提出一種可於多個轉換器並聯時,能確保電流平衡的諧振切換式電源轉換器。In view of this, the present invention addresses the above-mentioned shortcomings of the prior art, and proposes a resonant switching power converter capable of ensuring current balance when a plurality of converters are connected in parallel.

於一觀點中,本發明提供一種諧振切換式電源轉換器,用以將一或二個輸入電壓轉換為一輸出電壓,該諧振切換式電源轉換器包含:一第一功率級電路,包括:複數第一電容;至少一第一充電電感;至少一第一放電電感;以及複數第一開關,用以切換所對應之該複數第一電容、該至少一第一充電電感與該至少一第一放電電感之電連接關係;一第二功率級電路,包括:複數第二電容;至少一第二充電電感;至少一第二放電電感;以及複數第二開關,用以切換所對應之該複數第二電容、該至少一第二充電電感與該至少一第二放電電感之電連接關係;以及一控制器,用以週期性地於對應的一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序中,分別操作對應之該複數第一開關及對應之該複數第二開關;其中,在該第一充電程序中,控制該複數第一開關的切換,使該複數第一電容與該至少一第一充電電感串聯於該一或二個輸入電壓與該輸出電壓之間,以形成一第一充電路徑;其中,在該至少一第一放電程序中,控制該複數第一開關的切換,使每一該第一電容與對應之該第一放電電感串聯於該輸出電壓與一接地電位間,而同時形成或輪流形成複數第一放電路徑;其中,在該第二充電程序中,控制該複數第二開關的切換,使該複數第二電容與該至少一第二充電電感串聯於該一或二個輸入電壓與該輸出電壓之間,以形成一第二充電路徑;其中,在該至少一第二放電程序中,控制該複數第二開關的切換,使每一該第二電容與對應之該第二放電電感串聯於該輸出電壓與一接地電位間,而同時形成或輪流形成複數第二放電路徑;其中該控制器更用以根據一第一電流感測訊號及一第二電流感測訊號而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成一固定比例:一第一延遲時間、一第二延遲時間、一第三延遲時間及一第四延遲時間,或者該二個輸入電壓;其中該第一延遲時間用以延遲該第一充電程序的起始時點,該第二延遲時間用以延遲該至少一第一放電程序的起始時點,該第三延遲時間用以延遲該第二充電程序的起始時點,該第四延遲時間用以延遲該至少一第二放電程序的起始時點;其中該第一電流感測訊號相關於該至少一第一充電電感及/或該至少一第一放電電感之一第一電感電流,其中該第二電流感測訊號相關於該至少一第二充電電感及/或該至少一第二放電電感之一第二電感電流。In one aspect, the present invention provides a resonant switching power converter for converting one or two input voltages into an output voltage, the resonant switching power converter comprising: a first power stage circuit comprising: a plurality of a first capacitor; at least one first charging inductor; at least one first discharging inductor; and a plurality of first switches for switching the corresponding plurality of first capacitors, the at least one first charging inductor and the at least one first discharging inductor The electrical connection relationship of the inductors; a second power stage circuit, comprising: a plurality of second capacitors; at least one second charging inductor; at least one second discharging inductor; and a plurality of second switches for switching the corresponding plurality of second capacitors the electrical connection relationship between the capacitor, the at least one second charging inductance and the at least one second discharging inductance; and a controller for periodically corresponding to a first charging process, a second charging process, at least a first charging process In a discharge procedure and at least one second discharge procedure, the corresponding plurality of first switches and the corresponding plurality of second switches are respectively operated; wherein, in the first charging procedure, the switching of the plurality of first switches is controlled to make The plurality of first capacitors and the at least one first charging inductor are connected in series between the one or two input voltages and the output voltage to form a first charging path; wherein, in the at least one first discharging process, control The switching of the plurality of first switches enables each of the first capacitors and the corresponding first discharge inductance to be connected in series between the output voltage and a ground potential, and simultaneously form or alternately form a plurality of first discharge paths; wherein, in the In the second charging procedure, the switching of the plurality of second switches is controlled, so that the plurality of second capacitors and the at least one second charging inductor are connected in series between the one or two input voltages and the output voltage to form a second A charging path; wherein, in the at least one second discharge procedure, the switching of the plurality of second switches is controlled, so that each of the second capacitors and the corresponding second discharge inductor are connected in series between the output voltage and a ground potential, A plurality of second discharge paths are formed simultaneously or alternately; wherein the controller is further configured to adjust at least one of the following according to a first current sensing signal and a second current sensing signal, so that the first power stage circuit The output current is proportional to the output current of the second power stage circuit: a first delay time, a second delay time, a third delay time and a fourth delay time, or the two input voltages; wherein the The first delay time is used to delay the starting time of the first charging process, the second delay time is used to delay the starting time of the at least one first discharging process, and the third delay time is used to delay the second charging process The fourth delay time is used to delay the start time of the at least one second discharge process; wherein the first current sensing signal is related to the at least one first charging inductor and/or the at least one first A first inductor current of the discharge inductor, wherein the second current sensing signal is related to the at least one second charging inductor and/or a second inductor current of the at least one second discharging inductor.

於一實施例中,該至少一第一充電電感為第一單一個充電電感,該至少一第一放電電感為第一單一個放電電感,該至少一第二充電電感為第二單一個充電電感,該至少一第二放電電感為第二單一個放電電感。In one embodiment, the at least one first charging inductor is a first single charging inductor, the at least one first discharging inductor is a first single discharging inductor, and the at least one second charging inductor is a second single charging inductor , the at least one second discharge inductance is a second single discharge inductance.

於一實施例中,該至少一第一充電電感與該至少一第一放電電感為第一單一個相同電感,該至少一第二充電電感與該至少一第二放電電感為第二單一個相同電感。In one embodiment, the at least one first charging inductance and the at least one first discharging inductance are a first single identical inductance, and the at least one second charging inductance and the at least one second discharging inductance are a second single identical inductance inductance.

於一實施例中,該控制器包括至少一電流感測電路,該至少一電流感測電路包括:至少一電壓感測電路,用以感測該至少一第一充電電感及/或該至少一第一放電電感之兩端的電壓差,而對應產生一第一電壓感測訊號,且用以感測該至少一第二充電電感及/或該至少一第二放電電感之兩端的電壓差,而對應產生一第二電壓感測訊號,其中該第一電壓感測訊號相關於該至少一第一充電電感及/或該至少一第一放電電感之一寄生電阻之跨壓,該第二電壓感測訊號相關於該至少一第二充電電感及/或該至少一第二放電電感之一寄生電阻之跨壓;以及至少一轉換電路,用以根據該第一電壓感測訊號及該第二電壓感測訊號分別對應產生該第一電流感測訊號及該第二電流感測訊號。In one embodiment, the controller includes at least one current sensing circuit, and the at least one current sensing circuit includes: at least one voltage sensing circuit for sensing the at least one first charging inductor and/or the at least one The voltage difference between the two ends of the first discharge inductor generates a first voltage sensing signal correspondingly, and is used to sense the voltage difference between the two ends of the at least one second charging inductor and/or the at least one second discharging inductor, and A second voltage sensing signal is correspondingly generated, wherein the first voltage sensing signal is related to the cross-voltage of a parasitic resistance of the at least one first charging inductor and/or the at least one first discharging inductor, and the second voltage sensing signal is The sensing signal is related to the cross-voltage of a parasitic resistance of the at least one second charging inductor and/or the at least one second discharging inductor; and at least one converting circuit is used for sensing the signal and the second voltage according to the first voltage The sensing signals respectively generate the first current sensing signal and the second current sensing signal.

於一實施例中,該控制器更包括:一平均電路,用以對該第一電流感測訊號及該第二電流感測訊號取平均值,而產生一電流平均訊號;以及至少一調整電路,用以比較該電流平均訊號與該第一電流感測訊號,及/或比較該電流平均訊號與該第二電流感測訊號,而產生一調整訊號,而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例:該第一延遲時間、該第二延遲時間、該第三延遲時間及該第四延遲時間,或者該二個輸入電壓。In one embodiment, the controller further includes: an averaging circuit for averaging the first current sensing signal and the second current sensing signal to generate a current averaging signal; and at least one adjusting circuit , used to compare the current average signal with the first current sensing signal, and/or compare the current average signal with the second current sensing signal, and generate an adjustment signal, and adjust at least one of the following so that the The output current of the first power stage circuit is proportional to the output current of the second power stage circuit: the first delay time, the second delay time, the third delay time and the fourth delay time, or the two an input voltage.

於一實施例中,該固定比例為1:1。In one embodiment, the fixed ratio is 1:1.

於一實施例中,該控制器更包括:至少一延遲電路,用以根據該調整訊號而產生該第一延遲時間、該第二延遲時間、該第三延遲時間及/或該第四延遲時間,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例。In one embodiment, the controller further includes: at least one delay circuit for generating the first delay time, the second delay time, the third delay time and/or the fourth delay time according to the adjustment signal , so that the output current of the first power stage circuit and the output current of the second power stage circuit have the fixed ratio.

於一實施例中,該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例:當該第一電流感測訊號大於該電流平均訊號時,延長該第一延遲時間及/或該第二延遲時間;當該第一電流感測訊號小於該電流平均訊號時,縮短該第一延遲時間及/或該第二延遲時間;當該第二電流感測訊號大於該電流平均訊號時,延長該第三延遲時間及/或該第四延遲時間;及/或當該第二電流感測訊號小於該電流平均訊號時,縮短該第三延遲時間及/或該第四延遲時間。In one embodiment, the controller adjusts at least one of the following to make the output current of the first power stage circuit and the output current of the second power stage circuit be the fixed ratio: when the first current sensing signal is greater than When the current average signal is used, the first delay time and/or the second delay time are extended; when the first current sensing signal is smaller than the current average signal, the first delay time and/or the second delay time are shortened ; when the second current sensing signal is greater than the current average signal, extend the third delay time and/or the fourth delay time; and/or when the second current sensing signal is less than the current average signal, shorten The third delay time and/or the fourth delay time.

於一實施例中,該二個輸入電壓包含一第一輸入電壓及一第二輸入電壓,分別對應於該第一功率級電路與該第二功率級電路,其中該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例:當該第一電流感測訊號大於該電流平均訊號時,減小該第一輸入電壓;當該第一電流感測訊號小於該電流平均訊號時,增加該第一輸入電壓;當該第二電流感測訊號大於該電流平均訊號時,減小該第二輸入電壓;及/或當該第二電流感測訊號小於該電流平均訊號時,增加該第二輸入電壓。In one embodiment, the two input voltages include a first input voltage and a second input voltage, respectively corresponding to the first power stage circuit and the second power stage circuit, wherein the controller adjusts at least one of the following , so that the output current of the first power stage circuit and the output current of the second power stage circuit have the fixed ratio: when the first current sensing signal is greater than the current average signal, reduce the first input voltage; When the first current sensing signal is less than the current average signal, increase the first input voltage; when the second current sensing signal is greater than the current average signal, decrease the second input voltage; and/or when the current average signal When the second current sensing signal is smaller than the current average signal, the second input voltage is increased.

於一實施例中,該第一功率級電路與該第二功率級電路彼此交錯地進行對應的充電與放電之程序。In one embodiment, the first power stage circuit and the second power stage circuit alternately perform corresponding charging and discharging procedures.

於一實施例中,該諧振切換式電源轉換器為雙向諧振切換式電源轉換器。In one embodiment, the resonant switching power converter is a bidirectional resonant switching power converter.

於一實施例中,該諧振切換式電源轉換器之該一或二個輸入電壓與該輸出電壓之電壓轉換比率為4:1、3:1或2:1。In one embodiment, the voltage conversion ratio of the one or two input voltages to the output voltage of the resonant switching power converter is 4:1, 3:1 or 2:1.

於又一觀點中,本發明提供一種諧振切換式電源轉換器,用以將一或二個輸入電壓轉換為一輸出電壓,該諧振切換式電源轉換器包含:一第一功率級電路,包括:至少一第一諧振腔,該第一諧振腔具有彼此串聯之一第一諧振電容與一第一諧振電感;至少一第一非諧振電容;以及複數第一開關,耦接於該至少一第一諧振腔及該至少一第一非諧振電容,用以切換所對應之該第一諧振腔與該至少一第一非諧振電容之電連接關係,其中於一第一諧振程序中,對所對應之該第一諧振腔進行諧振充電,其中於一第二諧振程序中,對所對應之該第一諧振腔進行諧振放電,其中該第一非諧振電容之跨壓維持與該一或二個輸入電壓成一固定比例; 一第二功率級電路,包含:至少一第二諧振腔,該第二諧振腔具有彼此串聯之一第二諧振電容與一第二諧振電感;至少一第二非諧振電容;複數第二開關,耦接於該至少一第二諧振腔及該至少一第二非諧振電容,用以切換所對應之該第二諧振腔與該至少一第二非諧振電容之電連接關係,其中於一第三諧振程序中,對所對應之該第二諧振腔進行諧振充電,其中於一第四諧振程序中,對所對應之該第二諧振腔進行諧振放電,其中該第二非諧振電容之跨壓維持與該一或二個輸入電壓成一固定比例;以及一控制器,用以週期性地於對應的該第一諧振程序、該第二諧振程序、該第三諧振程序與該第四諧振程序中,分別操作對應之該複數第一開關及對應之該複數第二開關,以進行對應的諧振充電與諧振放電;其中該控制器更用以根據一第一電流感測訊號及一第二電流感測訊號而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成一固定比例:一第一延遲時間、一第二延遲時間、一第三延遲時間及一第四延遲時間,或者該二個輸入電壓;其中該第一延遲時間用以延遲該第一諧振程序的起始時點,該第二延遲時間用以延遲該第二諧振程序的起始時點,該第三延遲時間用以延遲該第三諧振程序的起始時點,該第四延遲時間用以延遲該第四諧振程序的起始時點;其中該第一電流感測訊號相關於該第一諧振電感之一第一電感電流,其中該第二電流感測訊號相關於該第二諧振電感之一第二電感電流。In yet another aspect, the present invention provides a resonant switching power converter for converting one or two input voltages into an output voltage, the resonant switching power converter comprising: a first power stage circuit, comprising: At least one first resonant cavity, the first resonant cavity has a first resonant capacitor and a first resonant inductor connected in series with each other; at least one first non-resonant capacitor; and a plurality of first switches, coupled to the at least one first The resonant cavity and the at least one first non-resonant capacitor are used to switch the electrical connection relationship between the corresponding first resonant cavity and the at least one first non-resonant capacitor, wherein in a first resonant process, the corresponding The first resonant cavity is resonantly charged, and in a second resonant process, the corresponding first resonant cavity is resonantly discharged, wherein the cross-voltage of the first non-resonant capacitor is maintained with the one or two input voltages a fixed ratio; a second power stage circuit, comprising: at least one second resonant cavity, the second resonant cavity has a second resonant capacitor and a second resonant inductance in series with each other; at least one second non-resonant capacitor; complex The second switch is coupled to the at least one second resonant cavity and the at least one second non-resonant capacitor, and is used for switching the electrical connection relationship between the corresponding second resonant cavity and the at least one second non-resonant capacitor, wherein In a third resonant process, the corresponding second resonant cavity is resonantly charged, and in a fourth resonant process, resonant discharge is performed on the corresponding second resonant cavity, wherein the second non-resonant capacitor The cross voltage is maintained at a fixed ratio with the one or two input voltages; and a controller is used for periodically corresponding to the first resonant process, the second resonant process, the third resonant process and the fourth resonant process. In the resonant procedure, the corresponding plurality of first switches and the corresponding plurality of second switches are respectively operated to perform corresponding resonant charging and resonant discharging; wherein the controller is further configured to sense a first current signal and a first Two current sensing signals to adjust at least one of the following, so that the output current of the first power stage circuit is proportional to the output current of the second power stage circuit: a first delay time, a second delay time, a The third delay time and a fourth delay time, or the two input voltages; wherein the first delay time is used to delay the start point of the first resonance process, and the second delay time is used to delay the second resonance process , the third delay time is used to delay the start time of the third resonance process, the fourth delay time is used to delay the start time of the fourth resonance process; wherein the first current sensing signal is related to A first inductor current of the first resonant inductor, wherein the second current sensing signal is related to a second inductor current of the second resonant inductor.

於一實施例中,該控制器包括至少一電流感測電路,該至少一電流感測電路包括:至少一電壓感測電路,用以感測該第一諧振電感之兩端的電壓差,而對應產生一第一電壓感測訊號,且用以感測該第二諧振電感之兩端的電壓差,而對應產生一第二電壓感測訊號,其中該第一電壓感測訊號相關於該至少一第一諧振電感之一寄生電阻之跨壓,該第二電壓感測訊號相關於該至少一第二諧振電感之一寄生電阻之跨壓;以及至少一轉換電路,用以根據該第一電壓感測訊號及該第二電壓感測訊號分別對應產生該第一電流感測訊號及該第二電流感測訊號。In one embodiment, the controller includes at least one current sensing circuit, and the at least one current sensing circuit includes: at least one voltage sensing circuit for sensing the voltage difference between the two ends of the first resonant inductor, and corresponding to A first voltage sensing signal is generated for sensing the voltage difference between the two ends of the second resonant inductor, and a second voltage sensing signal is correspondingly generated, wherein the first voltage sensing signal is related to the at least one first voltage sensing signal. a voltage across a parasitic resistance of a resonant inductor, the second voltage sensing signal is related to a voltage across a parasitic resistance of the at least one second resonant inductor; and at least one conversion circuit for sensing according to the first voltage The signal and the second voltage sensing signal respectively generate the first current sensing signal and the second current sensing signal.

本發明之一優點在於本發明可使具有多個功率級電路之諧振切換式電源轉換器達到電流平衡控制且無需額外的前端電壓調節器以進行電流平衡控制。One advantage of the present invention is that the present invention enables a resonant switching power converter with multiple power stage circuits to achieve current balance control without requiring an additional front-end voltage regulator for current balance control.

本發明之另一優點在於本發明可無需額外的電流感測電阻且可降低湧浪電流。Another advantage of the present invention is that the present invention eliminates the need for additional current sensing resistors and reduces inrush current.

本發明之又一優點在於本發明與傳統電源轉換器相比具有較高的效率。Yet another advantage of the present invention is that the present invention has higher efficiency compared to conventional power converters.

底下藉由具體實施例詳加說明,當更容易瞭解本發明之目的、技術內容、特點及其所達成之功效。The following describes in detail with specific embodiments, when it is easier to understand the purpose, technical content, characteristics and effects of the present invention.

本發明中的圖式均屬示意,主要意在表示各電路間之耦接關係,以及各訊號波形之間之關係,至於電路、訊號波形與頻率則並未依照比例繪製。The drawings in the present invention are schematic, mainly intended to represent the coupling relationship between the circuits and the relationship between the signal waveforms, and the circuits, signal waveforms and frequencies are not drawn to scale.

圖2係根據本發明之一實施例顯示一諧振切換式電源轉換器之電路示意圖。如圖2所示,本發明之諧振切換式電源轉換器20包含第一功率級電路201以及第二功率級電路202。第一功率級電路201與第二功率級電路202並聯於輸入電壓Vin及輸出電壓Vout之間。第一功率級電路201包含第一電容C1、C2、C3、第一開關Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10以及第一電感L1。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與第一電感L1串聯。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與第一電感L1串聯。FIG. 2 is a schematic circuit diagram showing a resonant switching power converter according to an embodiment of the present invention. As shown in FIG. 2 , the resonant switching power converter 20 of the present invention includes a first power stage circuit 201 and a second power stage circuit 202 . The first power stage circuit 201 and the second power stage circuit 202 are connected in parallel between the input voltage Vin and the output voltage Vout. The first power stage circuit 201 includes first capacitors C1, C2, C3, first switches Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10 and a first inductor L1. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first switch Q4 is connected in series with the first inductor L1. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first switch Q4 is connected in series with the first inductor L1.

第二功率級電路202包含第二電容C11、C12、C13、第二開關Q11、Q12、Q13、Q14、Q15、Q16、Q17、Q18、Q19、Q20以及第二電感L11。第二開關Q11-Q13分別與對應之第二電容C11-C13串聯,而第二開關Q14與第二電感L11串聯。應注意者為,本發明之諧振切換式電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明,而非用以限制本發明。於一實施例中,第一電感L1、第二電感L11可為可變電感。The second power stage circuit 202 includes second capacitors C11 , C12 , C13 , second switches Q11 , Q12 , Q13 , Q14 , Q15 , Q16 , Q17 , Q18 , Q19 , Q20 , and a second inductor L11 . The second switches Q11-Q13 are respectively connected in series with the corresponding second capacitors C11-C13, and the second switch Q14 is connected in series with the second inductor L11. It should be noted that the number of capacitors in the resonant switching power converter of the present invention is not limited to three in this embodiment, but can also be two or more than four. The number of components shown in this embodiment is only for illustration. The present invention is not intended to limit the present invention. In one embodiment, the first inductor L1 and the second inductor L11 can be variable inductors.

如圖2所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖2所示,第一開關Q5-Q7之另一端共同電連接至一節點後,耦接至第一開關Q4與第一電感L1之間的節點,第一開關Q8-Q10之另一端係共同耦接至接地電位。第一電感L1的另一端係耦接至輸出電壓Vout,第一開關Q1之另一端耦接至輸入電壓Vin。As shown in FIG. 2 , one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2 node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 2, after the other ends of the first switches Q5-Q7 are electrically connected to a node in common, they are coupled to the node between the first switch Q4 and the first inductor L1, and the other ends of the first switches Q8-Q10 are connected to the node between the first switch Q4 and the first inductor L1. Commonly coupled to ground potential. The other end of the first inductor L1 is coupled to the output voltage Vout, and the other end of the first switch Q1 is coupled to the input voltage Vin.

再請參照圖2,第二開關Q15之一端耦接至第二開關Q11與第二電容C11之間的節點,第二開關Q16之一端耦接至第二開關Q12與第二電容C12之間的節點,而第二開關Q17之一端耦接至第二開關Q13與第二電容C13之間的節點。第二開關Q18之一端耦接至第二電容C11與第二開關Q12之間的節點,第二開關Q19之一端耦接至第二電容C12與第二開關Q13之間的節點,而第二開關Q20之一端耦接至第二電容C13與第二開關Q14之間的節點。如圖2所示,第二開關Q15-Q17之另一端共同電連接至一節點後,耦接至第二開關Q14與第二電感L11之間的節點,第二開關Q18-Q20之另一端係共同耦接至接地電位。第二電感L11的另一端係耦接至輸出電壓Vout,第二開關Q11之另一端耦接至輸入電壓Vin。Referring to FIG. 2 again, one end of the second switch Q15 is coupled to the node between the second switch Q11 and the second capacitor C11, and one end of the second switch Q16 is coupled to the node between the second switch Q12 and the second capacitor C12. node, and one end of the second switch Q17 is coupled to the node between the second switch Q13 and the second capacitor C13. One end of the second switch Q18 is coupled to the node between the second capacitor C11 and the second switch Q12, one end of the second switch Q19 is coupled to the node between the second capacitor C12 and the second switch Q13, and the second switch One end of Q20 is coupled to the node between the second capacitor C13 and the second switch Q14. As shown in FIG. 2, after the other ends of the second switches Q15-Q17 are electrically connected to a node in common, they are coupled to the node between the second switch Q14 and the second inductor L11, and the other ends of the second switches Q18-Q20 are connected to the node between the second switch Q14 and the second inductor L11. Commonly coupled to ground potential. The other end of the second inductor L11 is coupled to the output voltage Vout, and the other end of the second switch Q11 is coupled to the input voltage Vin.

控制器203係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。圖3係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖,其顯示圖2之控制器203及電流感測電路204之一實施例。於一實施例中,控制器203更包含延遲電路2033a及2033b,用以延遲該第一充電程序的起始時點一第一延遲時間及/或該至少一第一放電程序的起始時點一第二延遲時間,且用以延遲該第二充電程序的起始時點一第三延遲時間及/或該至少一第二放電程序的起始時點一第四延遲時間。The controller 203 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. FIG. 3 is a circuit schematic diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention, which shows an embodiment of the controller 203 and the current sensing circuit 204 of FIG. 2 . In one embodiment, the controller 203 further includes delay circuits 2033a and 2033b for delaying the starting time of the first charging process by a first delay time and/or the starting time of the at least one first discharging process by a first delay time. Two delay times are used to delay the start point of the second charging process a third delay time and/or the start point of the at least one second discharge process a fourth delay time.

再請參照圖2,至少一電流感測電路204係耦接於第一電感L1,且耦接於第二電感L11,用以於第一充電程序時感測流經第一電感L1之一第一充電諧振電流及/或於第一放電程序時感測流經第一電感L1之一第一放電諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第二充電程序時感測流經第二電感L11之一第二充電諧振電流及/或於第二放電程序時感測流經第二電感L11之一第二放電諧振電流,而分別對應產生一第二電流感測訊號I2。控制器203係耦接電流感測電路204,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路201之輸出電流與第二功率級電路202之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間及第四延遲時間。Referring to FIG. 2 again, at least one current sensing circuit 204 is coupled to the first inductance L1 and coupled to the second inductance L11 for sensing a first inductance flowing through the first inductance L1 during the first charging process. A charging resonant current and/or a first discharging resonant current flowing through the first inductor L1 is sensed during the first discharging process, and a first current sensing signal I1 is correspondingly generated and used in the second charging process When sensing a second charging resonant current flowing through the second inductor L11 and/or sensing a second discharging resonant current flowing through the second inductor L11 during the second discharging process, a second current sensing Test signal I2. The controller 203 is coupled to the current sensing circuit 204 for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 201 is the same as the first current sensing signal I2. The output currents of the two power stage circuits 202 are in a fixed ratio: the first delay time, the second delay time, the third delay time and the fourth delay time.

開關驅動器205係耦接於控制器203與複數第一開關Q1-Q10之間,且耦接於控制器203與複數第二開關Q11-Q20之間,用以根據第一充電操作訊號G1A或第一放電操作訊號G1B控制複數第一開關Q1-Q10,且用以根據第二充電操作訊號G2A或第二放電操作訊號G2B控制複數第二開關Q11-Q20。具體而言,如圖所示之複數開關驅動器205分別根據第一充電操作訊號G1A、第一放電操作訊號G1B、第二充電操作訊號G2A以及第二放電操作訊號G2B而分別產生對應之驅動訊號G1A’、G1B’、G2A’以及G2B’,用以驅動對應的複數第一開關Q1-Q10以及複數第二開關Q11-Q20。在一實施例中,驅動訊號G1A’、G1B’、G2A’以及G2B’與對應的第一充電操作訊號G1A、第一放電操作訊號G1B、第二充電操作訊號G2A以及第二放電操作訊號G2B分別對應為同相。The switch driver 205 is coupled between the controller 203 and the plurality of first switches Q1-Q10, and is coupled between the controller 203 and the plurality of second switches Q11-Q20, and is used for according to the first charging operation signal G1A or the second A discharge operation signal G1B controls the plurality of first switches Q1-Q10, and is used for controlling the plurality of second switches Q11-Q20 according to the second charge operation signal G2A or the second discharge operation signal G2B. Specifically, as shown in the figure, the plurality of switch drivers 205 respectively generate corresponding driving signals G1A according to the first charging operation signal G1A, the first discharging operation signal G1B, the second charging operation signal G2A and the second discharging operation signal G2B, respectively. ', G1B', G2A' and G2B' are used to drive the corresponding plurality of first switches Q1-Q10 and the plurality of second switches Q11-Q20. In one embodiment, the driving signals G1A', G1B', G2A' and G2B' and the corresponding first charging operation signal G1A, first discharging operation signal G1B, second charging operation signal G2A and second discharging operation signal G2B are respectively Corresponding to the same phase.

再參考圖2,第一開關Q1-Q10可根據控制器203所產生之第一充電操作訊號G1A及第一放電操作訊號G1B,切換所對應之第一電容C1-C3與第一電感L1之電連接關係。第二開關Q11-Q20可根據控制器203所產生之第二充電操作訊號G2A及第二放電操作訊號G2B,切換所對應之第二電容C11-C13與第二電感L11之電連接關係。在一第一充電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與第一電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯第一電感L1,而形成複數第一放電路徑。Referring to FIG. 2 again, the first switches Q1-Q10 can switch the power of the corresponding first capacitors C1-C3 and the first inductor L1 according to the first charging operation signal G1A and the first discharging operation signal G1B generated by the controller 203 . connection relationship. The second switches Q11-Q20 can switch the electrical connection relationship between the corresponding second capacitors C11-C13 and the second inductor L11 according to the second charging operation signal G2A and the second discharging operation signal G2B generated by the controller 203. In a first charging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q1-Q4 are controlled to be turned on, and the first switches Q5-Q10 are controlled to be turned off, so that the first capacitor C1 -C3 are connected in series with each other and connected in series with the first inductor L1 between the input voltage Vin and the output voltage Vout to form a first charging path. In a first discharging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q5-Q10 are controlled to be turned on, and the first switches Q1-Q4 are turned off, so that the first capacitor C1, the first A capacitor C2 and a first capacitor C3 are connected in parallel with each other and then connected in series with the first inductor L1 to form a plurality of first discharge paths.

同樣地,在一第二充電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q11-Q14係為導通,第二開關Q15-Q20係為不導通,使得第二電容C11-C13彼此串聯後與第二電感L11串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第二充電路徑。在一第二放電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q15-Q20係導通,第二開關Q11-Q14係不導通,使第二電容C11、第二電容C12及第二電容C13彼此並聯後串聯第二電感L11,而形成複數第二放電路徑。Similarly, in a second charging procedure, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q11-Q14 are controlled to be turned on, and the second switches Q15-Q20 are controlled to be turned off, so that the first The two capacitors C11-C13 are connected in series with each other and are connected in series with the second inductor L11 between the input voltage Vin and the output voltage Vout to form a second charging path. In a second discharge procedure, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q15-Q20 are controlled to be turned on, and the second switches Q11-Q14 are turned off, so that the second capacitor C11, the second The two capacitors C12 and the second capacitor C13 are connected in parallel with each other and then the second inductor L11 is connected in series to form a plurality of second discharge paths.

應注意者為,上述第一充電程序與上述第一放電程序係於不同的時間段重複地交錯進行,而非同時進行,上述第二充電程序與上述第二放電程序係於不同的時間段重複地交錯進行,而非同時進行。其中,第一充電程序與第一放電程序之每一者彼此重複地交錯排序,第二充電程序與第二放電程序之每一者彼此重複地交錯排序,以將輸入電壓Vin所提供之能量,以諧振方式於充電程序中對前述的電容與電感充電,且以諧振方式於放電程序中將前述的電容與電感中的能量放電,而轉換為輸出電壓Vout。於本實施例中,每個第一電容C1、C2、C3及第二電容C11、C12、C13的直流偏壓均為Vo,故本實施例中的第一電容C1、C2、C3及第二電容C11、C12、C13需要耐較低的額定電壓,故可使用較小體積的電容器。It should be noted that the above-mentioned first charging procedure and the above-mentioned first discharging procedure are repeatedly performed in different time periods, but not simultaneously, and the above-mentioned second charging procedure and the above-mentioned second discharging procedure are repeated in different time periods. staggered, not simultaneously. Wherein, each of the first charging process and the first discharging process is repeatedly staggered and sequenced, and each of the second charging process and the second discharging process is repeatedly staggered and sequenced, so that the energy provided by the input voltage Vin, The capacitor and the inductor are charged in the charging process in the resonance mode, and the energy in the capacitor and the inductance is discharged in the discharging process in the resonance mode, and converted into the output voltage Vout. In this embodiment, the DC bias voltage of each of the first capacitors C1, C2, C3 and the second capacitors C11, C12, and C13 is Vo, so the first capacitors C1, C2, C3 and the second Capacitors C11, C12, and C13 need to withstand a lower rated voltage, so smaller capacitors can be used.

於一實施例中,上述諧振切換式電源轉換器20可為雙向諧振切換式電源轉換器。所謂雙向諧振切換式電源轉換器,係指輸入端(提供輸入電壓Vin)與輸出端(提供輸出電壓Vout)的角色對調,意即在如圖2所示的實施例中,諧振切換式電源轉換器20可將輸出電壓Vout轉換為輸入電壓Vin。於一實施例中,上述諧振切換式電源轉換器20之輸入電壓Vin與輸出電壓Vout之電壓轉換比率可為4:1、3:1或2:1。In one embodiment, the resonant switching power converter 20 can be a bidirectional resonant switching power converter. The so-called bidirectional resonant switching power converter means that the roles of the input terminal (providing the input voltage Vin) and the output terminal (providing the output voltage Vout) are reversed, which means that in the embodiment shown in FIG. 2, the resonant switching power conversion The converter 20 can convert the output voltage Vout to the input voltage Vin. In one embodiment, the voltage conversion ratio of the input voltage Vin to the output voltage Vout of the resonant switching power converter 20 may be 4:1, 3:1 or 2:1.

於一實施例中,諧振切換式電源轉換器20之電壓轉換比率可彈性地加以調整,例如於第一充電程序與第一放電程序中,藉由選擇將第一開關Q7保持導通,並選擇將第一開關Q10及Q4保持不導通,則可將第一功率級電路201之電壓轉換比率調整為3:1。同樣地,例如可選擇將第一開關Q6保持導通,並選擇將第一開關Q9、Q3、Q7、Q10及Q4保持不導通,則可將第一功率級電路201之電壓轉換比率調整為2:1。類似地,例如於第二充電程序與第二放電程序中,藉由選擇將第二開關Q7保持導通,並選擇將第二開關Q10及Q4保持不導通,則可將第二功率級電路202之電壓轉換比率調整為3:1。同樣地,例如可選擇將第二開關Q6保持導通,並選擇將第二開關Q9、Q3、Q7、Q10及Q4保持不導通,則可將第二功率級電路202之電壓轉換比率調整為2:1。In one embodiment, the voltage conversion ratio of the resonant switching power converter 20 can be adjusted flexibly. When the first switches Q10 and Q4 are kept off, the voltage conversion ratio of the first power stage circuit 201 can be adjusted to 3:1. Similarly, for example, the first switch Q6 can be selected to be kept on, and the first switches Q9, Q3, Q7, Q10 and Q4 can be selected to be kept off, then the voltage conversion ratio of the first power stage circuit 201 can be adjusted to 2: 1. Similarly, for example, in the second charging process and the second discharging process, by selecting to keep the second switch Q7 on, and selecting to keep the second switches Q10 and Q4 off, the second power stage circuit 202 can be switched on. The voltage conversion ratio is adjusted to 3:1. Similarly, for example, the second switch Q6 can be selected to be kept on, and the second switches Q9, Q3, Q7, Q10, and Q4 can be selected to be kept off, so that the voltage conversion ratio of the second power stage circuit 202 can be adjusted to 2: 1.

再請參照圖3,於一實施例中,電流感測電路204包含至少一電壓感測電路2041a及2041b。電壓感測電路2041a用以感測第一電感L1之兩端的電壓差(L1A-L1B),而對應產生一第一電壓感測訊號。電壓感測電路2041b用以感測第二電感L11之兩端的電壓差(L2A-L2B),而對應產生一第二電壓感測訊號。於一實施例中,電壓感測電路2041a及2041b分別包含一電阻Rcs1及一電阻Rcs2,以分別耦接至第一電感L1之一側及第二電感L11之一側。電壓感測電路2041a及2041b分別更包含一電容Cs1及一電容Cs2,以分別耦接至第一電感L1之另一側及第二電感L11之另一側。如本領域中具通常知識者所熟知,於一實施例中,電壓感測電路2041a及2041b之電阻Rcs1、電阻Rcs2、電容Cs1及電容Cs2可採用DCR電流檢測架構,故於此省略其原理相關之敘述。Referring to FIG. 3 again, in one embodiment, the current sensing circuit 204 includes at least one voltage sensing circuit 2041a and 2041b. The voltage sensing circuit 2041a is used for sensing the voltage difference (L1A-L1B) between the two ends of the first inductor L1, and correspondingly generating a first voltage sensing signal. The voltage sensing circuit 2041b is used for sensing the voltage difference (L2A-L2B) between the two ends of the second inductor L11, and correspondingly generating a second voltage sensing signal. In one embodiment, the voltage sensing circuits 2041a and 2041b respectively include a resistor Rcs1 and a resistor Rcs2, which are respectively coupled to one side of the first inductor L1 and one side of the second inductor L11. The voltage sensing circuits 2041a and 2041b further include a capacitor Cs1 and a capacitor Cs2, which are respectively coupled to the other side of the first inductor L1 and the other side of the second inductor L11. As known to those skilled in the art, in one embodiment, the resistor Rcs1 , the resistor Rcs2 , the capacitor Cs1 , and the capacitor Cs2 of the voltage sensing circuits 2041 a and 2041 b can adopt the DCR current detection structure, so the related principles are omitted here. narration.

電流感測電路204更包含至少一轉換電路2042a及2042b,分別耦接於至少一電壓感測電路2041a及2041b之輸出端,用以根據該第一電壓感測訊號及該第二電壓感測訊號分別對應產生該第一電流感測訊號I1及該第二電流感測訊號I2。於一實施例中,至少一轉換電路2042a及2042b分別可為一轉導放大器,以根據轉導值gm分別將該第一電壓感測訊號及該第二電壓感測訊號轉換為該第一電流感測訊號I1及該第二電流感測訊號I2。其中第一電流感測訊號I1及第二電流感測訊號I2各自正比於第一電感電流IL1以及第二電感電流IL11。The current sensing circuit 204 further includes at least one converting circuit 2042a and 2042b, which are respectively coupled to the output ends of the at least one voltage sensing circuit 2041a and 2041b, and are used for sensing the first voltage and the second voltage sensing signal according to the The first current sensing signal I1 and the second current sensing signal I2 are correspondingly generated respectively. In one embodiment, at least one conversion circuit 2042a and 2042b can be a transconductance amplifier, respectively, to convert the first voltage sensing signal and the second voltage sensing signal into the first current according to the transduction value gm, respectively The sensing signal I1 and the second current sensing signal I2. The first current sensing signal I1 and the second current sensing signal I2 are proportional to the first inductor current IL1 and the second inductor current IL11 respectively.

需說明的是,前述電流感測電路204係以DCR電流檢測架構為實施例,然而此非用以限制本發明之範疇,在其他實施例中,亦可採用其他的電流檢測方式,而感測第一功率級電路與第二功率級電路的電流,例如也可以在電流路徑上串聯電流感測電阻以感測電流,或是感測開關上的跨壓(例如Q4、Q7、Q14與Q17等)以感測電流,而獲得對應的電流感測訊號,仍可藉由前述的平均與比較而進行電流平衡之控制,下同。It should be noted that the above-mentioned current sensing circuit 204 uses the DCR current detection structure as an embodiment, but this is not intended to limit the scope of the present invention. In other embodiments, other current detection methods can also be used to sense For the current of the first power stage circuit and the second power stage circuit, for example, a current sensing resistor can also be connected in series on the current path to sense the current, or to sense the voltage across the switch (such as Q4, Q7, Q14 and Q17, etc. ) to sense the current to obtain the corresponding current sensing signal, and the current balance can still be controlled by the aforementioned averaging and comparison, the same below.

於一實施例中,前述的固定比例可為1:1,以達成電流平衡。於此實施例中,如圖3所示,控制器203更包含一平均電路2031,耦接該至少一電流感測電路204,用以對該第一電流感測訊號I1及該第二電流感測訊號I2取平均值,而產生一電流平均訊號Iavg。於此實施例中,控制器203可更包含至少一調整電路2032a及2032b,耦接平均電路2031及至少一電流感測電路204,用以比較電流平均訊號Iavg與第一電流感測訊號I1或第二電流感測訊號I2,而分別產生一延遲時間調整訊號Ta1及Ta2至延遲電路2033a及2033b。延遲電路2033a及2033b分別根據延遲時間調整訊號Ta1及Ta2修改前述的第一延遲時間及二延遲時間、或第三延遲時間及第四延遲時間,而分別產生第一充電操作訊號G1A及第一放電操作訊號G1B與第二充電操作訊號G2A及第二放電操作訊號G2B,以使第一功率級電路201之輸出電流與第二功率級電路202之輸出電流成該固定比例。In one embodiment, the aforementioned fixed ratio may be 1:1 to achieve current balance. In this embodiment, as shown in FIG. 3 , the controller 203 further includes an averaging circuit 2031 coupled to the at least one current sensing circuit 204 for the first current sensing signal I1 and the second current sensing signal I1 The measurement signal I2 is averaged to generate a current average signal Iavg. In this embodiment, the controller 203 may further include at least one adjustment circuit 2032a and 2032b, coupled to the averaging circuit 2031 and at least one current sensing circuit 204, for comparing the current average signal Iavg with the first current sensing signal I1 or The second current sensing signal I2 generates a delay time adjustment signal Ta1 and Ta2 to the delay circuits 2033a and 2033b, respectively. The delay circuits 2033a and 2033b modify the aforementioned first delay time and second delay time, or the third delay time and fourth delay time according to the delay time adjustment signals Ta1 and Ta2, respectively, to generate the first charging operation signal G1A and the first discharging operation signal G1A respectively. The operation signal G1B, the second charge operation signal G2A and the second discharge operation signal G2B are used to make the output current of the first power stage circuit 201 and the output current of the second power stage circuit 202 have the fixed ratio.

於一實施例中,當第一電流感測訊號I1大於電流平均訊號Iavg時,可延長該第一延遲時間及/或第二延遲時間,當第一電流感測訊號I1小於電流平均訊號Iavg時,可縮短該第一延遲時間及/或該第二延遲時間。當第二電流感測訊號I2大於電流平均訊號Iavg時,可延長該第三延遲時間及/或第四延遲時間,當第二電流感測訊號I2小於電流平均訊號Iavg時,可縮短該第三延遲時間及/或該第四延遲時間。In one embodiment, when the first current sensing signal I1 is greater than the current average signal Iavg, the first delay time and/or the second delay time can be extended, and when the first current sensing signal I1 is less than the current average signal Iavg , the first delay time and/or the second delay time can be shortened. When the second current sensing signal I2 is greater than the current average signal Iavg, the third delay time and/or the fourth delay time can be extended, and when the second current sensing signal I2 is less than the current average signal Iavg, the third delay time can be shortened the delay time and/or the fourth delay time.

圖4係根據本發明之一實施例顯示一諧振切換式電源轉換器20之第一功率級電路201的相關訊號之訊號波形示意圖。電感電流、電感電壓、第一充電操作訊號G1A及第一放電操作訊號G1B係如圖4所示。由圖4可知,td1為第一延遲時間,td2為第二延遲時間。本實施例中,延長第一延遲時間td1及/或第二延遲時間td2可降低第一電感電流IL1,反之,縮短第一延遲時間td1及/或第二延遲時間td2可提高第一電感電流IL1,以使第一電感電流IL1與第二電感電流IL11成該固定比例,進而可使得第一功率級電路201之輸出電流與第二功率級電路202之輸出電流成該固定比例。第二功率級電路202的操作原則同第一功率級電路201,故節略。FIG. 4 is a schematic diagram showing signal waveforms of related signals of the first power stage circuit 201 of a resonant switching power converter 20 according to an embodiment of the present invention. The inductor current, the inductor voltage, the first charging operation signal G1A and the first discharging operation signal G1B are shown in FIG. 4 . It can be seen from FIG. 4 that td1 is the first delay time, and td2 is the second delay time. In this embodiment, prolonging the first delay time td1 and/or the second delay time td2 can reduce the first inductor current IL1, and conversely, shortening the first delay time td1 and/or the second delay time td2 can increase the first inductor current IL1 , so that the first inductor current IL1 and the second inductor current IL11 have the fixed ratio, and then the output current of the first power stage circuit 201 and the output current of the second power stage circuit 202 can have the fixed ratio. The operation principle of the second power stage circuit 202 is the same as that of the first power stage circuit 201, so it is omitted.

在一實施例中,上述可同時調整第一功率級電路201與第二功率級電路202中的延遲時間,以使第一功率級電路201之輸出電流與第二功率級電路202之輸出電流成該固定比例,在另一實施例中,也可僅調整第一功率級電路201與第二功率級電路202二者其中之一的延遲時間,亦可使第一功率級電路201之輸出電流與第二功率級電路202之輸出電流成該固定比例。In one embodiment, the delay time in the first power stage circuit 201 and the second power stage circuit 202 can be adjusted at the same time, so that the output current of the first power stage circuit 201 and the output current of the second power stage circuit 202 are equal to each other. For the fixed ratio, in another embodiment, only the delay time of one of the first power stage circuit 201 and the second power stage circuit 202 can be adjusted, and the output current of the first power stage circuit 201 can also be adjusted to The output current of the second power stage circuit 202 is the fixed ratio.

圖5係根據本發明之另一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖2之實施例之不同在於,本實施例之功率級電路分別於充電路徑與放電路徑上分別配置充電電感與放電電感,具體而言,第一功率級電路501係採用一第一充電電感L3及一第一放電電感L2,本實施例之第二功率級電路502係採用一第二充電電感L13及一第二放電電感L12。第一功率級電路501與第二功率級電路502並聯於輸入電壓Vin及輸出電壓Vout之間。FIG. 5 is a schematic circuit diagram showing a resonant switching power converter according to another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 2 is that the power stage circuit of this embodiment is configured with a charging inductance and a discharging inductance on the charging path and the discharging path respectively. Specifically, the first power stage circuit 501 adopts a first power stage circuit 501. A charging inductor L3 and a first discharging inductor L2. The second power stage circuit 502 of this embodiment adopts a second charging inductor L13 and a second discharging inductor L12. The first power stage circuit 501 and the second power stage circuit 502 are connected in parallel between the input voltage Vin and the output voltage Vout.

如圖5所示,本發明之諧振切換式電源轉換器50之第一功率級電路501包含第一電容C1、C2、C3、第一開關Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10、第一充電電感L3及第一放電電感L2,而第二功率級電路502包含第二電容C11、C12、C13、第二開關Q11、Q12、Q13、Q14、Q15、Q16、Q17、Q18、Q19、Q20、第二充電電感L13及第二放電電感L12。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一開關Q4與第一充電電感L3串聯,第二開關Q11-Q13分別與對應之第二電容C11-C13串聯,而第二開關Q14與第二充電電感L13串聯。應注意者為,本發明之諧振切換式電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明,而非用以限制本發明。於一實施例中,第一充電電感L3之電感值可等於第一放電電感L2之電感值,第二充電電感L13之電感值可等於第二放電電感L12之電感值。在另一實施例中,第一充電電感L3之電感值與第一放電電感L2之電感值可配置為適當比例,以使充電程序與放電程序的諧振頻率相等。第二功率級電路202的操作原則同第一功率級電路201,故節略。As shown in FIG. 5, the first power stage circuit 501 of the resonant switching power converter 50 of the present invention includes first capacitors C1, C2, C3, first switches Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, a first charging inductor L3 and a first discharging inductor L2, and the second power stage circuit 502 includes second capacitors C11, C12, C13, second switches Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20, a second charging inductor L13 and a second discharging inductor L12. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, the first switch Q4 is connected in series with the first charging inductor L3, the second switches Q11-Q13 are respectively connected in series with the corresponding second capacitors C11-C13, and The second switch Q14 is connected in series with the second charging inductor L13. It should be noted that the number of capacitors in the resonant switching power converter of the present invention is not limited to three in this embodiment, but can also be two or more than four. The number of components shown in this embodiment is only for illustration. The present invention is not intended to limit the present invention. In one embodiment, the inductance value of the first charging inductor L3 can be equal to the inductance value of the first discharging inductor L2, and the inductance value of the second charging inductor L13 can be equal to the inductance value of the second discharging inductor L12. In another embodiment, the inductance value of the first charging inductance L3 and the inductance value of the first discharging inductance L2 can be configured in an appropriate ratio, so that the resonant frequencies of the charging process and the discharging process are equal. The operation principle of the second power stage circuit 202 is the same as that of the first power stage circuit 201, so it is omitted.

如圖5所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電容C1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電容C2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電容C3與第一開關Q4之間的節點。如圖5所示,第一開關Q5-Q7之另一端共同電連接至一節點後,串聯至第一放電電感L2。第一開關Q8-Q10之另一端係共同耦接至接地電位。第一充電電感L3及第一放電電感L2的另一端係共同耦接至輸出電壓Vout,第一開關Q1之另一端耦接至輸入電壓Vin。As shown in FIG. 5 , one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2 node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first capacitor C1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first capacitor C2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first capacitor C3 and the first switch Q4. As shown in FIG. 5 , after the other ends of the first switches Q5 - Q7 are electrically connected to a node in common, they are connected in series to the first discharge inductor L2 . The other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The other ends of the first charging inductor L3 and the first discharging inductor L2 are commonly coupled to the output voltage Vout, and the other end of the first switch Q1 is coupled to the input voltage Vin.

類似地,如圖5所示,第二開關Q15之一端耦接至第二開關Q11與第二電容C11之間的節點,第二開關Q16之一端耦接至第二開關Q12與第二電容C12之間的節點,而第二開關Q17之一端耦接至第二開關Q13與第二電容C13之間的節點。第二開關Q18之一端耦接至第二電容C11與第二開關Q12之間的節點,第二開關Q19之一端耦接至第二電容C12與第二開關Q13之間的節點,而第二開關Q20之一端耦接至第二電容C13與第二開關Q14之間的節點。如圖5所示,第二開關Q15-Q17之另一端共同電連接至一節點後,串聯至第二放電電感L12。第二開關Q18-Q20之另一端係共同耦接至接地電位。第二充電電感L13及第二放電電感L12的另一端係共同耦接至輸出電壓Vout,第二開關Q11之另一端耦接至輸入電壓Vin。Similarly, as shown in FIG. 5, one end of the second switch Q15 is coupled to the node between the second switch Q11 and the second capacitor C11, and one end of the second switch Q16 is coupled to the second switch Q12 and the second capacitor C12 A node between the second switch Q17 and one end of the second switch Q17 is coupled to the node between the second switch Q13 and the second capacitor C13. One end of the second switch Q18 is coupled to the node between the second capacitor C11 and the second switch Q12, one end of the second switch Q19 is coupled to the node between the second capacitor C12 and the second switch Q13, and the second switch One end of Q20 is coupled to the node between the second capacitor C13 and the second switch Q14. As shown in FIG. 5 , after the other ends of the second switches Q15-Q17 are electrically connected to a node in common, they are connected in series to the second discharge inductor L12. The other ends of the second switches Q18-Q20 are commonly coupled to the ground potential. The other ends of the second charging inductor L13 and the second discharging inductor L12 are commonly coupled to the output voltage Vout, and the other end of the second switch Q11 is coupled to the input voltage Vin.

控制器503係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。於一實施例中,控制器503亦可採用圖3所示之架構,例如更包含延遲電路,用以延遲該第一充電程序的起始時點一第一延遲時間及/或該至少一第一放電程序的起始時點一第二延遲時間,且用以延遲該第二充電程序的起始時點一第三延遲時間及/或該至少一第二放電程序的起始時點一第四延遲時間。The controller 503 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. In one embodiment, the controller 503 can also adopt the structure shown in FIG. 3 , for example, further comprising a delay circuit for delaying the start point of the first charging process by a first delay time and/or the at least one first delay time. The starting time of the discharging process is a second delay time, and is used to delay the starting time of the second charging process by a third delay time and/or the starting time of the at least one second discharging process by a fourth delay time.

再請參照圖5,至少一電流感測電路504係耦接於第一放電電感L2,且耦接於第二放電電感L12,用以於第一放電程序時感測流經第一放電電感L2之一第一放電諧振電流,而對應產生一第一電流感測訊號I1,且用以於第二放電程序時感測流經第二放電電感L12之一第二放電諧振電流,而對應產生一第二電流感測訊號I2。應得以領會者為,於另一實施例中,至少一電流感測電路504亦可耦接至第一充電電感L3及第二充電電感L13,用以於第一充電程序時感測流經第一充電電感L3之一第一充電諧振電流,且用以於第二充電程序時感測流經第二充電電感L13之一第二充電諧振電流,而分別對應產生第一電流感測訊號I1及第二電流感測訊號I2。Referring to FIG. 5 again, at least one current sensing circuit 504 is coupled to the first discharge inductance L2 and coupled to the second discharge inductance L12 for sensing the flow through the first discharge inductance L2 during the first discharge process a first discharge resonant current, and correspondingly generate a first current sensing signal I1, which is used for sensing a second discharge resonant current flowing through the second discharge inductor L12 during the second discharge process, and correspondingly generates a The second current sensing signal I2. It should be appreciated that, in another embodiment, at least one current sensing circuit 504 may also be coupled to the first charging inductor L3 and the second charging inductor L13 for sensing the flow through the first charging process during the first charging process. A first charging resonant current of a charging inductor L3 is used to sense a second charging resonant current flowing through the second charging inductor L13 during the second charging process, and correspondingly generate the first current sensing signal I1 and The second current sensing signal I2.

控制器503係耦接電流感測電路504,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路501之輸出電流與第二功率級電路502之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間及第四延遲時間。開關驅動器505係耦接於控制器503與複數第一開關Q1-Q10之間,且耦接於控制器503與複數第二開關Q11-Q20之間,用以根據第一充電操作訊號G1A或第一放電操作訊號G1B控制複數第一開關Q1-Q10,且用以根據第二充電操作訊號G2A或第二放電操作訊號G2B控制複數第二開關Q11-Q20。於一實施中,電流感測電路504亦可採用圖3所示之架構。The controller 503 is coupled to the current sensing circuit 504, and is used for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 501 is the same as the first current sensing signal I2. The output currents of the two power stage circuits 502 are in a fixed ratio: the first delay time, the second delay time, the third delay time and the fourth delay time. The switch driver 505 is coupled between the controller 503 and the plurality of first switches Q1-Q10, and is coupled between the controller 503 and the plurality of second switches Q11-Q20, and is used for according to the first charging operation signal G1A or the second A discharge operation signal G1B controls the plurality of first switches Q1-Q10, and is used for controlling the plurality of second switches Q11-Q20 according to the second charge operation signal G2A or the second discharge operation signal G2B. In one implementation, the current sensing circuit 504 can also adopt the structure shown in FIG. 3 .

第一開關Q1-Q10可根據控制器503所產生之第一充電操作訊號G1A及第一放電操作訊號G1B,切換所對應之第一電容C1-C3與第一充電電感L3及第一放電電感L2之電連接關係。在一第一充電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3彼此串聯後與第一充電電感L3串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1、第一電容C2及第一電容C3彼此並聯後串聯第一放電電感L2,而形成複數第一放電路徑。The first switches Q1-Q10 can switch the corresponding first capacitors C1-C3 and the first charging inductor L3 and the first discharging inductor L2 according to the first charging operation signal G1A and the first discharging operation signal G1B generated by the controller 503 the electrical connection. In a first charging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q1-Q4 are controlled to be turned on, and the first switches Q5-Q10 are controlled to be turned off, so that the first capacitor C1 -C3 are connected in series with each other and connected in series with the first charging inductor L3 between the input voltage Vin and the output voltage Vout to form a first charging path. In a first discharging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q5-Q10 are controlled to be turned on, and the first switches Q1-Q4 are turned off, so that the first capacitor C1, the first A capacitor C2 and a first capacitor C3 are connected in parallel with each other and then connected in series with the first discharge inductor L2 to form a plurality of first discharge paths.

類似地,第二開關Q11-Q20可根據控制器503所產生之第二充電操作訊號G2A及第二放電操作訊號G2B,切換所對應之第二電容C11-C13與第二充電電感L13及第二放電電感L12之電連接關係。在一第二充電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q11-Q14係為導通,第二開關Q15-Q20係為不導通,使得第二電容C11-C13彼此串聯後與第二充電電感L13串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第二充電路徑。在一第二放電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q15-Q20係導通,第二開關Q11-Q14係不導通,使第二電容C11、第二電容C12及第二電容C13彼此並聯後串聯第二放電電感L12,而形成複數第二放電路徑。Similarly, the second switches Q11-Q20 can switch the corresponding second capacitors C11-C13, the second charging inductor L13 and the second charging operation signal G2A and the second discharging operation signal G2B according to the second charging operation signal G2A and the second discharging operation signal G2B generated by the controller 503. The electrical connection relationship of the discharge inductor L12. In a second charging process, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q11-Q14 are controlled to be turned on, and the second switches Q15-Q20 are controlled to be non-conductive, so that the second capacitor C11 -C13 are connected in series with each other and connected in series with the second charging inductor L13 between the input voltage Vin and the output voltage Vout to form a second charging path. In a second discharge procedure, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q15-Q20 are controlled to be turned on, and the second switches Q11-Q14 are turned off, so that the second capacitor C11, the second The two capacitors C12 and the second capacitor C13 are connected in parallel with each other, and then the second discharge inductor L12 is connected in series to form a plurality of second discharge paths.

圖6係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。如圖6所示,本發明之諧振切換式電源轉換器60包含第一功率級電路601及第二功率級電路602。第一功率級電路601與第二功率級電路602並聯於輸入電壓Vin及輸出電壓Vout之間。第一功率級電路601包含第一電容C1、C2、C3、第一開關Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10及第一電感L1、L2、L3。第二功率級電路602包含第二電容C11、C12、C13、第二開關Q11、Q12、Q13、Q14、Q15、Q16、Q17、Q18、Q19、Q20及第二電感L11、L12、L13。第一開關Q1-Q3分別與對應之第一電容C1-C3串聯,而第一電容C1-C3分別與對應之第一電感L1-L3串聯。第二開關Q11-Q13分別與對應之第二電容C11-C13串聯,而第二電容C11-C13分別與對應之第二電感L11-L13串聯。應注意者為,本發明之諧振切換式電源轉換器中的電容數量並不限於本實施例的三個,亦可為二個或四個以上,且電感數量亦不限於本實施例的三個,亦可為二個或四個以上,本實施例所顯示之元件數量僅用以說明本發明,而非用以限制本發明。FIG. 6 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. As shown in FIG. 6 , the resonant switching power converter 60 of the present invention includes a first power stage circuit 601 and a second power stage circuit 602 . The first power stage circuit 601 and the second power stage circuit 602 are connected in parallel between the input voltage Vin and the output voltage Vout. The first power stage circuit 601 includes first capacitors C1, C2, C3, first switches Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10 and first inductors L1, L2, L3. The second power stage circuit 602 includes second capacitors C11, C12, C13, second switches Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, Q19, Q20, and second inductors L11, L12, L13. The first switches Q1-Q3 are respectively connected in series with the corresponding first capacitors C1-C3, and the first capacitors C1-C3 are respectively connected in series with the corresponding first inductors L1-L3. The second switches Q11-Q13 are respectively connected in series with the corresponding second capacitors C11-C13, and the second capacitors C11-C13 are respectively connected in series with the corresponding second inductors L11-L13. It should be noted that the number of capacitors in the resonant switching power converter of the present invention is not limited to three in this embodiment, but may also be two or more, and the number of inductors is not limited to three in this embodiment. , or more than two or four, the number of elements shown in this embodiment is only used to illustrate the present invention, but not to limit the present invention.

如圖6所示,第一開關Q5之一端耦接至第一開關Q1與第一電容C1之間的節點,第一開關Q6之一端耦接至第一開關Q2與第一電容C2之間的節點,而第一開關Q7之一端耦接至第一開關Q3與第一電容C3之間的節點。第一開關Q8之一端耦接至第一電感L1與第一開關Q2之間的節點,第一開關Q9之一端耦接至第一電感L2與第一開關Q3之間的節點,而第一開關Q10之一端耦接至第一電感L3與第一開關Q4之間的節點。如圖6所示,第一開關Q5-Q7之另一端則共同耦接至輸出電壓Vout。第一開關Q8-Q10之另一端係共同耦接至接地電位。第一開關Q4耦接於第一電感L3與輸出電壓Vout之間,第一開關Q1之一端耦接至輸入電壓Vin。As shown in FIG. 6 , one end of the first switch Q5 is coupled to the node between the first switch Q1 and the first capacitor C1, and one end of the first switch Q6 is coupled to the node between the first switch Q2 and the first capacitor C2 node, and one end of the first switch Q7 is coupled to the node between the first switch Q3 and the first capacitor C3. One end of the first switch Q8 is coupled to the node between the first inductor L1 and the first switch Q2, one end of the first switch Q9 is coupled to the node between the first inductor L2 and the first switch Q3, and the first switch One end of Q10 is coupled to the node between the first inductor L3 and the first switch Q4. As shown in FIG. 6 , the other ends of the first switches Q5 - Q7 are commonly coupled to the output voltage Vout. The other ends of the first switches Q8-Q10 are commonly coupled to the ground potential. The first switch Q4 is coupled between the first inductor L3 and the output voltage Vout, and one end of the first switch Q1 is coupled to the input voltage Vin.

類似地,第二開關Q15之一端耦接至第二開關Q11與第二電容C11之間的節點,第二開關Q16之一端耦接至第二開關Q12與第二電容C12之間的節點,而第二開關Q17之一端耦接至第二開關Q13與第二電容C13之間的節點。第二開關Q18之一端耦接至第二電感L11與第二開關Q12之間的節點,第二開關Q19之一端耦接至第二電感L12與第二開關Q13之間的節點,而第二開關Q20之一端耦接至第二電感L13與第二開關Q14之間的節點。如圖6所示,第二開關Q15-Q17之另一端則共同耦接至輸出電壓Vout。第二開關Q18-Q20之另一端係共同耦接至接地電位。第二開關Q14耦接於第二電感L13與輸出電壓Vout之間,第二開關Q11之一端耦接至輸入電壓Vin。Similarly, one end of the second switch Q15 is coupled to the node between the second switch Q11 and the second capacitor C11, one end of the second switch Q16 is coupled to the node between the second switch Q12 and the second capacitor C12, and One end of the second switch Q17 is coupled to the node between the second switch Q13 and the second capacitor C13. One end of the second switch Q18 is coupled to the node between the second inductor L11 and the second switch Q12, one end of the second switch Q19 is coupled to the node between the second inductor L12 and the second switch Q13, and the second switch One end of Q20 is coupled to the node between the second inductor L13 and the second switch Q14. As shown in FIG. 6 , the other ends of the second switches Q15-Q17 are commonly coupled to the output voltage Vout. The other ends of the second switches Q18-Q20 are commonly coupled to the ground potential. The second switch Q14 is coupled between the second inductor L13 and the output voltage Vout, and one end of the second switch Q11 is coupled to the input voltage Vin.

控制器603係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。於一實施例中,控制器603亦可採用圖3所示之架構,例如更包含延遲電路,用以延遲該第一充電程序的起始時點一第一延遲時間及/或該至少一第一放電程序的起始時點一第二延遲時間,且用以延遲該第二充電程序的起始時點一第三延遲時間及/或該至少一第二放電程序的起始時點一第四延遲時間。The controller 603 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. In one embodiment, the controller 603 can also adopt the structure shown in FIG. 3 , for example, further comprising a delay circuit for delaying the start point of the first charging process by a first delay time and/or the at least one first delay time. The starting time of the discharging process is a second delay time, and is used to delay the starting time of the second charging process by a third delay time and/or the starting time of the at least one second discharging process by a fourth delay time.

再請參照圖6,至少一電流感測電路604係耦接於第一電感L3,且耦接於第二電感L13,用以於第一充電程序時感測流經第一電感L3之一第一充電諧振電流及/或於第一放電程序時感測流經第一電感L3之一第一放電諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第二充電程序時感測流經第二電感L13之一第二充電諧振電流及/或於第二放電程序時感測流經第二電感L13之一第二放電諧振電流,而分別對應產生一第二電流感測訊號I2。應得以領會者為,於另一實施例中,至少一電流感測電路604亦可耦接至第一電感L2及第二電感L12,用以於第一充電程序時感測流經第一電感L2之一第一充電諧振電流及/或於第一放電程序時感測流經第一電感L2之一第一放電諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第二充電程序時感測流經第二電感L12之一第二充電諧振電流及/或於第二放電程序時感測流經第二電感L12之一第二放電諧振電流,而分別對應產生一第二電流感測訊號I2。Referring to FIG. 6 again, at least one current sensing circuit 604 is coupled to the first inductor L3 and coupled to the second inductor L13 for sensing a first inductor flowing through the first inductor L3 during the first charging process. A charging resonant current and/or a first discharging resonant current flowing through the first inductor L3 is sensed during the first discharging process, and a first current sensing signal I1 is correspondingly generated, which is used in the second charging process When sensing a second charging resonant current flowing through the second inductor L13 and/or sensing a second discharging resonant current flowing through the second inductor L13 during the second discharging process, and correspondingly generating a second current sensing Test signal I2. It should be appreciated that, in another embodiment, at least one current sensing circuit 604 can also be coupled to the first inductor L2 and the second inductor L12 for sensing the flow through the first inductor during the first charging process A first charging resonant current of L2 and/or a first discharging resonant current flowing through the first inductor L2 is sensed during the first discharging process, and a first current sensing signal I1 is correspondingly generated, and used for During the second charging process, a second charging resonant current flowing through the second inductor L12 is sensed and/or a second discharging resonant current flowing through the second inductor L12 is sensed during the second discharging process, and correspondingly generate a The second current sensing signal I2.

於再一實施例中,至少一電流感測電路604亦可耦接至第一電感L1及第二電感L11,用以於第一充電程序時感測流經第一電感L1之一第一充電諧振電流及/或於第一放電程序時感測流經第一電感L1之一第一放電諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第二充電程序時感測流經第二電感L11之一第二充電諧振電流及/或於第二放電程序時感測流經第二電感L11之一第二放電諧振電流,而分別對應產生一第二電流感測訊號I2。控制器603係耦接電流感測電路604,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路601之輸出電流與第二功率級電路602之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間及第四延遲時間。開關驅動器605係耦接於控制器603與複數第一開關Q1-Q10之間,且耦接於控制器603與複數第二開關Q11-Q20之間,用以根據第一充電操作訊號G1A或第一放電操作訊號G1B控制複數第一開關Q1-Q10,且用以根據第二充電操作訊號G2A或第二放電操作訊號G2B控制複數第二開關Q11-Q20。於一實施中,電流感測電路604亦可採用圖3所示之架構。In yet another embodiment, at least one current sensing circuit 604 can also be coupled to the first inductor L1 and the second inductor L11 for sensing a first charge flowing through the first inductor L1 during the first charging process. The resonant current and/or a first discharge resonant current flowing through the first inductor L1 is sensed during the first discharge process, and a first current sensing signal I1 is correspondingly generated, which is used for sensing during the second charge process Sensing a second charging resonant current flowing through the second inductor L11 and/or sensing a second discharging resonant current flowing through the second inductor L11 during the second discharging process, and correspondingly generating a second current sensing signal i2. The controller 603 is coupled to the current sensing circuit 604 for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 601 is the same as the first current sensing signal I2. The output currents of the two power stage circuits 602 are in a fixed ratio: the first delay time, the second delay time, the third delay time and the fourth delay time. The switch driver 605 is coupled between the controller 603 and the plurality of first switches Q1-Q10, and is coupled between the controller 603 and the plurality of second switches Q11-Q20, and is used for according to the first charging operation signal G1A or the second A discharge operation signal G1B controls the plurality of first switches Q1-Q10, and is used for controlling the plurality of second switches Q11-Q20 according to the second charge operation signal G2A or the second discharge operation signal G2B. In one implementation, the current sensing circuit 604 can also adopt the structure shown in FIG. 3 .

第一開關Q1-Q10可根據控制器603所產生之第一充電操作訊號G1A及第一放電操作訊號G1B,切換所對應之第一電容C1-C3與第一電感L1-L3之電連接關係。在一第一充電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q1-Q4係為導通,第一開關Q5-Q10係為不導通,使得第一電容C1-C3與第一電感L1-L3彼此串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第一充電路徑。在一第一放電程序中,根據第一充電操作訊號G1A與第一放電操作訊號G1B,控制第一開關Q5-Q10係導通,第一開關Q1-Q4係不導通,使第一電容C1與對應之第一電感L1串聯於輸出電壓Vout與接地電位間,第一電容C2與對應之第一電感L2串聯於輸出電壓Vout與接地電位間,第一電容C3與對應之第一電感L3串聯於輸出電壓Vout與接地電位間,而形成複數第一放電路徑。The first switches Q1-Q10 can switch the electrical connection relationship between the corresponding first capacitors C1-C3 and the first inductors L1-L3 according to the first charging operation signal G1A and the first discharging operation signal G1B generated by the controller 603 . In a first charging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q1-Q4 are controlled to be turned on, and the first switches Q5-Q10 are controlled to be turned off, so that the first capacitor C1 -C3 and the first inductors L1-L3 are connected in series between the input voltage Vin and the output voltage Vout to form a first charging path. In a first discharging procedure, according to the first charging operation signal G1A and the first discharging operation signal G1B, the first switches Q5-Q10 are controlled to be turned on, and the first switches Q1-Q4 are not turned on, so that the first capacitor C1 and the corresponding The first inductor L1 is connected in series between the output voltage Vout and the ground potential, the first capacitor C2 and the corresponding first inductor L2 are connected in series between the output voltage Vout and the ground potential, and the first capacitor C3 and the corresponding first inductor L3 are connected in series with the output A plurality of first discharge paths are formed between the voltage Vout and the ground potential.

第二開關Q11-Q20可根據控制器603所產生之第二充電操作訊號G2A及第二放電操作訊號G2B,切換所對應之第二電容C11-C13與第二電感L11-L13之電連接關係。在一第二充電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q11-Q14係為導通,第二開關Q15-Q20係為不導通,使得第二電容C11-C13與第二電感L11-L13彼此串聯於輸入電壓Vin與輸出電壓Vout之間,以形成一第二充電路徑。在一第二放電程序中,根據第二充電操作訊號G2A與第二放電操作訊號G2B,控制第二開關Q15-Q20係導通,第二開關Q11-Q14係不導通,使第二電容C11與對應之第二電感L11串聯於輸出電壓Vout與接地電位間,第二電容C12與對應之第二電感L12串聯於輸出電壓Vout與接地電位間,第二電容C13與對應之第二電感L13串聯於輸出電壓Vout與接地電位間,而形成複數第二放電路徑。The second switches Q11-Q20 can switch the electrical connection relationship between the corresponding second capacitors C11-C13 and the second inductors L11-L13 according to the second charging operation signal G2A and the second discharging operation signal G2B generated by the controller 603 . In a second charging process, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q11-Q14 are controlled to be turned on, and the second switches Q15-Q20 are controlled to be non-conductive, so that the second capacitor C11 -C13 and the second inductors L11-L13 are connected in series between the input voltage Vin and the output voltage Vout to form a second charging path. In a second discharging process, according to the second charging operation signal G2A and the second discharging operation signal G2B, the second switches Q15-Q20 are controlled to be turned on, and the second switches Q11-Q14 are not turned on, so that the second capacitor C11 and the corresponding The second inductor L11 is connected in series between the output voltage Vout and the ground potential, the second capacitor C12 and the corresponding second inductor L12 are connected in series between the output voltage Vout and the ground potential, and the second capacitor C13 and the corresponding second inductor L13 are connected in series with the output A plurality of second discharge paths are formed between the voltage Vout and the ground potential.

圖7係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。如圖7所示,諧振切換式電源轉換器70包含第一功率級電路701及第二功率級電路702。第一功率級電路701與第二功率級電路702並聯於輸入電壓Vin及輸出電壓Vout之間。第一功率級電路701包含第一諧振電容C1、C3、至少一第一非諧振電容C2、第一開關Q1、Q2、Q3、Q4、Q5、Q6、Q7、Q8、Q9、Q10及第一諧振電感L1、L2。第二功率級電路702包含第二諧振電容C11、C13、至少一第二非諧振電容C12、第二開關Q11、Q12、Q13、Q14、Q15、Q16、Q17、Q18、Q19、Q20及第二諧振電感L11、L12。FIG. 7 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. As shown in FIG. 7 , the resonant switching power converter 70 includes a first power stage circuit 701 and a second power stage circuit 702 . The first power stage circuit 701 and the second power stage circuit 702 are connected in parallel between the input voltage Vin and the output voltage Vout. The first power stage circuit 701 includes first resonant capacitors C1, C3, at least one first non-resonant capacitor C2, first switches Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10 and a first resonant Inductors L1, L2. The second power stage circuit 702 includes second resonant capacitors C11 , C13 , at least one second non-resonant capacitor C12 , second switches Q11 , Q12 , Q13 , Q14 , Q15 , Q16 , Q17 , Q18 , Q19 , Q20 and a second resonant Inductors L11, L12.

如圖7所示,控制器703係用以產生第一諧振操作訊號G1、第二諧振操作訊號G2、第三諧振操作訊號G3、第四諧振操作訊號G4,以分別對應一第一諧振程序、一第二諧振程序、一第三諧振程序及一第四諧振程序,而操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以切換所對應之第一諧振電容C1、C3及第一非諧振電容C2之電連接關係及所對應之第二諧振電容C11、C13及第二非諧振電容C12之電連接關係。As shown in FIG. 7 , the controller 703 is used for generating a first resonance operation signal G1, a second resonance operation signal G2, a third resonance operation signal G3, and a fourth resonance operation signal G4, respectively corresponding to a first resonance procedure, A second resonant process, a third resonant process and a fourth resonant process operate the corresponding plural first switches Q1-Q10 and the corresponding plural second switches Q11-Q20 to switch the corresponding first resonant capacitor C1 , C3 and the electrical connection relationship of the first non-resonant capacitor C2 and the corresponding electrical connection relationship of the second resonant capacitors C11, C13 and the second non-resonant capacitor C12.

諧振切換式電源轉換器70包含至少一第一諧振腔,例如第一諧振腔706及707,第一諧振腔706具有彼此串聯之一第一諧振電容C1與一第一諧振電感L1,而第一諧振腔707具有彼此串聯之一第一諧振電容C3與一第一諧振電感L2。諧振切換式電源轉換器70更包含至少一第二諧振腔,例如第二諧振腔708及709,第二諧振腔708具有彼此串聯之一第二諧振電容C11與一第二諧振電感L11,而第二諧振腔709具有彼此串聯之一第二諧振電容C13與一第二諧振電感L12。於一實施例中,控制器703亦可採用圖3所示之架構,例如更包含延遲電路,用以延遲該第一諧振程序的起始時點一第一延遲時間及/或該第二諧振程序的起始時點一第二延遲時間,且用以延遲該第三諧振程序的起始時點一第三延遲時間及/或該第四諧振程序的起始時點一第四延遲時間。The resonant switching power converter 70 includes at least one first resonant cavity, such as first resonant cavities 706 and 707, the first resonant cavity 706 has a first resonant capacitor C1 and a first resonant inductor L1 connected in series with each other, and the first The resonant cavity 707 has a first resonant capacitor C3 and a first resonant inductor L2 connected in series with each other. The resonant switching power converter 70 further includes at least one second resonant cavity, such as second resonant cavities 708 and 709 , the second resonant cavity 708 has a second resonant capacitor C11 and a second resonant inductor L11 connected in series with each other, and the second resonant cavity 708 The two resonant cavities 709 have a second resonant capacitor C13 and a second resonant inductor L12 connected in series with each other. In one embodiment, the controller 703 can also adopt the structure shown in FIG. 3 , for example, further includes a delay circuit for delaying the start point of the first resonance process a first delay time and/or the second resonance process The start time point of the , a second delay time is used to delay the start time point of the third resonance process a third delay time and/or the start time point of the fourth resonance process a fourth delay time.

再請參照圖7,至少一電流感測電路704係耦接於第一諧振電感L2,且耦接於第二諧振電感L12,用以於第一諧振程序時感測流經第一諧振電感L2之一第一諧振電流及/或於第二諧振程序時感測流經第一諧振電感L2之一第二諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第三諧振程序時感測流經第二諧振電感L12之一第三諧振電流及/或於第四諧振程序時感測流經第二諧振電感L12之一第四諧振電流,而分別對應產生一第二電流感測訊號I2。應得以領會者為,於另一實施例中,至少一電流感測電路704亦可耦接至第一諧振電感L1及第二諧振電感L11,用以於第一諧振程序時感測流經第一諧振電感L1之一第一諧振電流及/或於第二諧振程序時感測流經第一諧振電感L1之一第二諧振電流,而分別對應產生一第一電流感測訊號I1,且用以於第三諧振程序時感測流經第二諧振電感L11之一第三諧振電流及/或於第四諧振程序時感測流經第二諧振電感L11之一第四諧振電流,而分別對應產生一第二電流感測訊號I2。Referring to FIG. 7 again, at least one current sensing circuit 704 is coupled to the first resonant inductor L2 and coupled to the second resonant inductor L12 for sensing the flow through the first resonant inductor L2 during the first resonant process A first resonant current and/or a second resonant current flowing through the first resonant inductor L2 is sensed during the second resonant process, and a first current sensing signal I1 is correspondingly generated and used for the third A third resonant current flowing through the second resonant inductor L12 is sensed during the resonant process and/or a fourth resonant current flowing through the second resonant inductor L12 is sensed during the fourth resonant process, and a second resonant current is correspondingly generated. Current sensing signal I2. It should be appreciated that, in another embodiment, at least one current sensing circuit 704 may also be coupled to the first resonant inductor L1 and the second resonant inductor L11 for sensing the flow through the first resonant process during the first resonant process. A first resonant current of a resonant inductor L1 and/or a second resonant current flowing through the first resonant inductor L1 is sensed during the second resonant process, and a first current sensing signal I1 is correspondingly generated, and the In order to sense a third resonant current flowing through the second resonant inductor L11 during the third resonant process and/or sense a fourth resonant current flowing through the second resonant inductor L11 during the fourth resonant process, respectively corresponding to A second current sensing signal I2 is generated.

控制器703係耦接電流感測電路704,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路701之輸出電流與第二功率級電路702之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間及第四延遲時間。開關驅動器705係耦接於控制器703與複數第一開關Q1-Q10之間,且耦接於控制器703與複數第二開關Q11-Q20之間,用以根據第一諧振操作訊號G1或第二諧振操作訊號G2控制複數第一開關Q1-Q10,且用以根據第三諧振操作訊號G3或第四諧振操作訊號G4控制複數第二開關Q11-Q20。The controller 703 is coupled to the current sensing circuit 704 for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 701 is the same as the first current sensing signal I2. The output currents of the two power stage circuits 702 are in a fixed ratio: the first delay time, the second delay time, the third delay time and the fourth delay time. The switch driver 705 is coupled between the controller 703 and the plurality of first switches Q1-Q10, and is coupled between the controller 703 and the plurality of second switches Q11-Q20, and is used for operating according to the first resonance signal G1 or the second The two resonant operation signals G2 control the plurality of first switches Q1-Q10, and are used to control the plurality of second switches Q11-Q20 according to the third resonant operation signal G3 or the fourth resonant operation signal G4.

具體而言,如圖所示之複數開關驅動器705分別根據第一諧振操作訊號G1、第二諧振操作訊號G2、第三諧振操作訊號G3與第四諧振操作訊號G4而分別產生對應之驅動訊號G1’、G2’、G3’以及G4’,用以驅動對應的複數第一開關Q1-Q10以及複數第二開關Q11-Q20。在一實施例中,驅動訊號G1’、G2’、G3’以及G4’與對應的第一諧振操作訊號G1、第二諧振操作訊號G2、第三諧振操作訊號G3與第四諧振操作訊號G4分別對應為同相。Specifically, the complex switch driver 705 as shown in the figure respectively generates the corresponding driving signal G1 according to the first resonance operation signal G1, the second resonance operation signal G2, the third resonance operation signal G3 and the fourth resonance operation signal G4 respectively ', G2', G3' and G4' are used to drive the corresponding plurality of first switches Q1-Q10 and the plurality of second switches Q11-Q20. In one embodiment, the driving signals G1', G2', G3' and G4' and the corresponding first resonance operation signal G1, second resonance operation signal G2, third resonance operation signal G3 and fourth resonance operation signal G4 are respectively Corresponding to the same phase.

於一實施中,電流感測電路704亦可採用圖3所示之架構。其中第一諧振操作訊號G1、第二諧振操作訊號G2、第三諧振操作訊號G3與第四諧振操作訊號G4分別對應於圖3中的第一充電操作訊號G1A、第一放電操作訊號G1B、第二充電操作訊號G2A以及第二放電操作訊號G2B,而驅動訊號G1’、G2’、G3’以及G4’則分別對應於驅動訊號G1A’、G1B’、G2A’以及G2B’。In one implementation, the current sensing circuit 704 can also adopt the structure shown in FIG. 3 . The first resonant operation signal G1, the second resonant operation signal G2, the third resonant operation signal G3 and the fourth resonant operation signal G4 correspond to the first charging operation signal G1A, the first discharging operation signal G1B, the The two charging operation signals G2A and the second discharging operation signal G2B, and the driving signals G1', G2', G3' and G4' respectively correspond to the driving signals G1A', G1B', G2A' and G2B'.

第一開關Q1-Q10與至少一第一諧振腔706、707對應耦接,分別根據對應之一第一諧振操作訊號G1與一第二諧振操作訊號G2,以切換所對應之該第一諧振腔706、707之電連接關係而對應一第一諧振程序與一第二諧振程序。第二開關Q11-Q20與至少一第二諧振腔708、709對應耦接,分別根據對應之一第三諧振操作訊號G3與一第四諧振操作訊號G4,以切換所對應之該第二諧振腔708、709之電連接關係而對應一第三諧振程序與一第四諧振程序。於該第一諧振程序中,對所對應之諧振腔706、707進行諧振充電,於該第二諧振程序中對所對應之諧振腔706、707進行諧振放電。於該第三諧振程序中,對所對應之諧振腔708、709進行諧振充電,於該第四諧振程序中對所對應之諧振腔708、709進行諧振放電。The first switches Q1-Q10 are correspondingly coupled to at least one first resonant cavity 706, 707, and respectively switch the corresponding first resonant cavity according to a corresponding first resonant operation signal G1 and a second resonant operation signal G2 The electrical connection relationship between 706 and 707 corresponds to a first resonance process and a second resonance process. The second switches Q11-Q20 are coupled to at least one second resonant cavity 708, 709 correspondingly, and switch the corresponding second resonant cavity according to a corresponding third resonant operation signal G3 and a fourth resonant operation signal G4 respectively The electrical connection relationship between 708 and 709 corresponds to a third resonance process and a fourth resonance process. In the first resonance process, the corresponding resonant cavities 706 and 707 are resonantly charged, and in the second resonance process, the corresponding resonant cavities 706 and 707 are resonantly discharged. In the third resonance process, the corresponding resonant cavities 708 and 709 are resonantly charged, and in the fourth resonance process, the corresponding resonant cavities 708 and 709 are resonantly discharged.

至少一第一非諧振電容C2係與至少一第一諧振腔706、707耦接,第一諧振操作訊號G1與第二諧振操作訊號G2切換該第一非諧振電容C2與該至少一第一諧振腔706、707之電連接關係。至少一第二非諧振電容C12係與至少一第二諧振腔708、709耦接,第三諧振操作訊號G3與第四諧振操作訊號G4切換該第二非諧振電容C12與該至少一第二諧振腔708、709之電連接關係。第一非諧振電容C2及第二非諧振電容C12之跨壓維持與輸入電壓Vin成一固定比例,例如在本實施例中為二分之一輸入電壓Vin。At least one first non-resonant capacitor C2 is coupled to at least one first resonant cavity 706, 707, and the first resonant operation signal G1 and the second resonant operation signal G2 switch the first non-resonant capacitor C2 and the at least one first resonant The electrical connection relationship between the cavities 706 and 707 . At least one second non-resonant capacitor C12 is coupled to at least one second resonant cavity 708, 709, and the third resonance operation signal G3 and the fourth resonance operation signal G4 switch the second non-resonant capacitor C12 and the at least one second resonance The electrical connection relationship between the cavities 708 and 709 . The voltage across the first non-resonant capacitor C2 and the second non-resonant capacitor C12 is maintained at a constant ratio to the input voltage Vin, for example, half the input voltage Vin in this embodiment.

該第一諧振程序與該第二諧振程序彼此重複地交錯排序,該第三諧振程序與該第四諧振程序彼此重複地交錯排序,以將輸入電壓Vin轉換為輸出電壓Vout。第一諧振操作訊號G1與第二諧振操作訊號G2分別各自切換至一導通位準一段導通期間,第三諧振操作訊號G3與第四諧振操作訊號G4分別各自切換至一導通位準一段導通期間,且第一諧振操作訊號G1與第二諧振操作訊號G2之該複數段導通期間彼此不重疊,以使該第一諧振程序與該第二諧振程序彼此不重疊,第三諧振操作訊號G3與第四諧振操作訊號G4之該複數段導通期間彼此不重疊,以使該第三諧振程序與該第四諧振程序彼此不重疊。The first resonance process and the second resonance process are repeatedly interleaved with each other, and the third resonance process and the fourth resonance process are repeatedly interleaved with each other to convert the input voltage Vin into the output voltage Vout. The first resonant operation signal G1 and the second resonant operation signal G2 are respectively switched to a conduction level for a period of conduction, the third resonance operation signal G3 and the fourth resonance operation signal G4 are respectively switched to a conduction level for a period of conduction, And the plurality of on-time periods of the first resonant operation signal G1 and the second resonant operation signal G2 do not overlap each other, so that the first resonant process and the second resonant process do not overlap each other, the third resonant operation signal G3 and the fourth resonant operation signal G3 and the fourth The plurality of on-time periods of the resonant operation signal G4 do not overlap each other, so that the third resonant process and the fourth resonant process do not overlap each other.

於第一諧振程序中,根據第一諧振操作訊號G1,第一開關Q1、Q3、Q5、Q8、Q9係導通,第一開關Q2、Q4、Q6、Q7、Q10係不導通,使得第一諧振腔706之第一諧振電容C1與第一諧振電感L1串聯於輸入電壓Vin與輸出電壓Vout之間,且使得第一非諧振電容C2與第一諧振腔707之第一諧振電容C3及第一諧振電感L2串聯於接地電位與輸出電壓Vout之間,而對第一諧振電容C1及C3進行充電,並對第一非諧振電容C2進行放電。於第二諧振程序中,根據第二諧振操作訊號G2,第一開關Q2、Q4、Q6、Q7、Q10係導通,第一開關Q1、Q3、Q5、Q8、Q9係不導通,使得第一非諧振電容C2與第一諧振腔706之第一諧振電容C1及第一諧振電感L1串聯於接地電位與輸出電壓Vout之間,且使第一諧振腔707之第一諧振電容C3與第一諧振電感L2串聯於接地電位與輸出電壓Vout之間,而對第一諧振電容C1、C3進行放電,並對第一非諧振電容C2進行充電。In the first resonance process, according to the first resonance operation signal G1, the first switches Q1, Q3, Q5, Q8, and Q9 are turned on, and the first switches Q2, Q4, Q6, Q7, and Q10 are turned off, so that the first resonance is made. The first resonant capacitor C1 and the first resonant inductor L1 of the cavity 706 are connected in series between the input voltage Vin and the output voltage Vout, and make the first non-resonant capacitor C2 and the first resonant capacitor C3 and the first resonant capacitor of the first resonant cavity 707 resonate The inductor L2 is connected in series between the ground potential and the output voltage Vout to charge the first resonant capacitors C1 and C3 and discharge the first non-resonant capacitor C2. In the second resonance process, according to the second resonance operation signal G2, the first switches Q2, Q4, Q6, Q7, and Q10 are turned on, and the first switches Q1, Q3, Q5, Q8, and Q9 are turned off, so that the first non-conducting The resonant capacitor C2 and the first resonant capacitor C1 and the first resonant inductor L1 of the first resonant cavity 706 are connected in series between the ground potential and the output voltage Vout, and the first resonant capacitor C3 of the first resonant cavity 707 and the first resonant inductor L2 is connected in series between the ground potential and the output voltage Vout, and discharges the first resonant capacitors C1 and C3 and charges the first non-resonant capacitor C2.

於第三諧振程序中,根據第三諧振操作訊號G3,第二開關Q11、Q13、Q15、Q18、Q19係導通,第二開關Q12、Q14、Q16、Q17、Q20係不導通,使得第二諧振腔708之第二諧振電容C11與第二諧振電感L11串聯於輸入電壓Vin與輸出電壓Vout之間,且使得第二非諧振電容C12與第二諧振腔709之第二諧振電容C13及第二諧振電感L12串聯於接地電位與輸出電壓Vout之間,而對第二諧振電容C11及C13進行充電,並對第二非諧振電容C12進行放電。於第四諧振程序中,根據第四諧振操作訊號G4,第二開關Q12、Q14、Q16、Q17、Q20係導通,第二開關Q11、Q13、Q15、Q18、Q19係不導通,使得第二非諧振電容C12與第二諧振腔708之第二諧振電容C11及第二諧振電感L11串聯於接地電位與輸出電壓Vout之間,且使第二諧振腔709之第二諧振電容C13與第二諧振電感L12串聯於接地電位與輸出電壓Vout之間,而對第二諧振電容C11、C13進行放電,並對第二非諧振電容C12進行充電。In the third resonance process, according to the third resonance operation signal G3, the second switches Q11, Q13, Q15, Q18, and Q19 are turned on, and the second switches Q12, Q14, Q16, Q17, and Q20 are turned off, so that the second resonance is made. The second resonant capacitor C11 and the second resonant inductor L11 of the cavity 708 are connected in series between the input voltage Vin and the output voltage Vout, so that the second non-resonant capacitor C12 and the second resonant capacitor C13 and the second resonant capacitor of the second resonant cavity 709 resonate The inductor L12 is connected in series between the ground potential and the output voltage Vout to charge the second resonant capacitors C11 and C13 and discharge the second non-resonant capacitor C12. In the fourth resonance process, according to the fourth resonance operation signal G4, the second switches Q12, Q14, Q16, Q17, and Q20 are turned on, and the second switches Q11, Q13, Q15, Q18, and Q19 are turned off, so that the second non-conducting The resonant capacitor C12, the second resonant capacitor C11 and the second resonant inductor L11 of the second resonant cavity 708 are connected in series between the ground potential and the output voltage Vout, and the second resonant capacitor C13 of the second resonant cavity 709 and the second resonant inductor L12 is connected in series between the ground potential and the output voltage Vout, and discharges the second resonant capacitors C11 and C13, and charges the second non-resonant capacitor C12.

有關具有如圖7所示之諧振腔706、707、708及709之諧振切換式電源轉換器70的操作方式,此為本領域中具有通常知識者所熟知,在此不予贅述。The operation of the resonant switching power converter 70 having the resonant cavities 706 , 707 , 708 and 709 shown in FIG. 7 is well known to those skilled in the art, and will not be repeated here.

圖8係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖2之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖2之實施例係採用一個輸入電壓Vin,在一實施例中,諧振切換式電源轉換器配置為交錯式(interleaved)電源轉換器。亦即,諧振切換式電源轉換器80之第一功率級電路801於第一充電程序時,第二功率級電路802執行第二放電程序。同理,諧振切換式電源轉換器80之第一功率級電路801於第一放電程序時,第二功率級電路802執行第二充電程序。換言之,當第一開關Q1-Q4接收到來自控制器803之第一充電操作訊號G1A之致能時,第二開關Q15-Q20接收到來自控制器803之第二放電操作訊號G2B之致能。當第一開關Q5-Q10接收到來自控制器803之第一放電操作訊號G1B之致能時,第二開關Q11-Q14接收到來自控制器803之第二充電操作訊號G2A之致能。FIG. 8 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and FIG. 2 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout. Embodiments employ one input voltage Vin. In one embodiment, the resonant switching power converter is configured as an interleaved power converter. That is, when the first power stage circuit 801 of the resonant switching power converter 80 is in the first charging process, the second power stage circuit 802 performs the second discharging process. Similarly, when the first power stage circuit 801 of the resonant switching power converter 80 is in the first discharging process, the second power stage circuit 802 performs the second charging process. In other words, when the first switches Q1 - Q4 receive the enabling of the first charging operation signal G1A from the controller 803 , the second switches Q15 - Q20 receive the enabling of the second discharging operation signal G2B from the controller 803 . When the first switches Q5 - Q10 receive the enabling of the first discharging operation signal G1B from the controller 803 , the second switches Q11 - Q14 receive the enabling of the second charging operation signal G2A from the controller 803 .

本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1、第二開關Q11-20、第二電容C11-C13、第二電感L11、電流感測電路804、開關驅動器805與圖2之第一開關Q1-Q10、第一電容C1-C3、第一電感L1、第二開關Q11-20、第二電容C11-C13、第二電感L11、電流感測電路204、開關驅動器205類似,故不贅述。控制器803係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器803更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器803係耦接電流感測電路804,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整輸入電壓Vin1及輸入電壓Vin2之至少一者,以使第一功率級電路801之輸出電流與第二功率級電路802之輸出電流成一固定比例。The first switches Q1-Q10, the first capacitors C1-C3, the first inductor L1, the second switches Q11-20, the second capacitors C11-C13, the second inductor L11, the current sensing circuit 804, the switch driver in this embodiment 805 and the first switches Q1-Q10 of FIG. 2, the first capacitors C1-C3, the first inductor L1, the second switches Q11-20, the second capacitors C11-C13, the second inductor L11, the current sensing circuit 204, the switches The driver 205 is similar and will not be described in detail. The controller 803 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 803 can further generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 803 is coupled to the current sensing circuit 804 for adjusting at least one of the input voltage Vin1 and the input voltage Vin2 according to the first current sensing signal I1 and the second current sensing signal I2, so that the first power stage The output current of the circuit 801 is proportional to the output current of the second power stage circuit 802 .

圖9係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖,其顯示圖8之控制器803及電流感測電路804之一實施例。本實施例之平均電路8031、電壓感測電路8041a及8041b、電阻Rcs1及Rcs2、電容Cs1及Cs2、轉換電路8042a及8042b係與圖3之實施例之平均電路2031、電壓感測電路2041a及2041b、電阻Rcs1及Rcs2、電容Cs1及Cs2、轉換電路2042a及2042b類似,故不贅述。本實施例與圖3之實施例之不同在於本實施例之控制器803中之調整電路8032a及8032b係耦接平均電路8031及至少一電流感測電路804,用以比較電流平均訊號Iavg與第一電流感測訊號I1或第二電流感測訊號I2,而分別產生一輸入電壓調整訊號Va1及Va2至輸入電壓Vin1及Vin2。FIG. 9 is a circuit schematic diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention, which shows an embodiment of the controller 803 and the current sensing circuit 804 of FIG. 8 . The averaging circuit 8031, the voltage sensing circuits 8041a and 8041b, the resistors Rcs1 and Rcs2, the capacitors Cs1 and Cs2, the conversion circuits 8042a and 8042b in this embodiment are the same as the averaging circuit 2031, the voltage sensing circuits 2041a and 2041b in the embodiment of FIG. 3 . , the resistors Rcs1 and Rcs2 , the capacitors Cs1 and Cs2 , and the conversion circuits 2042 a and 2042 b are similar, so they are not described in detail. The difference between this embodiment and the embodiment of FIG. 3 is that the adjustment circuits 8032a and 8032b in the controller 803 of this embodiment are coupled to the averaging circuit 8031 and at least one current sensing circuit 804 for comparing the current average signal Iavg with the first A current sensing signal I1 or a second current sensing signal I2 respectively generates an input voltage adjustment signal Va1 and Va2 to the input voltages Vin1 and Vin2.

輸入電壓Vin1及Vin2分別根據輸入電壓調整訊號Va1及Va2增加或減小其輸入電壓,以使第一功率級電路801之輸出電流與第二功率級電路802之輸出電流成一固定比例。由於提高輸入電壓可提高輸出功率,因而可提高對應功率級電路的輸出電流,具體而言,於一實施例中,可進行以下之調整方式至少之一,而使得第一功率級電路801之輸出電流與第二功率級電路802之輸出電流成一固定比例:當第一電流感測訊號I1大於電流平均訊號Iavg時,減小輸入電壓Vin1,當第一電流感測訊號I1小於電流平均訊號Iavg時,增加輸入電壓Vin1。當第二電流感測訊號I2大於電流平均訊號Iavg時,減小輸入電壓Vin2,當第二電流感測訊號I2小於電流平均訊號Iavg時,增加輸入電壓Vin2。The input voltages Vin1 and Vin2 are increased or decreased according to the input voltage adjustment signals Va1 and Va2 respectively, so that the output current of the first power stage circuit 801 and the output current of the second power stage circuit 802 have a constant ratio. Since increasing the input voltage can increase the output power, the output current of the corresponding power stage circuit can be increased. Specifically, in one embodiment, at least one of the following adjustment methods can be performed, so that the output of the first power stage circuit 801 can be increased. The current is proportional to the output current of the second power stage circuit 802: when the first current sensing signal I1 is greater than the current average signal Iavg, the input voltage Vin1 is reduced, and when the first current sensing signal I1 is less than the current average signal Iavg , increase the input voltage Vin1. When the second current sensing signal I2 is greater than the current average signal Iavg, the input voltage Vin2 is decreased, and when the second current sensing signal I2 is less than the current average signal Iavg, the input voltage Vin2 is increased.

圖10係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖5之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖5之實施例係採用一個輸入電壓Vin,在一實施例中,諧振切換式電源轉換器配置為交錯式(interleaved)電源轉換器。亦即,諧振切換式電源轉換器100之第一功率級電路1001於第一充電程序時,第二功率級電路1002執行第二放電程序。同理,諧振切換式電源轉換器100之第一功率級電路1001於第一放電程序時,第二功率級電路1002執行第二充電程序。換言之,當第一開關Q1-Q4接收到來自控制器1003之第一充電操作訊號G1A之致能時,第二開關Q15-Q20接收到來自控制器1003之第二放電操作訊號G2B之致能。當第一開關Q5-Q10接收到來自控制器1003之第一放電操作訊號G1B之致能時,第二開關Q11-Q14接收到來自控制器1003之第二充電操作訊號G2A之致能。FIG. 10 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 5 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 5 uses an input voltage Vin. In one embodiment, the resonant switching power converter is configured as an interleaved power converter. That is, when the first power stage circuit 1001 of the resonant switching power converter 100 is in the first charging process, the second power stage circuit 1002 performs the second discharging process. Similarly, when the first power stage circuit 1001 of the resonant switching power converter 100 is in the first discharging process, the second power stage circuit 1002 performs the second charging process. In other words, when the first switches Q1 - Q4 receive the enabling of the first charging operation signal G1A from the controller 1003 , the second switches Q15 - Q20 receive the enabling of the second discharging operation signal G2B from the controller 1003 . When the first switches Q5 - Q10 receive the enabling of the first discharging operation signal G1B from the controller 1003 , the second switches Q11 - Q14 receive the enabling of the second charging operation signal G2A from the controller 1003 .

本實施例之第一開關Q1-Q10、第一電容C1-C3、第一充電電感L3、第一放電電感L2、第二開關Q11-20、第二電容C11-C13、第二充電電感L13、第二放電電感L12、電流感測電路1004、開關驅動器1005與圖5之第一開關Q1-Q10、第一電容C1-C3、第一充電電感L3、第一放電電感L2、第二開關Q11-20、第二電容C11-C13、第二充電電感L13、第二放電電感L12、電流感測電路504、開關驅動器505類似,故不贅述。控制器1003係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1003更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1003係耦接電流感測電路1004,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整輸入電壓Vin1及輸入電壓Vin2之至少一者,以使第一功率級電路1001之輸出電流與第二功率級電路1002之輸出電流成一固定比例。於一實施例中,控制器1003及電流感測電路1004亦可採用圖9所示之架構。In this embodiment, the first switches Q1-Q10, the first capacitors C1-C3, the first charging inductor L3, the first discharging inductor L2, the second switch Q11-20, the second capacitors C11-C13, the second charging inductor L13, The second discharge inductor L12, the current sensing circuit 1004, the switch driver 1005, the first switches Q1-Q10, the first capacitors C1-C3, the first charging inductor L3, the first discharging inductor L2, the second switch Q11- 20. The second capacitors C11-C13, the second charging inductance L13, the second discharging inductance L12, the current sensing circuit 504, and the switch driver 505 are similar, so they will not be repeated. The controller 1003 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 1003 can further be used to generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1003 is coupled to the current sensing circuit 1004 for adjusting at least one of the input voltage Vin1 and the input voltage Vin2 according to the first current sensing signal I1 and the second current sensing signal I2, so that the first power stage The output current of the circuit 1001 is proportional to the output current of the second power stage circuit 1002 . In one embodiment, the controller 1003 and the current sensing circuit 1004 can also adopt the structure shown in FIG. 9 .

圖11係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖6之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖6之實施例係採用一個輸入電壓Vin,在一實施例中,諧振切換式電源轉換器配置為交錯式(interleaved)電源轉換器。亦即,諧振切換式電源轉換器110之第一功率級電路1101於第一充電程序時,第二功率級電路1102執行第二放電程序。同理,諧振切換式電源轉換器110之第一功率級電路1101於第一放電程序時,第二功率級電路1102執行第二充電程序。換言之,當第一開關Q1-Q4接收到來自控制器1103之第一充電操作訊號G1A之致能時,第二開關Q15-Q20接收到來自控制器1103之第二放電操作訊號G2B之致能。當第一開關Q5-Q10接收到來自控制器1103之第一放電操作訊號G1B之致能時,第二開關Q11-Q14接收到來自控制器1103之第二充電操作訊號G2A之致能。FIG. 11 is a schematic circuit diagram showing a resonant switching power converter according to still another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 6 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 6 uses an input voltage Vin. In one embodiment, the resonant switching power converter is configured as an interleaved power converter. That is, when the first power stage circuit 1101 of the resonant switching power converter 110 is in the first charging process, the second power stage circuit 1102 performs the second discharging process. Similarly, when the first power stage circuit 1101 of the resonant switching power converter 110 is in the first discharging process, the second power stage circuit 1102 performs the second charging process. In other words, when the first switches Q1 - Q4 receive the enabling of the first charging operation signal G1A from the controller 1103 , the second switches Q15 - Q20 receive the enabling of the second discharging operation signal G2B from the controller 1103 . When the first switches Q5 - Q10 receive the enable of the first discharge operation signal G1B from the controller 1103 , the second switches Q11 - Q14 receive the enable of the second charge operation signal G2A from the controller 1103 .

本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L3、第二開關Q11-20、第二電容C11-C13、第二電感L11-L13、電流感測電路1104、開關驅動器1105與圖6之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L3、第二開關Q11-20、第二電容C11-C13、第二電感L11-L13、電流感測電路604、開關驅動器605類似,故不贅述。控制器1103係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1103更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1103係耦接電流感測電路1104,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整輸入電壓Vin1及輸入電壓Vin2之至少一者,以使第一功率級電路1101之輸出電流與第二功率級電路1102之輸出電流成一固定比例。於一實施例中,控制器1103及電流感測電路1104亦可採用圖9所示之架構。The first switches Q1-Q10, the first capacitors C1-C3, the first inductors L1-L3, the second switches Q11-20, the second capacitors C11-C13, the second inductors L11-L13, the current sensing circuit in this embodiment 1104, the switch driver 1105 and the first switches Q1-Q10, first capacitors C1-C3, first inductors L1-L3, second switches Q11-20, second capacitors C11-C13, and second inductors L11-L13 of FIG. 6 , the current sensing circuit 604, and the switch driver 605 are similar, so they will not be described in detail. The controller 1103 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 1103 can further be used to generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1103 is coupled to the current sensing circuit 1104 for adjusting at least one of the input voltage Vin1 and the input voltage Vin2 according to the first current sensing signal I1 and the second current sensing signal I2, so that the first power stage The output current of the circuit 1101 is proportional to the output current of the second power stage circuit 1102 . In one embodiment, the controller 1103 and the current sensing circuit 1104 can also adopt the structure shown in FIG. 9 .

圖12係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖7之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖7之實施例係採用一個輸入電壓Vin,在一實施例中,諧振切換式電源轉換器配置為交錯式(interleaved)電源轉換器。亦即,諧振切換式電源轉換器120之第一功率級電路1201於第一諧振程序時,第二功率級電路1202執行第四諧振程序。同理,諧振切換式電源轉換器120之第一功率級電路1201於第二諧振程序時,第二功率級電路1202執行第三諧振程序。換言之,當第一開關Q1-Q5接收到來自控制器1203之第一諧振操作訊號G1之致能時,第二開關Q16-Q20接收到來自控制器1203之第四諧振操作訊號G4之致能。當第一開關Q6-Q10接收到來自控制器1203之第二諧振操作訊號G2之致能時,第二開關Q11-Q15接收到來自控制器1203之第三諧振操作訊號G3之致能。FIG. 12 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 7 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 7 uses an input voltage Vin. In one embodiment, the resonant switching power converter is configured as an interleaved power converter. That is, when the first power stage circuit 1201 of the resonant switching power converter 120 is in the first resonance process, the second power stage circuit 1202 performs the fourth resonance process. Similarly, when the first power stage circuit 1201 of the resonant switching power converter 120 is in the second resonance process, the second power stage circuit 1202 executes the third resonance process. In other words, when the first switches Q1 - Q5 receive the enabling of the first resonant operation signal G1 from the controller 1203 , the second switches Q16 - Q20 receive the enabling of the fourth resonant operation signal G4 from the controller 1203 . When the first switches Q6 - Q10 receive the enabling of the second resonant operation signal G2 from the controller 1203 , the second switches Q11 - Q15 receive the enabling of the third resonant operating signal G3 from the controller 1203 .

本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L2、第二開關Q11-20、第二電容C11-C13、第二電感L11-L12、電流感測電路1204、開關驅動器1205與圖7之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L2、第二開關Q11-20、第二電容C11-C13、第二電感L11-L12、電流感測電路704、開關驅動器705類似,故不贅述。控制器1203係用以產生一第一諧振操作訊號G1、一第二諧振操作訊號G2、一第三諧振操作訊號G3與一第四諧振操作訊號G4,以分別對應一第一諧振程序、一第二諧振程序、一第三諧振程序與一第四諧振程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1203更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1203係耦接電流感測電路1204,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整輸入電壓Vin1及輸入電壓Vin2之至少一者,以使第一功率級電路1201之輸出電流與第二功率級電路1202之輸出電流成一固定比例。於一實施例中,控制器1203及電流感測電路1204亦可採用圖9所示之架構。The first switches Q1-Q10, the first capacitors C1-C3, the first inductors L1-L2, the second switches Q11-20, the second capacitors C11-C13, the second inductors L11-L12, and the current sensing circuit in this embodiment 1204, the switch driver 1205 and the first switches Q1-Q10, the first capacitors C1-C3, the first inductors L1-L2, the second switches Q11-20, the second capacitors C11-C13, and the second inductors L11-L12 of FIG. 7 , the current sensing circuit 704 and the switch driver 705 are similar, so they are not described in detail. The controller 1203 is used for generating a first resonance operation signal G1, a second resonance operation signal G2, a third resonance operation signal G3 and a fourth resonance operation signal G4, respectively corresponding to a first resonance process, a first resonance operation Two resonance procedures, a third resonance procedure and a fourth resonance procedure respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first capacitors C1- The electrical connection relationship between C3 and the corresponding second capacitors C11-C13. The controller 1203 can further be used to generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1203 is coupled to the current sensing circuit 1204 for adjusting at least one of the input voltage Vin1 and the input voltage Vin2 according to the first current sensing signal I1 and the second current sensing signal I2, so that the first power stage The output current of the circuit 1201 is proportional to the output current of the second power stage circuit 1202 . In one embodiment, the controller 1203 and the current sensing circuit 1204 can also adopt the structure shown in FIG. 9 .

圖13係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖2之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖2之實施例係採用一個輸入電壓Vin。本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1、第二開關Q11-20、第二電容C11-C13、第二電感L11、電流感測電路1304、開關驅動器1305與圖2之第一開關Q1-Q10、第一電容C1-C3、第一電感L1、第二開關Q11-20、第二電容C11-C13、第二電感L11、電流感測電路204、開關驅動器205類似,故不贅述。控制器1303係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1303更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1303係耦接電流感測電路1304,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路1301之輸出電流與第二功率級電路1302之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間、第四延遲時間、輸入電壓Vin1及輸入電壓Vin2。在一實施例中,第一功率級電路1301與第二功率級電路1302可配置為如前述的圖8之實施例中所述之交錯式電源轉換器,亦即,第一功率級電路1301與第二功率級電路1302的操作相位可彼此交錯。13 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and FIG. 2 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout. Embodiments employ an input voltage Vin. The first switches Q1-Q10, the first capacitors C1-C3, the first inductor L1, the second switches Q11-20, the second capacitors C11-C13, the second inductor L11, the current sensing circuit 1304, the switch driver in this embodiment 1305 and the first switches Q1-Q10 of FIG. 2, the first capacitors C1-C3, the first inductor L1, the second switches Q11-20, the second capacitors C11-C13, the second inductor L11, the current sensing circuit 204, the switches The driver 205 is similar and will not be described in detail. The controller 1303 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 1303 can further generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1303 is coupled to the current sensing circuit 1304, and is used for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 1301 is equal to the first current sensing signal I2. The output currents of the two power stage circuits 1302 are in a fixed ratio: the first delay time, the second delay time, the third delay time, the fourth delay time, the input voltage Vin1 and the input voltage Vin2. In one embodiment, the first power stage circuit 1301 and the second power stage circuit 1302 may be configured as an interleaved power converter as described in the aforementioned embodiment of FIG. 8 , that is, the first power stage circuit 1301 and the The operating phases of the second power stage circuits 1302 may be interleaved with each other.

需說明的是,控制器1303可根據多種方式而決定充電程序與放電程序的起始時點與時間長度,在一實施例中,例如可根據輸出電壓Vout或輸出電流,而產生迴路控制訊號,以決定充電程序與放電程序的起始時點與時間長度,在另一實施例中,可例如根據電感電流跨越零電流的時點而決定。而前述的電流平衡控制,可進一步藉由控制前述的延遲時間,或輸入電壓,而使各功率級電路之輸出電流成一固定比例關係或達成電流平衡。It should be noted that the controller 1303 can determine the start time and time length of the charging process and the discharging process according to various methods. In one embodiment, for example, the loop control signal can be generated according to the output voltage Vout or the output current to In another embodiment, the starting time point and time length of the charging process and the discharging process can be determined, for example, according to the time point when the inductor current crosses the zero current. The aforementioned current balance control can further control the aforementioned delay time or input voltage to make the output current of each power stage circuit have a fixed proportional relationship or achieve current balance.

圖14係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖,其顯示圖13之控制器1303及電流感測電路1304之一實施例。本實施例之平均電路13031、電壓感測電路13041a及13041b、電阻Rcs1及Rcs2、電容Cs1及Cs2、轉換電路13042a及13042b係與圖3之實施例之平均電路2031、電壓感測電路2041a及2041b、電阻Rcs1及Rcs2、電容Cs1及Cs2、轉換電路2042a及2042b類似,故不贅述。本實施例與圖3之實施例之不同在於本實施例之控制器1303中之調整電路13032a及13032b係耦接平均電路13031及至少一電流感測電路1304,用以比較電流平均訊號Iavg與第一電流感測訊號I1或第二電流感測訊號I2,而分別產生一輸入電壓調整訊號Va1及Va2至輸入電壓Vin1及Vin2且/或分別產生一延遲時間調整訊號Ta1及Ta2至延遲電路13033a及13033b。換言之,本實施例可根據電流感測訊號調整延遲時間及/或對應的輸入電壓而達成電流平衡。於一實施例中,輸入電壓Vin1及Vin2分別根據輸入電壓調整訊號Va1及Va2增加或減小其輸入電壓,以使第一功率級電路1301之輸出電流與第二功率級電路1302之輸出電流成一固定比例。於一實施例中,延遲電路13033a及13033b分別根據延遲時間調整訊號Ta1及Ta2修改第一延遲時間及二延遲時間、或第三延遲時間及第四延遲時間,而分別產生第一充電操作訊號G1A及第一放電操作訊號G1B與第二充電操作訊號G2A及第二放電操作訊號G2B,以使第一功率級電路1301之輸出電流與第二功率級電路1302之輸出電流成該固定比例。14 is a circuit schematic diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention, which shows an embodiment of the controller 1303 and the current sensing circuit 1304 of FIG. 13 . The averaging circuit 13031, the voltage sensing circuits 13041a and 13041b, the resistors Rcs1 and Rcs2, the capacitors Cs1 and Cs2, the conversion circuits 13042a and 13042b in this embodiment are the same as the averaging circuit 2031, the voltage sensing circuits 2041a and 2041b in the embodiment of FIG. 3 . , the resistors Rcs1 and Rcs2 , the capacitors Cs1 and Cs2 , and the conversion circuits 2042 a and 2042 b are similar, so they are not described in detail. The difference between this embodiment and the embodiment of FIG. 3 is that the adjustment circuits 13032a and 13032b in the controller 1303 of this embodiment are coupled to the averaging circuit 13031 and at least one current sensing circuit 1304 for comparing the current average signal Iavg with the first A current sensing signal I1 or a second current sensing signal I2 respectively generates an input voltage adjustment signal Va1 and Va2 to the input voltages Vin1 and Vin2 and/or respectively generates a delay time adjustment signal Ta1 and Ta2 to the delay circuit 13033a and 13033b. In other words, the present embodiment can adjust the delay time and/or the corresponding input voltage according to the current sensing signal to achieve current balance. In one embodiment, the input voltages Vin1 and Vin2 are increased or decreased according to the input voltage adjustment signals Va1 and Va2 respectively, so that the output current of the first power stage circuit 1301 and the output current of the second power stage circuit 1302 are equal to one Fixed scale. In one embodiment, the delay circuits 13033a and 13033b modify the first delay time and the second delay time, or the third delay time and the fourth delay time according to the delay time adjustment signals Ta1 and Ta2, respectively, to generate the first charging operation signal G1A, respectively and the first discharge operation signal G1B, the second charge operation signal G2A and the second discharge operation signal G2B, so that the output current of the first power stage circuit 1301 and the output current of the second power stage circuit 1302 have the fixed ratio.

於一實施例中,當第一電流感測訊號I1大於電流平均訊號Iavg時,減小輸入電壓Vin1,當第一電流感測訊號I1小於電流平均訊號Iavg時,增加輸入電壓Vin1。當第二電流感測訊號I2大於電流平均訊號Iavg時,減小輸入電壓Vin2,當第二電流感測訊號I2小於電流平均訊號Iavg時,增加輸入電壓Vin2。於一實施例中,當第一電流感測訊號I1大於電流平均訊號Iavg時,延長該第一延遲時間及/或第二延遲時間,當第一電流感測訊號I1小於電流平均訊號Iavg時,縮短該第一延遲時間及/或該第二延遲時間。當第二電流感測訊號I2大於電流平均訊號Iavg時,延長該第三延遲時間及/或第四延遲時間,當第二電流感測訊號I2小於電流平均訊號Iavg時,縮短該第三延遲時間及/或該第四延遲時間。In one embodiment, when the first current sensing signal I1 is greater than the current average signal Iavg, the input voltage Vin1 is decreased, and when the first current sensing signal I1 is less than the current average signal Iavg, the input voltage Vin1 is increased. When the second current sensing signal I2 is greater than the current average signal Iavg, the input voltage Vin2 is decreased, and when the second current sensing signal I2 is less than the current average signal Iavg, the input voltage Vin2 is increased. In one embodiment, when the first current sensing signal I1 is greater than the current average signal Iavg, the first delay time and/or the second delay time are extended, and when the first current sensing signal I1 is less than the current average signal Iavg, Shorten the first delay time and/or the second delay time. When the second current sensing signal I2 is greater than the current average signal Iavg, the third delay time and/or the fourth delay time are extended, and when the second current sensing signal I2 is less than the current average signal Iavg, the third delay time is shortened and/or the fourth delay time.

圖15係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖5之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖5之實施例係採用一個輸入電壓Vin。本實施例之第一開關Q1-Q10、第一電容C1-C3、第一充電電感L3、第一放電電感L2、第二開關Q11-20、第二電容C11-C13、第二充電電感L13、第二放電電感L12、電流感測電路1504、開關驅動器1505與圖5之第一開關Q1-Q10、第一電容C1-C3、第一充電電感L3、第一放電電感L2、第二開關Q11-20、第二電容C11-C13、第二充電電感L13、第二放電電感L12、電流感測電路504、開關驅動器505類似,故不贅述。15 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 5 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 5 uses an input voltage Vin. In this embodiment, the first switches Q1-Q10, the first capacitors C1-C3, the first charging inductor L3, the first discharging inductor L2, the second switch Q11-20, the second capacitors C11-C13, the second charging inductor L13, The second discharge inductor L12, the current sensing circuit 1504, the switch driver 1505, the first switches Q1-Q10, the first capacitors C1-C3, the first charging inductor L3, the first discharging inductor L2, the second switch Q11- 20. The second capacitors C11-C13, the second charging inductance L13, the second discharging inductance L12, the current sensing circuit 504, and the switch driver 505 are similar, so they will not be repeated.

控制器1503係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1503更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1503係耦接電流感測電路1504,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路1501之輸出電流與第二功率級電路1502之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間、第四延遲時間、輸入電壓Vin1及輸入電壓Vin2。於一實施例中,控制器1503及電流感測電路1504亦可採用圖14所示之架構。在一實施例中,第一功率級電路1501與第二功率級電路1502可配置為如前述的圖10之實施例中所述之交錯式電源轉換器,亦即,第一功率級電路1501與第二功率級電路1502的操作相位可彼此交錯。The controller 1503 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 1503 can further generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1503 is coupled to the current sensing circuit 1504, and is used for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 1501 is equal to the first current sensing signal I2. The output currents of the two power stage circuits 1502 are in a fixed ratio: the first delay time, the second delay time, the third delay time, the fourth delay time, the input voltage Vin1 and the input voltage Vin2. In one embodiment, the controller 1503 and the current sensing circuit 1504 can also adopt the structure shown in FIG. 14 . In one embodiment, the first power stage circuit 1501 and the second power stage circuit 1502 may be configured as an interleaved power converter as described in the aforementioned embodiment of FIG. 10 , that is, the first power stage circuit 1501 and the The operating phases of the second power stage circuits 1502 may be interleaved with each other.

圖16係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖6之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖6之實施例係採用一個輸入電壓Vin。本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L3、第二開關Q11-20、第二電容C11-C13、第二電感L11-L13、電流感測電路1604、開關驅動器1605與圖6之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L3、第二開關Q11-20、第二電容C11-C13、第二電感L11-L13、電流感測電路604、開關驅動器605類似,故不贅述。FIG. 16 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 6 is that this embodiment uses two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 6 uses an input voltage Vin. The first switches Q1-Q10, the first capacitors C1-C3, the first inductors L1-L3, the second switches Q11-20, the second capacitors C11-C13, the second inductors L11-L13, the current sensing circuit in this embodiment 1604, the switch driver 1605 and the first switches Q1-Q10, first capacitors C1-C3, first inductors L1-L3, second switches Q11-20, second capacitors C11-C13, and second inductors L11-L13 of FIG. 6 , the current sensing circuit 604, and the switch driver 605 are similar, so they will not be described in detail.

控制器1603係用以產生一第一充電操作訊號G1A、一第二充電操作訊號G2A、至少一第一放電操作訊號G1B與至少一第二放電操作訊號G2B,以分別對應一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1603更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1603係耦接電流感測電路1604,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路1601之輸出電流與第二功率級電路1602之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間、第四延遲時間、輸入電壓Vin1及輸入電壓Vin2。於一實施例中,控制器1603及電流感測電路1604亦可採用圖14所示之架構。在一實施例中,第一功率級電路1601與第二功率級電路1602可配置為如前述的圖11之實施例中所述之交錯式電源轉換器,亦即,第一功率級電路1601與第二功率級電路1602的操作相位可彼此交錯。The controller 1603 is used for generating a first charging operation signal G1A, a second charging operation signal G2A, at least one first discharging operation signal G1B and at least one second discharging operation signal G2B, respectively corresponding to a first charging procedure, A second charging process, at least one first discharging process and at least one second discharging process respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first switches Q1-Q10 respectively. The electrical connection relationship between a capacitor C1-C3 and the corresponding second capacitor C11-C13. The controller 1603 can further be used to generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1603 is coupled to the current sensing circuit 1604 for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 1601 is the same as the first current sensing signal I2. The output currents of the two power stage circuits 1602 are in a fixed ratio: the first delay time, the second delay time, the third delay time, the fourth delay time, the input voltage Vin1 and the input voltage Vin2. In one embodiment, the controller 1603 and the current sensing circuit 1604 can also adopt the structure shown in FIG. 14 . In one embodiment, the first power stage circuit 1601 and the second power stage circuit 1602 may be configured as an interleaved power converter as described in the aforementioned embodiment of FIG. 11 , that is, the first power stage circuit 1601 and the The operating phases of the second power stage circuits 1602 may be interleaved with each other.

圖17係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖7之實施例之不同在於本實施例係採用二個輸入電壓,例如,第一功率級電路與第二功率級電路分別轉換輸入電壓Vin1與Vin2,而產生輸出電壓Vout,而圖7之實施例係採用一個輸入電壓Vin。本實施例之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L2、第二開關Q11-20、第二電容C11-C13、第二電感L11-L12、電流感測電路1704、開關驅動器1705與圖7之第一開關Q1-Q10、第一電容C1-C3、第一電感L1-L2、第二開關Q11-20、第二電容C11-C13、第二電感L11-L12、電流感測電路704、開關驅動器705類似,故不贅述。17 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. The difference between this embodiment and the embodiment of FIG. 7 is that this embodiment adopts two input voltages. For example, the first power stage circuit and the second power stage circuit respectively convert the input voltages Vin1 and Vin2 to generate the output voltage Vout, and The embodiment of FIG. 7 uses an input voltage Vin. The first switches Q1-Q10, the first capacitors C1-C3, the first inductors L1-L2, the second switches Q11-20, the second capacitors C11-C13, the second inductors L11-L12, and the current sensing circuit in this embodiment 1704, the switch driver 1705 and the first switches Q1-Q10, first capacitors C1-C3, first inductors L1-L2, second switches Q11-20, second capacitors C11-C13, and second inductors L11-L12 of FIG. 7 , the current sensing circuit 704 and the switch driver 705 are similar, so they are not described in detail.

控制器1703係用以產生一第一諧振操作訊號G1、一第二諧振操作訊號G2、一第三諧振操作訊號G3與一第四諧振操作訊號G4,以分別對應一第一諧振程序、一第二諧振程序、一第三諧振程序與一第四諧振程序,而分別操作對應之複數第一開關Q1-Q10及對應之複數第二開關Q11-Q20,以分別切換所對應之第一電容C1-C3及所對應之第二電容C11-C13之電連接關係。控制器1703更可用以產生一輸入電壓調整訊號Va1與一輸入電壓調整訊號Va2,以分別調整輸入電壓Vin1及Vin2。控制器1703係耦接電流感測電路1704,用以根據該第一電流感測訊號I1及第二電流感測訊號I2調整下列至少一者,以使第一功率級電路1701之輸出電流與第二功率級電路1702之輸出電流成一固定比例:第一延遲時間、第二延遲時間、第三延遲時間、第四延遲時間、輸入電壓Vin1及輸入電壓Vin2。於一實施例中,控制器1703及電流感測電路1704亦可採用圖14所示之架構。在一實施例中,第一功率級電路1701與第二功率級電路1702可配置為如前述的圖12之實施例中所述之交錯式電源轉換器,亦即,第一功率級電路1701與第二功率級電路1702的操作相位可彼此交錯。The controller 1703 is used for generating a first resonance operation signal G1, a second resonance operation signal G2, a third resonance operation signal G3 and a fourth resonance operation signal G4, respectively corresponding to a first resonance process, a first resonance operation Two resonance procedures, a third resonance procedure and a fourth resonance procedure respectively operate the corresponding first switches Q1-Q10 and the corresponding second switches Q11-Q20 to switch the corresponding first capacitors C1- The electrical connection relationship between C3 and the corresponding second capacitors C11-C13. The controller 1703 can further be used to generate an input voltage adjustment signal Va1 and an input voltage adjustment signal Va2 to adjust the input voltages Vin1 and Vin2 respectively. The controller 1703 is coupled to the current sensing circuit 1704, and is used for adjusting at least one of the following according to the first current sensing signal I1 and the second current sensing signal I2, so that the output current of the first power stage circuit 1701 is equal to the first current sensing signal I2. The output currents of the two power stage circuits 1702 are in a fixed ratio: the first delay time, the second delay time, the third delay time, the fourth delay time, the input voltage Vin1 and the input voltage Vin2. In one embodiment, the controller 1703 and the current sensing circuit 1704 can also adopt the structure shown in FIG. 14 . In one embodiment, the first power stage circuit 1701 and the second power stage circuit 1702 may be configured as an interleaved power converter as described in the aforementioned embodiment of FIG. 12 , that is, the first power stage circuit 1701 and the The operating phases of the second power stage circuits 1702 may be interleaved with each other.

圖18係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。本實施例與圖2之實施例相似,其不同在於,本實施例中,第一功率級電路1801與第一功率級1802,於對應的放電程序中,第一電容C1、C2、C3為輪流放電,第二電容C11、C12、C13為輪流放電。本實施例中,第一放電操作訊號G1B包括對應的複數子放電操作訊號,而對應的開關驅動器1805則根據對應的複數子放電操作訊號產生對應的子驅動訊號G1x’、G1y’與G1z’,用以分別控制第一開關Q5與Q8、Q6與Q9,以及,Q7與Q10,以控制第一電容C1、C2、C3為輪流放電。第二放電操作訊號G2B包括對應的複數子放電操作訊號,而對應的開關驅動器1805則根據對應的複數子放電操作訊號產生對應的子驅動訊號G2x’、G2y’與G2z’,用以分別控制第二開關Q15與Q18、Q16與Q19,以及,Q17與Q20,以控制第二電容C11、C12、C13為輪流放電。FIG. 18 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention. This embodiment is similar to the embodiment of FIG. 2 , the difference is that, in this embodiment, the first power stage circuit 1801 and the first power stage 1802 , in the corresponding discharge procedure, the first capacitors C1 , C2 , and C3 are alternately To discharge, the second capacitors C11, C12, and C13 are discharged alternately. In this embodiment, the first discharge operation signal G1B includes a corresponding plurality of sub-discharge operation signals, and the corresponding switch driver 1805 generates corresponding sub-drive signals G1x', G1y' and G1z' according to the corresponding plurality of sub-discharge operation signals, It is used to control the first switches Q5 and Q8, Q6 and Q9, and Q7 and Q10 respectively, so as to control the first capacitors C1, C2, and C3 to discharge in turn. The second discharge operation signal G2B includes a corresponding plurality of sub-discharge operation signals, and the corresponding switch driver 1805 generates corresponding sub-drive signals G2x', G2y' and G2z' according to the corresponding plurality of sub-discharge operation signals to control the first The two switches Q15 and Q18 , Q16 and Q19 , and Q17 and Q20 control the second capacitors C11 , C12 and C13 to discharge alternately.

本實施例中,第二延遲時間可對應於第一電容C1、C2、C3輪流放電時各自的起始時點的至少之一,第四延遲時間可對應於第二電容C11、C12、C13輪流放電時各自的起始時點的至少之一。In this embodiment, the second delay time may correspond to at least one of the respective starting time points when the first capacitors C1, C2, and C3 discharge alternately, and the fourth delay time may correspond to the alternate discharge of the second capacitors C11, C12, and C13. at least one of the respective starting time points.

本發明如上所述提供了一種諧振切換式電源轉換器,其藉由感測多個功率級電路的電流與比較而進行控制,可使具有多個功率級電路之諧振切換式電源轉換器達到電流平衡控制、無需額外的電流感測電阻、可降低湧浪電流且與傳統電源轉換器相比具有較高的效率。The present invention provides a resonant switching power converter as described above, which is controlled by sensing and comparing the currents of a plurality of power stage circuits, so that the resonant switching power converter with a plurality of power stage circuits can reach the current Balanced control, no need for additional current sense resistors, reduced inrush current and higher efficiency compared to traditional power converters.

以上已針對較佳實施例來說明本發明,唯以上所述者,僅係為使熟悉本技術者易於了解本發明的內容而已,並非用來限定本發明之最廣的權利範圍。所說明之各個實施例,並不限於單獨應用,亦可以組合應用,舉例而言,兩個或以上之實施例可以組合運用,而一實施例中之部分組成亦可用以取代另一實施例中對應之組成部件。此外,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,舉例而言,本發明所稱「根據某訊號進行處理或運算或產生某輸出結果」,不限於根據該訊號的本身,亦包含於必要時,將該訊號進行電壓電流轉換、電流電壓轉換、及/或比例轉換等,之後根據轉換後的訊號進行處理或運算產生某輸出結果。由此可知,在本發明之相同精神下,熟悉本技術者可以思及各種等效變化以及各種組合,其組合方式甚多,在此不一一列舉說明。因此,本發明的範圍應涵蓋上述及其他所有等效變化。The present invention has been described above with respect to the preferred embodiments, but the above descriptions are only intended to make the content of the present invention easy for those skilled in the art to understand, and are not intended to limit the broadest scope of rights of the present invention. The described embodiments are not limited to be applied individually, but can also be applied in combination. For example, two or more embodiments can be applied in combination, and some components of one embodiment can also be used to replace those in another embodiment. corresponding components. In addition, under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations. According to the signal itself, when necessary, the signal is subjected to voltage-to-current conversion, current-to-voltage conversion, and/or ratio conversion, etc., and then processed or calculated according to the converted signal to generate an output result. It can be seen from this that under the same spirit of the present invention, those skilled in the art can think of various equivalent changes and various combinations, and there are many combinations, which are not listed and described here. Accordingly, the scope of the present invention should cover the above and all other equivalent changes.

20,50,60,70,80,100,110,120,130,150,160,170,180:諧振切換式電源轉換器 201,501,601,701,801,1001,1101,1201,1301,1501,1601,1701,1801:第一功率級電路 202,502,602,702,802,1002,1102,1202,1302,1502,1602,1702,1802:第二功率級電路 203,503,603,703,803,1003,1103,1203,1303,1503,1603,1703:控制器 2031,8031,13031:平均電路 2032a,2032b,8032a,8032b,13032a,13032b:調整電路 2033a,2033b,13033a,13033b:延遲電路 204,504,604,704,804,1004,1104,1204,1304,1504,1604,1704:電流感測電路 2041a,2041b,8041a,8041b,13041,13041b:電壓感測電路 2042a,2042b,8042a,8042b,13042a,13042b:轉換電路 205,505,605,705,805,1005,1105,1205,1305,1505,1605,1705,1805:開關驅動器 706~709:諧振腔 C1~C3:(第一)電容 C11~C13:第二電容 Co:輸出電容 Cs1,Cs2:電容 DCR1,DCR2:電阻 G1:第一諧振操作訊號 G1A:第一充電操作訊號 G1B:第一放電操作訊號 G2:第二諧振操作訊號 G2A:第二充電操作訊號 G2B:第二放電操作訊號 G3:第三諧振操作訊號 G4:第四諧振操作訊號 G1A’,G1B’,G2A’,G2B’:驅動訊號 G1x’,G1y’,G1z’,G2x’,G2y’ ,G2z’:驅動訊號 G1’,G2’,G3’,G4’:驅動訊號 gm:轉導值 I1:第一電流感測訊號 I2:第二電流感測訊號 Iavg:電流平均訊號 IL1:第一電感電流 IL11:第二電感電流 L1:第一(諧振)電感 L11:第二(諧振)電感 L12:第二(放電/諧振)電感 L13:第二(充電)電感 L2:第一(放電/諧振)電感 L3:第一(充電)電感 Q1~Q10:(第一)開關 Q11~Q20:第二開關 Rcs1,Rcs2:電阻 RL:負載電阻 Ta1,Ta2:延遲時間調整訊號 td1:第一延遲時間 td2:第二延遲時間 Va1,Va2:輸入電壓調整訊號 Vin,Vin1,Vin2:輸入電壓 Vout:輸出電壓20, 50, 60, 70, 80, 100, 110, 120, 130, 150, 160, 170, 180: Resonant switching power converters 201, 501, 601, 701, 801, 1001, 1101, 1201, 1301, 1501, 1601, 1701, 1801: First Power Stage Circuits 202, 502, 602, 702, 802, 1002, 1102, 1202, 1302, 1502, 1602, 1702, 1802: Second Power Stage Circuit 203, 503, 603, 703, 803, 1003, 1103, 1203, 1303, 1503, 1603, 1703: Controller 2031, 8031, 13031: Average circuit 2032a, 2032b, 8032a, 8032b, 13032a, 13032b: Adjustment circuit 2033a, 2033b, 13033a, 13033b: Delay Circuits 204, 504, 604, 704, 804, 1004, 1104, 1204, 1304, 1504, 1604, 1704: Current Sensing Circuits 2041a, 2041b, 8041a, 8041b, 13041, 13041b: Voltage Sensing Circuits 2042a, 2042b, 8042a, 8042b, 13042a, 13042b: Conversion circuit 205, 505, 605, 705, 805, 1005, 1105, 1205, 1305, 1505, 1605, 1705, 1805: Switch Drivers 706~709: Resonant cavity C1~C3: (first) capacitor C11~C13: The second capacitor Co: output capacitance Cs1, Cs2: Capacitance DCR1, DCR2: Resistor G1: The first resonance operation signal G1A: The first charging operation signal G1B: The first discharge operation signal G2: The second resonance operation signal G2A: The second charging operation signal G2B: The second discharge operation signal G3: The third resonance operation signal G4: Fourth resonance operation signal G1A', G1B', G2A', G2B': drive signal G1x’, G1y’, G1z’, G2x’, G2y’ , G2z’: drive signal G1', G2', G3', G4': drive signal gm: transduction value I1: The first current sensing signal I2: The second current sensing signal Iavg: Current average signal IL1: first inductor current IL11: Second inductor current L1: first (resonant) inductance L11: Second (resonant) inductor L12: Second (discharge/resonant) inductor L13: Second (charging) inductor L2: First (discharge/resonant) inductance L3: First (charging) inductor Q1~Q10: (first) switch Q11~Q20: The second switch Rcs1, Rcs2: Resistance RL: load resistance Ta1, Ta2: Delay time adjustment signal td1: first delay time td2: second delay time Va1, Va2: Input voltage adjustment signal Vin, Vin1, Vin2: Input voltage Vout: output voltage

圖1係為習知的電源轉換器之示意圖。FIG. 1 is a schematic diagram of a conventional power converter.

圖2係根據本發明之一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 2 is a schematic circuit diagram showing a resonant switching power converter according to an embodiment of the present invention.

圖3係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖。3 is a schematic circuit diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention.

圖4係根據本發明之一實施例顯示一諧振切換式電源轉換器之第一功率級電路的相關訊號之訊號波形示意圖。4 is a schematic diagram showing signal waveforms of related signals of the first power stage circuit of a resonant switching power converter according to an embodiment of the present invention.

圖5係根據本發明之另一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 5 is a schematic circuit diagram showing a resonant switching power converter according to another embodiment of the present invention.

圖6係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 6 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖7係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 7 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖8係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 8 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖9係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖。9 is a schematic circuit diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention.

圖10係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 10 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖11係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 11 is a schematic circuit diagram showing a resonant switching power converter according to still another embodiment of the present invention.

圖12係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 12 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖13係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。13 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖14係根據本發明之一實施例顯示一諧振切換式電源轉換器中之控制器及電流感測電路之電路示意圖。14 is a circuit schematic diagram showing a controller and a current sensing circuit in a resonant switching power converter according to an embodiment of the present invention.

圖15係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。15 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖16係根據本發明之再一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 16 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖17係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。17 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

圖18係根據本發明之又一實施例顯示一諧振切換式電源轉換器之電路示意圖。FIG. 18 is a schematic circuit diagram showing a resonant switching power converter according to yet another embodiment of the present invention.

130:諧振切換式電源轉換器 130: Resonant Switching Power Converters

1301:第一功率級電路 1301: First Power Stage Circuit

1302:第二功率級電路 1302: Second Power Stage Circuit

1303:控制器 1303: Controller

1304:電流感測電路 1304: Current Sensing Circuit

1305:開關驅動器 1305: Switch Driver

C1~C3:第一電容 C1~C3: The first capacitor

C11~C13:第二電容 C11~C13: The second capacitor

Co:輸出電容 Co: output capacitance

G1A:第一充電操作訊號 G1A: The first charging operation signal

G1B:第一放電操作訊號 G1B: The first discharge operation signal

G2A:第二充電操作訊號 G2A: The second charging operation signal

G2B:第二放電操作訊號 G2B: The second discharge operation signal

G1A’,G1B’,G2A’,G2B’:驅動訊號 G1A', G1B', G2A', G2B': drive signal

I1:第一電流感測訊號 I1: The first current sensing signal

I2:第二電流感測訊號 I2: The second current sensing signal

IL1:第一電感電流 IL1: first inductor current

IL11:第二電感電流 IL11: Second inductor current

L1:第一電感 L1: The first inductor

L11:第二電感 L11: Second inductor

Q1~Q10:第一開關 Q1~Q10: The first switch

Q11~Q20:第二開關 Q11~Q20: The second switch

RL:負載電阻 RL: load resistance

Va1,Va2:輸入電壓調整訊號 Va1, Va2: Input voltage adjustment signal

Vin1,Vin2:輸入電壓 Vin1, Vin2: Input voltage

Vout:輸出電壓 Vout: output voltage

Claims (20)

一種諧振切換式電源轉換器,用以將一或二個輸入電壓轉換為一輸出電壓,該諧振切換式電源轉換器包含: 一第一功率級電路,包括: 複數第一電容; 至少一第一充電電感; 至少一第一放電電感;以及 複數第一開關,用以切換所對應之該複數第一電容、該至少一第一充電電感與該至少一第一放電電感之電連接關係; 一第二功率級電路,包括: 複數第二電容; 至少一第二充電電感; 至少一第二放電電感;以及 複數第二開關,用以切換所對應之該複數第二電容、該至少一第二充電電感與該至少一第二放電電感之電連接關係; 以及 一控制器,用以週期性地於對應的一第一充電程序、一第二充電程序、至少一第一放電程序與至少一第二放電程序中,分別操作對應之該複數第一開關及對應之該複數第二開關; 其中,在該第一充電程序中,控制該複數第一開關的切換,使該複數第一電容與該至少一第一充電電感串聯於該一或二個輸入電壓與該輸出電壓之間,以形成一第一充電路徑; 其中,在該至少一第一放電程序中,控制該複數第一開關的切換,使每一該第一電容與對應之該第一放電電感串聯於該輸出電壓與一接地電位間,而同時形成或輪流形成複數第一放電路徑; 其中,在該第二充電程序中,控制該複數第二開關的切換,使該複數第二電容與該至少一第二充電電感串聯於該一或二個輸入電壓與該輸出電壓之間,以形成一第二充電路徑; 其中,在該至少一第二放電程序中,控制該複數第二開關的切換,使每一該第二電容與對應之該第二放電電感串聯於該輸出電壓與一接地電位間,而同時形成或輪流形成複數第二放電路徑; 其中該控制器更用以根據一第一電流感測訊號及一第二電流感測訊號而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成一固定比例:一第一延遲時間、一第二延遲時間、一第三延遲時間及一第四延遲時間,或者該二個輸入電壓; 其中該第一延遲時間用以延遲該第一充電程序的起始時點,該第二延遲時間用以延遲該至少一第一放電程序的起始時點,該第三延遲時間用以延遲該第二充電程序的起始時點,該第四延遲時間用以延遲該至少一第二放電程序的起始時點; 其中該第一電流感測訊號相關於該至少一第一充電電感及/或該至少一第一放電電感之一第一電感電流,其中該第二電流感測訊號相關於該至少一第二充電電感及/或該至少一第二放電電感之一第二電感電流。 A resonant switching power converter for converting one or two input voltages into an output voltage, the resonant switching power converter comprising: A first power stage circuit, comprising: a plurality of first capacitors; at least one first charging inductor; at least one first discharge inductor; and a plurality of first switches for switching the corresponding electrical connection relationship between the plurality of first capacitors, the at least one first charging inductor and the at least one first discharging inductor; A second power stage circuit comprising: a plurality of second capacitors; at least one second charging inductor; at least one second discharge inductor; and a plurality of second switches for switching the corresponding electrical connection relationships of the plurality of second capacitors, the at least one second charging inductor and the at least one second discharging inductor; as well as a controller for periodically operating the corresponding first switches and the corresponding first switches in a corresponding first charging procedure, a second charging procedure, at least a first discharging procedure and at least a second discharging procedure the plurality of second switches; Wherein, in the first charging procedure, the switching of the plurality of first switches is controlled, so that the plurality of first capacitors and the at least one first charging inductor are connected in series between the one or two input voltages and the output voltage, so as to forming a first charging path; Wherein, in the at least one first discharge procedure, the switching of the plurality of first switches is controlled, so that each of the first capacitors and the corresponding first discharge inductance are connected in series between the output voltage and a ground potential, and simultaneously form Or take turns to form a plurality of first discharge paths; Wherein, in the second charging procedure, the switching of the plurality of second switches is controlled, so that the plurality of second capacitors and the at least one second charging inductor are connected in series between the one or two input voltages and the output voltage, so as to forming a second charging path; Wherein, in the at least one second discharge procedure, the switching of the plurality of second switches is controlled, so that each of the second capacitors and the corresponding second discharge inductance are connected in series between the output voltage and a ground potential, and simultaneously form Or alternately form a plurality of second discharge paths; The controller is further configured to adjust at least one of the following according to a first current sensing signal and a second current sensing signal, so as to make the output current of the first power stage circuit and the output of the second power stage circuit The current is in a fixed ratio: a first delay time, a second delay time, a third delay time and a fourth delay time, or the two input voltages; The first delay time is used to delay the start time of the first charging process, the second delay time is used to delay the start time of the at least one first discharge process, and the third delay time is used to delay the second delay time a start time point of the charging process, and the fourth delay time is used to delay the start time point of the at least one second discharge process; Wherein the first current sensing signal is related to the at least one first charging inductor and/or a first inductor current of the at least one first discharging inductor, wherein the second current sensing signal is related to the at least one second charging The inductor and/or a second inductor current of the at least one second discharge inductor. 如請求項1所述之諧振切換式電源轉換器,其中該至少一第一充電電感為第一單一個充電電感,該至少一第一放電電感為第一單一個放電電感,該至少一第二充電電感為第二單一個充電電感,該至少一第二放電電感為第二單一個放電電感。The resonant switching power converter of claim 1, wherein the at least one first charging inductor is a first single charging inductor, the at least one first discharging inductor is a first single discharging inductor, and the at least one second charging inductor is a first single discharging inductor. The charging inductor is a second single charging inductor, and the at least one second discharging inductor is a second single discharging inductor. 如請求項1所述之諧振切換式電源轉換器,其中該至少一第一充電電感與該至少一第一放電電感為第一單一個相同電感,該至少一第二充電電感與該至少一第二放電電感為第二單一個相同電感。The resonant switching power converter of claim 1, wherein the at least one first charging inductor and the at least one first discharging inductor are a first single identical inductor, and the at least one second charging inductor and the at least one first discharging inductor are the same. The two discharge inductances are the second single identical inductance. 如請求項1所述之諧振切換式電源轉換器,其中該控制器包括至少一電流感測電路,該至少一電流感測電路包括: 至少一電壓感測電路,用以感測該至少一第一充電電感及/或該至少一第一放電電感之兩端的電壓差,而對應產生一第一電壓感測訊號,且用以感測該至少一第二充電電感及/或該至少一第二放電電感之兩端的電壓差,而對應產生一第二電壓感測訊號,其中該第一電壓感測訊號相關於該至少一第一充電電感及/或該至少一第一放電電感之一寄生電阻之跨壓,該第二電壓感測訊號相關於該至少一第二充電電感及/或該至少一第二放電電感之一寄生電阻之跨壓;以及 至少一轉換電路,用以根據該第一電壓感測訊號及該第二電壓感測訊號分別對應產生該第一電流感測訊號及該第二電流感測訊號。 The resonant switching power converter of claim 1, wherein the controller includes at least one current sensing circuit, and the at least one current sensing circuit includes: At least one voltage sensing circuit for sensing the voltage difference between the two ends of the at least one first charging inductor and/or the at least one first discharging inductor, and correspondingly generating a first voltage sensing signal for sensing The voltage difference across the at least one second charging inductor and/or the at least one second discharging inductor generates a second voltage sensing signal, wherein the first voltage sensing signal is related to the at least one first charging The voltage across the inductance and/or a parasitic resistance of the at least one first discharge inductance, the second voltage sensing signal is related to the at least one second charging inductance and/or the parasitic resistance of the at least one second discharge inductance cross pressure; and At least one conversion circuit is used for respectively generating the first current sensing signal and the second current sensing signal according to the first voltage sensing signal and the second voltage sensing signal. 如請求項1所述之諧振切換式電源轉換器,其中該控制器更包括: 一平均電路,用以對該第一電流感測訊號及該第二電流感測訊號取平均值,而產生一電流平均訊號;以及 至少一調整電路,用以比較該電流平均訊號與該第一電流感測訊號,及/或比較該電流平均訊號與該第二電流感測訊號,而產生一調整訊號,而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例:該第一延遲時間、該第二延遲時間、該第三延遲時間及該第四延遲時間,或者該二個輸入電壓。 The resonant switching power converter of claim 1, wherein the controller further comprises: an averaging circuit for averaging the first current sensing signal and the second current sensing signal to generate a current averaging signal; and at least one adjustment circuit for comparing the current average signal with the first current sensing signal and/or comparing the current average signal with the second current sensing signal to generate an adjustment signal for adjusting at least one of the following , so that the output current of the first power stage circuit is proportional to the output current of the second power stage circuit: the first delay time, the second delay time, the third delay time and the fourth delay time , or the two input voltages. 如請求項5所述之諧振切換式電源轉換器,其中該固定比例為1:1。The resonant switching power converter of claim 5, wherein the fixed ratio is 1:1. 如請求項5所述之諧振切換式電源轉換器,其中該控制器更包括: 至少一延遲電路,用以根據該調整訊號而產生該第一延遲時間、該第二延遲時間、該第三延遲時間及/或該第四延遲時間,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例。 The resonant switching power converter of claim 5, wherein the controller further comprises: at least one delay circuit for generating the first delay time, the second delay time, the third delay time and/or the fourth delay time according to the adjustment signal, so as to make the output current of the first power stage circuit is proportional to the output current of the second power stage circuit. 如請求項5所述之諧振切換式電源轉換器,其中該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例: 當該第一電流感測訊號大於該電流平均訊號時,延長該第一延遲時間及/或該第二延遲時間; 當該第一電流感測訊號小於該電流平均訊號時,縮短該第一延遲時間及/或該第二延遲時間; 當該第二電流感測訊號大於該電流平均訊號時,延長該第三延遲時間及/或該第四延遲時間; 及/或 當該第二電流感測訊號小於該電流平均訊號時,縮短該第三延遲時間及/或該第四延遲時間。 The resonant switching power converter of claim 5, wherein the controller adjusts at least one of the following so that the output current of the first power stage circuit and the output current of the second power stage circuit are the fixed ratio: when the first current sensing signal is greater than the current average signal, extending the first delay time and/or the second delay time; When the first current sensing signal is smaller than the current average signal, shortening the first delay time and/or the second delay time; when the second current sensing signal is greater than the current average signal, extending the third delay time and/or the fourth delay time; and/or When the second current sensing signal is smaller than the current average signal, the third delay time and/or the fourth delay time are shortened. 如請求項5所述之諧振切換式電源轉換器,其中該二個輸入電壓包含一第一輸入電壓及一第二輸入電壓,分別對應於該第一功率級電路與該第二功率級電路,其中該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例: 當該第一電流感測訊號大於該電流平均訊號時,減小該第一輸入電壓; 當該第一電流感測訊號小於該電流平均訊號時,增加該第一輸入電壓; 當該第二電流感測訊號大於該電流平均訊號時,減小該第二輸入電壓;及/或 當該第二電流感測訊號小於該電流平均訊號時,增加該第二輸入電壓。 The resonant switching power converter of claim 5, wherein the two input voltages comprise a first input voltage and a second input voltage, corresponding to the first power stage circuit and the second power stage circuit, respectively, wherein the controller adjusts at least one of the following to make the output current of the first power stage circuit and the output current of the second power stage circuit be the fixed ratio: When the first current sensing signal is greater than the current average signal, reducing the first input voltage; When the first current sensing signal is smaller than the current average signal, increasing the first input voltage; When the second current sensing signal is greater than the current average signal, reducing the second input voltage; and/or When the second current sensing signal is smaller than the current average signal, the second input voltage is increased. 如請求項9所述之諧振切換式電源轉換器,其中,該第一功率級電路與該第二功率級電路彼此交錯地進行對應的充電與放電之程序。The resonant switching power converter as claimed in claim 9, wherein the first power stage circuit and the second power stage circuit alternately perform corresponding charging and discharging procedures. 如請求項1所述之諧振切換式電源轉換器,其中該諧振切換式電源轉換器為雙向諧振切換式電源轉換器。The resonant switching power converter of claim 1, wherein the resonant switching power converter is a bidirectional resonant switching power converter. 如請求項1所述之諧振切換式電源轉換器,其中該諧振切換式電源轉換器之該一或二個輸入電壓與該輸出電壓之電壓轉換比率為4:1、3:1或2:1。The resonant switching power converter of claim 1, wherein the voltage conversion ratio of the one or two input voltages to the output voltage of the resonant switching power converter is 4:1, 3:1 or 2:1 . 一種諧振切換式電源轉換器,用以將一或二個輸入電壓轉換為一輸出電壓,該諧振切換式電源轉換器包含: 一第一功率級電路,包括: 至少一第一諧振腔,該第一諧振腔具有彼此串聯之一第一諧振電容與一第一諧振電感; 至少一第一非諧振電容;以及 複數第一開關,耦接於該至少一第一諧振腔及該至少一第一非諧振電容,用以切換所對應之該第一諧振腔與該至少一第一非諧振電容之電連接關係,其中於一第一諧振程序中,對所對應之該第一諧振腔進行諧振充電,其中於一第二諧振程序中,對所對應之該第一諧振腔進行諧振放電,其中該第一非諧振電容之跨壓維持與該一或二個輸入電壓成一固定比例; 一第二功率級電路,包含: 至少一第二諧振腔,該第二諧振腔具有彼此串聯之一第二諧振電容與一第二諧振電感; 至少一第二非諧振電容; 複數第二開關,耦接於該至少一第二諧振腔及該至少一第二非諧振電容,用以切換所對應之該第二諧振腔與該至少一第二非諧振電容之電連接關係,其中於一第三諧振程序中,對所對應之該第二諧振腔進行諧振充電,其中於一第四諧振程序中,對所對應之該第二諧振腔進行諧振放電,其中該第二非諧振電容之跨壓維持與該一或二個輸入電壓成一固定比例;以及 一控制器,用以週期性地於對應的該第一諧振程序、該第二諧振程序、該第三諧振程序與該第四諧振程序中,分別操作對應之該複數第一開關及對應之該複數第二開關,以進行對應的諧振充電與諧振放電; 其中該控制器更用以根據一第一電流感測訊號及一第二電流感測訊號而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成一固定比例:一第一延遲時間、一第二延遲時間、一第三延遲時間及一第四延遲時間,或者該二個輸入電壓; 其中該第一延遲時間用以延遲該第一諧振程序的起始時點,該第二延遲時間用以延遲該第二諧振程序的起始時點,該第三延遲時間用以延遲該第三諧振程序的起始時點,該第四延遲時間用以延遲該第四諧振程序的起始時點; 其中該第一電流感測訊號相關於該第一諧振電感之一第一電感電流,其中該第二電流感測訊號相關於該第二諧振電感之一第二電感電流。 A resonant switching power converter for converting one or two input voltages into an output voltage, the resonant switching power converter comprising: A first power stage circuit, comprising: at least one first resonant cavity, the first resonant cavity has a first resonant capacitor and a first resonant inductance connected in series with each other; at least one first non-resonant capacitor; and A plurality of first switches are coupled to the at least one first resonant cavity and the at least one first non-resonant capacitor for switching the electrical connection relationship between the corresponding first resonant cavity and the at least one first non-resonant capacitor, In a first resonant process, the corresponding first resonant cavity is resonantly charged, and in a second resonant process, resonant discharge is performed on the corresponding first resonant cavity, wherein the first non-resonant The voltage across the capacitor is maintained at a fixed ratio with the one or two input voltages; A second power stage circuit, comprising: at least one second resonant cavity, the second resonant cavity has a second resonant capacitor and a second resonant inductance connected in series with each other; at least one second non-resonant capacitor; A plurality of second switches are coupled to the at least one second resonant cavity and the at least one second non-resonant capacitor for switching the electrical connection relationship between the corresponding second resonant cavity and the at least one second non-resonant capacitor, In a third resonant process, the corresponding second resonant cavity is resonantly charged, and in a fourth resonant process, resonant discharge is performed on the corresponding second resonant cavity, wherein the second non-resonant The voltage across the capacitor is maintained at a constant ratio to the one or both input voltages; and a controller for periodically operating the corresponding first switches and the corresponding first switches in the corresponding first resonance procedure, the second resonance procedure, the third resonance procedure and the fourth resonance procedure a plurality of second switches to perform corresponding resonant charging and resonant discharging; The controller is further configured to adjust at least one of the following according to a first current sensing signal and a second current sensing signal, so as to make the output current of the first power stage circuit and the output of the second power stage circuit The current is in a fixed ratio: a first delay time, a second delay time, a third delay time and a fourth delay time, or the two input voltages; The first delay time is used to delay the start time of the first resonance process, the second delay time is used to delay the start time of the second resonance process, and the third delay time is used to delay the third resonance process The starting time point of , the fourth delay time is used to delay the starting time point of the fourth resonance procedure; The first current sensing signal is related to a first inductor current of the first resonant inductor, and the second current sensing signal is related to a second inductor current of the second resonant inductor. 如請求項13所述之諧振切換式電源轉換器,其中該控制器包括至少一電流感測電路,該至少一電流感測電路包括: 至少一電壓感測電路,用以感測該第一諧振電感之兩端的電壓差,而對應產生一第一電壓感測訊號,且用以感測該第二諧振電感之兩端的電壓差,而對應產生一第二電壓感測訊號,其中該第一電壓感測訊號相關於該至少一第一諧振電感之一寄生電阻之跨壓,該第二電壓感測訊號相關於該至少一第二諧振電感之一寄生電阻之跨壓;以及 至少一轉換電路,用以根據該第一電壓感測訊號及該第二電壓感測訊號分別對應產生該第一電流感測訊號及該第二電流感測訊號。 The resonant switching power converter of claim 13, wherein the controller comprises at least one current sensing circuit, the at least one current sensing circuit comprising: at least one voltage sensing circuit for sensing the voltage difference across the first resonant inductor, and correspondingly generating a first voltage sensing signal for sensing the voltage difference across the second resonant inductor, and A second voltage sensing signal is correspondingly generated, wherein the first voltage sensing signal is related to the cross-voltage of a parasitic resistance of the at least one first resonant inductor, and the second voltage sensing signal is related to the at least one second resonance the voltage across a parasitic resistance of the inductor; and At least one conversion circuit is used for respectively generating the first current sensing signal and the second current sensing signal according to the first voltage sensing signal and the second voltage sensing signal. 如請求項13所述之諧振切換式電源轉換器,其中該控制器更包括: 一平均電路,用以對該第一電流感測訊號及該第二電流感測訊號取平均值,而產生一電流平均訊號;以及 至少一調整電路,用以比較該電流平均訊號與該第一電流感測訊號,及/或比較該電流平均訊號與該第二電流感測訊號,而產生一調整訊號,而調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例:該第一延遲時間、該第二延遲時間、該第三延遲時間及該第四延遲時間,或者該二個輸入電壓。 The resonant switching power converter of claim 13, wherein the controller further comprises: an averaging circuit for averaging the first current sensing signal and the second current sensing signal to generate a current averaging signal; and at least one adjustment circuit for comparing the current average signal with the first current sensing signal and/or comparing the current average signal with the second current sensing signal to generate an adjustment signal for adjusting at least one of the following , so that the output current of the first power stage circuit is proportional to the output current of the second power stage circuit: the first delay time, the second delay time, the third delay time and the fourth delay time , or the two input voltages. 如請求項15所述之諧振切換式電源轉換器,其中該第一功率級電路之輸出電流與該第二功率級電路之輸出電流之該固定比例為1:1。The resonant switching power converter of claim 15, wherein the fixed ratio of the output current of the first power stage circuit to the output current of the second power stage circuit is 1:1. 如請求項15所述之諧振切換式電源轉換器,其中該控制器更包括: 至少一延遲電路,用以根據該調整訊號而產生該第一延遲時間、該第二延遲時間、該第三延遲時間及/或該第四延遲時間,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例。 The resonant switching power converter of claim 15, wherein the controller further comprises: at least one delay circuit for generating the first delay time, the second delay time, the third delay time and/or the fourth delay time according to the adjustment signal, so as to make the output current of the first power stage circuit is proportional to the output current of the second power stage circuit. 如請求項15所述之諧振切換式電源轉換器,其中該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例: 當該第一電流感測訊號大於該電流平均訊號時,延長該第一延遲時間及/或該第二延遲時間; 當該第一電流感測訊號小於該電流平均訊號時,縮短該第一延遲時間及/或該第二延遲時間; 當該第二電流感測訊號大於該電流平均訊號時,延長該第三延遲時間及/或該第四延遲時間; 及/或 當該第二電流感測訊號小於該電流平均訊號時,縮短該第三延遲時間及/或該第四延遲時間。 The resonant switching power converter of claim 15, wherein the controller adjusts at least one of the following so that the output current of the first power stage circuit and the output current of the second power stage circuit are the fixed ratio: when the first current sensing signal is greater than the current average signal, extending the first delay time and/or the second delay time; When the first current sensing signal is smaller than the current average signal, shortening the first delay time and/or the second delay time; when the second current sensing signal is greater than the current average signal, extending the third delay time and/or the fourth delay time; and/or When the second current sensing signal is smaller than the current average signal, the third delay time and/or the fourth delay time are shortened. 如請求項15所述之諧振切換式電源轉換器,其中該二個輸入電壓包含一第一輸入電壓及一第二輸入電壓,分別對應於該第一功率級電路與該第二功率級電路,其中該控制器調整下列至少一者,以使該第一功率級電路之輸出電流與該第二功率級電路之輸出電流成該固定比例: 當該第一電流感測訊號大於該電流平均訊號時,減小該第一輸入電壓; 當該第一電流感測訊號小於該電流平均訊號時,增加該第一輸入電壓; 當該第二電流感測訊號大於該電流平均訊號時,減小該第二輸入電壓;及/或 當該第二電流感測訊號小於該電流平均訊號時,增加該第二輸入電壓。 The resonant switching power converter of claim 15, wherein the two input voltages comprise a first input voltage and a second input voltage, corresponding to the first power stage circuit and the second power stage circuit, respectively, wherein the controller adjusts at least one of the following to make the output current of the first power stage circuit and the output current of the second power stage circuit be the fixed ratio: When the first current sensing signal is greater than the current average signal, reducing the first input voltage; When the first current sensing signal is smaller than the current average signal, increasing the first input voltage; When the second current sensing signal is greater than the current average signal, reducing the second input voltage; and/or When the second current sensing signal is smaller than the current average signal, the second input voltage is increased. 如請求項19所述之諧振切換式電源轉換器,其中,該第一功率級電路與該第二功率級電路彼此交錯地進行對應的諧振充電與諧振放電之程序。The resonant switching power converter of claim 19, wherein the first power stage circuit and the second power stage circuit alternately perform corresponding resonant charging and resonant discharging procedures.
TW110103440A 2020-11-02 2021-01-29 Resonant switching power converter TWI764551B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/499,252 US11742751B2 (en) 2020-11-02 2021-10-12 Resonant switching power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063108455P 2020-11-02 2020-11-02
US63/108455 2020-11-02

Publications (2)

Publication Number Publication Date
TWI764551B true TWI764551B (en) 2022-05-11
TW202220351A TW202220351A (en) 2022-05-16

Family

ID=81362295

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110103440A TWI764551B (en) 2020-11-02 2021-01-29 Resonant switching power converter

Country Status (2)

Country Link
CN (1) CN114448243A (en)
TW (1) TWI764551B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069516A1 (en) * 2013-10-29 2015-05-14 Massachusetts Institute Of Technology Switched-capacitor split drive transformer power conversion circuit
TWI672898B (en) * 2018-07-17 2019-09-21 邱煌仁 Bidirectional DC-DC converter
TWI705652B (en) * 2019-03-15 2020-09-21 國立臺灣大學 Llc resonant converter with magnetic flux balance control circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069516A1 (en) * 2013-10-29 2015-05-14 Massachusetts Institute Of Technology Switched-capacitor split drive transformer power conversion circuit
US20160190943A1 (en) * 2013-10-29 2016-06-30 Massachusetts Institute Of Technology Switched-Capacitor Split Drive Transformer Power Conversion Circuit
US9825545B2 (en) * 2013-10-29 2017-11-21 Massachusetts Institute Of Technology Switched-capacitor split drive transformer power conversion circuit
TWI672898B (en) * 2018-07-17 2019-09-21 邱煌仁 Bidirectional DC-DC converter
TW202007064A (en) * 2018-07-17 2020-02-01 邱煌仁 Bidirectional DC-DC converter
TWI705652B (en) * 2019-03-15 2020-09-21 國立臺灣大學 Llc resonant converter with magnetic flux balance control circuit
TW202037062A (en) * 2019-03-15 2020-10-01 國立臺灣大學 Llc resonant converter with magnetic flux balance control circuit

Also Published As

Publication number Publication date
TW202220351A (en) 2022-05-16
CN114448243A (en) 2022-05-06

Similar Documents

Publication Publication Date Title
US11736010B2 (en) Power converter with capacitive energy transfer and fast dynamic response
US6304065B1 (en) Power electronic circuits with all terminal currents non-pulsating
TWI677776B (en) Voltage Regulator
JP2708007B2 (en) Sample and hold circuit
TWI795782B (en) Pipeline resonant and non-resonant switched capacitor converter circuit
US10177663B2 (en) DC-DC converting circuit and multi-phase power controller thereof
JP2023523864A (en) power converter
CN115699553A (en) Power converter
TWI764551B (en) Resonant switching power converter
JP3870916B2 (en) Sawtooth generator
JP2022131740A (en) voltage converter
TWI755144B (en) Resonant switching power converter
JP7334752B2 (en) voltage converter
CN113708604B (en) Resonant switching power converter
CN111682756B (en) Hybrid power converter and control method thereof
TWI818551B (en) Switched capacitor voltage converter circuit and switched capacitor voltage conversion method
US11742751B2 (en) Resonant switching power converter
TWI746163B (en) Resonant switching power converter
TW202245393A (en) Resonant switching power converter circuit
CN114285270B (en) High-power density DC-DC converter
Elsehrawy et al. Five-level dynamic hybrid dc-dc converter
TW202234808A (en) Scalable multi-phase switching converter and converter module and control method thereof
JP3450246B2 (en) DA conversion circuit and charge / discharge method thereof
JPH0313825B2 (en)
JP2004235832A (en) Comparator