TWI764199B - Laser soldering device and laser soldering method - Google Patents

Laser soldering device and laser soldering method

Info

Publication number
TWI764199B
TWI764199B TW109123503A TW109123503A TWI764199B TW I764199 B TWI764199 B TW I764199B TW 109123503 A TW109123503 A TW 109123503A TW 109123503 A TW109123503 A TW 109123503A TW I764199 B TWI764199 B TW I764199B
Authority
TW
Taiwan
Prior art keywords
temperature
power
gain
laser
error value
Prior art date
Application number
TW109123503A
Other languages
Chinese (zh)
Other versions
TW202202262A (en
Inventor
丁仁峰
陳鴻文
吳澍涵
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW109123503A priority Critical patent/TWI764199B/en
Publication of TW202202262A publication Critical patent/TW202202262A/en
Application granted granted Critical
Publication of TWI764199B publication Critical patent/TWI764199B/en

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A laser soldering device includes a laser source, a lens group, a temperature sensor, and a feedback controller. The laser source transmits a power adjustable laser beam according to a control signal. The temperature sensor receives the infrared rays radiated from a welding point where the laser beam irradiates, to detect the temperature of the welding point, and correspondingly outputs a sensing signal according to the detected temperature. When the detected temperature are within a first temperature interval based on a target temperature, the feedback controller executes a PID algorithm to obtain a predicted error value according to an error value between the detected temperature and the target temperature. The feedback controller controls the laser source according to the predicted error value, and adjusts the transmitted power of the laser beam accordingly, so that the detected temperature can be substantially equal to the target temperature.

Description

雷射焊錫裝置及雷射焊錫方法Laser soldering device and laser soldering method

本發明係有關於雷射焊錫裝置及雷射焊錫方法,特別是關於一種同時運用功率模式及溫度回授模式的雷射焊錫裝置及雷射焊錫方法。The present invention relates to a laser soldering device and a laser soldering method, and more particularly, to a laser soldering device and a laser soldering method using a power mode and a temperature feedback mode at the same time.

雷射焊錫製程的雷射控制分為功率模式及溫度回授模式。功率模式依據焊點特性設定雷射光束輸出功率。但因為雷射光束的能量持續累積,容易使得焊接溫度過高,造成元件或是PCB受損。另一方面,由於元件來料品質不一、元件針腳或PCB焊盤表面氧化程度不同,造成元件對於雷射光束的吸收率不一樣,因而導致能量累積不足,使得焊點加熱溫度較低,而造成冷焊或錫絲未融的問題。The laser control of the laser soldering process is divided into power mode and temperature feedback mode. The power mode sets the laser beam output power according to the characteristics of the solder joints. However, because the energy of the laser beam continues to accumulate, it is easy to cause the soldering temperature to be too high, resulting in damage to components or PCBs. On the other hand, due to the different quality of incoming components and the degree of oxidation on the surface of the component pins or PCB pads, the absorption rate of the components to the laser beam is different, resulting in insufficient energy accumulation, resulting in a lower heating temperature of the solder joints. Causes the problem of cold soldering or unmelted tin wire.

溫度回授模式的加熱過程係由紅外線感測器接收加熱焊點所產生的紅外線訊號,回饋給回授控制器。回授控制器設定目標溫度曲線調整雷射源的輸出功率,進而達到焊料熔點溫度,使得元件透過焊料結合於PCB上。溫度回授模式提高了焊錫加工的品質及穩定性。但若雷射光束激發出異常的光線,使得溫度感測器接收異常訊號,導致溫度回授的感測訊號不正確,仍然會有焊錫失誤的情況。In the heating process of the temperature feedback mode, the infrared sensor receives the infrared signal generated by the heated solder joint and feeds it back to the feedback controller. The feedback controller sets the target temperature curve to adjust the output power of the laser source, and then reaches the melting point temperature of the solder, so that the components are bonded to the PCB through the solder. The temperature feedback mode improves the quality and stability of solder processing. However, if the laser beam excites abnormal light, the temperature sensor receives abnormal signals, resulting in incorrect temperature feedback sensing signals, and soldering errors may still occur.

依據本發明實施例之雷射焊錫裝置,包括:一雷射源、一透鏡組、一溫度感測器、一回授控制器。雷射源依據一控制訊號,發射功率可調的一雷射光束。透鏡組將雷射光束輸出至一焊接點。溫度感測器接收雷射光束照射至焊接點時所輻射出的紅外線,用以偵測焊接點的溫度,並且依據所偵測的溫度對應地輸出一感測訊號。回授控制器接收感測訊號,並且依據感測訊號傳送控制訊號予該雷射源。當所偵測的溫度落在基於一目標溫度的一第一溫度區間內時,回授控制器執行一比例-積分-微分(PID)演算法,依據所偵測的溫度和目標溫度的一誤差值計算出一預測誤差值。回授控制器依據預測誤差值控制雷射源,對應地調整雷射光束的發射功率,使得所偵測的溫度可實質相等於目標溫度。當所偵測的溫度落在基於目標溫度的第一溫度區間外時,回授控制器依據一預設功率控制雷射源,使得雷射源發射符合預設功率的雷射光束。A laser soldering device according to an embodiment of the present invention includes: a laser source, a lens group, a temperature sensor, and a feedback controller. The laser source emits a laser beam with adjustable power according to a control signal. The lens group outputs the laser beam to a welding point. The temperature sensor receives the infrared rays radiated when the laser beam irradiates the welding point, is used for detecting the temperature of the welding point, and outputs a sensing signal correspondingly according to the detected temperature. The feedback controller receives the sensing signal, and transmits the control signal to the laser source according to the sensing signal. When the detected temperature falls within a first temperature range based on a target temperature, the feedback controller executes a proportional-integral-derivative (PID) algorithm based on an error between the detected temperature and the target temperature value to calculate a prediction error value. The feedback controller controls the laser source according to the prediction error value, and adjusts the emission power of the laser beam accordingly, so that the detected temperature can be substantially equal to the target temperature. When the detected temperature falls outside the first temperature range based on the target temperature, the feedback controller controls the laser source according to a preset power, so that the laser source emits a laser beam conforming to the preset power.

如上所述之雷射焊錫裝置,雷射源包括一功率計。功率計偵測雷射光束的功率,並且依據所偵測雷射光束的功率,對應地輸出一功率回授訊號予回授控制器,使得回授控制器可依據功率回授訊號,透過控制訊號,調整雷射源所發射該雷射光束的功率。In the above-mentioned laser soldering device, the laser source includes a power meter. The power meter detects the power of the laser beam, and according to the detected power of the laser beam, correspondingly outputs a power feedback signal to the feedback controller, so that the feedback controller can pass the control signal according to the power feedback signal. , adjust the power of the laser beam emitted by the laser source.

如上所述之雷射焊錫裝置,該回授控制器執行該比例-積分-微分演算法而產生一比例演算部(P)、一積分演算部(I)及一微分演算部(D)。比例演算部將當下所偵測的溫度與該目標溫度的該誤差值乘以一第一增益(K p),而得到一比例結果。積分演算部將過去每一時間點的誤差值相加,而得到一誤差總和,並且將誤差總和乘以一第二增益(K i),而得到一積分結果。微分演算部將當下的該誤差值進行一階微分,而得到一未來誤差值,用以預測誤差值在未來的變化,並且將該未來誤差值乘以一第三增益(K d),而得到一微分結果。 In the above-mentioned laser soldering device, the feedback controller executes the proportional-integral-derivative algorithm to generate a proportional calculation part (P), an integral calculation part (I) and a differential calculation part (D). The proportional calculation part multiplies the error value between the currently detected temperature and the target temperature by a first gain (K p ) to obtain a proportional result. The integral calculation part adds the error values at each past time point to obtain an error sum, and multiplies the error sum by a second gain (K i ) to obtain an integral result. The differential calculation part performs first-order differentiation on the current error value to obtain a future error value, which is used to predict the future change of the error value, and multiplies the future error value by a third gain (K d ) to obtain A differential result.

如上所述之雷射焊錫裝置,回授控制器將比例結果、積分結果及微分結果相加,而得到預測誤差值。In the laser soldering device described above, the feedback controller adds the proportional result, the integral result and the differential result to obtain the prediction error value.

如上所述之雷射焊錫裝置,當所偵測的溫度落在基於目標溫度的第一溫度區間內,並且也在基於目標溫度的一第二溫度區間內時,回授控制器將第一增益、第二增益及第三增益設為一第一數值組。第一溫度區間包括第二溫度區間。In the laser soldering device as described above, when the detected temperature falls within a first temperature range based on the target temperature and is also within a second temperature range based on the target temperature, the feedback controller increases the first gain , the second gain and the third gain are set as a first value group. The first temperature interval includes the second temperature interval.

如上所述之雷射焊錫裝置,當所偵測的溫度落在基於目標溫度的第一溫度區間內,但不在基於目標溫度的第二溫度區間內時,回授控制器將第一增益、第二增益及第三增益設為一第二數值組。第二數值組不完全相同且不完全相異於第一數值組。In the laser soldering device described above, when the detected temperature falls within the first temperature range based on the target temperature, but is not within the second temperature range based on the target temperature, the feedback controller adjusts the first gain, the second temperature range, and the The second gain and the third gain are set as a second value group. The second set of values is not identical and not completely different from the first set of values.

依據本發明實施例之雷射焊錫方法,包括以下步驟:依據一控制訊號,發射功率可調的一雷射光束至一焊接點;接收雷射光束照射至焊接點時所輻射出的紅外線,用以偵測焊接點的溫度;依據所偵測的溫度對應地輸出一感測訊號;接收感測訊號,並且從感側訊號中得到所偵測的溫度;當所偵測的溫度落在基於一目標溫度的一第一溫度區間內時,執行一比例-積分-微分(PID)演算法,依據所偵測的溫度和目標溫度的一誤差值計算出一預測誤差值;依據預測誤差值對應地調整雷射光束的發射功率,使得所偵測的溫度可實質相等於目標溫度;當所偵測的溫度落在基於目標溫度的第一溫度區間外時,依據一預設功率調整雷射光束的發射功率。The laser soldering method according to the embodiment of the present invention includes the following steps: transmitting a laser beam with adjustable power to a welding point according to a control signal; to detect the temperature of the solder joint; output a sensing signal correspondingly according to the detected temperature; receive the sensing signal, and obtain the detected temperature from the sensing side signal; when the detected temperature falls based on a When the target temperature is within a first temperature range, a proportional-integral-derivative (PID) algorithm is executed, and a prediction error value is calculated according to an error value between the detected temperature and the target temperature; correspondingly according to the prediction error value Adjust the emission power of the laser beam so that the detected temperature can be substantially equal to the target temperature; when the detected temperature falls outside the first temperature range based on the target temperature, adjust the laser beam according to a preset power transmit power.

如上所述之雷射焊錫方法,執行比例-積分-微分演算法包括:將當下所偵測的溫度與目標溫度的誤差值乘以一第一增益(K p),而得到一比例結果;將過去每一時間點的誤差值相加,而得到一誤差總和,並且將誤差總和乘以一第二增益(K i),而得到一積分結果;將當下的該誤差值進行一階微分,而得到一未來誤差值,用以預測誤差值在未來的變化,並且將未來誤差值乘以一第三增益(K d),而得到一微分結果。 In the above-mentioned laser soldering method, performing the proportional-integral-derivative algorithm includes: multiplying the error value between the currently detected temperature and the target temperature by a first gain (K p ) to obtain a proportional result; The error values at each time point in the past are added to obtain an error sum, and the error sum is multiplied by a second gain (K i ) to obtain an integration result; the current error value is first-order differential, and A future error value is obtained to predict the future change of the error value, and the future error value is multiplied by a third gain (K d ) to obtain a differential result.

如上所述之雷射焊錫方法,比例-積分-微分演算法更包括:將比例結果、積分結果及微分結果相加,而得到預測誤差值。In the above-mentioned laser soldering method, the proportional-integral-derivative algorithm further includes: adding the proportional result, the integral result and the differential result to obtain the prediction error value.

如上所述之雷射焊錫方法,當所偵測的溫度落在基於目標溫度的第一溫度區間內,並且也在基於目標溫度的一第二溫度區間內時,將第一增益、第二增益及第三增益設為一第一數值組。第一溫度區間包括第二溫度區間。In the laser soldering method as described above, when the detected temperature falls within the first temperature range based on the target temperature and is also within a second temperature range based on the target temperature, the first gain and the second gain are and the third gain is set as a first value group. The first temperature interval includes the second temperature interval.

如上所述之雷射焊錫方法,當所偵測的溫度落在基於目標溫度的第一溫度區間內,但不在基於目標溫度的第二溫度區間內時,將第一增益、第二增益及第三增益設為一第二數值組。第二數值組相異於第一數值組。In the laser soldering method as described above, when the detected temperature falls within the first temperature range based on the target temperature, but is not within the second temperature range based on the target temperature, the first gain, the second gain and the The three gains are set as a second value group. The second set of values is different from the first set of values.

本發明係參照所附圖式進行描述,其中遍及圖式上的相同參考數字標示了相似或相同的元件。上述圖式並沒有依照實際比例大小描繪,其僅僅提供對本發明的說明。一些發明的型態描述於下方作為圖解示範應用的參考。這意味著許多特殊的細節,關係及方法被闡述來對這個發明提供完整的了解。無論如何,擁有相關領域通常知識的人將認識到若沒有一個或更多的特殊細節或用其他方法,此發明仍然可以被實現。以其他例子來說,眾所皆知的結構或操作並沒有詳細列出以避免對這發明的混淆。本發明並沒有被闡述的行為或事件順序所侷限,如有些行為可能發生在不同的順序亦或同時發生在其他行為或事件之下。此外,並非所有闡述的行為或事件都需要被執行在與現有發明相同的方法之中。The invention is described with reference to the accompanying drawings, wherein like reference numerals designate similar or identical elements throughout. The above drawings are not drawn to actual scale, but merely provide an illustration of the present invention. Some aspects of the invention are described below as references to illustrate exemplary applications. This means that many specific details, relationships and methods are set forth to provide a complete understanding of the invention. In any event, one having ordinary knowledge in the relevant art will recognize that the invention may be practiced without one or more of the specific details or otherwise. In other instances, well-known structures or operations have not been listed in detail to avoid obscuring the invention. The invention is not limited by the recited acts or order of events, as some acts may occur in a different order or concurrently with other acts or events. Furthermore, not all recited acts or events need to be performed in the same way as prior inventions.

第1圖為本發明實施例之雷射焊錫裝置100及其操作環境的示意圖。如第1圖所示,雷射焊錫裝置100包括一雷射源102、一透鏡組104、一溫度感測器106,以及一回授控制器108。雷射源102依據來自回授控制器108的一控制訊號112發射功率可調的一雷射光束118。在一些實施例中,雷射源102可為包含一雷射二極體(未圖示)的雷射產生器,或其他類型之雷射產生器。在一些實施中,雷射源102更包括一功率計110。功率計110可偵測雷射光束118的功率,並且依據所偵測雷射光束118的功率,對應地輸出一功率回授訊號114予回授控制器108,使得回授控制器108可依據功率回授訊號114,並且透過控制訊號112,調整雷射源102所發射雷射光束118的功率。FIG. 1 is a schematic diagram of a laser soldering device 100 and its operating environment according to an embodiment of the present invention. As shown in FIG. 1 , the laser soldering device 100 includes a laser source 102 , a lens group 104 , a temperature sensor 106 , and a feedback controller 108 . The laser source 102 emits a laser beam 118 with adjustable power according to a control signal 112 from the feedback controller 108 . In some embodiments, the laser source 102 may be a laser generator including a laser diode (not shown), or other types of laser generators. In some implementations, the laser source 102 further includes a power meter 110 . The power meter 110 can detect the power of the laser beam 118, and according to the detected power of the laser beam 118, correspondingly output a power feedback signal 114 to the feedback controller 108, so that the feedback controller 108 can detect the power of the laser beam 118 according to the power The signal 114 is fed back, and the power of the laser beam 118 emitted by the laser source 102 is adjusted through the control signal 112 .

雷射源102所發射的雷射光束118透過光纖130被傳送至透鏡組104。透鏡組104將雷射光束118輸出至一電路板120上的一焊盤124及一元件針腳122,用以將元件針腳122與焊盤124焊接在一起,使得元件針腳122得以固定在電路板120上。在一些實施例中,透鏡組104可為凸透鏡組,或凹凸透鏡組合鏡組,用以將雷射光束118投射至元件針腳122及焊盤124上。在一些實施例中,雷射源102可由X光、紫外光、兆赫波、微波等電磁波的產生器所取代,本發明不限於此。在一些實施例中,雷射光束118不限於聚焦光束,亦可以是平行光束。The laser beam 118 emitted by the laser source 102 is transmitted to the lens group 104 through the optical fiber 130 . The lens group 104 outputs the laser beam 118 to a pad 124 and a component pin 122 on a circuit board 120 for soldering the component pin 122 and the pad 124 together, so that the component pin 122 can be fixed on the circuit board 120 superior. In some embodiments, the lens group 104 may be a convex lens group or a combination lens group of concave-convex lenses, for projecting the laser beam 118 onto the device pins 122 and the pads 124 . In some embodiments, the laser source 102 can be replaced by a generator of electromagnetic waves such as X-ray, ultraviolet light, megahertz wave, microwave, etc., but the invention is not limited thereto. In some embodiments, the laser beam 118 is not limited to a focused beam, but can also be a parallel beam.

當雷射光束118照射至元件針腳122及焊盤124上,由於雷射光束118的高能量特性,使得針腳122及焊盤124的溫度隨著時間持續上升,當針腳122及焊盤124的溫度高於焊料(例如錫絲,未圖示)的熔點時,焊料會熔化為液態並且滲進元件針腳122及焊盤124之間的孔洞。待降溫後,焊料重新凝固為固態,使得元件針腳122與焊盤124可電性連接。在一些實施例中, 在持續升溫至一目標溫度的過程中,針腳122、焊盤124及電路板120(通稱為一焊接點)的表面會輻射紅外線126,並且由溫度感測器106所偵測。When the laser beam 118 is irradiated on the pin 122 and the pad 124 of the device, due to the high energy characteristic of the laser beam 118, the temperature of the pin 122 and the pad 124 continues to rise with time. Above the melting point of the solder (eg, tin wire, not shown), the solder melts into a liquid state and penetrates into the holes between the component pins 122 and the pads 124 . After cooling down, the solder solidifies into a solid state again, so that the component pins 122 and the pads 124 can be electrically connected. In some embodiments, in the process of continuously heating up to a target temperature, the surface of the pins 122 , the pads 124 and the circuit board 120 (commonly referred to as a solder joint) will radiate infrared rays 126 , which are detected by the temperature sensor 106 . Measurement.

溫度感測器106接收雷射光束118照射至針腳122、焊盤124時所輻射出的紅外線126,並且依據所接收紅外線126的強度,用以偵測針腳122、焊盤124的溫度,並且依據所偵測的溫度對應地輸出一感測訊號116予回授控制器108。一般來說,當針腳122、焊盤124及電路120的溫度愈高,則其所輻射出的紅外線126的強度愈強,使的溫度感測器106所接收的紅外線126強度也愈大,溫度感測器106所量測到針腳122、焊盤124及電路120的溫度也愈高。接著,溫度感測器106依據所偵測焊接點的溫度,傳送感測訊號116予回授控制器108。The temperature sensor 106 receives the infrared rays 126 radiated when the laser beam 118 is irradiated to the pins 122 and the pads 124 , and is used to detect the temperature of the pins 122 and the pads 124 according to the intensity of the received infrared rays 126 . The detected temperature correspondingly outputs a sensing signal 116 to the feedback controller 108 . Generally speaking, when the temperature of the pins 122, the pads 124 and the circuit 120 is higher, the intensity of the infrared rays 126 radiated by them is stronger, so that the intensity of the infrared rays 126 received by the temperature sensor 106 is also higher, and the temperature The temperature of the pins 122 , the pads 124 and the circuit 120 measured by the sensor 106 is also higher. Then, the temperature sensor 106 transmits the sensing signal 116 to the feedback controller 108 according to the detected temperature of the solder joint.

在一些實施例中,感測訊號116可載有包括複數位元的溫度資訊,或稱為溫度原始資料(raw data)。溫度感測器106係將所偵測焊接點的溫度轉換為數位形式的溫度原始資料,並且將溫度原始資料載在感測訊號116,最後傳送至回授控制器108。在一些實施例中,溫度感測器106可為一焦電式紅外線(pyroelectric Infrared;PIR)感測器、一熱電堆式(thermopile)紅外線感測器,或其他類型的紅外線感測器。在一些實施例中,透鏡組104與溫度感測器106係設置在一雷射焊錫子裝置128內,但本發明不限於此。在一些實施例中,透鏡組104及溫度感測器106可分別獨立設置在雷射焊錫裝置100之內。在一些實施例中,溫度感測器106不限於非接觸感測器,亦可是接觸式感測器等溫度量測儀器或等效溫度感測器。在一些實施例中,溫度感測器106所量測的目標不限於紅外線,亦可是遠紅外光、色溫等,可以量測等效溫度的目標。In some embodiments, the sensing signal 116 may carry temperature information including a plurality of bits, or referred to as temperature raw data. The temperature sensor 106 converts the temperature of the detected solder joints into temperature raw data in digital form, and carries the temperature raw data in the sensing signal 116 , and finally transmits it to the feedback controller 108 . In some embodiments, the temperature sensor 106 may be a pyroelectric infrared (PIR) sensor, a thermopile infrared sensor, or other types of infrared sensors. In some embodiments, the lens group 104 and the temperature sensor 106 are disposed in a laser soldering sub-device 128, but the invention is not limited thereto. In some embodiments, the lens group 104 and the temperature sensor 106 may be independently disposed within the laser soldering device 100 . In some embodiments, the temperature sensor 106 is not limited to a non-contact sensor, and may also be a temperature measuring instrument such as a contact sensor or an equivalent temperature sensor. In some embodiments, the target measured by the temperature sensor 106 is not limited to infrared rays, but can also be far-infrared light, color temperature, etc., and can measure the target of equivalent temperature.

回授控制器108接收來自溫度感測器106的感測訊號116。在一些實施例中,回授控制器108從所接收的感測訊號116中取出所偵測焊接點的溫度資訊,並且在當下時間點將所偵測的溫度與一目標溫度做比較,用以依據所偵測的溫度與目標溫度的一誤差值,對應地傳送控制訊號112予雷射源102。The feedback controller 108 receives the sensing signal 116 from the temperature sensor 106 . In some embodiments, the feedback controller 108 extracts the temperature information of the detected solder joints from the received sensing signal 116, and compares the detected temperature with a target temperature at the current time point for the basis of An error value between the detected temperature and the target temperature is correspondingly sent to the laser source 102 by the control signal 112 .

第2圖為本發明實施例之第1圖雷射焊錫裝置100的溫度感測器106的偵測溫度與一目標溫度的關係圖。如第2圖所示,第1圖的回授控制器108可在不同時間點設定不同的目標溫度,進而形成第2圖中的目標溫度曲線200。回授控制器108在不同時間點讀取溫度感測器106所傳送感測訊號116內的偵測溫度資訊,用以形成第2圖的偵測溫度曲線202。在一些實施例中,產線測試人員透過雷射焊錫裝置100的一使用者介面(UI)(未圖示)設定目標溫度曲線200,使得回授控制器108在不同時間點依據偵測溫度及目標溫度的誤差值做對應的操作。FIG. 2 is a relationship diagram between the detected temperature of the temperature sensor 106 of the laser soldering device 100 of FIG. 1 and a target temperature according to the embodiment of the present invention. As shown in FIG. 2 , the feedback controller 108 in FIG. 1 can set different target temperatures at different time points, thereby forming the target temperature curve 200 in FIG. 2 . The feedback controller 108 reads the detected temperature information in the sensing signal 116 transmitted by the temperature sensor 106 at different time points to form the detected temperature curve 202 in FIG. 2 . In some embodiments, the production line tester sets the target temperature curve 200 through a user interface (UI) (not shown) of the laser soldering device 100 , so that the feedback controller 108 at different time points according to the detected temperature and Perform corresponding operations on the error value of the target temperature.

在一些實施例中,回授控制器108可依據焊接需求以及過往的焊接經驗設定基於目標溫度曲線200而變化的溫度區間204及溫度區間206。當偵測溫度落在基於目標溫度曲線200的溫度區間204內,亦即偵測溫度與目標溫度的誤差值的絕對值小於等於一第一閾值時,回授控制器108執行一比例-積分-微分(PID)演算法,依據偵測溫度和目標溫度的誤差值計算出一預測誤差值。回授控制器108依據預測誤差值,透過控制訊號112控制雷射源102,對應地調整雷射光束118的發射功率,使得偵測溫度可實質相等或接近於目標溫度。當偵測溫度落在基於目標溫度曲線200的溫度區間204外,亦即偵測溫度與目標溫度的誤差值的絕對值大於第一閾值時,回授控制器108依據一預設功率,透過控制訊號112控制雷射源102,使得雷射源102發射符合預設功率的雷射光束118。In some embodiments, the feedback controller 108 may set the temperature interval 204 and the temperature interval 206 which are changed based on the target temperature curve 200 according to the welding requirements and past welding experience. When the detected temperature falls within the temperature range 204 based on the target temperature curve 200 , that is, when the absolute value of the error between the detected temperature and the target temperature is less than or equal to a first threshold, the feedback controller 108 executes a proportional-integral- A differential (PID) algorithm calculates a prediction error value according to the error value between the detected temperature and the target temperature. The feedback controller 108 controls the laser source 102 through the control signal 112 according to the prediction error value, and adjusts the emission power of the laser beam 118 accordingly, so that the detected temperature can be substantially equal to or close to the target temperature. When the detected temperature falls outside the temperature range 204 based on the target temperature curve 200 , that is, when the absolute value of the error between the detected temperature and the target temperature is greater than the first threshold, the feedback controller 108 controls the The signal 112 controls the laser source 102 so that the laser source 102 emits a laser beam 118 with a predetermined power.

舉例來說,如第2圖所示,在時間點t1時,目標溫度為目標溫度曲線200上點E的溫度值,偵測溫度為偵測溫度曲線202上點A的溫度值。由於在時間點t1時偵測溫度落在溫度區間204之外,換句話說,偵測溫度與目標溫度的誤差值的絕對值大於第一閾值,因此第1圖的雷射焊錫裝置100的回授控制器108依據預設功率,透過控制訊號112控制雷射源102,使得雷射源102發射符合預設功率的雷射光束118。在一些實施例中,不同時間點的預設功率可為不同的數值,亦可為相同的數值。在一些實施例中,預設功率係由過去焊接經驗所得到的設定值,藉由調整雷射光束118的發射功率至預設功率,可使得溫度感測器106的偵測溫度與目標溫度之間的誤差值能快速地收斂。For example, as shown in FIG. 2 , at time point t1 , the target temperature is the temperature value at point E on the target temperature curve 200 , and the detection temperature is the temperature value at point A on the detection temperature curve 202 . Since the detected temperature falls outside the temperature range 204 at the time point t1, in other words, the absolute value of the error between the detected temperature and the target temperature is greater than the first threshold, so the return of the laser soldering device 100 in FIG. The controller 108 controls the laser source 102 through the control signal 112 according to the preset power, so that the laser source 102 emits the laser beam 118 with the preset power. In some embodiments, the preset powers at different time points may be different values, or may be the same value. In some embodiments, the preset power is a set value obtained from past welding experience. By adjusting the transmission power of the laser beam 118 to the preset power, the difference between the detected temperature of the temperature sensor 106 and the target temperature can be achieved. The error value between the two can converge quickly.

在時間點t2時,目標溫度為目標溫度曲線200上點F的溫度值,偵測溫度為偵測溫度曲線202上點B的溫度值。由於在時間點t2時偵測溫度落在溫度區間204之內,換句話說,偵測溫度與目標溫度的誤差值的絕對值小於等於第一閾值,因此回授控制器108執行比例-積分-微分(PID)演算法,依據偵測溫度和目標溫度的誤差值計算出預測誤差值。回授控制器108再依據預測誤差值,對應地間接調整雷射光束118的發射功率,使得溫度感測器106所偵測焊接點的偵測溫度可以逼近於目標溫度。At time point t2 , the target temperature is the temperature value at point F on the target temperature curve 200 , and the detected temperature is the temperature value at point B on the detected temperature curve 202 . Since the detected temperature falls within the temperature range 204 at time point t2, in other words, the absolute value of the error between the detected temperature and the target temperature is less than or equal to the first threshold, the feedback controller 108 executes the proportional-integral- The differential (PID) algorithm calculates the prediction error value based on the error value between the detected temperature and the target temperature. The feedback controller 108 then indirectly adjusts the emission power of the laser beam 118 according to the prediction error value, so that the detected temperature of the welding point detected by the temperature sensor 106 can approach the target temperature.

同理,在時間點t3時,目標溫度為目標溫度曲線200上點G的溫度值,偵測溫度為偵測溫度曲線202上點C的溫度值。由於在時間點t3時偵測溫度落在溫度區間204之內,換句話說,偵測溫度與目標溫度的誤差值的絕對值小於等於第一閾值,因此回授控制器108也執行比例-積分-微分演算法,而依據偵測溫度和目標溫度的誤差值計算出預測誤差值。之後,回授控制器108再依據預測誤差值,對應地間接調整雷射光束118的發射功率,使得溫度感測器106所偵測焊接點的偵測溫度可以逼近於目標溫度。Similarly, at time point t3 , the target temperature is the temperature value at point G on the target temperature curve 200 , and the detected temperature is the temperature value at point C on the detection temperature curve 202 . Since the detected temperature falls within the temperature range 204 at the time point t3, in other words, the absolute value of the error between the detected temperature and the target temperature is less than or equal to the first threshold, the feedback controller 108 also performs proportional-integral - Differential algorithm, which calculates the prediction error value according to the error value between the detected temperature and the target temperature. Then, the feedback controller 108 indirectly adjusts the emission power of the laser beam 118 according to the prediction error value, so that the detected temperature of the welding point detected by the temperature sensor 106 can approach the target temperature.

在一些實施例中,回授控制器108執行比例-積分-微分(PID)演算法,而產生一比例演算部(P)、一積分演算部(I)及一微分演算部(D)。比例演算部(P)具有一比例增益(K p)。積分演算部(I)具有一積分增益(K i)。微分演算部(D)具有一微分增益(K d)。比例增益(K p)、積分增益(K i)及微分增益(K d)係用以調整比例演算部(P)、積分演算部(I)及微分演算部(D)在整個比例-積分-微分(PID)演算法中所分別佔據的增益值。回授控制器108可依據偵測溫度與目標溫度之間的誤差值對應地設定比例增益(K p)、積分增益(K i)及微分增益(K d),使得偵測溫度可以實質相等或接近於目標溫度。 In some embodiments, the feedback controller 108 executes a proportional-integral-derivative (PID) algorithm to generate a proportional computing part (P), an integral computing part (I) and a differential computing part (D). The proportional operation unit (P) has a proportional gain (K p ). The integral operation part (I) has an integral gain (K i ). The differential operation part (D) has a differential gain (K d ). The proportional gain (K p ), the integral gain (K i ) and the differential gain (K d ) are used to adjust the proportional calculation part (P), the integral calculation part (I) and the differential calculation part (D) in the whole proportional-integral- The respective gain values occupied in the differential (PID) algorithm. The feedback controller 108 can correspondingly set the proportional gain (K p ), the integral gain (K i ) and the differential gain (K d ) according to the error value between the detected temperature and the target temperature, so that the detected temperature can be substantially equal or close to the target temperature.

舉例來說,在時間點t2時,偵測溫度(偵測溫度曲線202的點B)不僅落在溫度區間204之內,更落在溫度區間206之內,換句話說,偵測溫度與目標溫度之間的誤差值的絕對值小於等於一第二閾值,其中第二閾值小於第一閾值。此時,回授控制器108將比例-積分-微分(PID)演算法中的比例增益(K p)設定為P2,將積分增益(K i)設定為I2,並且將微分增益(K d)設定為D2,而得到一增益設定組(P2,I2,D2)。 For example, at the time point t2, the detected temperature (point B of the detected temperature curve 202) not only falls within the temperature range 204, but also falls within the temperature range 206. In other words, the detected temperature and the target The absolute value of the error value between the temperatures is less than or equal to a second threshold, wherein the second threshold is less than the first threshold. At this time, the feedback controller 108 sets the proportional gain (K p ) in the proportional-integral-derivative (PID) algorithm to P2, the integral gain (K i ) to I2, and the differential gain (K d ) Set to D2 to obtain a gain setting group (P2, I2, D2).

在時間點t3時,偵測溫度(偵測溫度曲線202的點C)落在溫度區間204之內,但落在溫度區間206之外,換句話說,偵測溫度與目標溫度的誤差值的絕對值大於第二閾值,但小於等於第一閾值。此時,回授控制器108將比例-積分-微分(PID)演算法中的比例增益(K p)設定為P1,將積分增益(K i)設定為I1,並且將微分增益(K d)設定為D1,而得到一增益設定組(P1,I1,D1)。 At time t3, the detected temperature (point C of the detected temperature curve 202) falls within the temperature range 204, but falls outside the temperature range 206. In other words, the difference between the detected temperature and the target temperature is the difference between the detected temperature and the target temperature. The absolute value is greater than the second threshold, but less than or equal to the first threshold. At this time, the feedback controller 108 sets the proportional gain (K p ) in the proportional-integral-derivative (PID) algorithm to P1, the integral gain (K i ) to I1, and the differential gain (K d ) Set to D1 to obtain a gain setting group (P1, I1, D1).

第3圖為本發明實施例之第1圖的雷射焊錫裝置100的回授控制器108的操作示意圖。如第3圖所示,回授控制器108包括一多工器302、比例-積分-微分(PID)演算模組304、減法器316。比例-積分-微分演算模組304為回授控制器108執行一比例-積分-微分演算法所產生。比例-積分-微分演算模組304包括一比例演算部306、一積分演算部308、一微分演算部310、一減法器312,以及加法器314。在一些實施例中,回授控制器108的處理單元300接收來自溫度感測器106的感測訊號116,並且擷取感測訊號116所載有的偵測溫度318的資訊。接著,處理單元300將偵測溫度318傳送至比例-積分-微分演算模組304內的減法器312。減法器312將目標溫度330與偵測溫度318進行相減,而得到目標溫度330與偵測溫度318之間的誤差值。FIG. 3 is a schematic diagram of the operation of the feedback controller 108 of the laser soldering device 100 of FIG. 1 according to an embodiment of the present invention. As shown in FIG. 3 , the feedback controller 108 includes a multiplexer 302 , a proportional-integral-derivative (PID) arithmetic module 304 , and a subtractor 316 . The proportional-integral-derivative algorithm module 304 is generated by the feedback controller 108 executing a proportional-integral-derivative algorithm. The proportional-integral-derivative computing module 304 includes a proportional computing unit 306 , an integral computing unit 308 , a differential computing unit 310 , a subtractor 312 , and an adder 314 . In some embodiments, the processing unit 300 of the feedback controller 108 receives the sensing signal 116 from the temperature sensor 106 and retrieves the information of the detected temperature 318 carried by the sensing signal 116 . Next, the processing unit 300 transmits the detected temperature 318 to the subtractor 312 in the proportional-integral-derivative computing module 304 . The subtractor 312 subtracts the target temperature 330 and the detected temperature 318 to obtain an error value between the target temperature 330 and the detected temperature 318 .

比例演算部306將當下的偵測溫度318與目標溫度330的誤差值乘以比例增益(K p),而得到一比例結果322。在一些實施例中,比例增益(K p)愈大時,在相同的誤差值的情況下,會得到較大的比例結果322。但若比例增益(K p)過大,會使得比例-積分-微分演算模組304的輸出不穩定。相反地,若比例增益(K p)過小,在相同的誤差值的情況下,會得到較小的比例結果322,而使得比例-積分-微分演算模組304對於偵測溫度318與目標溫度330的誤差值較不敏感。因此,當有干擾出現時,比例-積分-微分演算模組304係無法對干擾進行修正。 The proportional calculation unit 306 multiplies the error value between the current detected temperature 318 and the target temperature 330 by the proportional gain (K p ) to obtain a proportional result 322 . In some embodiments, a larger proportional gain (K p ) results in a larger proportional result 322 for the same error value. However, if the proportional gain (K p ) is too large, the output of the proportional-integral-derivative operation module 304 will be unstable. Conversely, if the proportional gain (K p ) is too small, under the same error value, a smaller proportional result 322 will be obtained, so that the proportional-integral-derivative calculation module 304 can determine the detection temperature 318 and the target temperature 330 The error value is less sensitive. Therefore, when there is disturbance, the proportional-integral-derivative calculation module 304 cannot correct the disturbance.

積分演算部308將過去每一時間點偵測溫度318與目標溫度330的誤差值相加,而得到一誤差總和,並且將誤差總和乘以積分增益(K i),而得到一積分結果324。在一些實施例中,積分演算部308可加速偵測溫度318趨近於目標溫度330的過程。積分增益(K i)愈大,偵測溫度318趨近於目標溫度330的速度愈快。 The integral calculation part 308 adds the error values of the detected temperature 318 and the target temperature 330 at each past time point to obtain an error sum, and multiplies the error sum by the integral gain (K i ) to obtain an integral result 324 . In some embodiments, the integral calculation unit 308 can speed up the process of the detection temperature 318 approaching the target temperature 330 . The larger the integral gain (K i ) is, the faster the detected temperature 318 approaches the target temperature 330 .

微分演算部310將當下偵測溫度318與目標溫度330的誤差值進行一階微分,得到一瞬時的誤差變化量,進而得到一未來誤差值,用以預測該誤差值在未來的變化,並且將未來誤差值乘以微分增益(K d),而得到一微分結果326。在一些實施例中,微分演算部310可以增加將偵測溫度318與目標溫度330的誤差值維持在一特定溫度範圍(例如第2圖中的溫度範圍206)的時間。最後,比例-積分-微分演算模組304的加法器314將比例結果322、積分結果324,以及微分結果326相加,而得到一預測誤差值332。簡單來說,比例-積分-微分演算模組304係用以加速偵測溫度318與目標溫度330的誤差值的絕對值的最小化,使得偵測溫度318得以快速地逼近或實質相等於目標溫度330。 The differential calculation unit 310 performs a first-order differential on the error value between the current detected temperature 318 and the target temperature 330 to obtain an instantaneous error variation, and then obtains a future error value, which is used to predict the error value in the future. The future error value is multiplied by the differential gain (K d ), resulting in a differential result 326 . In some embodiments, the differential calculation unit 310 can increase the time for maintaining the error value between the detected temperature 318 and the target temperature 330 within a specific temperature range (eg, the temperature range 206 in FIG. 2 ). Finally, the adder 314 of the proportional-integral-derivative calculation module 304 adds the proportional result 322 , the integral result 324 , and the differential result 326 to obtain a prediction error value 332 . In short, the proportional-integral-derivative calculation module 304 is used to accelerate the minimization of the absolute value of the error value between the detected temperature 318 and the target temperature 330 , so that the detected temperature 318 can quickly approach or be substantially equal to the target temperature. 330.

同時參考第2圖及第3圖,當偵測溫度318落在第2圖的溫度區間204之內(例如第2圖偵測溫度曲線202上點B及點C所對應的溫度)時,亦即偵測溫度318與目標溫度330的誤差值的絕對值小於等於第一閾值,則處理單元300輸出控制訊號328予多工器302,使得多工器302接收從比例-積分-微分演算模組304所輸出的預測誤差值332。處理單元300透過多工器302接收預測誤差值322,並且依據預測誤差值332的多寡,對應地透過控制訊號112控制雷射源102,使得雷射源102調整雷射光束118的發射功率,並且使得溫度感測器106的偵測溫度318可實質相等或接近於目標溫度330。Referring to FIGS. 2 and 3 at the same time, when the detected temperature 318 falls within the temperature range 204 in That is, the absolute value of the error value between the detected temperature 318 and the target temperature 330 is less than or equal to the first threshold, then the processing unit 300 outputs the control signal 328 to the multiplexer 302, so that the multiplexer 302 receives the data from the proportional-integral-derivative calculation module Prediction error value 332 output by 304 . The processing unit 300 receives the prediction error value 322 through the multiplexer 302, and correspondingly controls the laser source 102 through the control signal 112 according to the magnitude of the prediction error value 332, so that the laser source 102 adjusts the emission power of the laser beam 118, and This enables the detected temperature 318 of the temperature sensor 106 to be substantially equal to or close to the target temperature 330 .

在一些實施例中,當偵測溫度318落在第2圖的溫度區間204之內,也落在溫度區間206之內(例如第2圖偵測溫度曲線202上點B)時,亦即偵測溫度318與目標溫度330的誤差值的絕對值小於等於第二閾值,處理單元300透過一設定訊號320將比例演算部306的比例增益(K p)設定為P2,將積分演算部308的積分增益(K i)設定為I2,並且將微分演算部310的微分增益(K d)設定為D2,使得偵測溫度318與目標溫度330能維持在一特定溫度範圍(例如第2圖的溫度範圍206)內。 In some embodiments, when the detected temperature 318 falls within the temperature range 204 in FIG. 2 and also falls within the temperature range 206 (eg, point B on the detected temperature curve 202 in FIG. 2 ), the detection When the absolute value of the error value between the measured temperature 318 and the target temperature 330 is less than or equal to the second threshold, the processing unit 300 sets the proportional gain (K p ) of the proportional calculation unit 306 to P2 through a setting signal 320 , and the integral of the integral calculation unit 308 The gain (K i ) is set to I2, and the differential gain (K d ) of the differential calculation unit 310 is set to D2, so that the detected temperature 318 and the target temperature 330 can be maintained within a specific temperature range (such as the temperature range shown in FIG. 2 ). 206).

在一些實施例中,當偵測溫度318落在第2圖的溫度區間204之內,但落在溫度區間206之外(例如第2圖偵測溫度曲線202上點C)時,亦即偵測溫度318與目標溫度330的誤差值的絕對值小於等於第一閾值,但大於第二閾值,處理單元300透過設定訊號320將比例演算部306的比例增益(K p)設定為P1,將積分演算部308的積分增益(K i)設定為I1,並且將微分演算部310的微分增益(K d)設定為D1,使得偵測溫度318得以加速逼近於目標溫度330。 In some embodiments, when the detected temperature 318 falls within the temperature range 204 in FIG. 2, but falls outside the temperature range 206 (eg, point C on the detected temperature curve 202 in FIG. 2), the detection The absolute value of the error value between the measured temperature 318 and the target temperature 330 is less than or equal to the first threshold, but greater than the second threshold. The integral gain (K i ) of the calculation part 308 is set to I1, and the differential gain (K d ) of the differential calculation part 310 is set to D1, so that the detected temperature 318 can be accelerated to approach the target temperature 330 .

在一些實施中,回授控制器108內的減法器316將預設功率340與功率回授訊號114內所載的量測功率進行相減,而得到一功率誤差334。同時參考第2圖及第3圖,當偵測溫度318落在第2圖的溫度區間204之外(例如第2圖偵測溫度曲線202上點A所對應的溫度)時,亦即偵測溫度318與目標溫度330的誤差值的絕對值大於第一閾值,處理單元300輸出控制訊號328予多工器302,使得多工器302從加法器316接收功率誤差334。處理單元300透過多工器302接收功率誤差334,並且依據功率誤差334的多寡,對應地輸出控制訊號112予雷射源102,使得雷射源102調整雷射光束118的發射功率,使得功率計110所偵測的雷射光束118的功率可以逼近或實質相等於預設功率340,用以達到降低偵測溫度318與目標溫度330之間誤差值的目的。In some implementations, the subtractor 316 in the feedback controller 108 subtracts the preset power 340 from the measured power carried in the power feedback signal 114 to obtain a power error 334 . Referring to FIG. 2 and FIG. 3 at the same time, when the detected temperature 318 falls outside the temperature range 204 in FIG. 2 (for example, the temperature corresponding to point A on the detected temperature curve 202 in FIG. When the absolute value of the error value between the temperature 318 and the target temperature 330 is greater than the first threshold, the processing unit 300 outputs the control signal 328 to the multiplexer 302 so that the multiplexer 302 receives the power error 334 from the adder 316 . The processing unit 300 receives the power error 334 through the multiplexer 302, and outputs the control signal 112 to the laser source 102 correspondingly according to the magnitude of the power error 334, so that the laser source 102 adjusts the transmission power of the laser beam 118, so that the power meter The power of the laser beam 118 detected by 110 can be close to or substantially equal to the preset power 340 , so as to reduce the error value between the detected temperature 318 and the target temperature 330 .

在一些實施例中,當偵測溫度318落在第2圖的溫度區間204之外(例如第2圖偵測溫度曲線202上點A所對應的溫度)時,亦即偵測溫度318與目標溫度330的誤差值的絕對值大於第一閾值,預設功率340並未通過減法器316,並且直接由多工器302所接收(未在第3圖中圖示)。換句話說,處理單元可直接依據預設功率340,對應地間接調整雷射光束118的發射功率,亦可使得偵測溫度318實質相等或接近於目標溫度330。In some embodiments, when the detected temperature 318 falls outside the temperature range 204 in FIG. 2 (eg, the temperature corresponding to point A on the detected temperature curve 202 in FIG. 2 ), the detected temperature 318 and the target When the absolute value of the error value of the temperature 330 is greater than the first threshold, the preset power 340 does not pass through the subtractor 316 and is directly received by the multiplexer 302 (not shown in FIG. 3 ). In other words, the processing unit can directly and indirectly adjust the emission power of the laser beam 118 according to the preset power 340 , and can also make the detected temperature 318 substantially equal to or close to the target temperature 330 .

在一些實施例中,處理單元300依據功率誤差334間接調整雷射光束118的發射功率的方法(稱做一功率模式)係可比處理單元300依據預測誤差值332間接調整雷射光束118的發射功率的方法(稱做一溫度回授模式)更快速地使得偵測溫度318接近或實質相等於目標溫度330。因此,本發明的回授控制器108的控制單元300會在偵測溫度318與目標溫度330的誤差值的絕對值大於第一閾值(例如第2圖偵測溫度曲線202上的點A)時,執行功率模式。相對地,本發明的回授控制器108的控制單元300會在偵測溫度318與目標溫度330的誤差值的絕對值小於等於第一閾值(例如第2圖偵測溫度曲線202上的點B及點C)時,執行溫度回授模式。In some embodiments, the method in which the processing unit 300 indirectly adjusts the transmit power of the laser beam 118 according to the power error 334 (referred to as a power mode) is comparable to the method in which the processing unit 300 indirectly adjusts the transmit power of the laser beam 118 according to the prediction error value 332 This method (called a temperature feedback mode) brings the detected temperature 318 closer to or substantially equal to the target temperature 330 more quickly. Therefore, when the absolute value of the error value between the detected temperature 318 and the target temperature 330 is greater than the first threshold (eg, point A on the detected temperature curve 202 in FIG. 2 ), the control unit 300 of the feedback controller 108 of the present invention , to perform power mode. On the other hand, the control unit 300 of the feedback controller 108 of the present invention will ensure that the absolute value of the error between the detected temperature 318 and the target temperature 330 is less than or equal to the first threshold (eg, point B on the detected temperature curve 202 in FIG. 2 ). and point C), the temperature feedback mode is executed.

本發明亦揭露一種雷射焊錫方法。第4圖為本發明實施例之雷射焊錫方法的流程圖。如第4圖所示,本發明的雷射焊錫方法包括:依據一控制訊號,發射功率可調的一雷射光束至一焊接點(步驟S400);接收雷射光束照射至焊接點時所輻射出的紅外線,用以偵測焊接點的溫度(步驟S402);依據所偵測的溫度對應地輸出一感測訊號(步驟S404);接收感測訊號,並且從感側訊號中得到所偵測的溫度(步驟S406);當所偵測的溫度落在基於一目標溫度的一第一溫度區間內時,執行一比例-積分-微分(PID)演算法,依據所偵測的溫度和目標溫度的一誤差值計算出一預測誤差值(步驟S408);依據預測誤差值對應地調整該雷射光束的發射功率,使得所偵測的溫度可實質相等於目標溫度(步驟S410);當所偵測的溫度落在基於目標溫度的第一溫度區間外時,依據一預設功率調整雷射光束的發射功率(步驟S412)。The invention also discloses a laser soldering method. FIG. 4 is a flowchart of a laser soldering method according to an embodiment of the present invention. As shown in FIG. 4 , the laser soldering method of the present invention includes: according to a control signal, transmitting a laser beam with adjustable power to a welding point (step S400 ); The infrared ray output is used to detect the temperature of the solder joint (step S402); a sensing signal is correspondingly output according to the detected temperature (step S404); the sensing signal is received, and the detected signal is obtained from the sensing side signal temperature (step S406); when the detected temperature falls within a first temperature range based on a target temperature, a proportional-integral-derivative (PID) algorithm is executed, according to the detected temperature and the target temperature Calculate a prediction error value according to an error value of When the measured temperature falls outside the first temperature range based on the target temperature, the emission power of the laser beam is adjusted according to a preset power (step S412 ).

在一些實施例中,第1圖及第3圖的雷射源102執行步驟S400。第1圖及第3圖的溫度感測器106執行步驟S402及步驟S404。第1圖的回授控制器108及第3圖的回授控制器108的控制單元300執行步驟S406、步驟S408、步驟S410,及步驟S412。本發明的雷射焊錫方法的技術特徵係與第1圖雷射焊錫裝置100的技術特徵相同,故不再贅述。本發明的雷射焊錫裝置及雷射焊錫方法在一般狀態下採用溫度回授模式加熱焊點,並且由溫度感測器監測焊點溫度。焊點溫度變化異常時,即無法達到目標溫度或溫度急遽上升時,本發明的雷射焊錫裝置及雷射焊錫方法可自動切換為功率模式加熱焊點。In some embodiments, the laser source 102 of FIGS. 1 and 3 performs step S400. The temperature sensor 106 of FIGS. 1 and 3 executes steps S402 and S404. The control unit 300 of the feedback controller 108 of FIG. 1 and the feedback controller 108 of FIG. 3 executes step S406 , step S408 , step S410 , and step S412 . The technical features of the laser soldering method of the present invention are the same as the technical features of the laser soldering apparatus 100 in FIG. 1 , and thus will not be repeated. The laser soldering device and the laser soldering method of the present invention generally use a temperature feedback mode to heat the solder joints, and the temperature of the solder joints is monitored by a temperature sensor. When the temperature of the solder joint changes abnormally, that is, the target temperature cannot be reached or the temperature rises rapidly, the laser soldering device and the laser soldering method of the present invention can automatically switch to the power mode to heat the solder joint.

雖然本發明的實施例如上述所描述,我們應該明白上述所呈現的只是範例,而不是限制。依據本實施例上述示範實施例的許多改變是可以在沒有違反發明精神及範圍下被執行。因此,本發明的廣度及範圍不該被上述所描述的實施例所限制。更確切地說,本發明的範圍應該要以以下的申請專利範圍及其相等物來定義。Although embodiments of the present invention have been described above, it should be understood that the above are presented by way of example only, and not limitation. Many changes to the above-described exemplary embodiments in accordance with this embodiment can be implemented without departing from the spirit and scope of the invention. Accordingly, the breadth and scope of the present invention should not be limited by the above-described embodiments. Rather, the scope of the invention should be defined by the following claims and their equivalents.

儘管上述發明已被一或多個相關的執行來圖例說明及描繪,等效的變更及修改將被依據上述規格及附圖且熟悉這領域的其他人所想到。此外,儘管本發明的一特別特徵已被相關的多個執行之一所示範,上述特徵可能由一或多個其他特徵所結合,以致於可能有需求及有助於任何已知或特別的應用。While the above-described invention has been illustrated and depicted by one or more relevant implementations, equivalent changes and modifications will occur to others skilled in the art in light of the above-described specification and drawings. Furthermore, although a particular feature of the invention has been demonstrated by one of the various implementations in question, the above-described feature may be combined with one or more other features as may be required and useful for any known or particular application .

本說明書所使用的專業術語只是為了描述特別實施例的目的,並不打算用來作為本發明的限制。除非上下文有明確指出不同,如本處所使用的單數型,一、該及上述的意思係也包含複數型。再者,用詞「包括」,「包含」,「(具、備)有」,「設有」,或其變化型不是被用來作為詳細敘述,就是作為申請專利範圍。而上述用詞意思是包含,且在某種程度上意思是等同於用詞「包括」。The technical terms used in this specification are for the purpose of describing particular embodiments only, and are not intended to be used as limitations of the present invention. Unless the context clearly dictates otherwise, as used herein in the singular, the meanings of a, the and the above also include the plural. Furthermore, the words "include", "include", "(have, provided) have", "have", or variations thereof are used either as a detailed description or as the scope of the patent application. The above words mean inclusive, and to some extent, are equivalent to the word "includes."

除非有不同的定義,所有本文所使用的用詞(包含技術或科學用詞)是可以被屬於上述發明的技術中擁有一般技術的人士做一般地了解。我們應該更加了解到上述用詞,如被定義在眾所使用的字典內的用詞,在相關技術的上下文中應該被解釋為相同的意思。除非有明確地在本文中定義,上述用詞並不會被解釋成理想化或過度正式的意思。Unless otherwise defined, all terms (including technical or scientific terms) used herein are generally understood by those of ordinary skill in the art pertaining to the above invention. We should be more aware that the above terms, such as those defined in commonly used dictionaries, should be interpreted as the same in the context of the related art. Unless expressly defined herein, the above terms are not to be construed in an idealized or overly formal sense.

100:雷射焊錫裝置 102:雷射源 104:透鏡組 106:溫度感測器 108:回授控制器 110:功率計 112:控制訊號 114:功率回授訊號 116:感測訊號 118:雷射光束 120:電路板 122:元件針腳 124:焊盤 126:紅外線 128:雷射焊錫子裝置 130:光纖 200:目標溫度曲線 202:偵測溫度曲線 t1,t2,t3:時間點 A,B,C,E,F,G:點 204,206:溫度區間 300:處理單元 302:多工器 304:比例-積分-微分演算模組 306:比例演算部 308:積分演算部 310:微分演算部 K p:比例增益 K i:積分增益 K d:微分增益 312:減法器 314:加法器 316:減法器 318:偵測溫度 320:設定訊號 322:比例結果 324:積分結果 326:微分結果 328:控制訊號 330:目標溫度 332:預測誤差值 334:功率誤差 340:預設功率 S400,S402,S404,S406:步驟 S408,S410,S412:步驟 100: Laser soldering device 102: Laser source 104: Lens group 106: Temperature sensor 108: Feedback controller 110: Power meter 112: Control signal 114: Power feedback signal 116: Sensing signal 118: Laser Beam 120: Circuit board 122: Component pins 124: Pad 126: Infrared 128: Laser soldering sub-assembly 130: Optical fiber 200: Target temperature curve 202: Detected temperature curve t1, t2, t3: Time points A, B, C , E, F, G: point 204, 206: temperature range 300: processing unit 302: multiplexer 304: proportional-integral-differential calculation module 306: proportional calculation section 308: integral calculation section 310: differential calculation section K p : proportional Gain K i : Integral gain K d : Differential gain 312: Subtractor 314: Adder 316: Subtractor 318: Detected temperature 320: Setting signal 322: Proportional result 324: Integral result 326: Differential result 328: Control signal 330: target temperature 332: prediction error value 334: power error 340: preset power S400, S402, S404, S406: step S408, S410, S412: step

第1圖為本發明實施例之雷射焊錫裝置及其操作環境的示意圖。 第2圖為本發明實施例之第1圖雷射焊錫裝置的溫度感測器所偵測的溫度與一目標溫度的關係圖。 第3圖為本發明實施例之第1圖的雷射焊錫裝置的回授控制器的操作示意圖。 第4圖為本發明實施例之雷射焊錫方法的流程圖。 FIG. 1 is a schematic diagram of a laser soldering device and its operating environment according to an embodiment of the present invention. FIG. 2 is a relationship diagram between a temperature detected by a temperature sensor of the laser soldering device of FIG. 1 and a target temperature according to an embodiment of the present invention. FIG. 3 is a schematic diagram of the operation of the feedback controller of the laser soldering device of FIG. 1 according to an embodiment of the present invention. FIG. 4 is a flowchart of a laser soldering method according to an embodiment of the present invention.

100:雷射焊錫裝置 102:雷射源 104:透鏡組 106:溫度感測器 108:回授控制器 110:功率計 112:控制訊號 114:功率回授訊號 116:感測訊號 118:雷射光束 120:電路板 122:元件針腳 124:焊盤 126:紅外線 128:雷射焊錫子裝置 130:光纖 100: Laser soldering device 102: Laser source 104: Lens group 106: Temperature sensor 108: Feedback Controller 110: Power Meter 112: Control signal 114: Power feedback signal 116: Sensing signal 118: Laser Beam 120: circuit board 122: Component pins 124: Pad 126: Infrared 128: Laser soldering sub-assembly 130: Fiber

Claims (11)

一種雷射焊錫裝置,包括:一雷射源,依據一控制訊號,發射功率可調的一雷射光束;一透鏡組,將該雷射光束輸出至一焊接點;一溫度感測器,接收該雷射光束照射至該焊接點時所輻射出的紅外線,用以偵測該焊接點的溫度,並且依據所偵測的溫度對應地輸出一感測訊號;以及一回授控制器,接收該感測訊號,並且依據該感測訊號傳送該控制訊號予該雷射源;其中當所偵測的溫度落在基於一目標溫度的一第一溫度區間內時,該雷射焊錫裝置進入一溫度回授模式,使得該回授控制器執行一比例-積分-微分(PID)演算法,依據所偵測的溫度和該目標溫度的一誤差值計算出一預測誤差值;該回授控制器依據該預測誤差值控制該雷射源,對應地調整該雷射光束的發射功率,使得所偵測的溫度可實質相等於該目標溫度;其中該雷射源包括一功率計;當所偵測的溫度落在基於該目標溫度的該第一溫度區間外,並且所偵測的溫度高於該目標溫度時,該雷射焊錫裝置進入一功率模式,使得該功率計依據所偵測該雷射光束的功率,對應地輸出一功率回授訊號予該回授控制器,該回授控制器將該功率回授訊號所載的量測功率與一預設功率進行相減,而得到一功率誤差;該回授控制器依據該功率誤差的多寡,對應地輸出該控制訊號予該雷射源,使得該雷射源發射 符合該預設功率的該雷射光束。 A laser soldering device, comprising: a laser source, according to a control signal, emitting a laser beam with adjustable power; a lens group, outputting the laser beam to a welding point; a temperature sensor, receiving The infrared rays radiated when the laser beam irradiates the welding point is used to detect the temperature of the welding point, and correspondingly output a sensing signal according to the detected temperature; and a feedback controller receives the temperature of the welding point. sensing a signal, and sending the control signal to the laser source according to the sensing signal; wherein when the detected temperature falls within a first temperature range based on a target temperature, the laser soldering device enters a temperature The feedback mode makes the feedback controller execute a proportional-integral-derivative (PID) algorithm to calculate a prediction error value according to an error value between the detected temperature and the target temperature; the feedback controller is based on The prediction error value controls the laser source, and adjusts the emission power of the laser beam accordingly, so that the detected temperature can be substantially equal to the target temperature; wherein the laser source includes a power meter; when the detected temperature is substantially equal to the target temperature When the temperature falls outside the first temperature range based on the target temperature, and the detected temperature is higher than the target temperature, the laser soldering device enters a power mode, so that the power meter detects the laser beam according to the correspondingly outputs a power feedback signal to the feedback controller, and the feedback controller subtracts the measured power carried by the power feedback signal from a preset power to obtain a power error; The feedback controller correspondingly outputs the control signal to the laser source according to the amount of the power error, so that the laser source emits the laser beam conforming to the preset power. 如請求項1所述之雷射焊錫裝置,其中該雷射源包括一功率計,該功率計偵測該雷射光束的功率,並且依據所偵測該雷射光束的功率,對應地輸出一功率回授訊號予該回授控制器,使得該回授控制器可依據該功率回授訊號,透過該控制訊號,調整該雷射源所發射該雷射光束的功率。 The laser soldering device according to claim 1, wherein the laser source includes a power meter, the power meter detects the power of the laser beam, and outputs a corresponding power according to the detected power of the laser beam A power feedback signal is given to the feedback controller, so that the feedback controller can adjust the power of the laser beam emitted by the laser source through the control signal according to the power feedback signal. 如請求項1所述之雷射焊錫裝置,其中該回授控制器執行該比例-積分-微分演算法而產生一比例演算部、一積分演算部及一微分演算部;該比例演算部將當下所偵測的溫度與該目標溫度的該誤差值乘以一第一增益,而得到一比例結果;該積分演算部將過去每一時間點的該誤差值相加,而得到一誤差總和,並且將該誤差總和乘以一第二增益,而得到一積分結果;該微分演算部將當下的該誤差值進行一階微分,而得到一未來誤差值,用以預測該誤差值在未來的變化,並且將該未來誤差值乘以一第三增益,而得到一微分結果。 The laser soldering device as claimed in claim 1, wherein the feedback controller executes the proportional-integral-derivative algorithm to generate a proportional calculation part, an integral calculation part and a differential calculation part; the proportional calculation part calculates the current The error value between the detected temperature and the target temperature is multiplied by a first gain to obtain a proportional result; the integral calculation part adds the error value at each past time point to obtain an error sum, and Multiplying the error sum by a second gain to obtain an integration result; the differential calculation part performs first-order differentiation on the current error value to obtain a future error value, which is used to predict the future change of the error value, And the future error value is multiplied by a third gain to obtain a differential result. 如請求項3所述之雷射焊錫裝置,其中該回授控制器將該比例結果、該積分結果及該微分結果相加,而得到該預測誤差值。 The laser soldering device of claim 3, wherein the feedback controller adds the proportional result, the integral result and the differential result to obtain the prediction error value. 如請求項3所述之雷射焊錫裝置,其中當所偵測的溫度落在基於該目標溫度的該第一溫度區間內,並且也在基於該目標溫度的一第二溫度區間內時,該回授控制器將該第一增益、該第二增益及該第三增益設為一第一數值組;其中該第一溫度區間包括 該第二溫度區間。 The laser soldering device of claim 3, wherein when the detected temperature falls within the first temperature range based on the target temperature and also within a second temperature range based on the target temperature, the The feedback controller sets the first gain, the second gain and the third gain as a first value group; wherein the first temperature range includes the second temperature range. 如請求項4所述之雷射焊錫裝置,其中當所偵測的溫度落在基於該目標溫度的該第一溫度區間內,但不在基於該目標溫度的該第二溫度區間內時,該回授控制器將該第一增益、該第二增益及該第三增益設為一第二數值組;其中該第二數值組不完全相同且不完全相異於該第一數值組。 The laser soldering device of claim 4, wherein when the detected temperature falls within the first temperature range based on the target temperature, but is not within the second temperature range based on the target temperature, the return The controller sets the first gain, the second gain and the third gain as a second value group; wherein the second value group is not identical and not completely different from the first value group. 一種雷射焊錫方法,包括:依據一控制訊號,發射功率可調的一雷射光束至一焊接點;接收該雷射光束照射至該焊接點時所輻射出的紅外線,用以偵測該焊接點的溫度;依據所偵測的溫度對應地輸出一感測訊號;接收該感測訊號,並且從該感側訊號中得到所偵測的溫度;當所偵測的溫度落在基於一目標溫度的一第一溫度區間內時,進入一溫度回授模式,用以執行一比例-積分-微分(PID)演算法,依據所偵測的溫度和該目標溫度的一誤差值計算出一預測誤差值;依據該預測誤差值對應地調整該雷射光束的發射功率,使得所偵測的溫度可實質相等於該目標溫度;以及當所偵測的溫度落在基於該目標溫度的該第一溫度區間外,並且所偵測的溫度高於該目標溫度時,進入一功率模式,用以依據所偵測該雷射光束的功率,對應地輸出一功率回授訊號;將該功率回授訊號所載的量測功率與一預設功率進行相減,而得到一功率誤差;依據該功率誤差的多寡,調整該雷射光束的發射 功率。 A laser soldering method, comprising: transmitting a laser beam with adjustable power to a welding point according to a control signal; receiving the infrared rays radiated when the laser beam irradiates the welding point to detect the welding point temperature; output a sensing signal correspondingly according to the detected temperature; receive the sensing signal, and obtain the detected temperature from the sensing side signal; when the detected temperature falls based on a target temperature When the temperature is within a first temperature range of correspondingly adjust the emission power of the laser beam according to the prediction error value, so that the detected temperature can be substantially equal to the target temperature; and when the detected temperature falls within the first temperature based on the target temperature Outside the range, and the detected temperature is higher than the target temperature, enter a power mode, which is used to output a power feedback signal correspondingly according to the detected power of the laser beam; The measured power of the carrier is subtracted from a preset power to obtain a power error; according to the amount of the power error, the emission of the laser beam is adjusted power. 如請求項7所述之雷射焊錫方法,其中執行該比例-積分-微分演算法,包括:將當下所偵測的溫度與該目標溫度的該誤差值乘以一第一增益,而得到一比例結果;將過去每一時間點的該誤差值相加,而得到一誤差總和,並且將該誤差總和乘以一第二增益,而得到一積分結果;以及將當下的該誤差值進行一階微分,而得到一未來誤差值,用以預測該誤差值在未來的變化,並且將該未來誤差值乘以一第三增益,而得到一微分結果。 The laser soldering method according to claim 7, wherein executing the proportional-integral-derivative algorithm includes: multiplying the error value between the currently detected temperature and the target temperature by a first gain to obtain a Proportional result; add the error value at each time point in the past to obtain an error sum, and multiply the error sum by a second gain to obtain an integral result; and perform a first order on the current error value Differentiating to obtain a future error value for predicting the future change of the error value, and multiplying the future error value by a third gain to obtain a differential result. 如請求項8所述之雷射焊錫方法,其中該比例-積分-微分演算法更包括:將該比例結果、該積分結果及該微分結果相加,而得到該預測誤差值。 The laser soldering method of claim 8, wherein the proportional-integral-derivative algorithm further comprises: adding the proportional result, the integral result and the differential result to obtain the prediction error value. 如請求項8所述之雷射焊錫方法,其中當所偵測的溫度落在基於該目標溫度的該第一溫度區間內,並且也在基於該目標溫度的一第二溫度區間內時,將該第一增益、該第二增益及該第三增益設為一第一數值組;其中該第一溫度區間包括該第二溫度區間。 The laser soldering method of claim 8, wherein when the detected temperature falls within the first temperature range based on the target temperature and also within a second temperature range based on the target temperature, the The first gain, the second gain and the third gain are set as a first value group; wherein the first temperature interval includes the second temperature interval. 如請求項10所述之雷射焊錫方法,其中當所偵測的溫度落在基於該目標溫度的該第一溫度區間內,但不在基於該目標溫度的該第二溫度區間內時,將該第一增益、該第二增益及該第 三增益設為一第二數值組;其中該第二數值組不完全相同且不完全相異於該第一數值組。 The laser soldering method of claim 10, wherein when the detected temperature falls within the first temperature range based on the target temperature, but is not within the second temperature range based on the target temperature, the The first gain, the second gain and the first gain The three gains are set as a second value group; wherein the second value group is not identical and not completely different from the first value group.
TW109123503A 2020-07-13 2020-07-13 Laser soldering device and laser soldering method TWI764199B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109123503A TWI764199B (en) 2020-07-13 2020-07-13 Laser soldering device and laser soldering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109123503A TWI764199B (en) 2020-07-13 2020-07-13 Laser soldering device and laser soldering method

Publications (2)

Publication Number Publication Date
TW202202262A TW202202262A (en) 2022-01-16
TWI764199B true TWI764199B (en) 2022-05-11

Family

ID=80787546

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109123503A TWI764199B (en) 2020-07-13 2020-07-13 Laser soldering device and laser soldering method

Country Status (1)

Country Link
TW (1) TWI764199B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363563B1 (en) * 2000-02-19 2002-12-05 한국전력공사 Method for Controling Laser Power by Measuring the Temperature of Melt Pool
CN101774090A (en) * 2009-12-25 2010-07-14 武汉凌云光电科技有限责任公司 High-power semiconductor laser constant-temperature welding device
CN107957080A (en) * 2016-10-17 2018-04-24 广东兴发铝业有限公司 Aluminum-bar heating furnace ignition temperature automatic control system
JP6345801B2 (en) * 2014-11-26 2018-06-20 U−Mhiプラテック株式会社 Temperature control method and temperature control device
TW202009082A (en) * 2018-08-16 2020-03-01 台達電子工業股份有限公司 System and method of multi-beam soldering
CN111266581A (en) * 2020-03-17 2020-06-12 中国科学院福建物质结构研究所 Online coaxial closed-loop control laser selective melting/sintering printer and printing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363563B1 (en) * 2000-02-19 2002-12-05 한국전력공사 Method for Controling Laser Power by Measuring the Temperature of Melt Pool
CN101774090A (en) * 2009-12-25 2010-07-14 武汉凌云光电科技有限责任公司 High-power semiconductor laser constant-temperature welding device
JP6345801B2 (en) * 2014-11-26 2018-06-20 U−Mhiプラテック株式会社 Temperature control method and temperature control device
CN107957080A (en) * 2016-10-17 2018-04-24 广东兴发铝业有限公司 Aluminum-bar heating furnace ignition temperature automatic control system
TW202009082A (en) * 2018-08-16 2020-03-01 台達電子工業股份有限公司 System and method of multi-beam soldering
CN111266581A (en) * 2020-03-17 2020-06-12 中国科学院福建物质结构研究所 Online coaxial closed-loop control laser selective melting/sintering printer and printing method

Also Published As

Publication number Publication date
TW202202262A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
US11465234B2 (en) Laser soldering device and laser soldering method
US20230127650A1 (en) Methods and systems for quality inference and control for additive manufacturing processes
US4556875A (en) Irradiated power monitoring system for optical fiber
US20220076957A1 (en) Monitoring device, monitoring method and method of manufacturing semiconductor device
CN108311767A (en) A kind of method and system of the laser welding security control based on infrared measurement of temperature variable emissivity
JP2007038226A (en) Laser machining monitoring device
CN111050978B (en) Laser device
CN104807547A (en) Laser cladding molten pool temperature detecting device, processing system adopting same and control method of system
TWI764199B (en) Laser soldering device and laser soldering method
WO2015008632A1 (en) Thermal diffusivity measurement device
JP2012011402A (en) Method for processing workpiece, device for emitting light for processing workpiece, and program used for the same
KR20090103942A (en) Reduced-pressure heater, its heating method, and electronic product manufacturing method
JP2008141086A (en) Apparatus for treating substrate
JP6894485B2 (en) Soldering equipment and its system controller
US6661963B2 (en) System and method for calibrating and operating a semiconductor variable optical attenuator
JP2018158361A (en) Laser processing apparatus
JP2020112400A (en) Distance measuring apparatus and method of improving signal-to-noise ratio thereof
US5641419A (en) Method and apparatus for optical temperature control
CN115014539A (en) Real-time monitoring method and device for welding spot temperature field
KR101309807B1 (en) Laser annealing apparatus and laser annealing method
EP0605055B1 (en) Pyrometer including an emissivity meter
KR20010081868A (en) Method and Apparatus to Control Laser Power by Measuring the Temperature of Melt Pool and its use
JP2021177462A (en) High frequency thawing device
TWI820872B (en) Ir-reflow temperature sensing system
CN111521263A (en) Thermal resistance measuring device and method