TWI764079B - Shock Damper - Google Patents

Shock Damper

Info

Publication number
TWI764079B
TWI764079B TW109100283A TW109100283A TWI764079B TW I764079 B TWI764079 B TW I764079B TW 109100283 A TW109100283 A TW 109100283A TW 109100283 A TW109100283 A TW 109100283A TW I764079 B TWI764079 B TW I764079B
Authority
TW
Taiwan
Prior art keywords
component
shock
styrene
weight
silica
Prior art date
Application number
TW109100283A
Other languages
Chinese (zh)
Other versions
TW202031777A (en
Inventor
飯沼玲奈
藤川智宏
竹山可大
村谷圭市
Original Assignee
日商住友理工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友理工股份有限公司 filed Critical 日商住友理工股份有限公司
Publication of TW202031777A publication Critical patent/TW202031777A/en
Application granted granted Critical
Publication of TWI764079B publication Critical patent/TWI764079B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明提供一種衰減特性的溫度依存性低、顯示出高衰減性,並且可滿足對於長週期地震活動的衰減性的維持的減震阻尼器。一種減震阻尼器1,包括夾持於兩片金屬板4、金屬板5中的黏彈性體2,所述黏彈性體2設為包含橡膠組合物的黏彈性體,所述橡膠組合物含有:聚合物成分,以下述的(A)成分作為主成分且含有下述的(B)成分;以及下述的(C)成分。 (A)苯乙烯系彈性體。 (B)100℃下的慕尼黏度較所述(A)成分更高的乙烯-丙烯-二烯單體三元共聚物。 (C)利用下述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽。

Figure 109100283-A0101-11-0001-1
The present invention provides a damping damper that has low temperature dependence of attenuation characteristics, exhibits high attenuation, and can satisfy maintenance of attenuation for long-period seismic activity. A shock-absorbing damper 1, comprising a viscoelastic body 2 sandwiched between two metal plates 4 and 5, the viscoelastic body 2 is set as a viscoelastic body comprising a rubber composition, and the rubber composition contains : A polymer component containing the following (A) component as a main component and the following (B) component; and the following (C) component. (A) Styrenic elastomer. (B) An ethylene-propylene-diene monomer terpolymer having a higher Muni viscosity at 100° C. than the aforementioned (A) component. (C) Surface-treated silica surface-treated with a silane coupling agent represented by the following general formula (1).
Figure 109100283-A0101-11-0001-1

Description

減震阻尼器shock absorber

本發明有關於一種減震阻尼器,詳細而言有關於一種適合土木、建築領域中的減震或抗震等用途的減震阻尼器。The present invention relates to a shock-absorbing damper, and in particular, to a shock-absorbing damper suitable for shock-absorbing or anti-seismic applications in the fields of civil engineering and construction.

關於土木、建築領域中的減震裝置或抗震裝置、特別是橋樑或大廈等大型建築物中所使用的減震阻尼器,為了吸收由地震等引起的振動能(vibrational energy),除藉由所述減震阻尼器的機械結構的要素表現減震性能以外,要求藉由所述減震阻尼器中所使用的黏彈性體(橡膠材料)達成高衰減化。Regarding the vibration-absorbing devices or anti-seismic devices in the fields of civil engineering and construction, especially the shock-absorbing dampers used in large buildings such as bridges and buildings, in order to absorb vibrational energy (vibrational energy) caused by earthquakes, etc. In addition to the performance of damping performance as an element of the mechanical structure of the shock absorbing damper, high damping is required to be achieved by the viscoelastic body (rubber material) used in the shock absorbing damper.

另外,2016年國土交通部指南中也記載了針對對於高樓大廈的長週期地震活動(收斂時間600秒)的應對,對於收斂時間長的搖晃而言衰減性也不會降低的減震阻尼器的需求不斷提高。In addition, the 2016 Ministry of Land, Infrastructure, Transport and Tourism Guidelines also describe a shock absorber that does not degrade the damping properties of shaking with a long convergence time in response to long-period seismic activity (convergence time of 600 seconds) in high-rise buildings. demand continues to increase.

現有的減震阻尼器中所使用的黏彈性體主要使用以苯乙烯-異戊二烯-苯乙烯(styrene-isoprene-styrene,SIS)共聚物為主成分的黏彈性體(例如參照專利文獻1及專利文獻2)。 另外,對於SIS共聚物而言,為了表現出摩擦衰減,也正在研究摻合二烯量多且容易引起摩擦衰減的低黏度乙烯-丙烯-二烯單體三元共聚物(低黏度EPDM(ethylene propylene diene monomer)),或者高填充二氧化矽或碳酸鈣等小粒徑填料等。 [現有技術文獻]The viscoelastic body used in the conventional shock absorber mainly uses a viscoelastic body mainly composed of a styrene-isoprene-styrene (SIS) copolymer (for example, refer to Patent Document 1). and Patent Document 2). In addition, for SIS copolymers, in order to exhibit friction attenuation, low-viscosity ethylene-propylene-diene monomer terpolymers (low-viscosity EPDM (ethylene-propylene-diene) monomeric terpolymers (low-viscosity EPDM (ethylene propylene glycol), which are easy to cause frictional attenuation by blending a large amount of diene) are also being studied. propylene diene monomer)), or high filling of small particle size fillers such as silica or calcium carbonate. [Prior Art Literature]

[專利文獻] [專利文獻1]日本專利特開2014-227521號公報 [專利文獻2]日本專利特開2015-183110號公報[Patent Literature] [Patent Document 1] Japanese Patent Laid-Open No. 2014-227521 [Patent Document 2] Japanese Patent Laid-Open No. 2015-183110

[發明所要解決的問題] 如所述般在SIS共聚物中摻合低黏度EPDM者藉由在剪切時低黏度EPDM的凝聚被破壞而表現出高衰減。因此,難以維持對於收斂時間長的搖晃的衰減性,而且,如所述般摻合低黏度EPDM者還存在容易產生由使用溫度引起的衰減特性的變動(溫度依存性的惡化)的問題。 另外,在SIS共聚物中高填充填料而表現出摩擦衰減者也難以維持對於收斂時間長的搖晃的衰減性。[Problems to be Solved by Invention] Incorporation of low viscosity EPDM in SIS copolymers as described exhibits high attenuation by the breakdown of cohesion of the low viscosity EPDM upon shear. Therefore, it is difficult to maintain the damping property against shaking with a long convergence time, and the low-viscosity EPDM blended as described above has a problem that the damping property fluctuates (deterioration of temperature dependence) due to the operating temperature easily. In addition, even if the SIS copolymer is filled with a high amount of filler and exhibits frictional attenuation, it is difficult to maintain the damping property against shaking with a long convergence time.

即,關於減震阻尼器,自以前以來一直研究大地震特有的短期高衰減化的要求,但實際情況是對於長時間保持衰減長週期地震活動所需的吸收能量(△W)而言並未進行充分的研究。That is, with regard to the damper, the demand for short-term high attenuation peculiar to large earthquakes has been studied, but the actual situation is that the absorption energy (ΔW) required to maintain the attenuation of long-period seismic activity for a long time has not been Do adequate research.

本發明是鑒於此種情況而成者,其目的在於提供一種衰減特性的溫度依存性低、顯示出高衰減性,並且可滿足對於長週期地震活動的衰減性的維持的減震阻尼器。 [解決問題的技術手段]The present invention has been made in view of such a situation, and an object of the present invention is to provide a damping damper which has low temperature dependence of attenuation characteristics, exhibits high attenuation, and can satisfy maintenance of attenuation for long-period seismic activity. [Technical means to solve the problem]

為了達成所述目的,本發明將以下的[1]~[8]作為其主旨。 [1]一種減震阻尼器,其特徵在於,將包含橡膠組合物的黏彈性體設為其構成構件,所述橡膠組合物含有:聚合物成分,以下述的(A)成分作為主成分且含有下述的(B)成分;以及下述的(C)成分。 (A)苯乙烯系彈性體。 (B)100℃下的慕尼黏度較所述(A)成分更高的乙烯-丙烯-二烯單體三元共聚物。 (C)利用下述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽。 [化1]

Figure 02_image002
(所述通式(1)中,R1 表示碳數6~20的烷基、末端為苯基的碳數6~20的烷基,R2 、R3 表示R1 的碳數以下的碳數的烷基、或者碳數1~3的烷氧基,X表示碳數1~3的烷氧基。) [2]根據[1]所述的減震阻尼器,其中所述橡膠組合物中的(A)成分與(B)成分的混合比例以重量比計為(A):(B)=95:5~50:50的範圍。 [3]根據[1]或[2]所述的減震阻尼器,其中所述橡膠組合物中的所述表面處理二氧化矽(C)的含有比例相對於所述聚合物成分的總量100重量份而為5重量份~100重量份的範圍。 [4]根據[1]至[3]中任一項所述的減震阻尼器,其中所述橡膠組合物中的包含所述表面處理二氧化矽(C)的所有二氧化矽的含有比例相對於所述聚合物成分的總量100重量份而為5重量份~100重量份。 [5]根據[1]至[4]中任一項所述的減震阻尼器,其中所述苯乙烯系彈性體(A)的100℃下的慕尼黏度為5~35。 [6]根據[1]至[5]中任一項所述的減震阻尼器,其中所述乙烯-丙烯-二烯單體三元共聚物(B)的100℃下的慕尼黏度為30~100。 [7]根據[1]至[6]中任一項所述的減震阻尼器,其中所述苯乙烯系彈性體(A)為苯乙烯-異戊二烯-苯乙烯共聚物。 [8]根據[1]至[7]中任一項所述的減震阻尼器,為用於高樓大廈的減震阻尼器。In order to achieve the said objective, this invention makes the following [1]-[8] the summary. [1] A vibration damper comprising, as its constituent member, a viscoelastic body comprising a rubber composition containing a polymer component having the following (A) component as a main component and Contains the following (B) component; and the following (C) component. (A) Styrenic elastomer. (B) An ethylene-propylene-diene monomer terpolymer having a higher Muni viscosity at 100° C. than the aforementioned (A) component. (C) Surface-treated silica surface-treated with a silane coupling agent represented by the following general formula (1). [hua 1]
Figure 02_image002
(In the general formula (1), R 1 represents an alkyl group having 6 to 20 carbon atoms, an alkyl group having 6 to 20 carbon atoms with a phenyl terminal at the end, and R 2 and R 3 represent carbons having a carbon number less than or equal to that of R 1 . a number of alkyl groups, or an alkoxy group having 1 to 3 carbon atoms, and X represents an alkoxy group having 1 to 3 carbon atoms.) [2] The shock absorber according to [1], wherein the rubber composition Among them, the mixing ratio of (A) component and (B) component is in the range of (A):(B)=95:5 to 50:50 in terms of weight ratio. [3] The shock absorption damper according to [1] or [2], wherein the content ratio of the surface-treated silica (C) in the rubber composition is relative to the total amount of the polymer component 100 parts by weight, but in the range of 5 parts by weight to 100 parts by weight. [4] The shock absorption damper according to any one of [1] to [3], wherein the content ratio of all silicas including the surface-treated silica (C) in the rubber composition It is 5 to 100 parts by weight with respect to 100 parts by weight of the total amount of the polymer components. [5] The shock damper according to any one of [1] to [4], wherein the styrene-based elastomer (A) has a Mooney viscosity at 100° C. of 5 to 35. [6] The shock absorption damper according to any one of [1] to [5], wherein the ethylene-propylene-diene monomer terpolymer (B) has a Mooney viscosity at 100° C. of 30 to 100. [7] The shock absorption damper according to any one of [1] to [6], wherein the styrene-based elastomer (A) is a styrene-isoprene-styrene copolymer. [8] The shock-absorbing damper according to any one of [1] to [7], which is a shock-absorbing damper for high-rise buildings.

即,本發明者等人為了解決所述課題而反復努力研究。在其研究過程中,作為減震阻尼器的構成構件即黏彈性體的材料,將SIS共聚物等苯乙烯系彈性體設為主要的聚合物,並且將100℃下的慕尼黏度較所述苯乙烯系彈性體更高的乙烯-丙烯-二烯單體三元共聚物(EPDM)與所述苯乙烯系彈性體並用,進而含有利用所述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽,結果在維持高衰減性的情況下可達成衰減特性的低溫度依存性,並且剪切時聚合物或填料的凝聚不易破壞,其結果發現,容易長時間保持衰減長週期地震活動所需的吸收能量(△W),從而完成了本發明。That is, the inventors of the present invention have made intensive studies in order to solve the above-mentioned problems. In the research process, as the material of the viscoelastic body, which is a component of the shock absorption damper, a styrene-based elastomer such as SIS copolymer is used as the main polymer, and the Muni viscosity at 100°C is higher than the above-mentioned Ethylene-propylene-diene monomer terpolymer (EPDM) with higher styrene-based elastomer is used in combination with the styrene-based elastomer, and further contains a silane coupling agent represented by the general formula (1). Surface-treated silica is surface-treated. As a result, low temperature dependence of attenuation characteristics can be achieved while maintaining high attenuation properties, and aggregation of polymers or fillers is not easily broken during shearing. As a result, it was found that it is easy to maintain for a long time. The absorbed energy (ΔW) required to attenuate long-period seismic activity, thus completing the present invention.

再者,所述通式(1)所示的烷氧基X在二氧化矽的表面處理時,利用空氣中的水分等進行水解而成為羥基,對於二氧化矽表面的羥基進行氫鍵結或進行脫水反應而進行醚鍵結,由此構成利用所述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽。因此,如圖7所示,所述表面處理二氧化矽在二氧化矽32的表面具有所述通式(1)的R1 所示的長鏈烷基(長鏈烷基31)。而且,如圖7所示,二氧化矽32表面的長鏈烷基31彼此相互作用,由此剪切時聚合物或填料的凝聚難以破壞、賦予可塑性,即便受到長週期地震活動也容易恢復至原來的狀態,因此認為與使用現有的表面處理二氧化矽時相比,容易長時間保持衰減長週期地震活動所需的吸收能量(△W)。 現有的表面處理二氧化矽由於分散性良好,因此大多將僅具有碳數小的烷基(例如,三甲基)的矽烷偶合劑用於表面處理,由於表面積大,因此容易產生摩擦衰減,故適於滿足短期的高衰減化。然而,所述般的烷基彼此的相互作用弱,因此認為無法滿足對於長週期地震活動的衰減性的維持。In addition, the alkoxy group X represented by the general formula (1) is hydrolyzed by moisture in the air during the surface treatment of silica to become a hydroxyl group, and hydrogen-bonded or hydrogen-bonded to the hydroxyl group on the surface of silica The dehydration reaction progresses and ether linkage progresses, whereby the surface-treated silica surface-treated with the silane coupling agent represented by the general formula (1) is constituted. Therefore, as shown in FIG. 7 , the surface-treated silica has a long-chain alkyl group (long-chain alkyl group 31 ) represented by R 1 of the general formula (1) on the surface of the silica 32 . Moreover, as shown in FIG. 7 , the long-chain alkyl groups 31 on the surface of the silica 32 interact with each other, so that the aggregation of the polymer or filler is difficult to be destroyed during shearing, imparting plasticity, and it is easy to recover even if it is subjected to long-period seismic activity. In the original state, it is considered that the absorbed energy (ΔW) required to attenuate long-period seismic activity is more likely to be maintained for a long period of time than when the conventional surface-treated silica is used. Because of the good dispersibility of existing surface-treated silica, most of the silane coupling agents having only an alkyl group with a small carbon number (for example, trimethyl) are used for surface treatment. Suitable for short-term high attenuation. However, since the interaction between the general alkyl groups is weak, it is considered that the maintenance of the attenuation property for long-period seismic activity cannot be satisfied.

[發明的效果] 本發明的減震阻尼器將包含橡膠組合物的黏彈性體設為其構成構件,所述橡膠組合物含有:聚合物成分,以苯乙烯系彈性體(A)作為主成分且含有較所述苯乙烯系彈性體(A)而言100℃下的慕尼黏度更高的EPDM(B);以及表面處理二氧化矽(C)成分,利用所述通式(1)所示的矽烷偶合劑進行了表面處理。因此,衰減特性的溫度依存性低,顯示出高衰減性,並且可滿足對於長週期地震活動的衰減性的維持。因此,作為用於高樓大廈或橋樑等大型建築物的減震阻尼器,可發揮優異的性能。[Effect of invention] The vibration damper of the present invention includes, as its constituent member, a viscoelastic body comprising a rubber composition containing a polymer component, the styrene-based elastomer (A) as a main component, and a EPDM (B) having a higher Mooney viscosity at 100° C. for the styrene-based elastomer (A); and the surface-treated silica (C) component, using the silane coupling agent represented by the general formula (1) Surface treated. Therefore, the temperature dependence of the attenuation characteristics is low, high attenuation is exhibited, and the maintenance of the attenuation for long-period seismic activity can be satisfied. Therefore, it can exhibit excellent performance as a shock absorber for large buildings such as tall buildings and bridges.

繼而,對本發明的實施形態進行詳細說明。但是,本發明並不限於所述實施形態。Next, embodiments of the present invention will be described in detail. However, the present invention is not limited to the above-described embodiment.

本發明的減震阻尼器將包含橡膠組合物的黏彈性體設為其構成構件,所述橡膠組合物含有:聚合物成分,以下述的(A)成分作為主成分且含有下述的(B)成分;以及下述的(C)成分。 (A)苯乙烯系彈性體。 (B)100℃下的慕尼黏度較所述(A)成分更高的EPDM。 (C)利用下述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽。The vibration damper of the present invention includes, as its constituent member, a viscoelastic body comprising a rubber composition containing a polymer component, the following (A) component as a main component, and the following (B) ) ingredient; and ingredient (C) below. (A) Styrenic elastomer. (B) EPDM having a higher Munich viscosity at 100°C than the above-mentioned (A) component. (C) Surface-treated silica surface-treated with a silane coupling agent represented by the following general formula (1).

[化2]

Figure 02_image003
(所述通式(1)中,R1 表示碳數6~20的烷基、末端為苯基的碳數6~20的烷基,R2 、R3 表示R1 的碳數以下的碳數的烷基、或者碳數1~3的烷氧基,X表示碳數1~3的烷氧基。)[hua 2]
Figure 02_image003
(In the general formula (1), R 1 represents an alkyl group having 6 to 20 carbon atoms, an alkyl group having 6 to 20 carbon atoms with a phenyl terminal at the end, and R 2 and R 3 represent carbons having a carbon number less than or equal to that of R 1 . number of alkyl groups, or alkoxy groups with 1 to 3 carbon atoms, and X represents an alkoxy group with 1 to 3 carbon atoms.)

此處,所謂所述聚合物成分的“主成分”表示所述聚合物成分的總量(也包含作為任意材料的後述的液狀聚合物)的50重量%以上。另外,如所述般,所述橡膠組合物的聚合物成分中可使用並用(A)成分及(B)成分者。而且,就溫度依存性與衰減性的觀點而言,所述聚合物成分理想的是僅包含所述(A)成分及(B)成分。Here, the "main component" of the polymer component refers to 50% by weight or more of the total amount of the polymer component (including the liquid polymer described later as an optional material). In addition, as mentioned above, what used together (A) component and (B) component can be used for the polymer component of the said rubber composition. Furthermore, it is desirable that the polymer component contains only the components (A) and (B) from the viewpoints of temperature dependence and attenuation.

《苯乙烯系彈性體(A)》 作為所述苯乙烯系彈性體,可列舉具有作為二烯嵌段(二烯聚合體部)的軟鏈段與作為苯乙烯嵌段(苯乙烯聚合體部)的硬鏈段的嵌段共聚物等。所述二烯嵌段可為具有苯乙烯與二烯的無規結構的嵌段。《Styrenic Elastomer (A)》 Examples of the styrene-based elastomer include block copolymers having a soft segment as a diene block (diene polymer part) and a hard segment as a styrene block (styrene polymer part) Wait. The diene block may be a block having a random structure of styrene and diene.

作為所述苯乙烯系彈性體的具體例,可列舉:苯乙烯-丁二烯(styrene-butadiene,SB)共聚物、苯乙烯-丁二烯-苯乙烯(styrene-butadiene-styrene,SBS)共聚物、苯乙烯-異戊二烯(styrene-isoprene,SI)共聚物、苯乙烯-異戊二烯-苯乙烯(SIS)共聚物、苯乙烯-乙烯-丁烯(styrene-ethylene-butylene,SEB)共聚物、苯乙烯-乙烯-丁烯-苯乙烯(styrene-ethylene-butylene-styrene,SEBS)共聚物、苯乙烯-乙烯-丙烯(styrene-ethylene-propylene,SEP)共聚物、苯乙烯-乙烯-丙烯-苯乙烯(styrene-ethylene-propylene-styrene,SEPS)共聚物、氫化的所述各共聚物等。這些可單獨使用或者兩種以上一併使用。 其中,就溫度依存性的觀點而言,較佳為SIS共聚物。Specific examples of the styrene-based elastomer include styrene-butadiene (SB) copolymers and styrene-butadiene-styrene (SBS) copolymers , styrene-isoprene (SI) copolymer, styrene-isoprene-styrene (SIS) copolymer, styrene-ethylene-butylene (SEB) ) copolymer, styrene-ethylene-butylene-styrene (SEBS) copolymer, styrene-ethylene-propylene (SEP) copolymer, styrene-ethylene - Styrene-ethylene-propylene-styrene (SEPS) copolymers, hydrogenated said respective copolymers, and the like. These can be used alone or in combination of two or more. Among them, the SIS copolymer is preferred from the viewpoint of temperature dependence.

所述苯乙烯系彈性體的100℃下的慕尼黏度較佳為5~35,更佳為10~30的範圍。再者,在本發明中需要使用所述慕尼黏度較EPDM(B)更小者。 所述苯乙烯系彈性體的慕尼黏度是依照日本工業標準(Japanese Industrial Standards,JIS)K6300-1(2001),在試驗溫度100℃下測定而得的值。The Munich viscosity at 100° C. of the styrene-based elastomer is preferably in the range of 5 to 35, and more preferably in the range of 10 to 30. Furthermore, in the present invention, it is necessary to use the Munich viscosity smaller than that of EPDM (B). The Munich viscosity of the styrene-based elastomer is a value measured at a test temperature of 100° C. in accordance with Japanese Industrial Standards (JIS) K6300-1 (2001).

另外,所述苯乙烯系彈性體的二嵌段成分量(例如在SIS共聚物的情況下為苯乙烯-異戊二烯二嵌段成分量)較佳為5重量%~90重量%,更佳為10重量%~80重量%的範圍。若設為此種二嵌段成分量,則容易獲得所期望的剪切彈性係數,獲得高衰減特性、低溫度依存性等方面變得更優異。 再者,所述二嵌段成分量為利用凝膠滲透層析法(gel permeation chromatography,GPC)而測定的值。In addition, the amount of the diblock component of the styrene-based elastomer (for example, the amount of the styrene-isoprene diblock component in the case of the SIS copolymer) is preferably 5% by weight to 90% by weight, more The range of 10 to 80 weight% is preferable. When the amount of the diblock component is set as such, the desired shear elastic modulus can be easily obtained, and high attenuation characteristics, low temperature dependence, and the like can be obtained. In addition, the said amount of the diblock component is a value measured by gel permeation chromatography (gel permeation chromatography, GPC).

另外,所述苯乙烯系彈性體的苯乙烯量較佳為1重量%~60重量%,更佳為10重量%~40重量%的範圍。若為此種苯乙烯量,則就剪切彈性係數的方面而言變得更優異。 再者,所述苯乙烯量為利用核磁共振裝置(nuclear magnetic resonance,NMR)而測定的值。In addition, the amount of styrene in the styrene-based elastomer is preferably in the range of 1% by weight to 60% by weight, and more preferably in the range of 10% by weight to 40% by weight. If it is such a styrene amount, it will become more excellent in the point of shear elasticity coefficient. In addition, the said amount of styrene is the value measured by the nuclear magnetic resonance apparatus (nuclear magnetic resonance, NMR).

《EPDM(B)》 作為EPDM,可使用100℃下的慕尼黏度較所述苯乙烯系彈性體更高的EPDM。此種EPDM的強度高,可有助於提高吸收能量的保持率。 所述EPDM的100℃下的慕尼黏度較佳為30~100,更佳為35~85的範圍。 再者,所述EPDM的慕尼黏度是依照JIS K6300-1(2001),在試驗溫度100℃下測定而得的值。"EPDM (B)" As the EPDM, an EPDM having a higher Muni viscosity at 100° C. than the styrene-based elastomer can be used. Such EPDM has high strength and can help to improve the retention rate of absorbed energy. The Munich viscosity at 100° C. of the EPDM is preferably in the range of 30 to 100, more preferably in the range of 35 to 85. In addition, the Munich viscosity of the EPDM is a value measured at a test temperature of 100° C. in accordance with JIS K6300-1 (2001).

就溫度依存性的觀點而言,所述EPDM的乙烯含量較佳為5重量%~60重量%,更佳為10重量%~40重量%。From the viewpoint of temperature dependence, the ethylene content of the EPDM is preferably 5% by weight to 60% by weight, more preferably 10% by weight to 40% by weight.

另外,就衰減性的觀點而言,所述EPDM的二烯含量較佳為3重量%~25重量%,更佳為5重量%~15重量%。In addition, from the viewpoint of attenuation properties, the diene content of the EPDM is preferably 3% by weight to 25% by weight, more preferably 5% by weight to 15% by weight.

另外,作為所述EPDM的二烯系單體(第3成分),較佳為碳數5~20的二烯系單體,具體可列舉:1,4-戊二烯、1,4-己二烯、1,5-己二烯、2,5-二甲基-1,5-己二烯、1,4-辛二烯、1,4-環己二烯、環辛二烯、二環戊二烯(dicyclopentadiene,DCP)、5-亞乙基-2-降冰片烯(5-ethylidene-2-norbornene,ENB)、5-亞丁基-2-降冰片烯、2-甲基烯丙基-5-降冰片烯、2-異丙烯基-5-降冰片烯等。在這些二烯系單體(第3成分)中,較佳為二環戊二烯(DCP)、5-亞乙基-2-降冰片烯(ENB)。In addition, as the diene-based monomer (third component) of the EPDM, a diene-based monomer having 5 to 20 carbon atoms is preferable, and specific examples thereof include 1,4-pentadiene and 1,4-hexane. Diene, 1,5-hexadiene, 2,5-dimethyl-1,5-hexadiene, 1,4-octadiene, 1,4-cyclohexadiene, cyclooctadiene, diolefin Cyclopentadiene (dicyclopentadiene, DCP), 5-ethylidene-2-norbornene (5-ethylidene-2-norbornene, ENB), 5-butylene-2-norbornene, 2-methylallyl base-5-norbornene, 2-isopropenyl-5-norbornene, etc. Among these diene-based monomers (third component), dicyclopentadiene (DCP) and 5-ethylidene-2-norbornene (ENB) are preferred.

所述橡膠組合物中的苯乙烯系彈性體(A)與EPDM(B)的混合比例以重量比計較佳為(A):(B)=95:5~50:50的範圍,更佳為(A):(B)=90:10~55:45的範圍,進而較佳為(A):(B)=85:15~60:40的範圍。藉由設為此種混合比例,就滿足高衰減特性、低溫度依存性、對於長週期地震活動的衰減性的維持的方面而言,變得更優異。The mixing ratio of the styrene-based elastomer (A) and the EPDM (B) in the rubber composition is preferably in the range of (A):(B)=95:5 to 50:50 in terms of weight ratio, more preferably (A):(B)=90:10-55:45 range, more preferably (A):(B)=85:15-60:40 range. By setting the mixing ratio as such, it becomes more excellent in terms of satisfying high attenuation characteristics, low temperature dependence, and maintenance of attenuation properties for long-period seismic activity.

《表面處理二氧化矽(C)》 作為表面處理二氧化矽,可使用利用下述通式(1)所示的矽烷偶合劑進行了表面處理的二氧化矽。"Surface Treatment Silica (C)" As the surface-treated silica, silica that has been surface-treated with a silane coupling agent represented by the following general formula (1) can be used.

[化3]

Figure 02_image004
(所述通式(1)中,R1 表示碳數6~20的烷基、末端為苯基的碳數6~20的烷基,R2 、R3 表示R1 的碳數以下的碳數的烷基、或者碳數1~3的烷氧基,X表示碳數1~3的烷氧基。)[hua 3]
Figure 02_image004
(In the general formula (1), R 1 represents an alkyl group having 6 to 20 carbon atoms, an alkyl group having 6 to 20 carbon atoms with a phenyl terminal at the end, and R 2 and R 3 represent carbons having a carbon number less than or equal to that of R 1 . number of alkyl groups, or alkoxy groups with 1 to 3 carbon atoms, and X represents an alkoxy group with 1 to 3 carbon atoms.)

關於所述通式(1)所示的矽烷偶合劑,R1 的碳數如所述般需要設為6~20,較佳為8~16的範圍。藉由以所述方式規定,可滿足對於長週期地震活動的衰減性的維持。 另外,關於所述通式(1)所示的矽烷偶合劑,如所述般,R2 、R3 需要設為R1 的碳數以下的碳數的烷基、或者碳數1~3的烷氧基。因此,在R2 、R3 為烷基的情況下,R2 、R3 的碳數可取1~20的範圍,但較佳為R2 、R3 的碳數為1~6的範圍,更佳為1~3的範圍。即,其原因在於:藉由以所述方式將R2 、R3 的碳數規定得少,與二氧化矽的反應性進一步提高,可對二氧化矽進行良好的表面處理。另外,在R2 、R3 為碳數1~3的烷氧基的情況下,與二氧化矽的反應性也提高,可對二氧化矽進行良好的表面處理。再者,R2 、R3 可相同也可不同。Regarding the silane coupling agent represented by the general formula (1), the number of carbon atoms in R 1 needs to be 6 to 20 as described above, and preferably in the range of 8 to 16. By specifying in this manner, maintenance of damping properties for long-period seismicity can be satisfied. In addition, regarding the silane coupling agent represented by the general formula (1), as described above, R 2 and R 3 need to be an alkyl group having a carbon number less than the carbon number of R 1 , or an alkyl group having 1 to 3 carbon atoms. alkoxy. Therefore, when R 2 and R 3 are alkyl groups, the carbon numbers of R 2 and R 3 can be in the range of 1 to 20, but preferably the carbon numbers of R 2 and R 3 are in the range of 1 to 6, and more The range of 1-3 is preferable. That is, the reason for this is that the reactivity with silicon dioxide is further improved by regulating the carbon numbers of R 2 and R 3 to be small in the above-described manner, and favorable surface treatment can be performed on silicon dioxide. In addition, when R 2 and R 3 are alkoxy groups having 1 to 3 carbon atoms, the reactivity with silica is also improved, and favorable surface treatment can be performed on silica. In addition, R 2 and R 3 may be the same or different.

關於所述通式(1)所示的矽烷偶合劑,X具體可列舉甲氧基、乙氧基等烷氧基。而且,所述烷氧基X在二氧化矽的表面處理時,利用空氣中的水分等進行水解而成為羥基,對於二氧化矽表面的羥基進行氫鍵結或進行脫水反應而進行醚鍵結,由此構成利用所述通式(1)所示的矽烷偶合劑進行了表面處理的二氧化矽(表面處理二氧化矽)。因此,藉由所述烷氧基X的水解,可釋放出醇(甲醇、乙醇等)。Regarding the silane coupling agent represented by the general formula (1), X specifically includes alkoxy groups such as a methoxy group and an ethoxy group. In addition, the alkoxy group X is hydrolyzed by moisture in the air during the surface treatment of silica to become a hydroxyl group, and the hydroxyl group on the surface of the silica undergoes hydrogen bonding or dehydration reaction to be ether-bonded. Thereby, the silica (surface-treated silica) surface-treated with the silane coupling agent represented by the said general formula (1) is comprised. Thus, by the hydrolysis of the alkoxy group X, an alcohol (methanol, ethanol, etc.) can be released.

作為所述表面處理二氧化矽的材料即二氧化矽,例如可使用濕式二氧化矽、乾式二氧化矽、膠體二氧化矽等。而且,這些可單獨使用或者兩種以上一併使用。其中,就利用所述通式(1)所示的矽烷偶合劑進行的二氧化矽表面處理的反應控制等觀點而言,可較佳地使用濕式二氧化矽。此處,在所述二氧化矽中,作為其分散液而通常使用甲醇、異丙醇、乙二醇、乙酸乙酯、甲基乙基酮、甲苯等,其中,乙酸乙酯、甲基乙基酮由於不用擔心會因所述通式(1)所示的矽烷偶合劑而阻礙二氧化矽表面處理反應,故可較佳地使用。再者,所述表面處理例如藉由使二氧化矽分散於包含所述通式(1)所示的矽烷偶合劑的所述分散液中來進行。As the material of the surface-treated silica, that is, silica, for example, wet silica, dry silica, colloidal silica, and the like can be used. Moreover, these can be used individually or in combination of 2 or more types. Among them, wet silica can be preferably used from the viewpoint of reaction control of the silica surface treatment using the silane coupling agent represented by the general formula (1). Here, in the silica, methanol, isopropanol, ethylene glycol, ethyl acetate, methyl ethyl ketone, toluene, etc. are generally used as the dispersion liquid, among which ethyl acetate, methyl ethyl The base ketone can be preferably used because there is no fear of inhibiting the silica surface treatment reaction by the silane coupling agent represented by the general formula (1). In addition, the surface treatment is performed by, for example, dispersing silica in the dispersion liquid containing the silane coupling agent represented by the general formula (1).

另外,就衰減性的提高效果的觀點而言,所述表面處理前的二氧化矽的一次粒徑較佳為5 nm~100 nm,更佳為5 nm~50 nm的範圍。再者,所述一次粒徑是利用切片機對試樣進行取樣後,利用掃描式電子顯微鏡(scanning electron microscope,SEM)裝置和/或穿透式電子顯微鏡(transmission electron microscope,TEM)裝置進行觀察並測定而得者。In addition, from the viewpoint of the effect of improving the attenuation property, the primary particle diameter of the silica before the surface treatment is preferably 5 nm to 100 nm, more preferably 5 nm to 50 nm. Furthermore, the primary particle size is observed by using a scanning electron microscope (SEM) device and/or a transmission electron microscope (TEM) device after sampling the sample with a microtome. and measured.

就所述矽烷偶合劑對二氧化矽表面的鍵結性、二氧化矽的分散性提高等觀點而言,所述表面處理二氧化矽(C)較佳為在製備所述橡膠組合物之前,利用所述通式(1)所示的矽烷偶合劑預先進行二氧化矽的表面處理。而且,作為所述表面處理二氧化矽向聚合物成分的混合方法,例如可在使所述表面處理二氧化矽乾燥後,與聚合物成分進行混煉,另外也可在表面處理二氧化矽乾燥之前,在所述有機溶劑(作為二氧化矽的分散液的甲醇、異丙醇、乙二醇、乙酸乙酯、甲基乙基酮、甲苯等)中使聚合物成分溶解而加以混合。From the viewpoints of the bonding property of the silane coupling agent to the surface of the silica and the improvement of the dispersibility of the silica, the surface-treated silica (C) is preferably prepared before the rubber composition is prepared. The surface treatment of silica is performed in advance using the silane coupling agent represented by the general formula (1). In addition, as a method for mixing the surface-treated silica with the polymer component, for example, after drying the surface-treated silica, it may be kneaded with the polymer component, or the surface-treated silica may be dried. Previously, the polymer components were dissolved and mixed in the organic solvent (methanol, isopropanol, ethylene glycol, ethyl acetate, methyl ethyl ketone, toluene, etc., which are dispersions of silica).

而且,相對於所述聚合物成分的總量100重量份,所述橡膠組合物中的所述表面處理二氧化矽(C)的含有比例較佳為5重量份~100重量份的範圍,更佳為10重量份~80重量份的範圍,進而較佳為15重量份~60重量份的範圍。即,藉由設為此種比例,可進一步滿足對於長週期地震活動的衰減性的維持。Moreover, the content ratio of the surface-treated silica (C) in the rubber composition is preferably in the range of 5 parts by weight to 100 parts by weight with respect to 100 parts by weight of the total amount of the polymer components, and more The range of 10 to 80 parts by weight is preferable, and the range of 15 to 60 parts by weight is more preferable. That is, by setting such a ratio, it is possible to further satisfy the maintenance of the damping property for long-period seismic activity.

再者,在製備所述橡膠組合物時,也可分別加入所述通式(1)所示的矽烷偶合劑與二氧化矽,使其在橡膠組合物內反應而構成所述表面處理二氧化矽(C)。Furthermore, when preparing the rubber composition, the silane coupling agent represented by the general formula (1) and silicon dioxide can also be separately added to react in the rubber composition to form the surface-treated dioxide. Silicon (C).

另外,在所述橡膠組合物中並用所述表面處理二氧化矽(C)以外的二氧化矽(包含未進行表面處理的二氧化矽等)的情況下,相對於所述聚合物成分的總量100重量份,所述橡膠組合物中的包含所述表面處理二氧化矽(C)的所有二氧化矽的含有比例較佳為5重量份~100重量份,更佳為5重量份~50重量份的範圍,進而較佳為10重量份~45重量份的範圍。In addition, when silica other than the surface-treated silica (C) is used in combination with the rubber composition (including silica and the like that have not been surface-treated), the total amount of the polymer component is 100 parts by weight, the content ratio of all silica including the surface-treated silica (C) in the rubber composition is preferably 5 parts by weight to 100 parts by weight, more preferably 5 parts by weight to 50 parts by weight The range of parts by weight is more preferably in the range of 10 parts by weight to 45 parts by weight.

再者,在所述橡膠組合物中,所述表面處理二氧化矽(C)偏向存在於苯乙烯系彈性體(A),其結果,衰減性變得優異。Furthermore, in the rubber composition, the surface-treated silica (C) tends to exist in the styrene-based elastomer (A), and as a result, the damping property becomes excellent.

另外,所述橡膠組合物中視需要也可適宜調配二氧化矽以外的填料、液狀聚合物、黏著賦予劑、塑化劑、抗老化劑等。In addition, a filler other than silica, a liquid polymer, an adhesion imparting agent, a plasticizer, an anti-aging agent, etc. may be appropriately blended in the rubber composition as necessary.

作為所述二氧化矽以外的填料,可列舉碳酸鈣、滑石、碳黑、碳纖維及碳奈米管等,這些可單獨使用或者兩種以上一併使用。Examples of fillers other than the silica include calcium carbonate, talc, carbon black, carbon fibers, and carbon nanotubes, and these may be used alone or in combination of two or more.

作為所述碳酸鈣,就良好地保持剛性的溫度依存性的同時進一步提高衰減特性的觀點而言,特別較佳為使用硬脂酸處理碳酸鈣、松香酸處理碳酸鈣、木質素處理碳酸鈣、脂肪酸四級銨鹽處理碳酸鈣等。As the calcium carbonate, it is particularly preferable to use stearic acid-treated calcium carbonate, rosin-acid-treated calcium carbonate, lignin-treated calcium carbonate, Fatty acid quaternary ammonium salt treatment of calcium carbonate, etc.

相對於所述橡膠組合物中的聚合物成分的總量100重量份,所述橡膠組合物中的碳酸鈣或滑石的含有比例較佳為5重量份~100重量份,更佳為10重量份~80重量份的範圍。若為此種含有比例,則在良好地保持剛性的溫度依存性的同時進一步提高衰減特性。 另外,相對於所述橡膠組合物中的聚合物成分的總量100重量份,其他填料(碳黑、碳纖維及碳奈米管等)的含有比例較佳為1重量份~50重量份,更佳為2重量份~20重量份的範圍。The content ratio of calcium carbonate or talc in the rubber composition is preferably 5 to 100 parts by weight, more preferably 10 parts by weight, relative to 100 parts by weight of the total amount of polymer components in the rubber composition ~80 parts by weight range. With such a content ratio, the damping characteristics can be further improved while maintaining the temperature dependence of rigidity well. In addition, the content ratio of other fillers (carbon black, carbon fiber, carbon nanotube, etc.) is preferably 1 to 50 parts by weight relative to 100 parts by weight of the total amount of polymer components in the rubber composition, and more Preferably it is the range of 2 weight part - 20 weight part.

另外,作為所述橡膠組合物中適宜調配的液狀聚合物,例如可列舉:液狀異戊二烯橡膠(液狀IR(isoprene rubber))、液狀丁二烯橡膠(液狀BR(butadiene rubber))、液狀苯乙烯丁二烯橡膠(液狀SBR(styrene butadiene rubber))、液狀苯乙烯-異戊二烯橡膠(液狀SI(styrene-isoprene))、液狀苯乙烯-乙烯/丙烯橡膠(液狀SEP(styrene ethylene propylene))、液狀異戊二烯-丁二烯橡膠(液狀IR-BR(isoprene rubber-butadiene rubber))等。這些可單獨使用或者兩種以上一併使用。 所述液狀聚合物較佳為玻璃化轉變點(Tg)為-55℃以下者,特別較佳為玻璃化轉變點(Tg)為-60℃以下者。 再者,所述玻璃化轉變點(Tg)是依據差示掃描量熱(differential scanning calorimetry,DSC)測定法(差示掃描量熱測定法)而求出的值。Moreover, as a liquid polymer suitably mix|blended with the said rubber composition, liquid isoprene rubber (liquid IR (isoprene rubber)), liquid butadiene rubber (liquid BR (butadiene rubber), for example rubber)), liquid styrene butadiene rubber (liquid SBR (styrene butadiene rubber)), liquid styrene-isoprene rubber (liquid SI (styrene-isoprene)), liquid styrene-ethylene / Propylene rubber (liquid SEP (styrene ethylene propylene)), liquid isoprene-butadiene rubber (liquid IR-BR (isoprene rubber-butadiene rubber)), etc. These can be used alone or in combination of two or more. The liquid polymer preferably has a glass transition point (Tg) of -55°C or lower, and particularly preferably has a glass transition point (Tg) of -60°C or lower. In addition, the said glass transition point (Tg) is the value calculated|required by the differential scanning calorimetry (differential scanning calorimetry, DSC) measurement method (differential scanning calorimetry).

相對於所述橡膠組合物中的聚合物成分的總量100重量份,所述橡膠組合物中的液狀聚合物的含有比例較佳為5重量份~40重量份,更佳為10重量份~40重量份的範圍。The content ratio of the liquid polymer in the rubber composition is preferably 5 parts by weight to 40 parts by weight, more preferably 10 parts by weight relative to 100 parts by weight of the total amount of the polymer components in the rubber composition ~40 parts by weight range.

所述橡膠組合物中適宜調配的黏著賦予劑是以提高衰減特性或接著性為目的而使用,例如適合使用氫化脂環族系烴樹脂、香豆酮樹脂、松香、松香酯、酮樹脂、二環戊二烯樹脂、馬來酸樹脂、環氧樹脂、脲樹脂、三聚氰胺樹脂等。這些可單獨使用或者兩種以上一併使用。Adhesion imparting agents suitably formulated in the rubber composition are used for the purpose of improving attenuation properties or adhesion, and for example, hydrogenated alicyclic hydrocarbon resins, coumarone resins, rosin, rosin esters, ketone resins, Cyclopentadiene resin, maleic acid resin, epoxy resin, urea resin, melamine resin, etc. These can be used alone or in combination of two or more.

作為所述橡膠組合物中適宜調配的抗老化劑,例如可列舉:芳香族二級胺系抗老化劑、特殊蠟系抗老化劑、胺-酮系抗老化劑、酚系抗老化劑、咪唑系抗老化劑等。這些可單獨使用或者兩種以上一併使用。Examples of antiaging agents that can be suitably formulated in the rubber composition include aromatic secondary amine antiaging agents, special wax antiaging agents, amine-ketone antiaging agents, phenolic antiaging agents, and imidazoles. Anti-aging agent, etc. These can be used alone or in combination of two or more.

所述橡膠組合物例如可藉由使用捏合機、行星式混合機、混合輥、雙軸螺旋式攪拌機等將所述(A)成分~(C)成分、以及視需要的其他成分等加以混煉而獲得。然後,將所述橡膠組合物加熱至熔融溫度以上使其熔融,使其流入模框內,放置冷卻而成形為規定形狀,由此可製造作為本發明的減震阻尼器的構成構件的黏彈性體。The rubber composition can be kneaded with the components (A) to (C), as well as other components as needed, by using, for example, a kneader, a planetary mixer, a mixing roll, a twin-shaft screw mixer, or the like. and obtained. Then, the rubber composition is heated to a melting temperature or higher to be melted, poured into a mold frame, left to cool, and molded into a predetermined shape, thereby producing a viscoelasticity component of the damper of the present invention. body.

所述黏彈性體為未硫化的黏彈性體,其剪切彈性係數在剪切應變率200%、頻率0.5 Hz、溫度20℃的條件下較佳為0.15 N/mm2 以上,更佳為0.2 N/mm2 ~0.35 N/mm2 的範圍,進而較佳為0.23 N/mm2 ~0.3 N/mm2 的範圍。The viscoelastic body is an unvulcanized viscoelastic body, and its shear elasticity coefficient is preferably 0.15 N/mm 2 or more, more preferably 0.2 under the conditions of a shear strain rate of 200%, a frequency of 0.5 Hz, and a temperature of 20 °C The range of N/mm 2 to 0.35 N/mm 2 is more preferably the range of 0.23 N/mm 2 to 0.3 N/mm 2 .

再者,所述黏彈性體的剪切彈性係數例如是使用圖5所示的裝置,按如下方式進行測定。即,在實施了噴砂處理的兩片金屬配件22的規定部位(試樣21的接著部位)塗佈橡膠用雙液接著劑後,在所述金屬配件22間夾持所述黏彈性體形成用的橡膠組合物,並進行乾燥。對其進行規定時間(例如,100℃下10分鐘)的熱壓成形,從而製作試樣21。然後,使所述裝置沿箭頭方向激振,基於圖6所示的負荷-應變環曲線而進行動態剪切特性的評價。即,對於所述裝置而言,使用激振機、輸入信號振盪機、及輸出信號處理機,在所述條件(剪切應變率:200%(相對於試樣厚度為200%)、頻率(f):0.5 Hz、測定溫度:20℃)下賦予激振,根據對於所述激振時間的剪切應變值(δ)與負荷值(Qd)的分析,並按照下述式(α)來求出等效剛性(Ke),並且按照下述式(β)來求出剪切彈性係數(Ge)。再者,下述式中,S表示試樣的面積,D表示試樣的厚度。 等效剛性:Ke(N/mm)=Qd/δ    ···(α) 剪切彈性係數:Ge(N/mm2 )=Ke÷S/D   ···(β)In addition, the shear elasticity coefficient of the said viscoelastic body is measured as follows using the apparatus shown in FIG. 5, for example. That is, after applying a two-liquid adhesive for rubber to a predetermined portion of the two pieces of metal fittings 22 (the adjoining portion of the sample 21 ) that have been sandblasted, the viscoelastic body forming adhesive is sandwiched between the metal fittings 22 . the rubber composition and dried. This is subjected to hot press molding for a predetermined time (for example, 10 minutes at 100° C.) to prepare a sample 21 . Then, the apparatus was excited in the direction of the arrow, and the dynamic shear characteristics were evaluated based on the load-strain loop curve shown in FIG. 6 . That is, in the above-mentioned apparatus, a vibration exciter, an input signal oscillator, and an output signal processor were used, and under the conditions (shear strain rate: 200% (200% relative to the sample thickness), frequency ( f): 0.5 Hz, measurement temperature: 20°C), excitation is given, and the following formula (α) is obtained from the analysis of the shear strain value (δ) and the load value (Qd) for the excitation time. The equivalent rigidity (Ke) is obtained, and the shear elastic coefficient (Ge) is obtained according to the following formula (β). In addition, in the following formula, S represents the area of a sample, and D represents the thickness of a sample. Equivalent rigidity: Ke(N/mm)=Qd/δ...(α) Shear elastic coefficient: Ge(N/mm 2 )=Ke÷S/D...(β)

此處,圖1表示本發明的減震阻尼器的一例。圖中,1表示減震阻尼器,2表示黏彈性體,4與5表示金屬板。而且,如圖示般,黏彈性體2以被夾在兩片金屬板4、金屬板5之間的狀態進行接著。 圖2是表示所述減震阻尼器的一例的剖面圖(圖1的A-A'剖面圖)。圖2中示出所述減震阻尼器中的黏彈性體2為單層結構者。 圖3是表示所述減震阻尼器的另一例的剖面圖(圖1的A-A'剖面圖)。圖3中示出所述減震阻尼器中的黏彈性體2為雙層結構者。Here, FIG. 1 shows an example of the damper of the present invention. In the figure, 1 denotes a shock absorber, 2 denotes a viscoelastic body, and 4 and 5 denotes a metal plate. Then, as shown in the figure, the viscoelastic body 2 is bonded in a state of being sandwiched between two metal plates 4 and 5 . FIG. 2 is a cross-sectional view (a cross-sectional view taken along the line AA′ in FIG. 1 ) showing an example of the damper. FIG. 2 shows that the viscoelastic body 2 in the shock-absorbing damper is a single-layer structure. FIG. 3 is a cross-sectional view (a cross-sectional view taken along the line AA′ in FIG. 1 ) showing another example of the shock absorber. FIG. 3 shows that the viscoelastic body 2 in the shock-absorbing damper is a double-layer structure.

繼而,圖4表示所述減震阻尼器1的設置例(一例)。圖中,1表示減震阻尼器,2表示黏彈性體,4與5表示金屬板,6表示螺栓,7與8表示面板,10表示梁,11表示基座。如圖示般,減震阻尼器1的金屬板4、金屬板5分別藉由螺栓6而安裝於面板7、面板8上。而且,為了實現梁10與基座11之間的減震,夾持於所述金屬板4、金屬板5之間的黏彈性體2發揮功能。Next, FIG. 4 shows an installation example (an example) of the above-mentioned damper 1 . In the figure, 1 denotes a shock absorber, 2 denotes a viscoelastic body, 4 and 5 denotes a metal plate, 6 denotes a bolt, 7 and 8 denotes a panel, 10 denotes a beam, and 11 denotes a base. As shown in the figure, the metal plate 4 and the metal plate 5 of the damper 1 are attached to the panel 7 and the panel 8 by bolts 6, respectively. In addition, in order to realize damping between the beam 10 and the base 11 , the viscoelastic body 2 sandwiched between the metal plate 4 and the metal plate 5 functions.

本發明的減震阻尼器並不特別限定於所述形狀者,作為土木用、建築用的減震阻尼器、家電用或電子設備用的減震阻尼器等,可發揮優異的功能。 其中,作為橋樑或大廈等大型建築物中所使用的減震阻尼器、特別是作為高樓大廈用減震阻尼器,可發揮更優異的功能。 [實施例]The vibration damper of the present invention is not particularly limited to the shape described above, and can exhibit excellent functions as a vibration damper for civil engineering, a vibration damper for construction, a vibration damper for home appliances or electronic equipment, and the like. Among them, a more excellent function can be exhibited as a vibration damper used in large buildings such as bridges and buildings, especially as a vibration damper for high-rise buildings. [Example]

繼而,與比較例一併來說明實施例。但是,本發明只要不超出其主旨,則並不限定於這些實施例。Next, an Example is demonstrated together with a comparative example. However, the present invention is not limited to these Examples as long as the gist of the present invention is not exceeded.

首先,在實施例及比較例之前,準備了下述所示的材料。再者,下述所示的材料所示的各數值是基於所述測定方法而測定的值。First, before the Examples and Comparative Examples, the materials shown below were prepared. In addition, each numerical value shown in the material shown below is the value measured based on the said measurement method.

〔SIS〕 日本瑞翁(ZEON)公司製造,昆塔克(Quintac)3520(100℃下的慕尼黏度:23,苯乙烯-異戊二烯二嵌段成分量:78重量%,苯乙烯量:15重量%)[SIS] Made by ZEON Co., Ltd., Quintac 3520 (Mune viscosity at 100°C: 23, styrene-isoprene diblock content: 78 wt %, styrene content: 15 wt % %)

〔EPDM(i)〕 三井化學公司製造,三井EPT X-4010M(100℃下的慕尼黏度:8)[EPDM(i)] Mitsui Chemicals Corporation, Mitsui EPT X-4010M (Munich viscosity at 100°C: 8)

〔EPDM(ii)〕 三井化學公司製造,三井EPT 4045M(100℃下的慕尼黏度:45)[EPDM(ii)] Mitsui Chemicals Co., Ltd., Mitsui EPT 4045M (Munich viscosity at 100°C: 45)

〔EPDM(iii)〕 三井化學公司製造,三井EPT 9090M(100℃下的慕尼黏度:81)[EPDM(iii)] Mitsui Chemicals Co., Ltd., Mitsui EPT 9090M (Munich viscosity at 100°C: 81)

〔碳酸鈣〕 利用硬脂酸進行了表面處理的碳酸鈣(白石鈣公司製造,白豔華CC)[Calcium Carbonate] Calcium carbonate surface-treated with stearic acid (manufactured by Shiraishi Calcium Co., Ltd., Bai Yanhua CC)

〔滑石〕 日本滑石公司製造,MS-P〔talc〕 Made by Nippon Talc, MS-P

〔未處理二氧化矽〕 未進行表面處理的二氧化矽(東曹二氧化矽公司製造,尼普西路(Nipsil)VN3)[Untreated silica] Silica without surface treatment (manufactured by Tosoh Silica Co., Ltd., Nipsil VN3)

〔表面處理二氧化矽(i)〕 利用下述式(2)所示的矽烷偶合劑進行了表面處理的二氧化矽(日本艾羅西爾(Aerosil)公司製造,艾羅西爾(Aerosil)RX200)[Surface treated silica (i)] Silicon dioxide surface-treated with a silane coupling agent represented by the following formula (2) (Aerosil RX200, manufactured by Japan Aerosil Co., Ltd.)

[化4]

Figure 02_image005
[hua 4]
Figure 02_image005

〔表面處理二氧化矽(ii)〕 利用下述式(3)所示的矽烷偶合劑進行了表面處理的二氧化矽(日本艾羅西爾(Aerosil)公司製造,艾羅西爾(Aerosil)R805)[Surface treated silica (ii)] Silicon dioxide surface-treated with a silane coupling agent represented by the following formula (3) (manufactured by Aerosil, Japan, Aerosil R805)

[化5]

Figure 02_image006
[hua 5]
Figure 02_image006

〔表面處理二氧化矽(iii)〕 利用下述式(4)所示的矽烷偶合劑進行了表面處理的二氧化矽[Surface treated silica (iii)] Silicon dioxide surface-treated with a silane coupling agent represented by the following formula (4)

[化6]

Figure 02_image007
[hua 6]
Figure 02_image007

再者,所述表面處理二氧化矽(iii)是利用亨舍爾混合機(Henschel Mixer)攪拌二氧化矽(東曹二氧化矽公司製造,尼普西路(Nipsil)VN3),並且緩慢添加所述式(4)所示的矽烷偶合劑(日本贏創(Evonik Japan)公司製造,戴娜西蘭(Dynasylan)9116),進行二氧化矽的表面處理後,利用150℃的烘箱使其乾燥來製作。Furthermore, the surface-treated silica (iii) was stirred by using a Henschel Mixer (manufactured by Tosoh Silica Co., Ltd., Nipsil VN3), and slowly added The silane coupling agent represented by the formula (4) (Dynasylan 9116, manufactured by Evonik Japan) was subjected to surface treatment with silica, and then dried in an oven at 150°C. to make.

〔碳黑〕 東海碳公司製造,西斯特(Seast)S[Carbon Black] Made by Tokai Carbon, Seast S

〔液狀聚合物〕 可樂麗(Kuraray)公司製造,可樂普林(Kuraprene)LIR-310[Liquid polymer] Manufactured by Kuraray Company, Kuraprene LIR-310

〔實施例1~實施例10、比較例1~比較例5〕 將後述的表1、表2所示的各成分以所述表所示的比例進行調配,並利用捏合機將這些混煉,從而製備作為目標的橡膠組合物。[Example 1 to Example 10, Comparative Example 1 to Comparative Example 5] Each component shown in Table 1 and Table 2 described later was blended at the ratio shown in the table, and these were kneaded with a kneader to prepare a target rubber composition.

使用以所述方式獲得的實施例及比較例的橡膠組合物,按照下述基準進行各特性的評價。將這些結果一併示於後述的表1、表2中。Using the rubber compositions of Examples and Comparative Examples obtained as described above, evaluation of each characteristic was performed according to the following criteria. These results are collectively shown in Table 1 and Table 2 to be described later.

[剪切彈性係數(Ge)、衰減常數(he)] 使用如圖5所示的裝置,進行橡膠組合物的動態剪切特性的評價。即,在實施了噴砂處理的兩片金屬配件22(大小140 mm×80 mm、厚度9 mm)的規定部位(試樣21的接著部位)塗佈橡膠用雙液接著劑後,在所述兩片金屬配件22之間夾持實施例或比較例的橡膠組合物,並進行乾燥。將其在100℃下進行10分鐘的熱壓成形,從而製作試樣(大小70 mm×80 mm、厚度5 mm)21。然後,使所述裝置沿箭頭方向激振,基於圖6所示的負荷-應變環曲線而進行動態剪切特性的評價。即,對於所述裝置而言,使用激振機(鷺宮製作所公司製造,動態伺服(DYNAMIC SERVO))、輸入信號振盪機(橫河電氣公司製造,合成函數發生器(synthesized function generator)FC320)、及輸出信號處理機(小野測器(ONO SOKKI)公司製造,便攜式FFT分析器CF-3200),賦予假定大地震時的第二波的激振(剪切應變率:200%(相對於試樣厚度為200%)、頻率(f):0.5 Hz、測定溫度:20℃),根據相對於所述激振時間的剪切應變值(δ)與負荷值(Qd)的分析,並按照下述式(1)~式(4)來求出等效剛性(Ke)、等效衰減係數(Ce),並且由所述值來求出剪切彈性係數(Ge)、衰減常數(he)。再者,下述式中,ω=2πf、W=Keδ2 /2、△W表示負荷-應變環面積(吸收能量),S表示試樣的面積,D表示試樣的厚度。 等效剛性:Ke(N/mm)=Qd/δ    ···(1) 等效衰減係數:Ce(kN·s/m)=△W/πωδ2 ···(2) 衰減常數:he=△W/4πW   ···(3) 剪切彈性係數:Ge(N/mm2 )=Ke÷S/D   ···(4)[Shear Elasticity Coefficient (Ge), Attenuation Constant (he)] The dynamic shear properties of the rubber composition were evaluated using the apparatus shown in FIG. 5 . That is, after applying the two-liquid adhesive for rubber to the predetermined part (the adjoining part of the sample 21 ) of the two pieces of metal fittings 22 (size 140 mm×80 mm, thickness 9 mm) subjected to sandblasting, The rubber compositions of Examples or Comparative Examples were sandwiched between sheet metal fittings 22 and dried. This was subjected to hot press molding at 100° C. for 10 minutes to prepare a sample (size 70 mm×80 mm, thickness 5 mm) 21 . Then, the apparatus was excited in the direction of the arrow, and the dynamic shear characteristics were evaluated based on the load-strain loop curve shown in FIG. 6 . That is, for the above-mentioned device, a vibration exciter (manufactured by Saginomiya Co., Ltd., dynamic servo (DYNAMIC SERVO)), an input signal oscillator (manufactured by Yokogawa Electric Co., Ltd., a synthesized function generator (synthesized function generator) FC320), and an output signal processor (portable FFT analyzer CF-3200, manufactured by ONO SOKKI), which gives the second-wave excitation (shear strain rate: 200% (relative to the sample) during a hypothetical large earthquake thickness: 200%), frequency (f): 0.5 Hz, measurement temperature: 20°C), based on the analysis of the shear strain value (δ) and load value (Qd) with respect to the excitation time, and according to the following The equivalent rigidity (Ke) and the equivalent attenuation coefficient (Ce) are obtained from the equations (1) to (4), and the shear elastic coefficient (Ge) and the attenuation constant (he) are obtained from the values. In the following formula, ω=2πf, W=Keδ 2 /2, ΔW represents the area of the load-strain ring (absorbing energy), S represents the area of the sample, and D represents the thickness of the sample. Equivalent rigidity: Ke(N/mm)=Qd/δ...(1) Equivalent attenuation coefficient: Ce(kN·s/m)=△W/πωδ 2 ...(2) Attenuation constant: he= △W/4πW (3) Shear elasticity coefficient: Ge (N/mm 2 )=Ke÷S/D (4)

[溫度依存性] 對於以所述方式製作的裝置(參照圖5),依照所述測定方法來測定測定溫度為10℃時的剪切彈性係數“Ge(10℃)”、與測定溫度為30℃時的剪切彈性係數“Ge(30℃)”的值,計算“Ge(10℃)/Ge(30℃)”的值,並進行溫度依存性的評價。即,所述計算值越接近1,則表示溫度依存性越低(低溫度依存性)。[temperature dependence] For the device produced as described above (see FIG. 5 ), the shear elastic coefficient “Ge (10° C.)” at a measurement temperature of 10° C. and the shear at a measurement temperature of 30° C. were measured according to the measurement method described above. The value of the elastic coefficient “Ge (30° C.)” was calculated as the value of “Ge (10° C.)/Ge (30° C.)”, and the temperature dependence was evaluated. That is, the closer the calculated value is to 1, the lower the temperature dependence (low temperature dependence).

[△W保持率] 對於以所述方式製作的裝置(參照圖5),依照所述測定方法,使用激振機(鷺宮製作所公司製造,動態伺服(DYNAMIC SERVO))、輸入信號振盪機(橫河電氣公司製造,合成函數發生器(synthesized function generator)FC320)、及輸出信號處理機(小野測器(ONO SOKKI)公司製造,便攜式FFT分析器CF-3200),在頻率(f):0.5 Hz、測定溫度:20℃下激振20次。然後測定第2次激振時的吸收能量(△W2 )與第20次激振時的吸收能量(ΔW20 ),計算“ΔW20 /△W2 ”的值,將所述值作為△W保持率(%)。[ΔW Retention Rate] For the device produced as described above (refer to FIG. 5 ), in accordance with the measurement method described above, a vibration exciter (manufactured by Saragiya Seisakusho Co., Ltd., dynamic servo (DYNAMIC SERVO)), an input signal oscillator (horizontal Manufactured by River Electric Corporation, synthesized function generator (synthesized function generator) FC320), and output signal processor (manufactured by ONO SOKKI, portable FFT analyzer CF-3200), at frequency (f): 0.5 Hz , Measurement temperature: 20 times of excitation at 20°C. Then, the absorbed energy (ΔW 2 ) at the second excitation and the absorbed energy at the 20th excitation (ΔW 20 ) were measured, the value of “ΔW 20 /ΔW 2 ” was calculated, and the value was defined as ΔW Retention rate (%).

[綜合評價] 根據所述測定結果,將剪切彈性係數(Ge)為0.23以上、衰減常數(he)為0.45以上、作為溫度依存性的指標的“Ge(10℃)/Ge(30℃)”的值為1.5以下、△W保持率為65%以上的條件全部滿足者評價為“○”。另外,將不符合所述“○”的評價,但剪切彈性係數(Ge)為0.15以上、衰減常數(he)為0.44以上、作為溫度依存性的指標的“Ge(10℃)/Ge(30℃)”的值為1.51以下、△W保持率為60%以上的條件全部滿足者評價為“△”。而且,將均不符合所述“○”及“△”中任一項者評價為“×”。[Overview] From the measurement results, the shear elastic coefficient (Ge) is 0.23 or more, the attenuation constant (he) is 0.45 or more, and the value of "Ge (10°C)/Ge (30°C)" as an index of temperature dependence Those satisfying all the conditions of 1.5 or less and ΔW retention rate of 65% or more were evaluated as "○". In addition, it does not meet the evaluation of "○", but the shear elastic coefficient (Ge) is 0.15 or more, the attenuation constant (he) is 0.44 or more, and "Ge (10°C)/Ge ( A value of 1.51 or less and a ΔW retention rate of 60% or more were all satisfied, and were evaluated as “Δ”. In addition, those which did not meet any of the above-mentioned "○" and "△" were evaluated as "x".

[表1] (重量份)   實施例 1 2 3 4 5 6 7 8 9 10 SIS 70 70 50 70 70 70 70 70 95 70 EPDM(i) - - - - - - - - - - EPDM(ii) 30 - 50 30 30 30 30 30 5 30 EPDM(iii) - 30 - - - - - - - - 碳酸鈣 50 50 50 50 50 50 50 - 50 - 滑石 - - - - - - - 50 - - 未處理二氧化矽 - - - - - 20 - - - - 表面處理二氧化矽(i) - - - - - - - - - - 表面處理二氧化矽(ii) 30 30 30 30 30 10 - 30 30 50 表面處理二氧化矽(iii) - - - - - - 30 - - - 碳黑 - - - 2 - - - - - - 液狀聚合物 - - - - 10 - - - - - 剪切彈性係數(Ge)[N/mm2 ] 0.25 0.26 0.24 0.25 0.23 0.25 0.19 0.25 0.24 0.30 衰減常數(he) 0.46 0.45 0.47 0.46 0.47 0.45 0.45 0.46 0.44 0.50 溫度依存性 1.45 1.43 1.46 1.45 1.43 1.45 1.45 1.45 1.42 1.51 △W保持率[%] 65 68 68 65 65 65 65 65 66 60 綜合評價 [Table 1] (parts by weight) Example 1 2 3 4 5 6 7 8 9 10 SIS 70 70 50 70 70 70 70 70 95 70 EPDM(i) - - - - - - - - - - EPDM(ii) 30 - 50 30 30 30 30 30 5 30 EPDM(iii) - 30 - - - - - - - - calcium carbonate 50 50 50 50 50 50 50 - 50 - talc - - - - - - - 50 - - untreated silica - - - - - 20 - - - - Surface Treatment Silica (i) - - - - - - - - - - Surface Treatment Silica (ii) 30 30 30 30 30 10 - 30 30 50 Surface Treatment Silica (iii) - - - - - - 30 - - - carbon black - - - 2 - - - - - - liquid polymer - - - - 10 - - - - - Shear elasticity coefficient (Ge) [N/mm 2 ] 0.25 0.26 0.24 0.25 0.23 0.25 0.19 0.25 0.24 0.30 Attenuation constant (he) 0.46 0.45 0.47 0.46 0.47 0.45 0.45 0.46 0.44 0.50 temperature dependence 1.45 1.43 1.46 1.45 1.43 1.45 1.45 1.45 1.42 1.51 △W retention rate [%] 65 68 68 65 65 65 65 65 66 60 Overview

[表2] (重量份)   比較例 1 2 3 4 5 SIS 70 40 70 70 100 EPDM(i) 30 - - - - EPDM(ii) - 60 30 30 - EPDM(iii) - - - - - 碳酸鈣 50 50 50 50 50 滑石 - - - - - 未處理二氧化矽 - - 30 -   表面處理二氧化矽(i) - - - 30 - 表面處理二氧化矽(ii) 30 30 - - 30 表面處理二氧化矽(iii) - - - - - 碳黑 - - - - - 液狀聚合物 - - - - - 剪切彈性係數(Ge)[N/mm2 ] 0.24 0.23 0.25 0.25 0.23 衰減常數(he) 0.5 0.5 0.39 0.5 0.39 溫度依存性 1.55 1.5 1.45 1.45 1.41 △W保持率[%] 55 58 65 50 60 綜合評價 × × × × × [Table 2] (parts by weight) Comparative example 1 2 3 4 5 SIS 70 40 70 70 100 EPDM(i) 30 - - - - EPDM(ii) - 60 30 30 - EPDM(iii) - - - - - calcium carbonate 50 50 50 50 50 talc - - - - - untreated silica - - 30 - Surface Treatment Silica (i) - - - 30 - Surface Treatment Silica (ii) 30 30 - - 30 Surface Treatment Silica (iii) - - - - - carbon black - - - - - liquid polymer - - - - - Shear elasticity coefficient (Ge) [N/mm 2 ] 0.24 0.23 0.25 0.25 0.23 Attenuation constant (he) 0.5 0.5 0.39 0.5 0.39 temperature dependence 1.55 1.5 1.45 1.45 1.41 △W retention rate [%] 55 58 65 50 60 Overview × × × × ×

根據所述表1的結果,實施例的試樣滿足低溫度依存性、高衰減特性,並且△W保持率也高,因此綜合評價中獲得良好的結果。According to the results in Table 1, the samples of the examples satisfy low temperature dependence, high attenuation characteristics, and also have a high ΔW retention rate, and therefore, good results are obtained in the comprehensive evaluation.

與此相對,根據所述表2的結果,比較例1~比較例5的試樣在綜合評價中未獲得良好的結果。 即,在比較例1的試樣中,與SIS並用的EPDM較SIS而為低黏度,因此結果為△W保持率差。在比較例2的試樣中,與SIS並用的EPDM為高黏度,但由於EPDM的含量過多,故結果為△W保持率差。在比較例3的試樣中,僅使用未處理的二氧化矽作為二氧化矽,衰減常數(he)脫離所要求的範圍。在比較例4的試樣中,作為表面處理二氧化矽而使用經三甲基矽烷基處理的二氧化矽,因此結果為△W保持率差。在比較例5的試樣中,並未並用EPDM,衰減常數(he)脫離所要求的範圍,並且結果為△W保持率稍差。 [產業上的可利用性]On the other hand, according to the results of Table 2, the samples of Comparative Examples 1 to 5 did not obtain favorable results in the comprehensive evaluation. That is, in the sample of Comparative Example 1, the EPDM used in combination with the SIS has a lower viscosity than the SIS, and as a result, the ΔW retention rate is poor. In the sample of Comparative Example 2, the EPDM used in combination with the SIS had a high viscosity, but since the content of EPDM was too large, it was found that the ΔW retention rate was poor. In the sample of Comparative Example 3, only untreated silica was used as silica, and the decay constant (he) was out of the required range. In the sample of Comparative Example 4, the trimethylsilyl group-treated silica was used as the surface-treated silica, and as a result, the ΔW retention rate was poor. In the sample of Comparative Example 5, in which EPDM was not used in combination, the decay constant (he) was out of the required range, and as a result, the ΔW retention was slightly inferior. [Industrial Availability]

本發明的減震阻尼器作為土木用、建築用的減震阻尼器、家電用或電子設備用的減震阻尼器等,可發揮優異的功能。其中,作為橋樑或大廈等大型建築物中所使用的減震阻尼器、特別是作為高樓大廈用減震阻尼器,可發揮更優異的功能。 另外,包括作為本發明的減震阻尼器的構成構件的黏彈性體的、建築用的減震壁等減震裝置或抗震裝置、家電用或電子設備用的減震材料或衝擊吸收材料、汽車用的減震材料或衝擊吸收材料等也能夠用作本發明的減震阻尼器。The damper of the present invention can exhibit excellent functions as a damper for civil engineering, a damper for construction, a damper for home appliances or electronic equipment, and the like. Among them, a more excellent function can be exhibited as a vibration damper used in large buildings such as bridges and buildings, especially as a vibration damper for high-rise buildings. In addition, vibration-absorbing devices or anti-vibration devices such as vibration-damping walls for buildings, shock-absorbing materials or shock-absorbing materials for home appliances or electronic equipment, automobile A shock absorbing material or a shock absorbing material or the like used can also be used as the shock absorbing damper of the present invention.

1:減震阻尼器 2:黏彈性體 4、5:金屬板 6:螺栓 7、8:面板 10:梁 11:基座 21:試樣 22:金屬配件 31:長鏈烷基 32:二氧化矽 Ke:等效剛性 Qd:負荷值 δ:剪切應變值 △W:負荷-應變環面積(吸收能量)1: Shock damper 2: Viscoelastic body 4, 5: metal plate 6: Bolts 7, 8: Panel 10: Beams 11: Pedestal 21: Sample 22: Metal fittings 31: long chain alkyl 32: Silica Ke: Equivalent rigidity Qd: load value δ: shear strain value △W: Load-strain ring area (energy absorbed)

圖1是表示減震阻尼器的一例的正視圖。 圖2是表示所述減震阻尼器的一例的剖面圖。 圖3是表示所述減震阻尼器的另一例的剖面圖。 圖4是表示所述減震阻尼器的設置狀態的示意圖。 圖5是用於進行動態剪切特性的評價方法的裝置的示意圖。 圖6是表示負荷-應變環曲線的圖形圖。 圖7是表示本發明的表面處理二氧化矽的分散狀態的說明圖。FIG. 1 is a front view showing an example of a damper. FIG. 2 is a cross-sectional view showing an example of the damper. 3 is a cross-sectional view showing another example of the shock absorber. FIG. 4 is a schematic diagram showing an installation state of the shock absorber. FIG. 5 is a schematic diagram of an apparatus for performing an evaluation method of dynamic shear characteristics. FIG. 6 is a graph showing a load-strain loop curve. FIG. 7 is an explanatory diagram showing the dispersion state of the surface-treated silica of the present invention.

Figure 109100283-A0101-11-0002-2
Figure 109100283-A0101-11-0002-2

1:減震阻尼器 1: Shock damper

2:黏彈性體 2: Viscoelastic body

4、5:金屬板 4, 5: metal plate

Claims (8)

一種減震阻尼器,其特徵在於,將包含橡膠組合物的黏彈性體設為其構成構件,所述橡膠組合物含有:聚合物成分,以下述的(A)成分作為主成分且含有下述的(B)成分;以及下述的(C)成分, (A)苯乙烯系彈性體; (B)100℃下的慕尼黏度較所述(A)成分更高的乙烯-丙烯-二烯單體三元共聚物; (C)利用下述通式(1)所示的矽烷偶合劑進行了表面處理的表面處理二氧化矽;
Figure 03_image008
所述通式(1)中,R1 表示碳數6~20的烷基、末端為苯基的碳數6~20的烷基,R2 、R3 表示R1 的碳數以下的碳數的烷基、或者碳數1~3的烷氧基,X表示碳數1~3的烷氧基。
A vibration damper comprising, as its constituent member, a viscoelastic body comprising a rubber composition containing a polymer component, having the following (A) component as a main component and containing the following (B) component; and the following (C) component, (A) styrene-based elastomer; (B) ethylene-propylene-diene having a higher Mooney viscosity at 100°C than the above-mentioned (A) component Monomer terpolymer; (C) Surface-treated silica surface-treated with a silane coupling agent represented by the following general formula (1);
Figure 03_image008
In the general formula (1), R 1 represents an alkyl group having 6 to 20 carbon atoms, an alkyl group having 6 to 20 carbon atoms with a phenyl terminal at the end, and R 2 and R 3 represent the number of carbon atoms less than or equal to the carbon number of R 1 . or an alkoxy group having 1 to 3 carbon atoms, X represents an alkoxy group having 1 to 3 carbon atoms.
如申請專利範圍第1項所述的減震阻尼器,其中所述橡膠組合物中的(A)成分與(B)成分的混合比例以重量比計為(A):(B)=95:5~50:50的範圍。The shock-absorbing damper according to claim 1, wherein the mixing ratio of component (A) and component (B) in the rubber composition is (A):(B)=95: 5 to 50:50 range. 如申請專利範圍第1項或第2項所述的減震阻尼器,其中所述橡膠組合物中的所述表面處理二氧化矽(C)的含有比例相對於所述聚合物成分的總量100重量份而為5重量份~100重量份的範圍。The shock-absorbing damper according to claim 1 or claim 2, wherein the content ratio of the surface-treated silica (C) in the rubber composition is relative to the total amount of the polymer component 100 parts by weight, but in the range of 5 parts by weight to 100 parts by weight. 如申請專利範圍第1項或第2項所述的減震阻尼器,其中所述橡膠組合物中的包含所述表面處理二氧化矽(C)的所有二氧化矽的含有比例相對於所述聚合物成分的總量100重量份而為5重量份~100重量份。The shock absorbing damper according to claim 1 or claim 2, wherein the content ratio of all silica including the surface-treated silica (C) in the rubber composition is relative to the The total amount of the polymer components is 5 to 100 parts by weight based on 100 parts by weight. 如申請專利範圍第1項或第2項所述的減震阻尼器,其中所述苯乙烯系彈性體(A)的100℃下的慕尼黏度為5~35。The shock-absorbing damper according to claim 1 or claim 2, wherein the styrene-based elastomer (A) has a Mooney viscosity at 100° C. of 5 to 35. 如申請專利範圍第1項或第2項所述的減震阻尼器,其中所述乙烯-丙烯-二烯單體三元共聚物(B)的100℃下的慕尼黏度為30~100。The shock absorption damper according to claim 1 or claim 2, wherein the ethylene-propylene-diene monomer terpolymer (B) has a Mooney viscosity at 100° C. of 30-100. 如申請專利範圍第1項或第2項所述的減震阻尼器,其中所述苯乙烯系彈性體(A)為苯乙烯-異戊二烯-苯乙烯共聚物。The shock-absorbing damper according to claim 1 or claim 2, wherein the styrene-based elastomer (A) is a styrene-isoprene-styrene copolymer. 如申請專利範圍第1項或第2項所述的減震阻尼器,其為用於高樓大廈的減震阻尼器。The shock-absorbing damper according to item 1 or item 2 of the patent application scope, which is a shock-absorbing damper for high-rise buildings.
TW109100283A 2019-02-27 2020-01-06 Shock Damper TWI764079B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019034769A JP7258599B2 (en) 2019-02-27 2019-02-27 Seismic damper
JP2019-034769 2019-02-27

Publications (2)

Publication Number Publication Date
TW202031777A TW202031777A (en) 2020-09-01
TWI764079B true TWI764079B (en) 2022-05-11

Family

ID=72256869

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109100283A TWI764079B (en) 2019-02-27 2020-01-06 Shock Damper

Country Status (3)

Country Link
JP (1) JP7258599B2 (en)
CN (1) CN111621115B (en)
TW (1) TWI764079B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020151642A1 (en) * 1997-09-03 2002-10-17 Hiroyuki Nakagawa Damping resin composition and molded article using the same
CN104629242A (en) * 2015-02-02 2015-05-20 柳州市颖航汽配有限公司 Damping rubber composition used for automobile engines
TW201602231A (en) * 2014-07-04 2016-01-16 Sumitomo Rubber Ind High damping composition, vibration control damper and vibration isolation support

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023150A (en) * 2003-06-30 2005-01-27 Yokohama Rubber Co Ltd:The Rubber composition
JP2006008859A (en) * 2004-06-25 2006-01-12 Tokai Rubber Ind Ltd Highly damping elastomer composition
JP2007284482A (en) * 2006-04-12 2007-11-01 Toyo Tire & Rubber Co Ltd Rubber composition
JP5143605B2 (en) * 2008-03-28 2013-02-13 東海ゴム工業株式会社 High damping rubber composition and vibration control damper using the same
JP2010126597A (en) * 2008-11-26 2010-06-10 Tokai Rubber Ind Ltd Highly damping elastomer composition for vibration damper and vibration damper obtained by the same
JP2010248444A (en) * 2009-04-20 2010-11-04 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020151642A1 (en) * 1997-09-03 2002-10-17 Hiroyuki Nakagawa Damping resin composition and molded article using the same
TW201602231A (en) * 2014-07-04 2016-01-16 Sumitomo Rubber Ind High damping composition, vibration control damper and vibration isolation support
CN104629242A (en) * 2015-02-02 2015-05-20 柳州市颖航汽配有限公司 Damping rubber composition used for automobile engines

Also Published As

Publication number Publication date
JP7258599B2 (en) 2023-04-17
CN111621115B (en) 2023-03-03
JP2020139031A (en) 2020-09-03
CN111621115A (en) 2020-09-04
TW202031777A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP4982081B2 (en) High damping elastomer composition and vibration control damper obtained thereby
TWI454525B (en) High decay composition
JP5289356B2 (en) High damping composition
JP5648014B2 (en) High damping composition and viscoelastic damper
JP2016017092A (en) High attenuation composition, vibration control damper and aseismic base isolation bearing
JP2001261922A (en) Elastomer composition having high attenuation
JP2010126597A (en) Highly damping elastomer composition for vibration damper and vibration damper obtained by the same
JP6575807B2 (en) High damping composition, viscoelastic damper and viscoelastic bearing
TW201809104A (en) Highly damping rubber composition and viscoelastic damper
JP5143605B2 (en) High damping rubber composition and vibration control damper using the same
TWI764079B (en) Shock Damper
JP6195338B2 (en) High damping composition and viscoelastic damper
JP6148902B2 (en) High damping rubber composition for vibration control damper and vibration control damper using the same
JP2011132481A (en) High damping composition
JP6329791B2 (en) High damping rubber composition for vibration control damper and vibration control damper using the same
TWI781542B (en) Rubber composition for shock absorption damper, manufacturing method thereof, and shock absorption damper
JP5800684B2 (en) High damping composition
JP7190304B2 (en) Seismic damper
JP4423845B2 (en) Vibration damping elastomer composition
JP2014074105A (en) High damping composition and vibration control damper
JP2020169233A (en) High damping rubber composition and viscoelastic damper
JP5789434B2 (en) High damping composition
JP4003493B2 (en) Elastomer products for vibration control
JP2949671B2 (en) High damping rubber composition
JP2007246911A (en) Damping/antiseismic elastomer product for construction