TWI763464B - Display panel, operation method thereof and sub-pixel - Google Patents

Display panel, operation method thereof and sub-pixel Download PDF

Info

Publication number
TWI763464B
TWI763464B TW110115447A TW110115447A TWI763464B TW I763464 B TWI763464 B TW I763464B TW 110115447 A TW110115447 A TW 110115447A TW 110115447 A TW110115447 A TW 110115447A TW I763464 B TWI763464 B TW I763464B
Authority
TW
Taiwan
Prior art keywords
light
sensing
sensing element
quantum dot
dot material
Prior art date
Application number
TW110115447A
Other languages
Chinese (zh)
Other versions
TW202243274A (en
Inventor
向瑞傑
陳志強
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW110115447A priority Critical patent/TWI763464B/en
Application granted granted Critical
Publication of TWI763464B publication Critical patent/TWI763464B/en
Publication of TW202243274A publication Critical patent/TW202243274A/en

Links

Images

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

The invention provides a display panel, an operation method thereof and a sub-pixel circuit thereof. The display panel includes a plurality of sub-pixels. At least one of the sub-pixels includes a display part, a quantum dot material, and a sensing element. The quantum dot material is discriminatory to a blue component of a first light from the display part. The quantum dot material is excited by the blue component of the first light to generate a second light, and the sensing element can sense the second light. Wherein, the wavelength of the blue component of the first light is different from the wavelength of the second light, and the blue component and the second light belong to different wavelength ranges. The wavelength interval of the second light may be narrower than the wavelength interval of the blue component of the first light.

Description

顯示面板及其操作方法與子像素Display panel and method of operation and sub-pixel

本發明是有關於一種顯示裝置,且特別是有關於一種顯示面板及其操作方法與子像素。The present invention relates to a display device, and more particularly, to a display panel and its operation method and sub-pixels.

醫學文獻已有討論顯示器所發出的藍光成份可能會引起使用者的視覺疲勞和傷害。「減少顯示器的有害藍光成份」的技術可分為軟體與硬體兩類。軟體方法為調整顯示畫面的紅藍綠比例來降低藍光成份的強度,但是顯示畫面會產生色偏問題。硬體方法則是移動元件的藍光峰值,使其藍光危害降低。無論如何,現有技術是使用額外的感測器(外接式感測器)去感測顯示面板的顯示畫面的藍光成份。這樣的藍光感測技術不是即時的,且使用者需要以人工方式操作額外的感測器去感測顯示面板的顯示畫面。Medical literature has discussed that blue light components emitted by monitors may cause visual fatigue and injury to users. Technologies to "reduce harmful blue light from displays" can be divided into two categories: software and hardware. The software method is to adjust the ratio of red, blue, and green in the display image to reduce the intensity of blue light components, but the display image will have a color cast problem. The hardware approach is to move the blue light peaks of components to make them less harmful. In any case, the prior art uses an additional sensor (external sensor) to sense the blue light component of the display screen of the display panel. Such blue light sensing technology is not instantaneous, and the user needs to manually operate an additional sensor to sense the display image of the display panel.

為了讓使用者了解顯示面板的藍光成份的當下狀態,以及(或是)為了自動(定期或不定期)且即時地調整顯示參數,「如何即時地感測顯示畫面的藍光成份卻不需使用外接式感測器」是諸多重要技術課題之一。In order to let the user know the current state of the blue light component of the display panel, and/or to adjust the display parameters automatically (regularly or irregularly) and in real time, "How to sense the blue light component of the display screen in real time without using an external type sensor" is one of many important technical topics.

本發明提供一種顯示面板及其操作方法與子像素,以自我感測顯示畫面的特定成份。The present invention provides a display panel and an operation method and sub-pixels thereof for self-sensing specific components of a display screen.

在本發明的一實施例中,上述的顯示面板包括多個子像素。這些子像素中的至少一個子像素包括顯示部、第一量子點材料(quantum dot material)以及第一感測元件。第一量子點材料被配置以受來自於顯示部的第一光的第一藍光成份的激發而產生第二光。第一感測元件被配置以感測第二光。其中,第一光的第一藍光成份的波長不同於第二光的波長,第一量子點材料對第一光的第一藍光成份具有鑑別性,以及第一藍光成份與第二光各自屬於不同的波長範圍。In an embodiment of the present invention, the above-mentioned display panel includes a plurality of sub-pixels. At least one of the sub-pixels includes a display portion, a first quantum dot material, and a first sensing element. The first quantum dot material is configured to be excited by the first blue light component of the first light from the display portion to generate the second light. The first sensing element is configured to sense the second light. The wavelength of the first blue light component of the first light is different from the wavelength of the second light, the first quantum dot material is discriminative to the first blue light component of the first light, and the first blue light component and the second light belong to different wavelength range.

在本發明的一實施例中,上述的操作方法包括:由來自於顯示部的第一光的第一藍光成份激發第一量子點材料而產生第二光;以及由第一感測元件感測第二光。其中,第一光的第一藍光成份的波長不同於第二光的波長,第一量子點材料對第一光的第一藍光成份具有鑑別性,以及第一藍光成份與第二光各自屬於不同的波長範圍。In an embodiment of the present invention, the above-mentioned operation method includes: exciting the first quantum dot material by the first blue light component of the first light from the display portion to generate the second light; and sensing by the first sensing element Second light. The wavelength of the first blue light component of the first light is different from the wavelength of the second light, the first quantum dot material is discriminative to the first blue light component of the first light, and the first blue light component and the second light belong to different wavelength range.

在本發明的一實施例中,上述的子像素包括顯示部以及感測部。感測部包括第一感測電容、第一量子點材料以及第一感測元件。第一感測電容的第一端耦接至第一感測元件的第一端。第一感測元件的第二端耦接至顯示面板的第一感測線。第一量子點材料被配置以受來自於顯示部的第一光的第一藍光成份的激發而產生第二光。第一感測元件被配置以感測第二光。第二光影響第一感測元件的第一漏電流。其中,在重置期間,第一感測電容被充電;在感測期間,第一感測元件基於被第二光影響的第一漏電流而洩漏第一感測電容的電荷;以及在讀出期間,第一感測元件為導通。In an embodiment of the present invention, the above-mentioned sub-pixel includes a display part and a sensing part. The sensing part includes a first sensing capacitor, a first quantum dot material, and a first sensing element. The first end of the first sensing capacitor is coupled to the first end of the first sensing element. The second end of the first sensing element is coupled to the first sensing line of the display panel. The first quantum dot material is configured to be excited by the first blue light component of the first light from the display portion to generate the second light. The first sensing element is configured to sense the second light. The second light affects the first leakage current of the first sensing element. wherein, during the reset period, the first sensing capacitor is charged; during the sensing period, the first sensing element leaks the charge of the first sensing capacitor based on the first leakage current affected by the second light; and during the readout During this period, the first sensing element is turned on.

基於上述,本發明諸實施例的顯示面板的至少一個子像素(子像素電路)包括顯示部以及感測部,其中感測部包括量子點材料以及感測元件。量子點材料對來自於顯示部的第一光的第一藍光成份具有鑑別性。量子點材料受第一光的第一藍光成份的激發而產生第二光。感測元件可以感測第二光,因此處理電路依據感測元件的感測結果可以即時地知道來自於顯示部的第一藍光成份的強度。也就是說,顯示面板可以自我感測顯示畫面的特定成份(例如第一藍光成份),而不需要額外的感測器(外接式感測器)。Based on the above, at least one sub-pixel (sub-pixel circuit) of the display panel according to the embodiments of the present invention includes a display part and a sensing part, wherein the sensing part includes a quantum dot material and a sensing element. The quantum dot material is discriminative to the first blue light component of the first light from the display portion. The quantum dot material is excited by the first blue light component of the first light to generate the second light. The sensing element can sense the second light, so the processing circuit can instantly know the intensity of the first blue light component from the display part according to the sensing result of the sensing element. That is to say, the display panel can self-sensing a specific component of the display image (eg, the first blue light component) without requiring an additional sensor (external sensor).

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

在本案說明書全文(包括申請專利範圍)中所使用的「耦接(或連接)」一詞可指任何直接或間接的連接手段。舉例而言,若文中描述第一裝置耦接(或連接)於第二裝置,則應該被解釋成該第一裝置可以直接連接於該第二裝置,或者該第一裝置可以透過其他裝置或某種連接手段而間接地連接至該第二裝置。本案說明書全文(包括申請專利範圍)中提及的「第一」、「第二」等用語是用以命名元件(element)的名稱,或區別不同實施例或範圍,而並非用來限制元件數量的上限或下限,亦非用來限制元件的次序。另外,凡可能之處,在圖式及實施方式中使用相同標號的元件/構件/步驟代表相同或類似部分。不同實施例中使用相同標號或使用相同用語的元件/構件/步驟可以相互參照相關說明。The term "coupled (or connected)" as used throughout this specification (including the scope of the application) may refer to any direct or indirect means of connection. For example, if it is described in the text that a first device is coupled (or connected) to a second device, it should be interpreted that the first device can be directly connected to the second device, or the first device can be connected to the second device through another device or some other device. indirectly connected to the second device by a connecting means. Terms such as "first" and "second" mentioned in the full text of the description (including the scope of the patent application) in this case are used to designate the names of elements or to distinguish different embodiments or scopes, rather than to limit the number of elements The upper or lower limit of , nor is it intended to limit the order of the elements. Also, where possible, elements/components/steps using the same reference numerals in the drawings and embodiments represent the same or similar parts. Elements/components/steps that use the same reference numerals or use the same terminology in different embodiments may refer to relative descriptions of each other.

圖1是依照本發明的一實施例的一種顯示裝置100的電路方塊(circuit block)示意圖。圖1所示顯示裝置100包括顯示面板110、源極驅動器(資料驅動器)120、閘極驅動器(掃描驅動器)130以及處理電路140。依照不同的設計需求,上述源極驅動器120、閘極驅動器130以及(或是)處理電路140的實現方式可以是硬體(hardware)、韌體(firmware)、軟體(software,即程式)或是前述三者中的多者的組合形式。FIG. 1 is a schematic diagram of a circuit block of a display device 100 according to an embodiment of the present invention. The display device 100 shown in FIG. 1 includes a display panel 110 , a source driver (data driver) 120 , a gate driver (scan driver) 130 and a processing circuit 140 . According to different design requirements, the implementation of the source driver 120 , the gate driver 130 and/or the processing circuit 140 may be hardware, firmware, software (program) or A combination of more than one of the above three.

以硬體形式而言,上述源極驅動器120、閘極驅動器130以及(或是)處理電路140可以實現於積體電路(integrated circuit)上的邏輯電路。上述源極驅動器120、閘極驅動器130以及(或是)處理電路140的相關功能可以利用硬體描述語言(hardware description languages,例如Verilog HDL或VHDL)或其他合適的編程語言來實現為硬體。舉例來說,上述源極驅動器120、閘極驅動器130以及(或是)處理電路140的相關功能可以被實現於一或多個控制器、微控制器、微處理器、特殊應用積體電路(Application-specific integrated circuit, ASIC)、數位訊號處理器(digital signal processor, DSP)、場可程式邏輯閘陣列(Field Programmable Gate Array, FPGA)及/或其他處理單元中的各種邏輯區塊、模組和電路。In terms of hardware, the source driver 120 , the gate driver 130 and/or the processing circuit 140 can be implemented as logic circuits on an integrated circuit. The above-mentioned source driver 120 , gate driver 130 and/or related functions of the processing circuit 140 can be implemented as hardware using hardware description languages (such as Verilog HDL or VHDL) or other suitable programming languages. For example, the above-mentioned related functions of the source driver 120, the gate driver 130 and/or the processing circuit 140 can be implemented in one or more controllers, microcontrollers, microprocessors, application-specific integrated circuits ( Various logic blocks and modules in Application-specific integrated circuit (ASIC), digital signal processor (DSP), Field Programmable Gate Array (FPGA) and/or other processing units and circuit.

以軟體形式及/或韌體形式而言,上述源極驅動器120、閘極驅動器130以及(或是)處理電路140的相關功能可以被實現為編程碼(programming codes)。例如,利用一般的編程語言(programming languages,例如C、C++或組合語言)或其他合適的編程語言來實現上述源極驅動器120、閘極驅動器130以及(或是)處理電路140。編程碼可以被記錄/存放在「非臨時的電腦可讀取媒體(non-transitory computer readable medium)」中。在一些實施例中,非臨時的電腦可讀取媒體例如包括唯讀記憶體(Read Only Memory,ROM)、帶(tape)、碟(disk)、卡(card)、半導體記憶體、可程式設計的邏輯電路以及(或是)儲存裝置。儲存裝置包括硬碟(hard disk drive,HDD)、固態硬碟(Solid-state drive,SSD)或是其他儲存裝置。中央處理器(Central Processing Unit,CPU)、控制器、微控制器或微處理器可以從非臨時的電腦可讀取媒體中讀取並執行編程碼,從而實現上述源極驅動器120、閘極驅動器130以及(或是)處理電路140的相關功能。In the form of software and/or firmware, the above-mentioned related functions of the source driver 120 , the gate driver 130 and/or the processing circuit 140 can be implemented as programming codes. For example, the above-mentioned source driver 120 , gate driver 130 and/or processing circuit 140 are implemented using general programming languages (eg, C, C++ or assembly language) or other suitable programming languages. Programming code can be recorded/stored in "non-transitory computer readable medium". In some embodiments, non-transitory computer-readable media include, for example, Read Only Memory (ROM), tape, disk, card, semiconductor memory, programmable Logic circuits and/or storage devices. The storage device includes a hard disk drive (HDD), a solid-state drive (SSD), or other storage devices. A central processing unit (CPU), controller, microcontroller or microprocessor can read and execute programming codes from a non-transitory computer-readable medium, thereby implementing the source driver 120 and gate driver described above. 130 and/or related functions of the processing circuit 140 .

顯示面板110包括m*n個子像素,例如圖1所示子像素111-11、111-m1、111-1n與111-mn,其中m與n為依照實際設計所決定的整數。這些子像素111-11至111-mn的每一個包括顯示部,例如圖1所示子像素111-11包括顯示部DP。這些子像素111-11至111-mn的顯示部DP的每一個的控制端(閘極)經由顯示面板110的多條閘極線(掃描線)G1~Gn中的一條對應閘極線耦接至閘極驅動器130。這些子像素111-11至111-mn的顯示部DP的每一個的資料端(源極)經由顯示面板110的多條資料線(源極線)D1~Dm中的一條對應資料線耦接至源極驅動器120。The display panel 110 includes m*n sub-pixels, such as the sub-pixels 111-11, 111-m1, 111-1n and 111-mn shown in FIG. 1 , where m and n are integers determined according to actual designs. Each of these sub-pixels 111-11 to 111-mn includes a display portion, for example, the sub-pixel 111-11 shown in FIG. 1 includes a display portion DP. The control terminal (gate) of each of the display parts DP of the sub-pixels 111 - 11 to 111 -mn is coupled via a corresponding gate line among a plurality of gate lines (scan lines) G1 to Gn of the display panel 110 to the gate driver 130 . The data terminal (source) of each of the display portions DP of the sub-pixels 111 - 11 to 111 -mn is coupled to a corresponding data line of the plurality of data lines (source lines) D1 to Dm of the display panel 110 via a corresponding data line. source driver 120 .

顯示部DP的實施細節可以依照實際設計來決定。舉例來說,在一些實施例中,圖1所示顯示部DP可以包括自發光子像素結構(例如,參照圖2所示顯示部DP的相關說明)以產生第一光L1。在另一些實施例中,圖1所示顯示部DP可以包括非自發光子像素結構(例如,參照圖3所示顯示部DP的相關說明)。背光(未繪示於圖1)可以通過非自發光子像素結構而產生第一光L1。在又一些實施例中,圖1所示顯示部DP可以包括習知子像素電路或是其他子像素電路。The implementation details of the display part DP can be determined according to actual designs. For example, in some embodiments, the display part DP shown in FIG. 1 may include a self-luminous sub-pixel structure (eg, refer to the related description of the display part DP shown in FIG. 2 ) to generate the first light L1 . In other embodiments, the display part DP shown in FIG. 1 may include a non-self-luminous sub-pixel structure (for example, refer to the related description of the display part DP shown in FIG. 3 ). The backlight (not shown in FIG. 1 ) can generate the first light L1 through the non-self-luminous sub-pixel structure. In still other embodiments, the display portion DP shown in FIG. 1 may include conventional sub-pixel circuits or other sub-pixel circuits.

圖2是依照本發明的一實施例說明圖1所示顯示部DP的電路示意圖。圖2所示顯示部DP是圖1所示顯示部DP的實施範例,但是圖1所示顯示部DP的實施不限於圖2所示實施例。圖2所示顯示部DP包括自發光子像素結構(例如開關210、電晶體220與發光元件230)。請參照圖1與圖2。開關210的控制端(例如閘極)經由顯示面板110的多條閘極線(掃描線)G1~Gn中的一條對應閘極線耦接至閘極驅動器130。開關210的第一端(資料端,例如源極)經由顯示面板110的多條資料線(源極線)D1~Dm中的一條對應資料線耦接至源極驅動器120。電晶體220的控制端(例如閘極)耦接至開關210的第二端(例如汲極)。電晶體220的第一端(例如源極)耦接至電源電壓VDD。發光元件230的第一端耦接至電晶體220的第二端(例如汲極)。發光元件230的第二端耦接至參考電壓VSS。電源電壓VDD與參考電壓VSS的準位可以依照實際設計來決定。依照實際設計,在一些實施例中,發光元件230可以包括發光二極體(light emitting diode,LED)、微發光二極體、有機發光二極體(organic light emitting diode,OLED)或是其他自發光元件。FIG. 2 is a schematic circuit diagram illustrating the display portion DP shown in FIG. 1 according to an embodiment of the present invention. The display part DP shown in FIG. 2 is an example of the implementation of the display part DP shown in FIG. 1 , but the implementation of the display part DP shown in FIG. 1 is not limited to the embodiment shown in FIG. 2 . The display portion DP shown in FIG. 2 includes a self-luminous sub-pixel structure (eg, a switch 210 , a transistor 220 and a light-emitting element 230 ). Please refer to FIG. 1 and FIG. 2 . The control terminal (eg, gate) of the switch 210 is coupled to the gate driver 130 via a corresponding gate line among the plurality of gate lines (scan lines) G1 ˜Gn of the display panel 110 . The first end (data end, such as source) of the switch 210 is coupled to the source driver 120 through a corresponding data line among the plurality of data lines (source lines) D1 -Dm of the display panel 110 . The control terminal (eg, the gate) of the transistor 220 is coupled to the second terminal (eg, the drain) of the switch 210 . The first terminal (eg, source) of the transistor 220 is coupled to the power supply voltage VDD. The first end of the light emitting element 230 is coupled to the second end (eg, the drain) of the transistor 220 . The second terminal of the light emitting element 230 is coupled to the reference voltage VSS. The levels of the power supply voltage VDD and the reference voltage VSS can be determined according to the actual design. According to the actual design, in some embodiments, the light emitting element 230 may include a light emitting diode (LED), a micro light emitting diode, an organic light emitting diode (OLED), or other self-made light-emitting diodes. light-emitting element.

圖3是依照本發明的另一實施例說明圖1所示顯示部DP的電路示意圖。圖3所示顯示部DP是圖1所示顯示部DP的實施範例,但是圖1所示顯示部DP的實施不限於圖3所示實施例。圖3所示顯示部DP包括非自發光子像素結構(例如開關310、儲存電容320與液晶(liquid crystal)電容330(液晶層)。請參照圖1與圖3。開關310的控制端(例如閘極)經由顯示面板110的多條閘極線(掃描線)G1~Gn中的一條對應閘極線耦接至閘極驅動器130。開關310的第一端(資料端,例如源極)經由顯示面板110的多條資料線(源極線)D1~Dm中的一條對應資料線耦接至源極驅動器120。儲存電容320與液晶電容330的第一端耦接至開關210的第二端(例如汲極)。儲存電容320與液晶電容330的第二端耦接至共同電壓VCOM。共同電壓VCOM的準位可以依照實際設計來決定。FIG. 3 is a schematic circuit diagram illustrating the display part DP shown in FIG. 1 according to another embodiment of the present invention. The display part DP shown in FIG. 3 is an example of the implementation of the display part DP shown in FIG. 1 , but the implementation of the display part DP shown in FIG. 1 is not limited to the embodiment shown in FIG. 3 . The display portion DP shown in FIG. 3 includes a non-self-luminous sub-pixel structure (such as a switch 310, a storage capacitor 320, and a liquid crystal capacitor 330 (liquid crystal layer). Please refer to FIG. 1 and FIG. 3. The control terminal of the switch 310 (such as a gate electrode) is coupled to the gate driver 130 via a corresponding gate line among the plurality of gate lines (scan lines) G1-Gn of the display panel 110. The first end (data end, such as the source) of the switch 310 is displayed via the display A corresponding data line among the plurality of data lines (source lines) D1-Dm of the panel 110 is coupled to the source driver 120. The first ends of the storage capacitor 320 and the liquid crystal capacitor 330 are coupled to the second end of the switch 210 ( For example, the drain). The second terminals of the storage capacitor 320 and the liquid crystal capacitor 330 are coupled to the common voltage VCOM. The level of the common voltage VCOM can be determined according to the actual design.

請參照圖1,這些子像素111-11至111-mn中的至少一個子像素包括感測部。例如,子像素111-11包括感測部SP。依照實際設計,子像素111-11的相關說明可以適用於顯示面板110的其他子像素中的一者或是多者(甚至是全部)。這些子像素111-11至111-mn的感測部SP可以經由顯示面板110的多條感測線S1~Sm中的一條對應感測線將感測結果提供給處理電路140。子像素111-11的感測部SP包括量子點材料QD(quantum dot material,未繪示於圖1,將於稍後的實施例中詳述)以及感測元件SE(未繪示於圖1,將於稍後的實施例中詳述)。Referring to FIG. 1, at least one of the sub-pixels 111-11 to 111-mn includes a sensing portion. For example, the sub-pixels 111-11 include the sensing part SP. According to the actual design, the relevant descriptions of the sub-pixels 111 - 11 may be applicable to one or more (or even all) of the other sub-pixels of the display panel 110 . The sensing parts SP of the sub-pixels 111 - 11 to 111 -mn may provide a sensing result to the processing circuit 140 via a corresponding sensing line among the plurality of sensing lines S1 - Sm of the display panel 110 . The sensing parts SP of the sub-pixels 111-11 include a quantum dot material QD (not shown in FIG. 1 , which will be described in detail in later embodiments) and a sensing element SE (not shown in FIG. 1 ) , which will be described in detail later in the Examples).

圖4是依照本發明的一實施例的一種顯示面板的操作方法的流程示意圖。請參照圖1與圖4。來自於子像素111-11的顯示部DP的第一光L1的一部分可以照射到子像素111-11的感測部SP的量子點材料QD(未繪示於圖1)。在步驟S410中,感測部SP的量子點材料QD可以受來自於顯示部DP的第一光L1的第一藍光成份的激發而產生第二光。量子點材料QD對第一光L1的第一藍光成份具有鑑別性。亦即,第一光L1的某個特定波長範圍容易激發量子點材料QD,但是第一光L1的其他波長範圍卻不容易(甚至不能)激發量子點材料QD。藉由量子點材料QD的成份調製,特定波長範圍(第一藍光成份)可以依照實際設計來決定。例如在一些實施例中,第一藍光成份(特定波長範圍)可以屬於藍色波長範圍(例如是波長小於455nm的藍光)。量子點材料QD可以受第一光L1的第一藍光成份的激發而產生第二光,其中第一藍光成份與第二光各自屬於不同的波長範圍。FIG. 4 is a schematic flowchart of a method for operating a display panel according to an embodiment of the present invention. Please refer to FIG. 1 and FIG. 4 . A portion of the first light L1 from the display portion DP of the sub-pixel 111-11 may be irradiated to the quantum dot material QD (not shown in FIG. 1 ) of the sensing portion SP of the sub-pixel 111-11. In step S410, the quantum dot material QD of the sensing part SP may be excited by the first blue light component of the first light L1 from the display part DP to generate the second light. The quantum dot material QD has discrimination for the first blue light component of the first light L1. That is, a certain wavelength range of the first light L1 is easy to excite the quantum dot material QD, but other wavelength ranges of the first light L1 are not easy (or even unable) to excite the quantum dot material QD. By modulating the composition of the quantum dot material QD, the specific wavelength range (the first blue light composition) can be determined according to the actual design. For example, in some embodiments, the first blue light component (specific wavelength range) may belong to the blue wavelength range (eg, blue light with a wavelength less than 455 nm). The quantum dot material QD can be excited by the first blue light component of the first light L1 to generate the second light, wherein the first blue light component and the second light belong to different wavelength ranges respectively.

量子點材料QD(未繪示於圖1)依照實際設計來決定。例如在一些實施例中,量子點材料QD可以包括無機化合物、無機複合鹵素鈣鈦礦材料(organic inorganic hybrid halide perovskite)或是其他量子點材料。無機化合物可以包括PbS、BaS、CdTe、GaAs、InGaAs、CuInS 2或是其他無機化合物。無機複合鹵素鈣鈦礦材料可以包括A n+1BnX 3n+1、CsPbCl 3、CsPb(Cl/Br) 3、CsPbBr 3、CsPb(I/Br) 3、CsPbI 3或是其他無機複合鹵素鈣鈦礦材料。 The quantum dot material QD (not shown in Figure 1) is determined according to the actual design. For example, in some embodiments, the quantum dot material QDs may include inorganic compounds, organic inorganic hybrid halide perovskite materials, or other quantum dot materials. The inorganic compound may include PbS, BaS, CdTe, GaAs, InGaAs, CuInS 2 or other inorganic compounds. The inorganic composite halogen perovskite material can include An +1 BnX 3n+1 , CsPbCl 3 , CsPb(Cl/Br) 3 , CsPbBr 3 , CsPb(I/Br) 3 , CsPbI 3 or other inorganic composite halogen perovskite mineral material.

子像素111-11的感測部SP的感測元件SE(未繪示於圖1)可以感測量子點材料QD(未繪示於圖1)所產生的第二光。依照實際設計,感測元件SE可以包括光電晶體、光電阻或是其他感光元件。第一光L1的第一藍光成份的波長不同於第二光的波長。基於量子點材料QD對第一光L1的第一藍光成份的鑑別性,感測部SP的感測元件SE的感測結果是響應於第一光L1的第一藍光成份,而且感測元件SE的感測結果不容易受第一光L1的其他成份的影響。為了避免第一光L1的其他成份影響感測元件SE的感測結果,感測元件SE的位置在第一光L1的照射範圍外。The sensing elements SE (not shown in FIG. 1 ) of the sensing parts SP of the sub-pixels 111 - 11 can sense the second light generated by the sub-dot material QD (not shown in FIG. 1 ). According to the actual design, the sensing element SE may include a phototransistor, a photoresistor, or other photosensitive elements. The wavelength of the first blue light component of the first light L1 is different from the wavelength of the second light. Based on the discrimination of the first blue light component of the first light L1 by the quantum dot material QD, the sensing result of the sensing element SE of the sensing part SP is in response to the first blue light component of the first light L1, and the sensing element SE The sensing result of , is not easily affected by other components of the first light L1 . In order to prevent other components of the first light L1 from affecting the sensing result of the sensing element SE, the position of the sensing element SE is outside the irradiation range of the first light L1.

圖5是依照本發明的一實施例說明圖1所示子像素111-11的剖面示意圖。圖5繪示了顯示部DP的電晶體220與發光元件230以及感測部SP的藍光感應電容(blue light sensor capacitance)Csen、量子點材料QD與感測元件SE。圖5所示藍光感應電容Csen可以參照圖7所示感測電容C71的相關說明,或是參照圖9所示感測電容C91的相關說明,或是參照圖10所示感測電容C101的相關說明,或是參照圖11所示感測電容C111的相關說明,或是參照圖13所示感測電容C131以及/或是C132的相關說明。圖5所示顯示部DP以及感測部SP可以參照圖1所示顯示部DP以及感測部SP的相關說明。圖5所示電晶體220與發光元件230可以參照圖2所示電晶體220與發光元件230的相關說明。圖1與圖4所示實施例所提及的量子點材料QD與感測元件SE可以參照圖5所示量子點材料QD與感測元件SE的相關說明。FIG. 5 is a schematic cross-sectional view illustrating the sub-pixels 111 - 11 shown in FIG. 1 according to an embodiment of the present invention. FIG. 5 illustrates the transistor 220 and the light emitting element 230 of the display part DP and the blue light sensor capacitance Csen, the quantum dot material QD and the sensing element SE of the sensing part SP. The blue light sensing capacitor Csen shown in FIG. 5 can refer to the related description of the sensing capacitor C71 shown in FIG. 7 , or refer to the related description of the sensing capacitor C91 shown in FIG. 9 , or refer to the related description of the sensing capacitor C101 shown in FIG. 10 . For the description, either refer to the related description of the sensing capacitor C111 shown in FIG. 11 , or refer to the related description of the sensing capacitor C131 and/or C132 shown in FIG. 13 . The display part DP and the sensing part SP shown in FIG. 5 can refer to the related description of the display part DP and the sensing part SP shown in FIG. 1 . The transistor 220 and the light-emitting element 230 shown in FIG. 5 may refer to the related description of the transistor 220 and the light-emitting element 230 shown in FIG. 2 . For the quantum dot material QD and the sensing element SE mentioned in the embodiments shown in FIG. 1 and FIG. 4 , reference may be made to the related description of the quantum dot material QD and the sensing element SE shown in FIG. 5 .

圖5所示子像素111-11更包括光反射結構LP。光反射結構LP適於改變第一光L1的一部分的方向,以將第一光L1的一部分反射至量子點材料QD。依照實際設計,光反射結構LP可以包括反射層(reflector layer)、防光層(light-proof layer)、吸收層(absorption layer)以及(或是)其他結構。依照實際設計,反射層的材質可以包括鋁、合金鋁、氧化鋁、銅、金、多層膜反射材料以及(或是)其他材質。吸收層的材質可以包括鉻(Cr)、氧化鉻(CrO)、碳黑樹酯(carbon black Resin)、奈米碳黑(Nano carbon black)以及(或是)其他材質。The sub-pixels 111-11 shown in FIG. 5 further include a light reflection structure LP. The light reflecting structure LP is adapted to change the direction of a part of the first light L1 to reflect the part of the first light L1 to the quantum dot material QD. According to the actual design, the light reflection structure LP may include a reflector layer, a light-proof layer, an absorption layer and/or other structures. According to the actual design, the material of the reflective layer may include aluminum, aluminum alloy, aluminum oxide, copper, gold, multi-layer film reflective materials and/or other materials. The material of the absorption layer may include chromium (Cr), chromium oxide (CrO), carbon black resin (carbon black resin), nano carbon black (Nano carbon black) and/or other materials.

在圖5所示實施例中,量子點材料QD被配置在光反射結構LP與感測元件SE之間。例如,量子點材料QD可以覆蓋感測元件SE。量子點材料QD可以受第一光L1的一部分的第一藍光成份的激發而產生第二光給感測元件SE。在圖5所示實施例中,因為量子點材料QD覆蓋感測元件SE,所以感測元件SE位在第一光L1的照射範圍外,且感測元件SE可以感測量子點材料QD所產生的第二光。藉由量子點材料QD的成份調製,第二光的波長可以依照實際設計來決定。舉例來說,第二光的波長區間可以較第一光L1的波長區間窄。依照實際設計,在一些實施例中,第一光L1的主要波長區間(占比90%以上)為400nm~500nm,而第二光的主要波長區間(占比90%以上)為350nm~450nm。在另一些實施例中,第一光L1的主要波長區間(占比90%以上)為400nm~500nm,而第二光的主要波長區間(占比90%以上)為350nm~380nm。In the embodiment shown in FIG. 5 , the quantum dot material QD is arranged between the light reflecting structure LP and the sensing element SE. For example, the quantum dot material QDs can cover the sensing elements SE. The quantum dot material QD can be excited by a part of the first blue light component of the first light L1 to generate the second light to the sensing element SE. In the embodiment shown in FIG. 5, because the quantum dot material QD covers the sensing element SE, the sensing element SE is located outside the irradiation range of the first light L1, and the sensing element SE can sense the quantum dot material QD generated by the quantum dot material QD. the second light. By modulating the composition of the quantum dot material QD, the wavelength of the second light can be determined according to the actual design. For example, the wavelength range of the second light may be narrower than the wavelength range of the first light L1. According to the actual design, in some embodiments, the main wavelength range (accounting for more than 90%) of the first light L1 is 400 nm to 500 nm, and the main wavelength range (accounting for more than 90%) of the second light is 350 nm to 450 nm. In other embodiments, the main wavelength range of the first light L1 (accounting for more than 90%) is 400 nm to 500 nm, and the main wavelength range of the second light (accounting for more than 90%) is 350 nm to 380 nm.

圖6是依照本發明的另一實施例說明圖1所示子像素111-11的剖面示意圖。圖6繪示了遮光色阻(black matrix)BM、彩色濾光片(color filter)CF、光隔片(photo spacer)PS。圖6還繪示了顯示部DP的開關310與液晶電容330以及感測部SP的量子點材料QD與感測元件SE。圖6所示顯示部DP以及感測部SP可以參照圖1所示顯示部DP以及感測部SP的相關說明。圖6所示開關310與液晶電容330可以參照圖3所示開關310與液晶電容330的相關說明。背光(未繪示)所提供的第一光L1可以通過液晶電容330與彩色濾光片CF。圖1與圖4所示實施例所提及的量子點材料QD與感測元件SE可以參照圖6所示量子點材料QD與感測元件SE的相關說明。FIG. 6 is a schematic cross-sectional view illustrating the sub-pixels 111 - 11 shown in FIG. 1 according to another embodiment of the present invention. FIG. 6 illustrates a black matrix BM, a color filter CF, and a photo spacer PS. FIG. 6 also shows the switch 310 and the liquid crystal capacitor 330 of the display part DP and the quantum dot material QD and the sensing element SE of the sensing part SP. The display part DP and the sensing part SP shown in FIG. 6 can refer to the related descriptions of the display part DP and the sensing part SP shown in FIG. 1 . The switch 310 and the liquid crystal capacitor 330 shown in FIG. 6 can refer to the related description of the switch 310 and the liquid crystal capacitor 330 shown in FIG. 3 . The first light L1 provided by the backlight (not shown) can pass through the liquid crystal capacitor 330 and the color filter CF. For the quantum dot material QD and the sensing element SE mentioned in the embodiments shown in FIG. 1 and FIG. 4 , reference may be made to the related description of the quantum dot material QD and the sensing element SE shown in FIG. 6 .

圖6所示子像素111-11更包括遮光結構B,其中遮光結構B包括量子點材料QD。依照實際設計,遮光結構B配置在顯示面板的第一基板側610,而開關310與感測元件SE配置在顯示面板的第二基板側620。遮光結構B至於第一光L1的一部分的光徑中。因此,量子點材料QD可以接收來自於第一方向的第一光L1的部分。基於第一光L1的第一藍光成份的激發,量子點材料QD可以產生第二光L2給在第二方向的感測元件SE。在圖6所示實施例中,感測元件SE位在第一光L1的照射範圍外,且感測元件SE可以感測量子點材料QD所產生的第二光L2。The sub-pixels 111-11 shown in FIG. 6 further include a light-shielding structure B, wherein the light-shielding structure B includes a quantum dot material QD. According to the actual design, the light-shielding structure B is disposed on the first substrate side 610 of the display panel, and the switch 310 and the sensing element SE are disposed on the second substrate side 620 of the display panel. The light shielding structure B is in the light path of a part of the first light L1. Therefore, the quantum dot material QD can receive part of the first light L1 from the first direction. Based on the excitation of the first blue light component of the first light L1, the quantum dot material QD can generate the second light L2 to the sensing element SE in the second direction. In the embodiment shown in FIG. 6 , the sensing element SE is located outside the irradiation range of the first light L1 , and the sensing element SE can sense the second light L2 generated by the sub-dot material QD.

藉由量子點材料QD的成份調製,第二光L2的波長可以依照實際設計來決定。舉例來說,第二光L2的波長區間可以較第一光L1的波長區間窄。依照實際設計,在一些實施例中,第一光L1的主要波長區間(占比90%以上)為400nm~500nm,而第二光L2的主要波長區間(占比90%以上)為350nm~450nm。在另一些實施例中,第一光L1的主要波長區間(占比90%以上)為400nm~500nm,而第二光L2的主要波長區間(占比90%以上)為350nm~380nm。By modulating the composition of the quantum dot material QD, the wavelength of the second light L2 can be determined according to the actual design. For example, the wavelength range of the second light L2 may be narrower than the wavelength range of the first light L1. According to the actual design, in some embodiments, the main wavelength range of the first light L1 (accounting for more than 90%) is 400 nm to 500 nm, and the main wavelength range of the second light L2 (accounting for more than 90%) is 350 nm to 450 nm . In other embodiments, the main wavelength range of the first light L1 (accounting for more than 90%) is 400 nm to 500 nm, and the main wavelength range of the second light L2 (accounting for more than 90%) is 350 nm to 380 nm.

圖7是依照本發明的一實施例說明圖1所示感測部SP的電路示意圖。圖7所示子像素111-11與111-12是圖1所示顯示面板110的兩個子像素的實施範例,但是圖1所示顯示面板110的子像素的實施不限於圖7所示實施例。依照實際設計,圖7所示子像素111-11的相關說明可以適用於顯示面板110的其他子像素中的一者或是多者(例如圖7所示子像素111-12)。FIG. 7 is a schematic circuit diagram illustrating the sensing part SP shown in FIG. 1 according to an embodiment of the present invention. The sub-pixels 111-11 and 111-12 shown in FIG. 7 are examples of two sub-pixels of the display panel 110 shown in FIG. 1, but the implementation of the sub-pixels of the display panel 110 shown in FIG. 1 is not limited to the implementation shown in FIG. 7 example. According to the actual design, the related descriptions of the sub-pixels 111-11 shown in FIG. 7 may be applicable to one or more of the other sub-pixels of the display panel 110 (eg, the sub-pixels 111-12 shown in FIG. 7).

圖7所示子像素111-11的顯示部DP的控制端(閘極)經由顯示面板110的閘極線G1耦接至閘極驅動器130,而子像素111-11的顯示部DP的資料端(源極)經由顯示面板110的資料線D1耦接至源極驅動器120。以此類推,子像素111-12的控制端(閘極)經由顯示面板110的閘極線G2耦接至閘極驅動器130,而子像素111-12的資料端(源極)經由顯示面板110的資料線D1耦接至源極驅動器120。圖7所示顯示部DP可以參照圖1、圖2或圖3的相關說明,故不再贅述。The control terminal (gate) of the display portion DP of the sub-pixels 111-11 shown in FIG. 7 is coupled to the gate driver 130 through the gate line G1 of the display panel 110, and the data terminal of the display portion DP of the sub-pixels 111-11 is coupled to the gate driver 130. (Source) is coupled to the source driver 120 via the data line D1 of the display panel 110 . By analogy, the control terminals (gates) of the sub-pixels 111 - 12 are coupled to the gate driver 130 through the gate line G2 of the display panel 110 , and the data terminals (sources) of the sub-pixels 111 - 12 are connected through the display panel 110 The data line D1 is coupled to the source driver 120 . The display portion DP shown in FIG. 7 can refer to the related descriptions in FIG. 1 , FIG. 2 or FIG. 3 , and thus will not be repeated here.

圖7所示感測部SP包括量子點材料QD(未繪示於圖7)、感測元件SE、感測電容C71以及重置開關SW71。圖7所示感測電容C71可以參照圖5所示藍光感應電容Csen的相關說明。感測電容C71的第一端耦接至感測元件SE的第一端。感測元件SE的第二端耦接至顯示面板110的感測線S1。量子點材料QD可以受來自於顯示部DP的第一光L1的第一藍光成份的激發而產生第二光L2。依照實際設計,圖7的實施例所述量子點材料、顯示部DP、第一光L1與第二光L2可以參照圖5的實施例所述量子點材料QD、顯示部DP、第一光L1與第二光的相關說明,或是參照圖6的實施例所述量子點材料QD、顯示部DP、第一光L1與第二光L2的相關說明。感測元件SE可以感測量子點材料QD所產生的第二光L2,其中所述第二光L2影響感測元件SE的漏電流。依照實際設計,圖7所示感測元件SE的相關說明可以適用於圖5或圖6所示感測元件SE。The sensing part SP shown in FIG. 7 includes a quantum dot material QD (not shown in FIG. 7 ), a sensing element SE, a sensing capacitor C71 and a reset switch SW71 . The sensing capacitor C71 shown in FIG. 7 can refer to the related description of the blue light sensing capacitor Csen shown in FIG. 5 . The first end of the sensing capacitor C71 is coupled to the first end of the sensing element SE. The second end of the sensing element SE is coupled to the sensing line S1 of the display panel 110 . The quantum dot material QD may be excited by the first blue light component of the first light L1 from the display part DP to generate the second light L2. According to the actual design, the quantum dot material, the display part DP, the first light L1 and the second light L2 described in the embodiment of FIG. 7 can refer to the quantum dot material QD, the display part DP, the first light L1 described in the embodiment of FIG. 5 For the related description of the second light, or refer to the related description of the quantum dot material QD, the display part DP, the first light L1 and the second light L2 in the embodiment of FIG. 6 . The sensing element SE can sense the second light L2 generated by the sub-dot material QD, wherein the second light L2 affects the leakage current of the sensing element SE. According to the actual design, the relevant description of the sensing element SE shown in FIG. 7 may be applicable to the sensing element SE shown in FIG. 5 or FIG. 6 .

在重置期間,感測電容C71被充電。在感測期間,基於被量子點材料QD所產生的第二光L2影響的漏電流,感測元件SE洩漏感測電容C71的電荷。在讀出期間,感測元件SE為導通,因此處理電路140可以經由感測線S1與感測元件SE去偵測感測電容C71的電荷量(感測結果)。During reset, the sense capacitor C71 is charged. During the sensing period, the sensing element SE leaks the charge of the sensing capacitor C71 based on the leakage current affected by the second light L2 generated by the quantum dot material QD. During the readout period, the sensing element SE is turned on, so the processing circuit 140 can detect the charge amount (sense result) of the sensing capacitor C71 via the sensing line S1 and the sensing element SE.

顯示部DP的控制端與感測元件SE的控制端共同耦接至顯示面板110的閘極線G1。重置開關SW71的第一端耦接至感測電容C71的第一端。感測電容C71的第二端耦接至參考電壓Vref。依照實際設計,參考電壓Vref可以是參考電壓VSS、共同電壓VCOM或是其他固定電壓。重置開關SW71的第二端與顯示部DP的資料端共同耦接至顯示面板110的資料線D1。重置開關SW71的控制端耦接至顯示面板110的其他子像素的閘極線(例如,圖7所示子像素111-12的閘極線G2)。The control terminal of the display part DP and the control terminal of the sensing element SE are jointly coupled to the gate line G1 of the display panel 110 . The first terminal of the reset switch SW71 is coupled to the first terminal of the sensing capacitor C71. The second end of the sensing capacitor C71 is coupled to the reference voltage Vref. According to the actual design, the reference voltage Vref may be the reference voltage VSS, the common voltage VCOM or other fixed voltages. The second terminal of the reset switch SW71 and the data terminal of the display portion DP are jointly coupled to the data line D1 of the display panel 110 . The control terminal of the reset switch SW71 is coupled to the gate lines of other sub-pixels of the display panel 110 (eg, the gate lines G2 of the sub-pixels 111 - 12 shown in FIG. 7 ).

圖8是依照本發明的一實施例說明圖7所示閘極線G1、閘極線G2與感測電容C71的訊號波形示意圖。圖8繪示了兩個顯示幀期間F81與F82。在每一個幀期間中,閘極驅動器130掃描閘極線G1~Gn(如圖8所示)。在重置期間RST(在幀期間F81中閘極線G2的驅動期間),感測元件SE為截止(turn off),以及重置開關SW71為導通(turn on)以充電感測電容C71。在感測期間SEN,重置開關SW71與感測元件SE為截止。感測元件SE基於被量子點材料QD所產生的第二光L2影響的漏電流而洩漏感測電容C71的電荷,使得感測電容C71的電壓準位在感測期間SEN中持續降低。在讀出期間RO,重置開關SW71為截止,以及感測元件SE為導通。因此,處理電路140可以在讀出期間RO經由感測線S1與感測元件SE去偵測感測電容C71的電荷量(感測結果)。FIG. 8 is a schematic diagram illustrating the signal waveforms of the gate line G1 , the gate line G2 and the sensing capacitor C71 shown in FIG. 7 according to an embodiment of the present invention. FIG. 8 shows two display frame periods F81 and F82. In each frame period, the gate driver 130 scans the gate lines G1 ˜Gn (as shown in FIG. 8 ). During the reset period RST (the driving period of the gate line G2 in the frame period F81 ), the sensing element SE is turned off, and the reset switch SW71 is turned on to charge the sensing capacitor C71 . During the sensing period SEN, the reset switch SW71 and the sensing element SE are turned off. The sensing element SE leaks the charge of the sensing capacitor C71 based on the leakage current affected by the second light L2 generated by the quantum dot material QD, so that the voltage level of the sensing capacitor C71 continues to decrease during the sensing period SEN. During the readout period RO, the reset switch SW71 is turned off, and the sensing element SE is turned on. Therefore, the processing circuit 140 can detect the charge amount (sensing result) of the sensing capacitor C71 through the sensing line S1 and the sensing element SE during the readout period RO.

綜上所述,所述顯示面板110的至少一個子像素(子像素電路)包括顯示部DP以及感測部SP,其中所述感測部SP包括量子點材料QD以及感測元件SE。量子點材料QD對來自於顯示部DP的第一光L1的第一藍光成份具有鑑別性。量子點材料QD受第一光L1的第一藍光成份的激發而產生第二光。感測元件SE可以感測第二光。處理電路140可以依據感測元件SE的感測結果而即時地知道來自於顯示部DP的第一藍光成份的強度。也就是說,所述顯示面板110可以自我感測顯示畫面的特定成份(例如第一藍光成份),而不需要額外的感測器(外接式感測器)。To sum up, at least one sub-pixel (sub-pixel circuit) of the display panel 110 includes a display part DP and a sensing part SP, wherein the sensing part SP includes a quantum dot material QD and a sensing element SE. The quantum dot material QD has discrimination against the first blue light component of the first light L1 from the display part DP. The quantum dot material QD is excited by the first blue light component of the first light L1 to generate the second light. The sensing element SE may sense the second light. The processing circuit 140 can instantly know the intensity of the first blue light component from the display portion DP according to the sensing result of the sensing element SE. That is to say, the display panel 110 can self-sensing a specific component of the display image (eg, the first blue light component) without requiring an additional sensor (external sensor).

圖9是依照本發明的另一實施例說明圖1所示感測部SP的電路示意圖。圖9所示子像素111-11可以參照圖1所示子像素111-11的相關說明。圖9所示顯示部DP可以參照圖1、圖2、圖3或圖7所示顯示部DP的相關說明,故不再贅述。圖9所示感測部SP包括量子點材料QD(未繪示於圖9)、感測元件SE以及感測電容C91。依照實際設計,圖9的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP可以參照圖5或是參照圖6的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP的相關說明。圖9所示感測電容C91可以參照圖5所示藍光感應電容Csen的相關說明。FIG. 9 is a schematic circuit diagram illustrating the sensing part SP shown in FIG. 1 according to another embodiment of the present invention. The sub-pixels 111-11 shown in FIG. 9 can refer to the related descriptions of the sub-pixels 111-11 shown in FIG. 1 . For the display portion DP shown in FIG. 9 , reference may be made to the relevant description of the display portion DP shown in FIG. 1 , FIG. 2 , FIG. 3 or FIG. The sensing part SP shown in FIG. 9 includes a quantum dot material QD (not shown in FIG. 9 ), a sensing element SE and a sensing capacitor C91 . According to the actual design, the quantum dot material QD, the sensing element SE, the sensing part SP and the display part DP described in the embodiment of FIG. Description of the element SE, the sensing part SP and the display part DP. The sensing capacitor C91 shown in FIG. 9 can refer to the related description of the blue light sensing capacitor Csen shown in FIG. 5 .

顯示部DP的控制端與感測元件SE的控制端共同耦接至顯示面板110的閘極線G1。感測電容C91的第一端耦接至感測元件SE。感測電容C91的第二端耦接至參考電壓Vref。圖9所示感測元件SE、感測電容C91與參考電壓Vref可以參照圖7所示感測元件SE、感測電容C71與參考電壓Vref的相關說明,故不再贅述。The control terminal of the display part DP and the control terminal of the sensing element SE are jointly coupled to the gate line G1 of the display panel 110 . The first end of the sensing capacitor C91 is coupled to the sensing element SE. The second end of the sensing capacitor C91 is coupled to the reference voltage Vref. The sensing element SE, the sensing capacitor C91 and the reference voltage Vref shown in FIG. 9 can refer to the related description of the sensing element SE, the sensing capacitor C71 and the reference voltage Vref shown in FIG.

感測電容C91的第一端還耦接至顯示面板110的重置線RL1。在重置期間,感測元件SE為截止,以及處理電路140可以經由重置線RL1去充電(重置)感測電容C91。在感測期間,感測元件SE保持為截止,以及感測電容C91未被重置線RL1充電(亦即,處理電路140停止充電感測電容C91)。基於被量子點材料QD所產生的第二光影響的漏電流,感測元件SE洩漏感測電容C91的電荷。在讀出期間,感測電容C91未被重置線RL1充電,以及感測元件SE為導通。因此,處理電路140可以經由感測線S1與感測元件SE去偵測感測電容C91的電荷量(感測結果)。The first end of the sensing capacitor C91 is also coupled to the reset line RL1 of the display panel 110 . During reset, the sensing element SE is turned off, and the processing circuit 140 can charge (reset) the sensing capacitor C91 via the reset line RL1. During sensing, the sensing element SE remains off, and the sensing capacitor C91 is not charged by the reset line RL1 (ie, the processing circuit 140 stops charging the sensing capacitor C91). Based on the leakage current affected by the second light generated by the quantum dot material QD, the sensing element SE leaks the charge of the sensing capacitor C91. During readout, the sense capacitor C91 is not charged by the reset line RL1, and the sense element SE is turned on. Therefore, the processing circuit 140 can detect the charge amount (sensing result) of the sensing capacitor C91 via the sensing line S1 and the sensing element SE.

圖10是依照本發明的又一實施例說明圖1所示感測部SP的電路示意圖。圖10所示子像素111-11可以參照圖1所示子像素111-11的相關說明。圖10所示子像素111-11與111-12可以參照圖7所示子像素111-11與111-12的相關說明。圖10所示顯示部DP可以參照圖1、圖2、圖3或圖7所示顯示部DP的相關說明。圖10所示閘極線G1、閘極線G2、資料線D1與感測線S1可以參照圖7所示閘極線G1、閘極線G2、資料線D1與感測線S1的相關說明,故不再贅述。FIG. 10 is a schematic circuit diagram illustrating the sensing part SP shown in FIG. 1 according to still another embodiment of the present invention. The sub-pixels 111-11 shown in FIG. 10 can refer to the related description of the sub-pixels 111-11 shown in FIG. 1 . The sub-pixels 111-11 and 111-12 shown in FIG. 10 can refer to the related description of the sub-pixels 111-11 and 111-12 shown in FIG. 7 . The display part DP shown in FIG. 10 can refer to the related description of the display part DP shown in FIG. 1 , FIG. 2 , FIG. 3 or FIG. 7 . The gate line G1, the gate line G2, the data line D1 and the sensing line S1 shown in FIG. 10 can refer to the related descriptions of the gate line G1, the gate line G2, the data line D1 and the sensing line S1 shown in FIG. Repeat.

圖10所示感測部SP包括量子點材料QD(未繪示於圖10)、感測元件SE以及感測電容C101。依照實際設計,圖10的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP可以參照圖5或是參照圖6的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP的相關說明。圖10所示感測電容C101可以參照圖5所示藍光感應電容Csen的相關說明。感測元件SE的控制端耦接至顯示面板110的其他子像素的閘極線(例如,圖10所示子像素111-12的閘極線G2)。感測電容C101的第一端耦接至感測元件SE。感測電容C101的第二端耦接至參考電壓Vref。圖10所示感測元件SE、感測電容C101與參考電壓Vref可以參照圖7所示感測元件SE、感測電容C71與參考電壓Vref的相關說明,故不再贅述。The sensing part SP shown in FIG. 10 includes a quantum dot material QD (not shown in FIG. 10 ), a sensing element SE and a sensing capacitor C101 . According to the actual design, the quantum dot material QD, the sensing element SE, the sensing part SP and the display part DP described in the embodiment of FIG. 10 may refer to FIG. Description of the element SE, the sensing part SP and the display part DP. The sensing capacitor C101 shown in FIG. 10 can refer to the related description of the blue light sensing capacitor Csen shown in FIG. 5 . The control terminal of the sensing element SE is coupled to the gate lines of other sub-pixels of the display panel 110 (eg, the gate lines G2 of the sub-pixels 111 - 12 shown in FIG. 10 ). The first end of the sensing capacitor C101 is coupled to the sensing element SE. The second end of the sensing capacitor C101 is coupled to the reference voltage Vref. The sensing element SE, the sensing capacitor C101 and the reference voltage Vref shown in FIG. 10 can refer to the related descriptions of the sensing element SE, the sensing capacitor C71 and the reference voltage Vref shown in FIG.

感測電容C101的第一端還耦接至顯示面板110的重置線RL1。圖10所示重置線RL1可以參照圖9所示重置線RL1的相關說明。在重置期間,處理電路140可以經由重置線RL1去充電(重置)感測電容C101。在感測期間,基於被量子點材料QD所產生的第二光影響的漏電流,感測元件SE洩漏感測電容C101的電荷。在讀出期間,感測元件SE為導通,因此處理電路140可以經由感測線S1與感測元件SE去偵測感測電容C101的電荷量(感測結果)。The first end of the sensing capacitor C101 is also coupled to the reset line RL1 of the display panel 110 . The reset line RL1 shown in FIG. 10 may refer to the related description of the reset line RL1 shown in FIG. 9 . During reset, the processing circuit 140 may de-charge (reset) the sensing capacitor C101 via the reset line RL1. During the sensing period, the sensing element SE leaks the charge of the sensing capacitor C101 based on the leakage current affected by the second light generated by the quantum dot material QD. During the readout period, the sensing element SE is turned on, so the processing circuit 140 can detect the charge amount (sensing result) of the sensing capacitor C101 through the sensing line S1 and the sensing element SE.

圖11是依照本發明的再一實施例說明圖1所示感測部SP的電路示意圖。圖11所示子像素111-11、顯示部DP、閘極線G1與資料線D1可以參照圖1、圖2、圖3或圖7所示子像素111-11、顯示部DP、閘極線G1與資料線D1的相關說明。圖11所示感測線S1可以參照圖7所示感測線S1的相關說明,故不再贅述。FIG. 11 is a schematic circuit diagram illustrating the sensing part SP shown in FIG. 1 according to still another embodiment of the present invention. The sub-pixels 111-11, the display part DP, the gate line G1 and the data line D1 shown in FIG. 11 can refer to the sub-pixels 111-11, the display part DP, the gate lines shown in FIG. 1, FIG. 2, FIG. 3 or FIG. 7 Description of G1 and data line D1. For the sensing line S1 shown in FIG. 11 , reference may be made to the related description of the sensing line S1 shown in FIG. 7 , and thus will not be repeated here.

圖11所示感測部SP包括量子點材料QD(未繪示於圖11)、感測元件SE以及感測電容C111。依照實際設計,圖11的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP可以參照圖5或是參照圖6的實施例所述量子點材料QD、感測元件SE、感測部SP與顯示部DP的相關說明。圖11所示感測電容C111可以參照圖5所示藍光感應電容Csen的相關說明。圖11所示感測電容C111的第一端耦接至感測元件SE。感測電容C111的第二端耦接至參考電壓Vref。圖11所示感測元件SE、感測電容C111與參考電壓Vref可以參照圖7所示感測元件SE、感測電容C71與參考電壓Vref的相關說明,故不再贅述。The sensing part SP shown in FIG. 11 includes a quantum dot material QD (not shown in FIG. 11 ), a sensing element SE and a sensing capacitor C111 . According to the actual design, the quantum dot material QD, the sensing element SE, the sensing part SP and the display part DP in the embodiment of FIG. 11 can refer to FIG. Description of the element SE, the sensing part SP and the display part DP. The sensing capacitor C111 shown in FIG. 11 can refer to the related description of the blue light sensing capacitor Csen shown in FIG. 5 . The first end of the sensing capacitor C111 shown in FIG. 11 is coupled to the sensing element SE. The second end of the sensing capacitor C111 is coupled to the reference voltage Vref. The sensing element SE, the sensing capacitor C111 and the reference voltage Vref shown in FIG. 11 can refer to the related descriptions of the sensing element SE, the sensing capacitor C71 and the reference voltage Vref shown in FIG.

感測元件SE的控制端耦接至顯示面板110的讀出控制線CL1。處理電路140可以經由讀出控制線CL1去控制感測元件SE。感測電容C111的第一端還耦接至顯示面板110的重置線RL1。圖11所示重置線RL1可以參照圖9所示重置線RL1的相關說明。在重置期間,處理電路140截止感測元件SE,以及處理電路140可以經由重置線RL1去充電(重置)感測電容C111。在感測期間,基於被量子點材料QD所產生的第二光影響的漏電流,感測元件SE洩漏感測電容C111的電荷。在讀出期間,處理電路140導通感測元件SE,因此處理電路140可以經由感測線S1與感測元件SE去偵測感測電容C111的電荷量(感測結果)。The control terminal of the sensing element SE is coupled to the readout control line CL1 of the display panel 110 . The processing circuit 140 can control the sensing element SE via the readout control line CL1. The first end of the sensing capacitor C111 is also coupled to the reset line RL1 of the display panel 110 . The reset line RL1 shown in FIG. 11 can refer to the related description of the reset line RL1 shown in FIG. 9 . During reset, the processing circuit 140 turns off the sensing element SE, and the processing circuit 140 can decharge (reset) the sensing capacitor C111 via the reset line RL1. During the sensing period, the sensing element SE leaks the charge of the sensing capacitor C111 based on the leakage current affected by the second light generated by the quantum dot material QD. During the readout period, the processing circuit 140 turns on the sensing element SE, so the processing circuit 140 can detect the charge amount (sensing result) of the sensing capacitor C111 via the sensing line S1 and the sensing element SE.

圖12是依照本發明的一實施例說明圖11所示閘極線G1、重置線RL1、感測線S1、讀出控制線CL1與感測電容C111的訊號波形示意圖。圖12繪示了多個顯示幀期間,其中圖式符號「F12_1」表示一個幀期間,圖式符號「F12_k+2」表示另一個幀期間,而圖式符號「K*F」表示在幀期間F12_1與幀期間之間的K個幀期間。在每一個幀期間中,閘極驅動器130掃描顯示面板110的閘極線G1~Gn(如圖12所示)。在重置期間RST,處理電路140截止感測元件SE,以及處理電路140充電感測電容C111。在感測期間SEN,處理電路140持續截止感測元件SE,以及處理電路140停止充電感測電容C111。基於被量子點材料QD所產生的第二光L2影響的漏電流,感測元件SE洩漏感測電容C111的電荷,使得感測電容C111的電壓準位在感測期間SEN中持續降低。在讀出期間RO,處理電路140持續停止充電感測電容C111,以及處理電路140導通感測元件SE。因此,處理電路140可以在讀出期間RO經由感測線S1與感測元件SE去偵測感測電容C111的電荷量(感測結果)。12 is a schematic diagram illustrating the signal waveforms of the gate line G1 , the reset line RL1 , the sensing line S1 , the readout control line CL1 and the sensing capacitor C111 shown in FIG. 11 according to an embodiment of the present invention. FIG. 12 shows a plurality of display frame periods, wherein the schematic symbol "F12_1" represents one frame period, the schematic symbol "F12_k+2" represents another frame period, and the schematic symbol "K*F" represents a frame period K frame periods between F12_1 and the frame period. In each frame period, the gate driver 130 scans the gate lines G1 ˜Gn of the display panel 110 (as shown in FIG. 12 ). During the reset period RST, the processing circuit 140 turns off the sensing element SE, and the processing circuit 140 charges the sensing capacitor C111. During the sensing period SEN, the processing circuit 140 continues to turn off the sensing element SE, and the processing circuit 140 stops charging the sensing capacitor C111. Based on the leakage current affected by the second light L2 generated by the quantum dot material QD, the sensing element SE leaks the charge of the sensing capacitor C111 , so that the voltage level of the sensing capacitor C111 continues to decrease during the sensing period SEN. During the readout period RO, the processing circuit 140 continues to stop charging the sensing capacitor C111, and the processing circuit 140 turns on the sensing element SE. Therefore, the processing circuit 140 can detect the charge amount (sensing result) of the sensing capacitor C111 via the sensing line S1 and the sensing element SE during the readout period RO.

圖12繪示了多條讀出控制線CL1、CL2、…、CLn。亦即,這些子像素111-11至111-mn的感測部SP的每一個的感測元件SE的控制端(閘極)經由這些讀出控制線CL1~CLn中的一條對應閘極線耦接至處理電路140。圖11雖然沒有繪示讀出控制線CL2~CLn,這些讀出控制線CL2~CLn可以參照讀出控制線CL1的相關說明去類推。這些讀出控制線CL1~CLn在顯示面板110中的佈置可以參照閘極線G1~Gn的佈置去類推。在幀期間「F12_k+2」中,處理電路140可以掃描這些讀出控制線CL1~CLn(如圖12所示)。FIG. 12 shows a plurality of readout control lines CL1 , CL2 , . . . , CLn. That is, the control terminal (gate) of the sensing element SE of each of the sensing parts SP of the sub-pixels 111-11 to 111-mn is coupled via a corresponding gate line among the readout control lines CL1 to CLn connected to the processing circuit 140 . Although the readout control lines CL2 to CLn are not shown in FIG. 11 , these readout control lines CL2 to CLn can be deduced by referring to the related description of the readout control line CL1 . The arrangement of these readout control lines CL1 ˜ CLn in the display panel 110 can be analogized with reference to the arrangement of the gate lines G1 ˜ Gn. In the frame period "F12_k+2", the processing circuit 140 may scan these readout control lines CL1-CLn (as shown in FIG. 12).

圖13是依照本發明的更一實施例說明圖1所示感測部SP的電路示意圖。圖13所示子像素111-11可以參照圖1所示子像素111-11的相關說明。圖13所示顯示部DP可以參照圖1、圖2、圖3或圖7所示顯示部DP的相關說明,故不再贅述。圖13所示感測部SP包括量子點材料QD1(未繪示於圖13)、感測元件SE1、感測電容C131、量子點材料QD2(未繪示於圖13)、感測元件SE2以及感測電容C132。依照實際設計,圖13的實施例所述感測部SP與顯示部DP可以參照圖5或是參照圖6的實施例所述感測部SP與顯示部DP的相關說明。圖13所示感測電容C131以及/或是C132可以參照圖5所示藍光感應電容Csen的相關說明。FIG. 13 is a schematic circuit diagram illustrating the sensing part SP shown in FIG. 1 according to another embodiment of the present invention. The sub-pixels 111-11 shown in FIG. 13 can refer to the related description of the sub-pixels 111-11 shown in FIG. 1 . The display part DP shown in FIG. 13 can refer to the related description of the display part DP shown in FIG. 1 , FIG. 2 , FIG. 3 or FIG. The sensing part SP shown in FIG. 13 includes a quantum dot material QD1 (not shown in FIG. 13 ), a sensing element SE1 , a sensing capacitor C131 , a quantum dot material QD2 (not shown in FIG. 13 ), a sensing element SE2 and Sense capacitor C132. According to the actual design, the sensing part SP and the display part DP in the embodiment of FIG. 13 can refer to FIG. 5 or the related description of the sensing part SP and the display part DP in the embodiment of FIG. 6 . The sensing capacitor C131 and/or C132 shown in FIG. 13 can refer to the related description of the blue light sensing capacitor Csen shown in FIG. 5 .

顯示部DP的控制端、感測元件SE1的控制端與感測元件SE2的控制端共同耦接至顯示面板110的閘極線G1。感測電容C131的第一端耦接至感測元件SE1的第一端。在圖13所示實施例中,感測線S1包括感測線S1_1與感測線S1_2。感測元件SE1的第二端耦接至顯示面板110的感測線S1_1。感測電容C132的第一端耦接至感測元件SE2的第一端。感測元件SE2的第二端耦接至顯示面板110的感測線S1_2。感測電容C131的第二端與感測電容C132的第二端耦接至參考電壓Vref。圖13所示感測電容C132與感測元件SE1可以參照圖9所示感測電容C91與感測元件SE的相關說明,圖13所示感測電容C132與感測元件SE2也可以參照圖9所示感測電容C91與感測元件SE的相關說明。The control terminal of the display part DP, the control terminal of the sensing element SE1 and the control terminal of the sensing element SE2 are commonly coupled to the gate line G1 of the display panel 110 . The first end of the sensing capacitor C131 is coupled to the first end of the sensing element SE1. In the embodiment shown in FIG. 13 , the sensing line S1 includes a sensing line S1_1 and a sensing line S1_2 . The second end of the sensing element SE1 is coupled to the sensing line S1_1 of the display panel 110 . The first end of the sensing capacitor C132 is coupled to the first end of the sensing element SE2. The second end of the sensing element SE2 is coupled to the sensing line S1_2 of the display panel 110 . The second terminal of the sensing capacitor C131 and the second terminal of the sensing capacitor C132 are coupled to the reference voltage Vref. The sensing capacitor C132 and the sensing element SE1 shown in FIG. 13 can refer to the related description of the sensing capacitor C91 and the sensing element SE shown in FIG. 9 , and the sensing capacitor C132 and the sensing element SE2 shown in FIG. 13 can also refer to FIG. 9 The illustrated related description of the sensing capacitor C91 and the sensing element SE.

感測電容C131的第一端與感測電容C132的第一端還耦接至顯示面板110的重置線RL1。在重置期間,感測元件SE1與感測元件SE2為截止,以及處理電路140可以經由重置線RL1去充電(重置)感測電容C131與感測電容C132。The first end of the sensing capacitor C131 and the first end of the sensing capacitor C132 are further coupled to the reset line RL1 of the display panel 110 . During the reset period, the sensing element SE1 and the sensing element SE2 are turned off, and the processing circuit 140 can charge (reset) the sensing capacitor C131 and the sensing capacitor C132 via the reset line RL1 .

在感測期間,感測元件SE1與感測元件SE2保持為截止,以及感測電容C131與感測電容C132未被重置線RL1充電(亦即,處理電路140停止充電感測電容C131與感測電容C132)。量子點材料QD1可以受來自於顯示部110的第一光的第一藍光成份的激發而產生第二光。在一些實施例中,量子點材料QD2可以受來自於顯示部110的第一光的第二藍光成份的激發而產生第三光(如圖14所示)。在另一些實施例中,量子點材料QD2可以受環境光的激發而產生第三光(如圖15所示)。During the sensing period, the sensing element SE1 and the sensing element SE2 are kept off, and the sensing capacitor C131 and the sensing capacitor C132 are not charged by the reset line RL1 (that is, the processing circuit 140 stops charging the sensing capacitor C131 and the sensing capacitor C132). measuring capacitance C132). The quantum dot material QD1 may be excited by the first blue light component of the first light from the display part 110 to generate the second light. In some embodiments, the quantum dot material QD2 may be excited by the second blue light component of the first light from the display part 110 to generate the third light (as shown in FIG. 14 ). In other embodiments, the quantum dot material QD2 can be excited by ambient light to generate the third light (as shown in FIG. 15 ).

圖14是依照本發明的一實施例說明圖13所示子像素111-11的剖面示意圖。圖14繪示了顯示部DP的控制元件1420與顯示結構1430,以及繪示了感測部SP的量子點材料QD1、感測元件SE1、量子點材料QD2與感測元件SE2。圖14所示顯示部DP以及感測部SP可以參照圖1所示顯示部DP以及感測部SP的相關說明。圖14所示控制元件1420與顯示結構1430可以參照圖5所示電晶體220與發光元件230的相關說明去類推,或是參照圖6所示開關310與液晶電容330的相關說明去類推。圖1與圖4所示實施例所提及的量子點材料QD與感測元件SE可以參照圖14所示量子點材料QD1、量子點材料QD2、感測元件SE1與感測元件SE2的相關說明。FIG. 14 is a schematic cross-sectional view illustrating the sub-pixels 111 - 11 shown in FIG. 13 according to an embodiment of the present invention. FIG. 14 shows the control element 1420 and the display structure 1430 of the display part DP, and the quantum dot material QD1 , the sensing element SE1 , the quantum dot material QD2 and the sensing element SE2 of the sensing part SP. The display part DP and the sensing part SP shown in FIG. 14 can refer to the related description of the display part DP and the sensing part SP shown in FIG. 1 . The control element 1420 and the display structure 1430 shown in FIG. 14 can be analogized with reference to the related description of the transistor 220 and the light-emitting element 230 shown in FIG. 5 , or the related description of the switch 310 and the liquid crystal capacitor 330 shown in FIG. For the quantum dot material QD and the sensing element SE mentioned in the embodiments shown in FIG. 1 and FIG. 4 , reference may be made to the related descriptions of the quantum dot material QD1 , the quantum dot material QD2 , the sensing element SE1 and the sensing element SE2 shown in FIG. 14 .

圖14所示量子點材料QD1以及量子點材料QD2可以參照圖5所示量子點材料QD的相關說明。所述量子點材料QD1對第一光L1的第一藍光成份具有鑑別性,而所述量子點材料QD2對第一光L1的第二藍光成份具有鑑別性,其中所述第一藍光成份與所述第二藍光成份各自屬於不同的波長範圍。亦即,第一光L1的某個特定波長範圍(第一藍光成份)容易激發量子點材料QD1,但是第一光L1的其他波長範圍卻不容易(甚至不能)激發量子點材料QD1。同理,第一光L1的另一個特定波長範圍(第二藍光成份)容易激發量子點材料QD2,但是第一光L1的其他波長範圍卻不容易(甚至不能)激發量子點材料QD2。藉由所述量子點材料QD1與QD2的成份調製,所述第一藍光成份與所述第二藍光成份可以依照實際設計來決定。例如在一些實施例中,所述第一藍光成份可以屬於強傷害的波長範圍(例如是415~455nm的藍光波長範圍),而所述第二藍光成份可以屬於弱傷害的波長範圍(例如是455~480nm的藍光波長範圍)。The quantum dot material QD1 and the quantum dot material QD2 shown in FIG. 14 may refer to the relevant description of the quantum dot material QD shown in FIG. 5 . The quantum dot material QD1 is discriminative to the first blue light component of the first light L1, and the quantum dot material QD2 is discriminative to the second blue light component of the first light L1, wherein the first blue light component and the The second blue light components each belong to different wavelength ranges. That is, a certain wavelength range (first blue light component) of the first light L1 is easy to excite the quantum dot material QD1, but other wavelength ranges of the first light L1 are not easy (or even impossible) to excite the quantum dot material QD1. Similarly, another specific wavelength range (the second blue light component) of the first light L1 is easy to excite the quantum dot material QD2, but other wavelength ranges of the first light L1 are not easy (or even impossible) to excite the quantum dot material QD2. By the composition modulation of the quantum dot materials QD1 and QD2, the first blue light composition and the second blue light composition can be determined according to actual design. For example, in some embodiments, the first blue light component may belong to a wavelength range of strong damage (for example, a blue light wavelength range of 415-455 nm), and the second blue light component may belong to a wavelength range of weak damage (for example, 455 nm). ~480nm blue light wavelength range).

量子點材料QD1可以受第一光L1的所述第一藍光成份的激發而產生第二光。其中,第一光L1的所述第一藍光成份的波長不同於量子點材料QD1所產生的所述第二光的波長。感測元件SE1可以感測量子點材料QD1所產生的所述第二光。量子點材料QD2可以受第一光L1的所述第二藍光成份的激發而產生第三光。其中,第一光L1的所述第二藍光成份的波長不同於量子點材料QD2所產生的所述第三光的波長。感測元件SE2可以感測量子點材料QD2所產生的所述第三光。因為量子點材料QD1與QD2覆蓋了感測元件SE1與SE2,所以感測元件SE1的位置與感測元件SE2的位置均在第一光L1的照射範圍外。The quantum dot material QD1 can be excited by the first blue light component of the first light L1 to generate the second light. Wherein, the wavelength of the first blue light component of the first light L1 is different from the wavelength of the second light generated by the quantum dot material QD1. The sensing element SE1 may sense the second light generated by the sub-dot material QD1. The quantum dot material QD2 can be excited by the second blue light component of the first light L1 to generate the third light. Wherein, the wavelength of the second blue light component of the first light L1 is different from the wavelength of the third light generated by the quantum dot material QD2. The sensing element SE2 may sense the third light generated by the sub-dot material QD2. Because the quantum dot materials QD1 and QD2 cover the sensing elements SE1 and SE2, the position of the sensing element SE1 and the position of the sensing element SE2 are both outside the irradiation range of the first light L1.

圖15是依照本發明的另一實施例說明圖13所示子像素111-11的剖面示意圖。圖15繪示了顯示部DP的控制元件1520與顯示結構1530,以及繪示了感測部SP的量子點材料QD1、感測元件SE1、量子點材料QD2與感測元件SE2。圖15所示顯示部DP以及感測部SP可以參照圖1所示顯示部DP以及感測部SP的相關說明。圖15所示控制元件1520與顯示結構1530可以參照圖5所示電晶體220與發光元件230的相關說明去類推,或是參照圖6所示開關310與液晶電容330的相關說明去類推。圖1與圖4所示實施例所提及的量子點材料QD與感測元件SE可以參照圖15所示量子點材料QD1、量子點材料QD2、感測元件SE1與感測元件SE2的相關說明。FIG. 15 is a schematic cross-sectional view illustrating the sub-pixels 111 - 11 shown in FIG. 13 according to another embodiment of the present invention. FIG. 15 shows the control element 1520 and the display structure 1530 of the display part DP, and the quantum dot material QD1 , the sensing element SE1 , the quantum dot material QD2 and the sensing element SE2 of the sensing part SP. The display part DP and the sensing part SP shown in FIG. 15 can refer to the related description of the display part DP and the sensing part SP shown in FIG. 1 . The control element 1520 and the display structure 1530 shown in FIG. 15 can be analogized with reference to the related description of the transistor 220 and the light-emitting element 230 shown in FIG. 5 , or the related description of the switch 310 and the liquid crystal capacitor 330 shown in FIG. For the quantum dot material QD and the sensing element SE mentioned in the embodiments shown in FIG. 1 and FIG. 4 , reference may be made to the related descriptions of the quantum dot material QD1 , the quantum dot material QD2 , the sensing element SE1 and the sensing element SE2 shown in FIG. 15 .

圖15所示量子點材料QD1以及量子點材料QD2可以參照圖5所示量子點材料QD的相關說明。圖15所示感測元件SE1、量子點材料QD1、感測元件SE2以及量子點材料QD2可以參照圖14所示感測元件SE1、量子點材料QD1、感測元件SE2以及量子點材料QD2的相關說明。不同於圖14所示實施例之處在於,在圖15所示實施例中,量子點材料QD2可以受環境光Lamb的激發而產生第三光給感測元件SE2。圖15所示感測元件SE1與量子點材料QD1可以參照圖5(或圖6)所示感測元件SE與量子點材料QD的相關說明去類推。The quantum dot material QD1 and the quantum dot material QD2 shown in FIG. 15 may refer to the relevant description of the quantum dot material QD shown in FIG. 5 . The sensing element SE1, the quantum dot material QD1, the sensing element SE2, and the quantum dot material QD2 shown in FIG. 15 can refer to the correlation of the sensing element SE1, the quantum dot material QD1, the sensing element SE2, and the quantum dot material QD2 shown in FIG. 14 illustrate. Different from the embodiment shown in FIG. 14 , in the embodiment shown in FIG. 15 , the quantum dot material QD2 can be excited by the ambient light Lamb to generate the third light to the sensing element SE2 . The sensing element SE1 and the quantum dot material QD1 shown in FIG. 15 can be deduced by referring to the related description of the sensing element SE and the quantum dot material QD shown in FIG. 5 (or FIG. 6 ).

請參照圖13。基於被量子點材料QD1所產生的第二光影響的漏電流,感測元件SE1洩漏感測電容C131的電荷。基於被量子點材料QD2所產生的第三光影響的漏電流,感測元件SE2洩漏感測電容C132的電荷。在讀出期間,感測電容C131與感測電容C132未被重置線RL1充電,以及感測元件SE1與感測元件SE2為導通。因此,處理電路140可以經由感測線S1_1與感測元件SE1去偵測感測電容C131的電荷量(第一藍光成份感測結果),以及處理電路140可以經由感測線S1_2與感測元件SE2去偵測感測電容C132的電荷量(第二藍光成份感測結果)。處理電路140可以比較所述第一藍光成份感測結果與所述第二藍光成份感測結果,或是計算所述第一藍光成份感測結果與所述第二藍光成份感測結果的比值。Please refer to Figure 13. Based on the leakage current influenced by the second light generated by the quantum dot material QD1, the sensing element SE1 leaks the charge of the sensing capacitor C131. Based on the leakage current influenced by the third light generated by the quantum dot material QD2, the sensing element SE2 leaks the charge of the sensing capacitor C132. During the readout period, the sensing capacitor C131 and the sensing capacitor C132 are not charged by the reset line RL1, and the sensing element SE1 and the sensing element SE2 are turned on. Therefore, the processing circuit 140 can detect the charge amount of the sensing capacitor C131 (the first blue light component sensing result) through the sensing line S1_1 and the sensing element SE1, and the processing circuit 140 can detect the charge of the sensing capacitor C131 through the sensing line S1_2 and the sensing element SE2. The charge amount of the sensing capacitor C132 (the second blue light component sensing result) is detected. The processing circuit 140 can compare the first blue light component sensing result with the second blue light component sensing result, or calculate the ratio of the first blue light component sensing result and the second blue light component sensing result.

綜上所述,子像素(子像素電路)的感測部SP包括量子點材料QD1、感測元件SE1量子點材料QD2以及感測元件SE2。量子點材料QD1對來自於顯示部DP的第一光L1的第一藍光成份具有鑑別性。量子點材料QD1受第一光L1的第一藍光成份的激發而產生第二光給感測元件SE1。在一些實施例中,量子點材料QD2對來自於顯示部DP的第一光L1的第二藍光成份具有鑑別性。量子點材料QD2受第一光L1的第二藍光成份的激發而產生第三光給感測元件SE2。在另一些實施例中,量子點材料QD2對環境光Lamb具有鑑別性。量子點材料QD2受環境光Lamb的激發而產生第三光給感測元件SE2。處理電路140可以依據感測元件SE1與SE2的感測結果而即時地知道來自於顯示部DP的第一光L1的第一藍光成份與第二藍光成份的強度比例(或是第一光L1的第一藍光成份與環境光Lamb的強度比例)。也就是說,所述顯示面板110可以自我感測顯示畫面的特定成份(例如第一藍光成份),而不需要額外的感測器(外接式感測器)。To sum up, the sensing part SP of the sub-pixel (sub-pixel circuit) includes the quantum dot material QD1 , the sensing element SE1 , the quantum dot material QD2 , and the sensing element SE2 . The quantum dot material QD1 has discrimination against the first blue light component of the first light L1 from the display part DP. The quantum dot material QD1 is excited by the first blue light component of the first light L1 to generate the second light to the sensing element SE1. In some embodiments, the quantum dot material QD2 is discriminative to the second blue light component of the first light L1 from the display portion DP. The quantum dot material QD2 is excited by the second blue light component of the first light L1 to generate a third light to the sensing element SE2. In other embodiments, the quantum dot material QD2 is discriminative to ambient light Lamb. The quantum dot material QD2 is excited by the ambient light Lamb to generate the third light to the sensing element SE2. The processing circuit 140 can instantly know the intensity ratio of the first blue light component and the second blue light component of the first light L1 from the display portion DP (or the intensity ratio of the first light L1 ) according to the sensing results of the sensing elements SE1 and SE2. The intensity ratio of the first blue light component to the ambient light Lamb). That is to say, the display panel 110 can self-sensing a specific component of the display image (eg, the first blue light component) without requiring an additional sensor (external sensor).

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

100:顯示裝置 110:顯示面板 111-11、111-12、111-m1、111-1n、111-mn:子像素 120:源極驅動器 130:閘極驅動器 140:處理電路 210:開關 220:電晶體 230:發光元件 310:開關 320:儲存電容 330:液晶電容 610:第一基板側 620:第二基板側 1420、1520:控制元件 1430、1530:顯示結構 B:遮光結構 BM:遮光色阻 C71、C91、C101、C111、C131、C132:感測電容 CF:彩色濾光片 CL1:讀出控制線 D1、Dm:資料線 DP:顯示部 F81、F82、F12_1、F12_k+2、K*F:幀期間 G1、G2、Gn:閘極線 L1:第一光 L2:第二光 Lamb:環境光 LP:光反射結構 PS:光隔片 QD、QD1、QD2:量子點材料 RL1:重置線 RO:讀出期間 RST:重置期間 S1、S1_1、S1_2、Sm:感測線 S410、S420:步驟 SE、SE1、SE2:感測元件 SEN:感測期間 SP:感測部 SW71:重置開關 VCOM:共同電壓 VDD:電源電壓 Vref、VSS:參考電壓100: Display device 110: Display panel 111-11, 111-12, 111-m1, 111-1n, 111-mn: Subpixels 120: source driver 130: Gate driver 140: Processing circuit 210: Switch 220: Transistor 230: Light-emitting element 310: switch 320: Storage Capacitor 330: Liquid crystal capacitor 610: First substrate side 620: Second substrate side 1420, 1520: Control elements 1430, 1530: Display structure B: Shading structure BM: shading color resist C71, C91, C101, C111, C131, C132: Sensing capacitance CF: Color Filter CL1: read control line D1, Dm: data line DP: Display part F81, F82, F12_1, F12_k+2, K*F: frame period G1, G2, Gn: gate line L1: First Light L2: Second light Lamb: Ambient Light LP: Light Reflective Structure PS: Optical spacer QD, QD1, QD2: Quantum Dot Materials RL1: reset line RO: Readout period RST: reset period S1, S1_1, S1_2, Sm: Sensing lines S410, S420: Steps SE, SE1, SE2: Sensing elements SEN: During sensing SP: Sensing part SW71: Reset switch VCOM: common voltage VDD: Power supply voltage Vref, VSS: reference voltage

圖1是依照本發明的一實施例的一種顯示裝置的電路方塊(circuit block)示意圖。 圖2是依照本發明的一實施例說明圖1所示顯示部的電路示意圖。 圖3是依照本發明的另一實施例說明圖1所示顯示部的電路示意圖。 圖4是依照本發明的一實施例的一種顯示面板的操作方法的流程示意圖。 圖5是依照本發明的一實施例說明圖1所示子像素的剖面示意圖。 圖6是依照本發明的另一實施例說明圖1所示子像素的剖面示意圖。 圖7是依照本發明的一實施例說明圖1所示感測部的電路示意圖。 圖8是依照本發明的一實施例說明圖7所示閘極線與感測電容的訊號波形示意圖。 圖9是依照本發明的另一實施例說明圖1所示感測部的電路示意圖。 圖10是依照本發明的又一實施例說明圖1所示感測部的電路示意圖。 圖11是依照本發明的再一實施例說明圖1所示感測部的電路示意圖。 圖12是依照本發明的一實施例說明圖11所示閘極線與感測電容的訊號波形示意圖。 圖13是依照本發明的更一實施例說明圖1所示感測部的電路示意圖。 圖14是依照本發明的一實施例說明圖13所示子像素的剖面示意圖。 圖15是依照本發明的另一實施例說明圖13所示子像素的剖面示意圖。 FIG. 1 is a schematic diagram of a circuit block of a display device according to an embodiment of the present invention. FIG. 2 is a schematic circuit diagram illustrating the display unit shown in FIG. 1 according to an embodiment of the present invention. FIG. 3 is a schematic circuit diagram illustrating the display unit shown in FIG. 1 according to another embodiment of the present invention. FIG. 4 is a schematic flowchart of a method for operating a display panel according to an embodiment of the present invention. 5 is a schematic cross-sectional view illustrating the sub-pixel shown in FIG. 1 according to an embodiment of the present invention. 6 is a schematic cross-sectional view illustrating the sub-pixel shown in FIG. 1 according to another embodiment of the present invention. FIG. 7 is a schematic circuit diagram illustrating the sensing unit shown in FIG. 1 according to an embodiment of the present invention. 8 is a schematic diagram illustrating signal waveforms of the gate line and the sensing capacitor shown in FIG. 7 according to an embodiment of the present invention. FIG. 9 is a schematic circuit diagram illustrating the sensing unit shown in FIG. 1 according to another embodiment of the present invention. FIG. 10 is a schematic circuit diagram illustrating the sensing unit shown in FIG. 1 according to still another embodiment of the present invention. FIG. 11 is a schematic circuit diagram illustrating the sensing unit shown in FIG. 1 according to still another embodiment of the present invention. 12 is a schematic diagram illustrating signal waveforms of the gate line and the sensing capacitor shown in FIG. 11 according to an embodiment of the present invention. FIG. 13 is a schematic circuit diagram illustrating the sensing unit shown in FIG. 1 according to another embodiment of the present invention. 14 is a schematic cross-sectional view illustrating the sub-pixel shown in FIG. 13 according to an embodiment of the present invention. 15 is a schematic cross-sectional view illustrating the sub-pixel shown in FIG. 13 according to another embodiment of the present invention.

220:電晶體 220: Transistor

230:發光元件 230: Light-emitting element

DP:顯示部 DP: Display part

L1:第一光 L1: First Light

LP:光反射結構 LP: Light Reflective Structure

QD:量子點材料 QD: Quantum Dot Materials

SE:感測元件 SE: Sensing element

SP:感測部 SP: Sensing part

Claims (18)

一種顯示面板,包括多個子像素,該些子像素中的至少一子像素包括: 一顯示部; 一第一量子點材料,被配置以受來自於該顯示部的一第一光的一第一藍光成份的激發而產生一第二光;以及 一第一感測元件,被配置以感測該第二光; 其中該第一光的該第一藍光成份的一波長不同於該第二光的一波長,該第一量子點材料對該第一光的該第一藍光成份具有一鑑別性,以及該第一藍光成份與該第二光各自屬於不同的波長範圍。 A display panel includes a plurality of sub-pixels, at least one of the sub-pixels includes: a display part; a first quantum dot material configured to be excited by a first blue light component of a first light from the display portion to generate a second light; and a first sensing element configured to sense the second light; Wherein a wavelength of the first blue light component of the first light is different from a wavelength of the second light, the first quantum dot material has an identification of the first blue light component of the first light, and the first The blue light component and the second light each belong to different wavelength ranges. 如請求項1所述的顯示面板,其中該第一感測元件的位置在該第一光的一照射範圍外。The display panel of claim 1, wherein the position of the first sensing element is outside an irradiation range of the first light. 如請求項1所述的顯示面板,其中該至少一子像素更包括: 一光反射結構,適於改變該第一光的一部分的一方向; 其中該第一量子點材料被配置在該光反射結構與該第一感測元件之間,以及該第一量子點材料受該第一光的該部分的該第一藍光成份的激發而產生該第二光給該第一感測元件; 其中該第一量子點材料覆蓋該第一感測元件,該光反射結構包括一防光層。 The display panel of claim 1, wherein the at least one sub-pixel further comprises: a light reflecting structure adapted to change a direction of a part of the first light; The first quantum dot material is disposed between the light reflecting structure and the first sensing element, and the first quantum dot material is excited by the first blue light component of the part of the first light to generate the second light to the first sensing element; The first quantum dot material covers the first sensing element, and the light reflection structure includes a light-proof layer. 如請求項1所述的顯示面板,其中該至少一子像素更包括: 一遮光結構,配置在該顯示面板的一第一基板側,其中該遮光結構包括該第一量子點材料; 其中該第一量子點材料接收來自於一第一方向的該第一光的一部分,以及該第一量子點材料產生該第二光給在一第二方向的該第一感測元件。 The display panel of claim 1, wherein the at least one sub-pixel further comprises: a light-shielding structure disposed on a first substrate side of the display panel, wherein the light-shielding structure includes the first quantum dot material; The first quantum dot material receives a part of the first light from a first direction, and the first quantum dot material generates the second light to the first sensing element in a second direction. 如請求項1所述的顯示面板,其中該至少一子像素更包括: 一第二量子點材料,被配置以受來自於該顯示部的該第一光的一第二藍光成份的激發而產生一第三光;以及 一第二感測元件,被配置以感測該第三光; 其中該第一光的該第一藍光成份的一波長不同於該第二光的一波長,以及該第一光的該第二藍光成份的一波長不同於該第三光的一波長; 其中該第一量子點材料對該第一光的該第一藍光成份具有一鑑別性,該第二量子點材料對該第一光的該第二藍光成份具有一鑑別性,以及該第一藍光成份與該第二藍光成份各自屬於不同的波長範圍。 The display panel of claim 1, wherein the at least one sub-pixel further comprises: a second quantum dot material configured to be excited by a second blue light component of the first light from the display portion to generate a third light; and a second sensing element configured to sense the third light; wherein a wavelength of the first blue light component of the first light is different from a wavelength of the second light, and a wavelength of the second blue light component of the first light is different from a wavelength of the third light; Wherein the first quantum dot material has a discrimination against the first blue light component of the first light, the second quantum dot material has a discrimination against the second blue light component of the first light, and the first blue light The component and the second blue light component each belong to different wavelength ranges. 如請求項5所述的顯示面板,其中該第一感測元件的位置與該第二感測元件的位置均在該第一光的一照射範圍外。The display panel according to claim 5, wherein the position of the first sensing element and the position of the second sensing element are both outside an irradiation range of the first light. 如請求項1所述的顯示面板,其中該至少一子像素更包括: 一第二量子點材料,被配置以受一環境光的激發而產生一第三光;以及 一第二感測元件,被配置以感測該第三光。 The display panel of claim 1, wherein the at least one sub-pixel further comprises: a second quantum dot material configured to be excited by an ambient light to generate a third light; and A second sensing element configured to sense the third light. 一種顯示面板的操作方法,該顯示面板包括多個子像素,該些子像素中的至少一子像素包括一顯示部、一第一量子點材料以及一第一感測元件,該操作方法包括: 由來自於該顯示部的一第一光的一第一藍光成份激發該第一量子點材料而產生一第二光;以及 由該第一感測元件感測該第二光; 其中該第一光的該第一藍光成份的一波長不同於該第二光的一波長,該第一量子點材料對該第一光的該第一藍光成份具有一鑑別性,以及該第一藍光成份與該第二光各自屬於不同的波長範圍。 An operation method of a display panel, the display panel includes a plurality of sub-pixels, at least one sub-pixel of the sub-pixels includes a display portion, a first quantum dot material and a first sensing element, the operation method includes: Exciting the first quantum dot material by a first blue light component of a first light from the display portion to generate a second light; and sensing the second light by the first sensing element; Wherein a wavelength of the first blue light component of the first light is different from a wavelength of the second light, the first quantum dot material has an identification of the first blue light component of the first light, and the first The blue light component and the second light each belong to different wavelength ranges. 如請求項8所述的操作方法,其中該至少一子像素更包括一光反射結構,該光反射結構包括一防光層,該第一量子點材料覆蓋該第一感測元件,以及該操作方法更包括: 由該光反射結構改變該第一光的一部分的一方向,其中該第一量子點材料被配置在該光反射結構與該第一感測元件之間;以及 由該第一光的該部分的該第一藍光成份激發該第一量子點材料而產生該第二光給該第一感測元件。 The operation method of claim 8, wherein the at least one sub-pixel further includes a light reflection structure, the light reflection structure includes a light-proof layer, the first quantum dot material covers the first sensing element, and the operation Methods include: changing a direction of a portion of the first light by the light reflecting structure, wherein the first quantum dot material is disposed between the light reflecting structure and the first sensing element; and The first quantum dot material is excited by the first blue light component of the portion of the first light to generate the second light to the first sensing element. 如請求項8所述的操作方法,其中該至少一子像素更包括一遮光結構,該遮光結構包括該第一量子點材料,以及該操作方法更包括: 由該第一量子點材料接收來自於一第一方向的該第一光的一部分,以及 由該第一量子點材料產生該第二光給在一第二方向的該第一感測元件。 The operation method of claim 8, wherein the at least one sub-pixel further includes a light-shielding structure, the light-shielding structure includes the first quantum dot material, and the operation method further includes: receiving a portion of the first light from a first direction by the first quantum dot material, and The second light is generated by the first quantum dot material to the first sensing element in a second direction. 如請求項8所述的操作方法,其中該至少一子像素更包括一第二量子點材料以及一第二感測元件,以及該操作方法更包括: 由來自於該顯示部的該第一光的一第二藍光成份激發該第二量子點材料,以產生一第三光;以及 由該第二感測元件感測該第三光; 其中該第一光的該第一藍光成份的一波長不同於該第二光的一波長,該第一光的該第二藍光成份的一波長不同於該第三光的一波長,該第一量子點材料對該第一光的該第一藍光成份具有一鑑別性,該第二量子點材料對該第一光的該第二藍光成份具有一鑑別性,以及該第一藍光成份與該第二藍光成份各自屬於不同的波長範圍。 The operation method of claim 8, wherein the at least one sub-pixel further includes a second quantum dot material and a second sensing element, and the operation method further includes: Exciting the second quantum dot material by a second blue light component of the first light from the display portion to generate a third light; and sensing the third light by the second sensing element; Wherein a wavelength of the first blue light component of the first light is different from a wavelength of the second light, a wavelength of the second blue light component of the first light is different from a wavelength of the third light, the first light The quantum dot material has a discrimination for the first blue light component of the first light, the second quantum dot material has a discrimination for the second blue light component of the first light, and the first blue light component is different from the second blue light component. The two blue light components each belong to different wavelength ranges. 如請求項8所述的操作方法,其中該至少一子像素更包括一第二量子點材料以及一第二感測元件,以及該操作方法更包括: 由一環境光激發該第二量子點材料,以產生一第三光;以及 由該第二感測元件感測該第三光。 The operation method of claim 8, wherein the at least one sub-pixel further includes a second quantum dot material and a second sensing element, and the operation method further includes: exciting the second quantum dot material by an ambient light to generate a third light; and The third light is sensed by the second sensing element. 一種顯示面板的子像素,包括: 一顯示部;以及 一感測部,包括一第一感測電容、一第一量子點材料以及一第一感測元件,其中該第一感測電容的一第一端耦接至該第一感測元件的一第一端,該第一感測元件的一第二端耦接至該顯示面板的一第一感測線,該第一量子點材料被配置以受來自於該顯示部的一第一光的一第一藍光成份的激發而產生一第二光,該第一感測元件被配置以感測該第二光,以及該第二光影響該第一感測元件的一第一漏電流; 其中,在一重置期間,該第一感測電容被充電;在一感測期間,該第一感測元件基於被該第二光影響的該第一漏電流而洩漏該第一感測電容的電荷;以及在一讀出期間,該第一感測元件為導通。 A sub-pixel of a display panel, comprising: a display portion; and A sensing portion includes a first sensing capacitor, a first quantum dot material and a first sensing element, wherein a first end of the first sensing capacitor is coupled to a first end of the first sensing element a first end, a second end of the first sensing element is coupled to a first sensing line of the display panel, the first quantum dot material is configured to receive a first light from the display part The excitation of the first blue light component generates a second light, the first sensing element is configured to sense the second light, and the second light affects a first leakage current of the first sensing element; Wherein, during a reset period, the first sensing capacitor is charged; during a sensing period, the first sensing element leaks the first sensing capacitor based on the first leakage current affected by the second light and during a readout period, the first sensing element is turned on. 如請求項13所述的子像素,其中該顯示部的一控制端與該第一感測元件的一控制端共同耦接至該顯示面板的一第一閘極線,以及該感測部更包括: 一重置開關,具有一第一端耦接至該第一感測電容的該第一端,其中該第一感測電容的一第二端耦接至一參考電壓,該重置開關的一第二端與該顯示部的一資料端共同耦接至該顯示面板的一第一資料線,以及該該重置開關的一控制端耦接至該顯示面板的一其他子像素的一第二閘極線; 其中,在該重置期間,該重置開關為導通以充電該第一感測電容,以及該第一感測元件為截止;在該感測期間,該重置開關與該第一感測元件為截止;以及在該讀出期間,該重置開關為截止。 The sub-pixel of claim 13, wherein a control end of the display portion and a control end of the first sensing element are jointly coupled to a first gate line of the display panel, and the sensing portion is further include: a reset switch having a first end coupled to the first end of the first sensing capacitor, wherein a second end of the first sensing capacitor is coupled to a reference voltage, a reset switch The second terminal and a data terminal of the display portion are coupled to a first data line of the display panel, and a control terminal of the reset switch is coupled to a second terminal of another sub-pixel of the display panel gate line; Wherein, during the reset period, the reset switch is turned on to charge the first sensing capacitor, and the first sensing element is turned off; during the sensing period, the reset switch and the first sensing element is turned off; and during the readout period, the reset switch is turned off. 如請求項13所述的子像素,其中該顯示部的一控制端耦接至該顯示面板的一閘極線,該顯示部的一資料端耦接至該顯示面板的一資料線,該第一感測元件的一控制端耦接至該顯示面板的一讀出控制線,該第一感測電容的該第一端還耦接至該顯示面板的一重置線,以及該第一感測電容的一第二端耦接至一參考電壓;其中,在該重置期間,該第一感測電容被該重置線充電,以及該第一感測元件為截止;在該感測期間,該第一感測電容未被該重置線充電,以及該第一感測元件為截止;以及在該讀出期間,該第一感測電容未被該重置線充電。The sub-pixel of claim 13, wherein a control terminal of the display portion is coupled to a gate line of the display panel, a data terminal of the display portion is coupled to a data line of the display panel, and the first A control end of a sensing element is coupled to a readout control line of the display panel, the first end of the first sensing capacitor is further coupled to a reset line of the display panel, and the first sense A second end of the sensing capacitor is coupled to a reference voltage; wherein, during the reset period, the first sensing capacitor is charged by the reset line, and the first sensing element is turned off; during the sensing period , the first sensing capacitor is not charged by the reset line, and the first sensing element is turned off; and during the readout period, the first sensing capacitor is not charged by the reset line. 如請求項13所述的子像素,其中該顯示部的一控制端與該第一感測元件的一控制端共同耦接至該顯示面板的一閘極線,該顯示部的一資料端耦接至該顯示面板的一資料線,該第一感測電容的該第一端還耦接至該顯示面板的一重置線,以及該第一感測電容的一第二端耦接至一參考電壓。The sub-pixel of claim 13, wherein a control terminal of the display portion and a control terminal of the first sensing element are jointly coupled to a gate line of the display panel, and a data terminal of the display portion is coupled to Connected to a data line of the display panel, the first end of the first sensing capacitor is also coupled to a reset line of the display panel, and a second end of the first sensing capacitor is coupled to a reference voltage. 如請求項13所述的子像素,其中該感測部更包括一第二感測電容、一第二量子點材料以及一第二感測元件,該第二感測電容的一第一端耦接至該第二感測元件的一第一端,該第二感測元件的一第二端耦接至該顯示面板的一第二感測線,該第二量子點材料被配置以受來自於該顯示部的該第一光的一第二藍光成份的激發而產生一第三光,該第二感測元件被配置以感測該第三光,以及該第三光影響該第二感測元件的一第二漏電流,其中該第一光的該第一藍光成份的一波長不同於該第二光的一波長,該第一光的該第二藍光成份的一波長不同於該第三光的一波長,該第一量子點材料對該第一光的該第一藍光成份具有一鑑別性,該第二量子點材料對該第一光的該第二藍光成份具有一鑑別性,以及該第一藍光成份與該第二藍光成份各自屬於不同的波長範圍。The sub-pixel of claim 13, wherein the sensing portion further comprises a second sensing capacitor, a second quantum dot material and a second sensing element, a first end of the second sensing capacitor is coupled to connected to a first end of the second sensing element, a second end of the second sensing element is coupled to a second sensing line of the display panel, the second quantum dot material is configured to receive The excitation of a second blue light component of the first light of the display portion generates a third light, the second sensing element is configured to sense the third light, and the third light affects the second sensing A second leakage current of the device, wherein a wavelength of the first blue light component of the first light is different from a wavelength of the second light, and a wavelength of the second blue light component of the first light is different from the third a wavelength of light, the first quantum dot material has a discrimination against the first blue light component of the first light, the second quantum dot material has a discrimination against the second blue light component of the first light, and The first blue light component and the second blue light component belong to different wavelength ranges respectively. 如請求項17所述的子像素,其中該顯示部的一控制端、該第一感測元件的一控制端與該第二感測元件的一控制端共同耦接至該顯示面板的一閘極線,該顯示部的一資料端耦接至該顯示面板的一資料線,該第一感測電容的該第一端與該第二感測電容的該第一端還耦接至該顯示面板的一重置線,以及該第一感測電容的一第二端與該第二感測電容的一第二端耦接至一參考電壓;其中,在該重置期間,該第一感測電容與該第二感測電容被該重置線充電,以及該第一感測元件與該第二感測元件為截止;在該感測期間,該第一感測電容與該第二感測電容未被該重置線充電,該第一感測元件與該第二感測元件為截止,以及該第二感測元件基於被該第三光影響的該第二漏電流而洩漏該第二感測電容的電荷;以及在該讀出期間,該第一感測電容與該第二感測電容未被該重置線充電,以及該第二感測元件為導通。The sub-pixel of claim 17, wherein a control end of the display portion, a control end of the first sensing element and a control end of the second sensing element are jointly coupled to a gate of the display panel pole line, a data end of the display part is coupled to a data line of the display panel, the first end of the first sensing capacitor and the first end of the second sensing capacitor are also coupled to the display A reset line of the panel, and a second end of the first sensing capacitor and a second end of the second sensing capacitor are coupled to a reference voltage; wherein, during the reset period, the first sensing The sensing capacitor and the second sensing capacitor are charged by the reset line, and the first sensing element and the second sensing element are turned off; during the sensing period, the first sensing capacitor and the second sensing element The sensing capacitor is not charged by the reset line, the first sensing element and the second sensing element are turned off, and the second sensing element leaks the first sensing element based on the second leakage current affected by the third light The charges of two sensing capacitors; and during the readout period, the first sensing capacitor and the second sensing capacitor are not charged by the reset line, and the second sensing element is turned on.
TW110115447A 2021-04-28 2021-04-28 Display panel, operation method thereof and sub-pixel TWI763464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110115447A TWI763464B (en) 2021-04-28 2021-04-28 Display panel, operation method thereof and sub-pixel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110115447A TWI763464B (en) 2021-04-28 2021-04-28 Display panel, operation method thereof and sub-pixel

Publications (2)

Publication Number Publication Date
TWI763464B true TWI763464B (en) 2022-05-01
TW202243274A TW202243274A (en) 2022-11-01

Family

ID=82594177

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115447A TWI763464B (en) 2021-04-28 2021-04-28 Display panel, operation method thereof and sub-pixel

Country Status (1)

Country Link
TW (1) TWI763464B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604085A (en) * 2009-07-22 2009-12-16 友达光电股份有限公司 Two-d display panel, ultraviolet light transducer and manufacture method thereof
CN108376695A (en) * 2018-02-05 2018-08-07 惠科股份有限公司 Display panel and display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101604085A (en) * 2009-07-22 2009-12-16 友达光电股份有限公司 Two-d display panel, ultraviolet light transducer and manufacture method thereof
CN108376695A (en) * 2018-02-05 2018-08-07 惠科股份有限公司 Display panel and display device

Also Published As

Publication number Publication date
TW202243274A (en) 2022-11-01

Similar Documents

Publication Publication Date Title
US8810553B2 (en) Liquid crystal display
KR100857639B1 (en) Display
JP4590340B2 (en) Liquid crystal display device and image sensing method using liquid crystal display device
KR101189268B1 (en) Thin film array panel and driving apparatus for liquid crystal display and liquid crystal display including the same
US7876037B2 (en) Organic electroluminescence device having input function and electronic apparatus
KR100956191B1 (en) Liquid crystal display, electronic device, and method for controlling brightness of illumination unit of liquid crystal display
US20080062343A1 (en) Light sensitive display
JP2007310628A (en) Image display
JP5106784B2 (en) Electro-optical device and electronic apparatus
KR20070072008A (en) Liquid crystal display device and method for driving the same
JP2009098599A (en) Display unit
JP2011028058A (en) Display device and electronic apparatus
JP2007140106A (en) Display apparatus
TWI763464B (en) Display panel, operation method thereof and sub-pixel
JP2007304519A (en) Liquid crystal display device
CN115331638B (en) Display panel, operation method thereof and sub-pixel
KR100989334B1 (en) Liquid crystal display and method for manufacturing the same
JP2009244345A (en) Electronic paper
JP4940733B2 (en) Display device
JP2011107454A (en) Display device
TWI507946B (en) Touch sensing panel and sensing circuit therein
KR20090005452A (en) Lcd for image-scan and method of fabricating the same
US20070229484A1 (en) Electro-optical device and electronic apparatus
JP2007102025A (en) Liquid crystal display device
CN110554525A (en) display panel and display device