TWI763281B - Method for preparing zninp/zns quantum dots with narrow full width at half maximum - Google Patents

Method for preparing zninp/zns quantum dots with narrow full width at half maximum Download PDF

Info

Publication number
TWI763281B
TWI763281B TW110103091A TW110103091A TWI763281B TW I763281 B TWI763281 B TW I763281B TW 110103091 A TW110103091 A TW 110103091A TW 110103091 A TW110103091 A TW 110103091A TW I763281 B TWI763281 B TW I763281B
Authority
TW
Taiwan
Prior art keywords
precursor
zninp
zinc
indium
quantum dots
Prior art date
Application number
TW110103091A
Other languages
Chinese (zh)
Other versions
TW202229158A (en
Inventor
鍾淑茹
李姿誼
Original Assignee
國立虎尾科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立虎尾科技大學 filed Critical 國立虎尾科技大學
Priority to TW110103091A priority Critical patent/TWI763281B/en
Application granted granted Critical
Publication of TWI763281B publication Critical patent/TWI763281B/en
Publication of TW202229158A publication Critical patent/TW202229158A/en

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

The present invention provides a method for preparing quantum dots. The method comprises: mixing a first precursor, a complexing agent and a capping agent to a mixture, and heating the mixture to form a complex reaction product; rapidly heating the complex reaction product to a nucleation reaction temperature, and adding a second precursor to the complex reaction product in order to conduct a nucleation reaction to form a nucleation reaction product; adding a third precursor to the nucleation reaction product and conducting a shell-forming reaction at a shell-forming temperature so as to obtain ZnInP/ZnS quantum dots; wherein the shell-forming temperature is lower or equal to the nucleation reaction temperature; the first precursor comprises an indium precursor and a zinc precursor; the second precursor comprises a phosphorus precursor, and the third precursor comprises a sulfur precursor.

Description

窄半高寬 ZnInP/ZnS 量子點的製備方法Preparation method of narrow half-width ZnInP/ZnS quantum dots

本發明有關於一種量子點的製備方法,且特別關於一種窄半高寬ZnInP/ZnS量子點的製備方法。The present invention relates to a preparation method of quantum dots, and particularly to a preparation method of narrow half-width ZnInP/ZnS quantum dots.

早期量子點材料的開發及應用大多以鎘基核殼類為主,但因鎘及鎘化物為毒化物,隨著環保意識抬頭,如今量子點研究方向已逐漸朝無鎘量子點發展。而磷化銦 (InP) 是其中候選材料之一,但磷化銦量子點本身易氧化而導致量子效率偏低且半高寬 (Full width at half maximum, FWHM) 偏高等缺點,需藉由殼層 (ZnS) 包覆調控放射波長及提升量子效率,並改善半高寬過寬問題,以利後續應用於顯示器中的白光背光源。The development and application of early quantum dot materials are mostly based on cadmium-based core-shell materials, but because cadmium and cadmium compounds are poisons, with the rising awareness of environmental protection, the research direction of quantum dots has gradually developed towards cadmium-free quantum dots. Indium phosphide (InP) is one of the candidate materials, but indium phosphide quantum dots are easily oxidized, resulting in low quantum efficiency and high full width at half maximum (FWHM). Layer (ZnS) coating regulates emission wavelength and improves quantum efficiency, and improves the problem of over-width at half maximum, so as to facilitate the subsequent application of white light backlight in displays.

光電材料具有不同的特性;此外,將光電材料和其他功能處理劑進行量子點加工,更利於調整及優化光電材料的特性,使利用光電材料所製造之發光元件可應用於固態照明 (solid-state lighting,SSL)、發光二極體 (light-emitting diode,LED) 產品、液晶顯示器 (liquid crystal display,LCD) 產品等領域中。其中以顯示器來說,最初的顯示器為陰極射線管 (CRT),後續被液晶顯示器 (LCD)取代,隨著科技的發展,白光發光二極體 (White light-emitting diode, WLED) 已逐漸取代白熾燈與螢光燈,且被廣泛應用於背光源顯示器中。市售 WLED 利用藍光與紫光晶片激發一種或多種不同顏色之螢光粉製備而成。由於螢光粉的半高寬較寬,色域面積始終無法突破美國國家電視系統委員會 (NTSC) 制定之標準面積的100 %;然而量子點因具有較窄半高寬與波長可調性等優點,可作為替代螢光粉成為顯示器背光源之材料。Optoelectronic materials have different properties; in addition, quantum dot processing of optoelectronic materials and other functional treatment agents is more conducive to adjusting and optimizing the properties of optoelectronic materials, so that light-emitting elements made of optoelectronic materials can be applied to solid-state lighting (solid-state lighting). lighting, SSL), light-emitting diode (light-emitting diode, LED) products, liquid crystal display (liquid crystal display, LCD) products and other fields. For displays, the original displays were cathode ray tubes (CRTs), which were later replaced by liquid crystal displays (LCDs). With the development of technology, white light-emitting diodes (WLEDs) have gradually replaced incandescent displays. lamps and fluorescent lamps, and are widely used in backlight displays. Commercially available WLEDs are fabricated by using blue and violet chips to excite one or more phosphors of different colors. Due to the wide half-height width of phosphors, the color gamut area cannot exceed 100% of the standard area set by the National Television System Committee (NTSC); however, quantum dots have the advantages of narrow half-height width and wavelength tunability. , can be used as a substitute for fluorescent powder to become the material of display backlight.

按,習知量子點之製備方法,如美國發明專利申請號第US10767112B2號所揭露之「Methods of producing metal sulfides, metal selenides, and metal sulfides/selenides having controlled architectures using kinetic control」,其特徵在於以氧化鎘為材料,在錯合劑油酸作用下與包覆劑十八烯(ODE)於240℃的高溫下進行錯合反應,並在急遽降溫至70℃後,再加入三辛基膦和十八烷基胺,待前述混合物穩定後再升溫至270℃,以熱注射法加入三丁基膦硒化物並再次快速降溫至250℃生成CdSe晶核,最後降溫至80℃以下以正己烷沖提CdSe晶核並避光保存;前述生成之CdSe晶核再加入十八烷基胺和1-十八碳烯並脫氣加熱至240℃反應,接著交替添加油酸鎘和N-正己基-N'-二正辛基-碘脲以形成CdS之殼層,獲得CdSe/CdS;最後,前述CdSe/CdS交替添加油酸鋅和N-正己基-N',N'-二正辛基硫脲以形成ZnS之殼層,獲得CdSe/CdS/ZnS量子點;然,其量子效率 (Quantum yield) 不超過77%且成核/成殼反應交錯,操作手法複雜,需要更加精密的設施以控制製程條件,從而提高生產成本。According to, the preparation method of conventional quantum dots, such as "Methods of producing metal sulfides, metal selenides, and metal sulfides/selenides having controlled architectures using kinetic control" disclosed in US Patent Application No. US10767112B2, is characterized by oxidation Cadmium is used as the material. Under the action of the complexing agent oleic acid, the complexing reaction is carried out with the coating agent octadecene (ODE) at a high temperature of 240 °C. Alkylamine, after the mixture is stabilized, the temperature is raised to 270°C, the tributylphosphine selenide is added by hot injection method, and the temperature is rapidly lowered to 250°C again to generate CdSe crystal nuclei, and finally the temperature is lowered to below 80°C and the CdSe is eluted with n-hexane. The crystal nucleus is stored in the dark; the CdSe crystal nucleus generated above is then added with octadecylamine and 1-octadecene, degassed and heated to 240 ° C for reaction, and then alternately added cadmium oleate and N-n-hexyl-N' -Di-n-octyl-iodourea to form the shell of CdS to obtain CdSe/CdS; finally, the aforementioned CdSe/CdS was alternately added with zinc oleate and N-n-hexyl-N', N'-di-n-octylthiourea to Form the shell of ZnS to obtain CdSe/CdS/ZnS quantum dots; however, its quantum yield is not more than 77% and the nucleation/shell reactions are interleaved, the operation method is complicated, and more sophisticated facilities are required to control the process conditions , thereby increasing production costs.

按,習知量子點之製備方法,如美國發明專利申請號第US10581008B2號所揭露之「Method of manufacturing quantum dot having tunable and narrow light emission wavelength for achieving high color purity and a method of manufacturing film」,其特徵在於以醋酸銦及醋酸鋅為材料,在錯合劑棕櫚酸作用下進行錯合反應生成錯合反應產物,其錯合反應時間長達12小時;前述錯合反應產物降溫至室溫並注射三(三甲基甲矽烷基)膦 (C 9H 27PSi 3, 3(TMS)P) 和三辛基膦 (C 24H 51P, TOP),再升溫至305℃進行成核反應以生成成核反應產物;再將TOP-Se注入前述成核反應產物,並在300℃下與包覆劑ODE及硬脂酸鋅反應,產生量子點 In(Zn)P/ZnSe;前述量子點 In(Zn)P/ZnSe 更進一步與油酸鋅混合並升溫至210℃,最後加入1-DDT於260℃度下進行成殼反應以生成量子點 In(Zn)P/ZnSe/ZnS;然,其量子效率不超過75%,錯合反應時間太長,且成核反應溫度及成殼反應溫度均超過260℃,從而提高時間與生產設備成本。 According to the conventional method for preparing quantum dots, such as "Method of manufacturing quantum dot having tunable and narrow light emission wavelength for achieving high color purity and a method of manufacturing film" disclosed in US Patent Application No. US10581008B2, its features are: It is to use indium acetate and zinc acetate as materials, under the action of complexing agent palmitic acid, carry out a complexing reaction to generate a complexing reaction product, and its complexing reaction time is up to 12 hours; The aforementioned complexing reaction product is cooled to room temperature and injected with three ( Trimethylsilyl)phosphine (C 9 H 27 PSi 3 , 3(TMS)P) and trioctylphosphine (C 24 H 51 P, TOP), and then heated to 305°C for nucleation reaction to generate nucleation reaction products ; Then inject TOP-Se into the aforementioned nucleation reaction product, and react with the coating agent ODE and zinc stearate at 300 ° C to produce quantum dots In(Zn)P/ZnSe; The aforementioned quantum dots In(Zn)P/ZnSe It was further mixed with zinc oleate and heated to 210°C. Finally, 1-DDT was added to form a shell at 260°C to form quantum dots In(Zn)P/ZnSe/ZnS; however, the quantum efficiency did not exceed 75%. , the complexation reaction time is too long, and the nucleation reaction temperature and the shell formation reaction temperature both exceed 260 ° C, thereby increasing the time and the cost of production equipment.

按,習知量子點之製備方法,如中國發明專利申請號第CN110746958A號所揭露之「量子點、其製造方法、以及包括其的組合物、複合物和電子設備」,其特徵在於以醋酸銦及醋酸鋅為材料,在錯合劑棕櫚酸作用下與包覆劑1-十八碳烯加熱至錯合反應溫度,反應1小時以生成錯合反應產物;接著,前述錯合反應產物加熱至280℃後,快速地注入三(三甲基甲矽烷基)膦和三辛基膦的混合溶液並進行20分鐘的成核反應以生成成核反應產物;將前述成核反應產物快速冷卻至室溫並添加丙酮,將混合物離心以獲得沉澱物,並以甲苯打散前述沉澱物,即獲得量子點InZnP;此處揭露之技術雖在製程上大為簡化,但其量子效率僅約80%,亦非為優良之量子點生產技術。According to, the preparation method of conventional quantum dots, such as "quantum dots, their manufacturing methods, and compositions, composites and electronic devices including the same" disclosed in Chinese Patent Application No. CN110746958A, is characterized in that indium acetate is used. And zinc acetate as material, under the action of complexing agent palmitic acid and coating agent 1-octadecene heated to complexing reaction temperature, reacted for 1 hour to generate complexing reaction product; then, the aforementioned complexing reaction product was heated to 280 After ℃, the mixed solution of tris(trimethylsilyl)phosphine and trioctylphosphine was rapidly injected and the nucleation reaction was carried out for 20 minutes to generate the nucleation reaction product; the aforementioned nucleation reaction product was rapidly cooled to room temperature and acetone was added , the mixture is centrifuged to obtain a precipitate, and the aforementioned precipitate is dispersed with toluene to obtain the quantum dot InZnP; although the technology disclosed here is greatly simplified in the process, its quantum efficiency is only about 80%, which is not excellent Quantum dot production technology.

量子點 (quantum dot) 為零維半導體奈米光電材料,通過對該奈米光電材料施加一定的電場或電壓,電子受到能量激發後與電洞再結合,即會發出特定頻率的光,因具備高效率、尺寸小、波長可調等特性,故由量子點所製造之白光元件已被廣泛應用於固態照明與顯示器背光源等領域,並取代由螢光粉所製造之顯示器背光元件。Quantum dot (quantum dot) is a zero-dimensional semiconductor nano-photoelectric material. By applying a certain electric field or voltage to the nano-photoelectric material, the electrons are excited by the energy and then recombine with the holes, which will emit light of a specific frequency. High efficiency, small size, adjustable wavelength and other characteristics, so white light components made of quantum dots have been widely used in solid-state lighting and display backlights and other fields, and replaced display backlight components made of phosphors.

然而,現有已開發技術如InP核心量子點之量子效率僅約為1 %,係肇因於製備時核心量子點易受光降解或表面氧化;為有效提升量子效率,透過現階段技術以能隙較大的半導體 (如ZnS) 包覆於量子點表面以鈍化其表面缺陷。此法除了能有效提升量子效率,亦同時提升光及化學穩定性。前述量子點之製造方法雖能有效提升量子效率,但所製得之半高寬偏寬,約為70 nm,且製備成白光元件後其NTSC色域依然無法突破100 %,故實有必要開發其他 InP/ZnS 量子點之製造方法,以改善半高寬過寬所導致色域面積太小的問題。However, the quantum efficiency of existing developed technologies such as InP core quantum dots is only about 1%, which is due to the fact that the core quantum dots are susceptible to photodegradation or surface oxidation during preparation. A large semiconductor (eg, ZnS) coats the surface of the quantum dots to passivate their surface defects. This method can not only effectively improve the quantum efficiency, but also improve the optical and chemical stability. Although the above-mentioned manufacturing method of quantum dots can effectively improve the quantum efficiency, the obtained half-height width is about 70 nm, and the NTSC color gamut still cannot exceed 100% after being prepared into a white light element, so it is necessary to develop other The manufacturing method of InP/ZnS quantum dots can improve the problem of too small color gamut area caused by too wide half-height width.

鑑於上述技術缺點,本發明之目的在於開發一種能有效降低ZnInP/ZnS量子點 半高寬之方法,其能替代前述現有技術存在半高寬太寬所導致NTSC色域面積太小的問題,從而提升ZnInP/ZnS量子點 所製造之白光元件的應用領域和市場價值。In view of the above-mentioned technical shortcomings, the purpose of the present invention is to develop a method that can effectively reduce the full width at half maximum of ZnInP/ZnS quantum dots, which can replace the problem that the NTSC color gamut area is too small due to the wide half width of the prior art. Improve the application field and market value of white light components made by ZnInP/ZnS quantum dots.

是以,本發明提供一種量子點的製備方法,包含:將一第一前驅物、一錯合劑及一包覆劑混合成一混合溶液,加熱該混合溶液至一錯合反應溫度以進行錯合反應,獲得一錯合反應產物,其中該第一前驅物包含銦前驅物、鋅前驅物;快速加熱該錯合反應產物至一成核反應溫度,再加入一第二前驅物並反應10秒~30分鐘以獲得一成核反應產物,其中該第二前驅物包含一磷前驅物;及將該成核反應產物中加入一第三前驅物並於一成殼反應溫度下反應1-8小時,即得到ZnInP/ZnS量子點,其中該第三前驅物包含一硫前驅物,該成殼反應溫度小於或等於該成核反應溫度。Therefore, the present invention provides a method for preparing quantum dots, comprising: mixing a first precursor, a complexing agent and a coating agent into a mixed solution, and heating the mixed solution to a complexing reaction temperature to perform complexing reaction , to obtain a complex reaction product, wherein the first precursor includes an indium precursor and a zinc precursor; rapidly heat the complex reaction product to a nucleation reaction temperature, then add a second precursor and react for 10 seconds to 30 minutes To obtain a nucleation reaction product, wherein the second precursor comprises a phosphorus precursor; and add a third precursor to the nucleation reaction product and react at a shell-forming reaction temperature for 1-8 hours to obtain ZnInP/ ZnS quantum dots, wherein the third precursor comprises a sulfur precursor, and the shelling reaction temperature is less than or equal to the nucleation reaction temperature.

較佳者,該錯合反應溫度為100~120℃;該成核反應溫度為200~260℃;該成殼反應溫度為200~260℃。Preferably, the complexation reaction temperature is 100-120°C; the nucleation reaction temperature is 200-260°C; the shell-forming reaction temperature is 200-260°C.

較佳者,該第一前驅物之銦元素與鋅元素之莫耳比為1:1~1:4。Preferably, the molar ratio of indium element and zinc element of the first precursor is 1:1-1:4.

較佳者,該銦前驅物包含鹵化銦、有機酸銦化合物或IIIA~VA族無機銦化合物;較佳者,該銦前驅物為氯化銦 (InCl 3);該鋅前驅物包含鹵化鋅、有機酸鋅化合物或IIA~VIA族無機鋅化合物;較佳者,該鋅前驅物為溴化鋅 (ZnBr 2)及碘化鋅 (ZnI 2)。 Preferably, the indium precursor comprises indium halide, organic acid indium compound or IIIA~VA inorganic indium compound; preferably, the indium precursor is indium chloride (InCl 3 ); the zinc precursor comprises zinc halide, Organic acid zinc compounds or IIA-VIA inorganic zinc compounds; preferably, the zinc precursors are zinc bromide (ZnBr 2 ) and zinc iodide (ZnI 2 ).

較佳者,該包覆劑包含具有C 8-C 22長碳鏈之有機化合物,其官能基包含烴基(CH 3)、胺基(NH 2)或芳香烴基;該錯合劑包含飽和脂肪酸;該磷前驅物包含有機磷化合物;該硫前驅物包含硫粉或硫醇類化合物。 Preferably, the capping agent comprises an organic compound with a C 8 -C 22 long carbon chain, and its functional group comprises a hydrocarbon group (CH 3 ), an amine group (NH 2 ) or an aromatic hydrocarbon group; the complexing agent comprises a saturated fatty acid; the The phosphorus precursor includes an organic phosphorus compound; the sulfur precursor includes a sulfur powder or a thiol compound.

較佳者,該製備方法更進一步包含一純化處理,其步驟包括:將該ZnInP/ZnS量子點 急速冷凍並加入無水乙醇以去除多餘之包覆劑,獲得一中止反應產物;將該中止反應產物進行超音波震盪處理並離心以獲得一沉澱物;抽乾該沉澱物;以正己烷打散該沉澱物,即獲得一純化之ZnInP/ZnS量子點。Preferably, the preparation method further comprises a purification treatment, the steps of which include: rapidly freezing the ZnInP/ZnS quantum dots and adding absolute ethanol to remove excess coating agent to obtain a stopped reaction product; the stopped reaction product Perform ultrasonic vibration treatment and centrifugation to obtain a precipitate; drain the precipitate; disperse the precipitate with n-hexane to obtain a purified ZnInP/ZnS quantum dot.

依據本發明所提供量子點之製備方法,藉由調控成核反應溫度及成殼反應溫度的反應時間,可有效降低量子點的半高寬,且製備之量子點其量子效率能突破100%,故能實質達到增加元件NTSC的色域面積,從而克服前述現有技術存在半高寬過寬與色域面積太小的問題。據此,相較於前述現有技術之製造方法所造成之寬廣半高寬,本發明量子點之製備方法確實具有能縮短半高寬之優點。According to the preparation method of quantum dots provided by the present invention, by regulating the reaction time of the nucleation reaction temperature and the shelling reaction temperature, the full width at half maximum of the quantum dots can be effectively reduced, and the quantum efficiency of the prepared quantum dots can exceed 100%, so The color gamut area of the component NTSC can be substantially increased, thereby overcoming the problems of the above-mentioned prior art that the width at half maximum is too wide and the color gamut area is too small. Accordingly, compared with the wide half-height width caused by the above-mentioned manufacturing method of the prior art, the manufacturing method of the quantum dots of the present invention has the advantage of being able to shorten the half-height width.

請參閱圖1,為一流程示意圖,說明本發明所提供量子點之製備方法100,但不以此為限。Please refer to FIG. 1 , which is a schematic flowchart illustrating a method 100 for preparing quantum dots provided by the present invention, but not limited thereto.

如步驟101所示, 將一第一前驅物、一錯合劑及一包覆劑混合成一混合溶液,加熱該混合溶液至一錯合反應溫度以進行錯合反應,獲得一錯合反應產物,其中該第一前驅物包含銦前驅物、鋅前驅物;該錯合劑為飽和脂肪酸,其包含月桂酸(lauric acid)、 棕櫚酸(palmitic acid)、油酸(oleic acid)、硬脂酸(stearic acid)、肉豆蔻酸(myristic acid)、反油酸(elaidic acid)、花生酸(eicosanoic acid)、二十一烷酸(heneicosanoic acid)、二十三碳酸(tricosanoic acid)、二十二烷酸(docosanoic acid)、二十四烷酸(tetracosanoic acid)、蠟酸(hexacosanoic acid)、二十七碳酸(heptacosanoic acid)、二十八酸(octacosanoic acid)或順式-13-二十二碳烯酸(cis-13-docosenoic acid),較佳者,該錯合劑為肉豆蔻酸(myristic acid);該包覆劑為具有C 8-C 22長碳鏈之有機化合物,其官能基包含烴基(CH 3)、胺基(NH 2)或芳香烴基,其包含辛胺(octylamine)、癸胺(decylamine)、二癸胺(didecylamine)、十三烷胺(tridecylamine)、十四胺(tetradecylamine)、十五胺(pentadecylamine)、十六胺(hexadecylamine)、十八烯(octadecene)、十八烷基胺(octadecylamine)、十二胺(dodecylamine)或油胺(oleylamine),較佳者,該包覆劑為十八烯(octadecene)及油胺(oleylamine);該錯合反應溫度為100~120℃,較佳者,該錯合反應溫度為105~115℃,更佳者,該錯合反應溫度為110℃;該銦前驅物為鹵化銦、有機酸銦化合物或IIIA~VA族無機銦化合物,其包含氟化銦(InF 3)、氯化銦 (InCl 3)、溴化銦(InBr 3)、碘化銦(InI 3)、醋酸銦(In(CH 3COO) 3)、磷化銦(InP)、砷化銦(InAs)、銻化銦(InSb)、氮化銦(InN)、磷砷化銦(InPAs)、磷銻化銦(InPSb)、磷氮化銦(InPN)、砷氮化銦(InAsN)、銻氮化銦(InSbN)、磷化銦鎵(InGaP)、砷化銦鎵(InGaAs)、銻化銦鎵(InGaSb)、氮化銦鎵(InGaN)、砷氮化銦(InAsN)、銻氮化銦(InSbN)、磷化鋁銦(AlInP)、砷化鋁銦(AlInAs)、銻化鋁銦(AlInSb)、氮化鋁銦(AlInN)、磷砷化鎵銦(GaInPAs)、砷化鎵銦鋁(GaInAlAs)、磷氮化鎵銦(GaInPN)、砷氮化鎵銦(GaInAsN)、氮化鎵銦鋁(GaInAlN)、磷銻化鎵銦(GaInPSb)、磷氮化鎵銦(GaInPN)、銻氮化鎵銦(GaInSbN)、磷砷化銦鋁(InAlPAs)、磷氮化銦鋁(InAlPN)、磷砷氮化銦(InPAsN)、氮銻化銦鋁(InAlSbN)、磷銻氮化銦(InPSbN)、砷銻氮化銦(InAsSbN)或磷銻化銦鋁(InAlPSb),較佳者,該銦前驅物為氯化銦(InCl 3);該鋅前驅物為鹵化鋅、有機酸鋅化合物或IIA~VIA族無機鋅化合物,其包含氟化鋅(ZnF 2)、氯化鋅(ZnCl 2)、溴化鋅 (ZnBr 2)、碘化鋅 (ZnI 2)、二乙基二硫代氨基甲酸鋅([(C 2H 5) 2NCS 2] 2Zn)、醋酸鋅(Zn(CH 3COO) 2)、硬脂酸鋅(Zn(C 17H 35COO) 2、碳酸鋅(ZnCO 3)、氧化鋅(ZnO)、硫化鎘鋅(CdZnS)、硒化鎘鋅(CdZnSe)、碲化鎘鋅(CdZnTe)、硒硫化鋅(ZnSeS)、硒碲化鋅(ZnSeTe)、硫碲化鋅(ZnSTe)、硫化汞鋅(HgZnS)、硒化汞鋅(HgZnSe)、氧化鎘鋅(CdZnO)、硒酸鋅(ZnSeO)、碲酸鋅(ZnTeO)、硫酸鋅(ZnSO)、硒硫化鎘鋅(CdZnSeS)、硒碲化鎘鋅(CdZnSeTe)、硫碲化鎘鋅(CdZnSTe)、硒硫化汞鋅(HgZnSeS)、硒碲化汞鋅(HgZnSeTe)、硫碲化汞鋅(HgZnSTe)、硒酸鎘鋅(CdZnSeO)、碲酸鎘鋅(CdZnTeO)或硫酸鎘鋅(CdZnSO),較佳者,該鋅前驅物為溴化鋅 (ZnBr 2)及碘化鋅 (ZnI 2);該第一前驅物之銦元素與鋅元素之莫耳比為1:1~1:4,較佳者,該第一前驅物之銦元素與鋅元素之莫耳比為1:1.5~1:3.5,更佳者,該第一前驅物之銦元素與鋅元素之莫耳比為1:3。 As shown in step 101, a first precursor, a complexing agent and a coating agent are mixed into a mixed solution, and the mixed solution is heated to a complexing reaction temperature to perform a complexing reaction to obtain a complexing reaction product, wherein The first precursor includes an indium precursor and a zinc precursor; the complexing agent is a saturated fatty acid, which includes lauric acid, palmitic acid, oleic acid, and stearic acid ), myristic acid, eladic acid, eicosanoic acid, heneicosanoic acid, tricosanoic acid, behenic acid ( docosanoic acid), tetracosanoic acid, hexacosanoic acid, heptacosanoic acid, octacosanoic acid, or cis-13-docosenoic acid (cis-13-docosenoic acid), preferably, the complexing agent is myristic acid; the encapsulating agent is an organic compound with a C 8 -C 22 long carbon chain, and its functional group contains a hydrocarbon group (CH 3 ), amine group ( NH2 ) or aromatic hydrocarbon group, which comprises octylamine (octylamine), decylamine (decylamine), didecylamine (didecylamine), tridecylamine (tridecylamine), tetradecylamine (tetradecylamine), ten Pentadecylamine, hexadecylamine, octadecene, octadecylamine, dodecylamine or oleylamine, preferably, the coating agent For octadecene (octadecene) and oleylamine (oleylamine); The complex reaction temperature is 100 ~ 120 ℃, preferably, the complex reaction temperature is 105 ~ 115 ℃, more preferably, the complex reaction temperature is 110° C.; the indium precursor is indium halide, organic acid indium compound or IIIA~VA group inorganic indium compound, which includes indium fluoride (InF 3 ), indium chloride (InCl 3 ), indium bromide (InBr 3 ), Indium iodide (InI 3 ), indium acetate (In(CH 3 COO) 3 ), indium phosphide (InP), indium arsenide (InAs), indium antimonide (InSb), indium nitride (InN), arsenic phosphorus Indium Phosphide (InPAs), Indium Phosphorus Antimonide (InPSb), Indium Phosphorus Nitride (I nPN), Indium Arsenide Nitride (InAsN), Indium Antimony Nitride (InSbN), Indium Gallium Phosphide (InGaP), Indium Gallium Arsenide (InGaAs), Indium Gallium Antimonide (InGaSb), Indium Gallium Nitride (InGaN) , Indium Arsenide Nitride (InAsN), Indium Antimony Nitride (InSbN), Aluminum Indium Phosphide (AlInP), Aluminum Indium Arsenide (AlInAs), Aluminum Indium Antimonide (AlInSb), Aluminum Indium Nitride (AlInN), Phosphorus Gallium Indium Arsenide (GaInPAs), Gallium Indium Aluminum Arsenide (GaInAlAs), Gallium Indium Phosphate Nitride (GaInPN), Gallium Indium Arsenide Nitride (GaInAsN), Gallium Indium Aluminum Nitride (GaInAlN), Gallium Indium Phosphorus Antimonide (GaInAlN) GaInPSb), Gallium Indium Phosphate Nitride (GaInPN), Gallium Indium Antimony Nitride (GaInSbN), Indium Aluminum Arsenide Phosphide (InAlPAs), Indium Aluminum Phosphorus Nitride (InAlPN), Indium Phosphorus Arsenide Nitride (InPAsN), Antimony Nitrogen Indium Aluminum Antimonide (InAlSbN), Indium Phosphorus Antimony Nitride (InPSbN), Indium Arsenic Antimony Nitride (InAsSbN) or Indium Aluminum Antimonide Phosphide (InAlPSb), preferably, the indium precursor is indium chloride (InCl 3 ) ; The zinc precursor is zinc halide, organic acid zinc compound or IIA~VIA group inorganic zinc compound, which comprises zinc fluoride (ZnF 2 ), zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), iodide Zinc (ZnI 2 ), zinc diethyldithiocarbamate ([(C 2 H 5 ) 2 NCS 2 ] 2 Zn), zinc acetate (Zn(CH 3 COO) 2 ), zinc stearate (Zn( C 17 H 35 COO) 2 , zinc carbonate (ZnCO 3 ), zinc oxide (ZnO), cadmium zinc sulfide (CdZnS), cadmium zinc selenide (CdZnSe), cadmium zinc telluride (CdZnTe), zinc selenium sulfide (ZnSeS) , zinc selenide telluride (ZnSeTe), zinc sulfide telluride (ZnSTe), mercury zinc sulfide (HgZnS), mercury zinc selenide (HgZnSe), cadmium zinc oxide (CdZnO), zinc selenate (ZnSeO), zinc tellurate ( ZnTeO), zinc sulfate (ZnSO), cadmium zinc selenium sulfide (CdZnSeS), cadmium zinc selenium telluride (CdZnSeTe), cadmium zinc sulfide telluride (CdZnSTe), mercury zinc selenium sulfide (HgZnSeS), mercury zinc selenide telluride (HgZnSeTe) ), mercury zinc sulfide telluride (HgZnSTe), cadmium zinc selenate (CdZnSeO), cadmium zinc tellurate (CdZnTeO) or cadmium zinc sulfate (CdZnSO), preferably, the zinc precursor is zinc bromide (ZnBr 2 ) and zinc iodide (ZnI 2 ); the molar ratio of indium element and zinc element of the first precursor is 1:1~1:4, preferably, the molar ratio of indium element and zinc element of the first precursor is The molar ratio is 1:1.5~1:3.5, more preferably, the molar ratio of the indium element and the zinc element of the first precursor is 1:3.

如步驟102所示, 快速加熱該錯合反應產物至一成核反應溫度,再加入一第二前驅物並反應10秒~30分鐘以獲得一成核反應產物,其中該第二前驅物包含一磷前驅物; 該成核反應溫度為200~260℃,較佳者,該成核反應溫度為220~250℃,更佳者,該成核反應溫度為240℃;該磷前驅物為有機磷化合物,其包含六甲基磷醯三胺(Hexamethylphosphoramide,HMPA)、三(二甲胺基)膦(Tris(dimethylamino)phosphine,HMPT )、三正辛基氧化磷(tri-n-octylphosphine oxide)、三正辛基膦(tri-n-octylphosphine)、三(三甲基矽基)膦(tris(trimethylsilyl)phosphine,TMSP)或三(二甲基叔丁基)矽基膦(tris(dimethyl tert-butyl)silyl phosphine),較佳者,該磷前驅物為六甲基磷醯三胺(Hexamethylphosphoramide,HMPA)。As shown in step 102, the complex reaction product is rapidly heated to a nucleation reaction temperature, and a second precursor is added and reacted for 10 seconds to 30 minutes to obtain a nucleation reaction product, wherein the second precursor comprises a phosphorus precursor The nucleation reaction temperature is 200~260°C, preferably, the nucleation reaction temperature is 220~250°C, and more preferably, the nucleation reaction temperature is 240°C; the phosphorus precursor is an organophosphorus compound, which contains six Hexamethylphosphoramide (HMPA), Tris(dimethylamino)phosphine (HMPT), tri-n-octylphosphine oxide (tri-n-octylphosphine oxide), tri-n-octylphosphine (tri-n-octylphosphine), tris(trimethylsilyl)phosphine (TMSP) or tris(dimethyl tert-butyl)silyl phosphine , preferably, the phosphorus precursor is hexamethylphosphoramide (Hexamethylphosphoramide, HMPA).

如步驟103所示,將該成核反應產物中加入一第三前驅物並於一成殼反應溫度下反應1-8小時,即得到ZnInP/ZnS量子點,其中該第三前驅物包含一硫前驅物,該成殼反應溫度小於或等於該成核反應溫度;該成殼反應溫度為200~260℃,較佳者,該成殼反應溫度為220~250℃,更佳者,該成殼反應溫度為240℃;該硫前驅物為硫粉或硫醇類化合物,其包含硫粉、辛硫醇(octanethiol)、癸硫醇(decanethiol)、正十二硫醇(1-dodecanethiol)、二硫蘇糖醇 (dithiothreitol,DTT)或正十八硫醇(1-octadecanethiol,ODT),較佳者,該硫前驅物為二硫蘇糖醇 (dithiothreitol,DTT)。As shown in step 103, a third precursor is added to the nucleation reaction product and reacted at a shell-forming reaction temperature for 1-8 hours to obtain ZnInP/ZnS quantum dots, wherein the third precursor includes a sulfur precursor material, the shelling reaction temperature is less than or equal to the nucleation reaction temperature; the shelling reaction temperature is 200~260 ℃, preferably, the shelling reaction temperature is 220~250 ℃, more preferably, the shelling reaction temperature is 240°C; the sulfur precursor is sulfur powder or thiol compound, which includes sulfur powder, octanethiol, decanethiol, 1-dodecanethiol, dithiothre Sugar alcohol (dithiothreitol, DTT) or n-octadecanethiol (1-octadecanethiol, ODT), preferably, the sulfur precursor is dithiothreitol (dithiothreitol, DTT).

如步驟104所示, 將該ZnInP/ZnS量子點急速冷凍並加入無水乙醇以去除多餘之包覆劑,獲得一中止反應產物。As shown in step 104, the ZnInP/ZnS quantum dots are rapidly frozen and anhydrous ethanol is added to remove excess coating agent to obtain a terminated reaction product.

如步驟105所示,將該中止反應產物進行超音波震盪處理並離心以獲得一沉澱物。As shown in step 105, the stopped reaction product is subjected to ultrasonic shock treatment and centrifugation to obtain a precipitate.

如步驟106所示,抽乾該沉澱物。As shown in step 106, the precipitate is drained.

如步驟107所示,以正己烷打散該沉澱物,即獲得一純化之ZnInP/ZnS量子點。As shown in step 107, the precipitate is dispersed with n-hexane to obtain a purified ZnInP/ZnS quantum dot.

依本發明之實施方式,係以熱注射法並透過調控成核反應溫度、成殼反應溫度及反應時間,以獲得ZnInP/ZnS量子點,其半高寬有效降低至40nm以內,且其量子效率能突破100%,故能預期在後續製作為白光元件後,實質增加元件的NTSC色域面積,從而克服前述現有技術存在半高寬過寬與色域面積太小的問題。According to an embodiment of the present invention, ZnInP/ZnS quantum dots are obtained by adjusting the nucleation reaction temperature, shell formation reaction temperature and reaction time by means of thermal injection. Breaking through 100%, it can be expected that the NTSC color gamut area of the component will be substantially increased after subsequent fabrication as a white light component, thereby overcoming the problems of excessive half-height width and too small color gamut area in the prior art.

以下列舉本發明數個較佳實施例,來進一步說明本發明的技術特徵、運用技術手段及所預期達成之功效:Several preferred embodiments of the present invention are listed below to further illustrate the technical characteristics of the present invention, the application of technical means and the expected effect:

實施例1Example 1

將銦前驅物 0.72 mmol 氯化銦 (InCl 3) 及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2) 與錯合劑0.72 mmol 肉豆蔻酸(myristic acid) 混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度220 oC。此處實施熱注射法,維持溫度於220 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後降溫至成殼反應溫度200 oC,並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complexing agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 220 oC . The hot injection method was implemented here, maintaining the temperature at 220 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate the core ZnInP. After the growth of the core ZnInP, the temperature was lowered to the shell-forming reaction temperature of 200 o C, and 3 ml of DDT was slowly injected into the sulfur precursor. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為487nm、半高寬為72nm及量子效率為35%;成殼反應5小時之樣本其放射波長為493nm、半高寬72nm及量子效率為40%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 487 nm, a full width at half maximum of 72 nm and a quantum efficiency of 35 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 493 nm, a full width at half maximum of 72 nm and a quantum efficiency of 40%.

實施例2Example 2

將銦前驅物 0.72 mmol 氯化銦 (InCl 3) 及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2) 與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度220 oC。此處實施熱注射法,維持溫度於220 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行1分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後降溫至成殼反應溫度200 oC,並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 220 oC . The hot injection method was implemented here, maintaining the temperature at 220 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 1 minute to generate the core ZnInP. After the growth of the core ZnInP, the temperature was lowered to the shell-forming reaction temperature of 200 o C, and 3 ml of DDT was slowly injected into the sulfur precursor. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為499nm、半高寬為37nm,但未測得其量子效率;成殼反應5小時之樣本其放射波長為500nm、半高寬37nm,但未測得其量子效率。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the above experimental conditions, under the same nucleation reaction time, the sample after shelling reaction for 3 hours has an emission wavelength of 499 nm and a full width at half maximum of 37 nm, but no measured Its quantum efficiency; the emission wavelength of the sample after shelling reaction for 5 hours is 500 nm and the half width at half maximum is 37 nm, but its quantum efficiency has not been measured.

實施例3Example 3

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度200 oC。此處實施熱注射法,維持溫度於200 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行1分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫200 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Then, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) were added as capping agents, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 200 oC . The hot injection method is implemented here, maintaining the temperature at 200 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 1 minute to generate the core ZnInP. After the growth of the core ZnInP, keep the temperature at 200 oC and slowly inject 3 ml DDT of the sulfur precursor, and keep the temperature for 2 to 5 hours to generate the shell layer, that is, the ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為483nm、半高寬為34nm及量子效率為14%;成殼反應5小時之樣本其放射波長為482nm、半高寬29nm及量子效率為3%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 483 nm, a full width at half maximum of 34 nm and a quantum efficiency of 14 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 482 nm, a full width at half maximum of 29 nm and a quantum efficiency of 3%.

實施例4Example 4

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度200 oC。此處實施熱注射法,維持溫度於200 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫200 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Then, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) were added as capping agents, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 200 oC . The hot injection method was implemented here, maintaining the temperature at 200 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate core ZnInP. After the growth of the core ZnInP, keep the temperature at 200 oC and slowly inject 3 ml DDT of the sulfur precursor, and keep the temperature for 2 to 5 hours to generate the shell layer, that is, the ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為483nm、半高寬為33nm及量子效率為20%;成殼反應5小時之樣本其放射波長為490nm、半高寬39nm及量子效率為27%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the above experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 483 nm, a full width at half maximum of 33 nm and a quantum efficiency of 20 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 490 nm, a full width at half maximum of 39 nm and a quantum efficiency of 27%.

實施例5Example 5

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度220 oC。此處實施熱注射法,維持溫度於220 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行1分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫220 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 220 oC . The hot injection method was implemented here, maintaining the temperature at 220 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 1 minute to generate the core ZnInP. After the growth of the core ZnInP, keep the temperature at 220 oC and slowly inject 3 ml DDT of the sulfur precursor, and keep the temperature to react for 2-5 hours to generate the shell layer, that is, ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為483nm、半高寬為34nm及量子效率為59%;成殼反應5小時之樣本其放射波長為482nm、半高寬32nm及量子效率為68%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the above experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 483 nm, a full width at half maximum of 34 nm and a quantum efficiency of 59 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 482 nm, a full width at half maximum of 32 nm and a quantum efficiency of 68%.

實施例6Example 6

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度220 oC。此處實施熱注射法,維持溫度於220 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫220 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 220 oC . The hot injection method was implemented here, maintaining the temperature at 220 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate the core ZnInP. After the growth of the core ZnInP, keep the temperature at 220 oC and slowly inject 3 ml DDT of the sulfur precursor, and keep the temperature to react for 2-5 hours to generate the shell layer, that is, ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為489nm、半高寬為42nm及量子效率為72%;成殼反應5小時之樣本其放射波長為490nm、半高寬44nm及量子效率為91%。Please refer to Table 1. The purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 489 nm, a half-width of 42 nm and a quantum efficiency of 72 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 490 nm, a full width at half maximum of 44 nm and a quantum efficiency of 91%.

實施例7Example 7

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度240 oC。此處實施熱注射法,維持溫度於240 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行1分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫240 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 240 oC . The hot injection method was implemented here, maintaining the temperature at 240 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 1 minute to generate the core ZnInP. After the growth of the core ZnInP, keep the temperature at 240 oC and slowly inject 3 ml DDT of the sulfur precursor, and react at the temperature for 2 to 5 hours to generate the shell layer, that is, ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為489nm、半高寬為39nm及量子效率為104%;成殼反應5小時之樣本其放射波長為488nm、半高寬38nm及量子效率為79%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 489 nm, a full width at half maximum of 39 nm and a quantum efficiency of 104 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 488 nm, a full width at half maximum of 38 nm and a quantum efficiency of 79%.

實施例8Example 8

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度240 oC。此處實施熱注射法,維持溫度於240 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫240 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 240 oC . The hot injection method is implemented here, maintaining the temperature at 240 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate core ZnInP. After the growth of the core ZnInP, keep the temperature at 240 oC and slowly inject 3 ml DDT of the sulfur precursor, and react at the temperature for 2 to 5 hours to generate the shell layer, that is, ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為488nm、半高寬為43nm及量子效率為50%;成殼反應5小時之樣本其放射波長為486nm、半高寬42nm及量子效率為76%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 488 nm, a full width at half maximum of 43 nm and a quantum efficiency of 50 %; The sample with shell-forming reaction for 5 hours has an emission wavelength of 486 nm, a full width at half maximum of 42 nm and a quantum efficiency of 76%.

實施例9Example 9

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.08 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度240 oC。此處實施熱注射法,維持溫度於240 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行30秒之成核反應以生成核心ZnInP。核心ZnInP成長後,持溫240 oC並緩慢注入硫前驅物3 ml DDT ,持溫反應2~7小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ) and zinc precursor 1.08 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 240 oC . The hot injection method was implemented here, maintaining the temperature at 240 oC and injecting 0.2 ml of hexamethylphosphoric triamine, a phosphorus precursor, to perform a nucleation reaction for 30 seconds to generate core ZnInP. After the growth of the core ZnInP, keep the temperature at 240 oC and slowly inject 3 ml DDT of the sulfur precursor, and keep the temperature to react for 2 to 7 hours to generate the shell layer, that is, ZnInP/ZnS quantum dots are obtained. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本其放射波長為484nm、半高寬為36nm及量子效率為97%;成殼反應5小時之樣本其放射波長為483nm、半高寬35nm及量子效率為91%,成殼反應7小時之樣本其放射波長為484nm、半高寬36nm及量子效率為93%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots prepared according to the aforementioned experimental conditions, under the same nucleation reaction time, the sample with shelling reaction for 3 hours has an emission wavelength of 484 nm, a half-width of 36 nm and a quantum efficiency of 97 %; the sample with shelling reaction for 5 hours has an emission wavelength of 483 nm, a full width at half maximum of 35 nm and a quantum efficiency of 91%, and the sample with shelling reaction for 7 hours has an emission wavelength of 484 nm, a full width at half maximum of 36 nm and a quantum efficiency of 93%.

實施例10Example 10

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.47 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3.5,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度220 oC。此處實施熱注射法,維持溫度於220 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後降溫至成殼反應溫度200 oC,並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ), zinc precursor 1.47 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3.5, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 220 oC . The hot injection method was implemented here, maintaining the temperature at 220 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate the core ZnInP. After the growth of the core ZnInP, the temperature was lowered to the shell-forming reaction temperature of 200 o C, and 3 ml of DDT was slowly injected into the sulfur precursor. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本未製得ZnInP/ZnS量子點;成殼反應5小時之樣本其放射波長為491nm、半高寬57nm及量子效率為80%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots were prepared according to the above experimental conditions. Under the same nucleation reaction time, ZnInP/ZnS quantum dots were not prepared for the samples with shelling reaction for 3 hours; The emission wavelength is 491nm, the full width at half maximum is 57nm and the quantum efficiency is 80%.

實施例11Example 11

將銦前驅物 0.72 mmol 氯化銦 (InCl 3)及鋅前驅物1.47 mmol 溴化鋅 (ZnBr 2)、1.08 mmol 碘化鋅 (ZnI 2)與錯合劑0.72 mmol 肉豆蔻酸(myristic acid)混合,其中銦元素與鋅元素之莫耳比為1:3.5,混合後倒入三頸瓶中去除水氣30分鐘。接著,加入包覆劑4 ml十八烯 (ODE)及6 ml油胺 (OLA),並升溫至錯合反應溫度110 oC 進行錯合反應,再快速升溫至成核反應溫度230 oC。此處實施熱注射法,維持溫度於230 oC並注入磷前驅物 0.2 ml 六甲基磷醯三胺,使其進行15分鐘之成核反應以生成核心ZnInP。核心ZnInP成長後降溫至成殼反應溫度200 oC,並緩慢注入硫前驅物3 ml DDT ,持溫反應2~5小時以令殼層生成,即獲得ZnInP/ZnS量子點。將此含有ZnInP/ZnS量子點之溶液急速冷凍以中止成殼反應,隨後加入無水乙醇以去除多餘之表面包覆劑。接著,以超音波震盪並離心以得ZnInP/ZnS量子點沉澱物。將沉澱物抽乾,以正己烷打散此沉澱物,即得到純化之ZnInP/ZnS量子點。 Indium precursor 0.72 mmol indium chloride (InCl 3 ), zinc precursor 1.47 mmol zinc bromide (ZnBr 2 ), 1.08 mmol zinc iodide (ZnI 2 ) and complex agent 0.72 mmol myristic acid (myristic acid) were mixed, The molar ratio of indium element and zinc element is 1:3.5, and after mixing, poured into a three-necked bottle to remove water vapor for 30 minutes. Next, 4 ml of octadecene (ODE) and 6 ml of oleylamine (OLA) as capping agents were added, and the temperature was raised to a complexation reaction temperature of 110 oC for a complexation reaction, and then rapidly heated to a nucleation reaction temperature of 230 oC . The hot injection method was implemented here, maintaining the temperature at 230 oC and injecting 0.2 ml of hexamethylphosphoric triamine as a phosphorus precursor, and making it undergo a nucleation reaction for 15 minutes to generate core ZnInP. After the growth of the core ZnInP, the temperature was lowered to the shell-forming reaction temperature of 200 o C, and 3 ml of DDT was slowly injected into the sulfur precursor. The solution containing ZnInP/ZnS quantum dots was snap-frozen to stop the shelling reaction, followed by addition of absolute ethanol to remove excess surface coating agent. Next, ultrasonic vibration and centrifugation were performed to obtain ZnInP/ZnS quantum dot precipitates. The precipitate was drained by suction, and the precipitate was dispersed with n-hexane to obtain purified ZnInP/ZnS quantum dots.

請參見表1,依前述實驗條件所製得純化之ZnInP/ZnS量子點,在相同成核反應時間下,成殼反應3小時之樣本未製得ZnInP/ZnS量子點;成殼反應5小時之樣本其放射波長為493nm、半高寬54nm及量子效率為49%。Please refer to Table 1. Purified ZnInP/ZnS quantum dots were prepared according to the above experimental conditions. Under the same nucleation reaction time, ZnInP/ZnS quantum dots were not prepared for the samples with shelling reaction for 3 hours; Its emission wavelength is 493nm, its full width at half maximum is 54nm and its quantum efficiency is 49%.

以下配合圖示進一步說明依本發明所提供量子點之製備方法而製備之ZnInP/ZnS量子點其特性:The characteristics of the ZnInP/ZnS quantum dots prepared according to the preparation method of quantum dots provided by the present invention are further described below in conjunction with the diagrams:

如圖2所示,灰色長條係表示成核反應30秒所製得之ZnInP/ZnS量子點所測得之半高寬,藍色長條係表示成核反應時間1分鐘所製得之ZnInP/ZnS量子點所測得之半高寬,橘色長條係表示成核反應時間15分鐘所製得之ZnInP/ZnS量子點所測得之半高寬。As shown in Figure 2, the gray bars represent the measured width at half maximum of the ZnInP/ZnS quantum dots prepared by the nucleation reaction for 30 seconds, and the blue bars represent the ZnInP/ZnS quantum dots prepared by the nucleation reaction time of 1 minute. The measured width at half maximum of the quantum dots, and the orange bars represent the measured width at half maximum of the ZnInP/ZnS quantum dots prepared by the nucleation reaction time of 15 minutes.

如圖3所示,係依據本發明實施例4製備條件下,其成殼反應時間3小時所製得ZnInP/ZnS量子點之光色圖。As shown in FIG. 3 , the light color diagram of the ZnInP/ZnS quantum dots prepared according to the preparation conditions of Example 4 of the present invention and the shell-forming reaction time of 3 hours.

如圖4所示,係依據本發明實施例7製備條件下,其成殼反應時間3小時所製得ZnInP/ZnS量子點之光色圖。 表1 樣品編號 成殼反應 時間 (小時) 放射波長 (nm) 半高寬 (nm) 量子效率 (%) 實施例1 3 487 72 35 5 493 72 40 實施例2 3 499 37 - 5 500 37 - 實施例3 3 483 34 14 5 482 29 3 實施例4 3 483 33 20 5 490 39 27 實施例5 3 483 34 59 5 482 32 68 實施例6 3 489 42 72 5 490 44 91 實施例7 3 489 39 104 5 488 38 79 實施例8 3 488 43 50 5 486 42 76 實施例9 3 484 36 97 5 483 35 91 7 484 36 93 實施例10 3 - - - 5 491 57 80 實施例11 3 - - - 5 493 54 49 As shown in FIG. 4 , the light color diagram of the ZnInP/ZnS quantum dots prepared under the preparation conditions of Example 7 of the present invention and the shell-forming reaction time of 3 hours is shown. Table 1 Sample serial number Shelling reaction time (hours) Emission wavelength (nm) Half width (nm) Quantum efficiency (%) Example 1 3 487 72 35 5 493 72 40 Example 2 3 499 37 - 5 500 37 - Example 3 3 483 34 14 5 482 29 3 Example 4 3 483 33 20 5 490 39 27 Example 5 3 483 34 59 5 482 32 68 Example 6 3 489 42 72 5 490 44 91 Example 7 3 489 39 104 5 488 38 79 Example 8 3 488 43 50 5 486 42 76 Example 9 3 484 36 97 5 483 35 91 7 484 36 93 Example 10 3 - - - 5 491 57 80 Example 11 3 - - - 5 493 54 49

如圖5所示,係依據實施例1及實施例4所製得ZnInP/ZnS量子點之螢光光譜圖:黑色曲線係以實施例1製備條件下,成殼反應3小時所製得之ZnInP/ZnS量子點之螢光光譜圖,此處標示為「實施例1 (成殼反應3小時)」;紅色曲線係以實施例4製備條件下,成殼反應3小時所製得之ZnInP/ZnS量子點之螢光光譜圖,此處標示為「實施例4 (成殼反應3小時)」;可以明顯觀察到,前述實施例1 (成殼反應3小時) 之螢光放射波峰,對比前述實施例4 (成殼反應3小時)之螢光放射波峰,有顯著的藍移現象,且其半高寬明顯收窄,使其更為適合與紅色螢光粉混合以製成白光元件。As shown in Figure 5, the fluorescence spectra of ZnInP/ZnS quantum dots prepared according to Example 1 and Example 4: the black curve is the ZnInP prepared by shell-forming reaction for 3 hours under the preparation conditions of Example 1 / The fluorescence spectrum of ZnS quantum dots, which is marked as "Example 1 (3 hours of shelling reaction)"; the red curve is the ZnInP/ZnS prepared by shelling reaction for 3 hours under the preparation conditions of Example 4 The fluorescence spectrum of quantum dots is marked here as "Example 4 (shell-forming reaction for 3 hours)"; it can be clearly observed that the fluorescence emission peaks of the aforementioned Example 1 (shell-forming reaction for 3 hours) are compared with the previous implementation. The fluorescence emission peak of Example 4 (shelling reaction for 3 hours) has a significant blue-shift phenomenon, and its half-height width is significantly narrowed, which makes it more suitable for mixing with red phosphors to make white light components.

如圖6所示,係依據本發明實施例2所製得ZnInP/ZnS量子點之光譜圖:黑色曲線為放射光譜;藍色虛線為激發光譜;紅色曲線為吸收光譜;可觀察到在不同時間點a、b、c及d所製得ZnInP/ZnS量子點其放射光譜波峰穩定集中在500nm,且半寬高俱維持在約37nm,顯見依據本發明所提供量子點之製備方法具有生產穩定品質之ZnInP/ZnS量子點的優點。As shown in Figure 6, the spectrum of ZnInP/ZnS quantum dots prepared according to Example 2 of the present invention: the black curve is the emission spectrum; the blue dotted line is the excitation spectrum; the red curve is the absorption spectrum; it can be observed that at different times The emission spectrum peaks of the ZnInP/ZnS quantum dots prepared by points a, b, c and d are stably concentrated at 500 nm, and the half width and height are all maintained at about 37 nm. It is obvious that the preparation method of the quantum dots provided by the present invention has stable production quality. The advantages of ZnInP/ZnS quantum dots.

綜上所述,本發明所提供量子點之製備方法所製備之ZnInP/ZnS量子點,其使用 InCl 3和 ZnI 2/ZnBr 2中的 In 3+和 Zn 2+作為陽離子,六甲基磷醯三胺(HMPA)中的 P 3-作為陰離子用於InP及ZnInP核心的成核及成長。透過調控ZnInP核心與包覆ZnS殼層之反應時間,以達到調控ZnInP/ZnS量子點 半高寬與提升量子效率的目的。由結果可得知,依本發明所提供量子點之製備方法可有效窄化半高寬低於40 nm,且提升量子效率突破100%,故於後續投入製作為白光元件後,可預期實質增加元件的NTSC色域面積,解決前述現有技術產製量子點之半高寬過寬及色域面積太小的問題,並具有生產穩定品質之ZnInP/ZnS量子點的優點。據此,相較於前述現有技術之製造方法所製得量子點具有寬廣半高寬及低量子效率之缺點,本發明所提供量子點之製備方法具有能縮短半高寬、提升量子效率之優點。 To sum up, the ZnInP/ZnS quantum dots prepared by the quantum dot preparation method provided by the present invention use InCl 3 and ZnI 2 /ZnBr 2 In 3+ and Zn 2+ as cations, hexamethylphosphoric acid P 3- in triamine (HMPA) acts as an anion for the nucleation and growth of InP and ZnInP cores. By adjusting the reaction time between the ZnInP core and the coated ZnS shell, the purpose of adjusting the full width at half maximum of the ZnInP/ZnS quantum dots and improving the quantum efficiency is achieved. From the results, it can be seen that the preparation method of quantum dots provided by the present invention can effectively narrow the half-height width below 40 nm, and improve the quantum efficiency by more than 100%. Therefore, it can be expected to substantially increase after subsequent investment in the fabrication of white light components. The NTSC color gamut area of the device solves the problems of too wide half-height width and too small color gamut area of the quantum dots produced in the prior art, and has the advantage of producing ZnInP/ZnS quantum dots with stable quality. Accordingly, compared with the disadvantages of wide half-height width and low quantum efficiency, the quantum dots prepared by the manufacturing method of the present invention have the advantages of shortening the half-height width and improving the quantum efficiency. .

(101至107):步驟(101 to 107): Steps

圖1為一流程圖,說明本發明揭露之量子點之製備方法。 圖2為一長條圖,說明本發明揭露之量子點之製備方法所製備之ZnInP/ZnS量子點之半高寬。 圖3為一光色圖,呈現本發明實施例4所製備之ZnInP/ZnS量子點之光色。 圖4為一光色圖,呈現本發明實施例7所製備之ZnInP/ZnS量子點之光色。 圖5為一螢光光譜圖,呈現本發明實施例1及實施例4所製得ZnInP/ZnS量子點之螢光光譜圖。 圖6為一光譜圖,呈現本發明實施例2所製得ZnInP/ZnS量子點之光譜圖。 FIG. 1 is a flow chart illustrating the preparation method of the quantum dots disclosed in the present invention. FIG. 2 is a bar graph illustrating the full width at half maximum of the ZnInP/ZnS quantum dots prepared by the quantum dot preparation method disclosed in the present invention. 3 is a light color diagram showing the light color of the ZnInP/ZnS quantum dots prepared in Example 4 of the present invention. 4 is a light color diagram showing the light color of the ZnInP/ZnS quantum dots prepared in Example 7 of the present invention. 5 is a fluorescence spectrum diagram showing the fluorescence spectrum diagrams of the ZnInP/ZnS quantum dots prepared in Example 1 and Example 4 of the present invention. FIG. 6 is a spectrogram showing the spectrogram of the ZnInP/ZnS quantum dots prepared in Example 2 of the present invention.

(101至107):步驟 (101 to 107): Steps

Claims (10)

一種量子點的製備方法,包含: 將一第一前驅物、一錯合劑及一包覆劑混合成一混合溶液,加熱該混合溶液至一錯合反應溫度以進行錯合反應,獲得一錯合反應產物,其中該第一前驅物包含銦前驅物、鋅前驅物; 加熱該錯合反應產物至一成核反應溫度,再加入一第二前驅物並反應10秒~30分鐘以獲得一成核反應產物,其中該第二前驅物包含一磷前驅物;及 將該成核反應產物中加入一第三前驅物並於一成殼反應溫度下反應1-8小時,即得到ZnInP/ZnS量子點,其中該第三前驅物包含一硫前驅物,該成殼反應溫度小於或等於該成核反應溫度。 A preparation method of quantum dots, comprising: A first precursor, a complexing agent and a coating agent are mixed into a mixed solution, and the mixed solution is heated to a complexing reaction temperature to carry out a complexing reaction to obtain a complexing reaction product, wherein the first precursor comprises Indium precursor, zinc precursor; heating the complex reaction product to a nucleation reaction temperature, then adding a second precursor and reacting for 10 seconds to 30 minutes to obtain a nucleation reaction product, wherein the second precursor comprises a phosphorus precursor; and Adding a third precursor to the nucleation reaction product and reacting at a shell-forming reaction temperature for 1-8 hours to obtain ZnInP/ZnS quantum dots, wherein the third precursor comprises a sulfur precursor, the shell-forming reaction The temperature is less than or equal to the nucleation reaction temperature. 如請求項1所述之製備方法,其中該錯合反應溫度為100~120℃;該成核反應溫度為200~260℃;該成殼反應溫度為200~260℃。The preparation method according to claim 1, wherein the complexation reaction temperature is 100-120°C; the nucleation reaction temperature is 200-260°C; and the shell-forming reaction temperature is 200-260°C. 如請求項1所述之製備方法,其中該第一前驅物之銦元素與鋅元素之莫耳比為 1:1~1:4。The preparation method as claimed in claim 1, wherein the molar ratio of the indium element and the zinc element of the first precursor is 1:1 to 1:4. 如請求項1所述之製備方法,其中該銦前驅物包含鹵化銦、有機酸銦化合物或IIIA~VA族無機銦化合物;據請求項1所述之製備方法,其中該鋅前驅物包含鹵化鋅、有機酸鋅化合物或IIA~VIA族無機鋅化合物。The preparation method according to claim 1, wherein the indium precursor comprises indium halide, an organic acid indium compound or an inorganic indium compound of Group IIIA to VA; and the preparation method according to claim 1, wherein the zinc precursor comprises zinc halide , organic acid zinc compounds or IIA~VIA inorganic zinc compounds. 如請求項1所述之製備方法,其中該包覆劑包含具有C 8-C 22長碳鏈之有機化合物,其官能基包含烴基(CH 3)、胺基(NH 2)或芳香烴基。 The preparation method according to claim 1, wherein the coating agent comprises an organic compound with a C 8 -C 22 long carbon chain, and its functional group comprises a hydrocarbon group (CH 3 ), an amine group (NH 2 ) or an aromatic hydrocarbon group. 如請求項1所述之製備方法,其中該錯合劑包含飽和脂肪酸。The preparation method of claim 1, wherein the complexing agent comprises saturated fatty acid. 如請求項1所述之製備方法,其中該磷前驅物包含有機磷化合物。The preparation method according to claim 1, wherein the phosphorus precursor comprises an organic phosphorus compound. 如請求項1所述之製備方法,其中該硫前驅物包含硫粉或硫醇類化合物。The preparation method of claim 1, wherein the sulfur precursor comprises sulfur powder or a thiol compound. 如請求項1所述之製備方法,其中該銦前驅物為氯化銦 (InCl 3);該鋅前驅物為溴化鋅 (ZnBr 2)及碘化鋅 (ZnI 2)。 The preparation method according to claim 1, wherein the indium precursor is indium chloride (InCl 3 ); the zinc precursor is zinc bromide (ZnBr 2 ) and zinc iodide (ZnI 2 ). 如請求項1-9任一項所述之製備方法,該製備方法更進一步包含一純化處理,其步驟包括: 將該ZnInP/ZnS量子點急速冷凍並加入無水乙醇以去除多餘之包覆劑,獲得一中止反應產物。 將該中止反應產物進行超音波震盪處理並離心以獲得一沉澱物; 抽乾該沉澱物; 以正己烷打散該沉澱物,即獲得一純化之ZnInP/ZnS量子點。 The preparation method according to any one of claims 1-9, the preparation method further comprises a purification treatment, the steps of which include: The ZnInP/ZnS quantum dots were snap-frozen and anhydrous ethanol was added to remove excess capping agent to obtain a quenched reaction product. The quenched reaction product is subjected to ultrasonic shock treatment and centrifugation to obtain a precipitate; drain the sediment; Disperse the precipitate with n-hexane to obtain a purified ZnInP/ZnS quantum dot.
TW110103091A 2021-01-27 2021-01-27 Method for preparing zninp/zns quantum dots with narrow full width at half maximum TWI763281B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110103091A TWI763281B (en) 2021-01-27 2021-01-27 Method for preparing zninp/zns quantum dots with narrow full width at half maximum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110103091A TWI763281B (en) 2021-01-27 2021-01-27 Method for preparing zninp/zns quantum dots with narrow full width at half maximum

Publications (2)

Publication Number Publication Date
TWI763281B true TWI763281B (en) 2022-05-01
TW202229158A TW202229158A (en) 2022-08-01

Family

ID=82594049

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110103091A TWI763281B (en) 2021-01-27 2021-01-27 Method for preparing zninp/zns quantum dots with narrow full width at half maximum

Country Status (1)

Country Link
TW (1) TWI763281B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201502238A (en) * 2013-03-15 2015-01-16 Nanoco Technologies Ltd Group III-V/zinc chalcogenide alloyed semiconductor quantum dots
TW201817852A (en) * 2016-11-08 2018-05-16 財團法人工業技術研究院 Quantum dot and method for manufacturing the same
TW201831648A (en) * 2017-01-25 2018-09-01 國立研究開發法人產業技術總合研究所 Semiconductor nanoparticle manufacturing device, and method of manufacturing semiconductor nanoparticle
TW201924083A (en) * 2017-10-16 2019-06-16 南韓商Lg顯示器股份有限公司 Light emitting diode and light emitting display device including the same
TW201925420A (en) * 2017-10-13 2019-07-01 德商馬克專利公司 Semiconducting light emitting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201502238A (en) * 2013-03-15 2015-01-16 Nanoco Technologies Ltd Group III-V/zinc chalcogenide alloyed semiconductor quantum dots
TW201817852A (en) * 2016-11-08 2018-05-16 財團法人工業技術研究院 Quantum dot and method for manufacturing the same
TW201831648A (en) * 2017-01-25 2018-09-01 國立研究開發法人產業技術總合研究所 Semiconductor nanoparticle manufacturing device, and method of manufacturing semiconductor nanoparticle
TW201925420A (en) * 2017-10-13 2019-07-01 德商馬克專利公司 Semiconducting light emitting material
TW201924083A (en) * 2017-10-16 2019-06-16 南韓商Lg顯示器股份有限公司 Light emitting diode and light emitting display device including the same

Also Published As

Publication number Publication date
TW202229158A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US10090443B2 (en) Light source with quantum dots
US10734546B2 (en) Coated semiconductor nanocrystals and products including same
Chen et al. Pure colors from core–shell quantum dots
KR100901947B1 (en) White Light-Emitting Diode using Semiconductor Nanocrystals and Preparation Method Thereof
US10096678B2 (en) Methods for coating semiconductor nanocrystals
Cho et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability
US20120205586A1 (en) Indium phosphide colloidal nanocrystals
US9890330B2 (en) Semiconductor nanocrystals, method for coating semiconductor nanocrystals, and products including same
US20110175030A1 (en) Preparing large-sized emitting colloidal nanocrystals
US10008631B2 (en) Coated semiconductor nanocrystals and products including same
CN109468134B (en) Quantum dot, manufacturing method, single photon source and QLED
US20110175054A1 (en) Device containing large-sized emitting colloidal nanocrystals
JP7125723B2 (en) Organic light-emitting display device containing quantum dots
WO2013162646A1 (en) Coated semiconductor nanocrystals and products including same
TWI763281B (en) Method for preparing zninp/zns quantum dots with narrow full width at half maximum
KR20200135512A (en) Method of manufacturing quantum dot
TWI782781B (en) METHOD FOR PREPARING ZnInP/ZnS/AlOx QUANTUM DOTS WITH NARROW FULL WIDTH AT HALF MAXIMUM, HIGH QUANTUM EFFICIENCY AND HIGH STABILITY
CN113825822B (en) Quantum dot based on multi-shell structure with luminescent dopant
US11435620B2 (en) Quantum dot light source liquid crystal displays
CN118272090A (en) Quantum dot, light-emitting module and synthesis method of quantum dot
KR20210089442A (en) Quantum-dot
JP2022533864A (en) Graded-Multishell Structure Based Quantum Dots and Methods of Making Them
KR20230076759A (en) Quantum dot particles containing organic-inorganic mixed ligands
KR20230013694A (en) Method for manufacturing multi-component semiconductor nanocrystal, multi-component semiconductor nanocrystal and quantum dots including the same