TWI762932B - Memory management and erasure decoding for a memory device - Google Patents

Memory management and erasure decoding for a memory device Download PDF

Info

Publication number
TWI762932B
TWI762932B TW109116783A TW109116783A TWI762932B TW I762932 B TWI762932 B TW I762932B TW 109116783 A TW109116783 A TW 109116783A TW 109116783 A TW109116783 A TW 109116783A TW I762932 B TWI762932 B TW I762932B
Authority
TW
Taiwan
Prior art keywords
memory
codeword
voltage
memory cells
memory cell
Prior art date
Application number
TW109116783A
Other languages
Chinese (zh)
Other versions
TW202105402A (en
Inventor
安傑羅 維斯康堤
李察 E 費肯薩爾
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/441,722 external-priority patent/US10984847B2/en
Priority claimed from US16/840,286 external-priority patent/US11301320B2/en
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202105402A publication Critical patent/TW202105402A/en
Application granted granted Critical
Publication of TWI762932B publication Critical patent/TWI762932B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/225Auxiliary circuits
    • G11C11/2253Address circuits or decoders
    • G11C11/2255Bit-line or column circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/08Error detection or correction by redundancy in data representation, e.g. by using checking codes
    • G06F11/10Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's
    • G06F11/1008Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices
    • G06F11/1012Adding special bits or symbols to the coded information, e.g. parity check, casting out 9's or 11's in individual solid state devices using codes or arrangements adapted for a specific type of error
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3436Arrangements for verifying correct programming or erasure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/44Indication or identification of errors, e.g. for repair
    • G11C29/4401Indication or identification of errors, e.g. for repair for self repair
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/52Protection of memory contents; Detection of errors in memory contents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/221Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using ferroelectric capacitors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0409Online test
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C2029/0411Online error correction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/76Masking faults in memories by using spares or by reconfiguring using address translation or modifications

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

Memory management and erasure decoding for a memory device are described. A memory device may identify charge leakage associated with one or more memory cells, and may determine whether to invert a logic state stored by one or more memory cells to improve the likelihood that the memory cells are read properly. In some examples, the memory device may store an indication that the complement of the detected logic state was written, which may correspond to one memory cell or a set of memory cells. In some examples, a memory device may be configured to identify conditions associated with an erasure, or an otherwise indeterminate logic state, which may be used to enhance aspects of error handling operations, including those that may be performed at the memory device or a host device (e.g., error handling operations performed at a memory controller external to the memory device).

Description

用於記憶體裝置之記憶體管理及刪除解碼Memory management and delete decoding for memory devices

本技術領域係關於用於一記憶體裝置之記憶體管理及刪除解碼。The technical field relates to memory management and delete decoding for a memory device.

記憶體裝置廣泛地用於各種電子裝置(例如電腦、無線通信裝置、相機、數位顯示器等)中儲存資訊。藉由將一記憶體裝置之不同狀態程式化來儲存資訊。舉例而言,二進制裝置最通常儲存兩種狀態中之一者,通常標示為一邏輯1或一邏輯0。在其他裝置中,可儲存兩種以上狀態。為存取所儲存資訊,裝置之一組件可讀取或感測記憶體裝置中所儲存之至少一種狀態。為儲存資訊,裝置之一組件可將狀態寫入或程式化於記憶體裝置中。Memory devices are widely used to store information in various electronic devices (eg, computers, wireless communication devices, cameras, digital displays, etc.). Information is stored by programming different states of a memory device. For example, binary devices most commonly store one of two states, usually denoted as a logic 1 or a logic 0. In other devices, more than two states may be stored. To access the stored information, a component of the device can read or sense at least one state stored in the memory device. To store information, a component of the device may write or program state in a memory device.

存在各種類型之記憶體裝置,包含磁性影碟機、隨機存取記憶體(RAM)、唯讀記憶體(ROM)、動態RAM (DRAM)、同步動態RAM (SDRAM)、鐵電RAM (FeRAM)、磁性RAM (MRAM)、電阻式RAM (RRAM)、快閃記憶體、相變記憶體(PCM)等等。記憶體裝置可係揮發性或非揮發性的。非揮發性記憶體(例如,FeRAM)即使在無一外部電源之情況下仍可維持其所儲存之邏輯狀態達長的時間週期。揮發性記憶體裝置(例如,DRAM)可在與一外部電源斷開連接時丟失其所儲存之狀態。FeRAM由於使用一鐵電電容器作為一儲存裝置因而可能夠達成與揮發性記憶體類似之密度但可具有非揮發性性質。Various types of memory devices exist, including magnetic disk drives, random access memory (RAM), read only memory (ROM), dynamic RAM (DRAM), synchronous dynamic RAM (SDRAM), ferroelectric RAM (FeRAM), Magnetic RAM (MRAM), Resistive RAM (RRAM), Flash memory, Phase Change Memory (PCM), etc. Memory devices can be volatile or non-volatile. Non-volatile memory (eg, FeRAM) can maintain its stored logic state for extended periods of time even without an external power source. Volatile memory devices (eg, DRAM) can lose their stored state when disconnected from an external power source. FeRAM may be able to achieve a density similar to volatile memory but with non-volatile properties due to the use of a ferroelectric capacitor as a storage device.

本專利申請案主張2019年6月14日提出申請的標題為「MEMORY MANAGEMENT FOR CHARGE LEAKAGE IN A MEMORY DEVICE」的Visconti的美國專利申請案第16/441,722號以及2020年4月3日提出申請的標題為「ERASURE DECODING FOR A MEMORY DEVICE」的Fackenthal等人之美國專利申請案第16/840,286號的優先權,上述申請案中之每一者轉讓給其受讓人且上述申請案中之每一者之全部內容明確併入本案供參考。This patent application claims U.S. Patent Application Serial No. 16/441,722 to Visconti, filed June 14, 2019, and entitled "MEMORY MANAGEMENT FOR CHARGE LEAKAGE IN A MEMORY DEVICE" and filed April 3, 2020 Priority to US Patent Application Serial No. 16/840,286 to Fackenthal et al. for "ERASURE DECODING FOR A MEMORY DEVICE," each of which is assigned to its assignee and each of which is The entire contents are expressly incorporated into this case for reference.

在某些記憶體裝置中,電荷洩漏或其他現象可對一記憶體裝置判定一記憶體胞元所儲存之一邏輯狀態之能力造成負面影響。舉例而言,一記憶體裝置中之電荷洩漏可導致偵測到或者識別到比原本與先前儲存至一記憶體胞元之一特定邏輯狀態相關聯之一電荷轉移大之一電荷轉移,例如偵測到一信號線上之一電壓低於在不存在電荷洩漏時之一對應電壓。在某些實例中,電荷洩漏可減小一記憶體裝置之一讀取餘裕,或可與自一記憶體胞元讀取一不正確邏輯狀態相關聯(例如,與已儲存於記憶體胞元處之邏輯狀態不同之一邏輯狀態)。此等效應可例如與電容性記憶體技術或其中記憶體胞元可儲存不同電荷量或不同極化極性以儲存不同邏輯狀態的其他電荷儲存記憶體技術相關。In some memory devices, charge leakage or other phenomena can negatively affect a memory device's ability to determine a logic state stored by a memory cell. For example, a charge leakage in a memory device can result in the detection or identification of a charge transfer that is larger than a charge transfer originally associated with a particular logic state previously stored in a memory cell, such as detecting A voltage on a signal line is detected to be lower than a corresponding voltage in the absence of charge leakage. In some instances, charge leakage can reduce a read margin of a memory device, or can be associated with reading an incorrect logic state from a memory cell (eg, with a memory cell already stored in a memory cell) is in a different logical state than a logical state). Such effects can be associated, for example, with capacitive memory technology or other charge storage memory technologies in which memory cells can store different amounts of charge or different polarities of polarization to store different logic states.

在一項實例中,一記憶體裝置之記憶體胞元可經組態以儲存(例如,在一電容性記憶體元件中、在一鐵電記憶體元件中)與一第一電荷轉移量相關聯之一第一邏輯狀態或與一第二電荷轉移量相關聯之一第二邏輯狀態或者這兩者,該第二電荷轉移量大於該第一電荷轉移量。第一電荷轉移量可指代或者對應於在一讀取操作期間往來於儲存第一邏輯狀態之一記憶體胞元之一電荷轉移、儲存於一記憶體胞元處之一第一電荷量或儲存於一記憶體胞元處之一第一電荷極性,或者第一電荷轉移量可通常對應於一相對低之電流邏輯狀態。In one example, the memory cells of a memory device can be configured to store (eg, in a capacitive memory element, in a ferroelectric memory element) associated with a first amount of charge transfer is associated with a first logic state or a second logic state associated with a second charge transfer amount, or both, that is greater than the first charge transfer amount. The first amount of charge transfer may refer to or correspond to a transfer of charge to and from a memory cell storing the first logic state, a first amount of charge stored at a memory cell during a read operation, or A first charge polarity, or first amount of charge transfer, stored at a memory cell may generally correspond to a relatively low current logic state.

第二電荷轉移量可指代或對應於在一讀取操作期間往來於儲存第二邏輯狀態之一記憶體胞元之一電荷轉移量、儲存於一記憶體胞元處之一第二電荷量或儲存於一記憶體胞元處之一第二電荷極性,或者該第二電荷轉移量可通常對應於一相對高之電流邏輯狀態。在對儲存第一邏輯狀態之一記憶體胞元進行一讀取操作期間,一感測組件可偵測或者識別第一電荷轉移量以判定記憶體胞元儲存該第一邏輯狀態。在對儲存第二邏輯狀態之一記憶體胞元進行一讀取操作期間,一感測組件可偵測或者識別第二電荷轉移量以判定記憶體胞元儲存該第二邏輯狀態。The second amount of charge transfer may refer to or correspond to a charge transfer amount to and from a memory cell storing a second logic state, a second amount of charge stored at a memory cell during a read operation Either stored at a memory cell at a second charge polarity, or the second charge transfer amount may generally correspond to a relatively high current logic state. During a read operation on a memory cell storing the first logic state, a sensing element may detect or identify the first charge transfer amount to determine that the memory cell stores the first logic state. During a read operation on a memory cell storing the second logic state, a sensing element may detect or identify the second charge transfer amount to determine that the memory cell stores the second logic state.

在存在電荷洩漏時,舉例而言,一記憶體裝置(例如,記憶體裝置內之一感測組件)可偵測到比在正常情況下與一特定邏輯狀態相關聯之電荷轉移高之一電荷轉移,該較高電荷轉移可部分地表示來自儲存該邏輯狀態之記憶體胞元之電荷轉移且部分地表示電荷洩漏。換言之,電荷洩漏可疊加於在正常情況下與一特定邏輯狀態相關聯(例如,與邏輯狀態之一讀取操作相關聯)之電荷轉移上。在某些情形中,所疊加電荷洩漏可減小讀取儲存第一邏輯狀態(例如,在正常情況下與一相對較低電荷轉移相關聯)之一記憶體胞元之讀取餘裕,或可導致記憶體裝置自寫入有第一邏輯狀態之一記憶體胞元不正確地偵測到第二邏輯狀態(例如,在一讀取操作期間與一較高電荷轉移相關聯)。In the presence of charge leakage, for example, a memory device (eg, a sensing element within the memory device) may detect a charge higher than the charge transfer normally associated with a particular logic state Transfer, the higher charge transfer may represent in part charge transfer from the memory cell storing the logic state and in part charge leakage. In other words, charge leakage can be superimposed on the charge transfer normally associated with a particular logic state (eg, associated with a read operation of the logic state). In some cases, the superimposed charge leakage may reduce the read margin for reading a memory cell storing the first logic state (eg, normally associated with a relatively low charge transfer), or may Causes the memory device to incorrectly detect the second logic state from a memory cell written with the first logic state (eg, associated with a higher charge transfer during a read operation).

在某些情形中,一記憶體裝置可識別與一或多個記憶體胞元或存取線相關聯之一電荷洩漏,且可判定是否要在存在電荷洩漏時特意地將一或多個記憶體胞元所儲存之一邏輯狀態反相以提高恰當地偵測邏輯狀態之可能性。舉例而言,一記憶體裝置可在一存取操作期間(例如,在存取操作之一讀取部分期間、在存取操作之一寫入部分期間)判定由一記憶體胞元所儲存之一邏輯狀態,且亦偵測記憶體胞元或相關存取線是否與一電荷洩漏相關聯(例如,在存取操作之一洩漏偵測部分期間)。In some cases, a memory device can identify a charge leakage associated with one or more memory cells or access lines, and can determine whether to intentionally store one or more memories in the presence of charge leakage A logic state stored by the voxel is inverted to increase the likelihood of properly detecting the logic state. For example, a memory device may determine the data stored by a memory cell during an access operation (eg, during a read portion of an access operation, during a write portion of an access operation). A logic state and also detects whether a memory cell or associated access line is associated with a charge leak (eg, during a leak detection portion of an access operation).

在某些情形中,記憶體裝置可部分地基於所偵測到之電荷洩漏或某些其他現象判定將經判定邏輯狀態之一補數(例如,與一存取操作之一讀取或寫入部分相關聯之一不同邏輯狀態、一互補邏輯狀態、一經反相邏輯狀態、一相反邏輯狀態)寫入至記憶體胞元。在某些實例中,判定寫入邏輯狀態之補數可基於所偵測到之邏輯狀態與一第一電荷轉移量相關聯,且該邏輯狀態之補數與一第二電荷轉移量相關聯,該第二電荷轉移量大於該第一電荷轉移量。在某些情形中,記憶體裝置可隨後將邏輯狀態之補數寫入至記憶體胞元(例如,在存取操作之一重寫部分期間)。In some cases, a memory device may determine to determine one's complement of the determined logic state (eg, a read or write with an access operation based in part on detected charge leakage or some other phenomenon) A different logic state, a complementary logic state, an inverted logic state, an inverse logic state) associated with the portion are written to the memory cell. In some examples, determining the complement of the write logic state may be associated with a first amount of charge transfer based on the detected logic state, and the complement of the logic state is associated with a second amount of charge transfer, The second charge transfer amount is greater than the first charge transfer amount. In some cases, the memory device may then write the complement of the logic state to the memory cell (eg, during an overwrite portion of an access operation).

除將一互補邏輯狀態寫入至記憶體胞元之外,記憶體裝置亦可儲存所偵測到之邏輯狀態之補數被寫入之一指示,例如一位元翻轉指示,其中此一指示可對應於一組一或多個記憶體胞元,該組一或多個記憶體胞元包含被偵測到存在一相關聯電荷洩漏之記憶體胞元。舉例而言,記憶體裝置可儲存此一指示以追蹤一記憶體胞元或一組記憶體胞元(例如,一列或頁)是否已被程式化有一直接邏輯狀態或一互補邏輯狀態(例如,一經翻轉狀態)。此一指示可用於一後續讀取操作中以在讀取記憶體裝置之資訊時恰當地解譯一或多個記憶體胞元之已改變邏輯狀態(例如,直接解譯記憶體胞元所儲存之邏輯狀態或反相或以其他方式改變該記憶體胞元所儲存之邏輯狀態之解譯)。In addition to writing a complementary logic state to a memory cell, the memory device can also store an indication that the complement of the detected logic state was written, such as a bit flip indication, where this indication May correspond to a set of one or more memory cells, the set of one or more memory cells including memory cells for which an associated charge leakage is detected. For example, a memory device may store such an indication to track whether a memory cell or group of memory cells (eg, a row or page) has been programmed with a direct logic state or a complementary logic state (eg, once reversed). This indication can be used in a subsequent read operation to properly interpret the changed logical state of one or more memory cells when reading information from the memory device (eg, directly interpreting the memory cell's storage or invert or otherwise alter the interpretation of the logical state stored by the memory cell).

因此,可藉由改變由記憶體胞元(例如,在一重寫操作期間)儲存之一邏輯狀態來說明一記憶體裝置中之所偵測到電荷洩漏或其他現象,此可避免不正確地解譯記憶體胞元所儲存之資訊,或可避免或減小讀取餘裕邊變窄之效應。在某些實例中,此技術可支援一記憶體裝置之經改良效能,例如擴展循環以發現故障(cycling-to-fail,CTF)效能、弛緩位元錯誤率(BER)要求及其他益處。Thus, a detected charge leakage or other phenomenon in a memory device can be accounted for by changing a logic state stored by a memory cell (eg, during a rewrite operation), which can avoid incorrectly Interpreting the information stored in the memory cells may avoid or reduce the effect of narrowing the read margin. In some instances, this technique can support improved performance of a memory device, such as extended cycling to find fault (CTF) performance, relaxed bit error rate (BER) requirements, and other benefits.

在某些記憶體裝置中,刪除或其他行為可造成其中寫入至一記憶體胞元或由一記憶體胞元儲存之一資訊狀態(例如,邏輯狀態)可不確定(例如,在一後續存取操作期間)的一狀況。舉例而言,在某些情況中,一記憶體裝置可無法區分一記憶體胞元儲存一種邏輯狀態還是另一邏輯狀態(例如,一記憶體胞元儲存一邏輯1還是一邏輯0),或者一記憶體裝置可在讀取一記憶體胞元時讀取一種邏輯狀態,但一不同邏輯狀態被寫入至記憶體胞元(例如,在對一記憶體胞元進行一讀取操作期間偵測到一邏輯0,但記憶體胞元被寫入一邏輯1)。在某些實例中,具有一不確定邏輯狀態之一記憶體胞元可造成需要加以校正(例如,藉由一錯誤校正碼(ECC)或ECC引擎)的一對應碼字之一錯誤,或可造成一對應碼字之一錯誤數量超出一錯誤校正能力(例如,記憶體裝置之錯誤校正能力、與記憶體裝置耦合之一主機裝置之錯誤校正能力)。例如此等狀況等狀況可使記憶體裝置或使用記憶體裝置進行資訊儲存之一主機裝置之一效能降級,或者可導致記憶體裝置或主機裝置之一操作之一故障。In some memory devices, deletions or other actions can cause an information state (eg, logical state) in which it is written to or stored by a memory cell to be indeterminate (eg, a subsequent storage take a condition during operation). For example, in some cases a memory device may be unable to distinguish between a memory cell storing one logic state or another (eg, a memory cell storing a logic 1 or a logic 0), or A memory device may read one logic state when reading a memory cell, but a different logic state is written to the memory cell (eg, detect during a read operation on a memory cell A logic 0 was detected, but the memory cell was written with a logic 1). In some instances, a memory cell with an indeterminate logic state may cause an error in a corresponding codeword that needs to be corrected (eg, by an error correction code (ECC) or ECC engine), or may The number of errors that cause a corresponding codeword exceeds an error correction capability (eg, the error correction capability of a memory device, the error correction capability of a host device coupled to the memory device). Conditions such as these can degrade the performance of a memory device or a host device that uses the memory device for information storage, or can cause a malfunction in the operation of the memory device or one of the host devices.

在某些實例中,一記憶體裝置可經組態以識別記憶體胞元、或在一存取操作期間產生的與一刪除相關聯之對應碼字之資訊位置、指示一可能刪除之狀況或與一不確定的資訊狀態相關聯之狀況。在某些實例中,一記憶體裝置可經組態以識別指示電荷洩漏(例如,經由一記憶體胞元之電荷洩漏、經由與一存取操作相關聯之一存取線之電荷洩漏)之狀況,電荷洩漏可能與感測到一記憶體胞元儲存一特定邏輯狀態(例如,降級或消除與讀取一邏輯狀態相關聯之一讀取餘裕)之一較高可能性相關聯。在某些實例中,一記憶體裝置可經組態以識別與讀取一記憶體胞元相關聯之一信號處於與一第一資訊狀態對應之一第一臨限值(例如,一信號臨限值指示一邏輯0)和與一第二資訊狀態對應之一第二臨限值(例如,信號臨限值指示一邏輯1)之間的一範圍內,且處於此一範圍內之該信號可指示記憶體胞元儲存第一資訊狀態還是第二資訊狀態之一不確定性。In some examples, a memory device may be configured to identify a memory cell, or information location of a corresponding codeword associated with a deletion generated during an access operation, to indicate the condition of a possible deletion, or A condition associated with an indeterminate information state. In some examples, a memory device can be configured to identify information indicative of charge leakage (eg, charge leakage through a memory cell, charge leakage through an access line associated with an access operation) In some cases, charge leakage may be associated with sensing a higher probability of a memory cell storing a particular logic state (eg, degrading or eliminating a read margin associated with reading a logic state). In some examples, a memory device may be configured to recognize that a signal associated with reading a memory cell is at a first threshold corresponding to a first information state (eg, a signal near the limit value indicates a logic 0) and a second threshold value corresponding to a second information state (eg, the signal threshold value indicates a logic 1) within a range, and the signal within this range An uncertainty that may instruct the memory cell to store the first information state or the second information state.

識別與一不確定的資訊狀態相關聯之狀況可增強錯誤偵測或錯誤校正操作之態樣,包含可在一記憶體裝置或一主機裝置處實行之操作(例如,在位於一記憶體裝置外部之一記憶體控制器處實行之錯誤校正操作)。舉例而言,一記憶體裝置可識別一或多個記憶體胞元、一或多個存取線或者一碼字之一或多個資訊位置,以上皆與一不確定的資訊狀態相關聯。一對應碼字(例如,在一讀取操作期間產生)可包含具有偵測到或確定之資訊狀態(例如,一邏輯0或邏輯1)之某些資訊位置以及具有一不確定的資訊狀態或未經指派資訊狀態(例如,一邏輯X、一空邏輯狀態)之某些資訊位置。可對一或多個碼字(例如,推測性碼字)實行一錯誤偵測操作或一錯誤校正操作,其中與一不確定或未經指派邏輯狀態相關聯之資訊位置被替換或被指派有一各別假定的資訊狀態(例如,以一邏輯0替換一邏輯X、以一邏輯1替換一邏輯X)。藉由識別將被指派此假定的資訊狀態之資訊位置,可提高進行一錯誤偵測或一錯誤校正以處置不確定狀態或不確定狀態與其他錯誤狀況之組合(例如,在未知記憶體胞元或一碼字之位置處所感測之資訊狀態之錯誤)之能力。Identifying conditions associated with an indeterminate information state can enhance aspects of error detection or error correction operations, including operations that may be performed at a memory device or a host device (eg, outside a memory device) error correction operation performed at a memory controller). For example, a memory device may identify one or more memory cells, one or more access lines, or one or more information locations of a codeword, all of which are associated with an indeterminate information state. A corresponding codeword (eg, generated during a read operation) may include certain information locations with a detected or determined information state (eg, a logic 0 or logic 1) and with an indeterminate information state or Certain information locations are not assigned information states (eg, a logic X, an empty logic state). An error detection operation or an error correction operation may be performed on one or more codewords (eg, speculative codewords) in which the information location associated with an indeterminate or unassigned logic state is replaced or assigned a The respective assumed information state (eg, a logical 0 for a logical X, a logical 1 for a logical X). By identifying the information location to which this assumed information state will be assigned, an error detection or an error correction can be enhanced to handle indeterminate states or combinations of indeterminate states and other error conditions (eg, in unknown memory cells). or error in the information state sensed at the location of a codeword).

首先參考圖1至圖3在一記憶體裝置、電路系統及記憶體胞元特性之內容脈絡中闡述本發明之特徵。參考圖4至圖5在一實例性電路及對應存取操作之內容脈絡中以及參考圖6在一記憶體裝置中之電荷洩漏之一通用記憶體管理方法之內容脈絡中進一步闡述本發明之特徵。參考圖7至圖8在讀取特性及一刪除解碼方法之一實例之內容脈絡中進一步闡述本發明之特徵。參考與參考圖9至圖13所闡述之一記憶體裝置之記憶體管理及刪除解碼相關之設備圖及流程圖進一步圖解說明及闡述本發明之此等及其他特徵。The features of the present invention are first described in the context of a memory device, circuitry, and memory cell characteristics with reference to FIGS. 1 to 3 . Features of the present invention are further described with reference to FIGS. 4-5 in the context of an exemplary circuit and corresponding access operations and with reference to FIG. 6 in the context of a general memory management method for charge leakage in a memory device . Features of the present invention are further described in the context of an example of read characteristics and an erasure decoding method with reference to FIGS. 7-8 . These and other features of the present invention are further illustrated and described with reference to equipment diagrams and flow charts related to memory management and delete decoding of a memory device described with reference to FIGS. 9-13.

圖1圖解說明根據本文中所揭示之實例的支援記憶體管理及刪除解碼之一記憶體裝置100之一實例。記憶體裝置100亦可被稱為一電子記憶體設備。記憶體裝置100可包含可程式化以儲存不同邏輯狀態之記憶體胞元105。在某些情形中,一記憶體胞元105可程式化以儲存兩種邏輯狀態,標示為一邏輯0及一邏輯1。在某些情形中,一記憶體胞元105可程式化以儲存兩種以上邏輯狀態。在各種實例中,記憶體胞元105可包含一電容性儲存元件、一鐵電儲存元件、一材料記憶體元件、一電阻式記憶體元件、一定限記憶體元件、一相變記憶體元件或其他類型之儲存元件(例如,記憶體元件、電荷儲存元件、極化儲存元件)。1 illustrates one example of a memory device 100 that supports memory management and delete decoding according to the examples disclosed herein. The memory device 100 may also be referred to as an electronic memory device. The memory device 100 may include memory cells 105 that can be programmed to store different logical states. In some cases, a memory cell 105 can be programmed to store two logic states, designated as a logic 0 and a logic 1. In some cases, a memory cell 105 can be programmed to store more than two logic states. In various examples, memory cell 105 may include a capacitive storage element, a ferroelectric storage element, a material memory element, a resistive memory element, a limiting memory element, a phase change memory element, or Other types of storage elements (eg, memory elements, charge storage elements, polarized storage elements).

一組記憶體胞元105可係記憶體裝置100之一記憶體扇區110之一部分(例如,包含記憶體胞元105之一陣列),其中在某些實例中,一記憶體扇區110可係指記憶體胞元105之一連續片塊(例如,一半導體晶片之一組連續元件)。在某些實例中,一記憶體扇區110可係指可在一存取操作中被加偏壓之最小一組記憶體胞元105、或共用一共同電節點(例如,一共同板線、被加偏壓至一共同電壓之一組板線)之最小一組記憶體胞元105。儘管僅展示記憶體裝置100之一單個記憶體扇區110,但支援所闡述技術之一記憶體裝置之各種實例可具有一組一或多個記憶體扇區110。在一項說明性實例中,一記憶體裝置100可包含32個「庫」且每一庫可包含32個扇區。因此,根據說明性實例之一記憶體裝置100可包含1,024個記憶體扇區110。A set of memory cells 105 may be part of a memory sector 110 of memory device 100 (eg, comprising an array of memory cells 105 ), where in some instances a memory sector 110 may Refers to a contiguous piece of memory cell 105 (eg, a set of contiguous elements of a semiconductor wafer). In some examples, a memory sector 110 may refer to the smallest set of memory cells 105 that can be biased during an access operation, or share a common electrical node (eg, a common plate line, The smallest set of memory cells 105 that are biased to a common voltage (a set of board lines). Although only a single memory sector 110 of memory device 100 is shown, various examples of memory devices supporting one of the techniques described may have a set of one or more memory sectors 110 . In one illustrative example, a memory device 100 may include 32 "banks" and each bank may include 32 sectors. Thus, memory device 100 according to one illustrative example may include 1,024 memory sectors 110 .

在某些實例中,一記憶體胞元105可儲存表示可程式化邏輯狀態之一電荷(例如,在一電容器、電容性記憶體元件、電容性儲存元件中儲存電荷)。在一項實例中,一經充電及未經充電之電容器可分別表示兩種邏輯狀態。在另一實例中,一帶正電荷(例如,一第一極性、一正極性)及帶負電荷(例如,一第二極性,一負極性)電容器可分別表示兩個邏輯狀態。DRAM或FeRAM架構可使用此設計,且所採用之電容器可包含具有線性或順電極化性質之一介電材料作為一絕緣體。在某些實例中,一電容器之不同電荷位準可表示不同邏輯狀態,在某些實例中,一電容器之不同電荷位準可在一各別記憶體胞元105中支援兩種以上邏輯狀態。在某些實例中,例如FeRAM架構,一記憶體胞元105可包含一鐵電電容器,該鐵電電容器具有一鐵電材料作為電容器之端子之間的一絕緣(例如,非導電)層。一鐵電電容器之不同位準或不同極化極性可表示不同邏輯狀態(例如,在一各別記憶體胞元105中支援兩種或兩種以上邏輯狀態)。鐵電材料具有非線性極化性質,包含參考圖3A及圖3B更詳細論述之非線性極化性質。In some examples, a memory cell 105 may store an electric charge representing a programmable logic state (eg, in a capacitor, capacitive memory element, capacitive storage element). In one example, the charged and uncharged capacitors may represent two logic states, respectively. In another example, positively charged (eg, a first polarity, a positive polarity) and negatively charged (eg, a second polarity, a negative polarity) capacitors may represent two logic states, respectively. DRAM or FeRAM architectures can use this design, and the capacitors employed can include a dielectric material with linear or parapolar polarization properties as an insulator. In some examples, different charge levels of a capacitor may represent different logic states, and in some examples, different charge levels of a capacitor may support more than two logic states in a respective memory cell 105 . In some examples, such as FeRAM architectures, a memory cell 105 may include a ferroelectric capacitor having a ferroelectric material as an insulating (eg, non-conductive) layer between the terminals of the capacitor. Different levels or different polarization polarities of a ferroelectric capacitor can represent different logic states (eg, supporting two or more logic states in a respective memory cell 105). Ferroelectric materials have nonlinear polarization properties, including those discussed in more detail with reference to Figures 3A and 3B.

在某些實例中,一記憶體胞元105可包含一可組態材料或以其他方式與一可組態材料相關聯,該可組態材料可被稱為一材料記憶體元件、一材料儲存元件、一材料部分等等。可組態材料可具有表示(例如,對應於)不同邏輯狀態之一或多個可變且可組態之特性或性質(例如,材料狀態)。舉例而言,一可組態材料可呈現不同形式、不同原子組態、不同結晶程度、不同原子分佈或以其他方式維持可用於表示一種邏輯狀態或另一邏輯狀態之不同特性。在某些實例中,此等特性可與可在一讀取操作期間偵測到或區分以識別寫入至可組態材料或由可組態材料儲存之一邏輯狀態之不同電阻、不同臨限電壓或其他性質相關聯。In some examples, a memory cell 105 may include or otherwise be associated with a configurable material, which may be referred to as a material memory element, a material storage component, a material part, etc. Configurable materials can have properties or properties (eg, material states) that represent (eg, correspond to) one or more variable and configurable properties of different logical states. For example, a configurable material can take on different forms, different atomic configurations, different degrees of crystallinity, different atomic distributions, or otherwise maintain different properties that can be used to represent one logical state or another. In some examples, these characteristics can be detected or distinguished from a different resistance, a different threshold, and a logical state written to or stored by the configurable material during a read operation to identify voltage or other properties.

在某些情形中,一記憶體胞元105之一可組態材料可與一臨限電壓相關聯。舉例而言,當在記憶體胞元105之兩端施加大於臨限電壓之一電壓時電流,可流過可組態材料,且當在記憶體胞元105之兩端施加小於臨限電壓之一電壓時,電流可不流過可組態材料或可以低於某些位準(例如,根據一洩漏速率)之一速率流過可組態材料。因此,施加至記憶體胞元105之一電壓可導致不同電流或不同所感知電阻或一電阻改變(例如,一定限事件或切換事件),具體情形要根據記憶體胞元105之一可組態材料部分被寫入有一種邏輯狀態還是另一種邏輯狀態而定。因此,電流量值或與自對記憶體胞元105施加一讀取電壓而得到之電流相關聯之其他特性(例如,定限行為、電阻崩潰行為、突返行為)可用於判定寫入至記憶體胞元105或由記憶體胞元105儲存之一邏輯狀態。In some cases, a configurable material of a memory cell 105 may be associated with a threshold voltage. For example, when a voltage greater than the threshold voltage is applied across the memory cell 105, current can flow through the configurable material, and when a voltage less than the threshold voltage is applied across the memory cell 105 At a voltage, current may not flow through the configurable material or may flow through the configurable material at a rate lower than some level (eg, according to a leakage rate). Thus, a voltage applied to a memory cell 105 can result in a different current flow or a different sensed resistance or a resistance change (eg, a finite event or switching event), depending on which one of the memory cells 105 is configurable It depends on whether the material portion is written in one logical state or the other. Thus, the magnitude of the current or other characteristics associated with the current from applying a read voltage to the memory cell 105 (eg, limit behavior, resistance collapse behavior, snapback behavior) can be used to determine writes to memory The soma cell 105 or memory cell 105 stores a logic state.

一記憶體裝置100可包含一個三維(3D)記憶體陣列,其中複數個二維(2D)記憶體陣列(例如,層面、層級)形成於彼此頂部上。在各種實例中,此等陣列可被劃分成一組記憶體扇區110,其中每一記憶體扇區110可配置於一層面或層級內、跨越多個層面或層級分佈或其任何組合。與2D陣列相比,此種配置可增大可放置於或形成於一單個晶粒或基板上之記憶體胞元105之數目,此繼而可降低生產成本或提高一記憶體裝置100之效能,或者既降低生產成本亦提高一記憶體裝置100之效能。層面或層級可被一電絕緣材料分隔開。每一層面或層級可經對準或經定位以使得記憶體胞元105可跨越每一層面彼此大致對準,從而形成記憶體胞元105之一堆疊。在記憶體裝置100之實例中,記憶體扇區110之每一列記憶體胞元105可與一組第一存取線120中之一者(例如一字線(WL),例如WL1 至WLM 中之一者、一選擇線)耦合,且每一行記憶體胞元105可與一組第二存取線130中之一者(例如一數位線(DL),例如DL1 至DLN 中之一者)耦合。在某些實例中,一不同記憶體扇區110 (未展示)之一列記憶體胞元105可與不同複數個第一存取線120中之一者(例如,與WL1 至WLM 不同之一字線)耦合,且不同記憶體扇區110之一行記憶體胞元105可與不同複數個第二存取線130中之一者 (例如,與DL1 至DLN 不同之一數位線)耦合。在某些情形中,第一存取線120與第二存取線130在記憶體裝置100中可實質上彼此垂直(例如,當觀察記憶體裝置100之一層面之一平面時,如圖1所展示)。所提及之字線及位元線或其類似物係可互換的,並不會對理解或操作造成影響。A memory device 100 may include a three-dimensional (3D) memory array in which a plurality of two-dimensional (2D) memory arrays (eg, layers, levels) are formed on top of each other. In various examples, these arrays may be divided into a set of memory sectors 110, where each memory sector 110 may be configured within a level or level, distributed across multiple levels or levels, or any combination thereof. Compared to 2D arrays, this configuration can increase the number of memory cells 105 that can be placed or formed on a single die or substrate, which in turn can reduce production costs or improve the performance of a memory device 100, Alternatively, the production cost can be reduced and the performance of a memory device 100 can be improved. The layers or levels may be separated by an electrically insulating material. Each level or level may be aligned or positioned such that the memory cells 105 may be substantially aligned with each other across each level, forming a stack of memory cells 105 . In the example of memory device 100, each column of memory cells 105 of memory sector 110 may be associated with one of a set of first access lines 120 (eg, a word line (WL), such as WL 1 -WL one of M , a select line), and each row of memory cells 105 may be coupled with one of a set of second access lines 130 (eg, a digit line (DL), such as among DL 1 through DL N ) one) coupling. In some examples, a column of memory cells 105 of a different memory sector 110 (not shown) may be different from one of the plurality of first access lines 120 (eg, different from WL1 - WLMM ) A word line) is coupled, and a row of memory cells 105 of a different memory sector 110 may be connected to one of a different plurality of second access lines 130 (eg, a different digit line than DL1 - DLN ) coupling. In some cases, the first access line 120 and the second access line 130 may be substantially perpendicular to each other in the memory device 100 (eg, when viewing a plane of a level of the memory device 100 as shown in FIG. 1 displayed). References to word lines and bit lines or the like are interchangeable and do not affect understanding or operation.

通常,一個記憶體胞元105可位於一存取線120與一存取線130的交叉處(例如,與存取線120及存取線130耦合,耦合在存取線120與存取線130之間)。此交叉處可被稱為一記憶體胞元105之一位址。一目標或選定記憶體胞元105可係位於一經激磁或以其他方式選定存取線120與一經激磁或以其他方式選定存取線130的交叉處之一記憶體胞元105。換言之,一存取線120及一存取線130可經激磁或以其他方式選定以存取(例如,讀取、寫入、重寫、再新)位於其交叉處之一記憶體胞元105。與相同存取線120或130電子通信(例如,連接至相同存取線120或130)之其他記憶體胞元105可被稱為非目標或非選定記憶體胞元105。Typically, a memory cell 105 may be located at the intersection of an access line 120 and an access line 130 (eg, coupled to access line 120 and access line 130 , coupled to access line 120 and access line 130 ) between). This intersection may be referred to as an address of a memory cell 105 . A target or selected memory cell 105 may be a memory cell 105 located at the intersection of a energized or otherwise selected access line 120 and a energized or otherwise selected access line 130 . In other words, an access line 120 and an access line 130 may be energized or otherwise selected to access (eg, read, write, rewrite, refresh) a memory cell 105 at its intersection . Other memory cells 105 that are in electronic communication with the same access line 120 or 130 (eg, connected to the same access line 120 or 130 ) may be referred to as non-target or non-selected memory cells 105 .

在某些架構中,一記憶體胞元105之邏輯儲存組件(例如,一電容性儲存元件、一鐵電儲存元件、一材料儲存元件)可藉由一胞元選擇組件與一第二存取線130電隔離(例如,選擇性地隔離),在某些實例中,該胞元選擇組件可被稱為記憶體胞元105之一切換組件或一選擇器裝置或以其他方式與記憶體胞元105相關聯。一第一存取線120可與胞元選擇組件(例如,經由胞元選擇組件之一控制節點或端子)耦合,且可控制記憶體胞元105之胞元選擇組件。舉例而言,胞元選擇組件可係一電晶體且第一存取線120可與該電晶體之一閘極耦合(例如,其中電晶體之一閘極節點可係電晶體之一控制節點)。啟動一記憶體胞元105之第一存取線120可在記憶體胞元105之邏輯儲存組件與其對應第二存取線130之間形成一電連接或閉合電路。然後,可存取第二存取線130以讀取或寫入記憶體胞元105。In some architectures, logical storage elements (eg, a capacitive storage element, a ferroelectric storage element, a material storage element) of a memory cell 105 may be accessed by a cell selection element and a second Line 130 is electrically isolated (eg, selectively isolated), and in some instances, the cell selection element may be referred to as a switching element or a selector device of memory cell 105 or is otherwise associated with memory cell 105. Element 105 is associated. A first access line 120 may be coupled to the cell selection element (eg, via a control node or terminal of the cell selection element) and may control the cell selection element of the memory cell 105 . For example, the cell select element may be a transistor and the first access line 120 may be coupled to a gate of the transistor (eg, where a gate node of the transistor may be a control node of the transistor) . Activating the first access line 120 of a memory cell 105 can form an electrical connection or closed circuit between the logical storage element of the memory cell 105 and its corresponding second access line 130 . The second access line 130 can then be accessed to read or write to the memory cell 105 .

在某些實例中,記憶體扇區110之記憶體胞元105亦可與複數個第三存取線140中之一者(例如一板線(PL),例如PL1 至PLN 中之一者)耦合。儘管被圖解說明為單獨的線,但在某些實例中,該複數個第三存取線140可表示或者在功能上等效於記憶體扇區110之一共同板線、一共同板、或其他共同節點(例如,記憶體扇區110中之記憶體胞元105中之每一所共有之一節點)或記憶體裝置100之其他共同節點。在某些實例中,該複數個第三存取線140可將記憶體胞元105與一或多個電壓源耦合以進行各種感測操作或寫入操作,包含本文中所闡述之感測操作或寫入操作。舉例而言,當一記憶體胞元105採用一電容器來儲存一邏輯狀態時,一第二存取線130可提供對電容器之一第一端子或一第一板之存取,且一第三存取線140可提供對電容器之一第二端子或一第二板之存取(例如,與該電容器的與該電容器之第一端子相對的一相對板相關聯之一端子、與電容器之第一端子位於一電容之相對側上之一端子)。在某些實例中,一不同記憶體扇區110之記憶體胞元105 (未展示)可與不同複數個第三存取線140中之一者(例如,與PL1 至PLN 不同之一組板線、一不同共同板線、一不同共同板、一不同共同節點)耦合。In some examples, the memory cells 105 of the memory sector 110 may also be connected to one of the plurality of third access lines 140 (eg, a plate line (PL), such as one of PL 1 to PL N ) ) coupling. Although illustrated as separate lines, in some instances the plurality of third access lines 140 may represent or be functionally equivalent to a common board line of memory sectors 110, a common board, or Other common nodes (eg, a node common to each of the memory cells 105 in the memory sector 110 ) or other common nodes of the memory device 100 . In some examples, the plurality of third access lines 140 may couple the memory cell 105 with one or more voltage sources for various sensing or writing operations, including the sensing operations described herein or write operations. For example, when a memory cell 105 employs a capacitor to store a logic state, a second access line 130 may provide access to a first terminal or a first plate of the capacitor, and a third Access line 140 may provide access to a second terminal or a second plate of the capacitor (eg, a terminal associated with an opposing plate of the capacitor opposite the first terminal of the capacitor, a second terminal of the capacitor A terminal is located on the opposite side of a capacitor). In some examples, memory cells 105 (not shown) of a different memory sector 110 may be different from one of the plurality of third access lines 140 (eg, different from one of PL 1 -PL N ) A group board line, a different common board line, a different common board, a different common node) are coupled.

該複數個第三存取線140可與一板組件145耦合,此可控制各種操作,例如啟動該複數個第三存取線140中之一或多者或將該複數個第三存取線140中之一或多者與一電壓源或其他電路元件選擇性地耦合。儘管記憶體裝置100之該複數個第三存取線140被展示為與該複數個第二存取線130實質上平行,在其他實例中,複數個第三存取線140可與該複數個第一存取線120實質上平行,或呈任何其他組態(例如,一共同平面導體、一共同板層)。The plurality of third access lines 140 may be coupled to a board assembly 145, which may control various operations, such as enabling one or more of the plurality of third access lines 140 or the plurality of third access lines 140 One or more of 140 are selectively coupled to a voltage source or other circuit element. Although the plurality of third access lines 140 of the memory device 100 are shown as being substantially parallel to the plurality of second access lines 130, in other examples, the plurality of third access lines 140 may be parallel to the plurality of The first access lines 120 are substantially parallel, or in any other configuration (eg, a common planar conductor, a common plane).

儘管參考圖1所闡述之存取線被展示為記憶體胞元105與耦合組件之間的直通線,但存取線可包含其他電路元件,例如電容器、電阻器、電晶體、放大器、電壓源、切換組件、選擇組件等等,其可用於支援存取操作,包含本文中所闡述之存取操作。在某些實例中,一電極可與一記憶體胞元105及一存取線120耦合(例如,耦合於記憶體胞元105與存取線120之間)或者與一記憶體胞元105及一存取線130耦合(例如,耦合於記憶體胞元105與存取線130之間)。術語電極可係指一電導體或組件之間的其他電界面,且在某些情形中可用作與一記憶體胞元105之一電觸點。一電極可包含提供記憶體裝置100之元件或組件之間的一導電路徑的一跡線、配線、導電線、導電層、導電墊等。Although the access lines described with reference to FIG. 1 are shown as through lines between the memory cells 105 and coupling components, the access lines may include other circuit elements such as capacitors, resistors, transistors, amplifiers, voltage sources , toggle components, select components, etc., which may be used to support access operations, including those described herein. In some examples, an electrode may be coupled with a memory cell 105 and an access line 120 (eg, between memory cell 105 and an access line 120) or with a memory cell 105 and an access line 120. An access line 130 is coupled (eg, between the memory cell 105 and the access line 130). The term electrode can refer to an electrical conductor or other electrical interface between components, and in some cases can serve as an electrical contact with a memory cell 105 . An electrode may include a trace, wire, conductive line, conductive layer, conductive pad, etc. that provides a conductive path between elements or components of memory device 100 .

可藉由啟動或選擇與記憶體胞元105耦合之一第一存取線120、一第二存取線130或一第三存取線140來對一記憶體胞元105實行存取操作(例如讀取、寫入、重寫及再新),實行存取操作可包含對各別存取線施加一電壓、一電荷或一電流。存取線120、130及140可由導電材料(例如,金屬(例如,銅(Cu)、銀(Ag)、鋁(Al)、金(Au)、鎢(W)、鈦(Ti)))、金屬合金、碳或其他導電或半導電材料、合金或化合物製成。在選擇一記憶體胞元105時,可使用一所得信號來判定由記憶體胞元105儲存之邏輯狀態。舉例而言,可選擇具有儲存一邏輯狀態之一電容性記憶體元件之一記憶體胞元105,且可偵測經由一存取線之所得電荷流或一存取線之所得電壓以判定由記憶體胞元105儲存之經程式化邏輯狀態。An access operation to a memory cell 105 may be performed by activating or selecting a first access line 120, a second access line 130, or a third access line 140 coupled to the memory cell 105 ( For example, read, write, rewrite, and refresh), performing an access operation may include applying a voltage, a charge, or a current to the respective access line. The access lines 120, 130, and 140 may be made of conductive materials such as metals (eg, copper (Cu), silver (Ag), aluminum (Al), gold (Au), tungsten (W), titanium (Ti)), Made of metal alloys, carbon or other conductive or semiconductive materials, alloys or compounds. When a memory cell 105 is selected, a resulting signal can be used to determine the logic state stored by the memory cell 105 . For example, a memory cell 105 having a capacitive memory element storing a logic state can be selected, and the resulting charge flow through an access line or the resulting voltage on an access line can be detected to determine the The programmed logic state stored by memory cell 105 .

可透過一列組件125 (例如,一列解碼器)、一行組件135 (例如,一行解碼器)或一板組件145 (例如,一板驅動器)或其一組合控制存取記憶體胞元105。舉例而言,一列組件125可自記憶體控制器170接收一列位址且基於所接收到之列位址啟動適當第一存取線120。類似地,一行組件135可自記憶體控制器170接收一行位址且啟動適當第二存取線130。因此,在某些實例中,可藉由啟動一第一存取線120及一第二存取線130存取一記憶體胞元105。在某些實例中,此等存取操作可伴隨著一板組件145對第三存取線140中之一或多者加偏壓(例如,記憶體扇區110之第三存取線140中之一者加偏壓、對記憶體扇區之全部第三存取線140加偏壓、對記憶體扇區110或記憶體裝置100之一共同板線加偏壓、對記憶體扇區110或記憶體裝置100之一共同節點加偏壓),此可被稱為「移動」記憶體胞元105、記憶體扇區110或記憶體裝置100之「板」。Access to memory cells 105 may be controlled by a column of components 125 (eg, a column of decoders), a row of components 135 (eg, a row of decoders), or a board component 145 (eg, a board driver), or a combination thereof. For example, a column of components 125 may receive a column address from the memory controller 170 and enable the appropriate first access line 120 based on the received column address. Similarly, a row of components 135 may receive a row of addresses from memory controller 170 and enable appropriate second access lines 130. Thus, in some examples, a memory cell 105 may be accessed by enabling a first access line 120 and a second access line 130 . In some examples, these access operations may be accompanied by a board assembly 145 biasing one or more of the third access lines 140 (eg, in the third access line 140 of the memory sector 110 ) One is biased, all third access lines 140 of the memory sector are biased, the memory sector 110 is biased or a common plate line of the memory device 100 is biased, the memory sector 110 is biased or a common node of the memory device 100 is biased), which may be referred to as a "moving" memory cell 105, a memory sector 110, or a "board" of the memory device 100.

在某些實例中,記憶體控制器170可透過各種組件(例如,列組件125、行組件135、板組件145、感測組件150)控制記憶體胞元105之操作(例如,讀取操作、寫入操作、重寫操作、再新操作、放電操作、電壓調整操作、耗散操作、均等操作)。在某些情形中,列組件125、行組件135、板組件145及感測組件150中之一或多者可位於同一位置或以其他方式包含於記憶體控制器170內。記憶體控制器170可產生列位址信號及行位址信號以啟動一所期望存取線120及存取線130。記憶體控制器170亦可產生或控制在記憶體裝置100之操作期間使用之各種電壓或電流。儘管僅展示一單個記憶體控制器170,但一記憶體裝置100之其他實例可具有一個以上記憶體控制器170 (例如,一記憶體裝置之一組記憶體扇區110中之每一者之一記憶體控制器170、一記憶體裝置100之若干個子組記憶體扇區110中之每一者之一記憶體控制器170、一多晶片記憶體裝置100之一晶片集中之每一者之一記憶體控制器170、一多庫記憶體裝置100之一組庫中之每一者之一記憶體控制器170、一多核心記憶體裝置100之每一核心之一記憶體控制器170或其任何組合),其中不同記憶體控制器170可實行相同功能或不同功能。In some examples, the memory controller 170 may control the operations of the memory cells 105 (eg, read operations, write operation, rewrite operation, refresh operation, discharge operation, voltage adjustment operation, dissipation operation, equalization operation). In some cases, one or more of column components 125 , row components 135 , board components 145 , and sense components 150 may be co-located or otherwise included within memory controller 170 . The memory controller 170 can generate column address signals and row address signals to enable a desired access line 120 and access line 130 . The memory controller 170 may also generate or control various voltages or currents used during the operation of the memory device 100 . Although only a single memory controller 170 is shown, other examples of a memory device 100 may have more than one memory controller 170 (eg, the sum of each of a set of memory sectors 110 of a memory device A memory controller 170 , a memory controller 170 of each of a number of subsets of memory sectors 110 of a memory device 100 , each of a chip set of a multi-chip memory device 100 a memory controller 170, a memory controller 170 for each of a bank of a multi-bank memory device 100, a memory controller 170 for each core of a multi-core memory device 100, or any combination thereof), wherein different memory controllers 170 may perform the same function or different functions.

儘管記憶體裝置100被圖解說明為包含一單個列組件125、一單個行組件135及一單個板組件145,但一記憶體裝置100之其他實例可包含不同組態以適應一組記憶體扇區110。舉例而言,在各種記憶體裝置100中,一列組件125可在一組記憶體扇區110當中共用(例如,具有所有組之記憶體扇區110所共有之子組件、具有專用於一組記憶體扇區110中之各別一組子組件),或一列組件125可專用於一組記憶體扇區110中之一個記憶體扇區110。同樣地,在各種記憶體裝置100中,一行組件135可在一組記憶體扇區110當中共用(例如,具有由所有組記憶體扇區110所共有之子組件、具有專用於記憶體扇區110中之各別記憶體扇區之子組件),或一行組件135可專用於一組記憶體扇區110中之一個記憶體扇區110。另外,在各種記憶體裝置100中,一板組件145可在一組記憶體扇區110當中共用(例如,具有由所有組記憶體扇區110所共有之子組件、具有專用於記憶體扇區110中之各別記憶體扇區之子組件),或一板組件145可專用於一組記憶體扇區110中之一個記憶體扇區110。Although memory device 100 is illustrated as including a single column assembly 125, a single row assembly 135, and a single board assembly 145, other examples of a memory device 100 may include different configurations to accommodate a set of memory sectors 110. For example, in various memory devices 100, a column of components 125 may be common among a set of memory sectors 110 (eg, having subcomponents common to all sets of memory sectors 110, having subcomponents that are specific to a set of memory a respective set of subcomponents in a sector 110 ), or a column of components 125 may be dedicated to one memory sector 110 in a set of memory sectors 110 . Likewise, in various memory devices 100, a row of components 135 may be shared among a set of memory sectors 110 (eg, having subcomponents common to all sets of memory sectors 110, having subcomponents that are dedicated to memory sectors 110 (sub-components of respective memory sectors in ), or a row of components 135 may be dedicated to one memory sector 110 in a group of memory sectors 110. Additionally, in various memory devices 100, a board component 145 may be shared among a set of memory sectors 110 (eg, having subcomponents common to all sets of memory sectors 110, having a subcomponent that is dedicated to memory sectors 110 (sub-components of respective memory sectors in the ), or a board component 145 may be dedicated to one memory sector 110 in a group of memory sectors 110.

通常,可對一所施加電壓、電流或電荷之振幅、形狀或持續時間做出調整或變化,且該等振幅、形狀或持續時間可針對所論述的用於操作記憶體裝置100之各種操作而有所不同。此外,可同時存取記憶體裝置100內之一個、多個或所有記憶體胞元105。舉例而言,可同時存取共用一共同存取線120之記憶體胞元105中之每一者或共用一共同存取線120 (例如,一共同胞元選擇線)之記憶體胞元105之某些子組(例如,根據一記憶體列存取配置、根據一「頁」存取配置、根據一組存取線130或可被同時存取或感測之行)。在另一實例中,可在一重設操作期間同時存取記憶體裝置100之多個或所有記憶體胞元105,在該重設操作中所有記憶體胞元105或記憶體胞元105之一群組(例如,一記憶體扇區110之記憶體胞元105)被設定為一單個邏輯狀態。In general, adjustments or changes can be made to the amplitude, shape, or duration of an applied voltage, current, or charge, and such amplitude, shape, or duration can be varied for the various operations discussed for operating the memory device 100 . different. Additionally, one, more, or all of the memory cells 105 within the memory device 100 may be accessed simultaneously. For example, each of memory cells 105 that share a common access line 120 or memory cells 105 that share a common access line 120 (eg, a common cell select line) can be accessed simultaneously Certain subsets (eg, according to a memory row access configuration, according to a "page" access configuration, according to a set of access lines 130 or rows that can be accessed or sensed simultaneously). In another example, multiple or all memory cells 105 of memory device 100 may be simultaneously accessed during a reset operation in which all or one of memory cells 105 Groups (eg, memory cells 105 of a memory sector 110) are set to a single logical state.

當存取記憶體胞元105時(例如,與記憶體控制器170協作)藉由一感測組件150可讀取(例如,感測)一記憶體胞元105以判定寫入記憶體胞元105至或由記憶體胞元105儲存之一邏輯狀態。舉例而言,感測組件150可經組態以回應於一讀取操作感測通過或來自記憶體胞元105之一電流或電荷轉移或自將記憶體胞元105與感測組件150或其他中介性組件(例如,記憶體胞元105與感測組件150之間的一信號生成組件)耦合而得到之一電壓。感測組件150可將指示自記憶體胞元105讀取之邏輯狀態之一輸出信號提供至一或多個組件(例如,提供至行組件135、輸入/輸出組件160、記憶體控制器170)。在各種記憶體裝置100中,一感測組件150可在一組記憶體扇區110當中共用(例如,具有所有組記憶體扇區110所共有之子組件、具有專用於一組記憶體扇區110中之各別記憶體扇區之子組件),或一感測組件150可專用於一組記憶體扇區110中之一個記憶體扇區110。When accessing the memory cell 105 (eg, in cooperation with the memory controller 170 ), a memory cell 105 can be read (eg, sensed) by a sensing component 150 to determine whether to write to the memory cell 105 to or stored by memory cell 105 to a logic state. For example, the sensing element 150 may be configured to sense a current or charge transfer through or from the memory cell 105 or from the memory cell 105 and the sensing element 150 or other in response to a read operation An intermediate component (eg, a signal generating component between the memory cell 105 and the sensing component 150 ) is coupled to obtain a voltage. Sensing component 150 may provide an output signal indicative of the logic state read from memory cell 105 to one or more components (eg, to row component 135, input/output component 160, memory controller 170) . In various memory devices 100 , a sensing component 150 may be shared among a set of memory sectors 110 (eg, having subcomponents common to all sets of memory sectors 110 , having a subcomponent that is dedicated to a set of memory sectors 110 , subcomponents of respective memory sectors), or a sensing component 150 may be dedicated to one memory sector 110 in a group of memory sectors 110.

在某些實例中,在存取一記憶體胞元105期間或之後,記憶體胞元105之一儲存元件可放電或以其他方式准許電荷或電流經由其對應存取線120、130或140流動。此電荷或電流可由自記憶體裝置100之一或多個電壓源或供應器(未展示)對記憶體胞元105加偏壓或施加一電壓形成,其中此電壓源或供應器可係一列組件125、一行組件135、一板組件145、一感測組件150、一記憶體控制器170或某些其他組件(例如,一加偏壓組件)之一部分。在某些實例中,在一選定記憶體胞元105與一存取線130之間共用之電荷可致使存取線130之電壓發生改變,感測組件150可比較存取線130之電壓與一參考電壓以判定記憶體胞元105所儲存之邏輯狀態。In some examples, during or after a memory cell 105 is accessed, a storage element of the memory cell 105 may discharge or otherwise allow charge or current to flow through its corresponding access line 120 , 130 or 140 . This charge or current may be formed by biasing or applying a voltage to memory cell 105 from one or more voltage sources or supplies (not shown) of memory device 100, which may be a series of components 125, a row of components 135, a board component 145, a sensing component 150, a memory controller 170, or part of some other component (eg, a biasing component). In some examples, the charge shared between a selected memory cell 105 and an access line 130 can cause the voltage of the access line 130 to change, and the sense element 150 can compare the voltage of the access line 130 to a The reference voltage is used to determine the logic state stored in the memory cell 105 .

一感測組件150可包含各種切換組件、選擇組件、電晶體、放大器、電容器、電阻器、或電壓源以偵測或放大感測信號之一差(例如,一讀取電壓與一參考電壓之間的一差、一讀取電流與一參考電流之間的一差、一讀取電荷與一參考電荷之間的一差),在某些實例中,此可被稱為鎖存。在某些實例中,一感測組件150可包含大批組件(例如,電路元件),該大批組件重複地用於連接至感測組件150之一組存取線130中之每一者。舉例而言,一感測組件150可針對與感測組件150耦合之一組存取線130中之每一者包含一單獨感測電路(例如,一單獨或複製的感測放大器、一單獨或複製的信號生成組件),以使得可針對與一組存取線130中之一各別存取線耦合之一各別記憶體胞元105單獨地偵測一邏輯狀態。在某些實例中,一參考信號源(例如,一參考組件)或所產生參考信號可在記憶體裝置100之組件之間共用(例如,在一或多個感測組件150當中共用、在一感測組件150之單獨感測電路當中共用、在一記憶體扇區110之存取線120、130或140當中共用)。在某些實例中,可透過一行組件135或一輸入/輸出組件160輸出所偵測到的一記憶體胞元105之邏輯狀態作為一輸出。A sensing element 150 may include various switching elements, selection elements, transistors, amplifiers, capacitors, resistors, or voltage sources to detect or amplify a difference in sense signals (eg, the difference between a read voltage and a reference voltage) A difference between a read current and a reference current, a difference between a read charge and a reference charge), in some instances, may be referred to as latching. In some examples, a sense component 150 may include a large number of components (eg, circuit elements) that are repeatedly used to connect to each of a set of access lines 130 of the sense component 150 . For example, a sense component 150 may include a separate sense circuit (eg, a separate or duplicated sense amplifier, a separate or Duplicated signal generation components) such that a logic state can be detected individually for a respective memory cell 105 coupled to a respective one of the set of access lines 130. In some instances, a reference signal source (eg, a reference component) or generated reference signal may be shared among components of memory device 100 (eg, shared among one or more sensing components 150, a Common among the individual sensing circuits of the sensing element 150, common among the access lines 120, 130 or 140 of a memory sector 110). In some examples, the detected logic state of a memory cell 105 may be output as an output through a row of elements 135 or an input/output element 160 .

感測組件150可包含於包含記憶體裝置100之一裝置中。舉例而言,感測組件150可與可耦合至記憶體裝置100之記憶體之其他讀取與寫入電路、解碼電路或暫存器電路包含在一起。在某些實例中,可透過一行組件135或一輸入/輸出組件160輸出所偵測到的一記憶體胞元105之邏輯狀態作為一輸出。在某些實例中,一感測組件150可係一行組件135或一列組件125之一部分。在某些實例中,一感測組件150可連接至一行組件135或一列組件125或以其他方式與一行組件135或一列組件125電子通信。Sensing component 150 may be included in a device including memory device 100 . For example, the sensing element 150 may be included with other read and write circuits, decoding circuits, or register circuits that may be coupled to the memory of the memory device 100 . In some examples, the detected logic state of a memory cell 105 may be output as an output through a row of elements 135 or an input/output element 160 . In some examples, a sensing element 150 may be part of a row of elements 135 or a column of elements 125 . In some examples, a sensing component 150 may be connected to or otherwise in electronic communication with a row of components 135 or a column of components 125 .

儘管展示一單個感測組件150,但一記憶體裝置100 (例如,一記憶體裝置100之一記憶體扇區110)可包含一個以上感測組件150。舉例而言,一第一感測組件150可與第一子組存取線130耦合且一第二感測組件150可與第二子組存取線130 (例如,不同於第一子組存取線130)耦合。在某些實例中,感測組件150之此一劃分可支援多個感測組件150之並行(例如,同時)操作。在某些實例中,感測組件150之此一劃分可支援具有不同組態或特性之感測組件150與記憶體裝置之記憶體胞元105之特定子組匹配(例如,支援不同類型之記憶體胞元105、支援記憶體胞元105之子組之不同特性、支援存取線130之子組之不同特性)。另外或另一選擇為,兩個或兩個以上感測組件150可與同一組存取線130 (例如,組件冗餘)耦合。在某些實例中,此一組態可支援維持克服冗餘感測組件150中之一者之一故障或不良操作的功能性。在某些實例中,此一組態可支援針對特定操作特性來選擇冗餘感測組件150中之一者之能力(例如,關係到功耗特性、關係到一特定感測操作之存取速度特性、關係到在一揮發性模式或一非揮發性模式中操作記憶體胞元105)。Although a single sensing element 150 is shown, a memory device 100 (eg, a memory sector 110 of a memory device 100 ) may include more than one sensing element 150 . For example, a first sense element 150 can be coupled with a first subset of access lines 130 and a second sense element 150 can be coupled with a second subset of access lines 130 (eg, different from the first subset of access lines 130 ) Take line 130) for coupling. In some examples, such a partitioning of sensing components 150 may support parallel (eg, simultaneous) operation of multiple sensing components 150 . In some examples, such a division of sensing components 150 may support matching of sensing components 150 with different configurations or characteristics to particular subsets of memory cells 105 of the memory device (eg, supporting different types of memory) Soma cell 105, supports different characteristics of subgroups of memory cells 105, supports different characteristics of subgroups of access lines 130). Additionally or alternatively, two or more sense components 150 may be coupled with the same set of access lines 130 (eg, component redundancy). In some instances, such a configuration may support maintaining functionality to overcome a failure or poor operation of one of the redundant sensing components 150 . In some instances, such a configuration may support the ability to select one of the redundant sensing components 150 for specific operating characteristics (eg, related to power consumption characteristics, related to access speed for a specific sensing operation) characteristics, related to operating the memory cell 105 in a volatile mode or a non-volatile mode).

在某些記憶體架構中,存取記憶體胞元105可能會降級或破壞所儲存邏輯狀態,且可實行重寫或再新操作以將所儲存邏輯狀態恢復至記憶體胞元105。在DRAM或FeRAM中,舉例而言,一記憶體胞元105之一電容器可在一感測操作期間被部分地或完全放電,因而損壞記憶體胞元105中所儲存之邏輯狀態。因此,在某些實例中,可在一存取操作期間重寫一記憶體胞元105中所儲存之邏輯狀態。此外,啟動一單個存取線120、130或140可致使與經啟動存取線120、130或140耦合之所有記憶體胞元105放電。因此,可在存取操作之後重寫與和一存取操作相關聯之一存取線120、130或140耦合之數個或所有記憶體胞元105 (例如,一存取列之所有胞元、一存取行之所有胞元)。In some memory architectures, accessing the memory cell 105 may degrade or destroy the stored logical state, and an overwrite or refresh operation may be performed to restore the stored logical state to the memory cell 105 . In DRAM or FeRAM, for example, a capacitor of a memory cell 105 may be partially or fully discharged during a sensing operation, thereby damaging the logic state stored in the memory cell 105 . Thus, in some instances, the logic state stored in a memory cell 105 may be overwritten during an access operation. Furthermore, activating a single access line 120, 130 or 140 can cause all memory cells 105 coupled to the activated access line 120, 130 or 140 to discharge. Thus, several or all memory cells 105 coupled to an access line 120, 130, or 140 associated with an access operation (eg, all cells of an access row) may be overwritten after an access operation , an access to all cells of a row).

在某些實例中,讀取一記憶體胞元105可係非破壞性的。即,在讀取記憶體胞元105之後可無須重寫記憶體胞元105之邏輯狀態。然而,在某些實例中,在不存在或存在其他存取操作時可需要或可不需要再新記憶體胞元105之邏輯狀態。舉例而言,可按照週期性間隔藉由施加一適當寫入脈衝、重寫脈衝、再新脈衝或均等脈衝或加偏壓再新由一記憶體胞元105儲存之邏輯狀態,以維持所儲存邏輯狀態。再新記憶體胞元105可減小或消除由於一電荷洩漏或一記憶體元件之一材料組態隨時間推移之一改變所致的讀取干擾誤差或邏輯狀態損壞。In some examples, reading a memory cell 105 can be non-destructive. That is, the logic state of the memory cell 105 does not need to be rewritten after the memory cell 105 is read. However, in some instances, the logic state of memory cell 105 may or may not be required to be refreshed in the absence or presence of other access operations. For example, the logic state stored by a memory cell 105 may be refreshed at periodic intervals by applying an appropriate write pulse, rewrite pulse, refresh pulse, or equalization pulse or biasing voltage to maintain the stored logical state. Refreshing memory cells 105 can reduce or eliminate read disturb errors or logic state corruption due to a charge leakage or a change in a material configuration of a memory element over time.

可藉由啟動相關的第一存取線120、第二存取線130或第三存取線140 (例如,經由一記憶體控制器170)來對一記憶體胞元105進行設定或寫入。換言之,一邏輯狀態可儲存於一記憶體胞元105中。舉例而言,列組件125、行組件135或板組件145可經由輸入/輸出組件160接受將被寫入至記憶體胞元105之資料。在某些實例中,可藉由一感測組件150至少部分地實行一寫入操作,或一寫入操作可經組態以繞過一感測組件150。A memory cell 105 may be set or written by activating the associated first access line 120, second access line 130, or third access line 140 (eg, via a memory controller 170) . In other words, a logic state can be stored in a memory cell 105 . For example, column element 125 , row element 135 , or board element 145 may receive data to be written to memory cell 105 via input/output element 160 . In some examples, a write operation can be performed at least in part by a sense component 150 , or a write operation can be configured to bypass a sense component 150 .

在一電容性記憶體元件之情形中,可藉由對或跨越一電容器施加一電壓且然後隔離電容器(例如,將電容器與用於對記憶體胞元105進行寫入之一電壓源隔離、使電容器浮動)以將與一所期望邏輯狀態相關聯之一電荷儲存於電容器中來對一記憶體胞元105進行寫入。在鐵電記憶體之情形中,可藉由以下方式對一記憶體胞元105之一鐵電記憶體元件(例如,一鐵電電容器)進行寫入:施加一量值足夠高以將鐵電記憶體元件極化成與一所期望邏輯狀態相關聯之一極化的一電壓(例如,施加一飽和電壓),且可將鐵電記憶體元件隔離(例如,浮動),或可跨越鐵電記憶體元件施加一零淨電壓或偏壓(例如,接地、虛擬接地或跨越鐵電記憶體元件使一電壓均等化)。在一材料記憶體架構之情形中,可藉由根據一對應邏輯狀態對一材料記憶體元件施加一電流、電壓、或其他加熱或加偏壓以對材料進行組態來對一記憶體胞元105進行寫入。In the case of a capacitive memory element, it can be made possible by applying a voltage to or across a capacitor and then isolating the capacitor (eg, isolating the capacitor from a voltage source used to write to memory cell 105). capacitor float) to store a charge in the capacitor associated with a desired logic state for writing to a memory cell 105. In the case of ferroelectric memory, a ferroelectric memory element (eg, a ferroelectric capacitor) of a memory cell 105 can be written by applying a magnitude high enough to convert the ferroelectric The memory element is polarized to a voltage (eg, applying a saturation voltage) to a polarization associated with a desired logic state, and can isolate (eg, float) the ferroelectric memory element, or can span the ferroelectric memory The bulk element applies a zero net voltage or bias (eg, ground, virtual ground, or equalizing a voltage across the ferroelectric memory element). In the case of a material memory architecture, a memory cell can be configured by applying a current, voltage, or other heat or bias to a material memory element according to a corresponding logic state to configure the material 105 to write.

在某些實例中,記憶體裝置100可包含一組記憶體扇區110。記憶體扇區110中之每一者可包含一組記憶體胞元105,該組記憶體胞元105與(例如,各別記憶體扇區110之)一組第二存取線130中之一者以及一組第三存取線140中之一者耦合,或者耦合於一組第二存取線130中之一者與一組第三存取線140中之一者之間。記憶體胞元105中之每一者可包含一胞元選擇組件,該胞元選擇組件經組態以選擇性地將記憶體胞元105與(例如,各別記憶體扇區110之)相關聯第二存取線130或相關聯第三存取線140耦合。在某些實例中,胞元選擇組件中之每一者可與(例如,記憶體扇區110之)第一存取線120中之一各別第一存取線耦合(例如,在各別胞元選擇組件之一控制節點或一控制端子處),此可用於啟動或撤銷啟動特定胞元選擇組件。In some examples, memory device 100 may include a set of memory sectors 110 . Each of the memory sectors 110 may include a set of memory cells 105 and a set of second access lines 130 (eg, of the respective memory sectors 110) One and one of the set of third access lines 140 are coupled, or between one of the set of second access lines 130 and one of the set of third access lines 140 . Each of the memory cells 105 may include a cell selection element configured to selectively associate the memory cells 105 with (eg, of respective memory sectors 110 ) The associated second access line 130 or the associated third access line 140 is coupled. In some examples, each of the cell select elements may be coupled with a respective one of the first access lines 120 (eg, of memory sector 110) (eg, at a respective one of the first access lines 120). A control node or a control terminal of a cell selection element), which can be used to activate or deactivate a particular cell selection element.

可對一記憶體扇區110之選定記憶體胞元105實行存取操作,該等存取操作可包含讀取操作、寫入操作、重寫操作、再新操作或其各種組合。在某些實例中,存取操作可和對與一選定記憶體胞元105相關聯之第二存取線130或第三存取線140加偏壓相關聯。在存取操作期間,可啟動用於選定記憶體胞元105之胞元選擇組件,以使得選定記憶體胞元105可選擇性地與第二存取線130或第三存取線140耦合。因此,由於對第二存取線130或第三存取線140加偏壓以進行存取操作,與存取操作相關聯之信號(例如,與一存取操作相關聯之一電壓、與一存取操作相關聯之一電荷、與一存取操作相關聯之一電流)可傳動至選定記憶體胞元105、自選定記憶體胞元105傳遞而來或傳遞通過選定記憶體胞元105。Access operations may be performed on selected memory cells 105 of a memory sector 110, and such access operations may include read operations, write operations, rewrite operations, refresh operations, or various combinations thereof. In some examples, the access operation may be associated with biasing the second access line 130 or the third access line 140 associated with a selected memory cell 105 . During an access operation, the cell selection element for the selected memory cell 105 can be activated so that the selected memory cell 105 can be selectively coupled with the second access line 130 or the third access line 140 . Therefore, as the second access line 130 or the third access line 140 is biased for an access operation, signals associated with an access operation (eg, a voltage associated with an access operation, a voltage associated with an access operation, and a A charge associated with an access operation, a current associated with an access operation) can be transferred to, from or through the selected memory cell 105 .

在某些實例中,電荷可能會自記憶體裝置100或記憶體扇區110之一個部分洩漏至另一部分。可能的洩漏原因包含製造缺陷、組件崩潰(例如,薄膜電晶體(TFT)崩潰或洩漏)、記憶體胞元耗損機制(例如,應力引發之洩漏電流(SILC)、崩潰(BD)電流)、組成改變或其他原因。舉例而言,電荷可跨越一記憶體胞元105之一胞元選擇組件、跨越一電容性儲存元件之一介電材料,自記憶體裝置100之一個存取線至另一存取線(例如,自一存取線130至另一存取線120、130或130)、跨越意在撤銷啟動之電晶體(例如,跨越切換至一非導電狀態之電晶體)等而洩漏。在某些實例中,電荷洩漏可對記憶體裝置100之效能造成負面影響(例如,導致在讀取一記憶體胞元時偵測到與先前寫入至記憶體胞元之邏輯狀態不同之一邏輯狀態)。因此,根據本文中所揭示之技術,記憶體裝置100 (例如,記憶體控制器170)可經組態以基於對記憶體裝置100中之電荷洩漏之一偵測來判定是將一直接邏輯狀態還是將一互補邏輯狀態儲存至一記憶體胞元105或一組記憶體胞元105。In some instances, charge may leak from one portion of memory device 100 or memory sector 110 to another. Possible causes of leakage include manufacturing defects, device breakdown (eg, thin film transistor (TFT) breakdown or leakage), memory cell depletion mechanisms (eg, stress-induced leakage current (SILC), breakdown (BD) current), composition change or other reasons. For example, charge can traverse a cell select element of a memory cell 105, traverse a dielectric material of a capacitive storage element, from one access line of memory device 100 to another (eg, , leakage from one access line 130 to another access line 120, 130 or 130), across a transistor intended to be deactivated (eg, across a transistor switched to a non-conductive state), etc. In some instances, charge leakage can negatively impact the performance of memory device 100 (eg, causing a memory cell to be read from a logic state that is different from the one previously written to the memory cell) logical state). Thus, in accordance with the techniques disclosed herein, memory device 100 (eg, memory controller 170 ) may be configured to determine whether to convert a direct logic state based on a detection of charge leakage in memory device 100 A complementary logic state is also stored in a memory cell 105 or a group of memory cells 105 .

在某些實例中,刪除或其他行為可導致寫入至一記憶體胞元105或由一記憶體胞元105儲存之一資訊狀態(例如,邏輯狀態)可不確定(例如,在一後續存取操作中)的一狀況。舉例而言,在某些情況中,記憶體裝置100可無法區分一記憶體胞元105所儲存的是一種邏輯狀態還是另一種邏輯狀態(例如,一記憶體胞元所儲存的是一邏輯1還是一邏輯0),或記憶體裝置100可在讀取一記憶體胞元105偵測一種邏輯狀態,但寫入至記憶體胞元105的係一不同邏輯狀態(例如,在對一記憶體胞元進行一讀取操作期間偵測到一邏輯0,但記憶體胞元被寫入一邏輯1)。In some instances, deletions or other actions may cause an information state (eg, logical state) written to or stored by a memory cell 105 to be indeterminate (eg, a subsequent access in operation). For example, in some cases, the memory device 100 may not be able to distinguish whether a memory cell 105 stores one logic state or another logic state (eg, a memory cell stores a logic 1 is also a logic 0), or the memory device 100 may detect one logic state when reading a memory cell 105, but write a different logic state to the memory cell 105 (eg, when reading a memory cell 105 A logic 0 is detected during a read operation of the cell, but the memory cell is written with a logic 1).

在某些實例中,記憶體裝置100可經組態以識別可與一不確定或未確定的資訊狀態相關聯之各種狀況。舉例而言,記憶體裝置100可識別與一不確定或未確定的資訊狀態相關聯的一或多個記憶體胞元105、一或多個存取線(例如,存取線130)或者一碼字之一或多個資訊位置。一對應碼字(例如,在一讀取操作期間產生)可包含具有所偵測到之資訊狀態(例如,一邏輯0或邏輯1)之某些資訊位置及具有一不確定的資訊狀態或未經指派資訊狀態(例如,一邏輯X、一空的邏輯狀態)之某些資訊位置。可對碼字實行錯誤處置操作,其中與一不確定或未經指派邏輯狀態相關聯之資訊位置被替換或指派一各別假定或推測性資訊狀態(例如,以一邏輯0替換一邏輯X、以一邏輯1替換一邏輯X),此可提高處置各種錯誤之一能力且具有其他益處。In some examples, memory device 100 may be configured to identify various conditions that may be associated with an indeterminate or indeterminate information state. For example, memory device 100 may identify one or more memory cells 105, one or more access lines (eg, access line 130), or a One or more information locations of a codeword. A corresponding codeword (eg, generated during a read operation) may include certain information locations having a detected information state (eg, a logic 0 or logic 1) and having an indeterminate information state or undetermined information state Certain information locations are assigned information states (eg, a logical X, an empty logical state). Error handling operations may be performed on codewords in which information locations associated with an indeterminate or unassigned logic state are replaced or assigned a respective putative or speculative information state (e.g., a logic 0 replaces a logic X, Replacing a logical X) with a logical 1 improves one of the various errors and has other benefits.

圖2圖解說明根據本文中所揭示之實例的支援用於一記憶體裝置之記憶體管理及刪除解碼之一實例性電路200。電路200包含一記憶體胞元105-a,記憶體胞元105-a可係參考圖1所闡述之一記憶體胞元105之一實例。電路200亦包含一感測放大器290,感測放大器290可係參考圖1所闡述之一感測組件150之一部分。電路200亦可包含一字線205、一數位線210及一板線215,在某些實例中,字線205、數位線210及板線215可分別對應於參考圖1所闡述的(例如,一記憶體扇區110之)一第一存取線120、一第二存取線130及一第三存取線140。在某些實例中,板線215可說明同一記憶體扇區110之記憶體胞元105-a及另一記憶體胞元105 (未展示)之一共同板線、一共同板或另一共同節點。電路200亦可包含由感測放大器290使用以判定記憶體胞元105-a所儲存之一邏輯狀態之一參考線265。2 illustrates an example circuit 200 that supports memory management and delete decoding for a memory device in accordance with examples disclosed herein. The circuit 200 includes a memory cell 105-a, which may be an example of the memory cell 105 described with reference to FIG. Circuit 200 also includes a sense amplifier 290, which may be part of one of the sense components 150 described with reference to FIG. Circuit 200 may also include a word line 205, a digit line 210, and a plate line 215, which in some examples may correspond, respectively, to those described with reference to FIG. 1 (eg, A first access line 120 , a second access line 130 and a third access line 140 of a memory sector 110 . In some examples, board line 215 may illustrate a common board line, a common board, or another common board line of memory cell 105-a and another memory cell 105 (not shown) of the same memory sector 110 node. Circuit 200 may also include a reference line 265 used by sense amplifier 290 to determine a logic state stored by memory cell 105-a.

如圖2中所圖解說明,感測放大器290可包含一第一節點291及一第二節點292,在某些實例中,第一節點291及第二節點292可與一電路之不同存取線(例如,分別係電路200之一信號線260及一參考線265)耦合,或在其他實例中可與一不同電路(未展示)之一共同存取線耦合。在某些實例中,第一節點291可被稱為一信號節點,且第二節點292可被稱為一參考節點。然而,存取線或參考線之其他組態可用於支援本文中所闡述之技術。As illustrated in FIG. 2, sense amplifier 290 may include a first node 291 and a second node 292, which in some examples may be different access lines to a circuit (eg, a signal line 260 and a reference line 265 of circuit 200, respectively), or in other examples may be coupled to a common access line of a different circuit (not shown). In some instances, the first node 291 may be referred to as a signal node, and the second node 292 may be referred to as a reference node. However, other configurations of access lines or reference lines may be used to support the techniques described herein.

記憶體胞元105-a可包含一邏輯儲存組件(例如,一記憶體元件、一儲存元件、一記憶體儲存元件),例如具有一第一板、胞元板221及一第二板、胞元底部222之一電容器220。胞元板221及胞元底部222可透過位於其之間的一介電材料電容性耦合(例如,在一DRAM應用中),或透過位於其之間的一鐵電材料電容性耦合(例如,在一FeRAM應用中)。胞元板221可與一電壓Vplate 相關聯,且胞元底部222可與一電壓Vbottom 相關聯,如電路200中所圖解說明。在不改變記憶體胞元105-a之操作之情況下,胞元板221及胞元底部222之定向可不同(例如,翻轉)。可經由板線215存取胞元板221,且可經由數位線210存取胞元底部222。如本文中所闡述,可藉由將電容器220充電、放電或極化儲存各種邏輯狀態。The memory cell 105-a may include a logical storage element (eg, a memory element, a storage element, a memory storage element), such as having a first board, cell board 221 and a second board, cell A capacitor 220 at the bottom 222 of the cell. Cell plate 221 and cell bottom 222 may be capacitively coupled through a dielectric material therebetween (eg, in a DRAM application), or capacitively coupled through a ferroelectric material therebetween (eg, in a FeRAM application). Cell plate 221 may be associated with a voltage V plate and cell bottom 222 may be associated with a voltage V bottom , as illustrated in circuit 200 . The orientation of the cell plate 221 and the cell bottom 222 may be different (eg, flipped) without changing the operation of the memory cell 105-a. Cell board 221 is accessible via board line 215 , and cell bottom 222 is accessible via digit line 210 . As set forth herein, various logic states may be stored by charging, discharging, or polarizing capacitor 220 .

電容器220可電連接至數位線210,且可藉由操作電路200中所表示之各種元件來讀取或感測電容器220所儲存之邏輯狀態。舉例而言,記憶體胞元105-a亦可包含一胞元選擇組件230,在某些實例中,該胞元選擇組件230可被稱為與一存取線(例如,數位線210)及電容器220耦合或耦合於一存取線與電容器220之間的一切換組件或一選擇器裝置。在某些實例中,一胞元選擇組件230可被視為位於記憶體胞元105-a之說明性邊界之外,且胞元選擇組件230可被稱為與一存取線(例如,數位線210)及記憶體胞元105-a耦合或於一存取線與記憶體胞元105-a之間的一切換組件或選擇器裝置。Capacitor 220 may be electrically connected to digit line 210 and the logic state stored by capacitor 220 may be read or sensed by operating various elements represented in circuit 200 . For example, memory cell 105-a may also include a cell select element 230, which in some instances may be referred to as being associated with an access line (eg, digit line 210) and Capacitor 220 is coupled or coupled to a switching element or a selector device between an access line and capacitor 220 . In some examples, a cell selection element 230 may be considered to be located outside the illustrative boundaries of memory cell 105-a, and cell selection element 230 may be referred to as being associated with an access line (eg, a bit Line 210) and memory cell 105-a are coupled or a switch element or selector device between an access line and memory cell 105-a.

當啟動胞元選擇組件230時(例如,藉由一啟動邏輯信號),電容器220可與數位線210選擇性地耦合,且當撤銷啟動胞元選擇組件230時(例如,藉由一撤銷啟動邏輯信號),電容器220可與數位線210選擇性地隔離。可對胞元選擇組件230之一控制節點235 (例如,一控制節點、一控制端子、一選擇節點、一選擇端子)施加一邏輯信號或其他選擇信號或電壓(例如,經由字線205、一選擇線)。換言之,胞元選擇組件230可經組態以基於一邏輯信號或經由字線205施加至控制節點235之電壓將電容器220與數位線210選擇性地耦合或解耦合。Capacitor 220 may be selectively coupled to digit line 210 when cell selection element 230 is activated (eg, by an activation logic signal), and when cell selection element 230 is deactivated (eg, by a deactivation logic signal) signal), the capacitor 220 can be selectively isolated from the digit line 210. A logic signal or other select signal or voltage (eg, via word line 205, a selection line). In other words, cell selection component 230 can be configured to selectively couple or decouple capacitor 220 from digit line 210 based on a logic signal or a voltage applied to control node 235 via word line 205 .

啟動胞元選擇組件230可被稱為選擇或啟動記憶體胞元105-a,且撤銷啟動胞元選擇組件230可被稱為取消選擇或撤銷啟動記憶體胞元105-a。在某些實例中,胞元選擇組件230係一電晶體且其操作可藉由對電晶體閘極(例如,一控制或選擇節點或端子)施加一啟動電壓來加以控制。用於啟動電晶體之電壓(例如,電晶體閘極端子與電晶體源之間的電壓)可係大於電晶體之臨限電壓量值之一電壓。字線205可用於啟動胞元選擇組件230。舉例而言,施加至字線205之一選擇電壓(例如,一字線邏輯信號或一字線電壓)可施加至胞元選擇組件230之一電晶體之閘極,胞元選擇組件230可選擇性地連接電容器220與數位線210 (例如,提供電容器220與數位線210之間的一導電路徑)。在某些實例中,啟動胞元選擇組件230可被稱為選擇性地耦合記憶體胞元105-a與數位線210。Activating cell selection component 230 may be referred to as selecting or deactivating memory cell 105-a, and deactivating cell selection component 230 may be referred to as deselecting or deactivating memory cell 105-a. In some examples, cell selection component 230 is a transistor and its operation can be controlled by applying a startup voltage to the gate of the transistor (eg, a control or selection node or terminal). The voltage used to activate the transistor (eg, the voltage between the gate terminal of the transistor and the source of the transistor) may be a voltage greater than the threshold voltage magnitude of the transistor. Word line 205 may be used to activate cell select element 230 . For example, a select voltage (eg, a word line logic signal or a word line voltage) applied to word line 205 may be applied to the gate of a transistor of cell select element 230, which may select Capacitor 220 and digit line 210 are connected in a discrete manner (eg, to provide a conductive path between capacitor 220 and digit line 210). In some examples, enabling cell selection component 230 may be referred to as selectively coupling memory cell 105-a and digit line 210.

在其他實例中,胞元選擇組件230與電容器220在記憶體胞元105-a中之位置可切換,以使得胞元選擇組件230可耦合與板線215及胞元板221或耦合於板線215與胞元板221之間,且電容器220可與數位線210及胞元選擇組件230之另一端子耦合或耦合於數位線210與胞元選擇組件230之另一端子之間。在此實例中,胞元選擇組件230可透過電容器220與數位線210電子通信。此組態可與替代時序及用於存取操作之加偏壓相關聯。In other examples, the positions of cell selection element 230 and capacitor 220 in memory cell 105-a can be switched so that cell selection element 230 can be coupled to plate line 215 and cell plate 221 or to plate line 215 and the cell plate 221 , and the capacitor 220 may be coupled with the other terminal of the digit line 210 and the cell selection element 230 or between the other terminal of the digit line 210 and the cell selection element 230 . In this example, cell selection component 230 may be in electronic communication with digit line 210 through capacitor 220 . This configuration can be associated with alternate timing and biasing for access operations.

在採用一鐵電電容器220之實例中,電容器220在連接至數位線210時可或可不完全放電。在各種方案中,為感測由一鐵電電容器220儲存之邏輯狀態,可對板線215或數位線210施加一電壓,且可對字線205加偏壓(例如,藉由啟動字線205)以選擇記憶體胞元105-a。在某些情形中,在啟動字線205之前,可將板線215或數位線210虛擬接地且然後與虛擬接地隔離,這可被稱為一浮動狀況、一閒置狀況或一備用狀況。In the example employing a ferroelectric capacitor 220 , the capacitor 220 may or may not be fully discharged when connected to the digit line 210 . In various schemes, to sense the logic state stored by a ferroelectric capacitor 220, a voltage may be applied to the plate line 215 or the digit line 210, and the word line 205 may be biased (eg, by enabling the word line 205 ) to select memory cell 105-a. In some cases, plate line 215 or digit line 210 may be virtually grounded and then isolated from virtual ground prior to enabling word line 205, which may be referred to as a floating condition, an idle condition, or a standby condition.

藉由變化胞元板221之電壓(例如,經由板線215)來操作記憶體胞元105-a可被稱為「移動胞元板」。對板線215或數位線210加偏壓可跨越電容器220導致一電壓差(例如,數位線210之電壓減去板線215之電壓)。該電壓差可伴隨著電容器220上所儲存之電荷之一改變(例如,由於在電容器220與數位線210共用之電荷,由於在電容器220與板線215之間共用之電荷),其中所儲存電荷之改變量值可取決於電容器220之初始狀態(例如,初始電荷或邏輯狀態儲存的是一邏輯1還是一邏輯0)。在某些方案中,電容器220所儲存之電荷之一改變可導致數位線210或信號線260中之一或兩者之電壓之一改變,此改變可由感測放大器290使用以判定記憶體胞元105-a所儲存之邏輯狀態。Operating memory cell 105-a by varying the voltage of cell plate 221 (eg, via plate line 215) may be referred to as "moving the cell plate." Biasing the plate line 215 or the digit line 210 can result in a voltage difference across the capacitor 220 (eg, the voltage of the digit line 210 minus the voltage of the plate line 215). This voltage difference may be accompanied by a change in the charge stored on capacitor 220 (eg, due to the charge shared between capacitor 220 and digit line 210, due to the charge shared between capacitor 220 and plate line 215), wherein the stored charge The amount of change may depend on the initial state of capacitor 220 (eg, whether the initial charge or logic state stores a logic 1 or a logic 0). In some schemes, a change in the charge stored by capacitor 220 can cause a change in the voltage of one or both of digit line 210 or signal line 260, which can be used by sense amplifier 290 to determine memory cells Logic state stored in 105-a.

數位線210可與額外記憶體胞元105 (未展示)耦合,且數位線210可具有導致一不可忽視的固有電容240 (例如,大約微微法拉(pF))之性質,該固有電容240可將數位線210與一電壓源250-a耦合。電壓源250-a可表示一共同接地或虛擬接地電壓或電路200之一毗鄰存取線之電壓(未展示)。儘管在圖2中被圖解說明為一單獨元件,但固有電容240可與遍及數位線210分佈之性質相關聯。The digit line 210 can be coupled with additional memory cells 105 (not shown), and the digit line 210 can have properties that result in a non-negligible intrinsic capacitance 240 (eg, on the order of picofarads (pF)) that can The digit line 210 is coupled to a voltage source 250-a. Voltage source 250-a may represent a common ground or virtual ground voltage or the voltage of an adjacent access line of circuit 200 (not shown). Although illustrated as a separate element in FIG. 2 , intrinsic capacitance 240 may be associated with properties distributed throughout digit line 210 .

在某些實例中,固有電容240可取決於數位線210之物理特性,包含數位線210之導體尺寸(例如,長度、寬度、厚度)。固有電容240亦可取決於毗鄰存取線或電路組件之特性、與此等毗鄰存取線或電路組件之接近度或數位線210與此等存取線或電路組件之間的絕緣特性。因此,在選擇記憶體胞元105-a之後數位線210之電壓之一改變可取決於數位線210之淨電容(例如,與淨電容相關聯)。換言之,當電荷沿著數位線210流動(例如,流動至數位線210、自數位線210流動)時,可沿著數位線210儲存某些有限電荷(例如,儲存於固有電容240、與數位線210耦合之其他電容器或電容中),且數位線210之所得電壓可取決於數位線210之淨電容。In some examples, the intrinsic capacitance 240 may depend on the physical characteristics of the digit line 210 , including the conductor dimensions (eg, length, width, thickness) of the digit line 210 . Intrinsic capacitance 240 may also depend on the characteristics of adjacent access lines or circuit elements, proximity to such adjacent access lines or circuit elements, or insulation characteristics between digit lines 210 and such access lines or circuit elements. Thus, a change in the voltage of digit line 210 after selection of memory cell 105-a may depend on (eg, be associated with) the net capacitance of digit line 210. In other words, as charges flow along the digit line 210 (eg, to and from the digit line 210 ), some finite charge may be stored along the digit line 210 (eg, stored in the inherent capacitance 240 , and the digit line 210 ). 210 is coupled to other capacitors or capacitances), and the resulting voltage of the digit line 210 may depend on the net capacitance of the digit line 210.

感測放大器290可比較在選擇記憶體胞元105-a之後數位線210或信號線260之所得電壓與一參考(例如,參考線265之一電壓)以判定記憶體胞元105-a中所儲存之邏輯狀態。在某些實例中,一參考組件285可提供參考線265之一電壓。在其他實例中,可省略參考組件285且可提供一參考電壓,舉例而言藉由存取記憶體胞元105-a產生參考電壓(例如,在一自參考存取操作中)。其他操作可用於支援對記憶體胞元105-a之選擇或感測。The sense amplifier 290 may compare the resulting voltage on the digit line 210 or the signal line 260 after selecting the memory cell 105-a to a reference (eg, a voltage on the reference line 265) to determine the voltage in the memory cell 105-a. The logical state of storage. In some examples, a reference component 285 may provide a voltage on reference line 265 . In other examples, reference component 285 may be omitted and a reference voltage may be provided, eg, generated by accessing memory cell 105-a (eg, in a self-referencing access operation). Other operations may be used to support selection or sensing of memory cell 105-a.

在某些實例中,電路200可包含一信號生成組件280,信號生成組件280可係與記憶體胞元105-a及感測放大器290耦合或耦合於記憶體胞元105-a與感測放大器290之間的一信號生成電路之一實例。在一感測操作之前,信號生成組件280可放大或以其他方式轉換數位線210之信號。信號生成組件280可包含(舉例而言)一電晶體、一放大器、一串疊器件或任何其他電荷或電壓轉換器或放大器組件。在某些實例中,信號生成組件280可包含一電荷轉移感測放大器(CTSA),該電荷轉移感測放大器可包含呈一串疊器件組態或電壓控制組態之一或多個電晶體。在具有一信號生成組件280之某些實例中,感測放大器290與信號生成組件280之間的一線可被稱為一信號線(例如,信號線260)。在某些實例(例如,具有或沒有一信號生成組件280之實例)中,數位線210可直接與感測放大器290電連接。In some examples, circuit 200 can include a signal generation component 280, which can be coupled to memory cell 105-a and sense amplifier 290 or coupled to memory cell 105-a and sense amplifier 290 An example of a signal generating circuit between 290. The signal generation component 280 may amplify or otherwise convert the signal of the digit line 210 prior to a sensing operation. Signal generation component 280 may include, for example, a transistor, an amplifier, a tandem device, or any other charge or voltage converter or amplifier component. In some examples, the signal generation component 280 can include a charge transfer sense amplifier (CTSA) that can include one or more transistors in a tandem device configuration or a voltage control configuration. In some examples with a signal generation component 280, the line between the sense amplifier 290 and the signal generation component 280 may be referred to as a signal line (eg, signal line 260). In some instances (eg, instances with or without a signal generation component 280 ), the digit line 210 may be electrically connected directly to the sense amplifier 290 .

在某些實例中,電路200可包含一旁路線270,旁路線270可准許選擇性地繞過記憶體胞元105-a與感測放大器290之間的信號生成組件280或某些其他信號產生電路。在某些實例中,可藉由一切換組件275選擇性地啟用旁路線270。換言之,當啟動切換組件275時,數位線210可經由旁路線270與信號線260耦合(例如,將記憶體胞元105-a與感測放大器290耦合)。In some examples, circuit 200 may include a bypass line 270 that may permit selective bypassing of signal generation component 280 or some other signal generation circuit between memory cell 105-a and sense amplifier 290 . In some instances, bypass line 270 may be selectively enabled by a switching element 275 . In other words, when switching element 275 is activated, digit line 210 may be coupled with signal line 260 via bypass line 270 (eg, coupling memory cell 105-a with sense amplifier 290).

在某些實例中,當啟動切換組件275時,信號生成組件280可選擇性地與數位線210或信號線260中之一或兩者隔離(例如,藉由另一切換組件或選擇組件,未展示)。當撤銷啟動切換組件275時,數位線210可經由信號生成組件280選擇性地與信號線260耦合。在其他實例中,一選擇組件可用於選擇性地耦合記憶體胞元105-a (例如,數位線210)與信號生成組件280或旁路線270中之一者。另外或另一選擇為,在某些實例中,一選擇組件可用於選擇性地耦合感測放大器290與信號生成組件280或旁路線270中之一者。在某些實例中,一可選擇旁路線270可支援藉由使用信號生成組件280產生一感測信號以用於偵測記憶體胞元105-a之一邏輯狀態,且產生一寫入信號以將一邏輯狀態寫入至繞過信號生成組件280之記憶體胞元105-a。In some instances, when switching component 275 is activated, signal generating component 280 may be selectively isolated from one or both of digit lines 210 or signal lines 260 (eg, by another switching component or selection component, not exhibit). When switching component 275 is deactivated, digit line 210 can be selectively coupled to signal line 260 via signal generation component 280 . In other examples, a select element may be used to selectively couple memory cell 105-a (eg, digit line 210) with one of signal generation element 280 or bypass line 270. Additionally or alternatively, in some examples, a selection component may be used to selectively couple sense amplifier 290 with one of signal generating component 280 or bypass line 270 . In some examples, an optional bypass line 270 may support generating a sense signal for detecting a logic state of memory cell 105-a by using signal generation component 280, and generating a write signal to generate A logic state is written to memory cell 105 - a bypassing signal generation component 280 .

支援本文中所揭示之技術之一記憶體裝置100之某些實例可包含一記憶體胞元105與一感測放大器290之間共用一共同存取線(未展示)以支援自同一記憶體胞元105產生一感測信號及一參考信號的一電路200。在一項實例中,一信號生成組件280與一感測放大器290之間的一共同存取線可替代電路200中所圖解說明之信號線260及參考線265。在此實例中,共同存取線可在兩個不同節點(例如,一第一節點291及一第二節點292,如本文中所闡述)處連接至感測放大器290。在某些實例中,一共同存取線可准許一自參考讀取操作以在一信號產生操作及一參考產生操作兩者中共用可存在於感測放大器290與正被存取之一記憶體胞元105之間的組件。此一組態可減小感測放大器290對一記憶體裝置100中之各種組件(例如記憶體胞元105、存取線(例如,一字線205、一數位線210、一板線215)、信號生成電路(例如,信號生成組件280)、電晶體、電壓源250等等)之操作變化之靈敏度。Certain examples of a memory device 100 supporting the techniques disclosed herein may include a common access line (not shown) shared between a memory cell 105 and a sense amplifier 290 to support from the same memory cell Element 105 generates a circuit 200 for a sense signal and a reference signal. In one example, a common access line between a signal generation component 280 and a sense amplifier 290 may replace the signal line 260 and reference line 265 illustrated in circuit 200 . In this example, the common access line may be connected to sense amplifier 290 at two different nodes (eg, a first node 291 and a second node 292, as set forth herein). In some examples, a common access line may permit a self-referencing read operation to be common in both a signal generation operation and a reference generation operation that may exist in sense amplifier 290 and a memory being accessed Components between cells 105. Such a configuration may reduce the use of sense amplifiers 290 for various components in a memory device 100 (eg, memory cells 105, access lines (eg, a word line 205, a digit line 210, a board line 215) , the sensitivity to changes in operation of the signal generating circuit (eg, the signal generating component 280), the transistor, the voltage source 250, etc.).

儘管數位線210及信號線260被標識為單獨的線,但數位線210、信號線260及連接一記憶體胞元105與一感測放大器290之任何其他線皆可被稱為一單個存取線。在各種實例性組態中,出於圖解說明中介性組件及中介性信號之目的,可單獨地標識此一存取線之構成部分。Although digit line 210 and signal line 260 are identified as separate lines, digit line 210, signal line 260, and any other line connecting a memory cell 105 and a sense amplifier 290 may be referred to as a single access Wire. In various example configurations, components of such an access line may be individually identified for purposes of illustrating intervening components and intervening signals.

感測放大器290可包含各種電晶體或放大器以偵測、轉換或放大一信號差,此可被稱為鎖存。舉例而言,感測放大器290可包含接收並比較第一節點291處之一感測信號電壓(例如,Vsig )與第二節點292處之一參考信號電壓(例如,Vref )的電路元件。可基於感測放大器290處之比較將感測放大器之一輸出驅動至一較高電壓(例如,一正電壓)或一較低電壓(例如,一負電壓、一接地電壓)。The sense amplifier 290 may include various transistors or amplifiers to detect, convert or amplify a signal difference, which may be referred to as a latch. For example, sense amplifier 290 may include circuit elements that receive and compare a sense signal voltage (eg, V sig ) at first node 291 with a reference signal voltage (eg, V ref ) at second node 292 . One of the sense amplifier outputs can be driven to a higher voltage (eg, a positive voltage) or a lower voltage (eg, a negative voltage, a ground voltage) based on the comparison at the sense amplifier 290 .

舉例而言,若第一節點291具有比第二節點292低之一電壓,則可將感測放大器290之輸出驅動至一第一感測放大器電壓源250-b之一相對較低電壓(例如一電壓VL ,其可係實質上等於V0 之一接地電壓或可係一負電壓)。包含感測放大器290之一感測組件150可鎖存感測放大器290之輸出以判定記憶體胞元105-a中所儲存之邏輯狀態(例如,當第一節點291具有比第二節點292低之電壓時,偵測到一邏輯0)。For example, if the first node 291 has a lower voltage than the second node 292, the output of the sense amplifier 290 can be driven to a relatively lower voltage of a first sense amplifier voltage source 250-b (eg, A voltage VL , which may be a ground voltage substantially equal to V0 or may be a negative voltage). A sense element 150 including a sense amplifier 290 can latch the output of the sense amplifier 290 to determine the logic state stored in the memory cell 105-a (eg, when the first node 291 has a lower value than the second node 292) , a logic 0 is detected).

若第一節點291具有比第二節點292高之一電壓時,可將感測放大器290之輸出驅動至一第二感測放大器電壓源250-c之電壓(例如,一電壓VH )。包含感測放大器290之一感測組件150可鎖存感測放大器290之輸出以判定記憶體胞元105-a中所儲存之邏輯狀態(例如,當第一節點291具有比第二節點292高之一電壓時,偵測到一邏輯1)。然後,可經由可包含穿過一行組件135之一輸出之一或多個輸入/輸出(I/O)線(例如,I/O線295)或參考圖1所闡述之一輸入/輸出組件160輸出與所偵測到的記憶體胞元105-a之邏輯狀態對應的感測放大器290之經鎖存輸出。If the first node 291 has a higher voltage than the second node 292, the output of the sense amplifier 290 can be driven to a voltage of a second sense amplifier voltage source 250-c (eg, a voltage V H ). A sense element 150 including a sense amplifier 290 can latch the output of the sense amplifier 290 to determine the logic state stored in the memory cell 105-a (eg, when the first node 291 has a higher value than the second node 292 When a voltage is detected, a logic 1) is detected. Then, via one or more input/output (I/O) lines (eg, I/O line 295 ), which may include one output through a row of components 135 , or one of the input/output components 160 described with reference to FIG. 1 The latched output of sense amplifier 290 corresponding to the detected logic state of memory cell 105-a is output.

為對記憶體胞元105-a實行一寫入操作,可跨越電容器220施加一電壓。可使用各種方法。在一項實例中,可透過字線205 (例如,藉由啟動字線205)啟動胞元選擇組件230以將電容器220電連接至數位線210。可藉由控制胞元板221 (例如,透過板線215)及胞元底部222 (例如,透過數位線210)之電壓來跨越電容器220施加一電壓。To perform a write operation on memory cell 105-a, a voltage may be applied across capacitor 220. Various methods can be used. In one example, cell select element 230 may be activated through word line 205 (eg, by activating word line 205 ) to electrically connect capacitor 220 to digit line 210 . A voltage can be applied across capacitor 220 by controlling the voltage on cell plate 221 (eg, through plate line 215) and cell bottom 222 (eg, through digital line 210).

舉例而言,為寫入一邏輯0,可將胞元板221置於高位準(例如,對板線215施加一正電壓),且可將胞元底部222置於低位準(例如,將數位線210接地、將數位線210虛擬接地、對數位線210施加一負電壓)。可實行相反程序以寫入一邏輯1,其中將胞元板221置於低位準且將胞元底部222置於高位準。在某些情形中,在一寫入操作期間跨越電容器220施加之電壓可具有等於或大於電容器220中之一鐵電材料之一飽和電壓之一量值,以使得將電容器220極化,且因此即使當所施加電壓之量值減小時或在跨越電容器220施加一零淨電壓之情況下仍維持一電荷。在某些實例中,感測放大器290可用於實行寫入操作,該等寫入操作可包含將第一感測放大器電壓源250-b或第二感測組件電壓源250-c與數位線耦合。當感測放大器290用於實行寫入操作時,可繞過或可不繞過信號生成組件280 (例如,藉由經由旁路線270施加一寫入信號)。For example, to write a logic 0, cell plate 221 can be brought high (eg, applying a positive voltage to plate line 215), and cell bottom 222 can be brought low (e.g., applying a digital The line 210 is grounded, the digit line 210 is virtually grounded, and a negative voltage is applied to the digit line 210). The reverse procedure can be performed to write a logic 1, with cell plate 221 set low and cell bottom 222 set high. In some cases, the voltage applied across capacitor 220 during a write operation may have a magnitude equal to or greater than a saturation voltage of a ferroelectric material in capacitor 220 such that capacitor 220 is polarized, and thus A charge is maintained even when the magnitude of the applied voltage is reduced or with a zero net voltage applied across capacitor 220 . In some examples, sense amplifier 290 may be used to perform write operations, which may include coupling first sense amplifier voltage source 250-b or second sense element voltage source 250-c to a digit line . When sense amplifier 290 is used to perform a write operation, signal generation component 280 may or may not be bypassed (eg, by applying a write signal through bypass line 270).

包含感測放大器290、胞元選擇組件230、信號生成組件280或參考組件285之電路200可包含各種類型之電晶體。舉例而言,電路200可包含n型電晶體,其中對n型電晶體之閘極施加高於n型電晶體之一臨限電壓之一相對正電壓(例如,一所施加電壓相對於一源極端子具有一正量值,大於一臨限電壓)達成n型電晶體之其他端子(例如,源極端子與一汲極端子)之間的一導電路徑。Circuit 200 including sense amplifier 290, cell selection element 230, signal generation element 280, or reference element 285 may include various types of transistors. For example, circuit 200 may include an n-type transistor, wherein a relatively positive voltage is applied to the gate of the n-type transistor above a threshold voltage of the n-type transistor (eg, an applied voltage relative to a source The terminal terminals have a positive magnitude, greater than a threshold voltage, to achieve a conductive path between the other terminals of the n-type transistor (eg, a source terminal and a drain terminal).

在某些實例中,n型電晶體可用作一切換組件,其中所施加電壓係一邏輯信號,該邏輯信號之用法係:藉由施加一相對高邏輯信號電壓(例如,與一邏輯1狀態對應之一電壓,可與一正邏輯信號電壓供應器相關聯)啟用貫通電晶體之傳導性,或藉由施加一相對低邏輯信號電壓(例如,與一邏輯0狀態對應之一電壓,其可與一接地電壓或虛擬接地電壓相關聯)停用貫通電晶體之傳導性。在一n型電晶體用作一切換組件之某些實例中,施加至閘極端子之一邏輯信號之電壓可經選擇以在一特定工作點處(例如,在一飽和區中或在一作用區中)操作電晶體。In some instances, an n-type transistor can be used as a switching element where the applied voltage is a logic signal that is used by applying a relatively high logic signal voltage (eg, with a logic 1 state) Corresponding to a voltage, which may be associated with a positive logic signal voltage supply, enables conduction of the pass-through transistor, or by applying a relatively low logic signal voltage (eg, a voltage corresponding to a logic 0 state, which may Associated with a ground voltage or virtual ground voltage) disables the conduction of the pass-through transistor. In some instances where an n-type transistor is used as a switching element, the voltage applied to a logic signal at the gate terminal can be selected to be at a particular operating point (eg, in a saturation region or at an active region) to operate the transistor.

在某些實例中,一n型電晶體之行為可比一邏輯切換更複雜,且跨越電晶體之選擇性傳導性亦可係變化源極電壓及汲極電壓之一功能。舉例而言,在閘極端子處施加之電壓可具有用於在源極端子電壓低於一特定位準(例如,低於閘極端子電壓減去臨限電壓)時啟用源極端子與汲極端子之間的傳導性的一特定電壓位準(例如,一箝位電壓)。當源極端子電壓或汲極端子電壓之電壓升高至高於特定位準時,可撤銷啟動n型電晶體以使得源極端子與汲極端子之間的導電路徑斷開。In some instances, the behavior of an n-type transistor can be more complex than a logic switching, and selective conductivity across the transistor can also be a function of varying source and drain voltages. For example, the voltage applied at the gate terminal may have a value for enabling the source and drain terminals when the source terminal voltage is below a certain level (eg, below the gate terminal voltage minus a threshold voltage) A specific voltage level (eg, a clamping voltage) for the conductivity between the cells. When the source terminal voltage or the drain terminal voltage rises above a certain level, the n-type transistor can be deactivated so that the conduction path between the source and drain terminals is broken.

另外或另一選擇為,電路200可包含p型電晶體,其中對p型電晶體之閘極施加高於p型電晶體之一臨限電壓之一相對負電壓(例如,一所施加電壓相對於一源極端子具有一負量值,大於一臨限電壓)啟用p型電晶體之其他端子(例如,源極端子與一汲極端子)之間的一導電路徑。Additionally or alternatively, circuit 200 may include a p-type transistor, wherein a relatively negative voltage (eg, an applied voltage relative to a threshold voltage of the p-type transistor) is applied to the gate of the p-type transistor Having a negative magnitude at a source terminal, greater than a threshold voltage, enables a conduction path between other terminals of the p-type transistor (eg, the source terminal and a drain terminal).

在某些實例中,p型電晶體可用作一切換組件,其中所施加電壓係一邏輯信號,該邏輯信號之用法係:藉由施加一相對低邏輯信號電壓(例如,與一邏輯「1」狀態對應之一電壓,可與一負邏輯信號電壓供應器相關聯)啟用傳導性,或藉由施加一相對高邏輯信號電壓(例如,與一邏輯「0」狀態對應之一電壓,可一接地電壓或虛擬接地電壓相關聯)停用傳導性。在一p型電晶體用作一切換組件之某些實例中,施加至閘極端子之一邏輯信號之電壓可經選擇以在一特定工作點處(例如,在一飽和區中或在一作用區中)操作電晶體。In some instances, a p-type transistor can be used as a switching element where the applied voltage is a logic signal that is used by applying a relatively low logic signal voltage (eg, with a logic "1" " state corresponds to a voltage, which can be associated with a negative logic signal voltage supply) to enable conduction, or by applying a relatively high logic signal voltage (eg, a voltage corresponding to a logic "0" state, can be a ground voltage or virtual ground voltage) disables conductivity. In some instances where a p-type transistor is used as a switching element, the voltage applied to a logic signal at the gate terminal can be selected to be at a particular operating point (eg, in a saturation region or at an active region) to operate the transistor.

在某些實例中,一p型電晶體之行為可比藉由閘極電壓進行之一邏輯切換複雜,且跨越電晶體之選擇性傳導性亦可係變化源極電壓及汲極電壓之一功能。舉例而言,在閘極端子處所施加之電壓可具有用於只要源極端子電壓高於一特定位準(例如,高於閘極端子電壓加臨限電壓)即會啟用源極端子與汲極端子之間的傳導性之一特定電壓位準。當源極端子電壓之電壓降至低於特定位準時,可撤銷啟動p型電晶體以使得源極端子與汲極端子之間的導電路徑斷開。In some instances, the behavior of a p-type transistor can be more complex than a logical switching by gate voltage, and selective conductivity across the transistor can also be a function of varying source and drain voltages. For example, the voltage applied at the gate terminal may have a value for enabling the source and drain terminals as long as the source terminal voltage is above a certain level (eg, above the gate terminal voltage plus a threshold voltage) A specific voltage level of conductivity between the sub-subs. When the voltage of the source terminal voltage drops below a certain level, the p-type transistor can be deactivated so that the conduction path between the source and drain terminals is broken.

電路200之一電晶體可係一場效電晶體(FET),其包含一金屬氧化物半導體FET,該金屬氧化物半導體FET可被稱為一MOSFET。此等及其他類型之電晶體可藉由一基板上之材料摻雜區形成。在某些實例中,電晶體可形成於專用於電路200之一特定組件之一基板上(例如,用於感測放大器290之一基板、用於信號生成組件280之一基板、用於記憶體胞元105-a之一基板),或電晶體可形成於電路200之特定組件共同之一基板上(例如,感測放大器290、信號生成組件280及記憶體胞元105-a共同之一基板)。某些FET可具有一金屬部分包含鋁或其他金屬,但某些FET(包含可被稱為一MOSFET之彼等FET)可實施其他非金屬材料,例如多晶矽。此外,儘管一氧化物部分可用作一FET之一介電部分,其他非氧化物材料可用於一FET(包含可被稱為一MOSFET之彼等FET)中之一介電材料中。A transistor of circuit 200 may be a field effect transistor (FET) that includes a metal-oxide-semiconductor FET, which may be referred to as a MOSFET. These and other types of transistors can be formed by doped regions of material on a substrate. In some examples, transistors may be formed on a substrate dedicated to a particular component of circuit 200 (eg, a substrate for sense amplifier 290, a substrate for signal generation component 280, a substrate for memory cell 105-a), or transistors may be formed on a substrate common to certain components of circuit 200 (eg, a common substrate for sense amplifier 290, signal generation component 280, and memory cell 105-a) ). Certain FETs may have a metal portion comprising aluminum or other metals, but certain FETs (including those that may be referred to as a MOSFET) may implement other non-metallic materials, such as polysilicon. Furthermore, although an oxide portion can be used as a dielectric portion of a FET, other non-oxide materials can be used in a dielectric material in a FET, including those FETs that can be referred to as a MOSFET.

儘管電路200圖解說明相對於一單個記憶體胞元105之一組組件,但電路200之各種組件可在一記憶體裝置100中重複出現以支援各種操作。舉例而言,為支援列存取或「頁」存取操作,一記憶體裝置100可被組態有感測放大器290、信號線260、信號生成組件280、數位線210或其他組件中之一或多者之多個,其中該多個可根據可在一列存取或「頁」存取操作中(例如,在一同時操作中)存取之一定數量之記憶體胞元105而組態。在各種實例中,一組此多個可對應於一記憶體裝置100中之每一記憶體扇區110或以者針對一記憶體裝置100中之每一記憶體扇區110而重複存在,或此一組多個可在一記憶體裝置中之一或多個記憶體扇區110當中共用。Although circuit 200 illustrates a set of components with respect to a single memory cell 105, various components of circuit 200 may be repeated in a memory device 100 to support various operations. For example, to support column access or "page" access operations, a memory device 100 may be configured with one of sense amplifiers 290, signal lines 260, signal generation components 280, digital lines 210, or other components A plurality of or more, where the plurality can be configured according to a certain number of memory cells 105 that can be accessed in a row access or "page" access operation (eg, in a simultaneous operation). In various examples, a set of such multiples may correspond to or repeat for each memory sector 110 in a memory device 100, or This set of multiples may be shared among one or more memory sectors 110 in a memory device.

在一項說明性實例中,對於支援一256胞元列存取(例如,共同存取256行)或一256位元頁之一記憶體裝置100,記憶體裝置100 (例如,一感測組件150)可包含至少一組256個感測放大器290、256個信號線260、256個信號生成組件280及256個數位線210,其中在某些實例中,可藉由啟動一單個共同字線205來存取一記憶體扇區110中之一組256個記憶體胞元105。在某些實例中,此一重複可對應於一單個記憶體扇區110,或可對應於一個以上記憶體扇區110。然而,各種組件之其他組態及組合可用於支援本文中所闡述之技術的列存取操作或頁存取操作或其中同時存取多個記憶體胞元105之其他操作。In one illustrative example, for a memory device 100 that supports a 256-cell column access (eg, common access to 256 rows) or a 256-bit page, the memory device 100 (eg, a sensing element 150) may include at least one set of 256 sense amplifiers 290, 256 signal lines 260, 256 signal generation components 280, and 256 digit lines 210, which in some instances may be accomplished by enabling a single common word line 205 to access a group of 256 memory cells 105 in a memory sector 110 . In some examples, such a repetition may correspond to a single memory sector 110 , or may correspond to more than one memory sector 110 . However, other configurations and combinations of various components may be used to support column access operations or page access operations of the techniques set forth herein, or other operations in which multiple memory cells 105 are accessed simultaneously.

在某些實例中,感測放大器290可無法區分記憶體胞元105-a被寫入有一種邏輯狀態還是另一邏輯狀態(例如,記憶體胞元105-a儲存的是一邏輯1還是一邏輯0),或感測放大器290可在讀取記憶體胞元105-a時偵測到一種邏輯狀態,但一不同邏輯狀態寫入至記憶體胞元105-a (例如,在一讀取操作期間在一記憶體胞元上偵測到一邏輯0,但記憶體胞元被寫入有一邏輯1)。此種狀況可與記憶體胞元105-a之一不確定的資訊狀態相關聯,且可與各種狀況(例如,刪除、電荷洩漏、資訊狀態降級(例如,記憶體胞元105-a之一邏輯狀態、電荷狀態或材料狀態之降級))或其他現象)有關。In some instances, sense amplifier 290 may not be able to distinguish whether memory cell 105-a is written with one logic state or another logic state (eg, whether memory cell 105-a stores a logic 1 or a logic 1). logic 0), or sense amplifier 290 may detect one logic state when reading memory cell 105-a, but a different logic state is written to memory cell 105-a (eg, during a read A logic 0 was detected on a memory cell during operation, but the memory cell was written with a logic 1). Such a condition may be associated with an indeterminate information state of one of the memory cells 105-a, and may be associated with various conditions (eg, deletion, charge leakage, information state degradation (eg, one of the memory cells 105-a) logic state, charge state or material state degradation)) or other phenomena).

在某些實例中,記憶體胞元105-a之一不確定的資訊狀態可係自電路200之一個部分至另一部分之電荷洩漏之一結果。洩漏之可能原因包含製造缺陷、組件崩潰(例如,薄膜電晶體(TFT)崩潰或洩漏)、記憶體胞元耗損機制(例如,應力引發之洩漏電流(SILC)、崩潰(BD)電流)、電路200之一元件之材料組成之改變或其他原因。舉例而言,電荷可跨越胞元選擇組件230 (例如,一洩漏路徑「A」),跨越電容器220之一介電材料(例如,一洩漏路徑「B」)、自記憶體裝置100之一個存取線至另一存取線(例如,自數位線210至另一存取線或底板接地之一洩漏路徑「C」)洩漏。未圖解說明之其他實例可包含准許電荷在以下組件之間轉移之其他洩漏路徑:包含電路200之一記憶體裝置100之記憶體胞元105-a與另一組件之間、在包含電路200之一記憶體裝置100之數位線210與另一組件之間(例如,在數位線210與另一數位線210之間,未展示)或在包含電路200之一記憶體裝置100之信號線260與另一組件之間(例如,在信號線260與另一信號線260之間,未展示)或其各種組合。在各種實例中,電荷洩漏可影響記憶體胞元105-a自身之資訊狀態或者產生或偵測自存取記憶體胞元105-a所得之一信號(例如,一讀取信號)之能力,上述兩種情況中之任一者或兩者可與無法判定寫入至記憶體胞元105-a之一邏輯狀態之一讀取操作相關聯。In some instances, an indeterminate information state of memory cell 105-a may be a result of charge leakage from one portion of circuit 200 to another. Possible causes of leakage include manufacturing defects, device breakdown (eg, thin film transistor (TFT) breakdown or leakage), memory cell depletion mechanisms (eg, stress-induced leakage current (SILC), breakdown (BD) current), circuit 200 Changes in material composition of one of the elements or other reasons. For example, the charge may traverse the cell select element 230 (eg, a leakage path "A"), across a dielectric material of the capacitor 220 (eg, a leakage path "B"), from a storage of the memory device 100 Leakage of the wire taken to another access line (eg, a leakage path "C" from the digit line 210 to another access line or backplane ground). Other examples not illustrated may include other leakage paths that permit charge transfer between components: between memory cell 105-a of memory device 100, one including circuit 200, and another component, between memory cells 105-a of memory device 100, including circuit 200, Between digit line 210 of a memory device 100 and another component (eg, between digit line 210 and another digit line 210 , not shown) or between signal line 260 of a memory device 100 including circuit 200 and between another component (eg, between a signal line 260 and another signal line 260, not shown) or various combinations thereof. In various examples, charge leakage can affect the information state of memory cell 105-a itself or the ability to generate or detect a signal (eg, a read signal) obtained from accessing memory cell 105-a, Either or both of the above two conditions may be associated with a read operation that cannot determine a logical state written to memory cell 105-a.

在支援本文中所闡述之技術之一記憶體裝置之某些實例中,電路200可包含一或多個洩漏偵測組件201以偵測電荷洩漏(例如,旨在被電隔離之組件之間的一電荷轉移)之一存在或電平,例如與數位線210連接之一洩漏偵測組件201-a或與信號線260連接之一洩漏偵測組件201-b中之一者或兩者。一洩漏偵測組件201可經組態以偵測電路200中之電荷洩漏,例如高於一臨限值或者滿足一臨限值(例如,高於將指示電路200正常操作之一臨限值、指示電路200之一或多個元件異常操作之一電荷量洩漏)之一洩漏或其他電荷轉移。儘管洩漏偵測組件201被圖解說明為單獨組件,但在某些實例中,一洩漏偵測組件201可包含於一信號生成組件280中或包含於一感測放大器290中,且一洩漏偵測組件201可與多個存取線連接或與一存取線串聯連接。In certain examples of a memory device supporting the techniques described herein, circuit 200 may include one or more leakage detection components 201 to detect charge leakage (eg, between components intended to be electrically isolated). The presence or level of a charge transfer) such as one or both of a leak detection element 201-a connected to the digit line 210 or a leak detection element 201-b connected to the signal line 260. A leak detection component 201 can be configured to detect charge leakage in the circuit 200, eg, above a threshold value or satisfying a threshold value (eg, above a threshold value that would indicate normal operation of the circuit 200, Indicates abnormal operation of one or more elements of circuit 200 (either charge leakage), leakage or other charge transfer. Although leak detection component 201 is illustrated as a separate component, in some examples, a leak detection component 201 may be included in a signal generation component 280 or in a sense amplifier 290, and a leak detection Component 201 can be connected with multiple access lines or connected in series with an access line.

在某些實例中,一洩漏偵測組件201可經組態以藉由識別(例如,一存取線、一記憶體胞元105之)一電壓改變或比較一電壓與一參考電壓或臨限值(例如,使用一感測放大器、一多位準胞元(MLC)鎖存器、一比較器或洩漏偵測組件201之其他組件)偵測一電荷洩漏。舉例而言,洩漏偵測組件201-a可經組態以監測數位線210之一電壓,或洩漏偵測組件201-b可經組態以監測信號線260之一電壓。在某些實例中,一洩漏偵測組件201可經組態以偵測一電荷流(例如,在此一電荷流或高於一臨限值之一電荷流將指示洩漏而非正常情況下與一存取操作相關聯之電荷轉移的情景或狀況下)。舉例而言,洩漏偵測組件201-a可經組態以偵測沿著數位線210之一電荷流,或洩漏偵測組件201-b可經組態以偵測沿著信號線260之一電荷流,上述電荷流中之任一者可對應於跨越信號生成組件280之一電荷流。在某些實例中,可藉由監測跨越經組態以輸送電荷流之一分流電阻器之一電壓來支援偵測一電荷流(例如,當一洩漏偵測組件201與一存取線或組件串聯連接時)。In some examples, a leak detection component 201 can be configured to change or compare a voltage to a reference voltage or threshold by identifying (eg, an access line, one of a memory cell 105) a voltage value (eg, using a sense amplifier, a multi-level cell (MLC) latch, a comparator, or other components of leak detection component 201) to detect a charge leak. For example, leak detection component 201 - a can be configured to monitor a voltage on digital line 210 , or leak detection component 201 - b can be configured to monitor a voltage on signal line 260 . In some examples, a leak detection component 201 can be configured to detect a charge flow (eg, where a charge flow or a charge flow above a threshold would indicate leakage other than normal an access operation associated with a charge transfer scenario or condition). For example, leak detection component 201-a may be configured to detect a flow of charge along digital line 210, or leak detection component 201-b may be configured to detect one along signal line 260 A charge flow, any of which may correspond to a charge flow across the signal generation component 280 . In some examples, detection of a charge flow can be supported by monitoring a voltage across a shunt resistor configured to deliver charge flow (eg, when a leak detection element 201 is connected to an access line or element when connected in series).

在某些實例中,一洩漏偵測組件201可經組態以偵測特定胞元之電荷洩漏(例如,沿循路徑「A」或「B」之電荷洩漏,其可係記憶體胞元105-a所特有),該電荷洩漏可與共用數位線210之一組記憶體胞元105可皆存在之其他電荷洩漏(例如,沿循路徑「C」之電荷洩漏)區分。在某些實例中,一洩漏偵測組件201可不經組態以對特定胞元之電荷洩漏與更通常與一存取線相關聯之其他電荷洩漏(例如,與數位線210相關聯之電荷洩漏、與信號線260相關聯之電荷洩漏、一組記憶體胞元105中之一或多者共同之電荷洩漏)加以區分。In some examples, a leak detection component 201 can be configured to detect charge leakage from a particular cell (eg, charge leakage along paths "A" or "B", which can be memory cell 105 - unique to a), this charge leakage is distinguishable from other charge leakages that may all exist in a set of memory cells 105 sharing a digit line 210 (eg, charge leakage along path "C"). In some examples, a leakage detection component 201 may not be configured to leak charge to a particular cell and other charge leakage more commonly associated with an access line (eg, charge leakage associated with digit line 210 ). , charge leakage associated with signal line 260, and charge leakage common to one or more of a set of memory cells 105).

在某些實例中,一洩漏偵測組件201可經組態以在(例如,記憶體胞元105-a之)一存取操作期間或以者至少部分地基於一存取操作實行一洩漏偵測操作,此舉可包含在選擇記憶體胞元105-a之同時(例如,在啟動胞元選擇組件230之同時、在啟動字線205之同時)實行一洩漏偵測操作。一洩漏偵測組件201可因此與一記憶體控制器170、一感測組件150、感測放大器290、或字線205通信,此可支援洩漏偵測組件201在一存取操作之特定部分期間實行操作。在某些實例中,一洩漏偵測組件201可經組態以在一記憶體裝置100之一診斷模式期間或者至少部分地基於一記憶體裝置100之一診斷模式而實行一洩漏偵測操作,此舉可包含或可不包含於一存取操作中或者以其他方式與一存取操作相關聯。In some examples, a leak detection component 201 can be configured to perform a leak detection during or based at least in part on an access operation (eg, of memory cell 105-a) A detection operation, which may include performing a leak detection operation while selecting memory cell 105-a (eg, while activating cell selection element 230, while activating word line 205). A leak detection component 201 can thus communicate with a memory controller 170, a sense component 150, sense amplifier 290, or word line 205, which can support leak detection component 201 during certain portions of an access operation Carry out the operation. In some examples, a leak detection component 201 can be configured to perform a leak detection operation during or based at least in part on a diagnostic mode of a memory device 100, This may or may not be included in or otherwise associated with an access operation.

在某些實例中,一洩漏偵測組件201可支援提供資訊以支援選擇性地實行一直接寫入操作或一互補寫入操作,此舉可包含將是否偵測到洩漏之一指示提供至一記憶體控制器170、一感測組件150、感測放大器290或其他組件中之一或多者。在各種實例中,是實行直接寫入操作還是互補寫入操作之一判定可基於特定胞元之電荷洩漏(例如,沿循路徑「A」或路徑「B」之電荷洩漏、與記憶體胞元105-a相關聯之電荷洩漏、與電容器220相關聯之電荷洩漏),與一特定存取線相關聯之電荷洩漏(例如,沿循路徑「C」之電荷洩漏、與數位線210或信號線260相關聯之電荷洩漏)之一偵測或其他所偵測到電荷洩漏或其組合。In some examples, a leak detection component 201 can support providing information to support selectively performing a direct write operation or a complementary write operation, which can include providing an indication of whether a leak is detected to a One or more of memory controller 170, a sense component 150, sense amplifier 290, or other components. In various examples, the determination of whether to perform a direct write operation or a complementary write operation may be based on the charge leakage of a particular cell (eg, charge leakage along path "A" or path "B", and the memory cell 105-a associated charge leakage, charge leakage associated with capacitor 220), charge leakage associated with a particular access line (eg, charge leakage along path "C", and digit line 210 or signal line 260 the associated charge leakage) detection or other detected charge leakage or a combination thereof.

在某些實例中,一洩漏偵測組件201可提供資訊以支援識別與一不確定邏輯狀態相關聯之記憶體胞元105-a或與記憶體胞元105-a耦合之一存取線(例如,數位線210、信號線260)或指示一可能不確定邏輯狀態之狀況。舉例而言,一洩漏偵測組件可包含將是否偵測到洩漏之一指示(例如,針對一特定記憶體胞元105、針對一特定存取線、針對一特定記憶體位址)提供至一記憶體控制器170、一感測組件150、感測放大器290或其他組件中之一或多者。此資訊可例如用於識別具有不確定或未經指派資訊狀態之一碼字之資訊位置(例如,在一讀取操作中產生),隨後可為該等資訊位置指派一或多個假定或推測性資訊狀態以根據本文中所揭示之技術支援各種錯誤處置操作。In some examples, a leak detection component 201 can provide information to support identification of the memory cell 105-a associated with an indeterminate logic state or an access line coupled to the memory cell 105-a ( For example, digit line 210, signal line 260) or indicate a condition that may not be a logical state. For example, a leak detection component may include providing an indication of whether a leak was detected (eg, for a particular memory cell 105, for a particular access line, for a particular memory address) to a memory One or more of a body controller 170, a sense component 150, a sense amplifier 290, or other components. This information can be used, for example, to identify information locations (eg, generated in a read operation) of a codeword with an indeterminate or unassigned information state, and one or more hypotheses or speculations can then be assigned to those information locations. Sexual information status to support various error handling operations in accordance with the techniques disclosed herein.

在某些實例中,一洩漏偵測組件201可包含儲存是否偵測到洩漏(例如,在一存取操作期間)之一指示之一儲存元件(例如,一暫時性儲存元件、一鎖存器、一電容器、一儲存元件)。在某些實例中,一所儲存指示可對於一最近存取操作被維持或者有效,且可回應於所實行之另一存取而被清除或重設。一記憶體控制器170可接收或請求是否偵測到洩漏之一指示,且隨後,一記憶體控制器170或一記憶體裝置100之某些其他部分可使用此一指示來支援本文中所揭示之技術之各種實例。In some examples, a leak detection component 201 can include a storage element (eg, a temporary storage element, a latch that stores an indication of whether a leak is detected (eg, during an access operation) , a capacitor, a storage element). In some examples, a stored indication may be maintained or valid for a most recent access operation, and may be cleared or reset in response to another access being performed. A memory controller 170 can receive or request an indication of whether a leak is detected, and then a memory controller 170 or some other portion of a memory device 100 can use this indication to support the disclosures herein Various examples of the technology.

在某些實例中,一記憶體控制器170或一記憶體裝置100之某些其他部分可儲存實行哪種寫入操作類型之一指示,例如(例如,共用字線205之一或多個記憶體胞元105、一列記憶體胞元105、一頁記憶體胞元105、一組記憶體胞元105之)一位元翻轉指示。一位元翻轉指示可用於一後續讀取操作中以判定如何解譯一所感測邏輯狀態(例如,直接解譯一所感測邏輯狀態或解譯為該所感測邏輯狀態之補數)。舉例而言,根據一位元翻轉指示之狀態,可直接提供I/O線295上之一輸出(例如,指示由記憶體胞元105-a儲存之邏輯狀態)或可將I/O線295上之一輸出反相(例如,指示由記憶體胞元105-a儲存之邏輯狀態之補數)。In some examples, a memory controller 170 or some other portion of a memory device 100 may store an indication of which type of write operation to perform, such as (eg, common to one or more memories of word lines 205 ) A one-bit flip indication of a cell 105, a row of memory cells 105, a page of memory cells 105, a group of memory cells 105). A bit flip indication can be used in a subsequent read operation to determine how to interpret a sensed logic state (eg, directly interpreting a sensed logic state or interpreting as the complement of the sensed logic state). For example, depending on the state of a bit toggle indication, an output on I/O line 295 may be provided directly (eg, indicating the logic state stored by memory cell 105-a) or I/O line 295 may be The previous output is inverted (eg, indicating the complement of the logic state stored by memory cell 105-a).

圖3A及圖3B根據本文中所揭示之各種實例的利用磁滯曲線300-a及300-b圖解說明一鐵電記憶體胞元之非線性電性質之實例。磁滯曲線300-a及300-b可分別圖解說明採用參考圖2所闡述之一鐵電電容器220之一記憶體胞元105之一寫入程序及一讀取程序之實例。磁滯曲線300-a及300-b繪示儲存於鐵電電容器220上之電荷Q隨鐵電電容器220之端子之間的一電壓差Vcap 變化(例如,當根據電壓差Vcap 准許電荷流動至鐵電電容器220中或自鐵電電容器220流出)。舉例而言,電壓差Vcap 可表示電容器220之一數位線側與電容器220之一板線側之間的電壓差(例如,Vbottom –Vplate )。3A and 3B illustrate examples of nonlinear electrical properties of a ferroelectric memory cell using hysteresis curves 300-a and 300-b according to various examples disclosed herein. Hysteresis curves 300-a and 300-b may illustrate an example of a write process and a read process, respectively, using a memory cell 105 of a ferroelectric capacitor 220 described with reference to FIG. Hysteresis curves 300-a and 300-b depict charge Q stored on ferroelectric capacitor 220 as a function of a voltage difference V cap between the terminals of ferroelectric capacitor 220 (eg, when charge is permitted to flow according to the voltage difference V cap into or out of the ferroelectric capacitor 220). For example, the voltage difference V cap may represent the voltage difference between a digit line side of capacitor 220 and a plate line side of capacitor 220 (eg, V bottom −V plate ).

一鐵電材料之特徵在於其中材料可在不粗在一電場時維持一非零電荷之一電極化。鐵電材料之實例包含鈦酸鋇(BaTiO3 )、鈦酸鉛(PbTiO3 )、鈦酸鉛鎬(PZT)及鉭酸鍶鉍(SBT)。本文中所闡述之鐵電電容器220可包含此等或其他鐵電材料。一鐵電電容器220內之電極化在鐵電材料之表面處形成一淨電荷,且吸引相反電荷通過鐵電電容器220之端子。因此,電荷可儲存於鐵電材料與電容器端子的界面處。由於可在不存在一外部施加電場時在相對長時間內、甚至無限期地維持電極化,因此與例如不具有無鐵電性質之電容器(例如某些DRAM陣列中所使用之電容器)相比,電荷洩漏可顯著減小。採用鐵電材料可減小對某些DRAM架構實行再新操作之一需要,以使得維持一FeRAM架構之邏輯狀態可與比維持一DRAM架構之邏輯狀態低之功耗相關聯。A ferroelectric material is characterized in that the material can maintain an electrical polarization of a non-zero charge in the presence of an electric field. Examples of ferroelectric materials include barium titanate (BaTiO3 ) , lead titanate (PbTiO3 ) , lead titanate (PZT), and strontium bismuth tantalate (SBT). The ferroelectric capacitors 220 described herein may include these or other ferroelectric materials. The electrical polarization within a ferroelectric capacitor 220 creates a net charge at the surface of the ferroelectric material and attracts the opposite charge through the terminals of the ferroelectric capacitor 220 . Thus, charge can be stored at the interface of the ferroelectric material and the capacitor terminals. Because the electrical polarization can be maintained for relatively long periods of time, even indefinitely, in the absence of an externally applied electric field, compared to, for example, capacitors that do not have nonferroelectric properties (such as those used in some DRAM arrays), Charge leakage can be significantly reduced. The use of ferroelectric materials can reduce one of the need to perform refresh operations on certain DRAM architectures so that maintaining the logic state of a FeRAM architecture can be associated with lower power consumption than maintaining the logic state of a DRAM architecture.

可自一鐵電電容器220之一單個端子之角度理解磁滯曲線300-a及300-b。舉例而言,若鐵電材料具有一負極化,則正電荷累積於鐵電電容器220之相關聯端子處。同樣地,若鐵電材料具有一正極化,則一負電荷累積於鐵電電容器220之相關聯端子處。另外,應理解,磁滯曲線300-a及300-b中之電壓表示跨越電容器之一電壓差(例如,鐵電電容器220之端子之間的一電位)且具方向性。舉例而言,可藉由對各別端子(例如,一胞元底部222)施加一正電壓且將參考端子(例如,一胞元板221)維持於接地或虛擬接地(或大約零伏特(0V))處來實現一正電壓。在某些實例中,可藉由將各別端子維持於接地處且對參考端子(例如,胞元板221)施加一正電壓來施加一負電壓。換言之,可施加正電壓以跨越鐵電電容器220達到一負電壓差Vcap 且藉此將討論中之端子負極化。類似地,可將兩個正電壓、兩個負電壓或正電壓與負電壓的任何組合施加至適當電容器端子以產生磁滯曲線300-a及300-b中所展示之電壓差VcapHysteresis curves 300 - a and 300 - b can be understood from the perspective of a single terminal of a ferroelectric capacitor 220 . For example, if the ferroelectric material has a negative polarization, a positive charge accumulates at the associated terminals of the ferroelectric capacitor 220 . Likewise, if the ferroelectric material has a positive polarization, a negative charge accumulates at the associated terminals of the ferroelectric capacitor 220 . Additionally, it should be understood that the voltages in the hysteresis curves 300-a and 300-b represent a voltage difference across the capacitor (eg, a potential between the terminals of the ferroelectric capacitor 220) and are directional. For example, by applying a positive voltage to the respective terminal (eg, a cell bottom 222 ) and maintaining the reference terminal (eg, a cell plate 221 ) at ground or virtual ground (or about zero volts (0V) )) to achieve a positive voltage. In some examples, a negative voltage can be applied by maintaining the respective terminal at ground and applying a positive voltage to the reference terminal (eg, cell plate 221). In other words, a positive voltage can be applied to achieve a negative voltage difference V cap across the ferroelectric capacitor 220 and thereby negatively polarize the terminal in question. Similarly, two positive voltages, two negative voltages, or any combination of positive and negative voltages can be applied to the appropriate capacitor terminals to produce the voltage difference Vcap shown in hysteresis curves 300-a and 300-b.

如磁滯曲線300-a中所繪示,當鐵電電容器220之端子之間不存在淨電壓差時,一鐵電電容器220中所使用之一鐵電材料可維持一正或負極化。舉例而言,磁滯曲線300-a圖解說明兩種可能極化狀態:一電荷狀態305-a及一電荷狀態310-b,該電荷狀態305-a及電荷狀態310-b可分別表示一負飽和極化狀態及一正飽和極化狀態。電荷狀態305-a及310-a可處於圖解說明剩餘極化(Pr)值之一物理狀況,其可係指在移除外部偏壓(例如,電壓)之後仍存在之極化(或電荷)。根據磁滯曲線300-a之實例,當未跨越鐵電電容器220施加電壓差時電荷狀態305-a可表示一邏輯1,且當未跨越鐵電電容器220施加電壓差時電荷狀態310-a可表示一邏輯0。在某些實例中,各別電荷狀態或極化狀態之邏輯值可反轉或以一相反方式加以解譯以適應操作一記憶體胞元105之其他方案。As depicted in hysteresis curve 300-a, a ferroelectric material used in a ferroelectric capacitor 220 can maintain a positive or negative polarization when there is no net voltage difference between the terminals of the ferroelectric capacitor 220. For example, hysteresis curve 300-a illustrates two possible polarization states: a charge state 305-a and a charge state 310-b, which may each represent a negative saturation polarization state and a positive saturation polarization state. Charge states 305-a and 310-a may be in a physical condition illustrating remanent polarization (Pr) values, which may refer to the polarization (or charge) that remains after removal of an external bias (eg, voltage) . According to the example of the hysteresis curve 300-a, the state of charge 305-a may represent a logic 1 when the voltage difference is not applied across the ferroelectric capacitor 220, and the state of charge 310-a may represent a logic 1 when the voltage difference is not applied across the ferroelectric capacitor 220 Represents a logical 0. In some examples, the logical values of the respective charge states or polarization states may be reversed or interpreted in an opposite manner to accommodate other schemes of operating a memory cell 105 .

可藉由控制鐵電材料之電極化且因此控制電容器端子上之電荷、藉由跨越鐵電電容器220施加一淨電壓差來將一邏輯0或1寫入至記憶體胞元。舉例而言,電壓315可係等於或大於一正飽和電壓之一電壓,且跨越鐵電電容器220施加電壓315可致使電荷累積直至達到電荷狀態305-b (例如,寫入一邏輯1)為止。在自鐵電電容器220移除電壓315 (例如,跨越鐵電電容器220之端子施加一零淨電壓)之後,在跨越電容器之零電壓下,鐵電電容器220之電荷狀態可沿循所展示之路徑320,介於電荷狀態305-b與電荷狀態305-a之間。換言之,電荷狀態305-a可在跨越已正飽和之一鐵電電容器220之一均等電壓下表示一邏輯1狀態。A logic 0 or 1 can be written to the memory cell by applying a net voltage difference across the ferroelectric capacitor 220 by controlling the electrical polarization of the ferroelectric material and thus the charge on the capacitor terminals. For example, voltage 315 may be a voltage equal to or greater than a positive saturation voltage, and application of voltage 315 across ferroelectric capacitor 220 may cause charge to accumulate until charge state 305-b is reached (eg, a logic 1 is written). After the voltage 315 is removed from the ferroelectric capacitor 220 (eg, a zero net voltage is applied across the terminals of the ferroelectric capacitor 220), at zero voltage across the capacitor, the state of charge of the ferroelectric capacitor 220 can follow the path shown 320, between charge state 305-b and charge state 305-a. In other words, the charge state 305-a may represent a logic 1 state at an equal voltage across a ferroelectric capacitor 220 that is positively saturated.

類似地,電壓325可係等於或小於一負飽和電壓之一電壓,且跨越鐵電電容器220施加電壓325可致使電荷累積直至達到電荷狀態310-b為止(例如,寫入一邏輯0)。在自鐵電電容器220移除電壓325 (例如,跨越鐵電電容器220之端子施加一零淨電壓)之後,在跨越電容器之零電壓下,鐵電電容器220之電荷狀態可沿循所展示之路徑330,介於電荷狀態310-b與電荷狀態310-a之間。換言之,電荷狀態310-a可在跨越已負飽和之一鐵電電容器220之一均等電壓下表示一邏輯0狀態。在某些實例中,表示飽和電壓之電壓315及電壓325可具有相同量值,但跨越鐵電電容器220具有相反極性。Similarly, voltage 325 may be a voltage equal to or less than a negative saturation voltage, and applying voltage 325 across ferroelectric capacitor 220 may cause charge to accumulate until charge state 310-b is reached (eg, a logic 0 is written). After the voltage 325 is removed from the ferroelectric capacitor 220 (eg, a zero net voltage is applied across the terminals of the ferroelectric capacitor 220), at zero voltage across the capacitor, the state of charge of the ferroelectric capacitor 220 can follow the path shown 330, between charge state 310-b and charge state 310-a. In other words, the charge state 310-a may represent a logic 0 state at an equal voltage across a negatively saturated ferroelectric capacitor 220. In some examples, voltage 315 and voltage 325 representing the saturation voltage may have the same magnitude, but opposite polarities across ferroelectric capacitor 220 .

為讀取或感測一鐵電電容器220所儲存之狀態,亦可跨越鐵電電容器220施加一電壓。回應於所施加電壓,由鐵電電容器儲存之後續電荷Q會發生改變且改變程度可取決於初始極化狀態、所施加電壓、存取線上之固有他電容或其他電容及其他因素。換言之,由一讀取操作所致之電荷狀態或存取線電壓可取決於最初儲存的是電荷狀態305-a、電荷狀態310-a還是某些其他電荷狀態且取決於其他因素。A voltage can also be applied across the ferroelectric capacitor 220 in order to read or sense the state stored by a ferroelectric capacitor 220 . In response to the applied voltage, the subsequent charge Q stored by the ferroelectric capacitor changes and the extent of the change may depend on the initial polarization state, the applied voltage, the inherent other capacitances or other capacitances on the access lines, and other factors. In other words, the charge state or access line voltage resulting from a read operation may depend on whether charge state 305-a, charge state 310-a, or some other charge state was originally stored and on other factors.

磁滯曲線300-b圖解說明讀取所儲存電荷狀態305-a及310-a之存取操作之一實例。可例如經由參考圖2所闡述之一數位線210及一板線215以一電壓差形式施加一讀取電壓335。磁滯曲線300-b可圖解說明其中讀取電壓335係正電壓差Vcap (例如,其中Vbottom – Vplate 為正)之讀取操作。跨越鐵電電容器220之一正讀取電壓可被稱為一「板低」讀取操作,其中首先一數位線210將置於一高電壓,且首先將一板線215處於一低電壓(例如,一接地電壓)下。儘管讀取電壓335被展示為跨越鐵電電容器220之一正電壓,但在替代存取操作中,一讀取電壓可係跨越鐵電電容器220之一負電壓,該負電壓可被稱為一「板高」讀取操作。Hysteresis curve 300-b illustrates one example of an access operation to read stored charge states 305-a and 310-a. A read voltage 335 may be applied in the form of a voltage difference, eg, via a digit line 210 and a plate line 215 as described with reference to FIG. 2 . Hysteresis curve 300-b may illustrate a read operation where read voltage 335 is a positive voltage difference V cap (eg, where V bottom - V plate is positive). A positive read voltage across ferroelectric capacitor 220 may be referred to as a "plate low" read operation, in which first a digit line 210 will be placed at a high voltage, and first a plate line 215 will be placed at a low voltage (eg , a ground voltage). Although read voltage 335 is shown as a positive voltage across ferroelectric capacitor 220, in alternative access operations, a read voltage may be a negative voltage across ferroelectric capacitor 220, which may be referred to as a "Board Height" read operation.

可在選擇一記憶體胞元105 (例如,藉由經由參考圖2所闡述之一字線205啟動一胞元選擇組件230)時跨越鐵電電容器220施加讀取電壓335。在對鐵電電容器220施加讀取電壓335之後,電荷可經由相關聯數位線210及板線215流動至鐵電電容器220中或自鐵電電容器220流出,且在某些實例中,可根據鐵電電容器220是處於電荷狀態305-a (例如,一邏輯1)還是處於電荷狀態310-a (例如,一邏輯0)抑或是處於某些其他電荷狀態而形成不同電荷狀態或存取線電壓。The read voltage 335 may be applied across the ferroelectric capacitor 220 when a memory cell 105 is selected (eg, by activating a cell select element 230 via a word line 205 as described with reference to FIG. 2). After the read voltage 335 is applied to the ferroelectric capacitor 220, charge may flow into or out of the ferroelectric capacitor 220 via the associated digit line 210 and plate line 215, and in some instances, may be based on the ferroelectric capacitor 220. Whether electrical capacitor 220 is in charge state 305-a (eg, a logic 1) or charge state 310-a (eg, a logic 0) or some other charge state results in different charge states or access line voltages.

當在電荷狀態305-a (例如,一邏輯1)下對一鐵電電容器220實行一讀取操作時,額外正電荷可跨越鐵電電容器220累積,且電荷狀態可沿循路徑340直至達到電荷狀態305-c之電荷及電壓為止。流過電容器220之電荷量可與數位線210之固有電容或其他電容(例如,參考圖2所闡述之固有電容240)或其他存取線(例如,信號線260)之固有電容或其他電容相關。在一「板低」讀取組態中,與電荷狀態305-a及305-c相關聯之一讀取操作或更通常而言與邏輯1狀態相關聯之一讀取操作可與一相對小電荷轉移量相關聯(例如,和與電荷狀態310-a及310-c或更通常而言與邏輯0狀態相關聯之一讀取操作相比而言)。When a read operation is performed on a ferroelectric capacitor 220 in charge state 305-a (eg, a logic 1), additional positive charge can accumulate across ferroelectric capacitor 220, and the charge state can follow path 340 until charge is reached The charge and voltage of state 305-c are terminated. The amount of charge flowing through capacitor 220 may be related to the intrinsic or other capacitance of digit line 210 (eg, intrinsic capacitance 240 described with reference to FIG. 2 ) or the intrinsic or other capacitance of other access lines (eg, signal line 260 ) . In a "board low" read configuration, a read operation associated with charge states 305-a and 305-c, or more generally a logic 1 state, may be associated with a relatively small read operation. The amount of charge transferred is associated (eg, compared to a read operation associated with charge states 310-a and 310-c, or more generally, a logic-zero state).

如電荷狀態305‑a與電荷狀態305-c之間的轉變所展示,由於在電容器220處在給定電荷改變情況下,電壓改變係相對大的,因此跨越鐵電電容器220之所得電壓350可係一相對大正值。因此,在於一「板低」讀取操作中讀取一邏輯1之後,在電荷狀態310-c下等於VPL 與Vcap (例如,Vbottom –Vplate )之和之數位線電壓可係一相對高電壓。此一讀取操作可不改變儲存電荷狀態305-a之鐵電電容器220之剩餘極化,且因此在實行讀取操作之後當移除讀取電壓335 (例如,藉由跨越鐵電電容器220施加一零淨電壓,藉由使跨越鐵電電容器220之電壓均等化)時鐵電電容器220可經由路徑340返回至電荷狀態305-a。因此,利用一正讀取電壓對具有一電荷狀態305-a之一鐵電電容器220實行一讀取操作可被視為一非破壞性讀取程序。As shown by the transition between charge state 305-a and charge state 305-c, since the voltage change is relatively large for a given charge change at capacitor 220, the resulting voltage 350 across ferroelectric capacitor 220 may be is a relatively large positive value. Thus, after reading a logic 1 in a "plate low" read operation, the digital line voltage equal to the sum of VPL and Vcap (eg, Vbottom -Vplate ) at charge state 310-c may be one relatively high voltage. Such a read operation may not change the remanent polarization of the ferroelectric capacitor 220 of the stored charge state 305-a, and thus when the read voltage 335 is removed (eg, by applying a At zero net voltage, by equalizing the voltage across ferroelectric capacitor 220 , ferroelectric capacitor 220 may return to state of charge 305 - a via path 340 . Thus, performing a read operation on a ferroelectric capacitor 220 having a state of charge 305-a with a positive read voltage can be considered a non-destructive read procedure.

當對處於電荷狀態310-a (例如,一邏輯0)下之鐵電電容器220實行讀取操作時,由於一淨正電荷跨越鐵電電容器220累積起來因此所儲存電荷可反轉極性,且電荷狀態可沿循路徑360直至達到電荷狀態310-c之電荷及電壓。流過鐵電電容器220之電荷量亦可與數位線210 (例如,參考圖2所闡述之固有電容240)之固有電容或其他電容相關。在一「板低」讀取組態中,與電荷狀態310-a及310-c相關聯之一讀取操作或更通常而言與邏輯0狀態相關聯之一讀取操作可與一相對大電荷轉移量相關聯(例如,和與電荷狀態305-a及305-c或更通常而言與邏輯1狀態相關聯之一讀取操作相比)。When a read operation is performed on the ferroelectric capacitor 220 in the charge state 310-a (eg, a logic 0), the stored charge may reverse polarity as a net positive charge accumulates across the ferroelectric capacitor 220, and the charge The states may follow path 360 until the charge and voltage of charge state 310-c is reached. The amount of charge flowing through ferroelectric capacitor 220 may also be related to the intrinsic capacitance of digit line 210 (eg, intrinsic capacitance 240 described with reference to FIG. 2 ) or other capacitances. In a "board low" read configuration, a read operation associated with charge states 310-a and 310-c, or more generally a logic 0 state, may be associated with a relatively large The amount of charge transfer is associated (eg, as compared to a read operation associated with charge states 305-a and 305-c or, more generally, a logic 1 state).

如電荷狀態310-a與電荷狀態310-c之間的轉變所展示,在某些情形中由於在電容器220處在給定電荷改變之情況下電壓改變係相對小的,因此所得電壓355可係一相對小正值。因此,在於一「板低」讀取操作中讀取一邏輯之後,在電荷狀態310-c下等於VPL 與Vcap (例如,Vbottom – Vplate )之和的數位線電壓可係一相對低電壓。As shown by the transition between charge state 310-a and charge state 310-c, in some cases the resulting voltage 355 can be A relatively small positive value. Thus, after reading a logic in a "plate low" read operation, the digit line voltage equal to the sum of V PL and V cap (eg, V bottom - V plate ) at charge state 310-c may be a relative low voltage.

自電荷狀態310-a至電荷狀態310-d之轉變可圖解說明與一記憶體胞元105之一鐵電電容器220之極化或電荷之一部分減小或部分反轉(例如,自電荷狀態310-a至電荷狀態310-d電荷Q之量值之一減小)相關聯的一感測操作。換言之,根據鐵電材料之性質,在實行讀取操作之後,當移除讀取電壓335(例如,藉由跨越鐵電電容器220施加一零淨電壓、藉由跨越鐵電電容器220使電壓均等化)時鐵電電容器220不可返回至電荷狀態310-a。更確切而言,當在利用讀取電壓335進行電荷狀態310-a之一讀取操作之後跨越鐵電電容器220施加一零淨電壓時,電荷狀態可沿循自電荷狀態310-c至電荷狀態310‑d的路徑365,此圖解說明極化量值之一淨減小(例如,比初始電荷狀態310-a小之一正極化電荷狀態,由電荷狀態310-a與電荷狀態310-d之間的電荷差所圖解說明)。因此,利用一正讀取電壓對具有一電荷狀態310-a之一鐵電電容器220實行一讀取操作可被闡述為一破壞性讀取程序。然而,在某些感測方案中,一減小的剩餘極化仍可被讀取為相同儲存邏輯狀態,如一飽和剩餘極化狀態(例如,支援自電荷狀態310-a及電荷狀態310-d兩者偵測一邏輯0),藉此就讀取操作而言提供使一記憶體胞元105具備一定程度之非揮發性。The transition from charge state 310-a to charge state 310-d may illustrate a partial reduction or partial reversal of the polarization or charge of a ferroelectric capacitor 220 of a memory cell 105 (eg, from charge state 310 -a to charge state 310-d a decrease in the magnitude of the charge Q) associated with a sensing operation. In other words, depending on the nature of the ferroelectric material, after a read operation is performed, when the read voltage 335 is removed (eg, by applying a zero net voltage across the ferroelectric capacitor 220 , by equalizing the voltage across the ferroelectric capacitor 220 , ), the ferroelectric capacitor 220 cannot return to the state of charge 310-a. More specifically, when a net zero voltage is applied across ferroelectric capacitor 220 after one of the read operations of charge state 310-a with read voltage 335, the charge state may follow from charge state 310-c to charge state Path 365 of 310-d, which illustrates a net decrease in the magnitude of the polarization (eg, a positively polarized charge state less than initial charge state 310-a, by the difference between charge state 310-a and charge state 310-d). illustrated by the charge difference between the two). Thus, performing a read operation on a ferroelectric capacitor 220 having a state of charge 310-a with a positive read voltage can be described as a destructive read procedure. However, in some sensing schemes, a reduced remnant polarization can still be read as the same stored logic state, such as a saturated remnant polarization state (eg, supporting self-charge state 310-a and charge state 310-d Both detect a logic 0), thereby providing a degree of non-volatility for a memory cell 105 for read operations.

在起始一讀取操作之後電荷狀態305-c及電荷狀態310-c之位置可取決於若干個因素,包含特定感測方案及電路系統。在某些情形中,最終電荷可取決於與記憶體胞元105耦合之數位線210之淨電容,該淨電容可包含一固有電容240、積分器電容器等等。舉例而言,若一鐵電電容器220與處於0V之一板線215電耦合且對一數位線210施加讀取電壓335,則當記憶體胞元105被選定時,由於電荷自數位線210之淨電容流動至鐵電電容器220因此數位線210之電壓可下降。因此,在某些實例中,在一感測組件150處量測之一電壓可不等於讀取電壓335或所得電壓350或355,而是可取決於在電荷共用之一週期之後數位線210之電壓。The location of charge state 305-c and charge state 310-c after initiating a read operation may depend on a number of factors, including the particular sensing scheme and circuitry. In some cases, the final charge may depend on the net capacitance of the digit line 210 coupled to the memory cell 105, which may include an inherent capacitance 240, integrator capacitors, and the like. For example, if a ferroelectric capacitor 220 is electrically coupled to a plate line 215 at 0V and a read voltage 335 is applied to a digit line 210, then when the memory cell 105 is selected, due to the charge from the digit line 210 The net capacitance flows to the ferroelectric capacitor 220 so the voltage of the digit line 210 can drop. Thus, in some examples, a voltage measured at a sensing element 150 may not be equal to the read voltage 335 or the resulting voltage 350 or 355, but may depend on the voltage of the digit line 210 after a period of charge sharing .

在起始一讀取操作之後電荷狀態305-c及電荷狀態310-c在磁滯曲線300-b上之位置可取決於一數位線210之淨電容且可透過一負載線分析來判定。換言之,電荷狀態305-c及310-c可相對於數位線210或其他存取線(例如,一信號線260)之淨電容來界定。因此,在起始一讀取操作之後鐵電電容器220之電壓(例如,在讀取儲存電荷狀態305-a之鐵電電容器220時之電壓350、在讀取儲存電荷狀態310-a之鐵電電容器220時之電壓355)可不同且可取決於鐵電電容器220之初始狀態。在某些實例中,可根據一特定感測方案選擇一記憶體胞元105之一鐵電電容器220之極化由於一感測操作之改變量。在某些實例中,使一記憶體胞元105之一鐵電電容器220之一極化發生較大改變之感測操作可與偵測一記憶體胞元105之一邏輯狀態之相對較大穩健性(例如,更寬感測餘裕)相關聯。The position of charge state 305-c and charge state 310-c on hysteresis curve 300-b after initiating a read operation can depend on the net capacitance of a digit line 210 and can be determined through a load line analysis. In other words, the charge states 305-c and 310-c may be defined relative to the net capacitance of the digit line 210 or other access line (eg, a signal line 260). Thus, the voltage of ferroelectric capacitor 220 after initiating a read operation (eg, voltage 350 when reading ferroelectric capacitor 220 in stored charge state 305-a, ferroelectric capacitor 220 in reading stored charge state 310-a, The voltage 355 ) across the capacitor 220 may vary and may depend on the initial state of the ferroelectric capacitor 220 . In some examples, the amount of change in polarization of a ferroelectric capacitor 220 of a memory cell 105 due to a sensing operation can be selected according to a particular sensing scheme. In some examples, sensing operations that cause large changes in the polarization of a ferroelectric capacitor 220 of a memory cell 105 can be relatively robust to detecting a logic state of a memory cell 105 performance (eg, wider sensing margin).

可藉由比較自讀取操作所得的一數位線210 (或信號線260,在適用情況下)之電壓與一參考電壓(例如,經由參考圖2所闡述之一參考線265或經由一共同存取線)來判定鐵電電容器220之初始狀態(例如,電荷狀態、邏輯狀態)。在某些實例中,數位線電壓可係板線電壓與跨越鐵電電容器220之最終電壓(例如,在讀取具有一所儲存電荷狀態305-a之鐵電電容器220時之電壓350或在讀取具有一所儲存電荷狀態310-a之鐵電電容器220時之電壓355)之和。在某些實例中,數位線電壓可係讀取電壓335與跨越電容器220之最終電壓之間的差(例如,當讀取具有一所儲存電荷狀態305-a之鐵電電容器220時(讀取電壓335 – 電壓350);當讀取具有一所儲存電荷狀態310‑a之鐵電電容器220時(讀取電壓335 – 電壓355))。can be obtained by comparing the voltage of a digit line 210 (or signal line 260, where applicable) resulting from the read operation to a reference voltage (eg, via a reference line 265 as described with reference to FIG. 2 or via a common storage device) line) to determine the initial state (eg, charge state, logic state) of the ferroelectric capacitor 220 . In some examples, the digit line voltage may be the plate line voltage and the final voltage across ferroelectric capacitor 220 (eg, voltage 350 when reading ferroelectric capacitor 220 having a stored charge state 305-a or when reading Take the sum of the voltages 355) when the ferroelectric capacitor 220 has a stored charge state 310-a. In some examples, the digit line voltage may be the difference between the read voltage 335 and the final voltage across capacitor 220 (eg, when reading ferroelectric capacitor 220 having a stored charge state 305-a (reading voltage 335 - voltage 350); when reading ferroelectric capacitor 220 with a stored state of charge 310-a (read voltage 335 - voltage 355)).

在某些實例中,一記憶體胞元105之讀取操作可與一數位線210之一固定電壓相關聯,其中無論鐵電電容器220之初始電荷狀態如何,在起始一讀取操作之後,一鐵電電容器220之一電荷狀態可相同。舉例而言,在一數位線210保持在一固定讀取電壓335下之一讀取操作中,鐵電電容器可針對鐵電電220容器最初儲存一電荷狀態305-a之情形及鐵電電容器首最初儲存一電荷狀態310-a之情形兩者而繼續至一電荷狀態370。因此,並非使用一數位線210之一電壓查來偵測一初始電荷狀態或邏輯狀態,而是在某些實例中,可至少部分地基於與讀取操作相關聯之電荷差判定鐵電電容器220之初始電荷狀態或邏輯狀態。舉例而言,如磁滯曲線300-b所圖解說明,可基於電荷狀態305-a與電荷狀態370之間的電荷Q之差(例如,一相對小電荷轉移量)偵測到一邏輯1,且可基於電荷狀態310-a與電荷狀態370之間的電荷Q之一差(例如,一相對大電荷轉移量)偵測到一邏輯0。In some examples, a read operation of a memory cell 105 may be associated with a fixed voltage on a digit line 210, wherein after initiating a read operation, regardless of the initial charge state of the ferroelectric capacitor 220, A charge state of a ferroelectric capacitor 220 may be the same. For example, in a read operation with a digit line 210 held at a fixed read voltage 335, the ferroelectric capacitor may initially store a state of charge 305-a for the case where the ferroelectric 220 capacitor initially stores and the ferroelectric capacitor initially Both conditions of a charge state 310-a are stored and continue to a charge state 370. Thus, rather than using a voltage check on a digit line 210 to detect an initial charge state or logic state, in some examples, the ferroelectric capacitor 220 can be determined based at least in part on the difference in charge associated with a read operation The initial charge state or logic state. For example, as illustrated by hysteresis curve 300-b, a logic 1 may be detected based on the difference in charge Q between charge state 305-a and charge state 370 (eg, a relatively small amount of charge transfer), And a logic 0 can be detected based on a difference in charge Q between charge state 310-a and charge state 370 (eg, a relatively large amount of charge transfer).

在某些實例中,一數位線210與一信號線260之間的一電荷轉移感測放大器、一串疊器件(例如,呈一串疊器件配置之一電晶體組態)或其他信號生成電路系統可支援此一偵測,其中信號線260之一電壓可至少部分地基於在起始一讀取操作之後一電容器220之電荷轉移量(例如,其中所闡述電荷轉移可對應於通過電荷轉移感測放大器、串疊器件或其他信號生成電路系統之一電荷量)。在此等實例中,儘管數位線210保持在一固定電壓位準下,但仍可比較信號線260之電壓與一參考電壓(例如,在一感測放大器290處)來判定最初由鐵電電容器220儲存之邏輯狀態。In some examples, a charge transfer sense amplifier, a tandem device (eg, a transistor configuration in a tandem device configuration), or other signal generating circuit between a digit line 210 and a signal line 260 The system can support such a detection, where a voltage on the signal line 260 can be based, at least in part, on the amount of charge transferred from a capacitor 220 after initiating a read operation (eg, where the described charge transfer can correspond to sensing by charge transfer). a charge in a test amplifier, cascading device, or other signal-generating circuitry). In these examples, although the digit line 210 is held at a fixed voltage level, the voltage of the signal line 260 can be compared to a reference voltage (eg, at a sense amplifier 290) to determine that the ferroelectric capacitor was originally generated by the ferroelectric capacitor 220 stores the logical state.

在一數位線210保持於一固定讀取電壓335下之某些實例中,無論電容器220最初處於一電荷狀態305-a (例如,一邏輯1)或還是最初處於一電荷狀態310-a (例如,一邏輯0),在一讀取操作之後,一電容器220皆可係正飽和的。因此,在此一讀取操作之後,無論初始邏輯狀態或預期邏輯狀態如何,皆可根據一邏輯1狀態將電容器220至少暫時地充電。因此,當電容器220預期儲存一邏輯0狀態時可至少需要一重寫操作,其中此一重寫操作可包含施加一寫入電壓325以儲存一邏輯0狀態,如參考磁滯曲線300-a所闡述。此重寫操作可被組態或者闡述為一選擇性重寫操作,此乃因當電容器220預期儲存一邏輯1狀態時,可不需要施加一重寫電壓。在某些實例中,此一存取方案可被稱為一「2Pr」方案,其中用於區分一邏輯0與一邏輯1之電荷差可等於兩個一記憶體胞元105之剩餘極化之兩倍(例如,電荷狀態305-a (一正飽和電荷狀態)與電荷狀態310-a (一負飽和電荷狀態)之間的一電荷差)。In some instances where a digit line 210 is held at a fixed read voltage 335, whether capacitor 220 is initially in a state of charge 305-a (eg, a logic 1) or initially in a state of charge 310-a (eg, , a logic 0), a capacitor 220 can be positively saturated after a read operation. Therefore, after such a read operation, regardless of the initial logic state or the expected logic state, the capacitor 220 can be charged at least temporarily according to a logic 1 state. Therefore, when capacitor 220 is expected to store a logic 0 state, at least one rewrite operation may be required, wherein such a rewrite operation may include applying a write voltage 325 to store a logic 0 state, as shown with reference to hysteresis curve 300-a elaborate. This rewrite operation may be configured or described as a selective rewrite operation, since a rewrite voltage may not need to be applied when capacitor 220 is expected to store a logic 1 state. In some examples, such an access scheme may be referred to as a "2Pr" scheme, in which the charge difference used to distinguish a logic 0 from a logic 1 may be equal to the sum of the remanent polarizations of the two one-memory cells 105 twice (eg, a charge difference between charge state 305-a (a positive saturation charge state) and charge state 310-a (a negative saturation charge state)).

在某些感測方案中,可產生一參考電壓,以使得該參考電壓介於可自讀取不同邏輯狀態所得到之可能電壓(例如,一數位線210之可能電壓、一信號線260之可能電壓)之間。舉例而言,一參考電壓可經選擇以在讀取一邏輯1時低於一數位線210或信號線260之所得電壓,且在讀取一邏輯0時高於數位線210或信號線260之所得電壓。在其他實例中,可在一感測組件150或感測放大器290的與耦合至一數位線210或信號線260之一部分不同的一部分處進行一比較,且因此一參考電壓可經選擇以在讀取一邏輯1時低於感測組件150或感測放大器290之比較部分處之所得電壓,且在讀取一邏輯0時高於感測組件150或感測放大器290之比較部分之所得電壓。在藉由感測組件150或感測放大器290進行比較期間,可判定基於感測之電壓高於或低於參考電壓,且因此可判定記憶體胞元105所儲存之邏輯狀態(例如,一邏輯0、一邏輯1)。In some sensing schemes, a reference voltage can be generated such that the reference voltage is between possible voltages that can be obtained from reading different logic states (eg, a possible voltage for a digit line 210, a possible voltage for a signal line 260 voltage). For example, a reference voltage can be selected to be lower than the resulting voltage of a digit line 210 or signal line 260 when a logic 1 is read, and higher than the resulting voltage of a digit line 210 or signal line 260 when a logic 0 is read the resulting voltage. In other examples, a comparison can be made at a portion of a sense element 150 or sense amplifier 290 that is different from a portion coupled to a digit line 210 or a signal line 260, and thus a reference voltage can be selected to be used when reading Taking a logic 1 is lower than the resulting voltage at the comparison portion of sense element 150 or sense amplifier 290 and higher than the resulting voltage at the comparison portion of sense element 150 or sense amplifier 290 when a logic 0 is read. During comparison by sense element 150 or sense amplifier 290, the sense-based voltage can be determined to be higher or lower than the reference voltage, and thus the logic state (eg, a logic state) stored by memory cell 105 can be determined 0, a logic 1).

在一感測操作期間,自讀取各種記憶體胞元105所得之信號可隨各種記憶體胞元105之間的製造差異或操作差異而變化。舉例而言,各種記憶體胞元105之電容器220可具有不同電容位準或飽和極化,以使得一邏輯1可因記憶體胞元不同而與不同電荷位準相關聯,且一邏輯0可因記憶體胞元不同而與不同電荷位準相關聯。此外,固有電容或其他電容(例如,參考圖2所闡述之固有電容240)可因一記憶體裝置中之數位線210不同而有所不同,可因信號線260不同而有所不同,且在一數位線210內自位於同一數位線210上之不同記憶體胞元105之角度來看,該固有電容或其他電容亦可有所不同。因此,出於此等及其他原因,讀取一邏輯1可因記憶體胞元105不同而與一數位線210或一信號線260之不同電壓位準相關聯(例如,所得電壓350可在讀取不同記憶體胞元105之間而有所變化),且讀取一邏輯0可因記憶體胞元105不同而與不同電壓位準相關聯(例如,所得電壓355可因所讀取之記憶體胞元105不同而有所不同)。During a sensing operation, the signals obtained from reading the various memory cells 105 may vary due to manufacturing differences or operational differences between the various memory cells 105 . For example, the capacitors 220 of the various memory cells 105 can have different capacitance levels or saturation polarizations, so that a logic 1 can be associated with different charge levels for different memory cells, and a logic 0 can be Different charge levels are associated with different memory cells. In addition, intrinsic capacitance or other capacitances (eg, intrinsic capacitance 240 described with reference to FIG. 2 ) may vary from one digital line 210 to one in a memory device, and may vary from one signal line 260 to another, and in The intrinsic capacitance or other capacitances may also be different within a digit line 210 from the perspective of different memory cells 105 located on the same digit line 210 . Thus, for these and other reasons, reading a logic 1 may be associated with different voltage levels for a digit line 210 or a signal line 260 depending on the memory cell 105 (eg, the resulting voltage 350 may be read in varies from memory cell 105 to memory cell 105), and reading a logic 0 may be associated with different voltage levels depending on the memory cell 105 (eg, the resulting voltage 355 may be due to the memory being read somatic cell 105 varies).

在某些實例中,一參考電壓可被設置成介於與一邏輯1讀取相關聯之電壓之一統計平均值和與讀取一邏輯相關聯之電壓之一統計平均值之間,但該參考電壓可相對更接近針對任何給定記憶體胞元105讀取邏輯狀態中之一者所得之電壓。讀取一特定邏輯狀態所得之一電壓(例如,作為讀取一記憶體裝置之複數個記憶體胞元105之一統計值)與一參考電壓之一相關聯位準之間的最小差可被稱為一「最小讀取電壓差」或一「讀取餘裕」,且具有一低的最小讀取電壓差或讀取餘裕可與可靠地感測一給定記憶體裝置100中之記憶體胞元105之邏輯狀態之困難度或靈敏度相關聯。In some examples, a reference voltage can be set between a statistical average of voltages associated with a logic 1 read and a statistical average of voltages associated with a logic read, but the The reference voltage may be relatively closer to the voltage obtained for any given memory cell 105 reading one of the logic states. The minimum difference between a voltage resulting from reading a particular logic state (eg, as a statistic for reading a plurality of memory cells 105 of a memory device) and an associated level of a reference voltage can be determined by referred to as a "minimum read voltage difference" or a "read margin," and having a low minimum read voltage difference or read margin can be used to reliably sense memory cells in a given memory device 100 The difficulty or sensitivity of the logic state of element 105 is associated.

在某些記憶體裝置100中,電荷洩漏(例如,高於一臨限值之電荷洩漏)可對一記憶體裝置100判定由一記憶體胞元105儲存之一邏輯狀態之能力造成負面影響。舉例而言,根據磁滯曲線300-b就一數位線210上具有一固定讀取電壓335之一讀取操作而言,當讀取儲存一邏輯0之一記憶體胞元105時,電荷洩漏可疊加於電荷狀態310-a與電荷狀態370之間的電荷差上,且當讀取儲存一邏輯1之一記憶體胞元105時,電荷洩漏可疊加於電荷狀態305-a與電荷狀態370之間的電荷差上。在某些實例中,在讀取一記憶體胞元105時,所疊加之電荷洩漏可減小將一邏輯0與一邏輯1進行開之餘裕。舉例而言,記憶體胞元105、數位線210或信號線260之電荷洩漏可在讀取一邏輯1及一邏輯0兩者時增大一信號線260之一電壓位於一參考電壓之同一側上之可能性。換言之,此電荷洩漏可增大寫入有一邏輯1之一記憶體胞元105被不正確地讀取為儲存一邏輯0之可能性。In some memory devices 100 , charge leakage (eg, charge leakage above a threshold value) can negatively affect the ability of a memory device 100 to determine a logic state stored by a memory cell 105 . For example, for a read operation with a fixed read voltage 335 on a digit line 210 according to the hysteresis curve 300-b, when a memory cell 105 storing a logic 0 is read, charge leakage occurs may be superimposed on the charge difference between charge state 310-a and charge state 370, and charge leakage may be superimposed on charge state 305-a and charge state 370 when reading a memory cell 105 that stores a logic 1 the difference in charge between them. In some instances, when a memory cell 105 is read, the superimposed charge leakage can reduce the margin for turning on a logic 0 and a logic 1. For example, charge leakage from memory cell 105, digit line 210, or signal line 260 can increase a voltage on signal line 260 on the same side of a reference voltage when reading both a logic 1 and a logic 0 possibility above. In other words, this charge leakage can increase the likelihood that a memory cell 105 written with a logic 1 will be incorrectly read as storing a logic 0.

在某些實例中,一記憶體裝置100可識別與一或多個記憶體胞元105或存取線(例如,數位線210、信號線260)相關聯之一電荷洩漏,且可判定是否要特意地將由一記憶體胞元105儲存之一邏輯狀態反相以使得在存在電荷洩漏時更可能恰當地讀取邏輯狀態。舉例而言,一記憶體裝置100可在一存取操作(例如,存取操作之一讀取部分、存取操作之一寫入部分)期間判定由一記憶體胞元105儲存之一邏輯狀態,且亦偵測記憶體胞元105或相關存取線是否與一電荷洩漏相關聯(例如,在存取操作之一洩漏偵測部分期間)。在某些情形中,記憶體裝置100可部分地基於偵測到電荷洩漏而判定將所偵測到之邏輯狀態之一補數(例如,一不同邏輯狀態,一經反相邏輯狀態、一相反邏輯狀態)寫入到一給定記憶體胞元105或包含該給定記憶體胞元105之一組記憶體胞元105。In some examples, a memory device 100 can identify a charge leakage associated with one or more memory cells 105 or access lines (eg, digit lines 210, signal lines 260), and can determine whether to A logic state stored by a memory cell 105 is intentionally inverted to make it more likely to properly read the logic state in the presence of charge leakage. For example, a memory device 100 may determine a logic state stored by a memory cell 105 during an access operation (eg, a read portion of an access operation, a write portion of an access operation) , and also detects whether the memory cell 105 or associated access line is associated with a charge leak (eg, during a leak detection portion of an access operation). In some cases, the memory device 100 may determine, based in part on the detection of charge leakage, a complement of the detected logic state (eg, a different logic state, an inverted logic state, an inverse logic state state) is written to a given memory cell 105 or to a group of memory cells 105 containing the given memory cell 105.

在某些實例中,判定寫入邏輯狀態之補數可基於所偵測到之邏輯狀態與一第一電荷轉移量相關聯(例如,對於一邏輯1,電荷狀態305-c與305-a之間的一電荷差或電荷狀態370與305-a之間的一電荷差取決於存取操作之類型或相關聯電路系統),且邏輯狀態之補數與大於第一電荷轉移量之一第二電荷轉移量相關聯(例如,對於一邏輯0,電荷狀態310-c與310-a之間的一電荷差或電荷狀態370與310-a之間的一電荷差取決於存取操作之類型或相關聯電路系統)。舉例而言,根據磁滯曲線300-a及300-b,基於識別到一記憶體胞元105儲存一邏輯1 (例如,根據一寫入操作或一讀取操作)且偵測到與記憶體胞元105相關聯之一電荷洩漏(例如,連接至記憶體胞元105之一數位線210或一信號線260之一電荷洩漏、在寫入操作或讀取操作期間偵測到之一電荷洩漏),相關聯記憶體裝置可判定記憶體胞元105寫入有一邏輯0 (例如,所識別邏輯1之一補數)。In some examples, determining the complement of the write logic state may be associated with a first amount of charge transfer based on the detected logic state (eg, for a logic 1, the difference between charge states 305-c and 305-a) A charge difference between or between charge states 370 and 305-a depends on the type of access operation or associated circuitry), and the complement of the logic state is a second greater than the first charge transfer amount The amount of charge transferred is associated (eg, for a logic 0, a charge difference between charge states 310-c and 310-a or a charge difference between charge states 370 and 310-a depends on the type of access operation or associated circuitry). For example, according to hysteresis curves 300-a and 300-b, based on identifying a memory cell 105 to store a logic 1 (eg, according to a write operation or a read operation) and detecting a A charge leakage associated with the cell 105 (eg, a charge leakage connected to a digit line 210 or a signal line 260 of the memory cell 105, a charge leakage detected during a write operation or a read operation ), the associated memory device may determine that memory cell 105 is written with a logical 0 (eg, one's complement of the identified logical 1).

伴隨著將一互補邏輯狀態(例如,一邏輯0)寫入至記憶體胞元105,記憶體裝置100亦可儲存所偵測到之邏輯狀態之補數寫入至至少記憶體胞元105之一指示,例如一位元翻轉指示。在各種實例中,此一位元翻轉指示可對應於包含被偵測到一相關聯電荷洩漏之記憶體胞元105之一組一或多個記憶體胞元105 (例如,一單胞元指示、對應於複數個記憶體胞元105之一指示、對應於一列記憶體胞元105之一指示、對應於一頁記憶體胞元105之一指示、對應於共用一字線205之一組記憶體胞元105之一指示)。舉例而言,一記憶體裝置100可儲存此一指示(例如,在一記憶體控制器170處、在可接達一記憶體控制器170之一記憶體裝置100之一儲存組件處)以追蹤一記憶體胞元105或一組記憶體胞元105已被程式化有一直接邏輯狀態還是一互補邏輯狀態(例如,一經翻轉狀態)。此一指示可用於一後續讀取操作中以在記憶體裝置100之讀取資訊時恰當地解譯該一或多個記憶體胞元105之已改變邏輯狀態(例如,基於一位元翻轉指示判定是直接解譯由一記憶體胞元105儲存之邏輯狀態還是反相或以其他方式改變對由記憶體胞元105儲存之互補邏輯狀態之解譯)。因此,可藉由改變由一記憶體胞元105儲存之一邏輯狀態(例如,在一重寫操作期間),且在一後續讀取操作中追蹤此一改變來抵消所偵測到電荷洩漏,此可避免原本可由電荷洩漏所致的對由記憶體胞元105儲存之資訊之一不正確解譯。Along with writing a complementary logic state (eg, a logic 0) to memory cell 105 , memory device 100 may also store the complement of the detected logic state written to at least memory cell 105 . An indication, such as a one-bit flip indication. In various examples, this one-bit flip indication may correspond to a set of one or more memory cells 105 including a memory cell 105 for which an associated charge leakage was detected (eg, a single-cell indication , corresponds to an indication of a plurality of memory cells 105 , corresponds to an indication of a column of memory cells 105 , corresponds to an indication of a page of memory cells 105 , corresponds to a group of memories that share a word line 205 One of the somatic cells 105 indicates). For example, a memory device 100 may store such an indication (eg, at a memory controller 170, at a storage component of a memory device 100 accessible to a memory controller 170) to track A memory cell 105 or group of memory cells 105 has been programmed to have a direct logic state or a complementary logic state (eg, a flipped state). Such an indication can be used in a subsequent read operation to properly interpret the changed logic state of the one or more memory cells 105 when reading information from memory device 100 (eg, based on a one-bit flip indication A determination is made whether to directly interpret the logic state stored by a memory cell 105 or to invert or otherwise alter the interpretation of the complementary logic state stored by the memory cell 105). Thus, detected charge leakage can be counteracted by changing a logic state stored by a memory cell 105 (eg, during a rewrite operation) and tracking this change in a subsequent read operation, This avoids an incorrect interpretation of one of the information stored by the memory cell 105 that could otherwise be caused by charge leakage.

圖4圖解說明根據本文中所揭示之實例的支援記憶體管理及刪除解碼之一電路400之一實例。電路400包含用於感測一記憶體胞元105-b之一邏輯狀態之一感測放大器290-a。可經由一數位線210-a及一信號線260-a在感測放大器290-a與記憶體胞元105-b之間傳達電荷或其他信號,數位線210-a與信號線260-a可組合地被稱為記憶體胞元105-b之線一單個存取線。存取線之信號可藉由數位線210-a上之電壓VDL 及信號260-a上之Vsig 圖解說明,如所展示。4 illustrates one example of a circuit 400 that supports memory management and delete decoding, according to examples disclosed herein. Circuit 400 includes a sense amplifier 290-a for sensing a logic state of a memory cell 105-b. Charge or other signals may be communicated between sense amplifier 290-a and memory cell 105-b via a digit line 210-a and a signal line 260-a, which may The line collectively referred to as memory cell 105-b is a single access line. The signal of the access line may be illustrated by the voltage VDL on the digit line 210-a and the Vsig on the signal 260-a, as shown.

實例性電路400可包含耦合於數位線210‑a與信號線260‑a之間的一放大器405,該放大器405可由電壓源410-l啟用。在各種實例中,放大器405可係一信號生成組件280之一實例,或以其他方式包含為一信號生成組件280之一部分。電路400亦可包含:一字線205-a,其用於選擇或取消選擇記憶體胞元105-b (例如,藉由邏輯信號WL);及一參考線265-a,其用於提供一參考信號(例如Vref ,如所展示)以供在偵測記憶體胞元105-b之一邏輯狀態時與信號線260-a之一信號比較。電路400亦可包含用於存取記憶體胞元105-b之一電容器之一胞元板之一板線215-a。因此,記憶體胞元105-b可表示耦合於一第一存取線(例如,數位線210-a及信號線260-a)與一第二存取線(例如,板線215-a)之間的一記憶體胞元105。Example circuit 400 may include an amplifier 405 coupled between digit line 210-a and signal line 260-a, which may be enabled by voltage source 410-1. In various examples, amplifier 405 may be an instance of a signal generating component 280, or otherwise included as part of a signal generating component 280. Circuit 400 may also include: a word line 205-a for selecting or deselecting memory cell 105-b (eg, by logic signal WL); and a reference line 265-a for providing a A reference signal (eg, Vref , as shown) is used for comparison with a signal on signal line 260-a when detecting a logic state of memory cell 105-b. Circuit 400 may also include a plate line 215-a for accessing a cell plate of a capacitor of memory cell 105-b. Thus, memory cell 105-b may be represented as coupled to a first access line (eg, digit line 210-a and signal line 260-a) and a second access line (eg, plate line 215-a) A memory cell 105 in between.

電路400可包含各種電壓源410,該各種電壓源410可與包含實例性電路400之一記憶體裝置之各種電壓供應器或共同接地點或虛擬接地點耦合。Circuit 400 may include various voltage sources 410 that may be coupled to various voltage supplies or common or virtual grounds of a memory device including one of example circuit 400 .

一電壓源410-a可表示一共同接地點(例如,一底板接地、一中性點),可與具有一電壓V0 之一共同參考電壓相關聯,依據該共同接地點界定其他電壓。電壓源410-a可經由數位線210-a之固有電容240-a與數位線210-a耦合。A voltage source 410-a may represent a common ground (eg, a chassis ground, a neutral), and may be associated with a common reference voltage having a voltage V 0 from which other voltages are defined. The voltage source 410-a may be coupled to the digit line 210-a via the inherent capacitance 240-a of the digit line 210-a.

具有一電壓V1 之一電壓源410-b可表示一板線電壓源,且可經由記憶體胞元105-b之一板線215-a與記憶體胞元105-b耦合。在某些實例中,可針對存取操作(例如讀取或寫入操作,包含參考圖3A及圖3B之磁滯曲線300-a及300-b所闡述之彼等操作)對電壓源410-b加以控制。換言之,在某些實例中,電壓源410-b可係一可變電壓源,其中一電壓V1 可具有多個位準。 A voltage source 410-b having a voltage V1 may represent a plate line voltage source, and may be coupled to memory cell 105-b via a plate line 215-a of memory cell 105-b. In some examples, voltage source 410- b to be controlled. In other words, in some examples, voltage source 410-b may be a variable voltage source, where a voltage V1 may have multiple levels.

具有一電壓V2 之一電壓源410-c可表示一數位線電壓源,且可經由一切換組件420-a與數位線210-a耦合,可藉由一邏輯信號SW1 啟動或撤銷啟動切換組件420-a。 A voltage source 410-c having a voltage V2 may represent a digitline voltage source, and may be coupled to digitline 210-a via a switching element 420-a, switching may be activated or deactivated by a logic signal SW1 Assembly 420-a.

具有一電壓V3 之一電壓源410-d可表示一信號線預充電電壓源,且可經由一切換組件420-c與信號線260-a耦合,可藉由一邏輯信號SW3 啟動或撤銷啟動切換組件420-c。A voltage source 410-d having a voltage V3 may represent a signal line precharge voltage source, and may be coupled to signal line 260-a via a switching element 420- c , which may be activated or deactivated by a logic signal SW3 Switching component 420-c is activated.

具有一電壓V4 之一電壓源410-e可表示一參考信號電壓源,且可經由一切換組件420-f與參考線265-a耦合,可藉由一邏輯信號SW6 啟動或撤銷啟動切換組件420-f。A voltage source 410-e having a voltage V4 can represent a reference signal voltage source and can be coupled to reference line 265-a via a switching element 420 - f, switching can be activated or deactivated by a logic signal SW6 Assembly 420-f.

具有一電壓V11 之電壓源410-l可表示一放大器或串疊器件電壓源,且可與放大器405耦合。在某些實例中,放大器405可係一電晶體,且電壓源410-l可與該電晶體之閘極耦合。放大器405可在一第一端子處與信號線260-a耦合,且在一第二端子處與數位線210-a耦合。放大器405可在數位線210-a與信號線260-a之間提供電荷、電壓或其他信號之一轉換。Voltage source 410 - 1 having a voltage V 11 may represent an amplifier or tandem device voltage source, and may be coupled to amplifier 405 . In some examples, amplifier 405 may be a transistor, and voltage source 410-1 may be coupled to the gate of the transistor. Amplifier 405 may be coupled to signal line 260-a at a first terminal and to digit line 210-a at a second terminal. Amplifier 405 may provide conversion of one of charge, voltage, or other signal between digit line 210-a and signal line 260-a.

放大器405可在數位線210a之電壓減小時(例如,在選擇記憶體胞元105-b時)准許一電荷(例如,電荷、電流)自信號線260-a流動至數位線210-a,放大器405係由電壓源410-l功能或啟用。在某些實例中,所闡述的跨越放大器405之電荷流動可對應於與記憶體胞元105-b之邏輯狀態相關聯之一電荷轉移或與存取記憶體胞元105-b相關聯之一電荷轉移。舉例而言,當記憶體胞元105-b包含磁滯曲線300-a及300-b所圖解說明之一鐵電電容器,且放大器405經組態以將數位線210-a之電壓維持為一讀取電壓335時,當記憶體胞元105-b儲存一邏輯1時,跨越放大器405之一電荷流動(例如,在一讀取操作期間)可對應於或者至少部分地基於電荷狀態370與305-a之間的電荷差Q,且當記憶體胞元105-b儲存一邏輯0時,跨越放大器405之一電荷流動可對應於或者至少部分地基於電荷狀態370與310-a之間的電荷差Q。Amplifier 405 may allow a charge (eg, charge, current) to flow from signal line 260-a to digit line 210-a when the voltage on digit line 210a decreases (eg, when memory cell 105-b is selected), the amplifier 405 is enabled or enabled by voltage source 410-1. In some examples, the illustrated flow of charge across amplifier 405 may correspond to a charge transfer associated with the logic state of memory cell 105-b or one associated with accessing memory cell 105-b charge transfer. For example, when memory cell 105-b includes a ferroelectric capacitor as illustrated by hysteresis curves 300-a and 300-b, and amplifier 405 is configured to maintain the voltage of digit line 210-a at a When reading voltage 335, when memory cell 105-b stores a logic 1, a flow of charge across amplifier 405 (eg, during a read operation) may correspond to or be based at least in part on charge states 370 and 305 A charge difference Q between -a and when memory cell 105-b stores a logic 0, a flow of charge across amplifier 405 may correspond to or be based at least in part on the charge between charge states 370 and 310-a Poor Q.

電路400亦可包含一第一積分器電容器430-a及一第二積分器電容器430-b,該第一積分器電容器430-a及第二積分器電容器430-b可各自與一各別可變電壓源450耦合。舉例而言,第一積分器電容器430-a可在一第一端子431-a處與信號線260-a耦合,且在一第二端子432-a處與一可變電壓源450-a耦合。第二積分器電容器430-b可在一第一端子431-b處與參考線265-a耦合,且在一第二端子432-b處與一可變電壓源450-b耦合。The circuit 400 may also include a first integrator capacitor 430-a and a second integrator capacitor 430-b, which may each be associated with a respective A variable voltage source 450 is coupled. For example, the first integrator capacitor 430-a may be coupled to the signal line 260-a at a first terminal 431-a and to a variable voltage source 450-a at a second terminal 432-a . The second integrator capacitor 430-b may be coupled to the reference line 265-a at a first terminal 431-b and to a variable voltage source 450-b at a second terminal 432-b.

在某些實例中,跨越放大器405之一電荷流動可伴隨著信號線260-a之一電壓改變。舉例而言,當信號線260-a不與一電壓源耦合時,去往數位線210-a之一相對小電荷流可與信號線260-a之一相對小電壓改變相關聯,而去往數位線210-a之一相對大電荷流可與信號線260-a之一相對大電壓改變相關聯。與一存取操作相關聯的信號線260-a之電壓改變可基於信號線260-a之淨電容(例如,包含積分器電容器430-a),其中在選擇記憶體胞元105-b之後,信號線260-a可根據跨越放大器405之電荷流經受一相對小電壓改變或一相對大電壓改變。In some examples, a flow of charge across amplifier 405 may be accompanied by a voltage change on signal line 260-a. For example, when signal line 260-a is not coupled to a voltage source, a relatively small charge flow to digit line 210-a may be associated with a relatively small voltage change to signal line 260-a, while A relatively large charge flow of one of the digit lines 210-a may be associated with a relatively large voltage change of one of the signal lines 260-a. The voltage change of signal line 260-a associated with an access operation may be based on the net capacitance of signal line 260-a (eg, including integrator capacitor 430-a), wherein upon selection of memory cell 105-b, Signal line 260-a may experience a relatively small voltage change or a relatively large voltage change depending on the flow of charge across amplifier 405.

在各種實例中,放大器405可關於放大器405如何回應於數位線210-a之電壓或電荷轉移調節一電荷流被稱為一「電壓調節器」或一「偏壓組件」。在某些實例中,放大器405或放大器405與積分器電容器430-a之組合可被稱為一電荷轉移感測放大器。放大器405可藉由一切換組件420-b與數位線210-a隔離,可藉由一邏輯信號SW2 啟動或撤銷啟動切換組件420-b。在某些實例中,切換組件420-b可係一行組件135、一多工器或經組態以選擇性地將數位線210-a與放大器405或信號線260-a耦合之某些其他電路系統之一部分。In various examples, amplifier 405 may be referred to as a "voltage regulator" or a "bias component" with respect to how amplifier 405 regulates a charge flow in response to the voltage or charge transfer of digit line 210-a. In some examples, amplifier 405 or the combination of amplifier 405 and integrator capacitor 430-a may be referred to as a charge transfer sense amplifier. Amplifier 405 can be isolated from digit line 210-a by a switch element 420 - b, which can be activated or deactivated by a logic signal SW2. In some examples, switching element 420-b may be a row element 135, a multiplexer, or some other circuit configured to selectively couple digit line 210-a with amplifier 405 or signal line 260-a part of the system.

在電路400之實例中,可變電壓源450-a可包含具有一電壓V5 之一電壓源410-f及具有一電壓V6 之一電壓源410-g,可依據一邏輯信號SW4 藉由一切換組件420-d選擇與第一積分器電容器430-a連接之電壓源。在某些實例中,電壓源410-f可與一共同接地點(未展示)耦合。在其他實例中,電壓源410-f可與提供一正電壓或負電壓之一電壓供應器耦合。電壓源410-g可與具有比電壓源410-f之電壓高之一電壓之一電壓供應器耦合,此可根據電壓源410-g與410-f之間的電壓差提供一電壓增壓功能,該電壓差等於V6 –V5 或在電壓源410-f接地時正好等於V6In the example of circuit 400, variable voltage sources 450-a may include a voltage source 410-f having a voltage V5 and a voltage source 410 - g having a voltage V6 , which may be borrowed according to a logic signal SW4 The voltage source connected to the first integrator capacitor 430-a is selected by a switching element 420-d. In some examples, voltage source 410-f may be coupled to a common ground (not shown). In other examples, voltage source 410-f may be coupled with a voltage supply that provides a positive or negative voltage. Voltage source 410-g may be coupled to a voltage supply having a voltage higher than that of voltage source 410-f, which may provide a voltage boost function based on the voltage difference between voltage sources 410-g and 410-f , the voltage difference is equal to V 6 -V 5 or exactly equal to V 6 when voltage source 410-f is grounded.

在電路400之實例中,可變電壓源450-b可包含具有一電壓V7 之一電壓源410-h及具有一電壓V8 之一電壓源410-i,可依據一邏輯信號SW5 藉由一切換組件420-e選擇與第二積分器電容器430-b連接之電壓源。在某些實例中,電壓源410-h可與一共同接地點(未展示)耦合。在其他實例中電壓源410-h可與提供一正電壓或負電壓之一電壓供應器耦合。電壓源410-i可與具有比電壓源410-h之電壓高之一電壓之一電壓供應器耦合,此可根據電壓源410-i與410-h之間的電壓差提供一電壓增壓功能,該電壓差等於V8 –V7 或在電壓源410-h接地時正好等於V8In the example of circuit 400, variable voltage sources 450-b may include a voltage source 410 - h having a voltage V7 and a voltage source 410-i having a voltage V8, which may be borrowed according to a logic signal SW5 The voltage source connected to the second integrator capacitor 430-b is selected by a switching element 420-e. In some examples, voltage source 410-h may be coupled to a common ground (not shown). In other examples voltage source 410-h may be coupled with a voltage supply that provides a positive or negative voltage. Voltage source 410-i may be coupled to a voltage supply having a voltage higher than that of voltage source 410-h, which may provide a voltage boost function based on the voltage difference between voltage sources 410-i and 410-h , the voltage difference is equal to V 8 -V 7 or exactly equal to V 8 when voltage source 410-h is grounded.

在各種實例中,電路400之一或多個組件可包含於信號生成電路系統(例如,參考圖2所闡述之一信號生成組件280)中或被視為信號生成電路系統之一部分。舉例而言,電壓源410-c、切換組件420-a、切換組件420-b、放大器405、電壓源410-l、電壓源410-d、切換組件420-c、可變電壓源450-a或積分器電容器430-a中之任一者或多者可包含於一信號生成組件280中或者被視為位於一信號生成組件280之說明性邊界內。In various examples, one or more components of circuit 400 may be included in or considered part of signal generation circuitry (eg, one of signal generation components 280 set forth with reference to FIG. 2 ). For example, voltage source 410-c, switching component 420-a, switching component 420-b, amplifier 405, voltage source 410-1, voltage source 410-d, switching component 420-c, variable voltage source 450-a Or any one or more of the integrator capacitors 430 - a may be included in a signal generating component 280 or considered to be within the illustrative boundaries of a signal generating component 280 .

儘管電路400被展示為包含兩個可變電壓源450,但根據本發明之某些組態可包含一單個共同可變電壓源450。舉例而言,當撤銷啟動共同可變電壓源450之一切換組件420時,一共同可變電壓源450之一第一電壓源410可與第一積分器電容器430-a之第二端子432-a及第二積分器電容器430-b之第二端子432-b兩者耦合;且當啟動共同可變電壓源450之切換組件420時,共同可變電壓源450之一第二電壓源410可與第一積分器電容器430-a之第二端子432-a及第二積分器電容器430-b之第二端子432-b兩者耦合。在使用一共同可變電壓源450之某些實例中,由於可變電壓源450與積分器電容器430中之每一者之間在電路(例如,導體長度、寬度、電阻、電容)上存在差異,因此提供至第一積分器電容器430-a之第二端子432-a之源電壓可不同於提供至第二積分器電容器430-b之第二端子432-b之源電壓。Although circuit 400 is shown as including two variable voltage sources 450 , certain configurations in accordance with the present invention may include a single common variable voltage source 450 . For example, when a switching element 420 of a common variable voltage source 450 is deactivated, a first voltage source 410 of a common variable voltage source 450 may interact with the second terminal 432 of the first integrator capacitor 430-a- a and the second terminal 432-b of the second integrator capacitor 430-b are both coupled; and when the switching element 420 of the common variable voltage source 450 is activated, a second voltage source 410 of the common variable voltage source 450 can be Coupled to both the second terminal 432-a of the first integrator capacitor 430-a and the second terminal 432-b of the second integrator capacitor 430-b. In some examples using a common variable voltage source 450, due to differences in circuitry (eg, conductor length, width, resistance, capacitance) between the variable voltage source 450 and each of the integrator capacitors 430 , thus the source voltage provided to the second terminal 432-a of the first integrator capacitor 430-a may be different from the source voltage provided to the second terminal 432-b of the second integrator capacitor 430-b.

此外,儘管可變電壓源450被圖解說明為包含兩個電壓源410及一切換組件420,但支援本文中之操作之一可變電壓源450可包含其他組態,例如將一可變電壓提供至第一積分器電容器430-a之第二端子432-a及第二積分器電容器430-b之第二端子432-b中之一或兩者的一電壓緩衝器。在其他實例中,一可變電壓源450可被替換成固定電壓源或其他類型之電壓源。另外或另一選擇為,一存取操作可省略所闡述之電壓增壓操作。Furthermore, although variable voltage source 450 is illustrated as including two voltage sources 410 and a switching element 420, a variable voltage source 450 supporting operations herein may include other configurations, such as providing a variable voltage A voltage buffer to one or both of the second terminal 432-a of the first integrator capacitor 430-a and the second terminal 432-b of the second integrator capacitor 430-b. In other examples, a variable voltage source 450 may be replaced with a fixed voltage source or other type of voltage source. Additionally or alternatively, an access operation may omit the illustrated voltage boost operation.

為支援本文中所闡述之各種操作,可將感測放大器290-a與電路400之若干部分隔離。舉例而言,感測放大器290-a可經由一切換組件420-g (例如,一隔離組件)與信號線260-a耦合,可藉由一邏輯信號ISO1 啟動或撤銷啟動。另外或另一選擇為,感測放大器290-a可經由一切換組件420-h (例如,一隔離組件)與參考線265-a耦合,該切換組件420-h可藉由一邏輯信號ISO2 來啟動或撤銷啟動。此外,感測放大器290-a可與具有一電壓V9 之一電壓源410-j及具有一電壓V10 之一電壓源410-k耦合,電壓源410-j及電壓源410-k可分別係參考圖2所闡述之感測放大器電壓源250-b及250-c之實例。To support the various operations described herein, sense amplifier 290-a may be isolated from portions of circuit 400. For example, sense amplifier 290-a may be coupled to signal line 260-a via a switching element 420-g (eg, an isolation element), which may be activated or deactivated by a logic signal ISO 1 . Additionally or alternatively, sense amplifier 290-a may be coupled to reference line 265-a via a switching element 420-h (eg, an isolation element), which may be coupled by a logic signal ISO 2 to activate or deactivate. Additionally, sense amplifier 290-a may be coupled with a voltage source 410-j having a voltage V9 and a voltage source 410-k having a voltage V10 , which may be respectively Examples of sense amplifier voltage sources 250-b and 250-c are described with reference to FIG.

電路400中所圖解說明之邏輯信號中之每一者可由一記憶體控制器(未展示) (例如,參考圖1所闡述之一記憶體控制器170)提供。在某些實例中,特定邏輯信號可由其他組件提供。舉例而言,邏輯信號WL可由可包含於參考圖1所闡述之一列組件125中一列解碼器(未展示)提供。Each of the logic signals illustrated in circuit 400 may be provided by a memory controller (not shown) (eg, memory controller 170 described with reference to FIG. 1). In some instances, certain logic signals may be provided by other components. For example, logic signal WL may be provided by a column decoder (not shown) that may be included in a column component 125 as described with reference to FIG. 1 .

在各種實例中,電壓源410可與包含實例性電路400之一記憶體裝置之電壓供應器或共同接地點或虛擬接地點之不同組態耦合。舉例而言,在某些實例中,電壓源410-a、410-f、410-h或410-j或其任何組合可與同一接地點或虛擬接地點耦合,且可為存取記憶體胞元105-b之各種操作提供實質上相同參考電壓。在某些實例中,數個電壓源410可與一記憶體裝置之同一電壓供應器耦合。舉例而言,在某些實例中,電壓源410-c、410-d、410-g、410-i或410-k或其任何組合可與具有一特定電壓(例如1.5V之一電壓,其可被稱為「VARY」)之一電壓供應器耦合。在此等實例中,在經由字線205-a選擇要感測之記憶體胞元105-b之前,可將信號線260-a增壓至實質上等於2*VARY或大約3.0V之一電壓。在其他實例中,電壓源410-g及410-i可與不同於其他電壓供應器之一電壓供應器耦合(例如,1.2V之一電壓,可被稱為「PDS」),電壓源410-g及410-i可因此與1.2V之一電壓增壓相關聯。In various examples, the voltage source 410 may be coupled with a voltage supply of a memory device including the example circuit 400 or with different configurations of common ground or virtual ground. For example, in some instances, voltage sources 410-a, 410-f, 410-h, or 410-j, or any combination thereof, may be coupled to the same ground or virtual ground, and may be access memory cells The various operations of element 105-b provide substantially the same reference voltage. In some examples, several voltage sources 410 may be coupled to the same voltage supply of a memory device. For example, in some instances, voltage sources 410-c, 410-d, 410-g, 410-i, or 410-k, or any combination thereof, may be combined with a voltage having a particular voltage, such as 1.5V, which may be referred to as "VARY") is coupled to a voltage supply. In these examples, signal line 260-a may be boosted to a voltage substantially equal to 2*VARY, or about 3.0V, prior to selecting the memory cell 105-b to be sensed via word line 205-a . In other examples, voltage sources 410-g and 410-i may be coupled to a voltage supply different from the other voltage supplies (eg, a voltage of 1.2V, which may be referred to as "PDS"), voltage source 410- g and 410-i can thus be associated with a voltage boost of 1.2V.

在某些實例中,可根據特定輸入/輸出參數選擇電壓源410-j及410-k。舉例而言,根據特定輸入/輸出組件規定(例如,某些DRAM規定),電壓源410-j及410-k可實質上分別處於0V及1V。儘管電壓源410可與共同電壓供應器或接地點耦合,但由於各別電壓源410與相關聯共同電壓供應器或共同接地點之間在電路(例如,導體長度、寬度、電阻、電容)上存在各種差異,因此與一共同電壓供應器或共同接地點耦合之電壓源410中之每一者之電壓可有所不同。In some examples, voltage sources 410-j and 410-k may be selected according to certain input/output parameters. For example, according to certain input/output device specifications (eg, some DRAM specifications), voltage sources 410-j and 410-k may be substantially at 0V and 1V, respectively. Although the voltage sources 410 may be coupled to a common voltage supply or ground, due to the electrical circuit (eg, conductor length, width, resistance, capacitance) between the individual voltage sources 410 and the associated common voltage supply or common ground There are various differences, so the voltage of each of the voltage sources 410 coupled to a common voltage supply or common ground can be different.

電壓源410-e可提供一參考電壓以用於為感測記憶體胞元105-b之邏輯狀態。舉例而言,一電壓V4 可被組態為一與感測一邏輯1及一邏輯0相關聯之信號線電壓之間的一平均值。在某些實例中,一電壓V4 可被設置為自記憶體裝置之一電壓供應器降低之一電壓,該電壓供應器可係與其他電壓源410耦合之同一電壓供應器。舉例而言,可藉由將電壓源410-e與作為電壓源410‑d之同一電壓供應器連接提供V4 ,但在電壓供應器與電壓源410-e之間具有一中間電負載(例如,一電阻式負載或電容))。Voltage source 410-e may provide a reference voltage for sensing the logic state of memory cell 105-b. For example, a voltage V4 can be configured as an average value between the signal line voltages associated with sensing a logic 1 and a logic 0. In some examples, a voltage V 4 may be set as a voltage lowered from a voltage supply of the memory device, which may be the same voltage supply to which other voltage sources 410 are coupled. For example, V4 may be provided by connecting voltage source 410-e to the same voltage supply as voltage source 410- d , but with an intermediate electrical load between the voltage supply and voltage source 410-e (eg, , a resistive load or capacitance)).

電路400亦可包含一洩漏偵測組件201-c,洩漏偵測組件201-c可經組態以偵測與記憶體胞元105-b、數位線210-a、放大器405或信號線260-a中之一或多者相關聯之電荷洩漏。舉例而言,洩漏偵測組件201-c可經組態以監測信號線260-a之一電壓(例如,Vsig ),且藉由識別信號線260-a之一電壓改變或藉由比較一電壓與一參考電壓或臨限值(例如,使用一感測放大器、一多位準胞元(MLC)鎖存器、一比較器)來偵測一電荷洩漏。舉例而言,洩漏偵測組件201-c可經組態以在信號線260-a之電壓應係或者預期係穩定的或高於一臨限值(例如,在數位線210-a或信號線260-a上之一信號已生成或應係穩定的)的狀況期間識別信號線260-a之一電壓下降。在某些實例中,識別此一電壓下降可指示電荷正在跨越放大器405 (例如,藉由電壓源410-l啟用)流動或自積分器電容器430-a流出,此情形可回應於數位線210-a之電壓由於沿著路徑「A」或「B」之電荷洩漏而下降。儘管被圖解說明為一單獨組件,但在某些實例中,洩漏偵測組件201-c可包含於感測放大器290-a中。Circuit 400 may also include a leak detection component 201-c, which may be configured to detect and memory cell 105-b, digital line 210-a, amplifier 405, or signal line 260- Charge leakage associated with one or more of a. For example, leak detection component 201-c can be configured to monitor a voltage (eg, Vsig ) of signal line 260-a, and by identifying a voltage change of signal line 260-a or by comparing a voltage and a reference voltage or threshold (eg, using a sense amplifier, a multi-level cell (MLC) latch, a comparator) to detect a charge leakage. For example, leak detection component 201-c may be configured such that the voltage on signal line 260-a should be or is expected to be stable or above a threshold value (eg, on digital line 210-a or signal line A voltage drop on one of the signal lines 260-a is identified during a condition in which a signal on 260-a has been generated or should be stable. In some instances, identifying such a voltage drop may indicate that charge is flowing across amplifier 405 (eg, enabled by voltage source 410-1) or out of integrator capacitor 430-a, which may be responsive to digit line 210- The voltage of a drops due to charge leakage along path "A" or "B". Although illustrated as a separate component, in some examples, leak detection component 201-c may be included in sense amplifier 290-a.

在某些實例中,電荷洩漏可對感測放大器290偵測由記憶體胞元105-a儲存之一邏輯狀態之能力造成負面影響。因此,根據所闡述之技術,包含電路400之一記憶體裝置可經組態以基於對電路400中之電荷洩漏之一偵測(例如,藉由洩漏偵測組件201-c進行)判定是將一直接邏輯狀態儲存至記憶體胞元105-b還是將一互補邏輯狀態儲存至記憶體胞元105-a。在某些實例中,電路400可經組態以評估記憶體胞元105-b是否與一不確定的資訊狀態相關聯,其中此一評估可用於提高各種錯誤修復技術。In some instances, charge leakage can negatively impact the ability of sense amplifier 290 to detect a logic state stored by memory cell 105-a. Thus, in accordance with the techniques described, a memory device including circuit 400 can be configured to determine whether to store a charge leak in circuit 400 based on a detection (eg, by leak detection component 201-c) Whether a direct logic state is stored in memory cell 105-b or a complementary logic state is stored in memory cell 105-a. In some examples, circuit 400 can be configured to evaluate whether memory cell 105-b is associated with an indeterminate information state, where this evaluation can be used to improve various error repair techniques.

圖5展示圖解說明根據本文中所揭示之實例支援用於一記憶體裝置之記憶體管理及刪除解碼之一實例性存取過程之操作之一時序圖500。該實例性存取過程係參考參考圖4所闡述之實例性電路400之組件加以闡述。5 shows a timing diagram 500 illustrating the operation of an example access process to support memory management and delete decoding for a memory device according to the examples disclosed herein. The example access process is described with reference to the components of the example circuit 400 described with reference to FIG. 4 .

在時序圖500之實例中,電壓源410-a、410-f、410-h及410-j被視為係接地的,且因此處於一零電壓(例如,V0 = 0 V,V5 = 0 V,V7 = 0V且V9 = 0 V)。然而,在其他實例中,電壓源410-a、410-f及410-h可處於非零電壓,且因此可相應地對時序圖500之電壓做出調整。在某些實例中,在起始時序圖500之操作之前,數位線210-a及板線215-a可被控制成相同電壓,此舉可將跨越記憶體胞元105-b之電荷洩漏最小化。舉例而言,根據時序圖500,數位線210-a具有0V之一初始電壓,數位線210-a之初始電壓可與板線215-a之初始電壓。在其他實例中相同,數位線210-a及板線215-a可具有與接地電壓不同之某些其他初始電壓。In the example of timing diagram 500, voltage sources 410-a, 410-f, 410-h, and 410-j are considered to be grounded, and therefore at a zero voltage (eg, V 0 = 0 V, V 5 = 0 V, V 7 = 0 V and V 9 = 0 V). However, in other examples, voltage sources 410-a, 410-f, and 410-h may be at non-zero voltages, and thus the voltages of timing diagram 500 may be adjusted accordingly. In some examples, prior to initiating operation of timing diagram 500, digit line 210-a and plate line 215-a may be controlled to the same voltage, which may minimize charge leakage across memory cell 105-b change. For example, according to the timing diagram 500, the digit line 210-a has an initial voltage of 0V, and the initial voltage of the digit line 210-a may be the same as the initial voltage of the plate line 215-a. The same in other examples, the digit line 210-a and the plate line 215-a may have some other initial voltage than the ground voltage.

在501處,存取過程可包含啟動切換組件420-c (例如,藉由啟動邏輯信號SW3 )。啟動切換組件420-c可連接電壓源410-d與信號線260-a,且因此信號線260-a之電壓可由於電荷流動至積分器電容器430-a中而上升至電壓位準V3 。因此,啟動切換組件420-c可起始對積分器電容器430-a之一預充電操作。舉例而言,在501處,可撤銷啟動切換組件420-d,以使得電壓源410-f (例如,處於0V之一接地電壓或虛擬接地電壓)與積分器電容器430-a之第二端子432-a耦合,且電壓源410-d與積分器電容器430-a之第一端子431-a耦合。因此,可根據電壓源410-d與電壓源410-f之間的電壓差給積分器電容器430-a充電。At 501, the access process can include activating switch component 420- c (eg, by activating logic signal SW3). The activation switching element 420-c may connect the voltage source 410-d and the signal line 260-a, and thus the voltage of the signal line 260-a may rise to the voltage level V3 due to the flow of charge into the integrator capacitor 430-a. Thus, enabling switching component 420-c may initiate a precharge operation to one of integrator capacitors 430-a. For example, at 501, switching component 420-d may be deactivated such that voltage source 410-f (eg, at a ground voltage or virtual ground voltage of 0V) and second terminal 432 of integrator capacitor 430-a -a is coupled, and the voltage source 410-d is coupled to the first terminal 431-a of the integrator capacitor 430-a. Therefore, the integrator capacitor 430-a may be charged according to the voltage difference between the voltage source 410-d and the voltage source 410-f.

在502處,存取過程可包含啟動切換組件420-f (例如,藉由啟動邏輯信號SW6 )。啟動切換組件420-f可連接電壓源410-e與參考線265-a,且因此參考線265-a之電壓可由於電荷流動至積分器電容器430-b中而上升至電壓位準V4 。因此,啟動切換組件420-f可起始對積分器電容器430-b之一預充電操作。舉例而言,在502處,可撤銷啟動切換組件420‑e,以使得電壓源410‑h (例如,處於0 V之一接地電壓或虛擬接地電壓)與積分器電容器430‑b之第二端子432-b耦合,且電壓源410-e與積分器電容器430-b之第一端子431-b耦合。因此,可根據電壓源410-e與電壓源410-h之間的電壓差給積分器電容器430-b充電。At 502, the access process can include enabling switch component 420 - f (eg, by enabling logic signal SW6). Activation switching element 420-f may connect voltage source 410-e and reference line 265-a, and thus the voltage of reference line 265-a may rise to voltage level V4 due to the flow of charge into integrator capacitor 430-b. Thus, enabling switching component 420-f may initiate a precharge operation to one of integrator capacitors 430-b. For example, at 502, switching component 420-e can be deactivated so that voltage source 410-h (eg, at a ground voltage or virtual ground voltage of 0 V) and the second terminal of integrator capacitor 430-b 432-b is coupled, and the voltage source 410-e is coupled to the first terminal 431-b of the integrator capacitor 430-b. Therefore, the integrator capacitor 430-b may be charged according to the voltage difference between the voltage source 410-e and the voltage source 410-h.

在503處,存取過程可包含啟動切換組件420-b (例如,藉由啟動邏輯信號SW2 )。啟動切換組件420-b可起始對數位線210-a之一預充電操作。舉例而言,啟動切換組件420-b可連接信號線260-a與數位線210-a,數位線210-a可藉由固有電容240-a與電壓源410-a (例如,一接地電壓或虛擬接地電壓)耦合。當由電壓源410-d供電時,電荷可流過放大器405且積聚於數位線210-a上,從而使得數位線210-a之電壓上升。數位線210-a之電壓可上升,直至不再超出放大器405之臨限電壓(例如,臨限電壓Vth,amp )為止。因此,在啟動切換組件420‑b之後,由於自信號線電荷流動(例如,由電壓源410-d供電),因此數位線210-a之電壓可上升至一電壓位準V11 -Vth,amp ,且包含固有電容240-a之數位線210-a可根據電壓位準V11 -Vth,amp 與電壓源410‑a (例如,0 V)之間的電壓差被充電。在某些實例中,電壓位準V11 可經選擇以使得將數位線210‑a預充電至與信號線260‑a實質上相同之位準。舉例而言,可將電壓位準V11 可設置於V3 + Vth,amp 之一位準,該位準可由具有大於電壓源410-d之一電壓位準之一電壓供應器提供。因此,在某些實例中,在503處,數位線210-a可回應於啟動切換組件420-b而上升至等於電壓位準V3 之一電壓位準。在某些實例中,在503之操作之後,數位線210-a與板線215-a之間的電壓可對應於參考圖3B所闡述之讀取電壓335。At 503, the access process can include activating switch component 420-b (eg, by activating logic signal SW2 ) . Activating switching component 420-b may initiate a precharge operation for one of log bit lines 210-a. For example, the activation switching element 420-b may connect the signal line 260-a and the digital line 210-a, and the digital line 210-a may be connected by the inherent capacitance 240-a and the voltage source 410-a (eg, a ground voltage or virtual ground voltage) coupling. When powered by voltage source 410-d, charge can flow through amplifier 405 and accumulate on digit line 210-a, causing the voltage on digit line 210-a to rise. The voltage of digit line 210-a may rise until the threshold voltage of amplifier 405 (eg, threshold voltage V th,amp ) is no longer exceeded. Therefore, after the switching element 420-b is activated, the voltage of the digit line 210-a can rise to a voltage level V 11 -V th, due to the flow of charges from the signal line (eg, powered by the voltage source 410-d), amp , and the digit line 210-a including the intrinsic capacitance 240-a may be charged according to the voltage difference between the voltage levels V 11 -V th,amp and the voltage source 410-a (eg, 0 V). In some examples, voltage level V 11 may be selected such that digit line 210-a is precharged to substantially the same level as signal line 260-a. For example, the voltage level V 11 may be set at a level of V 3 + V th,amp , which may be provided by a voltage supply having a voltage level greater than that of the voltage source 410-d. Thus, in some examples, at 503, digit line 210-a may rise to a voltage level equal to voltage level V3 in response to activating switching element 420-b. In some examples, after the operation of 503, the voltage between the digit line 210-a and the plate line 215-a may correspond to the read voltage 335 described with reference to FIG. 3B.

另外或另一選擇為,在某些實例中,數位線210-a可由電壓源410-c預充電。舉例而言,在啟動切換組件420-b之前,時序圖500可包含啟動切換組件420-a (例如,藉由啟動邏輯信號SW1 )。啟動切換組件420-a可起始時序圖500中未展示的針對數位線210-a之一替代預充電操作。當由電壓源410-c供電時,電荷可積聚於數位線210-a上,從而使得數位線210-a上之電壓與電壓位準V2 匹配。在某些實例中,電壓位準V2 可實質上等於電壓位準V3 ,以使得在啟動切換組件420-b之前數位線210-a與信號線260-a被預充電至相同電壓。在某些實例中,利用電壓源410-c給數位線210-a預充電可減小功耗或縮短與存取記憶體胞元105-b相關聯之預充電時間。在藉由電壓源410-c給數位線210-a預充電之後,存取過程可包含啟動切換組件420-b (例如,藉由啟動邏輯信號SW2 )以將信號線260-a連接至數位線210-a。Additionally or alternatively, in some examples, digit line 210-a may be precharged by voltage source 410-c. For example, timing diagram 500 may include enabling switch element 420-a (eg, by enabling logic signal SW 1 ) prior to enabling switch element 420-b. Activating switching component 420-a may initiate an alternate precharge operation for one of digit lines 210-a not shown in timing diagram 500. When powered by voltage source 410-c, charge may accumulate on digit line 210-a such that the voltage on digit line 210 - a matches the voltage level V2. In some examples, voltage level V2 may be substantially equal to voltage level V3 , such that digit line 210 - a and signal line 260-a are precharged to the same voltage before switching element 420-b is activated. In some examples, precharging digit line 210-a with voltage source 410-c may reduce power consumption or shorten the precharging time associated with accessing memory cell 105-b. After the digit line 210-a is precharged by the voltage source 410-c, the access process may include activating the switch element 420-b (eg, by activating the logic signal SW2 ) to connect the signal line 260-a to the digit Line 210-a.

在504處,存取過程可包撤含銷啟動切換組件420-c (例如,藉由撤銷啟動邏輯信號SW3 )。撤銷啟動切換組件420-c可將電壓源410-d與信號線260-a隔離,且信號線260-a之電壓可保持於電壓位準V3 下。在撤銷啟動切換組件420-c之後,信號線260-a且因此積分器電容器430-a之第一端子431-a可浮動,且信號線260‑a可根據信號線260-a之電容(包含積分器電容器430-a之電容)維持一電荷位準。At 504, the access process can include deactivating switch component 420- c (eg, by deactivating logic signal SW3). Deactivating switching element 420-c can isolate voltage source 410-d from signal line 260-a, and the voltage of signal line 260-a can be maintained at voltage level V3 . After deactivating switching element 420-c, signal line 260-a, and thus first terminal 431-a of integrator capacitor 430-a, can float, and signal line 260-a can be based on the capacitance of signal line 260-a (including The capacitance of integrator capacitor 430-a) maintains a charge level.

在505處,存取過程可包含撤銷啟動切換組件420-f (例如,藉由撤銷啟動邏輯信號SW6 )。撤銷啟動切換組件420-f可將電壓源410-i與參考線265-a隔離,且參考線265-a之電壓可保持於電壓位準V4 。在撤銷啟動切換組件420-f之後,參考線265-a且因此積分器電容器430‑b之第一端子431-b可浮動,且參考線265-a可根據信號線260-a之電容(包含積分器電容器430-b之電容)維持一電荷位準。At 505, the access process can include deactivating switch component 420 - f (eg, by deactivating logic signal SW6). Deactivating switching element 420-f can isolate voltage source 410-i from reference line 265-a, and the voltage of reference line 265-a can be maintained at voltage level V4 . After deactivating switching element 420-f, reference line 265-a, and thus first terminal 431-b of integrator capacitor 430-b, can float, and reference line 265-a can be based on the capacitance of signal line 260-a (including The capacitance of integrator capacitor 430-b) maintains a charge level.

在506處,存取過程可包含啟動切換組件420-d (例如,藉由啟動邏輯信號SW4 )。啟動切換組件420-d可致使與積分器電容器430-a之第二端子432-a耦合之電壓源410‑f至與積分器電容器430-a之第二端子432-a耦合之電壓源410-g的一轉變。藉由將積分器電容器430-a之第二端子432-a連接至處於一較高電壓下之一電壓源,由積分器電容器430‑a儲存之電荷可增壓至一較高電壓,且因此與積分器電容器430‑a之第一端子431-a耦合之信號線260-a之電壓可上升至電壓位準(V3 + V6 )。因此,啟動切換組件420-d可起始積分器電容器430-a之一增壓操作。At 506, the access process can include enabling switch component 420- d (eg, by enabling logic signal SW4). Activating switching element 420-d may cause voltage source 410-f coupled with second terminal 432-a of integrator capacitor 430-a to voltage source 410-f coupled with second terminal 432-a of integrator capacitor 430-a A transformation of g. By connecting the second terminal 432-a of the integrator capacitor 430-a to a voltage source at a higher voltage, the charge stored by the integrator capacitor 430-a can be boosted to a higher voltage, and thus The voltage of the signal line 260-a coupled to the first terminal 431-a of the integrator capacitor 430-a can rise to the voltage level ( V3 + V6 ). Thus, activation of switching component 420-d may initiate boost operation of one of integrator capacitors 430-a.

在507處,存取過程可包含啟動切換組件420-e (例如,藉由啟動邏輯信號SW5 )。啟動切換組件420-e可致使與積分器電容器430-b之第二端子432-b耦合之電壓源410-h至與積分器電容器430-b之第二端子432-b耦合之電壓源410-i的一轉變。藉由將積分器電容器430-b之第二端子432-b連接至處於一較高電壓下之一電壓源,由積分器電容器430-b儲存之電荷可增壓至一較高電壓,確因此與積分器電容器430-b之第一端子431-b耦合之參考線265-a之電壓可上升至電壓位準(V4 + V8 )。因此,啟動切換組件420-e可起始積分器電容器430-b之一增壓操作。At 507, the access process can include enabling switch component 420 - e (eg, by enabling logic signal SW5). Activating switching element 420-e may cause voltage source 410-h coupled to second terminal 432-b of integrator capacitor 430-b to voltage source 410-h coupled to second terminal 432-b of integrator capacitor 430-b A transformation of i. By connecting the second terminal 432-b of the integrator capacitor 430-b to a voltage source at a higher voltage, the charge stored by the integrator capacitor 430-b can be boosted to a higher voltage, thus The voltage of the reference line 265-a, which is coupled to the first terminal 431-b of the integrator capacitor 430-b, may rise to the voltage level ( V4 + V8 ). Thus, activation of switching component 420-e may initiate a boost operation of one of integrator capacitors 430-b.

在508處,存取過程可包含選擇記憶體胞元105-b (例如,藉由經由邏輯信號WL啟動一字線)。選擇記憶體胞元105-b可使得記憶體胞元105-b之一電容器與數位線210-a耦合。因此,電荷可在記憶體胞元105-b、數位線210-a及信號線260-a之間共用,此可取決於記憶體胞元105-b中所儲存之邏輯狀態(例如,電荷狀態、極化狀態)。At 508, the access process may include selecting memory cell 105-b (eg, by enabling a word line via logic signal WL). Selecting memory cell 105-b may cause a capacitor of memory cell 105-b to be coupled to digit line 210-a. Thus, charge may be shared among memory cell 105-b, digit line 210-a, and signal line 260-a, which may depend on the logic state stored in memory cell 105-b (eg, the charge state , polarization state).

舉例而言,當記憶體胞元105-b儲存一邏輯1時,記憶體胞元105-b之電容器可儲存一正電荷(例如,參考圖3A及圖3B所闡述之一電荷狀態305-a)。因此,當選擇儲存一邏輯1之記憶體胞元105-b時,一相對小電荷量可自數位線210-a流動至記憶體胞元105-b。隨著電荷自數位線210-a流動至記憶體胞元105-b,數位線210-a之電壓可下降,此可允許超出放大器405之臨限電壓。當超出放大器405之臨限電壓時,根據放大器405之特性,電荷可自信號線260-a (例如,自積分器電容器430-a)跨越放大器405流動至數位線210-a,且一相對小電荷量自電壓源410-l跨越放大器405流動至數位線210-a。因此,電荷可流動至數位線210-a直至數位線210‑a之電壓返回至電壓位準等於V11 -Vth,amp 為止。當選擇儲存一邏輯1之記憶體胞元105-b時,由於一相對小電荷量流動至記憶體胞元105-b中,因此信號線260-a可在選擇記憶體胞元105-b之後經受一相對小電壓降,如電壓Vsig,1 所圖解說明。For example, when memory cell 105-b stores a logic 1, the capacitor of memory cell 105-b may store a positive charge (eg, a state of charge 305-a as described with reference to FIGS. 3A and 3B ) ). Thus, when memory cell 105-b is selected to store a logic 1, a relatively small amount of charge can flow from digit line 210-a to memory cell 105-b. As charge flows from digit line 210-a to memory cell 105-b, the voltage on digit line 210-a may drop, which may allow the threshold voltage of amplifier 405 to be exceeded. When the threshold voltage of amplifier 405 is exceeded, according to the characteristics of amplifier 405, charge may flow from signal line 260-a (eg, from integrator capacitor 430-a) across amplifier 405 to digit line 210-a with a relatively small The amount of charge flows from voltage source 410-1 across amplifier 405 to digit line 210-a. Therefore, charge can flow to digit line 210-a until the voltage of digit line 210-a returns to a voltage level equal to V 11 -V th,amp . When the memory cell 105-b storing a logic 1 is selected, the signal line 260-a may be after the memory cell 105-b is selected because a relatively small amount of charge flows into the memory cell 105-b. A relatively small voltage drop is experienced, as illustrated by the voltage V sig,1 .

另一選擇為,當記憶體胞元105-b儲存一邏輯0時,記憶體胞元105-b之電容器可儲存一負電荷(例如,如參考圖3A及圖3B所闡述之電荷狀態310-a)。因此,當選擇儲存一邏輯0之記憶體胞元105-b時,一相對大電荷量可自數位線210‑a流動至記憶體胞元105-b。因此,隨著電荷流過放大器405而使數位線返回至電壓位準V11 -Vth,amp ,信號線260-a可經受一相對大電壓降(如電壓Vsig,0 所圖解說明),以使得不再超出放大器405之臨限電壓Vth,amp 。在某些實例中,選擇儲存一邏輯0之記憶體胞元105-b可導致記憶體胞元105-b之一電容器之極化之一部分損失。在採用一2Pr感測操作之實例中,選擇儲存一邏輯0之記憶體胞元105-b可使得記憶體胞元105-b之電容器之飽和極化發生反轉,以使得與飽和極化之兩倍相關聯之一電荷量流動至記憶體胞元105-b中。在任一情形中,根據本實例選擇儲存一邏輯0之一記憶體胞元105-b可涉及一後續再新或重寫操作。Alternatively, when memory cell 105-b stores a logic 0, the capacitor of memory cell 105-b may store a negative charge (eg, charge state 310- as described with reference to FIGS. 3A and 3B ). a). Therefore, when memory cell 105-b is selected to store a logic 0, a relatively large amount of charge can flow from digit line 210-a to memory cell 105-b. Thus, signal line 260-a may experience a relatively large voltage drop (as illustrated by voltage V sig,0 ) as charge flows through amplifier 405 returning the digit line to voltage level V 11 -V th,amp , so that the threshold voltage V th,amp of the amplifier 405 is no longer exceeded. In some instances, selecting memory cell 105-b to store a logic 0 may result in a partial loss of the polarization of a capacitor of memory cell 105-b. In the example employing a 2Pr sensing operation, selecting memory cell 105-b to store a logic 0 may cause the saturation polarization of the capacitor of memory cell 105-b to be reversed such that the Two times the associated amount of charge flows into memory cell 105-b. In either case, selecting a memory cell 105-b to store a logic 0 according to the present example may involve a subsequent refresh or rewrite operation.

在509處,存取過程可包含撤銷啟動切換組件420-d (例如,藉由撤銷啟動邏輯信號SW4 )。撤銷啟動切換組件420-d可致使自與積分器電容器430-a之第二端子432-a耦合之電壓源410-g至與積分器電容器430-a之第二端子432-a耦合之電壓源410-f的一轉變。藉由將積分器電容器430-a之第二端子432-a連接至處於一較低電壓下之電壓源,由積分器電容器430-b儲存之電荷可移位至一較低電壓,且因此與積分器電容器430-a之第一端子431-a耦合之信號線260-a之電壓可下降達電壓位準(V6 -V5 ,或在電壓源410-f與一共同接地點耦合之事件中恰好為V6 )。因此,撤銷啟動切換組件420-d可起始積分器電容器430-a之一移位操作,此可使信號線260-a之電壓減小至可由感測放大器290-a讀取之一位準。舉例而言,在509之移位操作之後,感測放大器290-a感測到Vsig,1 可為大約1.5V,且感測放大器290-a感測到Vsig,0 可為大約1.2V。At 509, the access process can include deactivating switch component 420- d (eg, by deactivating logic signal SW4). Deactivating switching component 420-d may cause a voltage source from voltage source 410-g coupled to second terminal 432-a of integrator capacitor 430-a to a voltage source coupled to second terminal 432-a of integrator capacitor 430-a A transformation of 410-f. By connecting the second terminal 432-a of the integrator capacitor 430-a to a voltage source at a lower voltage, the charge stored by the integrator capacitor 430-b can be shifted to a lower voltage, and thus with The voltage of the signal line 260-a coupled to the first terminal 431-a of the integrator capacitor 430-a can drop to the voltage level (V6 - V5 , or in the event that the voltage source 410-f is coupled to a common ground which happens to be V 6 ). Thus, deactivating switching element 420-d can initiate a shift operation of integrator capacitor 430-a, which can reduce the voltage on signal line 260-a to a level that can be read by sense amplifier 290-a . For example, after the shift operation at 509, Vsig,1 sensed by sense amplifier 290-a may be about 1.5V, and Vsig,0 sensed by sense amplifier 290-a may be about 1.2V .

在510處,存取過程可包含撤銷啟動切換組件420-e (例如,藉由撤銷啟動邏輯信號SW5 )。撤銷啟動切換組件420-e可致使與積分器電容器430-b之第二端子432-b耦合之電壓源410-i至與積分器電容器430-b之第二端子432-b耦合之電壓源410-h的一轉變。藉由將積分器電容器430-b之第二端子432-b連接至處於一較低電壓之電壓源,由積分器電容器430-b儲存之電荷可移位至一較低電壓,且因此與積分器電容器430-b之第一端子431-b耦合之參考線265-a之電壓可下降達電壓位準(V8 -V7 ,或在電壓源410-h與一共同接地點耦合之事件中係恰好V8 )。因此,撤銷啟動切換組件420-e可起始積分器電容器430-b之一移位操作,此可將參考線265-a之電壓減小至可由感測放大器290-a讀取之一位準。舉例而言,在510之移位操作之後,感測放大器290-a感測到Vref 可係大約1.35V。At 510, the access process can include deactivating switch component 420 - e (eg, by deactivating logic signal SW5). Deactivating switching element 420-e may cause voltage source 410-i coupled to second terminal 432-b of integrator capacitor 430-b to voltage source 410 coupled to second terminal 432-b of integrator capacitor 430-b A shift for -h. By connecting the second terminal 432-b of the integrator capacitor 430-b to a voltage source at a lower voltage, the charge stored by the integrator capacitor 430-b can be shifted to a lower voltage, and thus the integrator The voltage of the reference line 265-a coupled to the first terminal 431-b of the capacitor capacitor 430-b may drop to the voltage level (V8 - V7, or in the event that the voltage source 410- h is coupled to a common ground is exactly V 8 ). Thus, deactivating switching element 420-e can initiate a shift operation of integrator capacitor 430-b, which can reduce the voltage on reference line 265-a to a level that can be read by sense amplifier 290-a . For example, after the shift operation at 510, sense amplifier 290-a senses that Vref may be about 1.35V.

在511處,存取過程可包含藉由撤銷啟動切換組件420-g (例如,藉由撤銷啟動邏輯信號ISO1 )將感測放大器290‑a與信號線260‑a隔離。將感測放大器290-a與信號線260-a隔離可允許在判定記憶體胞元105-b中所儲存之邏輯狀態之前感測放大器290-a儲存與信號線電壓(例如,在感測放大器290-a之第一端子131-b處,VA = Vsig )相關聯之一電壓或電荷。At 511, the access process may include isolating sense amplifier 290-a from signal line 260-a by deactivating switching component 420-g (eg, by deactivating logic signal ISOi ). Isolating sense amplifier 290-a from signal line 260-a may allow sense amplifier 290-a to store and signal line voltages (eg, before the logic state stored in memory cell 105-b is determined) At the first terminal 131-b of 290-a, V A = V sig ) is associated with a voltage or charge.

在512處,存取過程可包含藉由撤銷啟動切換組件420-h (例如,藉由撤銷啟動邏輯信號ISO2 )將感測放大器290-a與參考線265-a隔離。將感測放大器290-a與參考線265-a隔離可允許在判定記憶體胞元105-b中所儲存之邏輯狀態之前感測放大器290-a儲存與參考線電壓(例如,在感測放大器290-a之第二端子132-b處,VB = Vref )相關聯之一電壓或電荷。At 512, the access process may include isolating sense amplifier 290-a from reference line 265-a by deactivating switching component 420-h (eg, by deactivating logic signal ISO2 ). Isolating sense amplifier 290-a from reference line 265-a may allow sense amplifier 290-a to store and reference line voltages (eg, before the logic state stored in memory cell 105-b is determined) At the second terminal 132-b of 290-a, V B = V ref ) is associated with a voltage or charge.

在513處,存取過程可包含偵測在感測放大器290-a之第一端子131-b及第二端子132-b處所儲存之電壓之一差,此可被稱為「鎖存」存取記憶體胞元105-b或偵測由記憶體胞元105-b儲存之邏輯狀態的結果。舉例而言,若第一端子131-b處所儲存之信號大於第二端子132-b處所儲存之信號(例如,VA > VB ),感測放大器290-a可輸出等於感測組件之高電壓源之一電壓(例如V10 ,與電壓源410-k相關聯,對應於一邏輯1)。若第一端子131-b處所儲存之信號小於第二端子132-b處所儲存之信號(例如,VA < VB ),感測放大器290-a可輸出等於感測組件之低電壓源之一電壓(例如V9 ,與電壓源410-j相關聯,對應於一邏輯0)。所偵測到之邏輯狀態可輸出至包含電路400之一記憶體裝置100之一輸入/輸出組件160、一記憶體控制器170或其他組件以用於後續操作。At 513, the access process may include detecting a difference between the voltages stored at the first terminal 131-b and the second terminal 132-b of the sense amplifier 290-a, which may be referred to as "latching" The result of taking memory cell 105-b or detecting the logic state stored by memory cell 105-b. For example, if the signal stored at the first terminal 131-b is greater than the signal stored at the second terminal 132-b (eg, V A > V B ), the sense amplifier 290-a may output a high equal to the sensing element A voltage of the voltage source (eg, V 10 , associated with voltage source 410-k, corresponding to a logic 1). If the signal stored at the first terminal 131-b is less than the signal stored at the second terminal 132-b (eg, V A < V B ), the sense amplifier 290-a may output one of the low voltage sources equal to the sensing element A voltage (eg, V9, associated with voltage source 410-j, corresponding to a logic 0). The detected logic state may be output to an input/output component 160 of a memory device 100 including circuit 400, a memory controller 170, or other components for subsequent operations.

在某些實例中,在時序圖500之操作期間電荷可自電路400之一個部分洩漏至另一部分。在一項實例中,電荷洩漏可沿循自數位線210-a至板線215-a之一路徑「A」,該路徑「A」可圖解說明通過記憶體胞元105-b (例如,跨越記憶體胞元105-b之一電容器220之一介電部分或者在電容器之一介電部分周圍)之一電荷洩漏。在另一實例中,洩漏可沿循自數位線210-a至電壓源410-a之一路徑「B」,該路徑「B」可圖解說明自數位線210-a至一接地電壓源或參考電壓或組件之一電荷洩漏(例如,一底板洩漏)。未圖解說明之其他實例可包含准許數位線210-a與電路400之另一組件之間或信號線260-a與電路400之另一組件之間的任何其他電荷轉移的其他洩漏路徑。在某些實例中,電路400中之電荷洩漏可受數位線210與板線215之間的一電壓差驅動,且當胞元選擇組件230‑a被啟動時可係相對高的(例如,與記憶體胞元105-b相關聯之特定胞元電荷洩漏)。因此,在508之後,當字線205-a被啟動且VDL 與VPL 之間的差相對大時(例如,當記憶體胞元105‑b處於全偏壓下時),電荷洩漏可係相對高。In some examples, charge may leak from one portion of circuit 400 to another during operation of timing diagram 500 . In one example, the charge leakage may follow a path "A" from digit line 210-a to plate line 215-a, which path "A" may be illustrated through memory cell 105-b (eg, across A charge leaks from a dielectric portion of a capacitor 220 of the memory cell 105-b or around a dielectric portion of the capacitor). In another example, leakage may follow a path "B" from digitline 210-a to voltage source 410-a, which path "B" may illustrate from digitline 210-a to a ground voltage source or reference Voltage or charge leakage of a component (eg, a backplane leakage). Other examples not illustrated may include other leakage paths that permit any other charge transfer between digit line 210 - a and another component of circuit 400 or between signal line 260 - a and another component of circuit 400 . In some examples, charge leakage in circuit 400 can be driven by a voltage difference between digit line 210 and plate line 215, and can be relatively high when cell select element 230-a is activated (eg, with specific cell charge leakage associated with memory cell 105-b). Therefore, after 508, when word line 205-a is enabled and the difference between VDL and VPL is relatively large (eg, when memory cell 105-b is at full bias), charge leakage can be caused by relatively high.

在某些實例中,此電荷洩漏可會使時序圖500中所圖解說明之信號中之一或多者發生更改。舉例而言,此電荷洩漏可與在數位線210-a維持於一特定電壓位準下時跨越放大器405之額外電荷轉移相關聯,此可伴隨著一比時序圖500中所展示之電壓低的信號線260-a之一電壓Vsig 。當記憶體胞元105-b儲存一邏輯1時,舉例而言,此洩漏可因此伴隨著Vsig,1 與Vref 之間的一經減小差,此可減小與讀取一邏輯1相關聯之一讀取餘裕,或此洩漏可致使Vsig,1 降低至低於Vref ,此可導致寫入有一邏輯1之記憶體胞元105-b被不正確地讀取為一邏輯0。因此,為提高正確讀取記憶體胞元105-b之可能性,在某些實例中,存取操作可包含至少部分地基於在電路400中偵測到之電荷洩漏判定是實行一直接寫入操作(例如,一直接重寫操作)還是一互補寫入操作(例如,一互補重寫操作)。In some examples, this charge leakage may alter one or more of the signals illustrated in timing diagram 500 . For example, this charge leakage may be associated with additional charge transfer across amplifier 405 when digit line 210-a is maintained at a particular voltage level, which may be accompanied by a lower voltage than that shown in timing diagram 500 A voltage Vsig of one of the signal lines 260-a. When memory cell 105-b stores a logic 1, for example, this leakage can thus be accompanied by a reduced difference between Vsig,1 and Vref , which can be reduced associated with reading a logic 1 One read margin, or this leakage, can cause Vsig,1 to drop below Vref , which can cause memory cells 105-b to be written with a logic 1 to be incorrectly read as a logic 0. Thus, to improve the likelihood of correctly reading memory cell 105-b, in some examples, an access operation may include determining to perform a direct write based at least in part on the charge leakage detected in circuit 400 The operation (eg, a direct overwrite operation) is also a complementary write operation (eg, a complementary overwrite operation).

在514處,存取操作可包含偵測電路400中之一電荷洩漏。舉例而言,洩漏偵測組件201-c可經組態以監測信號線260-a之電壓,此可包含偵測Vsig 之一下降(例如,Vsig 之一改變、Vsig 之一時間導數或電壓)或比較Vsig 與一臨限值(例如,一電荷偵測參考電壓,其可係不同於Vref 之一可組態電壓)。在一項實例中,洩漏偵測組件201-c可經組態以在將信號線260-a與感測放大器290‑a隔離之後偵測Vsig 之一改變(例如,在511之後Vsig 之一下降,如所圖解說明),此可包含在513處信號線260-a之Vsig 與感測放大器290-a之VA 之間的一比較。然而,此僅係可如何在電路400中偵測到電荷洩漏之一項實例。舉例而言,根據一組不同操作,可在將感測放大器290-a隔離之後(例如,在511之後)將信號線260-a加偏壓至某些電壓,其中無論記憶體胞元105-b儲存的是一邏輯0還是一邏輯1電壓皆可係相同的。在另一實例中,信號線260-a可與感測放大器290-a重新耦合(例如,在於513處偵測一邏輯狀態之後,藉由經由邏輯信號ISO1 啟動切換組件420-g),此可伴隨著根據記憶體胞元105-b最初所儲存之邏輯狀態將信號線260-a加偏壓至可相同或不同之一電壓。在各種實例中,信號線260-c之電壓可因電荷洩漏以及跨越放大器405之對應電荷轉移而自此一設定電壓下降,該電荷洩漏可在514處被洩漏偵測組件201-c偵測到。在某些實例中,可在積分器電容器430‑a處實行此一洩漏偵測,此洩漏偵測可與偵測跨越積分器電容器430-a之一電壓或電壓改變相關聯或與偵測積分器電容器430-a之一電荷狀態或電荷狀態改變相關聯。在某些實例中,洩漏偵測組件201-c或某些其他組件可儲存在514處是否偵測到洩漏之一指示(例如,與時序圖500之存取操作相關聯之一暫時性指示、一特定胞元指示、一特定存取線指示)。At 514 , the access operation may include detecting a charge leakage in circuit 400 . For example, leak detection component 201-c may be configured to monitor the voltage of signal line 260-a, which may include detecting a drop in Vsig (eg, a change in Vsig , a time derivative of Vsig ) or voltage) or compare Vsig to a threshold (eg, a charge detection reference voltage, which may be a configurable voltage other than Vref ). In one example, leak detection component 201-c can be configured to detect a change in Vsig after isolating signal line 260-a from sense amplifier 290-a (eg, after 511, the difference between Vsig a drop, as illustrated), this may include a comparison at 513 between Vsig of signal line 260- a and VA of sense amplifier 290-a. However, this is only one example of how charge leakage may be detected in circuit 400 . For example, according to a different set of operations, the signal line 260-a may be biased to certain voltages after isolating the sense amplifier 290-a (eg, after 511), where regardless of the memory cell 105- Whether b stores a logic 0 or a logic 1 voltage can be the same. In another example, signal line 260-a can be recoupled to sense amplifier 290-a (eg, by enabling switching element 420-g via logic signal ISO 1 after detecting a logic state at 513), which Signal line 260-a may be concomitantly biased to a voltage that may or may not be the same depending on the logic state originally stored by memory cell 105-b. In various examples, the voltage of signal line 260-c may drop from this set voltage due to charge leakage and corresponding charge transfer across amplifier 405, which may be detected at 514 by leakage detection component 201-c . In some examples, such a leak detection may be performed at integrator capacitor 430-a, which may be associated with detecting a voltage or change in voltage across integrator capacitor 430-a or with detecting integration A charge state or charge state change of the capacitor capacitor 430-a is associated. In some examples, leak detection component 201-c or some other component may store at 514 an indication of whether a leak was detected (eg, a temporary indication associated with an access operation of timing diagram 500, a specific cell indication, a specific access line indication).

在515處,存取操作可包含判定是實行一直接重寫操作還是一互補重寫操作,此可至少部分地基於在電路400中是否偵測到電荷洩漏。舉例而言,若在514處偵測到電荷洩漏,則存取操作可判定寫入在記憶體胞元105-b中偵測到之邏輯狀態之一補數(例如,在513處)。At 515 , the access operation can include determining whether to perform a direct rewrite operation or a complementary rewrite operation, which can be based, at least in part, on whether charge leakage is detected in circuit 400 . For example, if a charge leak is detected at 514, the access operation may determine to write one's complement of the logic state detected in memory cell 105-b (eg, at 513).

在某些實例中,判定是否寫入一互補邏輯狀態可進一步基於在記憶體胞元105-b中偵測到之特定邏輯狀態。舉例而言,當在514處偵測到電荷洩漏時,可較佳的係記憶體胞元105-b儲存與相對大電荷轉移相關聯之一邏輯狀態。以磁滯曲線300-a及300-b為例,一邏輯0可與一相對大電荷轉移(例如,電荷狀態310-a與370之間的一電荷差)相關聯,且一邏輯1可與一相對小電荷轉移(例如,電荷狀態305-a與370之間的一電荷差) 相關聯。因此,根據此實例,若在514處偵測到電荷洩漏(例如,基於存取記憶體胞元105-b),則記憶體胞元105-b儲存一邏輯0可係較佳的。因此,在515處,當偵測到記憶體胞元105-b已儲存一邏輯1 (例如,在513處)時,可判定寫入所儲存邏輯狀態之一補數(例如,以一邏輯0重寫記憶體胞元105‑b),且當偵測到記憶體胞元105-b已儲存一邏輯0 (例如,在513處)時,可判定直接寫入所儲存邏輯狀態(例如,以一邏輯0重寫記憶體胞元105-b)。在某些實例中,此一判定可包含識別自記憶體胞元105-b可由於508至515之操作而正飽和(例如,根據一邏輯1至少暫時地充電,例如參考圖3B所闡述之電荷狀態370)之後需要實行一選擇性重寫操作。在某些實例中,一記憶體裝置100可儲存是否在514處判定將一互補邏輯狀態寫入至記憶體胞元105-b之一指示。然而,在某些實例中,直至在實行或確認對應寫入操作之後(例如,在一後續操作中)才可判定、儲存此指示或使此指示生效。In some examples, determining whether to write a complementary logic state may be further based on a particular logic state detected in memory cell 105-b. For example, when charge leakage is detected at 514, it may be preferable for memory cell 105-b to store a logic state associated with a relatively large charge transfer. Taking hysteresis curves 300-a and 300-b as examples, a logic 0 may be associated with a relatively large charge transfer (eg, a charge difference between charge states 310-a and 370), and a logic 1 may be associated with A relatively small charge transfer (eg, a charge difference between charge states 305-a and 370) is associated. Thus, according to this example, if a charge leak is detected at 514 (eg, based on accessing memory cell 105-b), it may be preferable for memory cell 105-b to store a logic 0. Thus, at 515, when it is detected that memory cell 105-b has stored a logic 1 (eg, at 513), it may be determined to write a complement of the stored logic state (eg, with a logic 0) overwrites memory cell 105-b), and when detecting that memory cell 105-b has stored a logic 0 (eg, at 513), may decide to write directly to the stored logic state (eg, with A logic 0 overwrites memory cell 105-b). In some examples, such a determination may include identifying that self-memory cell 105-b may be positively saturated due to the operations of 508-515 (eg, charged at least temporarily according to a logic 1, such as the charge described with reference to FIG. 3B ) State 370) is followed by a selective overwrite operation. In some examples, a memory device 100 may store an indication of whether to determine at 514 to write a complementary logic state to memory cell 105-b. However, in some instances, the indication may not be determined, stored, or validated until after the corresponding write operation is performed or confirmed (eg, in a subsequent operation).

在某些實例中,判定是實行一直接重寫操作還是一互補重寫操作可基於一組記憶體胞元105,例如與記憶體胞元105-b共用字線205-a一列記憶體胞元105、一頁記憶體胞元105或某些其他組記憶體胞元105。舉例而言,當判定是實行一直接重寫操作還是互補重寫操作對應於一組記憶體胞元105時,可針對與該組中之各別記憶體胞元105相關聯的電路400 (未展示)之多個組件(例如,並行感測放大器290、並行信號線260、並行放大器405、並行數位線210)重複(例如,在重疊時間間隔期間同時) 501至514之操作。在此等實例中,判定對該組記憶體胞元105實行一直接重寫操作還是對該組記憶體胞元105執行一互補重寫操作可至少部分地基於使將儲存與相對低電荷轉移相關聯之一邏輯狀態之洩漏記憶體胞元105或對應存取線(例如數位線210、信號線260)之一數目最小化。In some instances, the determination of whether to perform a direct overwrite operation or a complementary overwrite operation may be based on a group of memory cells 105, such as a column of memory cells sharing wordline 205-a with memory cell 105-b 105. A page of memory cells 105 or some other group of memory cells 105. For example, when determining whether to perform a direct overwrite operation or a complementary overwrite operation corresponding to a group of memory cells 105, circuits 400 (not shown) associated with respective memory cells 105 in the group may be addressed. Multiple components (eg, parallel sense amplifier 290, parallel signal line 260, parallel amplifier 405, parallel bit line 210) shown) repeat (eg, simultaneously during overlapping time intervals) the operations of 501-514. In these examples, determining whether to perform a direct rewrite operation on the set of memory cells 105 or a complementary rewrite operation on the set of memory cells 105 may be based, at least in part, on correlating storage with relatively low charge transfer The number of leaky memory cells 105 or corresponding access lines (eg, digit line 210, signal line 260) associated with one logic state is minimized.

舉例而言,繼續磁滯曲線300-a及300-b所圖解說明之實例,可較佳地將該組中與高於一臨限值之一所偵測到電荷洩漏相關聯的將儲存一邏輯1的記憶體胞元105之數目最小化。因此,在515處,一記憶體裝置100 (例如,一記憶體控制器170)可以數位方式組合針對一組記憶體胞元105之電荷洩漏偵測之結果以將一邏輯0指派給儘可能多的洩漏記憶體胞元105或對應存取線,該記憶體胞元105具有用於寫回至該組記憶體胞元105中之一資料型樣。在此等實例中,可在數位組合時忽略不與一所偵測到電荷洩漏相關聯之記憶體胞元105或對應存取線,此乃因其儲存一種邏輯狀態或另一邏輯狀態可不會對該等記憶體胞元105或對應存取線造成負面影響。For example, continuing with the example illustrated by hysteresis curves 300-a and 300-b, it may be preferable that those of the set associated with detected charge leakage above a threshold value will store a The number of logic 1 memory cells 105 is minimized. Thus, at 515, a memory device 100 (eg, a memory controller 170) may digitally combine the results of charge leakage detection for a group of memory cells 105 to assign a logic 0 to as many as possible The leaky memory cell 105 or corresponding access line has a data pattern for writing back to the set of memory cells 105. In these examples, memory cells 105 or corresponding access lines that are not associated with a detected charge leakage may be ignored when combining bits because storing one logic state or the other may not Negatively affects these memory cells 105 or corresponding access lines.

由於是實行一直接重寫操作還是實行互補重寫操作之一判定可基於一組記憶體胞元105,記憶體胞元105-b之重寫操作之一邏輯狀態之特定判定可不必僅基於是否在514處針對記憶體胞元105-b偵測到電荷洩漏。舉例而言,當判定包含記憶體胞元105-b之一組中之其他記憶體胞元105受益於實行一互補重寫操作時,即使偵測到記憶體胞元105-b或相關聯存取線不存在電荷洩漏,一記憶體裝置100仍可判定寫入針對記憶體胞元105-b偵測到之一邏輯狀態之一補數。換言之,根據針對該組記憶體胞元105所做之判定,儘管針對特定記憶體胞元105未偵測到電荷洩漏,但寫入至該組中之一特定記憶體胞元105之一邏輯狀態仍可係特定記憶體胞元105之所偵測到邏輯狀態之一補數。Since a determination of whether to perform a direct rewrite operation or a complementary rewrite operation can be based on a set of memory cells 105, the particular determination of a logic state of a rewrite operation of memory cell 105-b need not be based solely on whether Charge leakage is detected at 514 for memory cell 105-b. For example, when it is determined that other memory cells 105 in a group including memory cell 105-b benefit from performing a complementary rewrite operation, even if memory cell 105-b or associated memory is detected There is no charge leakage in fetching, and a memory device 100 can still determine to write a complement of a logic state detected for memory cell 105-b. In other words, according to determinations made for the group of memory cells 105, although no charge leakage was detected for that particular memory cell 105, writing to a logic state of a particular memory cell 105 in the group Still can be one's complement of the detected logic state of a particular memory cell 105 .

在某些實例中,所闡述技術可與其他錯誤校正技術組合,例如一錯誤校正碼(ECC)、一單位元ECC (例如,ECC1)或單錯誤校正(SEC)。在某些實例中,此一組合可支援對一特定列或頁存取方案進行多達3個位元之校正。換言之,當使用所闡述技術來基於所偵測到電荷洩漏進行記憶體管理時,結果可為使用一1位元ECC引擎等效於一3位ECC。In some examples, the techniques described may be combined with other error correction techniques, such as an error correction code (ECC), a single cell ECC (eg, ECC1), or single error correction (SEC). In some examples, this combination can support up to 3-bit correction for a particular row or page access scheme. In other words, when using the described techniques for memory management based on detected charge leakage, the result can be that using a 1-bit ECC engine is equivalent to a 3-bit ECC.

在將ECC與所闡述技術組合以基於電荷洩漏偵測將資料反轉之一項實例中,一頁存取操作可與該頁中具有經偵測高於一臨限值之一電荷洩漏之一單個記憶體胞元105或對應存取線(例如,數位線210、信號線260)相關聯。在此等實例中,當記憶體胞元105最初與和一相對小電荷轉移相關聯之一邏輯狀態相關聯時,一記憶體裝置100可判定反轉該頁之資料(例如,將記憶體胞元105之一邏輯1反相成記憶體胞元105之一邏輯0,且對應地將該頁中之其他記憶體胞元105之其他邏輯狀態反相)。另一選擇為,當記憶體胞元105最初與和一相對小電荷轉移相關聯之一邏輯狀態相關聯時,一記憶體裝置100可判定不反轉該頁之資料,而是在讀取記憶體胞元105時僅依靠ECC來校正一可能的錯誤。當記憶體胞元105最初與和一相對大電荷轉移相關聯之一邏輯狀態相關聯時,記憶體裝置100可判定不反轉該頁之資料,此乃因電荷洩漏可不會對讀取記憶體胞元105造成負面影響。因此,在此等情形中之每一者中,儘管電荷洩漏高於一單個記憶體胞元105或對應存取線之臨限值,但記憶體裝置100仍可恰當地讀取該頁中之記憶體胞元105。In one example in which ECC is combined with the described techniques to invert data based on charge leakage detection, a page access operation may be associated with one of the page having a detected charge leakage above a threshold value Individual memory cells 105 or corresponding access lines (eg, digit lines 210, signal lines 260) are associated. In these examples, when memory cell 105 is initially associated with a logic state associated with a relatively small charge transfer, a memory device 100 may decide to invert the page of data (eg, transfer the memory cell A logical 1 of cell 105 inverts to a logical 0 of memory cell 105, and correspondingly inverts the other logical states of other memory cells 105 in the page). Alternatively, when the memory cell 105 is initially associated with a logic state associated with a relatively small charge transfer, a memory device 100 may decide not to invert the page of data, but instead read the memory The voxel 105 relies only on ECC to correct a possible error. When memory cell 105 is initially associated with a logic state associated with a relatively large charge transfer, memory device 100 may decide not to invert the page's data, since charge leakage may not affect read memory Cell 105 has a negative impact. Thus, in each of these situations, the memory device 100 can properly read the pages in the page despite charge leakage above the threshold of a single memory cell 105 or corresponding access line Memory cell 105.

在將ECC與所闡述技術組合以基於電荷洩漏偵測將資料反轉之另一實例中,一頁存取操作可與該頁中具有經偵測高於一臨限值之一電荷洩漏之兩個記憶體胞元105或對應存取線(例如,數位線210、信號線260)相關聯。在此等實例中,當該兩個記憶體胞元105最初與和一相對小電荷轉移相關聯之一邏輯狀態相關聯時,一記憶體裝置100可判定將該頁之資料反轉(例如,將記憶體胞元105之一邏輯1反相成記憶體胞元105之一邏輯0,且對應地將該頁中之其他記憶體胞元105之其他邏輯狀態反相)。因此,與一電荷洩漏相關聯之記憶體胞元105中之任一者皆將不會儲存與一相對小電荷轉移相關聯之一邏輯狀態。當該兩個記憶體胞元105最初與不同邏輯狀態相關聯(例如,一者與相對大電荷轉移相關聯且另一者與相對小電荷轉移相關聯)時,一記憶體裝置100可判定反轉該頁之資料或不反轉該頁之資料,此乃因無論反轉與否,讀取記憶體胞元105中之一者可皆不會受到電荷洩漏之負面影響(例如,由於儲存與相對大電荷轉移相關聯之一邏輯狀態),且可藉由ECC校正對記憶體胞元105中之另一者之讀取以處置在讀取記憶體胞元105時由於電荷洩漏所致的一可能錯誤。當兩個記憶體胞元105最初與和一相對大電荷轉移相關聯之一邏輯狀態相關聯時,記憶體裝置100可判定不反轉該頁之資料,此乃因電荷洩漏可不會對讀取該兩個記憶體胞元105造成負面影響。因此,在此等情形中之每一者中,儘管電荷洩漏高於兩個記憶體胞元105或對應存取線之臨限值,但記憶體裝置100仍可恰當地讀取頁中之記憶體胞元105。In another example of combining ECC with the described techniques to invert data based on charge leakage detection, a page access operation can be combined with two of the pages that have a detected charge leakage above a threshold Each memory cell 105 or corresponding access line (eg, digit line 210, signal line 260) is associated. In these examples, when the two memory cells 105 are initially associated with a logic state associated with a relatively small charge transfer, a memory device 100 may determine to invert the page's data (eg, Inverting a logic 1 of memory cell 105 to a logic 0 of memory cell 105 and correspondingly inverting the other logic states of other memory cells 105 in the page). Therefore, none of the memory cells 105 associated with a charge leakage will store a logic state associated with a relatively small charge transfer. When the two memory cells 105 are initially associated with different logic states (eg, one is associated with a relatively large charge transfer and the other is associated with a relatively small charge transfer), a memory device 100 may determine that the opposite The data on the page may or may not be reversed because, whether reversed or not, one of the read memory cells 105 may not be negatively affected by charge leakage (eg, due to storage and relatively large charge transfer is associated with a logic state), and can be corrected by ECC to correct the read of the other of the memory cells 105 to handle a problem due to charge leakage when reading the memory cell 105 may be wrong. When two memory cells 105 are initially associated with a logic state associated with a relatively large charge transfer, the memory device 100 may decide not to invert the page's data, since charge leakage may not affect the read The two memory cells 105 are negatively impacted. Thus, in each of these situations, the memory device 100 can properly read the memory in the page despite the charge leakage being above the threshold of the two memory cells 105 or corresponding access lines Soma 105.

在將ECC與所闡述技術組合以基於電荷洩漏偵測將資料反轉之另一實例中,一頁存取操作可與該頁中具有經偵測高於一臨限值之一電荷洩漏三個記憶體胞元105或對應存取線(例如,數位線210、信號線260)相關聯。在此等實例中,當三個記憶體胞元105最初與和一相對小電荷轉移相關聯之一邏輯狀態相關聯時,一記憶體裝置100可判定反轉該頁之資料(例如,將記憶體胞元105之一邏輯1反相成記憶體胞元105之一邏輯0,且對應地將該頁中之其他記憶體胞元105之其他邏輯狀態反相)。因此,與一電荷洩漏相關聯記憶體胞元105將皆不儲存與一相對小電荷轉移相關聯之一邏輯狀態。In another example of combining ECC with the described techniques to invert data based on charge leakage detection, a page access operation can be three times associated with a page that has a detected charge leakage above a threshold Memory cells 105 or corresponding access lines (eg, digit lines 210, signal lines 260) are associated. In these examples, when three memory cells 105 are initially associated with a logic state associated with a relatively small charge transfer, a memory device 100 may decide to invert the page of data (eg, store the memory A logic 1 of the memory cell 105 is inverted to a logic 0 of the memory cell 105, and correspondingly the other logic states of the other memory cells 105 in the page are inverted). Thus, none of the memory cells 105 associated with a charge leakage will store a logic state associated with a relatively small charge transfer.

當該三個記憶體胞元105最初與不同邏輯狀態相關聯(例如,一者與相對大電荷轉移相關聯,且另外兩者與相對小電荷轉移相關聯)時,一記憶體裝置100可判定反轉該頁之資料或不反轉該頁之資料。舉例而言,當該等記憶體胞元105中之兩者儲存與一相對大電荷轉移相關聯之一邏輯狀態,記憶體裝置可判定不反轉該頁之資料,且當該等記憶體胞元105中之兩者儲存與一相對小電荷轉移相關聯之一邏輯狀態,記憶體裝置可判定反轉該頁之資料。在任一情形中,頁之一後續讀取可依靠ECC以在讀取記憶體胞元105中之一者時處置由於電荷洩漏所致之一可能的錯誤(例如,記憶體胞元105中隨後儲存與一相對小電荷轉移相關聯之一邏輯狀態之一者)。當該三個記憶體胞元105最初與和一相對大電荷轉移相關聯之一邏輯狀態相關聯時,記憶體裝置100可判定不反轉該頁之資料,此乃因電荷洩漏可不會對讀取該三個記憶體胞元105造成負面影響。因此,在此等情形中之每一者中,儘管電荷洩漏高於三個記憶體胞元105或對應存取線之臨限值,但記憶體裝置100仍可恰當地讀取該頁中之記憶體胞元105。When the three memory cells 105 are initially associated with different logic states (eg, one is associated with a relatively large charge transfer and the other two are associated with a relatively small charge transfer), a memory device 100 may determine Reverse the data on this page or not. For example, when both of the memory cells 105 store a logic state associated with a relatively large charge transfer, the memory device may decide not to invert the page of data, and when the memory cells Both of cells 105 store a logic state associated with a relatively small charge transfer that the memory device can determine to reverse the page of data. In either case, a subsequent read of the page can rely on ECC to handle a possible error due to charge leakage when reading one of the memory cells 105 (eg, subsequent storage in the memory cell 105 one of a logic state associated with a relatively small charge transfer). When the three memory cells 105 are initially associated with a logic state associated with a relatively large charge transfer, the memory device 100 may decide not to invert the page's data, since charge leakage may not affect the read Taking the three memory cells 105 has a negative impact. Thus, in each of these cases, the memory device 100 can properly read the pages in the page despite charge leakage above the threshold of three memory cells 105 or corresponding access lines Memory cell 105.

在516處,存取操作可包含實行一寫入操作(例如,存取操作之一寫入部分、存取操作之一重寫部分)。舉例而言,返回至磁滯曲線300-a之實例,在514處,當判定記憶體胞元105-b儲存一邏輯1時,存取操作可包含施加一電壓315 (例如,一板低寫入電壓,其中VDL,w1 > VPL,w1 ),或者當判定記憶體胞元105-b儲存一邏輯0時,存取操作可包含施加一電壓325 (例如,一板高寫入電壓,其中VPL,w0 > VDL,w0 )。在某些實例中,可省略在516處施加一電壓315,此乃因記憶體胞元105-b可已儲存一正飽和電荷狀態(例如一邏輯1,由於508至515之操作中之一或多者)。在此等實例中,板線215-a仍可被站置於一高電壓(例如,與寫入一邏輯0相關聯之一電壓),但數位線210-a亦可被置於高電壓(例如,其中VDL = VPL ),以使得記憶體胞元105之電壓係均等的且因此維持正飽和電荷狀態(例如,邏輯1)。At 516, the access operation may include performing a write operation (eg, a write portion of the access operation, a rewrite portion of the access operation). For example, returning to the example of the hysteresis curve 300-a, at 514, when it is determined that the memory cell 105-b stores a logic 1, the access operation may include applying a voltage 315 (eg, a plate low write input voltage, where V DL,w1 > V PL,w1 ), or when it is determined that the memory cell 105-b stores a logic 0, the access operation may include applying a voltage 325 (eg, a board high write voltage, where V PL,w0 > V DL,w0 ). In some examples, applying a voltage 315 at 516 may be omitted because memory cell 105-b may have stored a positive saturated charge state (eg, a logic 1 due to one of the operations of 508-515 or more). In these examples, plate line 215-a can still be set to a high voltage (eg, a voltage associated with writing a logic 0), but digit line 210-a can also be set to a high voltage ( For example, where V DL = V PL ), such that the voltages of the memory cells 105 are equalized and thus maintain a positive saturated charge state (eg, logic 1).

在某些實例中,在516處實行寫入操作可至少部分地基於判定寫入記憶體胞元105-b所儲存之所識別邏輯狀態之一補數(例如,在513處)。在此等實例中,與在判定不寫入所識別邏輯狀態之補數時相比,516處之寫入操作可包含記憶體胞元寫入之態樣之一反相。舉例而言,當判定寫入所識別邏輯狀態之一補數時,516處之寫入操作可包含調換電壓或所連接之電壓源(例如,調換板線215-a與數位線210-a之間的一電壓或電壓源)、將原本保持於一相對高電壓下之數位線210-a接地或對管理516之寫入操作或重寫操作之另一組件實行某些其他邏輯反相。In some examples, performing the write operation at 516 may be based, at least in part, on determining the one's complement of the identified logical state stored by the memory cell 105-b (eg, at 513). In these examples, the write operation at 516 may include an inversion of one of the aspects of the memory cell write as compared to when it was determined not to write the complement of the identified logic state. For example, when determining to write one's complement of the identified logic state, the write operation at 516 may include swapping the voltage or the connected voltage source (eg, swapping the relationship between plate line 215-a and digit line 210-a). a voltage or voltage source in between), grounding the digit line 210-a that is otherwise held at a relatively high voltage, or performing some other logical inversion of another component that manages the write or rewrite operation of 516.

儘管被圖解說明為在不同時間發生之單獨操作,但某些操作可同時發生,或按照一不同次序發生。在某些實例中,可有利地同時起始各種操作以減小感測記憶體胞元105-b之一邏輯狀態所涉及之時間量。舉例而言,在501及502處起始預充電可按照一相反次序發生或同時發生(例如,當驅動邏輯信號SW3 及SW6 以作為一共同邏輯信號時)。此外,在503處連接數位線210-a與信號線260-a可在501或502之前發生,或全部三個操作可同時發生。在506處將信號線260-a增壓及在507處將參考線265-a增壓亦可按照一相反次序發生或同時發生(例如,當使用一共同可變電壓源450時、或當驅動邏輯信號SW4 及SW5 以作為一共同邏輯信號時)。類似地,在509處使信號線260-a移位及在510處使參考線265-a移位亦可按照一相反次序或同時發生。在某些實例中,在511處隔離感測放大器290‑a與信號線260-a及在512處隔離感測放大器290-a與參考線265-a可按照一相反次序發生或同時發生(例如,當驅動邏輯信號ISO1 及ISO2 作為一共同邏輯信號時)。Although illustrated as separate operations occurring at different times, certain operations may occur concurrently, or in a different order. In some instances, it may be advantageous to initiate various operations simultaneously to reduce the amount of time involved in sensing a logic state of memory cell 105-b. For example, the initial precharge at 501 and 502 may occur in a reverse order or simultaneously (eg, when logic signals SW3 and SW6 are driven as a common logic signal). Furthermore, connecting digit line 210-a to signal line 260-a at 503 may occur before 501 or 502, or all three operations may occur simultaneously. Boosting signal line 260-a at 506 and boosting reference line 265-a at 507 may also occur in a reverse order or simultaneously (eg, when using a common variable voltage source 450, or when driving When the logic signals SW4 and SW5 are used as a common logic signal). Similarly, shifting signal line 260-a at 509 and shifting reference line 265-a at 510 may also occur in a reverse order or simultaneously. In some examples, isolating sense amplifier 290-a and signal line 260-a at 511 and isolating sense amplifier 290-a and reference line 265-a at 512 may occur in a reverse order or concurrently (eg, , when the drive logic signals ISO 1 and ISO 2 are used as a common logic signal).

在某些實例中,參考線265-a之增壓及移位可被全部去除,且因此可省略在507及510處之操作。因此,在在所闡述技術之某些實例中,電路400可省略第二積分器電容器430-b及第二可變電壓源450-b,且當存取記憶體胞元105-b時仍可支援自增壓以用於信號產生。另外或另一選擇為,在某些實例中,信號線260-a之增壓及移位可被全部去除,且因此可省略506及509處之操作。因此,在所闡述技術之某些實例中,電路400可省略第一積分器電容器430-a及第一可變電壓源450-a。In some examples, the pressurization and displacement of reference line 265-a may be completely removed, and thus the operations at 507 and 510 may be omitted. Thus, in some examples of the described techniques, circuit 400 may omit second integrator capacitor 430-b and second variable voltage source 450-b and still be able to access memory cell 105-b when accessing memory cell 105-b. Self-boosting is supported for signal generation. Additionally or alternatively, in some examples, the boosting and shifting of signal line 260-a may be entirely removed, and thus the operations at 506 and 509 may be omitted. Thus, in some examples of the described techniques, circuit 400 may omit first integrator capacitor 430-a and first variable voltage source 450-a.

時序圖500中所展示之操作次序是出於說明目的,且可實行步驟之各種其他次序及組合以支援所闡述技術。此外,時序圖500之操作時序亦出於說明目的,並不意在指示一個操作與另一操作之間的一特定相對持續時間。與在根據本發明之各種實例中所圖解說明的相比,各種操作可在相對更短或相對更長之一持續時間內發生。The order of operations shown in timing diagram 500 is for illustration purposes, and various other orders and combinations of steps may be implemented in support of the techniques described. Furthermore, the timing of operations of timing diagram 500 is also for illustrative purposes and is not intended to indicate a particular relative duration between one operation and another. Various operations may occur for one of relatively shorter or relatively longer durations than illustrated in various examples in accordance with the present invention.

時序圖500之邏輯信號之轉變說明自一種狀態至另一狀態之轉變,且通常反應與一特定編號操作相關聯的一啟用或啟動狀態(例如,狀態「0」)與一停用或撤銷啟動狀態(例如,狀態「1」)之間的轉變。在各種實例中,狀態可與邏輯信號之一特定電壓相關聯(例如,施加至用作一切換器之一電晶體之一閘極之一邏輯輸入電壓),且電壓自一種狀態至另一狀態之改變可並非瞬時的。更確切而言,在某些實例中,與一邏輯信號相關聯之一電壓可沿循一曲線而隨時間推移自一種邏輯狀態至另一邏輯狀態。因此,時序圖500中所展示之轉變未必指示一瞬時轉變。此外,在該編號操作之前的各個時間期間可已達到與一編號操作處之一轉變相關聯之一邏輯信號之初始狀態,但仍支援所闡述轉變及相關聯操作。Transitions of logic signals of timing diagram 500 illustrate transitions from one state to another, and typically reflect an enabled or enabled state (eg, state "0") and a disabled or deactivated state associated with a particular numbered operation A transition between states (eg, state "1"). In various examples, a state may be associated with a particular voltage of a logic signal (eg, a logic input voltage applied to a gate of a transistor used as a switch), and the voltage goes from one state to another The change is not instantaneous. Rather, in some examples, a voltage associated with a logic signal can follow a curve from one logic state to another logic state over time. Thus, the transition shown in timing diagram 500 does not necessarily indicate an instantaneous transition. Furthermore, the initial state of a logic signal associated with a transition at a numbered operation may have been reached at various time periods prior to the numbered operation, but still support the stated transition and associated operation.

儘管時序圖500之實例圖解說明在一讀取操作中可如何應用用於進行洩漏偵測及邏輯反相之所闡述技術,但所闡述技術亦可與一寫入操作組合。舉例而言,可在將一邏輯狀態寫入至一記憶體胞元105或一組記憶體胞元105之前實行洩漏偵測操作(例如,本文中所闡述之洩漏偵測操作) (例如,在一寫入操作之一洩漏偵測部分期間、在用於判定實行哪種類型之寫入操作的一操作期間)。在某些實例中,因此可根據是對記憶體胞元105或一組記憶體胞元105實行一直接寫入操作還是實行一互補寫入操作的一判定修改一寫入操作以實行(例如,基於在將一邏輯狀態寫入至一記憶體胞元之前是否偵測到電荷洩漏、及邏輯狀態是與相對一大電荷轉移量還是與小電荷轉移量相關聯)。Although the example of timing diagram 500 illustrates how the described techniques for leak detection and logic inversion may be applied in a read operation, the described techniques may also be combined with a write operation. For example, leak detection operations (eg, the leak detection operations described herein) may be performed before writing a logic state to a memory cell 105 or a group of memory cells 105 (eg, at During a leak detection portion of a write operation, during an operation used to determine which type of write operation to perform). In some instances, therefore, a write operation may be modified to perform based on a determination of whether to perform a direct write operation or a complementary write operation to memory cell 105 or a group of memory cells 105 (eg, Based on whether charge leakage is detected before writing a logic state to a memory cell, and whether the logic state is associated with a relatively large amount of charge transfer or a small amount of charge transfer).

在另一實例中,可在將一邏輯狀態寫入至一記憶體胞元105或一組記憶體胞元105之後實行洩漏偵測操作(例如,本文中所闡述之洩漏偵測操作) (例如,在寫入操作之一洩漏偵測部分期間、在寫入操作之一寫入生效或確認部分期間),且因此,可根據對記憶體胞元105或一組記憶體胞元105寫入邏輯狀態是否成功修改實行寫入操作。舉例而言,在實行對一頁記憶體胞元105一直接寫入操作之後,若在該頁記憶體胞元105中偵測到電荷洩漏且該電荷洩漏和與將與一相對小電荷轉移量相關聯之一邏輯狀態寫入至一洩漏記憶體胞元105或對應存取線相關聯,則可修改入操作以包含對該頁記憶體胞元105實行一互補寫入操作(例如,在寫入操作之一重寫部分中)。In another example, leak detection operations (eg, the leak detection operations described herein) may be performed after writing a logic state to a memory cell 105 or a group of memory cells 105 (eg, , during a leak detection portion of a write operation, during a write validation or validation portion of a write operation), and thus, can be written to memory cell 105 or a group of memory cells 105 according to logic Whether the state is successfully modified to perform the write operation. For example, after performing a direct write operation to a page of memory cells 105, if charge leakage is detected in the page of memory cells 105 and the sum of the charge leakage and a relatively small amount of charge transferred An associated logic state is written to a leaky memory cell 105 or associated with a corresponding access line, then the write operation can be modified to include performing a complementary write operation on the page of memory cells 105 (eg, during a write into the rewrite section of one of the operations).

圖6展示圖解說明根據本文中所揭示之實例的支援電荷洩漏之記憶體管理之一方法600之一流程圖。可藉由本文中所闡述之一記憶體裝置100或其組件實施方法600之操作。在某些實例中,記憶體裝置100可包含一組記憶體胞元105 (例如,複數個記憶體胞元105,一陣列記憶體胞元105),且記憶體胞元105中之每一者可包含一各別儲存元件(例如,一各別電容性儲存元件)。可藉由與一組記憶體胞元耦合(例如,與一列記憶體胞元105、一頁記憶體胞元105耦合)之各種組件或電路系統實行方法600之操作,包含參考圖1至圖5所闡述之實例。在某些實例中,方法600之操作可圖解說明一組記憶體胞元105之一存取操作(例如,一讀取操作、一寫入操作、一重寫操作、一再新操作)或其某些部分。6 shows a flowchart illustrating a method 600 of memory management supporting charge leakage according to examples disclosed herein. The operations of method 600 may be implemented by a memory device 100 or components thereof as described herein. In some examples, memory device 100 may include a set of memory cells 105 (eg, a plurality of memory cells 105 , an array of memory cells 105 ), and each of memory cells 105 A respective storage element (eg, a respective capacitive storage element) may be included. The operations of method 600 may be carried out by various components or circuitry coupled to a set of memory cells (eg, coupled to a column of memory cells 105, a page of memory cells 105), including with reference to FIGS. 1-5 the example described. In some examples, the operations of method 600 may illustrate an access operation (eg, a read operation, a write operation, a rewrite operation, a renew operation) of a set of memory cells 105, or some thereof some parts.

在605處,該方法可包含判定該組記憶體胞元105中之每一者之一各別邏輯狀態。在某些實例中,判定各別邏輯狀態可至少部分地基於將該組記憶體胞元105中之每一者之儲存元件與一組存取線中之一各別存取線中(例如,數位線210、信號線260)耦合,或包含判定已由記憶體胞元105儲存之各別邏輯狀態之某些其他操作(例如,在一讀取操作中、在一重寫操作中、在一再新操作中)。在某些實例中,此一耦合可基於啟動一共同選擇線(例如,一共同字線205)。在某些實例中,判定各別邏輯狀態可至少部分地基於將由記憶體胞元105儲存之邏輯狀態之某些其他判定(例如,在對記憶體胞元之一後續寫入中、在一後續寫入操作中、在不包含存取記憶體胞元105之一操作中)。舉例而言,可自一記憶體控制器170提供記憶體胞元105中之每一者之邏輯狀態作為一寫入操作之一部分(例如,將資訊寫入或覆寫至記憶體胞元105)。At 605 , the method can include determining a respective logic state of one of each of the set of memory cells 105 . In some examples, determining the respective logic state may be based at least in part on being in the storage element of each of the set of memory cells 105 and a respective one of the set of access lines (eg, digit line 210, signal line 260), or some other operation involving determining the respective logic state that has been stored by memory cell 105 (eg, in a read operation, in a rewrite operation, in a repeat operation new operation). In some examples, this coupling can be based on activating a common select line (eg, a common word line 205). In some examples, determining the respective logical state may be based, at least in part, on some other determination of the logical state to be stored by memory cell 105 (eg, in a subsequent write to the memory cell, in a subsequent in a write operation, in an operation that does not involve accessing memory cell 105). For example, the logic state of each of memory cells 105 may be provided from a memory controller 170 as part of a write operation (eg, writing or overwriting information to memory cells 105 ) .

在610處,該方法可包含判定是否在一組存取線中之一或多者上偵測到一臨限電荷洩漏量(例如,數位線210、信號線260)。在某些實例中,記憶體胞元105中之每一者可與一組存取線中之一各別存取線耦合。在某些實例中,可在耦合記憶體胞元105與一組存取線中之一各別存取線之後實行是否偵測到臨限電荷洩漏量之判定。在某些實例中,可已在某些其他先前操作中偵測到電荷洩漏。在某些實例中,可藉由起始一存取操作(例如一讀取操作、一寫入操作、一重寫操作、一再新操作)來觸發電荷洩漏之偵測。At 610, the method can include determining whether a threshold charge leakage is detected on one or more of a set of access lines (eg, digit line 210, signal line 260). In some examples, each of memory cells 105 may be coupled with a respective access line of a set of access lines. In some examples, the determination of whether a threshold amount of charge leakage is detected may be performed after coupling the memory cell 105 with a respective access line in a set of access lines. In some instances, charge leakage may have been detected in some other previous operation. In some examples, the detection of charge leakage can be triggered by initiating an access operation (eg, a read operation, a write operation, a rewrite operation, a new operation).

在某些實例中,在605處判定一組記憶體胞元中之每一者之各別邏輯狀態可包含鎖存與各別記憶體胞元105相關聯之一各別信號線260之一信號;及判定是否在610處偵測到臨限電荷洩漏量可在鎖存之後基於比較各別信號線260之一電壓與一臨限電壓。在某些實例中,判定是否偵測到臨限電荷洩漏量可基於偵測(例如,直接或間接)跨越與該組存取線中之一各別存取線電連接之一信號生成組件280 (例如,一電晶體、一放大器405)之一電荷流。In some examples, determining the respective logic state of each of a set of memory cells at 605 may include latching a signal of a respective signal line 260 associated with the respective memory cell 105 ; and determining whether a threshold charge leakage amount is detected at 610 may be based on comparing a voltage of the respective signal line 260 to a threshold voltage after latching. In some examples, determining whether a threshold charge leakage amount is detected may be based on detecting (eg, directly or indirectly) across a signal generation component 280 that is electrically connected to a respective one of the set of access lines (eg, a transistor, an amplifier 405) a charge flow.

在615處,該方法可包含針對該組記憶體胞元105選擇一直接寫入操作或一互補寫入操作。在某些實例中,選擇直接寫入操作或互補寫入操作可基於是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量。在某些實例中,該方法600可與對應於一第一電荷轉移量之一第一邏輯狀態及對應於一第二電荷轉移量之一第二邏輯狀態相關聯,該第二電荷轉移量低於該第一電荷轉移量。在此等實例中,選擇直接寫入操作還是互補寫入操作可基於與臨限電荷洩漏量之一偵測相關聯且與儲存第一邏輯狀態之一記憶體胞元耦合之該組存取線之一數量以及與臨限電荷洩漏量之一偵測相關聯且與儲存第二邏輯狀態之一記憶體胞元耦合之該組存取線之一數量。在某些實例中,615處之選擇可至少部分地基於所闡述技術是否與另一錯誤校正方案(例如,ECC或ECC1)組合。在某些實例中,方法600可進一步包含儲存選擇直接重寫操作還是互補重寫操作之一指示。當選擇實行直接寫入操作時,方法可進行至625,而當選擇實行互補寫入操作時,方法可進行至630。At 615 , the method can include selecting a direct write operation or a complementary write operation for the set of memory cells 105 . In some examples, selecting a direct write operation or a complementary write operation may be based on whether a threshold amount of charge leakage is detected on one or more of the set of access lines. In some examples, the method 600 can be associated with a first logic state corresponding to a first amount of charge transfer and a second logic state corresponding to a second amount of charge transfer, the second amount of charge transfer being low in the first charge transfer amount. In these examples, selection of a direct write operation or a complementary write operation may be based on the set of access lines associated with a detection of a threshold charge leakage and coupled with a memory cell storing the first logic state a number and a number of the set of access lines associated with a detection of threshold charge leakage and coupled to a memory cell storing the second logic state. In some examples, the selection at 615 may be based, at least in part, on whether the described techniques are combined with another error correction scheme (eg, ECC or ECC1). In some examples, method 600 may further include storing an indication of whether to select a direct overwrite operation or a complementary overwrite operation. The method may proceed to 625 when a direct write operation is selected to be performed, and the method may proceed to 630 when a complementary write operation is selected to be performed.

在620處,該方法可包含實行直接寫入操作。舉例而言,實行直接寫入操作可包含將在605處判定之各別邏輯狀態寫入至該組記憶體胞元105中之每一者。在某些實例中,方法600可進一步包含儲存實行直接寫入操作之一指示。At 620, the method can include performing a direct write operation. For example, performing a direct write operation may include writing the respective logic state determined at 605 to each of the set of memory cells 105 . In some examples, method 600 may further include storing an indication to perform a direct write operation.

在625處,該方法可包含實行互補寫入操作。舉例而言,實行互補寫入操作可包含將在605處判定之各別邏輯狀態中之一補數寫入至該組記憶體胞元105中之每一者。在某些實例中,方法600可進一步包含儲存實行互補寫入操作之一指示。At 625, the method can include performing a complementary write operation. For example, performing a complementary write operation may include writing to each of the set of memory cells 105 one's complement in the respective logic state determined at 605 . In some examples, method 600 may further include storing an indication to perform a complementary write operation.

根據方法600之實例,可利用一直接寫入操作或一補數寫入操作對一組記憶體胞元105進行寫入,其中可至少部分地基於是否偵測到一臨限電荷洩漏量做出直接寫入操作與互補寫入操作之間的一選擇。藉由實行操作(例如方法600之操作),一記憶體裝置100可更可能自該組記憶體胞元105恰當地讀取資訊。舉例而言,可以將儲存與相對小電荷轉移對應之一邏輯狀態之記憶體胞元105或相關聯存取線之一數目最小化之一方式實行方法600之操作,此乃因此一邏輯狀態可更易於被誤讀或在比與相對較高電荷轉移相關聯之一邏輯狀態低之一讀取餘裕下被讀取。According to an example of method 600, a set of memory cells 105 can be written to using a direct write operation or a one's complement write operation, which can be made based at least in part on whether a threshold charge leakage is detected. A choice between direct write operations and complementary write operations. By performing operations, such as the operations of method 600 , a memory device 100 is more likely to properly read information from the set of memory cells 105 . For example, the operations of method 600 may be performed in a manner that minimizes the number of memory cells 105 or associated access lines storing a logic state corresponding to a relatively small charge transfer, such that a logic state may be More prone to being misread or being read with a read margin lower than one of the logic states associated with relatively higher charge transfer.

圖7圖解說明一曲線圖700,該曲線圖700包含根據本文中所揭示之實例的與可支援一記憶體裝置之刪除解碼之不同資訊狀態相關聯之一讀取特性之分佈。曲線圖700可關於一標準偏差σ或某些其他概率性量測說明當存取一記憶體裝置100之一群代表性記憶體胞元105時之各種讀取特性(例如,讀取信號)。舉例而言,所圖解說明之讀取特性可係指基於存取寫入有一各別資訊狀態之記憶體胞元105 (例如,電容性記憶體胞元、鐵電記憶體胞元、材料記憶體胞元)產生之讀取電壓、讀取電流、所偵測到電阻、臨限電壓或其他類型之讀取信號。出於說明目的,σ軸可係非線性軸使得可在曲線圖700中以線性分佈形式圖解說明讀取特性之一常態分佈。在某些實例中,曲線圖700之分佈可被稱為高斯分佈。7 illustrates a graph 700 including the distribution of a read characteristic associated with different information states that can support erasure decoding of a memory device, according to examples disclosed herein. Graph 700 may illustrate various read characteristics (eg, read signals) when accessing a representative group of memory cells 105 of a memory device 100 with respect to a standard deviation σ or some other probabilistic measure. For example, the illustrated read characteristics may refer to memory cells 105 (eg, capacitive memory cells, ferroelectric memory cells, material memory cells) written to a respective information state based on accesses cell) generated read voltage, read current, detected resistance, threshold voltage, or other types of read signals. For illustration purposes, the sigma axis may be a non-linear axis such that a normal distribution of the read characteristics may be illustrated in the graph 700 as a linear distribution. In some instances, the distribution of the graph 700 may be referred to as a Gaussian distribution.

分佈710可圖解說明在儲存一第一資訊狀態(例如,一第一邏輯狀態、一第一電荷狀態、一第一材料狀態、一邏輯0)時讀取特性之一第一分佈。在某些實例中,分佈710可圖解說明在讀取寫入有一邏輯0之記憶體胞元105 (例如,電容器220)時一信號線260處之電壓之一分佈。分佈710可與可被稱為「E1」之一較低邊界或邊緣(例如,邊緣711)及可被稱為「E2」之一上邊界或邊緣(例如,邊緣712)相關聯。分佈710可圖解說明一統計分佈之各種解釋,例如六個標準偏差(例如,6個σ)之一跨度、十二個標準偏差(例如,十二個σ)之一跨度或一群代表性記憶體胞元105寫入有一邏輯0時之讀取特性之一最小位準與最大位準之間的一跨度。Distribution 710 may illustrate a first distribution of read characteristics when storing a first information state (eg, a first logic state, a first charge state, a first material state, a logic 0). In some examples, distribution 710 may illustrate a distribution of voltages at a signal line 260 when a memory cell 105 (eg, capacitor 220 ) written with a logic 0 is read. Distribution 710 may be associated with a lower boundary or edge (eg, edge 711), which may be referred to as "E1," and an upper boundary or edge (eg, edge 712), which may be referred to as "E2." Distribution 710 may illustrate various interpretations of a statistical distribution, such as a span of six standard deviations (eg, 6 σ), a span of twelve standard deviations (eg, twelve σ), or a representative set of memory Cell 105 is written with a span between a minimum level and a maximum level of a read characteristic at a logic 0.

分佈720可圖解說明當儲存一第二資訊狀態(例如,一第二邏輯狀態、一第二電荷狀態、一第二材料狀態、一邏輯1)時讀取特性之一第二分佈。在某些實例中,分佈720可圖解說明當讀取寫入有一邏輯1之記憶體胞元105 (例如,電容器220)時一信號線260處之電壓之一分佈。分佈720可與可被稱為「E3」之一較低邊界或邊緣(例如,邊緣721)及可被稱為「E4」之一上邊界或邊緣(例如,邊緣722)相關聯。分佈720可圖解說明一統計分佈之各種解釋,例如六個標準偏差(例如,六個σ)之一跨度、十二個標準偏差(例如,十二個σ)之一跨度或一群代表性記憶體胞元105在寫入有一邏輯1時之讀取特性之一最小值與一最大值之間的一跨度。Distribution 720 may illustrate a second distribution of read characteristics when storing a second information state (eg, a second logic state, a second charge state, a second material state, a logic 1). In some examples, distribution 720 may illustrate a distribution of voltages at a signal line 260 when a memory cell 105 (eg, capacitor 220) with a logic 1 is read and written. Distribution 720 may be associated with a lower boundary or edge (eg, edge 721), which may be referred to as "E3," and an upper boundary or edge (eg, edge 722), which may be referred to as "E4." Distribution 720 may illustrate various interpretations of a statistical distribution, such as a span of six standard deviations (eg, six σ), a span of twelve standard deviations (eg, twelve σ), or a representative set of memory The read characteristic of cell 105 when written with a logic 1 is a span between a minimum value and a maximum value.

在某些實例中,一記憶體裝置100可比較一讀取特性與一臨限值以評估一記憶體胞元105儲存的是一種資訊狀態還是另一資訊狀態。舉例而言,當所圖解說明之讀取特性係指一信號線260之一電壓時,一記憶體裝置100可包含一參考組件285,該參考組件285以介於分佈710與分佈720 (例如,在邊緣712與邊緣721之間)的一參考電壓(例如,一電壓分界)對一參考線265加偏壓以在一邏輯0與一邏輯1之間作出區分。當基於存取一記憶體胞元105的一信號線260之一電壓(例如,一第一節點291之一電壓)低於參考電壓(例如,一第二節點292之一電壓)時,記憶體裝置100可判定記憶體胞元105儲存一邏輯0,且當基於存取一記憶體胞元105的一信號線260之一電壓高於參考電壓時,記憶體裝置100可判定記憶體胞元105儲存一邏輯1。在此一情景中之讀取餘裕可包含與參考電壓與邊緣712之間的一差相關聯之一E2餘裕及與參考電壓與邊緣721之間的一差相關聯之一E3餘裕。In some examples, a memory device 100 may compare a read characteristic to a threshold to assess whether a memory cell 105 stores one information state or another information state. For example, when the illustrated read characteristic refers to a voltage on a signal line 260, a memory device 100 may include a reference element 285 between distribution 710 and distribution 720 (eg, A reference voltage (eg, a voltage demarcation) between edge 712 and edge 721) biases a reference line 265 to distinguish between a logic 0 and a logic 1. When a voltage (eg, a voltage of a first node 291 ) based on a signal line 260 accessing a memory cell 105 is lower than a reference voltage (eg, a voltage of a second node 292 ), the memory The device 100 can determine that the memory cell 105 stores a logic 0, and when a voltage based on a signal line 260 accessing a memory cell 105 is higher than a reference voltage, the memory device 100 can determine that the memory cell 105 A logical 1 is stored. The read margin in this scenario may include an E2 margin associated with a difference between the reference voltage and edge 712 and an E3 margin associated with a difference between the reference voltage and edge 721 .

在某些情形中,然而,當存取一記憶體胞元105時一讀取特性可根據分佈710與720表現。舉例而言,在存在電荷洩漏時,基於存取一記憶體胞元105的信號線260之一電壓可低於預期。在某些情形中,此洩漏可導致寫入有一邏輯1之一記憶體胞元105之一讀取電壓下降至低於一參考電壓,以使得記憶體胞元105被不正確地判定為寫入有一邏輯0 (例如,圖解說明一E3餘裕之一減小或消除)。因此,根據此等及其他實例,洩漏狀況可與一不確定或未確定邏輯狀態或一讀取餘裕之其他減小或消除相關聯。在某些實例中,一洩漏偵測組件201(例如,參考圖2所闡述之洩漏偵測組件)可用於一電路中以識別可與一可能不確定或未確定邏輯狀態(例如,一讀取操作將偵測到一邏輯0之一增大可能性)相關聯之記憶體胞元105或存取線(例如,信號線260、數位線210)。In some cases, however, a read characteristic can be represented according to distributions 710 and 720 when a memory cell 105 is accessed. For example, in the presence of charge leakage, a voltage on the signal line 260 based on accessing a memory cell 105 may be lower than expected. In some cases, this leakage can cause a read voltage to be written to a memory cell 105 with a logic 1 to drop below a reference voltage, causing the memory cell 105 to be incorrectly determined to be written There is a logic 0 (eg, illustrating a reduction or elimination of one of the E3 margins). Thus, according to these and other examples, leakage conditions may be associated with an indeterminate or indeterminate logic state or other reduction or elimination of a read margin. In some examples, a leak detection component 201 (eg, the leak detection component described with reference to FIG. 2 ) may be used in a circuit to identify a logic state that may be correlated with a possibly indeterminate or indeterminate logic state (eg, a read The operation will detect a logic 0 (one increased probability) associated with the memory cell 105 or access line (eg, signal line 260, digital line 210).

在可支援識別與一刪除或者不確定或未確定的資訊狀態相關聯之狀況之技術之另一實例中,一記憶體裝置100可包含將在存取操作期間應用之一讀取特性之多個臨限值。舉例而言,曲線圖700圖解說明一資訊狀態映射740,該資訊狀態映射740包含區分三種資訊狀態之讀取特性狀況之兩個讀取臨限值。一第一讀取臨限值730-a (例如,Tread,0 )可與一邏輯0相關聯,且一第二讀取臨限值730-b (例如,Tread,1 )可與一邏輯1相關聯。在讀取特性係指一讀取電壓之一實例中,Tread,0 可係與一邏輯0 (例如,一第一資訊狀態、一確定的資訊狀態)相關聯之一參考電壓,且Tread,1 可係與一邏輯1 (例如,一第一資訊狀態、一確定的資訊狀態)相關聯之一參考電壓。在各種實例中,包含多個參考組件285、包含多個參考線265 (例如,在一感測放大器290處之多個第二節點292)或在不同時間間隔期間對一參考線265施加不同電壓之一記憶體裝置100可支援多個參考電壓。在其他實例中,Tread,0 及Tread,1 可係指(例如,一材料記憶體元件之)各別參考讀取電流、各別參考電荷轉移、各別參考電阻、各別臨限電壓或其他讀取特性臨限值。In another example of techniques that can support identifying conditions associated with a deletion or indeterminate or indeterminate information state, a memory device 100 can include a plurality of read characteristics to be applied during an access operation Threshold value. For example, graph 700 illustrates an information state map 740 that includes two read thresholds that distinguish read characteristic conditions of three information states. A first read threshold 730-a (eg, Tread,0 ) may be associated with a logic 0, and a second read threshold 730-b (eg, Tread,1 ) may be associated with a Logic 1 is associated. In instances where the read characteristic refers to a read voltage, T read,0 may be a reference voltage associated with a logic 0 (eg, a first information state, a determined information state), and T read ,1 may be a reference voltage associated with a logic 1 (eg, a first information state, a certain information state). In various examples, reference components 285 are included, reference lines 265 are included (eg, second nodes 292 at a sense amplifier 290 ), or different voltages are applied to a reference line 265 during different time intervals A memory device 100 can support multiple reference voltages. In other examples, T read,0 and T read,1 may refer to (eg, of a material memory device) respectively reference read current, respectively reference charge transfer, respectively reference resistance, respective threshold voltage or other read characteristic thresholds.

根據資訊狀態映射740,當與存取一記憶體胞元105相關聯之一讀取特性低於第一讀取臨限值730-a (或者等於或低於第一讀取臨限值730-a)時,讀取操作可識別或指示記憶體胞元105之一邏輯0 (例如,作為一確定的邏輯狀態)。當與存取一記憶體胞元105相關聯之一讀取特性高於第二讀取臨限值730-b (或者等於或高於第二讀取臨限值730-b)時,讀取操作可識別或指示記憶體胞元105之一邏輯1 (例如,作為一確定的邏輯狀態)。然而,當與存取一記憶體胞元105相關聯之一讀取特性介於第一讀取臨限值730-a與第二讀取臨限值730-b之間(或者等於或介於第一讀取臨限值730-a與第二讀取臨限值730-b之間)時,讀取操作可識別或指示記憶體胞元105之一邏輯X (例如,作為一不確定邏輯狀態、作為一空的邏輯狀態、作為一第三資訊狀態)。換言之,第一讀取臨限值730-a與第二讀取臨限值730-b之間的一區可圖解說明一未確定性範圍,其可支援與確定的邏輯狀態不同之一識別或指示,或可係指與一資訊狀態之一識別或指示不存在(例如,一空的資訊狀態、一未經指派資訊狀態)相關聯之狀況。According to the information state map 740, when a read characteristic associated with accessing a memory cell 105 is below the first read threshold 730-a (or at or below the first read threshold 730- a), the read operation may identify or indicate a logic 0 of the memory cell 105 (eg, as a certain logic state). When a read characteristic associated with accessing a memory cell 105 is above the second read threshold 730-b (or equal to or above the second read threshold 730-b), the read The operation may identify or indicate a logic 1 of memory cell 105 (eg, as a certain logic state). However, when a read characteristic associated with accessing a memory cell 105 is between the first read threshold 730-a and the second read threshold 730-b (or equal to or between between the first read threshold 730-a and the second read threshold 730-b), the read operation may identify or indicate a logic X of the memory cell 105 (eg, as an indeterminate logic state, as an empty logical state, as a third information state). In other words, a region between the first read threshold value 730-a and the second read threshold value 730-b may illustrate a range of uncertainty that may support an identification or An indication, or may refer to a condition associated with an identification or an indication that an information state does not exist (eg, an empty information state, an unassigned information state).

在某些實例中,一記憶體裝置100可使用資訊狀態映射740來提高在一記憶體裝置處之錯誤處置之態樣。舉例而言,當識別一記憶體胞元105與一讀取特性之一未確定性範圍(例如一邏輯X或其他空的或未經指派資訊狀態)相關聯時,記憶體裝置可採用當實行錯誤偵測及錯誤校正操作時假定一相關聯碼字中之一或多種資訊狀態之技術。此種技術可優於其他技術,例如不識別可包含一錯誤或具有一高的誤差可能性之記憶體胞元105之一位置或可包含一錯誤或具有一高的誤差可能性之一相關聯碼字之對應資訊位置的錯誤處置技術。In some examples, a memory device 100 may use the information state map 740 to improve the behavior of error handling at a memory device. For example, when a memory cell 105 is identified as being associated with an indeterminate range of a read characteristic (eg, a logical X or other empty or unassigned information state), the memory device may employ Error detection and error correction operations that assume one or more information states in an associated codeword. Such techniques may be preferred over other techniques, such as not identifying a location of memory cells 105 that may contain an error or have a high probability of error or an association that may contain an error or have a high probability of error Error handling techniques for the corresponding information locations of codewords.

儘管刪除或者不確定邏輯狀態之某些實例可與電荷洩漏相關,但可在其他情景中另外或作為另一種選擇應用所闡述技術。舉例而言,某些記憶體胞元105可經歷其他類型之降級,例如使一所儲存邏輯狀態降級之一材料遷移、損害寫入一目標邏輯狀態之一能力之一降級或損害回應於一讀取操作產生一讀取信號之一能力之一降級。在各種實例中,可使用兩個或兩個以上讀取臨限值730來在確定的資訊狀態與不確定的資訊狀態之間做出區分,或以其他方式縮放一所偵測到資訊狀態之一權重或置信度。具有一不確定、未經指派或相對低置信度資訊狀態的記憶體胞元105、存取線(例如,數位線210、信號線260)或一碼字之資訊位置可包含於在試圖識別一有效碼字時指派一假定的資訊狀態或其替代的錯誤處置操作中(例如,恰當地表示寫入至一組記憶體胞元105之資訊之一碼字)。Although certain instances of deleting or indeterminate logic states may be related to charge leakage, the described techniques may additionally or alternatively be applied in other contexts. For example, certain memory cells 105 may experience other types of degradation, such as material migration that degrades a stored logical state, degradation that impairs the ability to write to a target logical state, or impairs response to a read A fetch operation produces a degradation in the capability of a read signal. In various examples, two or more read thresholds 730 may be used to distinguish between a determined information state and an indeterminate information state, or to otherwise scale a detected information state A weight or confidence. Information locations of memory cells 105, access lines (eg, digit lines 210, signal lines 260), or a codeword that have an indeterminate, unassigned, or relatively low-confidence information state may be included in an attempt to identify a A valid codeword is assigned a hypothetical information state or an alternative error handling operation (eg, a codeword that properly represents information written to a set of memory cells 105).

圖8圖解說明根據本文中所揭示之實例的支援一記憶體裝置之刪除解碼之一方法800之一實例。在某些實例中,可藉由一記憶體裝置(例如參考圖1至圖7所闡述之一記憶體裝置100或相關聯電路系統)實行方法800。在某些實例中,可藉由與此一記憶體裝置100耦合之一主機裝置(例如,對自一記憶體裝置100擷取之資訊實行錯誤偵測、錯誤校正、或其他錯誤處置技術之一主機裝置)實行方法800之操作中之一或多者。8 illustrates an example of a method 800 of supporting delete decoding for a memory device according to examples disclosed herein. In some examples, method 800 may be performed by a memory device, such as the memory device 100 or associated circuitry described with reference to FIGS. 1-7 . In some examples, one of error detection, error correction, or other error handling techniques may be performed on information retrieved from a memory device 100 by a host device coupled to such a memory device 100 A host device) performs one or more of the operations of method 800.

在810處,該方法可包含基於存取一組記憶體胞元105識別一所感測碼字。在某些實例中,該組記憶體胞元105可包含一列或頁記憶體胞元105或其某些部分。碼字可具有一組資訊位置,且該組資訊位置中之一或多者可與一不確定或未經指派資訊狀態(例如,一X邏輯狀態、一空的邏輯狀態、一未確定邏輯狀態)相關聯。在某些實例中,與一不確定或未經指派資訊狀態相關聯之資訊位置可對應於被偵測到電荷洩漏或電荷洩漏經判定高於或以者滿足一臨限值(例如,使用參考圖2或圖4所闡述之一洩漏偵測組件201)的記憶體胞元105或存取線(例如,數位線210、信號線260)。在某些實例中,與一不確定的資訊狀態相關聯之資訊位置可對應於一相關聯讀取特性(例如,讀取信號)經判定介於對應於一第一資訊狀態之一第一臨限值與對應於一第二資訊狀態之一第二臨限值之間的記憶體胞元105 (例如,一未確定性區中之一讀取特性、一邏輯0之一第一讀取臨限值730-a與一邏輯1之一第二讀取臨限值730-b之間的一讀取特性,如參考圖7所闡述)。At 810 , the method can include identifying a sensed codeword based on accessing a set of memory cells 105 . In some examples, the set of memory cells 105 may include a column or page of memory cells 105 or some portion thereof. A codeword may have a set of information locations, and one or more of the set of information locations may be associated with an indeterminate or unassigned information state (eg, an X logic state, an empty logic state, an indeterminate logic state) Associated. In some examples, an information location associated with an indeterminate or unassigned information state may correspond to a detected charge leakage or a charge leakage determined to be above or above a threshold (eg, using a reference Memory cells 105 or access lines (eg, digital lines 210, signal lines 260) of a leak detection device 201) illustrated in FIG. 2 or FIG. 4 . In some examples, an information location associated with an indeterminate information state may correspond to an associated read characteristic (eg, read signal) determined to be between a first adjacent state corresponding to a first information state The memory cell 105 between the limit value and a second threshold value corresponding to a second information state (eg, a read characteristic in an indeterminate region, a logic 0, a first read threshold A read characteristic between limit value 730-a and a second read threshold value 730-b of a logic 1, as explained with reference to FIG. 7).

在方法800之一實例中,810之操作可包含識別具有一值{1,X,0,1,1,X,1,0}之一所感測碼字815,如所展示。所感測碼字815之實例可圖解說明具有一組八個資訊位置之一碼字,其中一第二資訊位置及一第六資訊位置各自與一不確定或未經指派資訊狀態相關聯(例如,一「X」邏輯狀態、一未確定邏輯狀態、一空的邏輯狀態)。在其他實例中,根據所闡述技術,一所感測碼字可具有八個以上或八個以下之資訊位置,且一給定所感測碼字可具有任何數量之0或與一不確定或未經指派邏輯狀態相關聯之更多資訊位置。In one example of method 800, the operations of 810 may include identifying a sensed codeword 815 having one of a value {1,X,0,1,1,X,1,0}, as shown. An example of sensed codeword 815 may illustrate a codeword having a set of eight information locations, where a second information location and a sixth information location are each associated with an indeterminate or unassigned information state (eg, an "X" logic state, an indeterminate logic state, an empty logic state). In other examples, according to the techniques described, a sensed codeword may have more or less than eight information locations, and a given sensed codeword may have any number of zeros or an indeterminate or undetermined Assign a more information location associated with the logical state.

在某些實例中,在810處識別一所感測碼字可伴隨著識別與所感測碼字對應之同位資訊,例如與存取記憶體胞元105相關聯的可支援後續錯誤處置操作(例如,錯誤偵測、錯誤校正)之一或多個同位位元。在各種實例中,此同位資訊可與對應於所感測碼字之記憶體胞元105儲存於同一列或記憶體扇區110中,或此同位資訊可自一記憶體系統中之其他位置擷取,例如一記憶體裝置100之另一部分(例如,一記憶體裝置100中分配給同位資訊之一部分),或自另一記憶體裝置100 (例如,當一主機裝置將資訊儲存於一第一記憶體裝置100中且將對應同位資訊儲存於一第二記憶體裝置100中)。In some examples, identifying a sensed codeword at 810 may be accompanied by identifying parity information corresponding to the sensed codeword, such as associated with accessing memory cell 105 that may support subsequent error handling operations (eg, error detection, error correction) one or more parity bits. In various examples, this parity information may be stored in the same row or memory sector 110 as the memory cells 105 corresponding to the sensed codewords, or this parity information may be retrieved from elsewhere in a memory system , such as another portion of a memory device 100 (eg, a portion of a memory device 100 allocated to co-located information), or from another memory device 100 (eg, when a host device stores information in a first memory in the memory device 100 and store the corresponding parity information in a second memory device 100).

在820處,方法800可包含將一各別假定(例如,推測性)資訊狀態指派給具有一不確定或未經指派資訊狀態之每一位置。可根據用於將資訊狀態指派給一或多個碼字之各種技術來實行820之指派(例如,推測性碼字、假設碼字、假定碼字)以實行後續錯誤偵測操作(例如,以評估假定的資訊狀態或假定碼字之一有效性)。At 820, method 800 can include assigning a respective hypothetical (eg, speculative) information state to each location having an indeterminate or unassigned information state. The assignment of 820 may be performed according to various techniques for assigning information states to one or more codewords (eg, speculative codewords, hypothetical codewords, hypothetical codewords) to perform subsequent error detection operations (eg, to Evaluate the assumed information state or the validity of one of the assumed codewords).

繼續以具有一值{1,X,0,1,1,X,1,0}之所感測碼字815為例,在820處,方法800可包含將具有一邏輯X之所感測碼字815之每一位置指派為一邏輯0,藉此產生具有一值{1,0,0,1,1,0,1,0}之一推測性碼字825-a。在各種其他實例中,820處之指派可包含將具有一邏輯X之每一位置指派為一邏輯1或某些其他假定或推測性資訊狀態,或指派假定的資訊狀態之一型樣,例如將具有一邏輯X之交替位置指派為一邏輯0或一邏輯1。Continuing with the sensed codeword 815 having a value of {1,X,0,1,1,X,1,0} as an example, at 820, the method 800 can include placing the sensed codeword 815 having a logical X Each position of is assigned a logical 0, thereby generating a speculative codeword 825-a having a value of {1,0,0,1,1,0,1,0}. In various other examples, the assignment at 820 may include assigning each position with a logical X as a logical 1 or some other putative or speculative information state, or assigning a pattern of putative information states, such as Alternate locations with a logic X are assigned either a logic 0 or a logic 1.

在某些實例中,可至少部分地基於所感測碼字815中具有一不確定或未經指派資訊狀態之位置之一數量滿足一臨限值實行820之操作。舉例而言,當具有一不確定或未經指派資訊狀態之位置之一數量小於一臨限值或小於或等於一臨限值時,可實行820之操作,其中此一臨限值可等於或以其他方式至少部分地基於一錯誤校正碼或其他錯誤處置能力之一最小距離或「漢明(hamming)距離」。In some examples, the operation of 820 may be performed based, at least in part, on a number of locations in the sensed codeword 815 having an indeterminate or unassigned information status satisfying a threshold. For example, operation 820 may be performed when a number of locations with an indeterminate or unassigned information status is less than a threshold value or less than or equal to a threshold value, where the threshold value may be equal to or A minimum distance or "hamming distance" is otherwise based at least in part on an error correction code or other error handling capability.

在830處,方法800可包含基於包含假定的資訊狀態之碼字(例如,在820處產生之推測性碼字825-a)實行一錯誤偵測操作。可根據用於識別推測性碼字825-a中之錯誤之一存在或數量之各種技術實行830之錯誤偵測操作。舉例而言,推測性碼字825-a可經過一ECC引擎,其中一輸出係可被稱為一校驗子之一匯流排或字串。在某些實例中,當校驗子含有所有邏輯0時,推測性碼字825-a可被識別為有效(例如,與寫入至所一組經存取記憶體胞元105之資訊匹配或者一致)。在某些實例中,830之錯誤偵測操作可包含同位檢查(例如,至少部分地基於與所感測碼字815相關聯之同位資訊),且若基於處理推測性碼字825-a之所有同位位元皆為0或者和與所感測碼字815相關聯之(例如,一組經存取記憶體胞元105之)同位資訊匹配或一致,則推測性碼字825-a可被識別為有效。At 830, method 800 can include performing an error detection operation based on the codeword including the assumed information state (eg, the speculative codeword 825-a generated at 820). The error detection operation of 830 may be performed according to various techniques for identifying the presence or amount of one of the errors in the speculative codeword 825-a. For example, the speculative codeword 825-a may pass through an ECC engine, where an output may be referred to as a bus or string of syndromes. In some instances, the speculative codeword 825-a may be identified as valid (eg, matching the information written to all set of accessed memory cells 105, or consistent). In some examples, the error detection operations of 830 may include parity checking (eg, based at least in part on parity information associated with sensed codeword 815), and if based on processing all parities of speculative codeword 825-a The speculative codeword 825-a can be identified as valid if the bits are all 0 or match or match the parity information associated with the sensed codeword 815 (eg, of a set of accessed memory cells 105) .

在840處,方法800可包含判定包含假定的資訊狀態之碼字是否有效(例如,至少部分地基於830之錯誤偵測操作)。舉例而言,若對一推測性碼字825-a實行之830之錯誤偵測操作之一校驗子含有所有0,或若基於處理推測性碼字825-a之同位資訊和與所感測碼字815相關聯之同位資訊匹配,則方法800可進行至845且轉發包含假定的資訊狀態(例如,在820處指派)之碼字。在提及具有一值{1,0,0,1,1,0,1,0}之推測性碼字825-a之一第一實例中,若在840處推測性碼字825-a被識別為有效,則該方法可包含在845處轉發具有值{1,0,0,1,1,0,1,0}之推測性碼字825-a。若在840處,推測性碼字825-a被判定為無效,則方法800可進行至850。At 840, method 800 can include determining whether a codeword including an assumed information state is valid (eg, based at least in part on the error detection operation of 830). For example, if one of the syndromes of the error detection operation 830 performed on a speculative codeword 825-a contains all 0s, or if the parity information based on processing the speculative codeword 825-a and the sensed code The parity information associated with word 815 matches, then method 800 may proceed to 845 and forward the codeword including the assumed information state (eg, assigned at 820). In a first instance referring to a speculative codeword 825-a having a value of {1,0,0,1,1,0,1,0}, if at 840 the speculative codeword 825-a is identified as valid, then the method may include forwarding at 845 the speculative codeword 825-a having the values {1,0,0,1,1,0,1,0}. If, at 840, the speculative codeword 825-a is determined to be invalid, method 800 may proceed to 850.

在850處,方法800可包含將一各別假定的資訊狀態指派給具有一不確定或未經指派資訊狀態之每一位置,該各別假定的資訊狀態可不同於820處之假定的資訊狀態指派。在某些實例中,在850處指派給每一位置之各別假定的資訊狀態可係在820處指派給對應位置之各別假定的資訊狀態之一相反或補數。At 850, method 800 can include assigning a respective assumed information state to each location having an indeterminate or unassigned information state, the respective assumed information state may be different from the assumed information state at 820 assign. In some examples, the respective assumed information state assigned to each location at 850 may be the inverse or complement of one of the respective assumed information states assigned to the corresponding location at 820 .

繼續以具有一值{1,X,0,1,1,X,1,0}之所感測碼字815為例,在850處,方法800可包含所感測碼字815的具有一邏輯X之每一位置指派為一邏輯1,藉此產生具有一值{1,1,0,1,1,1,1,0}之一推測性碼字825-b。在各種其他實例中,850處之指派可包含將具有一邏輯X之每一位置指派為一邏輯1或某些其他假定或推測性資訊狀態,或指派假定的資訊狀態之一型樣,例如將具有一邏輯X之交替位置指派為一邏輯1或一邏輯0。Continuing with the example of the sensed codeword 815 having a value of {1,X,0,1,1,X,1,0}, at 850, the method 800 can include the sensed codeword 815 having a logical X Each position is assigned a logical 1, thereby generating a speculative codeword 825-b having a value of {1,1,0,1,1,1,1,0}. In various other examples, the assignment at 850 may include assigning each location with a logical X as a logical 1 or some other putative or speculative information state, or assigning a pattern of putative information states, such as Alternate positions with a logic X are assigned either a logic 1 or a logic 0.

在860處,方法800可包含基於碼字包含假定的資訊狀態(例如,在850處產生之推測性碼字825-b)實行一錯誤偵測操作。可根據用於識別推測性碼字825-b中之錯誤之一存在或數量之各種技術實行860之錯誤偵測操作,該錯誤偵測操作可相同於、類似於或不同於830之錯誤偵測操作。At 860, method 800 can include performing an error detection operation based on the information state that the codeword contains the assumption (eg, the speculative codeword 825-b generated at 850). The error detection operation of 860 may be performed according to various techniques for identifying the presence or amount of one of the errors in the speculative codeword 825-b, which may be the same as, similar to, or different from the error detection of 830 operate.

在870處,方法800可包含判定包含假定的資訊狀態之碼字是否有效(例如,至少部分地基於860之錯誤偵測操作)。舉例而言,若對一推測性碼字825-b實行之860之錯誤偵測操作之一校驗子含有所有0,或若基於處理推測性碼字825-b之同位資訊和與所感測碼字815相關聯之同位資訊匹配,則方法800可進行至875且轉發包含假定的資訊狀態(例如,在850處指派)之碼字。在提及具有一值{1,1,0,1,1,1,1,0}之推測性碼字825-b之一第一實例中,如在870處推測性碼字825-b被識別為有效,則方法可包含在875處,轉發具有值{1,1,0,1,1,1,1,0}之推測性碼字825-b。若在870處,推測性碼字825-b被判定為無效,則方法800可進行至880。At 870, method 800 can include determining whether a codeword including an assumed information state is valid (eg, based at least in part on the error detection operation of 860). For example, if a syndrome of an error detection operation of 860 performed on a speculative codeword 825-b contains all 0s, or if it is based on processing the parity information of the speculative codeword 825-b and the sensed code The parity information associated with word 815 matches, then method 800 may proceed to 875 and forward the codeword including the assumed information state (eg, assigned at 850). In a first instance referring to a speculative codeword 825-b having a value of {1,1,0,1,1,1,1,0}, as at 870 the speculative codeword 825-b is If identified as valid, the method may include, at 875, forwarding the speculative codeword 825-b having the values {1,1,0,1,1,1,1,0}. If, at 870, the speculative codeword 825-b is determined to be invalid, method 800 may proceed to 880.

在880處,方法800可包含識別具有一最小誤差數量之一碼字(例如,推測性碼字825)。舉例而言,第一推測性碼字825-a可與一第一錯誤數量相關聯,且第二推測性碼字825-b可與一第二錯誤數量相關聯。當第一錯誤數量不同於第二錯誤數量時,方法800可包含識別與第一錯誤數量及第二錯誤數量中之較小數量相關聯之推測性碼字825。當第一錯誤數量等於第二錯誤數量時,方法800可包含識別推測性碼字中之任一者或兩者。在某些實例中,方法800可包含用於識別第一推測性碼字825-a或第二推測性碼字825-b之一預設(例如,當各別錯誤數量相等時)。At 880, method 800 can include identifying a codeword (eg, speculative codeword 825) having a minimum amount of error. For example, the first speculative codeword 825-a may be associated with a first number of errors, and the second speculative codeword 825-b may be associated with a second number of errors. When the first number of errors is different from the second number of errors, method 800 may include identifying a speculative codeword 825 associated with the smaller of the first number of errors and the second number of errors. When the first number of errors equals the second number of errors, method 800 may include identifying either or both of the speculative codewords. In some examples, method 800 may include identifying one of the first speculative codeword 825-a or the second speculative codeword 825-b preset (eg, when the respective numbers of errors are equal).

在890處,方法800可包含對包含假定的資訊狀態之碼字(例如,對在880處識別之一推測性碼字825)實行一錯誤校正操作。在某些實例中,890之錯誤校正可包含處理一推測性碼字825與校驗子資訊(例如,在830或860處產生)以產生一經校正碼字。在某些實例中,錯誤校正操作可識別一傳入碼字及反轉位元之錯誤位置或以其他方式更改彼等經識別錯誤位置中之資訊狀態。在890處,方法800亦可包含產生一經校正碼字891以在895處轉發。At 890, method 800 can include performing an error correction operation on a codeword comprising the assumed information state (eg, on a speculative codeword 825 identified at 880). In some examples, error correction at 890 may include processing a speculative codeword 825 and syndrome information (eg, generated at 830 or 860) to generate a corrected codeword. In some examples, error correction operations may identify erroneous locations of an incoming codeword and invert bits or otherwise alter the information state in their identified erroneous locations. At 890 , method 800 may also include generating a corrected codeword 891 for forwarding at 895 .

繼續在提及具有一值{1,1,0,1,1,1,1,0}、在880處(例如,因一單個誤差而無效之推測性碼字825-b之一實例)被識別並轉發之之推測性碼字825-b之第二實例,在890處,方法800可包含識別推測性碼字825-b在第六位置中具有一錯誤,且方法800可包含產生具有一值{1,1,0,1,1,0,1,0}之一經校正碼字891。因此,方法800可進行至895,在895處可轉發經校正碼字891。Continuing to mention that having a value of {1,1,0,1,1,1,1,0}, at 880 (eg, an instance of a speculative codeword 825-b invalid due to a single error) is A second instance of the identified and forwarded speculative codeword 825-b, at 890, the method 800 can include identifying that the speculative codeword 825-b has an error in the sixth position, and the method 800 can include generating a speculative codeword 825-b with a Corrected codeword 891 for one of the values {1,1,0,1,1,0,1,0}. Accordingly, method 800 may proceed to 895, where corrected codeword 891 may be forwarded.

845、875或895之轉發可包含一轉發至一記憶體系統之各種組件。在某些實例中,轉發可包含將推測性碼字或經校正碼字自一記憶體裝置100之一ECC引擎轉發至記憶體裝置100之一輸入/輸出組件(例如,以輸出至與記憶體裝置100耦合之一主機裝置)。另外或另一選擇為,轉發可包含將一推測性碼字或經校正碼字自一記憶體裝置100之一ECC引擎轉發至記憶體裝置100之一寫入組件(例如,以用於記憶體裝置100內),例如一重寫或寫回組件、一損耗均衡組件、一資訊真實位置組件或一記憶體裝置100之某些其他記憶體管理組件。在某些實例中,轉發可包含將一推測性碼字或一經校正碼字自與一記憶體裝置100耦合之一主機裝置之一ECC引擎轉發至主機裝置之一處理組件(例如,以處理自一記憶體裝置100擷取之資訊)。在某些實例中,845、875或895處之一轉發可伴隨著其他操作,例如實行或需要一刪除校正或錯誤校正之一診斷傳信,其可支援與記憶體裝置100耦合之一記憶體裝置100或主機裝置之額外診斷操作(例如,起始洩漏偵測操作、起始記憶體位址之重新映射、傳信通知一錯誤狀況或潛在錯誤狀況)。845, 875 or 895 forwarding may include a forwarding to various components of a memory system. In some examples, forwarding may include forwarding the speculative codeword or corrected codeword from an ECC engine of a memory device 100 to an input/output component of the memory device 100 (eg, for output to and memory Device 100 is coupled to a host device). Additionally or alternatively, forwarding may include forwarding a speculative codeword or corrected codeword from an ECC engine of a memory device 100 to a write component of the memory device 100 (eg, for memory device 100 ), such as a rewrite or writeback component, a wear leveling component, an information real location component, or some other memory management component of a memory device 100 . In some examples, forwarding can include forwarding a speculative codeword or a corrected codeword from an ECC engine of a host device coupled with a memory device 100 to a processing component of the host device (eg, to process the self- information retrieved by the memory device 100). In some instances, a forwarding at 845, 875, or 895 may be accompanied by other operations, such as a diagnostic signaling that performs or requires a deletion correction or error correction, which may support a memory coupled to memory device 100 Additional diagnostic operations on device 100 or host device (eg, initiating leak detection operations, initiating remapping of memory addresses, signaling an error condition or potential error condition).

儘管在一串行方法之內容脈絡中闡述方法800之操作(例如,先產生處理一第一推測性碼字825-a再產生一第二推測性碼字825-b,若有必要),但在某些實例中,可以一並行方法實行方法800之各操作。舉例而言,方法800可經修改以同時產生兩個或兩個以上推測性碼字825以供並行處理,例如同時實行820及850之操作,或同時實行830及860之操作(例如,同時產生並處理第一推測性碼字825-a及第二推測性碼字825-b)。在某些實例中,可使用由兩個或兩個以上ECC引擎或其部分(例如,具有為一單個錯誤校正組件饋送之兩個或兩個以上錯誤偵測組件之一ECC引擎)支援之並行錯誤偵測處理實行此類技術。在某些實例中,可先產生兩個或兩個以上推測性碼字825,再判定推測性碼字825中之任一者是否有效,或判定轉發兩個或兩個以上推測性碼字825中之哪一者以供進行錯誤校正操作(例如,轉發具有最低錯誤數量之一推測性碼字825)。Although the operation of method 800 is described in the context of a serial method (eg, generating and processing a first speculative codeword 825-a and then generating a second speculative codeword 825-b, if necessary), In some instances, the operations of method 800 may be performed in a parallel method. For example, method 800 may be modified to generate two or more speculative codewords 825 simultaneously for parallel processing, such as performing operations 820 and 850 simultaneously, or performing operations 830 and 860 simultaneously (eg, simultaneously generating The first speculative codeword 825-a and the second speculative codeword 825-b) are processed. In some examples, parallelism supported by two or more ECC engines or portions thereof (eg, an ECC engine with two or more error detection components feeding a single error correction component) may be used Error detection processing implements such techniques. In some examples, two or more speculative codewords 825 may be generated prior to determining whether any of the speculative codewords 825 is valid, or determining to forward two or more speculative codewords 825 Which of these is used for error correction operations (eg, forwarding one of the speculative codewords with the lowest number of errors 825).

儘管以兩個資訊位置與一不確定的資訊狀態(例如,刪除)相關聯之一實例闡述方法800且不存在其他錯誤(例如,在除經識別具有一不確定的資訊狀態之資訊位置之外的資訊位置處),刪除解碼之所闡述技術可支援錯誤與刪除之各種其他組合之校正。舉例而言,該方法可在890處識別並校正與不確定的資訊狀態無關之一錯誤(例如,在第一資訊位置、第三資訊位置、第四資訊位置、第五資訊位置、第七資訊位置或第八資訊位置處)。此外,用於刪除解碼之所闡述技術可應用於一ECC引擎之各種能力,包含支援可偵測到各種錯誤數量,或支援可校正各種錯誤數量。Although method 800 is illustrated with one example of two information locations being associated with an indeterminate information state (eg, deletion) and there are no other errors (eg, in addition to the information location identified as having an indeterminate information state (eg, deletion) information location), the techniques described for deletion decoding may support correction of various other combinations of errors and deletions. For example, the method can identify and correct an error unrelated to the indeterminate information state at 890 (eg, at the first information position, the third information position, the fourth information position, the fifth information position, the seventh information position position or the eighth information position). In addition, the techniques described for erasure decoding can be applied to various capabilities of an ECC engine, including support for detecting various error numbers, or support for correcting various error numbers.

舉例而言,一給定碼字(例如,所感測碼字815)與一有效碼字之間的一錯誤校正碼之一最小距離dmin 可由以下沿給出: dmin >2t + s+l                            (1) 其中t可等於一錯誤數量(例如,錯誤之一位置係未知的),且s可等於一刪除數量(例如,一資訊狀態可不確定之已知資訊位置)。下表1中給出根據方程式1之說明性關係進行錯誤處置之實例,指示當在一給定錯誤校正能力及錯誤偵測能力下將所闡述技術應用於刪除解碼時可如何提高錯誤處置(例如,其中ECC1可係指單位元錯誤校正能力且ECC2可係指雙位元錯誤校正能力)。 碼類型 dmin 最大可校正 2t + s + 1 ECC1,單位元錯誤偵測 3 1誤差 3 2刪除 3 ECC1,二位元錯誤偵測 4 1錯誤及1刪除 4 3刪除 4 ECC2,二位元錯誤偵測 5 2誤差 5 1錯誤及2刪除 5 4刪除 5 ECC2,三位元錯誤偵測 6 2錯誤及1刪除 6 1錯誤及3刪除 6 5刪除 6 表1 – 使用刪除解碼之錯誤處置可能性For example, a minimum distance dmin for an error correction code between a given codeword (eg, sensed codeword 815) and a valid codeword may be given by: dmin > 2t+s+l (1) where t may be equal to a number of errors (eg, a location of an error is unknown), and s may be equal to a number of deletions (eg, a known information location where the information state may be uncertain). An example of error handling according to the illustrative relationship of Equation 1 is given in Table 1 below, indicating how error handling can be improved when the described techniques are applied to erasure decoding for a given error correction capability and error detection capability (e.g. , where ECC1 may refer to single-bit error correction capability and ECC2 may refer to double-bit error correction capability). code type dmin maximum correctable 2t + s + 1 ECC1, Single Cell Error Detection 3 1 error 3 2 delete 3 ECC1, two-bit error detection 4 1 error and 1 delete 4 3 delete 4 ECC2, two-bit error detection 5 2 error 5 1 error & 2 delete 5 4 delete 5 ECC2, three bit error detection 6 2 errors and 1 delete 6 1 error & 3 delete 6 5 delete 6 Table 1 - Error handling possibilities using delete decoding

因此,根據此等及其他實例,用於刪除解碼之所闡述技術可支援比原本可在與錯誤相關聯之資訊位置未知時之一錯誤處置碼所支援之錯誤校正能力大的一錯誤校正能力。舉例而言,洩漏偵測或其他技術可用於識別其中一資訊狀態可在已知位置處具有一未知值這一刪除狀況類型,且使用此一識別,可使用一1位元錯誤校正器及一2位元錯誤偵測器校正此等刪除中之三者(例如,由每一所感測碼字之二位元同位資訊支援)。Thus, according to these and other examples, the described techniques for erasure decoding may support an error correction capability greater than that which would otherwise be supported by an error handling code when the location of the information associated with the error is unknown. For example, leak detection or other techniques can be used to identify the type of deletion condition in which an information state can have an unknown value at a known location, and using this identification, a 1-bit error corrector and a A 2-bit error detector corrects for three of these deletions (eg, supported by 2-bit parity information for each sensed codeword).

用於刪除解碼之所闡述技術可具有額外優點。舉例而言,由於資料校正在解碼期間發生(例如,與編碼相較而言),因此可有利地採用位元翻轉來在一記憶體陣列中進行疲勞管理。此外,由於有效資料之修復在解碼期間發生,因此可在無需有效資料之預先知識之情況下處置高達3個刪除故障(例如,使用二位元錯誤偵測及單位元錯誤校正)。The described techniques for erasure decoding may have additional advantages. For example, since data correction occurs during decoding (eg, as opposed to encoding), bit flipping can be advantageously employed for fatigue management in a memory array. Furthermore, since the repair of valid data occurs during decoding, up to 3 deletion failures (eg, using binary error detection and single-bit error correction) can be handled without prior knowledge of the valid data.

圖9展示根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一記憶體裝置905之一方塊圖900。記憶體裝置905可係參考圖1至圖8所闡述之一記憶體裝置之態樣之一實例。記憶體裝置905可包含一存取管理器910、一感測組件915、一洩漏偵測組件920、一寫入操作管理器925及一寫入操作指示器930。此等模組中之每一者可彼此直接或間接通信(例如,經由一或多個匯流排)。9 shows a block diagram 900 of a memory device 905 that supports memory management for charge leakage according to examples disclosed herein. Memory device 905 may be an example of one aspect of a memory device described with reference to FIGS. 1-8. Memory device 905 may include an access manager 910 , a sensing component 915 , a leak detection component 920 , a write operation manager 925 and a write operation indicator 930 . Each of these modules can communicate directly or indirectly with each other (eg, via one or more bus bars).

存取管理器910可存取一記憶體胞元。在某些實例中,存取記憶體胞元包含針對記憶體胞元啟動一胞元選擇組件。在某些實例中,存取管理器910可存取一第二記憶體胞元。在各種實例中,一存取記憶體胞元可包含一電容性儲存元件。The access manager 910 can access a memory cell. In some examples, accessing the memory cell includes initiating a cell selection element for the memory cell. In some examples, access manager 910 can access a second memory cell. In various examples, an access memory cell may include a capacitive storage element.

感測組件915可基於存取判定記憶體胞元所儲存之。一邏輯狀態在某些實例中,感測組件915可基於存取第二記憶體胞元判定第二記憶體胞元儲存邏輯狀態。在某些實例中,判定記憶體胞元所儲存之邏輯狀態包含鎖存與記憶體胞元相關聯之一存取線之一信號。在某些實例中,感測組件915可判定由一第二記憶體胞元儲存之一第二邏輯狀態,第二記憶體胞元係由與該記憶體胞元共同之一存取線選擇。The sensing component 915 can determine which memory cells are stored based on the access. A Logical State In some examples, the sensing component 915 can determine that the second memory cell stores a logical state based on accessing the second memory cell. In some examples, determining the logical state stored by the memory cell includes latching a signal on an access line associated with the memory cell. In some examples, the sensing component 915 can determine that a second logic state is stored by a second memory cell selected by an access line in common with the memory cell.

洩漏偵測組件920可基於存取記憶體胞元偵測一電荷洩漏。在某些實例中,至少部分地在啟動胞元選擇組件時實行電荷洩漏偵測。在某些實例中,偵測電荷洩漏包含判定在鎖存之後存取線之一電壓下降至低於一臨限電壓。在某些實例中,洩漏偵測組件920可偵測跨越電連接在記憶體胞元與經組態以判定記憶體胞元儲存邏輯狀態之一感測組件之間的一電晶體之一電荷流。在某些實例中,洩漏偵測組件920可基於存取第二記憶體胞元偵測一第二電荷洩漏。The leak detection component 920 can detect a charge leak based on accessing memory cells. In some examples, charge leakage detection is performed at least in part upon activation of the cell selection element. In some examples, detecting charge leakage includes determining that a voltage of an access line drops below a threshold voltage after latching. In some examples, leak detection component 920 can detect a flow of charge across a transistor electrically connected between the memory cell and a sensing component configured to determine the logical state of the memory cell's storage . In some examples, the leak detection component 920 can detect a second charge leak based on accessing the second memory cell.

寫入操作管理器925可部分地基於偵測電荷洩漏判定是將邏輯狀態還是將邏輯狀態之一補數寫入至記憶體胞元。在某些情形中,邏輯狀態與和電容性儲存元件相關聯之一第一電荷轉移量相關聯且邏輯狀態之補數與一第二電荷轉移量相關聯,該第二電荷轉移量大於第一電荷轉移量。在某些實例中,寫入操作管理器925可判定是寫入邏輯狀態還是邏輯狀態之補數基於邏輯狀態與一第一電荷轉移量相關聯且邏輯狀態之補數與一第二電荷轉移量相關聯,該第二電荷轉移量大於該第一電荷轉移量。在某些實例中,寫入操作管理器925可將所判邏輯狀態寫入至記憶體胞元。在某些實例中,寫入操作管理器925可基於判定是將邏輯狀態還是邏輯狀態之補數寫入至記憶體胞元將第二邏輯狀態或第二邏輯狀態之補數寫入至第二記憶體胞元。在某些實例中,判定將是將邏輯狀態還是邏輯狀態之補數寫入至記憶體胞元基於判定另一記憶體胞元儲存邏輯狀態且偵測另一電荷洩漏。The write operations manager 925 may determine whether to write the logic state or the one's complement of the logic state to the memory cell based in part on detecting the charge leakage. In some cases, the logic state is associated with a first charge transfer amount associated with the capacitive storage element and the complement of the logic state is associated with a second charge transfer amount greater than the first charge transfer amount The amount of charge transferred. In some examples, the write operation manager 925 can determine whether to write a logic state or the complement of the logic state based on the logic state being associated with a first amount of charge transfer and the complement of the logic state being associated with a second amount of charge transfer Associated, the second charge transfer amount is greater than the first charge transfer amount. In some examples, the write operation manager 925 may write the determined logic state to the memory cell. In some examples, the write operation manager 925 may write the second logical state or the complement of the second logical state to the second logical state based on determining whether to write the logical state or the complement of the logical state to the memory cell memory cells. In some examples, determining whether to write the logic state or the complement of the logic state to a memory cell is based on determining that another memory cell stores the logic state and detecting another charge leakage.

寫入操作指示器930可儲存是將邏輯狀態還是將邏輯狀態之補數寫入至記憶體胞元之一指示。在某些情形中,該指示與包含該記憶體胞元之一組記憶體胞元中之每一記憶體胞元相關聯。在某些情形中,該組記憶體胞元中之每一記憶體胞元係藉由一共同存取線選擇。The write operation indicator 930 may store an indication of whether to write the logic state or the complement of the logic state to the memory cell. In some cases, the indication is associated with each memory cell in a set of memory cells that includes the memory cell. In some cases, each memory cell in the set of memory cells is selected by a common access line.

圖10展示根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一記憶體裝置1005之一方塊圖1000。記憶體裝置1005可係參考圖1至圖8所闡述之一記憶體裝置之態樣之一實例。記憶體裝置1005可包含一列組件1010、一感測組件1015、一洩漏偵測組件1020、一重寫操作判定器1025、一重寫操作控制器1030及一重寫操作指示器1035。此等模組中之每一者可,彼此直接或間接通信(例如,經由一或多個匯流排)。在某些實例中,記憶體裝置1005可包含各自包含一各別儲存元件之複數個記憶體胞元,且所闡述組件可包含於與該複數個記憶體胞元耦合之一控制器或電路系統中。10 shows a block diagram 1000 of a memory device 1005 that supports memory management for charge leakage according to examples disclosed herein. Memory device 1005 may be an example of one aspect of a memory device described with reference to FIGS. 1-8. The memory device 1005 may include an array element 1010 , a sensing element 1015 , a leak detection element 1020 , a rewrite operation determiner 1025 , a rewrite operation controller 1030 and a rewrite operation indicator 1035 . Each of these modules may communicate directly or indirectly with each other (eg, via one or more bus bars). In some examples, memory device 1005 may include a plurality of memory cells each including a respective storage element, and the illustrated components may be included in a controller or circuitry coupled to the plurality of memory cells middle.

列組件1010可將一組記憶體胞元中之每一者之一儲存元件與一組存取線中之一各別存取線耦合。在某些實例中,列組件1010可基於啟動與各別記憶體胞元相關聯之一胞元選擇組件將每一記憶體胞元與該組存取線中之各別存取線耦合。在某些實例中,列組件1010可基於啟動一共同選擇線該組記憶體胞元中之每一記憶體胞元與該組存取線中之各別存取線耦合。Column component 1010 can couple a storage element of each of a set of memory cells to a respective access line of a set of access lines. In some examples, column element 1010 can couple each memory cell with a respective access line in the set of access lines based on enabling a cell selection element associated with the respective memory cell. In some examples, column component 1010 can couple each memory cell in the set of memory cells with a respective access line in the set of access lines based on activating a common select line.

感測組件1015可基於耦合來判定由該組記憶體胞元中之每一者儲存之一各別邏輯狀態。在某些實例中,感測組件1015可藉由鎖存與各別記憶體胞元相關聯之一各別信號線之一信號判定該組記憶體胞元中之每一者之各別邏輯狀態。The sensing component 1015 can determine a respective logic state stored by each of the set of memory cells based on the coupling. In some examples, sense component 1015 can determine the respective logical state of each of the set of memory cells by latching a signal on a respective signal line associated with the respective memory cell .

洩漏偵測組件1020可在判定各別邏輯狀態之後判定是否在該組存取線中之一或多者上偵測到一臨限電荷洩漏量。在某些實例中,洩漏偵測組件1020可至少部分地在啟動胞元選擇組件時判定是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量。在某些實例中,洩漏偵測組件1020可在鎖存之後基於比較各別信號線之一電壓與一臨限電壓來判定是否偵測到臨限電荷洩漏量。在某些實例中,洩漏偵測組件1020可基於偵測跨越與該組存取線中之一各別存取線電連接之一電晶體之一電荷流判定是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量。The leakage detection component 1020 can determine whether a threshold charge leakage is detected on one or more of the set of access lines after determining the respective logic states. In some examples, leakage detection component 1020 can determine whether a threshold charge leakage amount is detected on one or more of the set of access lines, at least in part when a cell selection component is activated. In some examples, the leakage detection component 1020 may determine whether a threshold charge leakage amount is detected based on comparing a voltage of the respective signal line to a threshold voltage after latching. In some examples, leak detection component 1020 can determine whether there is a charge flow across a transistor electrically connected to a respective one of the set of access lines based on detecting a flow of charge in the set of access lines Threshold charge leakage is detected on one or more.

重寫操作判定器1025可基於是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量選擇記憶體胞元中之每一者之一直接重寫操作或記憶體胞元中之每一者之一互補重寫操作。在某些實例中,針對與一第一電荷轉移量相關聯之一第一邏輯狀態及與低於第一電荷轉移量之第二電荷轉移量相關聯之一第二邏輯狀態,選擇直接重寫操作或互補重寫操作係至少部分地基於:(1)與對臨限電荷洩漏量之一偵測相關聯且與儲存第一邏輯狀態之一記憶體胞元耦合之該複數個存取線之一數量,及(2)與對臨限電荷洩漏量之一偵測相關聯且與儲存第二邏輯狀態之一記憶體胞元耦合之該複數個存取線之一數量。The rewrite operation determiner 1025 may select one of each of the memory cells for a direct rewrite operation or a memory cell based on whether a threshold charge leakage is detected on one or more of the set of access lines One of each of the elements is a complementary rewrite operation. In some examples, direct overwrite is selected for a first logic state associated with a first amount of charge transfer and a second logic state associated with a second amount of charge transfer less than the first amount of charge transfer The operation or complementary rewrite operation is based, at least in part, on: (1) the plurality of access lines associated with a detection of a threshold charge leakage and coupled to a memory cell storing the first logic state; A number, and (2) a number of the plurality of access lines associated with a detection of a threshold charge leakage and coupled to a memory cell storing the second logic state.

重寫操作控制器1030可對該組記憶體胞元中之每一者實行選定直接重寫操作或互補重寫操作。在某些情形中,直接重寫操作包含寫入由一各別記憶體胞元儲存之各別邏輯狀態且互補重寫操作包含寫入由一各別記憶體胞元儲存之各別邏輯狀態之一補數。The rewrite operation controller 1030 may perform a selected direct rewrite operation or a complementary rewrite operation for each of the set of memory cells. In some cases, a direct overwrite operation includes writing a respective logical state stored by a respective memory cell and a complementary overwriting operation includes writing the respective logical state stored by a respective memory cell. One's complement.

重寫操作指示器1035可儲存是選擇直接重寫操作還是選擇互補重寫操作之一指示。The rewrite operation indicator 1035 may store an indication of whether to select a direct rewrite operation or a complementary rewrite operation.

圖11展示根據本文中所揭示之實例的支援用於一記憶體裝置之刪除解碼之一記憶體裝置1105之一方塊圖1100。記憶體裝置1105可係參考圖1至圖8所闡述之一記憶體裝置之態樣之一實例。記憶體裝置1105可包含一記憶體胞元存取組件1110、一資訊狀態評估組件1115、一推測性碼字產生組件1120、一錯誤偵測組件1125、一碼字轉發組件1130、一存取信號評估組件1135、一電荷洩漏評估組件1140及一錯誤校正組件1145。此等模組中之每一者可彼此直接或間接通信(例如,經由一或多個匯流排)。11 shows a block diagram 1100 of a memory device 1105 supporting delete decoding for a memory device according to examples disclosed herein. Memory device 1105 may be an example of one aspect of a memory device described with reference to FIGS. 1-8. The memory device 1105 may include a memory cell access component 1110, an information state evaluation component 1115, a speculative codeword generation component 1120, an error detection component 1125, a codeword forwarding component 1130, an access signal Evaluation component 1135, a charge leakage evaluation component 1140, and an error correction component 1145. Each of these modules can communicate directly or indirectly with each other (eg, via one or more bus bars).

記憶體胞元存取組件1110可存取記憶體裝置之一組記憶體胞元。The memory cell access component 1110 can access a set of memory cells of the memory device.

資訊狀態評估組件1115可基於存取該組記憶體胞元判定該組記憶體胞元中之一或多個記憶體胞元與一不確定或未確定的資訊狀態相關聯。The information state assessment component 1115 can determine, based on accessing the set of memory cells, that one or more memory cells in the set of memory cells are associated with an indeterminate or indeterminate information state.

推測性碼字產生組件1120可產生包含一組資訊位置之一第一碼字(例如,一推測性碼字),該組資訊位置中之每一資訊位置對應於該組記憶體胞元中之一各別記憶體胞元,其中該產生包含將一各別假定或推測性資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之每一資訊位置。The speculative codeword generation component 1120 can generate a first codeword (eg, a speculative codeword) comprising a set of information locations, each information location in the set of information locations corresponding to a value in the set of memory cells A respective memory cell, wherein the generating includes assigning a respective putative or speculative information state to each information location corresponding to one of the one or more memory cells.

在某些實例中,推測性碼字產生組件1120可基於將一各別第二假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之資訊位置中之一或多者產生一第三碼字。In some examples, the speculative codeword generation component 1120 can be based on assigning a respective second hypothetical information state to one of the information locations corresponding to one of the one or more memory cells One or more generates a third codeword.

在某些實例中,推測性碼字產生組件1120可基於將一各別第三假定的資訊狀態指派給資訊位置中與該一或多個記憶體胞元中之一記憶體胞元對應之一或多者來產生一第四碼字。In some examples, the speculative codeword generation component 1120 can be based on assigning a respective third hypothetical information state to one of the information locations corresponding to one of the one or more memory cells or more to generate a fourth codeword.

錯誤偵測組件1125可基於第一碼字(例如,一推測性碼字)實行一錯誤偵測操作。在各種實例中,由錯誤偵測組件1125實行之一錯誤偵測操作可指示第一碼字是有效還是無效。Error detection component 1125 can perform an error detection operation based on the first codeword (eg, a speculative codeword). In various examples, an error detection operation performed by error detection component 1125 can indicate whether the first codeword is valid or invalid.

在某些實例中,錯誤偵測組件1125可基於一第三碼字(例如,一推測性碼字)實行一第二錯誤偵測操作。在各種實例中,由錯誤偵測組件1125實行之一錯誤偵測操作可指示第三碼字有效還是無效。In some examples, error detection component 1125 can perform a second error detection operation based on a third codeword (eg, a speculative codeword). In various examples, an error detection operation performed by error detection component 1125 can indicate whether the third codeword is valid or invalid.

在某些實例中,錯誤偵測組件1125可基於第四碼字(例如,一推測性碼字)實行一第三錯誤偵測操作。在各種實例中,由錯誤偵測組件1125實行之一錯誤偵測操作可指示該第四碼字有效還是無效。In some examples, error detection component 1125 can perform a third error detection operation based on the fourth codeword (eg, a speculative codeword). In various examples, an error detection operation performed by error detection component 1125 can indicate whether the fourth codeword is valid or invalid.

碼字轉發組件1130可轉發基於實行錯誤偵測操作一第二碼字。在某些實例中,轉發第二碼字包含轉發在第二碼字之每一資訊位置處具有與第一碼字相同之資訊之該第二碼字(例如,一相同碼字作為一推測性碼字)。在某些實例中,碼字轉發組件1130可基於實行第二錯誤偵測操作轉發第二碼字(例如,一經校正碼字)。The codeword forwarding component 1130 can forward a second codeword based on performing error detection operations. In some examples, forwarding the second codeword includes forwarding the second codeword having the same information as the first codeword at each information location of the second codeword (eg, an identical codeword as a speculative numbers). In some examples, codeword forwarding component 1130 can forward a second codeword (eg, a corrected codeword) based on performing a second error detection operation.

在某些實例中,轉發第二碼字包含轉發在第二碼字之每一資訊位置處具有與第三碼字相同之資訊之第二碼字(例如,一相同碼字作為一推測性碼字)。在某些實例中,碼字轉發組件1130可基於實行第三錯誤偵測操作轉發第二碼字(例如,一經校正碼字)。In some examples, forwarding the second codeword includes forwarding the second codeword having the same information as the third codeword at each information location of the second codeword (eg, an identical codeword as a speculative code Character). In some examples, codeword forwarding component 1130 can forward the second codeword (eg, a corrected codeword) based on performing a third error detection operation.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,存取信號評估組件1135可針對該一或多個記憶體胞元中之每一者判定基於存取各別記憶體胞元之一信號介於與一第一邏輯狀態相關聯之一第一臨限值和與一第二邏輯狀態相關聯之一第二臨限值之間。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the access signal evaluation component 1135 can determine for each of the one or more memory cells A signal based on accessing the respective memory cell is between a first threshold value associated with a first logic state and a second threshold value associated with a second logic state.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,存取信號評估組件1135可判定與各別記憶體胞元耦合之一存取線具有基於存取各別記憶體胞元得到的介於一第一臨限電壓與一第二臨限電壓之間的一電壓。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the access signal evaluation component 1135 can determine that an access line coupled to the respective memory cell has a value based on A voltage between a first threshold voltage and a second threshold voltage obtained by accessing the respective memory cells.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,存取信號評估組件1135可判定基於存取各別記憶體胞元之一電流介於一第一臨限電流與一第二臨限電流之間。In some instances, to determine that the one or more memory cells are associated with an indeterminate information state, the access signal evaluation component 1135 can determine that a current based on accessing the respective memory cell is between a between the first threshold current and a second threshold current.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,電荷洩漏評估組件1140可針對該一或多個記憶體胞元中之每一者判定各別記憶體胞元之一電荷洩漏滿足一臨限值。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the charge leakage assessment component 1140 can determine, for each of the one or more memory cells, each A charge leakage of one of the memory cells meets a threshold.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,該電荷洩漏評估組件1140可針對該一或多個記憶體胞元中之每一者判定與耦合至各別記憶體胞元之一存取線相關聯之一電荷洩漏滿足一臨限值。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the charge leakage assessment component 1140 can determine for each of the one or more memory cells A charge leakage associated with an access line coupled to the respective memory cell satisfies a threshold.

在某些實例中,錯誤校正組件1145可基於將與第一碼字不同之一資訊狀態指派給第二碼字之一或多個資訊位置產生第二碼字(例如,一經校正碼字)。In some examples, error correction component 1145 can generate a second codeword (eg, a corrected codeword) based on assigning an information state different from the first codeword to one or more information locations of the second codeword.

在某些實例中,錯誤校正組件1145可基於將與第三碼字不同之一資訊狀態指派給第二碼字之一或多個資訊位置產生第二碼字(例如,一經校正碼字)。In some examples, error correction component 1145 can generate a second codeword (eg, a corrected codeword) based on assigning an information state different from the third codeword to one or more information locations of the second codeword.

圖12展示圖解說明根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一或多種方法1200之一流程圖。方法1200之操作可由一記憶體裝置或其組件實施,如本文中所闡述。舉例而言,方法1200之操作可由一記憶體裝置實行,如參考圖9所闡述。在某些實例中,一記憶體裝置可執行一組指令以控制記憶體裝置之功能元件實行所闡述功能。另外或另一選擇為,一記憶體裝置可使用特殊用途硬體或電路系統實行所闡述功能之態樣。12 shows a flowchart illustrating one or more methods 1200 of supporting memory management for charge leakage in accordance with examples disclosed herein. The operations of method 1200 may be implemented by a memory device or components thereof, as described herein. For example, the operations of method 1200 may be performed by a memory device, as described with reference to FIG. 9 . In some examples, a memory device can execute a set of instructions to control functional elements of the memory device to perform the functions described. Additionally or alternatively, a memory device may use special purpose hardware or circuitry to implement aspects of the functions described.

在1205處,記憶體裝置可存取具有一電容性儲存元件之一記憶體胞元。可根據本文中所闡述之方法實行1205之操作。在某些實例中,可由參考圖9所闡述之一存取管理器910實行1205之操作之態樣。At 1205, the memory device can access a memory cell having a capacitive storage element. The operations of 1205 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1205 may be performed by an access manager 910 described with reference to FIG. 9 .

在1210處,記憶體裝置可基於存取判定由記憶體胞元儲存之一邏輯狀態。可根據本文中所闡述之方法實行1210之操作。在某些實例中,1210之操作之態樣可由參考圖9所闡述之一感測組件915實行。At 1210, the memory device may store a logical state by the memory cell based on the access determination. The operations of 1210 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1210 may be performed by one of the sensing components 915 described with reference to FIG. 9 .

在1215處,記憶體裝置可基於存取該記憶體胞元偵測一電荷洩漏。可根據本文中所闡述之方法實行1215之操作。在某些實例中,1215之操作之態樣可由參考圖9所闡述之一洩漏偵測組件920實行。At 1215, the memory device may detect a charge leak based on accessing the memory cell. The operations of 1215 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1215 may be performed by a leak detection component 920 described with reference to FIG. 9 .

在1220處,記憶體裝置可部分地基於偵測電荷洩漏判定是將邏輯狀態還是邏輯狀態之一補數寫入至記憶體胞元。可根據本文中所闡述之方法實行1220之操作。在某些實例中,1220之操作之態樣可由參考圖9所闡述之一寫入操作管理器925實行。At 1220, the memory device may determine whether to write the logic state or the one's complement of the logic state to the memory cell based in part on detecting the charge leakage. The operations of 1220 may be performed according to the methods set forth herein. In some examples, aspects of the operations of 1220 may be performed by one of the write operations manager 925 described with reference to FIG. 9 .

在1225處,記憶體裝置可將經判定邏輯狀態寫入至記憶體胞元。可根據本文中所闡述之方法實行1225之操作。在某些實例中,1225之操作之態樣可由參考圖9所闡述之一寫入操作管理器925實行。At 1225, the memory device may write the predicated logic state to the memory cell. The operations of 1225 may be performed according to the methods set forth herein. In some examples, aspects of the operations of 1225 may be performed by one of the write operations manager 925 described with reference to FIG. 9 .

在某些實例中,本文中所闡述之一設備可實行一或多種方法,例如方法1200。設備可包含電路系統、特徵、構件或指令(例如,儲存可由一處理器執行之指令之一非暫時性電腦可讀取媒體)以用於存取具有一電容性儲存元件之一記憶體胞元,基於存取判定由記憶體胞元儲存之一邏輯狀態,基於存取記憶體胞元偵測一電荷洩漏,部分地基於偵測電荷洩漏判定是將邏輯狀態還是邏輯狀態之一補數寫入至記憶體胞元,及將經判定邏輯狀態寫入至記憶體胞元。In some instances, an apparatus set forth herein may perform one or more methods, such as method 1200 . An apparatus may include circuitry, features, components or instructions (eg, a non-transitory computer-readable medium storing instructions executable by a processor) for accessing a memory cell having a capacitive storage element , a logic state stored by the memory cell is determined based on the access, a charge leak is detected based on the access memory cell, the logic state or the complement of the logic state is determined in part based on the detection of the charge leak to the memory cell, and write the predicated logic state to the memory cell.

本文中所闡述之方法1200及設備之某些實例可進一步包含操作、電路系統、特徵、構件或指令以用於基於邏輯狀態與一第一電荷轉移量相關聯且邏輯狀態之補數與大於該第一電荷轉移量之一第二電荷轉移量相關聯判定是寫入邏輯狀態還是邏輯狀態之補數。Certain examples of the method 1200 and apparatus described herein may further include operations, circuitry, features, components, or instructions for associating with a first charge transfer amount based on a logic state and the complement of the logic state being greater than the One of the first charge transfer amounts and the second charge transfer amount is associated to determine whether to write the logic state or the complement of the logic state.

本文中所闡述之方法1200及設備之某些實例可進一步包含操作、電路系統、特徵、構件或指令以用於:判定由一第二記憶體胞元儲存之一第二邏輯狀態,第二記憶體胞元係藉由與記憶體胞元共同之一存取線選擇;及基於是將邏輯狀態還是邏輯狀態之補數寫入至記憶體胞元的判定來將第二邏輯狀態或第二邏輯狀態之補數寫入至第二記憶體胞元。Certain examples of the method 1200 and apparatus described herein may further include operations, circuitry, features, components, or instructions for: determining a second logic state stored by a second memory cell, the second memory The voxel is selected by an access line common to the memory cell; and the second logical state or the second logical state is determined based on whether the logical state or the complement of the logical state is written to the memory cell The complement of the state is written to the second memory cell.

本文中所闡述之方法1200及設備之某些實例可進一步包含操作、電路系統、特徵、構件或指令以用於存取具有一第二電容性儲存元件之一第二記憶體胞元,基於存取第二記憶體胞元判定第二記憶體胞元儲存邏輯狀態,及基於存取第二記憶體胞元偵測一第二電荷洩漏。在某些實例中,判定將邏輯狀態還是將邏輯狀態之補數寫入至記憶體胞元可基於判定第二記憶體胞元儲存邏輯狀態且偵測第二電荷洩漏。Certain examples of the method 1200 and apparatus described herein may further include operations, circuitry, features, components, or instructions for accessing a second memory cell having a second capacitive storage element based on memory The second memory cell is taken to determine the logical state stored in the second memory cell, and a second charge leakage is detected based on accessing the second memory cell. In some examples, determining whether to write the logic state or the complement of the logic state to a memory cell may be based on determining that a second memory cell stores the logic state and detecting a second charge leakage.

本文中所闡述之方法1200及設備之某些實例可進一步包含操作、電路系統、特徵、構件或指令以用於儲存是將邏輯狀態還是將邏輯狀態之補數寫入至記憶體胞元之一指示。在本文中所闡述之方法1200及設備之某些實例中,該指示可與包含該記憶體胞元之一組記憶體胞元中之每一記憶體胞元相關聯。在本文中所闡述之方法1200及設備之某些實例中,該組記憶體胞元中之每一記憶體胞元可由一共同存取線選擇。Certain examples of the method 1200 and apparatus described herein may further include operations, circuitry, features, components, or instructions for storing whether to write a logic state or the complement of a logic state to one of the memory cells instruct. In certain instances of the method 1200 and apparatus described herein, the indication may be associated with each memory cell in a set of memory cells that includes the memory cell. In some examples of the method 1200 and apparatus described herein, each memory cell in the set of memory cells may be selected by a common access line.

在本文中所闡述之方法1200及設備之某些實例中,存取記憶體胞元可包含用於啟動記憶體胞元之一胞元選擇組件之操作、電路系統、特徵、構件或指令,且可至少部分地在啟動胞元選擇組件時實行偵測電荷洩漏。In certain examples of the method 1200 and apparatus described herein, accessing a memory cell may include operations, circuitry, features, components, or instructions for activating a cell selection component of the memory cell, and Detecting charge leakage may be performed at least in part upon activation of the cell selection element.

在本文中所闡述之方法1200及設備之某些實例中,判定由記憶體胞元儲存之邏輯狀態可包含用於鎖存與記憶體胞元相關聯之一存取線之一信號之操作、電路系統、特徵、構件或指令,且偵測電荷洩漏可包含用於判定在鎖存之後存取線之一電壓下降至低於一臨限電壓的操作、電路系統、特徵、構件、或指令。In certain examples of the method 1200 and apparatus described herein, determining the logic state stored by the memory cell may include operations for latching a signal of an access line associated with the memory cell, The circuitry, features, components, or instructions, and detecting charge leakage may include operations, circuitry, features, components, or instructions for determining that a voltage of an access line falls below a threshold voltage after latching.

在本文中所闡述之方法1200及設備之某些實例中,偵測電荷洩漏可包含操作、電路系統、特徵、構件或指令以用於偵測跨越電連接於記憶體胞元與經組態以判定記憶體胞元儲存邏輯狀態之一感測組件之間的一電晶體之一電荷流。In certain examples of the method 1200 and apparatus described herein, detecting charge leakage may include operations, circuitry, features, components, or instructions for detecting across electrical connections to memory cells and being configured to A charge flow of a transistor between a sensing element of a memory cell storage logic state is determined.

在本文中所闡述之方法1200及設備之某些實例中,邏輯狀態與和電容性儲存元件相關聯之一第一電荷轉移量相關聯,且邏輯狀態之補數與可大於第一電荷轉移量之一第二電荷轉移量相關聯。In certain examples of the method 1200 and apparatus described herein, the logic state is associated with a first amount of charge transfer associated with the capacitive storage element, and the complement of the logic state may be greater than the first amount of charge transfer is associated with a second charge transfer amount.

圖13展示圖解說明根據本發明之態樣的支援用於一記憶體裝置刪除解碼之一或多種方法1300之一流程圖。方法1300之操作可由本文中所闡述之一記憶體裝置或其組件實施。舉例而言,方法1300之操作可由參考圖11所闡述之一記憶體裝置實行。在某些實例中,一記憶體裝置可執行一組指令以控制記憶體裝置之功能元件實行所闡述功能。另外或另一選擇為,一記憶體裝置可使用特殊用途電路系統或硬體實行所闡述功能之態樣。13 shows a flow diagram illustrating one or more methods 1300 of supporting delete decoding for a memory device according to aspects of the present invention. The operations of method 1300 may be implemented by one of the memory devices set forth herein or components thereof. For example, the operations of method 1300 may be performed by a memory device as described with reference to FIG. 11 . In some examples, a memory device can execute a set of instructions to control functional elements of the memory device to perform the functions described. Additionally or alternatively, a memory device may use special purpose circuitry or hardware to implement aspects of the functions described.

在1305處,記憶體裝置可存取記憶體裝置之一組記憶體胞元。可根據本文中所闡述之方法實行1305之操作。在某些實例中,1305之操作之態樣可由參考圖11所闡述之一記憶體胞元存取組件實行。At 1305, the memory device can access a set of memory cells of the memory device. The operations of 1305 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1305 may be performed by one of the memory cell access components described with reference to FIG. 11 .

在1310處,記憶體裝置可基於存取該組記憶體胞元判定該組記憶體胞元中之一或多個記憶體胞元與一不確定的資訊狀態相關聯。1310之操作可根據本文中所闡述之方法實行。在某些實例中,1310之操作之態樣可由參考圖11所闡述之一資訊狀態評估組件實行。At 1310, the memory device may determine that one or more memory cells in the set of memory cells are associated with an indeterminate information state based on accessing the set of memory cells. The operations of 1310 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1310 may be performed by an information state evaluation component described with reference to FIG. 11 .

在1315處,記憶體裝置可產生包含一組資訊位置之一第一碼字,該組資訊位置中之每一資訊位置對應於該組記憶體胞元中之一各別記憶體胞元。在某些實例中,產生第一碼字可包含將一各別假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之每一資訊位置。可根據本文中所闡述之方法實行1315之操作。在某些實例中,1315之操作之態樣可由參考圖11所闡述之一推測性碼字產生組件實行。At 1315, the memory device may generate a first codeword comprising a set of information locations, each information location in the set of information locations corresponding to a respective memory cell in the set of memory cells. In some examples, generating the first codeword may include assigning a respective assumed information state to each information location corresponding to a memory cell of the one or more memory cells. The operations of 1315 may be performed according to the methods set forth herein. In some examples, aspects of the operations of 1315 may be performed by one of the speculative codeword generation components described with reference to FIG. 11 .

在1320處,記憶體裝置可基於第一碼字實行一錯誤偵測操作。可根據本文中所闡述之方法實行1320之操作。在某些實例中,1320之操作之態樣可由參考圖11所闡述之一錯誤偵測組件實行。At 1320, the memory device may perform an error detection operation based on the first codeword. The operations of 1320 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1320 may be performed by one of the error detection components described with reference to FIG. 11 .

在1325處,記憶體裝置可基於實行錯誤偵測操作轉發一第二碼字。可根據本文中所闡述之方法實行1325之操作。在某些實例中,1325之操作之態樣可由參考圖11所闡述之一碼字轉發組件實行。At 1325, the memory device may forward a second codeword based on performing an error detection operation. The operations of 1325 may be performed according to the methods set forth herein. In some examples, aspects of the operation of 1325 may be performed by a codeword forwarding component as described with reference to FIG. 11 .

在某些實例中,本文中所闡述之一設備可實行一或多種方法,例如方法1300。設備可包含特徵、電路系統、構件或指令(例如,儲存可由一處理器執行之指令之一非暫時性電腦可讀取媒體)以用於:在一記憶體裝置處存取記憶體裝置之一組記憶體胞元;基於存取該組記憶體胞元判定該組記憶體胞元中之一或多個記憶體胞元與一不確定的資訊狀態相關聯;產生包含一組資訊位置之一第一碼字,該組資訊位置中之每一資訊位置對應於該組記憶體胞元中之一各別記憶體胞元,其中該產生包含將一各別假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之每一資訊位置;基於該第一碼字實行一錯誤偵測操作;及基於實行該錯誤偵測操作轉發一第二碼字。In some instances, one of the apparatuses set forth herein may perform one or more methods, such as method 1300 . Apparatus may include features, circuitry, components, or instructions (eg, a non-transitory computer-readable medium storing instructions executable by a processor) for: accessing one of memory devices at a memory device a set of memory cells; based on accessing the set of memory cells, determine that one or more of the memory cells in the set of memory cells are associated with an indeterminate information state; generate a memory cell that includes a set of information locations a first codeword, each information location in the set of information locations corresponding to a respective memory cell in the set of memory cells, wherein the generating includes assigning a respective assumed information state to the one performing an error detection operation based on the first codeword; and forwarding a second codeword based on performing the error detection operation.

在方本文中所闡述之法1300及設備之某些實例中,判定該一或多個記憶體胞元可與一不確定的資訊狀態相關聯可包含操作、特徵、電路系統、構件或指令以用於針對該一或多個記憶體胞元中之每一者判定基於存取該各別記憶體胞元之一信號介於與一第一邏輯狀態相關聯之一第一臨限值和與一第二邏輯狀態相關聯之一第二臨限值之間。In certain instances of the method 1300 and apparatus described herein, determining that the one or more memory cells can be associated with an indeterminate information state can include operations, features, circuitry, components, or instructions to for determining, for each of the one or more memory cells, that a signal based on accessing the respective memory cell is between a first threshold value associated with a first logic state and a A second logic state is associated between a second threshold value.

在本文中所闡述之方法1300及設備之某些實例中,判定基於存取各別記憶體胞元之信號介於第一臨限值與第二臨限值之間可包含操作、特徵、電路系統、構件或指令以用於判定與各別記憶體胞元耦合之一存取線具有基於存取該各別記憶體胞元得到的介於一第一臨限電壓與一第二臨限電壓之間的一電壓。In certain examples of the method 1300 and apparatus described herein, determining that a signal based on accessing the respective memory cell is between a first threshold value and a second threshold value may include operations, features, circuits System, means or instructions for determining that an access line coupled to a respective memory cell has between a first threshold voltage and a second threshold voltage based on accessing the respective memory cell a voltage between.

在本文中所闡述之方法1300及設備之某些實例中,判定基於存取各別記憶體胞元之信號介於第一臨限值與第二臨限值之間可包含操作、特徵、電路系統、構件或指令以用於判定基於存取各別記憶體胞元得到之一電流介於一第一臨限電流與一第二臨限電流之間。In certain examples of the method 1300 and apparatus described herein, determining that a signal based on accessing the respective memory cell is between a first threshold value and a second threshold value may include operations, features, circuits A system, component or instruction for determining that a current obtained based on accessing respective memory cells is between a first threshold current and a second threshold current.

在本文中所闡述之方法1300及設備之某些實例中,判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯可包含操作、特徵、電路系統、構件或指令以用於,針對該一或多個記憶體胞元中之每一者判定各別記憶體胞元之一電荷洩漏滿足一臨限值。In certain instances of the method 1300 and apparatus described herein, determining that the one or more memory cells are associated with an indeterminate information state may include operations, features, circuitry, components, or instructions for , for each of the one or more memory cells, it is determined that a charge leakage of the respective memory cell satisfies a threshold value.

在本文中所闡述之方法1300及設備之某些實例中,判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯可包含操作、特徵、電路系統、構件或指令以用於針對該一或多個記憶體胞元中之每一者判定與耦合至各別記憶體胞元之一存取線相關聯之一電荷洩漏滿足一臨限值。In certain instances of the method 1300 and apparatus described herein, determining that the one or more memory cells are associated with an indeterminate information state may include operations, features, circuitry, components, or instructions for A charge leakage associated with an access line coupled to the respective memory cell is determined to satisfy a threshold for each of the one or more memory cells.

在本文中所闡述之方法1300及設備之某些實例中,實行錯誤偵測操作可指示第一碼字係有效的,且轉發第二碼字可包含操作、特徵、電路系統、構件或指令以用於轉發在第二碼字之每一資訊位置處具有與第一碼字相同之資訊之該第二碼字。In certain examples of the method 1300 and apparatus described herein, performing an error detection operation may indicate that the first codeword is valid, and forwarding the second codeword may include operations, features, circuitry, components, or instructions to for forwarding the second codeword having the same information as the first codeword at each information location of the second codeword.

在本文中所闡述之方法1300及設備之某些實例中,實行錯誤偵測操作可指示第一碼字係無效的且在記憶體裝置之一錯誤校正能力內,且本文中所闡述之方法1300或設備可進一步包含操作、特徵、電路系統、構件或指令以用於基於將可不同於第一碼字之一資訊狀態指派給第二碼字之一或多個資訊位置產生第二碼字。In certain instances of the method 1300 and apparatus described herein, performing an error detection operation may indicate that the first codeword is invalid and within an error correction capability of the memory device, and the method 1300 described herein Or the apparatus may further include operations, features, circuitry, components, or instructions for generating the second codeword based on assigning an information state that may be different from the first codeword to one or more information locations of the second codeword.

在本文中所闡述之方法1300及設備之某些實例中,實行錯誤偵測操作可指示第一碼字係無效且超出記憶體裝置之一錯誤校正能力,且本文中所闡述之方法1300及設備可進一步包含操作、特徵、電路系統、構件或指令以用於基於將一各別第二假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之資訊位置中之一或多者產生一第三碼字,基於該第三碼字實行一第二錯誤偵測操作,及基於實行第二錯誤偵測操作轉發第二碼字。In certain instances of the method 1300 and apparatus described herein, performing an error detection operation may indicate that the first codeword is invalid and exceeds an error correction capability of the memory device, and the method 1300 and apparatus described herein may further include operations, features, circuitry, components or instructions for assigning a respective second assumed information state to an information location corresponding to a memory cell of the one or more memory cells One or more of generating a third codeword, performing a second error detection operation based on the third codeword, and forwarding the second codeword based on performing the second error detection operation.

在本文中所闡述之方法1300及設備之某些實例中,實行第二錯誤偵測操作可指示第三碼字係有效的,且轉發第二碼字可包含操作、特徵、電路系統、構件或指令以用於轉發在第二碼字之每一資訊位置處具有與第三碼字相同之資訊之第二碼字。In certain examples of the method 1300 and apparatus described herein, performing the second error detection operation may indicate that the third codeword is valid, and forwarding the second codeword may include operations, features, circuitry, components, or Instructions for forwarding the second codeword having the same information as the third codeword at each information location of the second codeword.

在本文中所闡述之方法1300及設備之某些實例中,實行第二錯誤偵測操作可指示第一碼字係無效的且在記憶體裝置之一錯誤校正能力內,且本文中所闡述之方法1300或設備可進一步包含操作、特徵、電路系統、構件或指令以基於將與第三碼字不同之一資訊狀態指派給第二碼字之一或多個資訊位置產生第二碼字。In certain instances of the method 1300 and apparatus described herein, performing the second error detection operation may indicate that the first codeword is invalid and within an error correction capability of the memory device, and the The method 1300 or apparatus may further include operations, features, circuitry, components, or instructions to generate the second codeword based on assigning an information state different from the third codeword to one or more information locations of the second codeword.

在本文中所闡述之方法1300及設備之某些實例中,實行第二錯誤偵測操作可指示第一碼字係無效的且超出記憶體裝置之一錯誤校正能力,且本文中所闡述之方法1300或設備可進一步包含操作、特徵、電路系統、構件或指令以用於基於將一各別第三假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之資訊位置中之一或多者產生一第四碼字,基於第四碼字實行一第三錯誤偵測操作,及基於實行該第三錯誤偵測操作轉發第二碼字。In certain instances of the method 1300 and apparatus described herein, performing the second error detection operation may indicate that the first codeword is invalid and exceeds an error correction capability of the memory device, and the methods described herein 1300 or apparatus may further include operations, features, circuitry, components or instructions for assigning a respective third hypothetical information state to a memory cell corresponding to one of the one or more memory cells based on One or more of the information locations generates a fourth codeword, performs a third error detection operation based on the fourth codeword, and forwards the second codeword based on performing the third error detection operation.

應注意,上文所闡述之方法闡述可能的實施方案,且操作及步驟可重新配置或者修改,且可採取其他實施方案。此外,可組合來自方法中之兩者或兩者以上之若干部分。It should be noted that the methods set forth above illustrate possible implementations, and that operations and steps may be reconfigured or modified, and other implementations may be taken. Furthermore, portions from two or more of the methods may be combined.

闡述一種設備。該設備可包含:一記憶體胞元;一感測組件組態,其用於在一存取操作期間偵測由該記憶體胞元儲存之一邏輯狀態;電路系統,其經組態以在該存取操作期間在偵測到該邏輯狀態之後偵測一電荷洩漏;及一控制器,其經組態以在該存取操作期間基於所偵測到之電荷洩漏滿足一臨限值將該邏輯狀態之一補數寫入至記憶體胞元。Describe a device. The apparatus may include: a memory cell; a sensing device configuration for detecting a logic state stored by the memory cell during an access operation; circuitry configured to Detecting a charge leakage after the logic state is detected during the access operation; and a controller configured to satisfy a threshold based on the detected charge leakage during the access operation One's complement of the logical state is written to the memory cell.

在某些實例中,該控制器可經組態以基於該邏輯狀態與一第一電荷轉移量相關聯且該邏輯狀態之該補數與大於該第一電荷轉移量之一第二電荷轉移量相關聯寫入該邏輯狀態之該補數。In some examples, the controller may be configured to associate a first charge transfer amount with a first charge transfer amount based on the logic state and the complement of the logic state and a second charge transfer amount greater than the first charge transfer amount The complement of the logical state is associated with the write.

在某些實例中,該感測組件可經組態以在該存取操作之一讀取部分期間偵測邏輯狀態,且該電路系統可經組態以在存取操作之一重寫部分之前偵測電荷洩漏。In some examples, the sensing component can be configured to detect logic states during a read portion of the access operation, and the circuitry can be configured to precede a rewrite portion of an access operation Detect charge leakage.

在某些實例中,該電路系統包含一第二感測組件。In some examples, the circuitry includes a second sensing component.

在某些實例中,該感測組件包含電路系統。In some instances, the sensing component includes circuitry.

在某些實例中,該感測組件可經組態以鎖存與該記憶體胞元相關聯之一存取線之一信號,且該電路系統可經組態以判定在鎖存之後存取線之一電壓下降至低於一臨限電壓。In some examples, the sensing element can be configured to latch a signal on an access line associated with the memory cell, and the circuitry can be configured to determine access after latching The voltage of one of the lines drops below a threshold voltage.

在某些實例中,該電路系統可經組態以偵測跨越電連接於記憶體胞元與感測組件之間的一串疊器件之一電荷流。In some examples, the circuitry can be configured to detect a flow of charge across a cascade of devices electrically connected between the memory cell and the sensing element.

闡述另一設備。該設備可包含:一組記憶體胞元,其各自包含一各別儲存元件;及一控制器,其與該組記憶體胞元耦合且經組態以將該組記憶體胞元中之每一者之儲存元件與一組存取線中之一各別存取線耦合,基於該耦合判定由該組記憶體胞元中之每一者儲存之一各別邏輯狀態,在判定該各別邏輯狀態之後判定是否在該組存取線中之一或多者上偵測到一臨限電荷洩漏量,基於是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量針對記憶體胞元中之每一者選擇一直接重寫操作或針對記憶體胞元中之每一者選擇一互補重寫操作,及對該組記憶體胞元中之每一者實行選定直接重寫操作或互補重寫操作。Describe another device. The apparatus can include: a set of memory cells, each including a respective storage element; and a controller coupled to the set of memory cells and configured to each of the set of memory cells A storage element of one is coupled to a respective one of a set of access lines, a respective logic state stored by each of the set of memory cells is determined based on the coupling, upon determining the respective The logic state then determines whether a threshold charge leakage is detected on one or more of the set of access lines, based on whether a threshold charge leakage is detected on one or more of the set of access lines Quantity selects a direct overwrite operation for each of the memory cells or a complementary overwrite operation for each of the memory cells, and performs the selection for each of the set of memory cells Direct rewrite operation or complementary rewrite operation.

在某些實例中,直接重寫操作包含寫入由一各別記憶體胞元儲存之各別邏輯狀態,且互補重寫操作包含寫入由一各別記憶體胞元儲存之各別邏輯狀態之一補數。In some examples, direct overwrite operations include writing to respective logical states stored by a respective memory cell, and complementary overwrite operations include writing respective logical states stored by a respective memory cell one's complement.

在某些實例中,一定數量之該組存取線與臨限電荷洩漏量之一偵測相關聯且與儲存該第一邏輯狀態之一記憶體胞元耦合,且一定數量之該組存取線與臨限電荷洩漏量之一偵測相關聯且儲存第二邏輯狀態之一記憶體胞元耦合。In some examples, a number of the set of access lines are associated with a detection of threshold charge leakage and coupled with a memory cell storing the first logic state, and a number of the set of access lines The line is associated with a detection of a threshold charge leakage and a memory cell coupling that stores a second logic state.

某些實例可進一步包含儲存選擇直接重寫操作還是互補重寫操作之一指示。Some examples may further include storing an indication of whether to select a direct overwrite operation or a complementary overwrite operation.

在某些實例中,該組記憶體胞元中之每一者之儲存元件與該組存取線中之一各別存取線耦合可包含操作、電路系統、特徵、構件或指令以用於基於啟動一共同選擇線將該組記憶體胞元中之每一記憶體胞元與該組存取線中之各別存取線耦合。In some examples, coupling a storage element of each of the set of memory cells to a respective access line of the set of access lines may include operations, circuitry, features, components, or instructions for Each memory cell of the set of memory cells is coupled to a respective access line of the set of access lines based on activating a common select line.

某些實例可進一步包含:基於啟動與各別記憶體胞元相關聯之一胞元選擇組件將每一記憶體胞元與該組存取線中之各別存取線耦合;及至少部分地在啟動胞元選擇組件時判定是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量。Certain examples may further include: coupling each memory cell with a respective access line in the set of access lines based on activating a cell selection element associated with the respective memory cell; and at least in part It is determined whether a threshold charge leakage amount is detected on one or more of the set of access lines when the cell selection element is activated.

某些實例可進一步包含藉由鎖存與各別記憶體胞元相關聯之一各別信號線之一信號並在鎖存之後基於比較各別信號線之一電壓與一臨限電壓判定是否偵測到臨限電荷洩漏量來判定該組記憶體胞元中之每一者之各別邏輯狀態。Some examples may further include by latching a signal of a respective signal line associated with the respective memory cell and determining whether to detect or not after the latching based on comparing a voltage of the respective signal line to a threshold voltage. The threshold charge leakage is measured to determine the respective logic state of each of the set of memory cells.

某些實例可進一步包含判定是否在該組存取線中之一或多者上偵測到臨限電荷洩漏量可基於偵測跨越與該組存取線中之一各別存取線電連之一電晶體之一電荷流。Certain examples may further include determining whether a threshold charge leakage amount is detected on one or more of the set of access lines may be based on detecting electrical connections across a respective one of the set of access lines. A charge flow of a transistor.

闡述另一設備。該設備可包含:一記憶體陣列,其包含一組記憶體胞元;一存取組件,其與該記憶體陣列耦合且經組態以基於存取該組記憶體胞元產生一第一碼字;一洩漏偵測組件,其與記憶體陣列耦合且經組態以判定與該組記憶體胞元中之一或多個記憶體胞元相關聯之一電荷洩漏滿足一臨限值;一錯誤偵測組件,其與存取組件及洩漏偵測組件耦合且經組態以基於將一各別假定的資訊狀態指派給該第一碼字的與該一或多個記憶體胞元對應之每一資訊位置實行一或多個錯誤偵測操作;及一輸入/輸出組件,其經組態以基於實行該一或多個錯誤偵測操作轉發一第二碼字。Describe another device. The apparatus can include: a memory array including a set of memory cells; an access component coupled to the memory array and configured to generate a first code based on accessing the set of memory cells word; a leak detection component coupled to the memory array and configured to determine that a charge leak associated with one or more of the set of memory cells satisfies a threshold value; a an error detection component coupled with an access component and a leak detection component and configured to be based on assigning a respectively assumed information state to the one or more memory cells corresponding to the first codeword Each information location performs one or more error detection operations; and an input/output component configured to forward a second codeword based on performing the one or more error detection operations.

在某些實例中,錯誤偵測組件可經組態以對基於將一各別第一假定的資訊狀態指派給第一碼字的與該一或多個記憶體胞元對應之每一資訊位置的一第三碼字實行一第一錯誤偵測操作;及對基於將一各別第二假定的資訊狀態指派給第一碼字的與該一或多個記憶體胞元對應之每一資訊位置之一第四碼字實行一第二錯誤偵測操作。In some examples, the error detection component can be configured to evaluate each information location corresponding to the one or more memory cells based on assigning a respective first assumed information state to the first codeword performing a first error detection operation on a third codeword of the A fourth codeword in position performs a second error detection operation.

在某些實例中,錯誤偵測組件可經組態以同時實行第一錯誤偵測操作與第二錯誤偵測操作。In some examples, the error detection component can be configured to perform the first error detection operation and the second error detection operation simultaneously.

在某些實例中,錯誤偵測組件可經組態以基於第一錯誤偵測操作所偵測到之錯誤之一數量及第二錯誤偵測操作所偵測到之錯誤之一數量選擇第三碼字或第四碼字中之一者,並轉發選定碼字。In some examples, the error detection component can be configured to select the third based on a number of errors detected by the first error detection operation and a number of errors detected by the second error detection operation one of the codeword or the fourth codeword, and forwards the selected codeword.

在某些實例中,錯誤偵測組件可經組態以當第一錯誤偵測操作所偵測到之錯誤之該數量小於第二錯誤偵測操作所偵測到之錯誤之該數量時選擇第三碼字,且當第二錯誤偵測操作所偵測到之錯誤之該數量小於第一錯誤偵測操作所偵測到之錯誤之該數量時選擇第四碼字。In some examples, the error detection component can be configured to select the first error detection operation when the number of errors detected by the first error detection operation is less than the number of errors detected by the second error detection operation Three code words, and a fourth code word is selected when the number of errors detected by the second error detection operation is less than the number of errors detected by the first error detection operation.

在某些實例中,錯誤偵測組件可經組態以當與選定碼字對應之一錯誤數量在錯誤校正組件之一錯誤校正能力內將選定碼字轉發至一錯誤校正組件。In some examples, the error detection component can be configured to forward the selected codeword to an error correction component when an error number corresponding to the selected codeword is within an error correction capability of the error correction component.

在某些實例中,錯誤偵測組件可經組態以當與選定碼字對應之錯誤數量為零時將選定碼字轉發至輸入/輸出組件。In some examples, the error detection component can be configured to forward the selected codeword to the input/output component when the number of errors corresponding to the selected codeword is zero.

闡述一種設備。該設備可包含:一記憶體陣列,其包含一組記憶體胞元;及一控制器,其與該記憶體陣列耦合。該控制器可經組態以存取該組記憶體胞元;基於存取該組記憶體胞元判定該組記憶體胞元中之一或多個記憶體胞元與一不確定的資訊狀態相關聯;產生包含一組資訊位置之一第一碼字,該組資訊位置中之每一資訊位置對應於該組記憶體胞元中之一各別記憶體胞元,其中該產生包含將一各別假定的資訊狀態指派給與該一或多個記憶體胞元中之一記憶體胞元對應之每一資訊位置;基於第一碼字實行一錯誤偵測操作;及基於實行錯誤偵測操作轉發一第二碼字。Describe a device. The apparatus can include: a memory array including a set of memory cells; and a controller coupled to the memory array. The controller can be configured to access the set of memory cells; determining one or more memory cells in the set of memory cells and an indeterminate information state based on accessing the set of memory cells associating; generating a first codeword comprising a set of information locations, each information location in the set of information locations corresponding to a respective memory cell in the set of memory cells, wherein the generating comprises converting a assigning a respective assumed information state to each information location corresponding to a memory cell of the one or more memory cells; performing an error detection operation based on the first codeword; and performing error detection based on The operation forwards a second codeword.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,該控制器可經組態以針對該一或多個記憶體胞元中之每一者判定各別記憶體胞元之一電荷洩漏滿足一臨限值。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the controller can be configured to target each of the one or more memory cells It is determined that a charge leakage of the respective memory cell satisfies a threshold value.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,該控制器可經組態以針對該一或多個記憶體胞元中之每一者判定與耦合至各別記憶體胞元之一存取線相關聯之一電荷洩漏滿足一臨限值。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the controller can be configured to target each of the one or more memory cells It is determined that a charge leakage associated with an access line coupled to the respective memory cell satisfies a threshold.

在某些實例中,為判定該一或多個記憶體胞元與一不確定的資訊狀態相關聯,該控制器可經組態以針對該一或多個記憶體胞元中之每一者判定基於存取各別記憶體胞元之一信號介於與一第一邏輯狀態相關聯之一第一臨限值和與一第二邏輯狀態相關聯之一第二臨限值之間。In some examples, to determine that the one or more memory cells are associated with an indeterminate information state, the controller can be configured to target each of the one or more memory cells The determination is based on a signal accessing the respective memory cell between a first threshold value associated with a first logic state and a second threshold value associated with a second logic state.

在某些實例中,為判定信號基於存取各別記憶體胞元介於第一臨限值與第二臨限值之間,該控制器可經組態以判定與各別記憶體胞元耦合之一存取線具有基於存取各別記憶體胞元得到的介於一第一臨限電壓與一第二臨限電壓之間的一電壓。In some examples, to determine that the signal is between a first threshold value and a second threshold value based on accessing the respective memory cell, the controller may be configured to determine that the signal is between the respective memory cell and the respective memory cell. An access line coupled has a voltage between a first threshold voltage and a second threshold voltage based on accessing the respective memory cell.

在某些實例中,為判定基於存取各別記憶體胞元之信號介於第一臨限值與第二臨限值之間,該控制器可經組態以判定基於存取各別記憶體胞元之一電流介於一第一臨限電流與一第二臨限電流之間。In some examples, to determine that the signal based on accessing the respective memory cell is between the first threshold value and the second threshold value, the controller may be configured to determine that the signal based on accessing the respective memory cell is between the first threshold value and the second threshold value. A current of the voxel is between a first threshold current and a second threshold current.

本文中所闡述之資訊及信號可使用各種不同技術及技法中之任一者來表示。舉例而言,可在以上說明通篇提及之資料、指令、命令、資訊、信號、位元、符號及晶片可由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任何組合來表示。某些圖式可將信號圖解說明為一單個信號;然而,熟習此項技術者應理解,信號可表示一信號匯流排,其中匯流排可具有各種位元寬度。The information and signals set forth herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols and chips that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof . Certain figures may illustrate the signal as a single signal; however, those skilled in the art will understand that the signal may represent a bus of signals, where the bus may have various bit widths.

如本文中所使用,術語「虛擬接地」指代保持在大約零伏特(0V)之一電壓下但不與接地直接耦合之一電路之一節點。因此,一虛擬接地之電壓可暫時地浮動且在穩定狀態下返回至大約0V。可使用各種電子電路元件(例如由運算放大器及電阻器組成之一分壓器)實施一虛擬接地。其他實施方案亦係可能的。「虛擬接地」或「經虛擬接地」意指連接至大約0 V。As used herein, the term "virtual ground" refers to a node of a circuit that is maintained at a voltage of approximately zero volts (0V) but is not directly coupled to ground. Therefore, the voltage of a virtual ground can temporarily float and return to about 0V in a steady state. A virtual ground can be implemented using various electronic circuit elements, such as a voltage divider consisting of operational amplifiers and resistors. Other embodiments are also possible. "Virtual ground" or "via virtual ground" means connected to approximately 0 V.

術語「電子通信」、「導電接觸」、「連接」及「耦合」可係指組件之間的支援信號在該等組件之間流動之一關係。若組件之間存在可在任何時間支援信號在該等組件之間流動的的任何導電路徑,則該等他被視為彼此電子通信(或導電接觸或連接或耦合)。在任何給定時間,彼此電子通信(導電接觸或連接或耦合)之組件之間的導電路徑可基於包含經連接組件之裝置之操作而係一開路或一閉路。經連接組件之間的導電路徑可係組件之間的一直接導電路徑,或者經連接組件之間的導電路徑可係可包含中間組件(例如切換器、電晶體或其他組件)之一間接導電路徑。在某些情形中,可例如使用一或多個中間組件(例如,切換器或電晶體)中斷經連接組件之間的信號流動達一段時間。The terms "electronic communication," "conductive contact," "connection," and "coupling" may refer to a relationship between components that supports the flow of signals between those components. Components are considered to be in electronic communication (or conductive contact or connection or coupling) with each other if there is any conductive path between them that can support the flow of signals between those components at any time. At any given time, the conductive paths between components that are in electronic communication (conductive contact or connection or coupling) with each other can be either an open circuit or a closed circuit based on the operation of the device that includes the connected components. The conductive path between connected components may be a direct conductive path between components, or the conductive path between connected components may be an indirect conductive path that may include intermediate components such as switches, transistors, or other components . In some cases, signal flow between connected components may be interrupted for a period of time, eg, using one or more intermediate components (eg, switches or transistors).

術語「耦合」指代自組件之間的一開路關係移動為組件之間的一閉路關係之狀況,在該開路關係中信號目前不能經由一導電路徑在組件之間通信,在該閉路關係中信號可經由導電路徑在組件之間通信。當一組件(例如一控制器)將其他組件耦合在一起時,組件起始允許信號經由先前不准許信號流動之一導電路徑之間在其他組件之間流動的一改變。The term "coupled" refers to the condition of moving from an open relationship between components to a closed relationship between components, in which signals cannot currently communicate between components via a conductive path, in which signals Communication between components may be via conductive paths. When a component (eg, a controller) couples other components together, the component initiates a change that allows signals to flow between the other components via a conductive path that previously disallowed signal flow.

術語「隔離」指代信號目前不能在組件之間流動的該等組件之間的一關係。若組件之間存在一開路,則組件係彼此隔離的。舉例而言,當切換器斷開時,被位於組件之間的一切換器分離之兩個組件彼此隔離。當一控制器將兩個組件彼此隔離時,該控制器影響使用先前准許信號流動之一導電路徑阻止信號在組件之間流動之一改變。The term "isolation" refers to a relationship between components where signals cannot currently flow between those components. If there is an open circuit between the components, the components are isolated from each other. For example, when the switch is open, two components separated by a switch located between the components are isolated from each other. When a controller isolates two components from each other, the controller affects a change in preventing signal flow between components using a conductive path that previously permitted signal flow.

如本文中所使用,術語「實質上」意指經修飾特性(例如,術語「實質上」所修飾之一動詞或形容詞)不必完全但足夠接近以達成特性之優點。As used herein, the term "substantially" means that the modified property (eg, a verb or adjective that the term "substantially" modifies) is not necessarily exact but close enough to achieve the benefit of the property.

如本文中所使用,術語「電極」可係指一電導體,且在某些情形中,可用作與一記憶體陣列之一記憶體胞元或其他組件之一電觸點。一電極可包含在記憶體陣列之元件或組件之間提供一導電路徑之一跡線、配線、導電線、導電層等。As used herein, the term "electrode" can refer to an electrical conductor and, in some cases, can be used as an electrical contact to a memory cell or other component of a memory array. An electrode may include traces, wires, conductive lines, conductive layers, etc. that provide a conductive path between elements or components of a memory array.

如本文中所使用,術語「短路」指代組件之間經由啟動討論中之兩個組件之間的一單個中間組件在該等組件之間建立一導電路徑的一關係。舉例而言,當第一組件與第二組件之間的一切換器閉合時,短路至一第二組件之一第一組件可與第二組件交換信號。因此,短路可係使得電荷能夠在電子通信之組件(或線)之間流動之一動態操作。As used herein, the term "short circuit" refers to a relationship between components that establishes a conductive path between the components by activating a single intermediate component between the components in question. For example, a first element shorted to a second element can exchange signals with the second element when a switch between the first element and the second element is closed. Thus, a short circuit can be a dynamic operation that enables charge to flow between components (or wires) of electronic communication.

本文中所論述之裝置(包含一記憶體陣列)可形成於一半導體基板上,例如矽、鍺、矽鍺合金、砷化鎵、氮化鎵等。在某些情形中,基板係一半導體晶圓。在其他情形中,基板可係一絕緣體上矽(SOI)基板,例如玻璃上矽(SOG)或藍寶石上矽(SOP),或位於另一基板上之半導體材料之磊晶層。可透過使用各種化學物種(包含但不限於磷、硼或砷)進行摻雜來控制基板或基板之子區的傳導性。可在基板之初始形成或生長期間藉由離子植入或藉由任何其他摻雜手段實行摻雜。The devices discussed herein, including a memory array, can be formed on a semiconductor substrate such as silicon, germanium, silicon germanium, gallium arsenide, gallium nitride, and the like. In some cases, the substrate is a semiconductor wafer. In other cases, the substrate may be a silicon-on-insulator (SOI) substrate, such as silicon-on-glass (SOG) or silicon-on-sapphire (SOP), or an epitaxial layer of semiconductor material on another substrate. The conductivity of the substrate or sub-regions of the substrate can be controlled by doping with various chemical species including but not limited to phosphorous, boron or arsenic. Doping can be performed by ion implantation or by any other doping means during initial formation or growth of the substrate.

本文中所論述之一切換組件或一電晶體可表示一場效電晶體(FET)且包括包含一源極、汲極及閘極之三端子裝置。該等端子可透過導電材料(例如,金屬)連接至其他電子元件。源極及汲極可係導電的且可包括一重度摻雜(例如,退化)半導體區。源極與汲極可被一輕摻雜半導體區或通道分隔開。若通道係n型(即,多數載流子係電子),則FET可被稱為一n型FET。若通道係p型(即,多數載流子係電洞),則FET可被稱為一p型FET。通道可被一絕緣閘極氧化物封頂。可藉由對閘極施加一電壓控制通道傳導性。舉例而言,分別對一n型FET或一p型FET施加一正電壓或負電壓可使得通道變得導電。當對電晶體閘極施加大於或等於一電晶體之臨限電壓之一電壓時,一電晶體可「接通」或「啟動」。當對電晶體閘極施加小於電晶體臨限電壓之一電壓時,電晶體可「關斷」或「撤銷啟動」。A switching element or a transistor discussed herein may represent a field effect transistor (FET) and includes a three-terminal device including a source, drain, and gate. The terminals can be connected to other electronic components through conductive material (eg, metal). The source and drain can be conductive and can include a heavily doped (eg, degenerated) semiconductor region. The source and drain can be separated by a lightly doped semiconductor region or channel. If the channel is n-type (ie, the majority carriers are electrons), the FET can be referred to as an n-type FET. If the channel is p-type (ie, the majority carrier is holes), the FET can be referred to as a p-type FET. The channel can be capped with an insulating gate oxide. Channel conductivity can be controlled by applying a voltage to the gate. For example, applying a positive or negative voltage to an n-type FET or a p-type FET, respectively, can make the channel conductive. A transistor can be "turned on" or "activated" when a voltage greater than or equal to the threshold voltage of a transistor is applied to the gate of the transistor. When a voltage less than the threshold voltage of the transistor is applied to the gate of the transistor, the transistor can be "turned off" or "deactivated."

本文中結合附圖所陳述之說明闡述實例組態且不表示可被實施或在申請專利範圍之範疇內之所有實例。本文中所使用之術語「例示性」意指「用作一實例」、理想額或說明,並非係「較佳的」或「優於其他實例」。詳細說明包含具體細節以提供對所闡述技術之一理解。然而,可在無此等具體細節之情況下實踐此等技術。在其他例項中,以方塊圖形式展示眾所周知之結構及裝置以免使所闡述實例之概念模糊。The descriptions set forth herein in connection with the appended drawings illustrate example configurations and do not represent all examples that may be implemented or that are within the scope of the claims. As used herein, the term "exemplary" means "serving as an example," ideal, or illustration, not "preferable" or "preferable to other examples." The detailed description contains specific details to provide an understanding of one of the techniques described. However, these techniques may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the illustrated examples.

在附圖中,類似組件或特徵可具有相同參考標籤。此外,可通過在參考標籤後接著破折號及在類似組件當中進行區分之第二標籤而區分同一類型之各個組件。若在說明書中僅使用第一參考標籤,則說明可適用於具有相同第一參考標籤之類似組件中之任一者,而無論第二參考標籤如何。In the drawings, similar components or features may have the same reference labels. In addition, various components of the same type can be distinguished by following the reference label with a dash and a second label that distinguishes among similar components. If only the first reference label is used in the description, the description may apply to any of the similar components having the same first reference label, regardless of the second reference label.

可使用各種不同技術及技法中之任一者表示本文中所闡述之資訊及信號。舉例而言,可在以上說明通篇提及之資料、指令、命令、資訊、信號、位元、符號及晶片可由電壓、電流、電磁波、磁場或粒子、光場或粒子或者其任一組合來表示。The information and signals set forth herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description may be generated by voltages, currents, electromagnetic waves, magnetic fields or particles, light fields or particles, or any combination thereof. express.

可藉助一般用途處理器、一數位信號處理器(DSP)、一特殊應用積體電路(ASIC)、一現場可程式化閘陣列(FPGA)或其他可程式化邏輯裝置、離散閘或電晶體邏輯、離散硬體組件或經設計以執行本文中所闡述之功能之其任何組合來實施或執行結合本文中之揭示內容而闡述之各種說明性區塊及模組。一般用途處理器可係一微處理器,但在替代方案中,處理器可係任何處理器、控制器、微控制器或狀態機。一處理器也可被實施為計算裝置之一組合,例如DSP與微處理器之一組合、多個微處理器之一組合、一或多個微處理器與DSP核心結合之一組合或任何其他此類組態。A general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic , discrete hardware components, or any combination thereof designed to perform the functions set forth herein to implement or perform the various illustrative blocks and modules set forth in connection with the disclosure herein. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, such as a combination of a DSP and a microprocessor, a combination of multiple microprocessors, a combination of one or more microprocessors and a DSP core, or any other such configuration.

可以硬體、由一處理器執行之軟體、韌體或其任何組合實施本文中所闡述之功能。若以軟體來實施,則該等功能可作為一或多個指令或碼儲存於一電腦可讀媒體上或經由一電腦可讀媒體傳輸。其他實例及實施方案處於本發明及隨附申請專利範圍之範疇內。舉例而言,由於軟體之性質,可使用由一處理器執行之軟體、硬體、韌體、硬連線、或此等中之任一者之組合實施所闡述功能。實施功能之特徵亦可實體地位於各個位置處,包含散佈以使得功能之若干部分實施於不同物理位置處。此外,如本文中(包含在申請專利範圍中)所使用,一物項清單中使用之「或」(舉例而言,前面係例如「…中之至少一者」或「…中之一或多者」等一片語之一物項清單)指示一包含性清單以使得,例如A、B或C中之至少一者之一清單意指A或B或C、或AB或AC或BC、或ABC (即,A及B及C)。此外,如本文中所使用,片語「基於」不應被闡釋為一指代一組閉合條件。舉例而言,被闡述為「基於狀況A」之一例示性步驟可基於一條件A及一條件況B,而這並不背離本發明之範疇。換言之,如本文中所使用,片語「基於」應被闡釋為與片語「至少部分地基於」同義。The functions described herein can be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of this disclosure and the accompanying claims. For example, due to the nature of software, the functions described may be implemented using software executed by a processor, hardware, firmware, hardwiring, or a combination of any of these. Features implementing a function may also be physically located at various locations, including interspersed such that portions of the function are implemented at different physical locations. Furthermore, as used herein (included in the scope of this application), "or" used in a list of items (for example, preceded by such as "at least one of" or "one or more of" A phrase such as "a list of items" indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C, or AB or AC or BC, or ABC (ie, A and B and C). Furthermore, as used herein, the phrase "based on" should not be construed as referring to a closed set of conditions. For example, an exemplary step described as "based on condition A" may be based on a condition A and a condition B without departing from the scope of the present invention. In other words, as used herein, the phrase "based on" should be construed as synonymous with the phrase "based at least in part on."

提供本文中之說明以使得熟習此項技術者能夠製作或使用本發明。熟習此項技術者將易於明瞭對本發明之各種修改,且本文中所界定之通用原理可適用於其他變化形式,此並不背離本發明之範疇。因此,本發明並不僅限於本文中所闡述之實例及設計,而是符合與本文中所揭示之原理及新穎特徵一致之最寬廣範疇。The descriptions herein are provided to enable any person skilled in the art to make or use the present invention. Various modifications to this invention will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of this invention. Thus, the present disclosure is not intended to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

100:記憶體裝置 105:記憶體胞元 105-a:記憶體胞元 105-b:記憶體胞元 110:記憶體扇區 120:第一存取線/存取線/共同存取線 130:第二存取線/存取線 131-b:第一端子 132-b:第二端子 135:行組件 140:第三存取線/存取線 145:板組件 150:感測組件/第一感測組件/第二感測組件 160:輸入/輸出組件 170:記憶體控制器 200:電路 201-a:洩漏偵測組件 201-b:洩漏偵測組件 201-c:洩漏偵測組件 205:字線/共同字線 205-a:字線 210:數位線 210-a:數位線 215:板線 215-a:板線 220:電容器/鐵電電容器 221:胞元板 222:胞元底部 230:胞元選擇組件 230-a:胞元選擇組件 235:控制節點 240:固有電容 240-a:固有電容 250-a:電壓源 250-b:第一感測放大器電壓源/感測放大器電壓源 250-c:第二感測放大器電壓源/感測放大器電壓源 260:信號線 260-a:信號線 265:參考線 265-a:參考線 270:旁路線 275:切換組件 280:信號生成組件 285:參考組件 290:感測放大器 290-a:感測放大器 291:第一節點 292:第二節點 295:輸入/輸出線 300-a:磁滯曲線 300-b:磁滯曲線 305-a:電荷狀態 305-b:電荷狀態 305-c:電荷狀態 310-a電荷狀態 310-b:電荷狀態 310-c:電荷狀態 310-d:電荷狀態 315:電壓 320:路徑 325:電壓 330:路徑 335:讀取電壓/固定讀取電壓 340:路徑 350:所得電壓/電壓 355:所得電壓/電壓 360:路徑 365:路徑 370:電荷狀態 400:電路 405:放大器 410-a:電壓源 410-b:電壓源 410-c:電壓源 410-d:電壓源 410-e:電壓源 410-f:電壓源 410-g:電壓源 410-h:電壓源 410-i:電壓源 410-j:電壓源 410-k:電壓源 410-l:電壓源 420-a:切換組件 420-b:切換組件 420-c:切換組件 420-d:切換組件 420-e:切換組件 420-f:切換組件 420-g:切換組件 420-h:切換組件 430-a:第一積分器電容器 430-b:第二積分器電容器 431-a:第一端子 431-b:第一端子 432-a:第二端子 432-b:第二端子 450-a:可變電壓源/第一可變電壓源 450-b:可變電壓源/第二可變電壓源 500:時序圖 501:操作 502:操作 503:操作 504:操作 505:操作 506:操作 507:操作 508:操作 509:操作 510:操作 511:操作 512:操作 513:操作 514:操作 515:操作 516:操作 600:方法 605:操作 610:操作 615:操作 620:操作 625:操作 700:曲線圖 710:分佈 711:邊緣 712:邊緣 720:分佈 721:邊緣 722:邊緣 730-a:第一讀取臨限值 730-b:第二讀取臨限值 740:資訊狀態映射 800:方法 810:操作 815:所感測碼字 820:操作 825-a:推測性碼字/第一推測性碼字 825-b:推測性碼字/第二推測性碼字 830:操作 840:操作 845:操作 850:操作 860:操作 870:操作 875:操作 880:操作 890:操作 891:經校正碼字 895:操作 900:方塊圖 905:記憶體裝置 910:存取管理器 915:感測組件 920:洩漏偵測組件 925:寫入操作管理器 930:寫入操作指示器 1000:方塊圖 1005:記憶體裝置 1010:列組件 1015:感測組件 1020:洩漏偵測組件 1025:重寫操作判定器 1030:重寫操作控制器 1035:重寫操作指示器 1100:方塊圖 1105:記憶體裝置 1110:記憶體胞元存取組件 1115:資訊狀態評估組件 1120:推測性碼字產生組件 1125:錯誤偵測組件 1130:碼字轉發組件 1135:存取信號評估組件 1140:電荷洩漏評估組件 1145:錯誤校正組件 1200:方法 1205:操作 1210:操作 1215:操作 1220:操作 1225:操作 1300:方法 1305:操作 1310:操作 1315:操作 1320:操作 1325:操作 A:洩漏路徑 B:洩漏路徑 C:洩漏路徑 DL:數位線 DL1:數位線 DL2:數位線 DL3:數位線 DLN:數位線 ISO1:邏輯信號 ISO2:邏輯信號 PL:板線 PL1:板線 PL2:板線 PL3:板線 PLN:板線 SW1:邏輯信號 SW2:邏輯信號 SW3:邏輯信號 SW4:邏輯信號 SW5:邏輯信號 SW6:邏輯信號 Tread,0:第一讀取臨限值/讀取電壓 Tread,1:第二讀取臨限值 V0:電壓 V1:電壓 V2:電壓/電壓位準 V3:電壓/電壓位準 V4:電壓/電壓位準 V5:電壓 V6:電壓 V7:電壓 V8:電壓/電壓位準 V9:電壓 V10:電壓 V11:電壓/電壓位準 VA:信號 VB:信號 Vbottom:電壓 Vcap:電壓差/負電壓差/正電壓差 VDL:電壓 VDL,w0:電壓 VDL,w1:電壓 VH:電壓 VL:電壓 Vplate:電壓 VPL:電壓 VPL,w0:板高寫入電壓 VPL,w1:板低寫入電壓 Vsig:感測信號電壓/電壓 Vsig,0:電壓 Vsig,1:電壓 Vref:參考信號電壓/參考信號 Vth,amp:臨限電壓 WL:字線/邏輯信號 WL1:字線 WL2:字線 WL3:字線 WLM:字線100: memory device 105: memory cell 105-a: memory cell 105-b: memory cell 110: memory sector 120: first access line/access line/common access line 130 : second access line/access line 131-b: first terminal 132-b: second terminal 135: row component 140: third access line/access line 145: board component 150: sensing component/th A sensing element/second sensing element 160: I/O element 170: Memory controller 200: Circuit 201-a: Leak detection element 201-b: Leak detection element 201-c: Leak detection element 205 : word line/common word line 205-a: word line 210: digit line 210-a: digit line 215: plate line 215-a: plate line 220: capacitor/ferroelectric capacitor 221: cell plate 222: cell bottom 230: cell selection component 230-a: cell selection component 235: control node 240: intrinsic capacitance 240-a: intrinsic capacitance 250-a: voltage source 250-b: first sense amplifier voltage source/sense amplifier voltage source 250-c: second sense amplifier voltage source/sense amplifier voltage source 260: signal line 260-a: signal line 265: reference line 265-a: reference line 270: bypass line 275: switching component 280: signal generation component 285: reference component 290: sense amplifier 290-a: sense amplifier 291: first node 292: second node 295: input/output line 300-a: hysteresis curve 300-b: hysteresis curve 305-a :charge state 305-b:charge state 305-c:charge state 310-a 335: Read Voltage/Fixed Read Voltage 340: Path 350: Resulting Voltage/Voltage 355: Resulting Voltage/Voltage 360: Path 365: Path 370: State of Charge 400: Circuit 405: Amplifier 410-a: Voltage Source 410-b : voltage source 410-c: voltage source 410-d: voltage source 410-e: voltage source 410-f: voltage source 410-g: voltage source 410-h: voltage source 410-i: voltage source 410-j: voltage source 410-k: voltage source 410-l: voltage source 420-a: switching component 420-b: switching component 420-c: switching component 420-d: switching component 420-e: switching component 420-f: switching component 420 -g: switching assembly 420-h: switching assembly 430-a: first integrator capacitor 430-b: second integrator capacitor 431-a: first terminal 431-b: first terminal 432-a: second terminal 432-b: second terminal 450-a: variable voltage source/first variable voltage source 450-b: variable voltage source/second variable voltage source 500: timing diagram 50 1:Operation 502:Operation 503:Operation 504:Operation 505:Operation 506:Operation 507:Operation 508:Operation 509:Operation 510:Operation 511:Operation 512:Operation 513:Operation 514:Operation 515:Operation 516:Operation 600: method 605: operation 610: operation 615: operation 620: operation 625: operation 700: graph 710: distribution 711: edge 712: edge 720: distribution 721: edge 722: edge 730-a: first read threshold 730 -b: second read threshold 740: info state map 800: method 810: operation 815: sensed codeword 820: operation 825-a: speculative codeword/first speculative codeword 825-b: speculative Speculative Codeword/Second Speculative Codeword 830: Operation 840: Operation 845: Operation 850: Operation 860: Operation 870: Operation 875: Operation 880: Operation 890: Operation 891: Corrected Codeword 895: Operation 900: Block Diagram 905: Memory Device 910: Access Manager 915: Sensing Component 920: Leak Detection Component 925: Write Operation Manager 930: Write Operation Indicator 1000: Block Diagram 1005: Memory Device 1010: Column Component 1015 : sensing component 1020 : leak detection component 1025 : rewrite operation determiner 1030 : rewrite operation controller 1035 : rewrite operation indicator 1100 : block diagram 1105 : memory device 1110 : memory cell access component 1115 : information state evaluation component 1120 : speculative codeword generation component 1125 : error detection component 1130 : codeword forwarding component 1135 : access signal evaluation component 1140 : charge leakage evaluation component 1145 : error correction component 1200 : method 1205 : operation 1210 :Operation 1215:Operation 1220:Operation 1225:Operation 1300:Method 1305:Operation 1310:Operation 1315:Operation 1320:Operation 1325:Operation A:leak path B:leak path C:leak path DL:digital line DL 1 :digital line DL 2 : digit line DL 3 : digit line DL N : digit line ISO 1 : logic signal ISO 2 : logic signal PL: board line PL 1 : board line PL 2 : board line PL 3 : board line PL N : board line SW 1 : logic signal SW 2 : logic signal SW 3 : logic signal SW 4 : logic signal SW 5 : logic signal SW 6 : logic signal T read, 0 : first read threshold value/read voltage T read, 1 : Second read threshold value V 0 : voltage V 1 : voltage V 2 : voltage/voltage level V 3 : voltage/voltage level V 4 : voltage/voltage level V 5 : voltage V 6 : voltage V 7 : Voltage V 8 : Voltage/Voltage Level V 9 : Voltage V 10 : voltage V 11 : voltage/voltage level VA : signal VB : signal V bottom : voltage V cap : voltage difference/negative voltage difference/positive voltage difference V DL : voltage V DL,w0 : voltage V DL, w1 : voltage V H : voltage VL : voltage V plate : voltage V PL : voltage V PL, w0 : plate high write voltage V PL, w1 : plate low write voltage V sig : sensing signal voltage/voltage V sig ,0 : voltage V sig, 1 : voltage V ref : reference signal voltage/reference signal V th,amp : threshold voltage WL: word line/logic signal WL 1 : word line WL 2 : word line WL 3 : word line WL M : word line

圖1圖解說明根據本文中所揭示之實例的支援記憶體管理及刪除解碼之一記憶體裝置之一實例。1 illustrates one example of a memory device that supports memory management and delete decoding in accordance with the examples disclosed herein.

圖2圖解說明根據本文中所揭示之實例的支援用於一記憶體裝置之記憶體管理及刪除解碼之一實例性電路。2 illustrates an example circuit that supports memory management and delete decoding for a memory device according to examples disclosed herein.

圖3A及圖3B根據本文中所揭示之各種實例利用磁滯曲線圖解說明一鐵電記憶體胞元之非線性電性質之實例。3A and 3B illustrate examples of nonlinear electrical properties of a ferroelectric memory cell using hysteresis curves according to various examples disclosed herein.

圖4圖解說明根據本文中所揭示之實例的支援用於一記憶體裝置之記憶體管理及刪除解碼之一電路之一實例。4 illustrates one example of a circuit that supports memory management and delete decoding for a memory device in accordance with the examples disclosed herein.

圖5展示根據本文中所揭示之實例圖解說明一實例性存取過程之操作之一時序圖,該實例性存取過程支援用於一記憶體裝置之記憶體管理及刪除解碼。5 shows a timing diagram illustrating the operation of an example access process that supports memory management and delete decoding for a memory device, according to examples disclosed herein.

圖6展示圖解說明根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一方法之一流程圖。6 shows a flow diagram illustrating one method of supporting memory management for charge leakage in accordance with examples disclosed herein.

圖7圖解說明根據本文中所揭示之實例包含與不同資訊狀態相關聯之一讀取特性之分佈之一曲線圖,該讀取特性可支援用於一記憶體裝置之刪除解碼。7 illustrates a graph including a distribution of a read characteristic associated with different information states that can support erasure decoding for a memory device, according to examples disclosed herein.

圖8圖解說明根據本文中所揭示之實例的支援用於一記憶體裝置之刪除解碼之一方法之一實例。8 illustrates one example of a method of supporting delete decoding for a memory device in accordance with examples disclosed herein.

圖9展示根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一記憶體裝置之一方塊圖。9 shows a block diagram of a memory device that supports memory management for charge leakage according to examples disclosed herein.

圖10展示根據本文中所揭示之實例的支援針對電荷洩漏之記憶體管理之一記憶體裝置之一方塊圖。10 shows a block diagram of a memory device that supports memory management for charge leakage according to examples disclosed herein.

圖11展示根據本發明之態樣的支援用於一記憶體裝置之刪除解碼之一記憶體裝置之一方塊圖。11 shows a block diagram of a memory device supporting delete decoding for a memory device according to an aspect of the present invention.

圖12展示圖解說明根據本發明之態樣的支援針對電荷洩漏之記憶體管理之一或多種方法之一流程圖。12 shows a flowchart illustrating one or more methods of supporting memory management for charge leakage in accordance with aspects of the present invention.

圖13展示圖解說明根據本文中所揭示之實例的支援用於一記憶體裝置之刪除解碼之一或多種方法之一流程圖。13 shows a flowchart illustrating one or more methods of supporting delete decoding for a memory device according to examples disclosed herein.

105-a:記憶體胞元 105-a: memory cell

200:電路 200: Circuit

201-a:洩漏偵測組件 201-a: Leak Detection Components

201-b:洩漏偵測組件 201-b: Leak Detection Components

205:字線/共同字線 205: word line/common word line

210:數位線 210: Digital Line

215:板線 215: Board Line

220:電容器/鐵電電容器 220: Capacitors/Ferroelectric Capacitors

221:胞元板 221: Cell Plate

222:胞元底部 222: cell bottom

230:胞元選擇組件 230: Cell Selection Components

235:控制節點 235: Control Node

240:固有電容 240: Inherent capacitance

250-a:電壓源 250-a: Voltage Source

250-b:第一感測放大器電壓源/感測放大器電壓源 250-b: First sense amplifier voltage source/sense amplifier voltage source

250-c:第二感測放大器電壓源/感測放大器電壓源 250-c: 2nd sense amp voltage source/sense amp voltage source

260:信號線 260: signal line

265:參考線 265: Reference Line

280:信號生成組件 280: Signal Generation Components

285:參考組件 285: Reference Components

290:感測放大器 290: Sense Amplifier

291:第一節點 291: First Node

292:第二節點 292: Second Node

295:輸入/輸出線 295: input/output line

A:洩漏路徑 A: Leak path

B:洩漏路徑 B: Leak path

C:洩漏路徑 C: leak path

DL:數位線 DL: digital line

PL:板線 PL: Board Line

V0:電壓 V 0 : Voltage

Vbottom:電壓 V bottom : Voltage

VH:電壓 V H : Voltage

VL:電壓 V L : Voltage

Vplate:電壓 V plate : Voltage

Vref:參考信號電壓/參考信號 V ref : reference signal voltage/reference signal

Vsig:感測信號電壓/電壓 V sig : sense signal voltage/voltage

WL:字線/邏輯信號 WL: word line/logic signal

Claims (25)

一種用於操作一記憶體裝置之方法,其包括:在該記憶體裝置處存取該記憶體裝置之複數個記憶體胞元;至少部分地基於存取該複數個記憶體胞元判定該複數個記憶體胞元中之一或多個記憶體胞元與一不確定的資訊狀態相關聯;產生包括複數個資訊位置之一第一碼字,該複數個資訊位置中之每一資訊位置對應於該複數個記憶體胞元中之一各別記憶體胞元,其中該產生包括將一各別假定的資訊狀態指派給與該一或多個記憶體胞元中之一各別記憶體胞元對應之每一資訊位置;至少部分地基於該第一碼字實行一錯誤偵測操作;及至少部分地基於實行該錯誤偵測操作轉發一第二碼字。 A method for operating a memory device, comprising: accessing a plurality of memory cells of the memory device at the memory device; determining the plurality of memory cells based at least in part on accessing the plurality of memory cells One or more of the memory cells are associated with an indeterminate information state; generating a first codeword including a plurality of information locations, each information location of the plurality of information locations corresponding to at a respective one of the plurality of memory cells, wherein the generating includes assigning a respective assumed information state to a respective one of the one or more memory cells performing an error detection operation based at least in part on the first codeword; and forwarding a second codeword based at least in part on performing the error detection operation. 如請求項1之方法,其中判定該一或多個記憶體胞元與該不確定的資訊狀態相關聯包括:針對該一或多個記憶體胞元中之每一者判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之一信號係介於與一第一邏輯狀態相關聯之一第一臨限值和與一第二邏輯狀態相關聯之一第二臨限值之間。 The method of claim 1, wherein determining that the one or more memory cells are associated with the indeterminate information state comprises: determining, for each of the one or more memory cells, based at least in part on memory cells Taking a signal of the respective memory cell of the plurality of memory cells between a first threshold value associated with a first logic state and a second threshold value associated with a second logic state between the thresholds. 如請求項2之方法,其中判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之該信號係介於該第一臨限值與該第二臨限值之間包括:判定與該複數個記憶體胞元之該各別記憶體胞元耦合之一存取線具 有至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元的介於一第一臨限電壓與一第二臨限電壓之間的一電壓。 The method of claim 2, wherein determining is based at least in part on the signal accessing the respective memory cell of the plurality of memory cells being between the first threshold value and the second threshold value including: determining an access wire coupled to the respective memory cell of the plurality of memory cells There is a voltage between a first threshold voltage and a second threshold voltage based at least in part on accessing the respective memory cell of the plurality of memory cells. 如請求項2之方法,其中判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之該信號係介於該第一臨限值與該第二臨限值之間包括:判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之一電流係介於一第一臨限電流與一第二臨限電流之間。 The method of claim 2, wherein determining is based at least in part on the signal accessing the respective memory cell of the plurality of memory cells being between the first threshold value and the second threshold value The interval includes determining that a current of the respective memory cell accessing the plurality of memory cells is between a first threshold current and a second threshold current based at least in part on the current. 如請求項1之方法,其中判定該一或多個記憶體胞元與該不確定的資訊狀態相關聯包括:針對該一或多個記憶體胞元中之每一者判定該複數個記憶體胞元之該各別記憶體胞元之一電荷洩漏滿足一臨限值。 The method of claim 1, wherein determining that the one or more memory cells are associated with the indeterminate information state comprises: determining the plurality of memories for each of the one or more memory cells A charge leakage of the respective memory cell of the cell satisfies a threshold. 如請求項1之方法,其中判定該一或多個記憶體胞元與該不確定的資訊狀態相關聯包括:針對該一或多個記憶體胞元中之每一者判定與耦合至該複數個記憶體胞元之該各別記憶體胞元之一存取線相關聯之一電荷洩漏滿足一臨限值。 9. The method of claim 1, wherein determining that the one or more memory cells are associated with the indeterminate information state comprises: determining and coupling to the complex number for each of the one or more memory cells A charge leakage associated with an access line of the respective memory cell of each memory cell satisfies a threshold. 如請求項1方法,其中:實行該錯誤偵測操作指示該第一碼字係有效的;且轉發該第二碼字包括轉發在該第二碼字之每一資訊位置處與該第一 碼字具有相同資訊之該第二碼字。 A method as claimed in claim 1, wherein: performing the error detection operation indicates that the first codeword is valid; and forwarding the second codeword includes forwarding with the first codeword at each information location of the second codeword The codeword has the same information as the second codeword. 如請求項1之方法,其中實行該錯誤偵測操作指示該第一碼字係無效的且在該記憶體裝置之一錯誤校正能力內,該方法進一步包括:至少部分地基於將與該第一碼字不同之一資訊狀態指派給該第二碼字之一或多個資訊位置來產生該第二碼字。 The method of claim 1, wherein performing the error detection operation indicates that the first codeword is invalid and within an error correction capability of the memory device, the method further comprising: based at least in part on comparing the first codeword with the first codeword A different information state of the codeword is assigned to one or more information locations of the second codeword to generate the second codeword. 如請求項1之方法,其中實行該錯誤偵測操作指示該第一碼字係無效的且超出該記憶體裝置之一錯誤校正能力,該方法進一步包括:至少部分地基於將一各別第二假定的資訊狀態指派給該等資訊位置中與該一或多個記憶體胞元中之一記憶體胞元對應之一或多者來產生一第三碼字;至少部分地基於該第三碼字實行一第二錯誤偵測操作;及至少部分地基於實行該第二錯誤偵測操作轉發該第二碼字。 The method of claim 1, wherein performing the error detection operation indicates that the first codeword is invalid and exceeds an error correction capability of the memory device, the method further comprising: based at least in part on applying a respective second codeword The assumed information state is assigned to one or more of the information locations corresponding to one of the one or more memory cells to generate a third codeword; based at least in part on the third code performing a second error detection operation on the word; and forwarding the second codeword based at least in part on performing the second error detection operation. 如請求項9之方法,其中:實行該第二錯誤偵測操作指示該第三碼字係有效的;且轉發該第二碼字包括轉發在該第二碼字之每一資訊位置處與該第三碼字具有相同資訊之該第二碼字。 9. The method of claim 9, wherein: performing the second error detection operation indicates that the third codeword is valid; and forwarding the second codeword includes forwarding at each information location of the second codeword with the The third codeword has the same information as the second codeword. 如請求項9之方法,其中實行該第二錯誤偵測操作指示該第三碼字係無效的且在該記憶體裝置之錯誤校正能力內,該方法進一步包括:至少部分地基於將與該第三碼字不同之一資訊狀態指派給該第二碼 字之一或多個資訊位置來產生該第二碼字。 The method of claim 9, wherein performing the second error detection operation indicates that the third codeword is invalid and within an error correction capability of the memory device, the method further comprising: based at least in part on comparing the third codeword with the first A different information state of the three code words is assigned to the second code one or more information locations of the word to generate the second codeword. 如請求項9之方法,其中實行該錯誤偵測操作指示該第三碼字係無效的且超出該記憶體裝置之該錯誤校正能力,該方法進一步包括:至少部分地基於將一各別第三假定的資訊狀態指派給該等資訊位置中與該一或多個記憶體胞元中之一記憶體胞元對應之一或多者來產生一第四碼字;至少部分地基於該第四碼字實行一第三錯誤偵測操作;及至少部分地基於實行該第三錯誤偵測操作轉發該第二碼字。 The method of claim 9, wherein performing the error detection operation indicates that the third codeword is invalid and exceeds the error correction capability of the memory device, the method further comprising: based at least in part on assigning a respective third codeword to A putative information state is assigned to one or more of the information locations corresponding to one of the one or more memory cells to generate a fourth codeword; based at least in part on the fourth code performing a third error detection operation on the word; and forwarding the second codeword based at least in part on performing the third error detection operation. 一種電子記憶體設備,其包括:一記憶體陣列,其包括複數個記憶體胞元;一存取組件,其與該記憶體陣列耦合且經組態以至少部分地基於存取該複數個記憶體胞元產生一第一碼字;一洩漏偵測組件,其與該記憶體陣列耦合且經組態以判定與該複數個記憶體胞元中之一或多個記憶體胞元相關聯之一電荷洩漏滿足一臨限值;一錯誤偵測組件,其與該存取組件及該洩漏偵測組件耦合且經組態以至少部分地基於將一各別假定的資訊狀態指派給該第一碼字的與該一或多個記憶體胞元之一各別記憶體胞元對應之每一資訊位置來實行一或多個錯誤偵測操作;一輸入/輸出組件,其經組態以至少部分地基於實行該一或多個錯誤偵測操作轉發一第二碼字。 An electronic memory device comprising: a memory array including a plurality of memory cells; an access component coupled with the memory array and configured to be based at least in part on accessing the plurality of memories a cell generating a first codeword; a leak detection component coupled to the memory array and configured to determine the memory cell associated with one or more of the plurality of memory cells a charge leakage meeting a threshold; an error detection element coupled with the access element and the leak detection element and configured to be based at least in part on assigning a respective assumed information state to the first performing one or more error detection operations for each information location of the codeword corresponding to a respective one of the one or more memory cells; an input/output element configured to at least A second codeword is forwarded based in part on performing the one or more error detection operations. 如請求項13之電子記憶體設備,其中該錯誤偵測組件經組態以:對一第三碼字實行一第一錯誤偵測操作,該第三碼字係至少部分地基於將一各別第一假定的資訊狀態指派給該第一碼字的與該一或多個記憶體胞元對應之每一資訊位置;及對一第四碼字實行一第二錯誤偵測操作,該第四碼字係至少部分地基於將一各別第二假定的資訊狀態指派給該第一碼字的與該一或多個記憶體胞元對應之每一資訊位置。 The electronic memory device of claim 13, wherein the error detection component is configured to: perform a first error detection operation on a third codeword based at least in part on applying a respective assigning a first assumed information state to each information location of the first codeword corresponding to the one or more memory cells; and performing a second error detection operation on a fourth codeword, the fourth The codeword is based at least in part on assigning a respective second assumed information state to each information location of the first codeword corresponding to the one or more memory cells. 如請求項14之電子記憶體設備,其中該錯誤偵測組件經組態以同時實行該第一錯誤偵測操作與該第二錯誤偵測操作。 The electronic memory device of claim 14, wherein the error detection component is configured to perform the first error detection operation and the second error detection operation simultaneously. 如請求項14之電子記憶體設備,其中該錯誤偵測組件經組態以:至少部分地基於該第一錯誤偵測操作所偵測到之錯誤之一數量及該第二錯誤偵測操作所偵測到之錯誤之一數量來選擇該第三碼字或該第四碼字中之一者;及轉發該選定碼字。 The electronic memory device of claim 14, wherein the error detection component is configured to: based at least in part on a number of errors detected by the first error detection operation and a number of errors detected by the second error detection operation selecting one of the third codeword or the fourth codeword by a number of detected errors; and forwarding the selected codeword. 如請求項16之電子記憶體設備,其中該錯誤偵測組件經組態以:當該第一錯誤偵測操作所偵測到之錯誤之該數量小於該第二錯誤偵測操作所偵測到之錯誤之該數量時,選擇該第三碼字;及當該第二錯誤偵測操作所偵測到之錯誤之該數量小於該第一錯誤偵測操作所偵測到之錯誤之該數量時,選擇該第四碼字。 The electronic memory device of claim 16, wherein the error detection component is configured to: when the number of errors detected by the first error detection operation is less than that detected by the second error detection operation the third codeword is selected when the number of errors detected by the second error detection operation is less than the number of errors detected by the first error detection operation , select the fourth codeword. 如請求項16之電子記憶體設備,其中該錯誤偵測組件經組態以在與該選定碼字對應之一錯誤數量在一錯誤校正組件之一錯誤校正能力內時將該選定碼字轉發至該錯誤校正組件。 The electronic memory device of claim 16, wherein the error detection component is configured to forward the selected codeword to an error correction capability of an error correction component when an error number corresponding to the selected codeword is within an error correction capability of the error correction component the error correction component. 如請求項16之電子記憶體設備,其中該錯誤偵測組件經組態以在與該選定碼字對應之一錯誤數量為零時將該選定碼字轉發至該輸人/輸出組件。 The electronic memory device of claim 16, wherein the error detection component is configured to forward the selected codeword to the input/output component when an error number corresponding to the selected codeword is zero. 一種電子記憶體設備,其包括:一記憶體陣列,其包括複數個記憶體胞元;及一控制器,其與該記憶體陣列耦合且經組態以:存取該複數個記憶體胞元;至少部分地基於存取該複數個記憶體胞元來判定該複數個記憶體胞元中之一或多個記憶體胞元與一不確定的資訊狀態相關聯;產生包括複數個資訊位置之一第一碼字,該複數個資訊位置中之每一資訊位置對應於該複數個記憶體胞元中之一各別記憶體胞元,其中該產生包括將一各別假定的資訊狀態指派給與該一或多個記憶體胞元中之一各別記憶體胞元對應之每一資訊位置;至少部分地基於該第一碼字實行一錯誤偵測操作;及至少部分地基於實行該錯誤偵測操作轉發一第二碼字。 An electronic memory device comprising: a memory array including a plurality of memory cells; and a controller coupled to the memory array and configured to: access the plurality of memory cells ; determining that one or more of the plurality of memory cells is associated with an indeterminate information state based at least in part on accessing the plurality of memory cells; generating a data including a plurality of information locations a first codeword, each information location of the plurality of information locations corresponding to a respective one of the plurality of memory cells, wherein the generating includes assigning a respective assumed information state to each information location corresponding to a respective one of the one or more memory cells; performing an error detection operation based at least in part on the first codeword; and performing the error at least in part The detection operation forwards a second codeword. 如請求項20之電子記憶體設備,其中為判定該一或多個記憶體胞元 與該不確定的資訊狀態相關聯,該控制器經組態以:針對該一或多個記憶體胞元中之每一者判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之一信號係介於與一第一邏輯狀態相關聯之一第一臨限值和與一第二邏輯狀態相關聯之一第二臨限值之間。 The electronic memory device of claim 20, wherein for determining the one or more memory cells Associated with the indeterminate information state, the controller is configured to: determine for each of the one or more memory cells based at least in part on accessing each of the plurality of memory cells A signal of a specific memory cell is between a first threshold value associated with a first logic state and a second threshold value associated with a second logic state. 如請求項21之電子記憶體設備,其中為判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之該信號係介於該第一臨限值與該第二臨限值之間,該控制器經組態以:判定與該複數個記憶體胞元之該各別記憶體胞元耦合之一存取線具有至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元的介於一第一臨限電壓與一第二臨限電壓之間的一電壓。 The electronic memory device of claim 21, wherein determining that the signal of the respective memory cell accessing the plurality of memory cells is between the first threshold and the second based at least in part Between thresholds, the controller is configured to: determine that an access line coupled to the respective memory cell of the plurality of memory cells has an access line based at least in part on accessing the plurality of memory cells A voltage between a first threshold voltage and a second threshold voltage of the respective memory cell of the cell. 如請求項21之電子記憶體設備,其中為判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之該信號係介於該第一臨限值與該第二臨限值之間,該控制器經組態以:判定至少部分地基於存取該複數個記憶體胞元之該各別記憶體胞元之一電流係介於一第一臨限電流與一第二臨限電流之間。 The electronic memory device of claim 21, wherein determining that the signal of the respective memory cell accessing the plurality of memory cells is between the first threshold and the second based at least in part Between thresholds, the controller is configured to: determine that a current of the respective memory cell accessing the plurality of memory cells is between a first threshold current and a current based, at least in part, on accessing the plurality of memory cells between the second threshold current. 如請求項20之電子記憶體設備,其中為判定該一或多個記憶體胞元與該不確定的資訊狀態相關聯,該控制器經組態以:針對該一或多個記憶體胞元中之每一者判定該複數個記憶體胞元之該各別記憶體胞元之一電荷洩漏滿足一臨限值。 The electronic memory device of claim 20, wherein to determine that the one or more memory cells are associated with the indeterminate information state, the controller is configured to: for the one or more memory cells Each of them determines that a charge leakage of the respective memory cell of the plurality of memory cells satisfies a threshold value. 如請求項20之電子記憶體設備,其中為判定該一或多個記憶體胞元與該不確定的資訊狀態相關聯,控制器經組態以:針對該一或多個記憶體胞元中之每一者判定與耦合至該複數個記憶體胞元之該各別記憶體胞元之一存取線相關聯之一電荷洩漏滿足一臨限值。 The electronic memory device of claim 20, wherein to determine that the one or more memory cells are associated with the indeterminate information state, the controller is configured to: Each of them determines that a charge leakage associated with an access line coupled to the respective memory cell of the plurality of memory cells satisfies a threshold.
TW109116783A 2019-06-14 2020-05-20 Memory management and erasure decoding for a memory device TWI762932B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16/441,722 US10984847B2 (en) 2019-06-14 2019-06-14 Memory management for charge leakage in a memory device
US16/441,722 2019-06-14
US16/840,286 US11301320B2 (en) 2020-04-03 2020-04-03 Erasure decoding for a memory device
US16/840,286 2020-04-03

Publications (2)

Publication Number Publication Date
TW202105402A TW202105402A (en) 2021-02-01
TWI762932B true TWI762932B (en) 2022-05-01

Family

ID=73781592

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109116783A TWI762932B (en) 2019-06-14 2020-05-20 Memory management and erasure decoding for a memory device
TW111111558A TW202230388A (en) 2019-06-14 2020-05-20 Memory management and erasure decoding for a memory device

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111111558A TW202230388A (en) 2019-06-14 2020-05-20 Memory management and erasure decoding for a memory device

Country Status (4)

Country Link
EP (1) EP3984035A4 (en)
CN (1) CN114144834A (en)
TW (2) TWI762932B (en)
WO (1) WO2020251708A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11366976B2 (en) * 2019-05-09 2022-06-21 Micron Technology, Inc. Updating manufactured product life cycle data in a database based on scanning of encoded images
US20230008349A1 (en) * 2021-07-09 2023-01-12 Taiwan Semiconductor Manufacturing Company, Ltd. Sram device for fpga application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694859B2 (en) * 2006-05-12 2014-04-08 Apple Inc. Memory device with adaptive capacity
US20140153338A1 (en) * 2012-12-05 2014-06-05 Dae-Seok Byeon Memory system and method of operating memory system using soft read voltages
US9583183B2 (en) * 2014-09-26 2017-02-28 Sandisk Technologies Llc Reading resistive random access memory based on leakage current
US20170352397A1 (en) * 2016-06-03 2017-12-07 Micron Technology, Inc. Charge mirror-based sensing for ferroelectric memory
US20190130960A1 (en) * 2017-10-26 2019-05-02 SK Hynix Inc. Memory systems and methods of controlling refresh operations of memory systems

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283398B1 (en) * 2004-05-04 2007-10-16 Spansion Llc Method for minimizing false detection of states in flash memory devices
KR101598382B1 (en) * 2010-03-02 2016-03-02 삼성전자주식회사 State based nonvolatile memory device and error correct method thereof
TWI447579B (en) * 2011-05-18 2014-08-01 Phison Electronics Corp Program code loading and accessing method, memory controller and memory storage apparatus
US8681547B2 (en) * 2011-08-23 2014-03-25 Micron Technology, Inc. Memory cell coupling compensation
US9367391B2 (en) * 2013-03-15 2016-06-14 Micron Technology, Inc. Error correction operations in a memory device
GB2525430B (en) * 2014-04-25 2016-07-13 Ibm Error-correction encoding and decoding
US9589655B1 (en) * 2015-10-02 2017-03-07 Seagate Technology Llc Fast soft data by detecting leakage current and sensing time
US10067827B2 (en) * 2016-06-29 2018-09-04 Micron Technology, Inc. Error correction code event detection
US10372566B2 (en) * 2016-09-16 2019-08-06 Micron Technology, Inc. Storing memory array operational information in nonvolatile subarrays
KR102314481B1 (en) * 2017-05-08 2021-10-20 에스케이하이닉스 주식회사 Siso decoding method, decoder and semiconductor memory system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694859B2 (en) * 2006-05-12 2014-04-08 Apple Inc. Memory device with adaptive capacity
US20140153338A1 (en) * 2012-12-05 2014-06-05 Dae-Seok Byeon Memory system and method of operating memory system using soft read voltages
US9583183B2 (en) * 2014-09-26 2017-02-28 Sandisk Technologies Llc Reading resistive random access memory based on leakage current
US20170352397A1 (en) * 2016-06-03 2017-12-07 Micron Technology, Inc. Charge mirror-based sensing for ferroelectric memory
US20190130960A1 (en) * 2017-10-26 2019-05-02 SK Hynix Inc. Memory systems and methods of controlling refresh operations of memory systems

Also Published As

Publication number Publication date
CN114144834A (en) 2022-03-04
EP3984035A4 (en) 2023-06-28
EP3984035A1 (en) 2022-04-20
WO2020251708A1 (en) 2020-12-17
TW202230388A (en) 2022-08-01
TW202105402A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
US11688449B2 (en) Memory management for charge leakage in a memory device
KR20210022158A (en) Memory cell imprint avoidance
US11693735B2 (en) Erasure decoding for a memory device
KR102326518B1 (en) Wear Leveling for Random Access and Ferroelectric Memory
US11016843B2 (en) Direct-input redundancy scheme with adaptive syndrome decoder
US11740964B2 (en) Direct-input redundancy scheme with dedicated error correction code circuit
US11901029B2 (en) Counter-based read in memory device
US11749330B2 (en) Charge leakage detection for memory system reliability
TWI762932B (en) Memory management and erasure decoding for a memory device
CN114868188B (en) Counter-based reading in a memory device