TWI762553B - 處理在傳統傳輸時間間隔(tti)通訊與縮短的tti通訊之間的衝突的技術和裝置 - Google Patents

處理在傳統傳輸時間間隔(tti)通訊與縮短的tti通訊之間的衝突的技術和裝置 Download PDF

Info

Publication number
TWI762553B
TWI762553B TW107100409A TW107100409A TWI762553B TW I762553 B TWI762553 B TW I762553B TW 107100409 A TW107100409 A TW 107100409A TW 107100409 A TW107100409 A TW 107100409A TW I762553 B TWI762553 B TW I762553B
Authority
TW
Taiwan
Prior art keywords
communication
stti
tti
legacy tti
sent
Prior art date
Application number
TW107100409A
Other languages
English (en)
Other versions
TW201831037A (zh
Inventor
席德凱納許 胡賽尼
艾莫 法拉吉達那
陳旺旭
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201831037A publication Critical patent/TW201831037A/zh
Application granted granted Critical
Publication of TWI762553B publication Critical patent/TWI762553B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

提供了一種用於無線通訊的方法、裝置和電腦程式產品。該裝置可以辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間。該裝置可以決定傳統TTI通訊是否在被發送的閾值時間內。該裝置可以至少部分地基於該決定來發送sTTI通訊、傳統TTI通訊或其任何組合中的至少一者。

Description

處理在傳統傳輸時間間隔(TTI)通訊與縮短的TTI通訊之間的衝突的技術和裝置
本案內容的各態樣大體係關於無線通訊,更特定言之係關於用於處理在傳統TTI通訊與縮短的TTI(sTTI)通訊之間的衝突的技術和裝置。
無線通訊系統被廣泛部署以提供諸如電話、視訊、資料、訊息傳遞和廣播的各種電信服務。典型的無線通訊系統可以採用能夠藉由共享可用的系統資源(例如,頻寬、發射功率等)來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例係包括分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統、分時同步分碼多工存取(TD-SCDMA)系統以及長期進化(LTE)。LTE/改良的LTE是由第三代合作夥伴計劃(3GPP)頒佈的通用行動電信系統(UMTS)行動服務標準的增強集合。
無線通訊網路可以包括能夠支援針對多個使用者設備(UE)的通訊的多個基地台(BS)。UE可以經由下行鏈路和上行鏈路與BS通訊。下行鏈路(或前向鏈路)是指從BS到UE的通訊鏈路,以及上行鏈路(或反向鏈路)是指從UE到BS的通訊鏈路。如本文將更詳細描述的,BS可以被稱為節點B、gNB、存取點(AP)、無線電頭端、發送接收點(TRP)、新的無線電(NR)BS、5G節點B及/或諸如此類。
已經在各種電信標準中採用上述多工存取技術來提供使得不同的無線通訊設備能夠在市政、國家、區域乃至全球級別上進行通訊的通用協定。新的無線電(NR)亦可以被稱為5G,是對由第三代合作夥伴計劃(3GPP)頒佈的LTE行動服務標準的增強集合。NR被設計為藉由改良頻譜效率、降低成本、改良服務、利用新頻譜來更好地支援行動寬頻網際網路存取,以及在下行鏈路(DL)上使用具有循環字首(CP)的OFDM(CP-OFDM)、在上行鏈路(UL)上使用CP-OFDM及/或SC-FDM(例如,亦被稱為離散傅立葉轉換展頻ODFM(DFT-s-OFDM)),以及支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合更好地與其他開放標準整合。然而,隨著行動寬頻存取需求持續增長,LTE和NR技術需要進一步改良。較佳地,該等改良應該適用於其他多工存取技術和採用該等技術的電信標準。
在本案內容的一個態樣,提供了一種方法、裝置和電腦程式產品。
在一些態樣,該方法可以包括:由使用者設備(UE)辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間;由該UE決定該傳統TTI通訊是否在被發送的閾值時間內;及由該UE至少部分地基於該決定,來發送該sTTI通訊、該傳統TTI通訊或其任意組合中的至少一者。
在一些態樣,該裝置可以包括記憶體和耦合到記憶體的至少一個處理器。該至少一個處理器可以被配置為辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間;決定該傳統TTI通訊是否在被發送的閾值時間內;及至少部分地基於該決定,來發送該sTTI通訊、該傳統TTI通訊或其任意組合中的至少一者。
在一些態樣,該裝置可以包括:用於辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突的構件,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間;用於決定該傳統TTI通訊是否在被發送的閾值時間內的構件;及至少部分地基於該決定來發送該sTTI通訊、該傳統TTI通訊或其任意組合中的至少一者的構件。
在一些態樣,電腦程式產品可以包括儲存電腦可執行代碼的非暫時性電腦可讀取媒體。該代碼可以包括:用於辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突的代碼,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間;用於決定該傳統TTI通訊是否在被發送的閾值時間內的代碼;及至少部分地基於該決定來發送該sTTI通訊、該傳統TTI通訊或其任意組合中的至少一者的代碼。
各態樣通常包括如本文參照附圖基本上描述且如附圖所示的方法、裝置、系統、電腦程式產品、非暫時性電腦可讀取媒體、使用者設備、無線通訊設備和處理系統。
前文已經相當廣泛地概述了根據本案內容的實例的特徵和技術優點,以便可以更好地理解下文的詳細描述。下文將描述額外的特徵和優點。所揭示的概念和特定實例可以容易地用作修改或設計用於執行本案內容的相同目的的其他結構的基礎。此種等同構造不背離所附申請專利範圍的範疇。當結合附圖考慮時,從以下描述中將更好地理解本文所揭示的概念的特性(其組織和操作方法)以及相關優點。提供每個附圖是為了說明和描述的目的,而不是作為申請專利範圍的限制的定義。
以下結合附圖闡述的詳細描述意欲作為對各種配置的描述,而不意欲表示在其中可以實踐本文所描述的概念的配置。出於提供對各種概念的透徹理解,詳細描述包括特定細節。然而,對於本領域技藝人士顯而易見的是,可以在沒有該等特定細節的情況下實踐該等概念。在一些情況下,為了避免混淆此種概念,以方塊圖形式圖示眾所周知的結構和部件。
現在將參考各種裝置和方法來呈現電信系統的若干態樣。將在下文的詳細描述中描述該等裝置和方法,以及藉由各種模塊、模組、部件、電路、步驟、過程、演算法等(統稱為「要素」)在附圖中圖示。該等要素可以使用電子硬體、電腦軟體或其任何組合來實施。至於該等要素是實施為硬體還是軟體,取決於特定的應用和對整個系統施加的設計約束。
舉例而言,可以利用包括一或多個處理器的「處理系統」來實施要素,或者要素的任何部分,或者要素的任意組合。處理器的實例包括微處理器、微控制器、數位訊號處理器(DSP)、現場可程式設計閘陣列(FPGA)、可程式設計邏輯設備(PLD)、狀態機、閘控邏輯、個別硬體電路、以及被配置為執行貫穿本案內容描述的各種功能的其他適當的硬體。處理系統中的一或多個處理器可以執行軟體。軟體應被廣義地解釋為表示指令、指令集、代碼、程式碼片段、程式碼、程式、副程式、軟體模組、應用、軟體應用、軟體封裝、常式、子常式、物件、可執行檔案、執行的執行緒、程序、功能等,無論是被稱為軟體、韌體、中介軟體、微碼、硬體描述語言還是其他。
因此,在一或多個示例實施例中,所描述的功能可以以硬體、軟體、韌體或其任何組合來實施。若以軟體實施,則可以將該等功能作為一或多個指令或代碼儲存或編碼在電腦可讀取媒體上。電腦可讀取媒體包括電腦儲存媒體。儲存媒體可以是由電腦存取的任何可用媒體。舉例而言而非限制,此種電腦可讀取媒體可以包括隨機存取記憶體(RAM),唯讀記憶體(ROM),電子可抹除可程式設計ROM(EEPROM),壓縮磁碟ROM(CD-ROM)或其他光碟儲存裝置,磁碟儲存裝置或其他磁性儲存裝置,上述類型的電腦可讀取媒體的組合,或者可以用於以電腦可存取的指令或資料結構的形式儲存電腦可執行代碼的任何其他媒體。
存取點(「AP」)可以包括、被實施為或被稱為節點B,無線電網路控制器(「RNC」),eNodeB(eNB),基地台控制器(「BSC」),基地台收發機(「BTS」),基地台(「BS」),收發機功能(「TF」),無線電路由器,無線電收發機,基本服務集(「BSS」),擴展服務集(「ESS」),無線電基地台(「RBS」),節點B(NB),gNB,5G NB,NR BS,發送接收點(TRP)或某種其他術語。
存取終端(「AT」)可以包括、被實施為或被稱為存取終端,用戶站,用戶單元,行動站,遠端站,遠端終端機,使用者終端,使用者代理,使用者設備,使用者設備(UE),使用者站,無線節點或某種其他術語。在一些態樣,存取終端可以包括蜂巢式電話,智慧型電話,無線電話,通信期啟動協定(「SIP」)電話,無線區域迴路(「WLL」)站,個人數位助理(「PDA」),平板電腦,小筆電,智慧型電腦,超極本,具有無線連接能力的手持設備,站(「STA」),或連接到無線數據機的某種其他合適的處理設備。因此,可以將本文教示的一或多個態樣併入到電話(例如,蜂巢式電話、智慧型電話),電腦(例如,桌上型電腦),可攜式通訊設備,可攜式計算設備(例如,膝上型電腦、個人數位助理、平板電腦、小筆電、智慧型電腦、超極本),可穿戴設備(例如,智慧手錶、智慧眼鏡、智慧手環、智慧腕帶、智慧戒指、智慧服裝等),醫療設備或裝備,生物感測器/設備,娛樂設備(例如,音樂設備、視訊設備、衛星無線電、遊戲設備等),車輛部件或感測器,智慧計量器/感測器,工業製造設備,全球定位系統設備,或被配置為經由無線或有線媒體進行通訊的任何其他合適的設備。在一些態樣中,節點是無線節點。無線節點可以例如經由有線或無線通訊鏈路提供用於或者到網路(例如,諸如網際網路或蜂巢網路的廣域網)的連線性。一些UE可以被認為是機器類型通訊(MTC)UE,其可以包括可以與基地台、另一遠端設備或某種其他實體通訊的遠端設備。機器類型通訊(MTC)可以指在通訊的至少一端上涉及至少一個遠端設備的通訊,並且可以包括涉及不一定需要人類互動的一或多個實體的資料通訊形式。例如,MTC UE可以包括能夠經由公共陸地行動網路(PLMN)與MTC伺服器及/或其他MTC設備進行MTC通訊的UE。MTC設備的實例包括感測器、儀錶、位置標籤、監視器、無人機、機器人/機器人設備等。MTC UE以及其他類型的UE可以實施為NB-IoT(窄頻物聯網)設備。
注意,儘管本文可以使用通常與3G及/或4G無線技術相關聯的術語來描述各個態樣,但是本案內容的各態樣可以應用於其他基於代的通訊系統,例如5G和更高版本,包括NR技術。
圖1是圖示可以在其中實踐本案內容的各態樣的網路100的圖。網路100可以是LTE網路或某種其他無線網路,例如5G或NR網路。無線網路100可以包括多個BS 110(示為BS 110a、BS 110b、BS 110c和BS 110d)以及其他網路實體。BS是與使用者設備(UE)通訊的實體,並且亦可以被稱為基地台、NR BS、節點B、gNB、5G NB、存取點、TRP等。每個BS可以為特定的地理區域提供通訊覆蓋。在3GPP中,術語「細胞」指的是為該覆蓋區域服務的BS及/或BS子系統的覆蓋區域,取決於使用術語的上下文。
BS可以為巨集細胞、微微細胞、毫微微細胞及/或另一類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對大的地理區域(例如,半徑若干公里),並且可以允許由具有服務訂制的UE進行的不受限制的存取。微微細胞可以覆蓋相對小的地理區域,並且可以允許由具有服務訂制的UE進行的不受限制的存取。毫微微細胞可以覆蓋相對小的地理區域(例如,住宅),並且可以允許由具有與毫微微細胞的關聯的UE(例如,封閉用戶群組(CSG)中的UE)進行的受限制的存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1所示的實例中,BS 110a可以是用於巨集細胞102a的巨集BS,BS 110b可以是用於微微細胞102b的微微BS,以及BS 110c可以是用於毫微微細胞102c的毫微微BS。BS可以支援一或多個(例如三個)細胞。術語「eNB」、「基地台」、「NR BS」、「gNB」、「TRP」、「AP」、「節點B」、「5G NB」和「細胞」可以在本文中互換使用。
在一些實例中,細胞不一定是靜止的,以及細胞的地理區域可以根據行動BS的位置而移動。在一些實例中,BS可以經由各種類型的回載介面(例如,直接實體連接、虛擬網路等)使用任何合適的傳輸網路彼此互連及/或互連到存取網路100中的一或多個其他BS或網路節點(未圖示)。
無線網路100亦可以包括中繼站。中繼站是可以從上游站(例如,BS或UE)接收對資料的傳輸以及將對資料的傳輸發送給下游站(例如,UE或BS)的實體。中繼站亦可以是可以對針對其他UE的傳輸進行中繼的UE。在圖1所示的實例中,中繼站110d可以與巨集BS 110a和UE 120d進行通訊,以便促進在BS 110a和UE 120d之間的通訊。中繼站亦可以被稱為中繼BS、中繼基地台、中繼器等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼BS等)的異質網路。該等不同類型的BS可以具有不同的發射功率位準、不同的覆蓋區域以及對無線網路100中的干擾的不同影響。例如,巨集BS可以具有高發射功率位準(例如,5至40瓦特),而微微BS、毫微微BS和中繼BS可以具有較低的發射功率水平(例如,0.1至2瓦特)。
網路控制器130可以耦合到一組BS,並且可以為該等BS提供協調和控制。網路控制器130可以經由回載與BS通訊。BS亦可以例如直接地或經由無線或有線回載間接地相互通訊。
UE 120(例如,120a、120b、120c)可以跨越整個無線網路100來散佈,並且每個UE可以是固定的或行動的。UE亦可以被稱為存取終端、終端、行動站、用戶單元、站等。UE可以是蜂巢式電話(例如,智慧型電話)、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、照相機、遊戲設備、小筆電、智慧型電腦、超極本、醫療設備或裝備、生物計量感測器/設備、可穿戴設備(智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧戒指、智慧手環))、娛樂設備(例如,音樂或視訊設備或衛星無線電)、車輛部件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備,或被配置為經由無線或有線媒體進行通訊的任何其他合適的設備。一些UE可以被認為是進化型或增強型機器類通訊(eMTC)UE。MTC和eMTC UE包括例如可以與基地台、另一設備(例如,遠端設備)或一些其他實體通訊的機器人、無人機、遠端設備,例如感測器、儀錶、監視器、位置標籤等。無線節點可以例如經由有線或無線通訊鏈路提供用於或者到網路(例如,諸如網際網路或蜂巢網路的廣域網路)的連線性。一些UE可以被認為是物聯網路(IoT)設備。一些UE可以被認為是使用者駐地設備(CPE)。
在圖1中,具有雙箭頭的實線表示在UE與服務BS之間的期望傳輸,其中該服務BS是被指定為在下行鏈路及/或上行鏈路上為UE服務的BS。具有雙箭頭的虛線表示在UE和BS之間潛在的干擾傳輸。
通常,可以在給定的地理區域中部署任何數量的無線網路。每個無線網路可以支援特定的RAT,以及可以在一或多個頻率上操作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以支援給定地理區域中的單個RAT,以便避免在不同RAT的無線網路之間的干擾。在一些情況下,可能會部署NR或5G RAT網路。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地台)為在排程實體的服務區域或細胞內的一些或全部設備和裝備之間的通訊分配資源。在本案內容內,如下文進一步論述的,排程實體可以負責排程、指派、重新配置和釋放針對一或多個從屬實體的資源。亦即,對於排程通訊,從屬實體利用由排程實體分配的資源。
基地台不是可以起排程實體的作用的唯一實體。亦即,在一些實例中,UE可以起排程實體的作用,為一或多個從屬實體(例如,一或多個其他UE)排程資源。在該實例中,UE起到排程實體的作用,並且其他UE利用由UE排程的資源進行無線通訊。UE可以起同級間(P2P)網路及/或網狀網路中的排程實體的作用。在網狀網路實例中,除了與排程實體通訊之外,UE亦可以可選地彼此直接通訊。
因此,在具有對時頻資源的排程存取以及具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個從屬實體可以利用排程的資源進行通訊。
如前述,提供圖1僅作為實例。其他實例是可能的以及可以不同於相對於圖1描述的實例。
圖2圖示基地台110和UE 120的設計的方塊圖200,基地台110和UE 120可以是圖1中的基地台之一和UE之一。基地台110可以配備有T個天線234a至234t,並且UE 120可以配備有R個天線252a至252r,其中一般T≧1以及R≧1。
在基地台110處,發送處理器220可以從資料來源212接收針對一或多個UE的資料,至少部分地基於從UE接收到的通道品質指示符(CQI)為每個UE選擇一或多個調制和編碼方案(MCS),至少部分地基於為UE選擇的MCS來處理(例如,編碼和調制)針對每個UE的資料,以及為所有UE提供資料符號。發送處理器220亦可以處理系統資訊(例如,用於半靜態資源劃分資訊(SRPI)等)和控制資訊(例如,CQI請求、授權、上層訊號傳遞等),以及提供管理負擔符號和控制符號。發送處理器220亦可以產生針對參考信號(例如,CRS)和同步信號(例如,主要同步信號(PSS)和輔同步信號(SSS))的參考符號。若適用,發送(TX)多輸入多輸出(MIMO)處理器230可以對資料符號、控制符號、管理負擔符號及/或參考符號執行空間處理(例如,預編碼),以及可以向T個調制器(MOD)232a至232t提供T個輸出符號串流。每個調制器232可以處理各自的輸出符號串流(例如,用於OFDM等)以獲得輸出取樣串流。每個調制器232亦可以處理(例如,轉換為類比、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調制器232a至232t的T個下行鏈路信號可以分別經由T個天線234a至234t來被發送。根據下文更詳細描述的某些態樣,可以利用位置編碼來產生同步信號以傳送額外的資訊。
在UE 120處,天線252a至252r可以從基地台110及/或其他基地台接收下行鏈路信號,以及可以將接收到的信號分別提供給解調器(DEMOD)254a至254r。每個解調器254可以調節(例如,濾波、放大、降頻轉換和數位化)接收到的信號以獲得輸入取樣。每個解調器254可以進一步處理輸入取樣(例如,用於OFDM等)以獲得接收到的符號。MIMO偵測器256可以從所有R個解調器254a至254r獲得接收到的符號,若適用,對接收到的符號執行MIMO偵測,以及提供偵測到的符號。接收(RX)處理器258可以處理(例如,解調和解碼)偵測到的符號,將針對UE 120的經解碼的資料提供給資料槽260,以及向控制器/處理器280提供經解碼的控制資訊和系統資訊。通道處理器可以決定RSRP、RSSI、RSRQ、CQI等。
在上行鏈路上,在UE 120處,發送處理器264可以接收並處理來自資料來源262的資料和來自控制器/處理器280的控制資訊(例如,用於包括RSRP、RSSI、RSRQ、CQI等的報告)。發送處理器264亦可以產生針對一或多個參考信號的參考符號。來自發送處理器264的符號可以由TX MIMO處理器266進行預編碼(若適用),由調制器254a至254r進一步處理(例如,用於DFT-s-OFDM、CP-OFDM等),以及發送給基地台110。在基地台110處,來自UE 120和其他UE的上行鏈路信號可以由天線234接收,由解調器232處理,若適用由MIMO偵測器236偵測,以及由接收處理器238進一步處理以獲得由UE 120發送的經解碼的資料以及控制資訊。接收處理器238可以將經解碼的資料提供給資料槽239,以及將經解碼的控制資訊提供給控制器/處理器240。基地台110可以包括通訊單元244,以及經由通訊單元244與網路控制器130通訊。網路控制器130可以包括通訊單元294、控制器/處理器290和記憶體292。
圖2中的控制器/處理器240和280及/或任何其他部件可以分別指導基地台在110和UE 120處的操作,來處理在傳統TTI通訊與sTITI通訊之間的衝突。例如,在基地台110處的控制器/處理器280及/或其他處理器和模組可以執行或指導UE 120的操作,以處理在傳統TTI通訊與sTITI通訊之間的衝突。例如,在BS 110處的控制器/處理器280及/或其他控制器/處理器和模組可以執行或指導例如圖9的方法900的操作、圖10的方法1000、圖11的方法1100及/或本文所述的其他方法。在一些態樣,圖2中所示的部件中的一或多個部件可以用於執行圖9的示例方法900、圖10的方法1000、圖11的方法1100及/或用於本文描述的技術的其他方法。記憶體242和282可以分別儲存針對BS 110和UE 120的資料和程式碼。排程器246可以排程UE用於在下行鏈路及/或上行鏈路上進行資料傳輸。
如前述,提供圖2僅作為實例。其他實施是可能的以及可以不同於相對於圖2描述的實例。
圖3圖示用於電信系統(例如,LTE)中的FDD的示例性訊框結構300。用於下行鏈路和上行鏈路中的每一者的傳輸等時線可以被劃分成無線電訊框單位。每個無線電訊框可以具有預定的持續時間(例如,10毫秒(ms)),並且可以被劃分為具有索引0至9的10個子訊框。每個子訊框可以包括兩個時槽。因此,每個無線電訊框可以包括索引為0至19的20個時槽。每個時槽可以包括L個符號週期,例如用於(如圖3中所示的)普通循環字首的七個符號週期或者用於擴展循環字首的六個符號週期。每個子訊框中的2L個符號週期可以被指派0到2L-1的索引。
儘管本文結合訊框、子訊框、時槽等描述了一些技術,但是該等技術同樣可以應用於其他類型的無線通訊結構,其可以被提及使用除5G NR中的「訊框」、「子訊框」、「時槽」等以外的術語。在一些態樣,無線通訊結構可以指由無線通訊標準及/或協定定義的週期性的有時限的通訊單元。
在某些電信(例如,LTE)中,BS可以在針對由BS支援的每個細胞的系統頻寬中心的下行鏈路上發送主要同步信號(PSS)和輔同步信號(SSS)。如圖3所示,PSS和SSS可以分別在具有普通循環字首的每個無線電訊框的子訊框0和5中的符號週期6和5中發送。PSS和SSS可以由UE用於細胞搜尋和擷取。BS可以跨越針對由BS支援的每個細胞的系統頻寬來發送細胞特定的參考信號(CRS)。CRS可以是在每個子訊框的某些符號週期中發送的,以及可以由UE用來執行通道估計、通道品質量測及/或其他功能。BS亦可以在某些無線電訊框的時槽1中的符號週期0至3中發送實體廣播通道(PBCH)。PBCH可以攜帶一些系統資訊。BS可以在某些子訊框中的實體下行鏈路共享通道(PDSCH)上發送其他系統資訊,例如系統區塊(SIB)。BS可以在子訊框的前B個符號週期中在實體下行鏈路控制通道(PDCCH)上發送控制資訊/資料,其中B可以是針對每個子訊框可配置的。BS可以在每個子訊框的剩餘符號週期中在PDSCH上發送訊務資料及/或其他資料。
在其他系統(例如,NR或5G系統)中,節點B可以在該等位置或在子訊框的不同位置中發送該等或其他信號。
如前述,提供圖3僅作為實例。其他實施是可能的以及可以不同於相對於圖3描述的實例。
圖4圖示具有普通循環字首的兩個示例性子訊框格式410和420。可用的時間頻率資源可以被分割成資源區塊。每個資源區塊可以覆蓋一個時槽中的12個次載波,並且可以包括多個資源元素。每個資源元素可以在一個符號週期內覆蓋一個次載波,並且可以用於發送一個調制符號,該調制符號可以是實值或複值。
子訊框格式410可以用於兩個天線。可以在符號週期0、4、7和11中從天線0和1發送CRS。參考信號是發射器和接收器先驗已知的信號,以及亦可以被稱為引導頻。CRS是特定用於細胞的參考信號,例如至少部分地基於細胞身份(ID)產生的。在圖4中,對於具有標籤Ra的給定資源元素,可以在該資源元素上從天線a發送調制符號,並且可以在該資源元素上不從其他天線發送調制符號。子訊框格式420可以與四個天線一起使用。可以在符號週期0、4、7和11中從天線0和1以及在符號週期1和8中從天線2和3發送CRS。對於子訊框格式410和420兩者,可以在均勻間隔的次載波上發送CRS,其可以至少部分地基於細胞ID來決定。取決於其細胞ID,可以在相同或不同的次載波上發送CRS。對於子訊框格式410和420兩者,不用於CRS的資源元素可以用於發送資料(例如,訊務資料、控制資料及/或其他資料)。
在公開可用的題為「Evolved Universal Terrestrial Radio Access(E-UTRA);Physical Channels and Modulation」的3GPP TS 36.211中描述了LTE中的PSS、SSS、CRS和PBCH。
在某些電信系統(例如,LTE)中,交錯結構可以用於FDD的下行鏈路和上行鏈路中的每一者。例如,可以定義具有從0至Q-1的索引的Q交錯,其中Q可以等於4、6、8、10或某個其他值。每個交錯可以包括被Q個訊框間隔開的子訊框。特別地,交錯q可以包括子訊框q、q+Q、q+2Q等,其中q∈{0,...,Q-1}。
無線網路可以支援用於在下行鏈路和上行鏈路上的資料傳輸的混合自動重傳請求(HARQ)。對於HARQ,發射器(例如,BS)可以發送對封包的一或多個傳輸,直到接收器(例如,UE)正確地解碼了封包或者遇到某種其他終止條件。對於同步HARQ,可以在單個交錯的子訊框中發送對封包的所有傳輸。對於非同步HARQ,對封包的每個傳輸可以是在任何子訊框中發送的。
UE可以位於多個BS的覆蓋範圍內。可以選擇該等BS之一來為UE服務。可以至少部分地基於各種標準(例如,接收信號強度、接收信號品質、路徑損耗等)來選擇服務BS。接收信號品質可以經由信號與干擾加雜訊比(SINR)或參考信號接收品質(RSRQ)或某種其他度量來量化。UE可以操作於在其中UE可以觀察到來自一或多個產生干擾的BS的強干擾的顯性干擾場景中。
儘管本文描述的實例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以適用於其他無線通訊系統,例如NR或5G技術。
新的無線電(NR)可以指被配置為根據新的空中介面(例如,除了基於正交分頻多工存取(OFDMA)的空中介面之外)或固定的傳輸層(例如,除了網際網路協定(IP)之外)進行操作的無線電。在各態樣中,NR可以在上行鏈路上利用具有CP的OFDM(在本文中稱為循環字首OFDM或CP-OFDM)及/或SC-FDM,可以在下行鏈路上利用CP-OFDM,以及包括支援使用TDD的半雙工操作。在各態樣,NR可以例如在上行鏈路上利用具有CP的OFDM(在本文中稱為CP-OFDM)及/或離散傅裡葉變換展頻正交分頻多工(DFT-s-OFDM),可以在下行鏈路上利用CP-OFDM,以及包括支援使用TDD的半雙工操作。NR可以包括將寬頻寬(例如,80兆赫(MHz)及以上)作為目標的增強型行動寬頻(eMBB),將高載波頻率(例如,60千兆赫(GHz))作為目標的毫米波(mmW),將非與舊版相容的MTC技術作為目標的大規模MTC(mMTC),及/或將超可靠低潛時通訊(URLLC)服務作為目標的關鍵任務。
可以支援100 MHz的單分量載波頻寬。NR資源區塊可以在0.1毫秒的持續時間期間橫跨具有75千赫(kHz)的次載波頻寬的12個次載波。每個無線電訊框可以包括長度為10毫秒的50個子訊框。因此,每個子訊框可以具有0.2毫秒的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(例如,DL或者UL),以及針對每個子訊框的鏈路方向可以是動態地切換的。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。用於NR的UL和DL子訊框可以如下文相對於圖7和圖8更詳細地描述的。
可以支援波束成形,以及可以動態地配置波束方向。亦可以支援具有預編碼的MIMO傳輸。DL中的MIMO配置可以支援多達8個發送天線,具有多達8個串流的多層DL傳輸和每個UE多達2個串流。可以支援每個UE多達2個串流的多層傳輸。可以利用多達8個服務細胞來支援對多個細胞的聚合。替代地,除了基於OFDM的介面之外,NR可以支援不同的空中介面。NR網路可以包括諸如中央單元或分散式單元的實體。
RAN可以包括中央單元(CU)和分散式單元(DU)。NR BS(例如,gNB、5G節點B、節點B、發送接收點(TRP)、存取點(AP))可以對應於一或多個BS。NR細胞可以被配置為存取細胞(ACell)或僅資料細胞(DCell)。例如,RAN(例如,中央單元或分散式單元)可以配置細胞。DCell可以是用於載波聚合或雙連接的細胞,但不用於初始存取、細胞選擇/重選或交遞。在一些情況下,DCell可能不發送同步信號—在一些情況下,DCell可以發送SS。NR BS可以向UE發送用於指示細胞類型的下行鏈路信號。至少部分地基於細胞類型指示,UE可以與NR BS進行通訊。例如,UE可以至少部分地基於所指示的細胞類型來決定要考慮用於細胞選擇、存取、交遞及/或量測的NR BS。
如前述,提供圖4僅作為實例。其他實施是可能的以及可以不同於相對於圖4描述的實例。
圖5圖示根據本案內容的各態樣的分散式RAN 500的示例性邏輯架構。5G存取節點506可以包括存取節點控制器(ANC)502。ANC可以是分散式RAN 500的中央單元(CU)。到下一代核心網路(NG-CN)504的回載介面可以終止於ANC處。到相鄰下一代存取節點(NG-AN)的回載介面可以終止於ANC處。ANC可以包括一或多個TRP 508(其亦可以被稱為BS、NR BS、節點B、5G NB、AP、gNB或某種其他術語)。如前述,TRP可以與「細胞」互換使用。
TRP 508可以是分散式單元(DU)。TRP可以連接到一個ANC(ANC 502)或多於一個的ANC(未圖示)。例如,對於RAN共享、無線電即服務(RaaS)和服務特定AND部署,TRP可以連接到多於一個ANC。TRP可以包括一或多個天線埠。TRP可以被配置為單獨地(例如,動態選擇)或聯合地(例如,聯合傳輸)為到UE的訊務服務。
RAN 500的本端架構可以用於說明前傳定義。架構可以被定義為支援跨越不同部署類型的前傳解決方案。例如,架構可以至少部分基於傳輸網路能力(例如,頻寬、潛時及/或信號干擾)。
該架構可以與LTE共享特徵及/或部件。根據各態樣,下一代AN(NG-AN)510可以支援與NR的雙連接。NG-AN可以共享用於LTE和NR的共同前傳。
該架構可以賦能在TRP 508之間和之中的協調。例如,可以在TRP內及/或經由ANC 502跨越TRP來預設協調。根據各態樣,可能不需要/不存在TRP間介面。
根據各態樣,分離邏輯功能的動態配置可以存在於RAN 500的架構內。PDCP、RLC、MAC協定可以適應性地放置在ANC或TRP處。
根據某些態樣,BS可以包括中央單元(CU)(例如,ANC 502)及/或一或多個分散式單元(例如,一或多個TRP 508)。
如前述,提供圖5僅作為實例。其他實例是可能的以及可以不同於關於圖5描述的實例。
圖6圖示根據本案內容的各態樣的分散式RAN 600的示例性實體架構。集中式核心網路單元(C-CU)602可以託管核心網路功能。C-CU可以是集中部署的。C-CU功能可以被卸載(例如,到改良的無線服務(AWS)),以努力處理峰值容量。
集中式RAN單元(C-RU)604可以託管一或多個ANC功能。可選地,C-RU可以在本端託管核心網路功能。C-RU可以分散式部署。C-RU可能更接近網路邊緣。
分散式單元(DU)606可以託管一或多個TRP。DU可以位於網路的邊緣,具有射頻(RF)功能。
如前述,提供圖6僅作為實例。其他實例是可能的以及可以不同於關於圖6描述的實例。
圖7是圖示DL-中心子訊框或無線通訊結構的實例的圖700。DL-中心子訊框可以包括控制部分702。控制部分702可以存在於DL-中心子訊框的初始或開始部分中。控制部分702可以包括與DL-中心子訊框的各個部分相對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分702可以是實體DL控制通道(PDCCH),如圖7所示。
DL-中心子訊框亦可以包括DL資料部分704。DL資料部分704有時可以被稱為DL-中心子訊框的有效負荷。DL資料部分704可以包括用於從排程實體(例如,UE或BS)向從屬實體(例如,UE)傳送DL資料的通訊資源。在一些配置中,DL資料部分704可以是實體DL共享通道(PDSCH)。
DL-中心子訊框亦可以包括UL短脈衝部分706。UL短脈衝部分706有時可以被稱為UL脈衝、UL脈衝部分、共用UL短脈衝、短脈衝、UL短脈衝、共用UL短脈衝、共用UL短脈衝部分,及/或各種其他合適的術語。在一些態樣,UL短脈衝部分706可以包括一或多個參考信號。另外或替代地,UL短脈衝部分706可以包括與DL-中心子訊框的各個其他部分相對應的回饋資訊。例如,UL短脈衝部分706可以包括與控制部分702及/或資料部分704相對應的回饋資訊。可以包括於UL短脈衝部分706中的資訊的非限制性實例包括ACK信號(例如,PUCCH ACK、PUSCH ACK、即時ACK),NACK信號(例如,PUCCH NACK、PUSCH NACK、即時NACK),排程請求(SR),緩衝器狀態報告(BSR),HARQ指示符,通道狀態指示(CSI),通道品質指示符(CQI),探測參考信號(SRS),解調參考信號(DMRS),PUSCH資料,及/或各種其他合適類型的資訊。UL短脈衝部分706可以包括額外的或替代的資訊,例如,與隨機存取通道(RACH)程序有關的資訊、排程請求以及各種其他合適類型的資訊。
如圖7所示,DL資料部分704的結束可以與UL短脈衝部分706的開始在時間上分離。該時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該分離為從DL通訊(例如,由從屬實體(例如,UE)進行的接收操作)切換到UL通訊(例如,由從屬實體(例如,UE)進行的發送)提供時間。前述僅僅是DL-中心無線通訊結構的一個實例,以及可以存在具有類似特徵的替代結構,而不一定偏離本文描述的各態樣。
如前述,提供圖7僅作為實例。其他實例是可能的以及可以不同於關於圖7描述的實例。
圖8是圖示UL-中心子訊框或無線通訊結構的實例的圖800。UL-中心子訊框可以包括控制部分802。控制部分802可以存在於UL-中心子訊框的初始或開始部分中。圖8中的控制部分802可以類似於上文參照圖7描述的控制部分702。在一些配置中,控制部分802可以是實體DL控制通道(PDCCH)。
UL-中心子訊框亦可以包括UL長脈衝部分804。UL長脈衝部分804有時可以被稱為UL-中心子訊框的有效負荷。UL部分可以指用於從從屬實體(例如,UE)向排程實體(例如,UE或BS)傳送UL資料的通訊資源。
如圖8所示,控制部分802的結束可以與UL長脈衝部分804的開始在時間上分離。該時間分離有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該分離為從DL通訊(例如,由排程實體進行的接收操作)切換到UL通訊(例如,由排程實體進行的發送)提供時間。
UL-中心子訊框亦可以包括UL短脈衝部分806。圖8中的UL短脈衝部分806可以類似於上文參考圖7描述的UL短脈衝部分706,以及可以包括上文結合圖7描述的資訊中的任何資訊。前述僅僅是UL-中心無線通訊結構的一個實例,以及可以存在具有類似特徵的替代結構,而不一定偏離本文描述的各態樣。
在一些情況下,兩個或兩個以上從屬實體(例如,UE)可以利用側鏈路信號來彼此通訊。此種側鏈路通訊的實際應用可以包括公共安全,鄰近服務,UE到網路中繼,車輛到車輛(V2V)通訊,萬物互聯(IoE)通訊,IoT通訊,關鍵任務網格,及/或各種其他合適的應用。通常,側鏈路信號可以指在不經由排程實體(例如,UE或BS)來對該通訊進行中繼的情況下從一個從屬實體(例如,UE1)向另一從屬實體(例如,UE2)傳送的信號,即使排程實體可以用於排程及/或控制目的。在一些實例中,可以使用經授權的頻譜來傳送側鏈路信號(與通常使用未授權的頻譜的無線區域網路不同)。
在一個實例中,諸如訊框的無線通訊結構可以包括UL-中心子訊框和DL-中心子訊框兩者。在該實例中,可以至少部分地基於所發送的UL資料的量和DL資料的量,來動態調整訊框中的UL-中心子訊框與DL-中心子訊框的比率。例如,若存在更多的UL資料,則可以增加UL-中心子訊框與DL-中心子訊框的比率。相反,若存在更多的DL資料,則可以降低UL-中心子訊框與DL-中心子訊框的比率。
如前述,提供圖8僅作為實例。其他實例是可能的以及可以不同於關於圖8描述的實例。
在傳統LTE無線電存取技術中,對給定的傳統TTI(例如,1毫秒子訊框)中的PUCCH和PUSCH通訊的傳輸可以取決於UE的能力。例如,若UE能夠執行並行傳輸,則UE可以同時(例如,使用功率分離)在PUCCH上發送控制通訊以及在PUSCH上發送資料通訊。若UE不能夠執行並行傳輸,則UE可以遵循一或多個規則來配置一或多個上行鏈路傳輸。例如,若UE具有要發送的資料,則UE可以在PUSCH上發送上行鏈路控制資訊(UCI)。若UE沒有要發送的資料,則UE可以在PUCCH上發送UCI。
在能夠使用諸如新無線電的縮短的TTI(sTTI)的無線電存取技術中,可能存在以下情況:在同一時間間隔(例如,子訊框、時槽及/或另一種類型的無線通訊結構)中要發送PUSCH通訊、PUCCH通訊、sPUSCH通訊及/或sPUCCH通訊的組合。由於針對PUSCH及/或PUCCH通訊的TTI和針對sPUSCH及/或sPUSCH通訊的sTTI的長度不同,所以在該等場景中賦能並行傳輸是困難的。當UE辨識在排程的TTI通訊與排程的sTTI通訊之間的潛在衝突時,本文描述的技術協助配置對上行鏈路通訊的傳輸。在一些態樣,與TTI通訊相比,由於更緊密的周轉時間和sTTI通訊的更嚴格的潛時敏感性,UE可以對sTTI通訊劃分優先次序。
圖9是無線通訊的方法900的流程圖。該方法可以由UE(例如,圖1的UE 120,裝置1200/1200'等)執行。
在910處,UE可以辨識在排程的傳統傳輸時間間隔(TTI)通訊與排程的縮短的TTI(sTTI)通訊之間的潛在衝突,傳統TTI通訊具有比與sTTI通訊相關聯的sTTI持續時間要長的傳統TTI持續時間。例如,當通訊在時間上重疊時,UE可以決定傳統TTI通訊和sTTI通訊發生衝突。在一些態樣,UE可以接收針對通訊的授權,以及授權可以指示將在重疊的時間段(例如,相同的時槽、子訊框等)中要發送傳統TTI通訊和sTTI通訊。
在一些態樣,TTI通訊可以指具有1毫秒長度、在LTE中使用的長度等的通訊。在一些態樣,此可以被稱為傳統TTI通訊。在一些態樣,傳統TTI通訊是實體上行鏈路控制通道(PUCCH)通訊。在一些態樣,傳統TTI通訊是實體上行鏈路共享通道(PUSCH)通訊。
在一些態樣,sTTI通訊可以指具有小於1毫秒的長度、具有可配置長度(例如,在一些態樣中為143微秒)等的通訊。在一些態樣,sTTI通訊可以具有比傳統TTI通訊要短的持續時間。在一些態樣,sTTI通訊是縮短的實體上行鏈路控制通道(sPUCCH)通訊。在一些態樣,sTTI通訊是縮短的實體上行鏈路共享通道(sPUSCH)通訊。在一些態樣,sTTI通訊包括sPUCCH通訊和sPUSCH通訊兩者。
在920處,UE可以決定傳統TTI通訊是否在被發送的閾值時間內。在一些態樣,傳統TTI通訊可以與準備用於傳輸的傳統TTI通訊的截止時間相關聯,以及UE可以決定截止時間是否已經過去。在此種情況下,閾值時間可以大於零(例如,在準備用於傳輸的傳統TTI通訊的截止時間與實際傳輸之間的時間量)。另外地或替代地,閾值時間等於零,此可以指示傳統TTI通訊的傳輸已經開始。如在此所使用的,決定傳統TTI通訊是否在被發送的閾值時間內可以指的是決定傳統TTI通訊的傳輸是否已經開始,決定傳統TTI通訊的傳輸開始之前的截止時間是否已經過去了,等等。
在一些態樣,至少部分地基於以下各項中的一項或多項來決定閾值時間:與UE相關聯的時序提前值,TTI通訊的PUCCH格式(例如,傳統PUCCH格式),或其某種組合。
在930處,UE可以至少部分地基於該決定來發送sTTI通訊、傳統TTI通訊或其任何組合中的至少一者。在一些態樣中,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定傳統TTI通訊不在被發送的閾值時間內,來發送與來自傳統TTI通訊的上行鏈路控制資訊多工的sTTI通訊。以此方式,UE可以對潛時敏感的sTTI通訊劃分優先次序,同時亦從傳統TTI通訊發送UCI,從而增加傳輸量並減少潛時。
在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定傳統TTI通訊不在被發送的閾值時間內,來發送與傳統TTI通訊的至少一部分多工的sTTI通訊。在一些態樣,至少部分地基於以下各項中的一項或多項來決定傳統TTI通訊的一部分:sTTI通訊的長度,當sTTI通訊是縮短的實體上行鏈路控制通道(sPUCCH)通訊時的sTTI通訊的格式,或者其某種組合。在一些態樣,若sPUCCH被配置為小於或等於閾值大小(例如,等於兩個位元),則UE可以僅將傳統TTI通訊的ACK/NACK位元與sPUCCH通訊(及/或sPUSCH通訊)進行多工處理。在一些態樣,若sPUCCH被配置為大於或等於閾值大小(例如,等於一個時槽),則UE可以將ACK/NACK位元及/或通道品質指示符(CQI)、預編碼矩陣指示符(PMI)及/或秩指示符(RI)與sPUCCH通訊(及/或sPUSCH通訊)多工。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定傳統TTI通訊不在被發送閾值時間內,來僅發送sTTI通訊(而不是傳統TTI通訊)。例如,來自傳統TTI通訊的UCI(例如PUCCH)可以不在sTTI通訊上背負或多工。以此方式,UE可以發送傳統TTI通訊的一部分,同時對sTTI通訊劃分優先次序,從而增加傳輸量並減少潛時。
在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括發送傳統TTI通訊,以及至少部分地基於決定傳統TTI通訊在被發送的閾值時間內來丟棄sTTI通訊。以此種方式,UE可以藉由發送已經處理過的傳統TTI通訊(例如,為了避免在稍後時間重新處理傳統TTI通訊)來節約UE資源(例如,處理資源、記憶體資源等)。
在一些態樣中,傳統TTI通訊是實體上行鏈路控制通道(PUCCH)通訊。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定PUCCH通訊在被發送的閾值時間內以及PUCCH通訊具有第一格式,來發送PUCCH通訊,以及丟棄sTTI通訊。在一些態樣,第一格式包括以下各項中的至少一項:格式1,格式1a,格式1b或格式3。在一些情況下,當PUCCH是格式1、格式1a、格式1b或者格式3時,將PUCCH符號的子集打孔可能會由於正交性損失而跨越不同的上行鏈路傳輸來造成干擾。此外,若PUCCH通訊正在進行(例如,根據截止時間),則丟棄PUCCH通訊可能對在與PUCCH通訊相同資源上多工的其他傳輸造成干擾。因此,在此種情況下,當PUCCH通訊的傳輸已經開始時(例如根據截止時間),UE可能不將PUCCH通訊打孔,以及可能丟棄sTTI通訊,從而減少干擾。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定PUCCH通訊在被發送的閾值時間內以及PUCCH通訊具有第一格式,來發送sTTI通訊,以及丟棄PUCCH通訊的一或多個重疊符號(例如,與sTTI通訊重疊的符號)以及PUCCH通訊的剩餘部分(例如,沒有足夠的資源進行發送的部分)。以此方式,可以對sTTI通訊劃分優先次序。
在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定PUCCH通訊在被發送的閾值時間內以及PUCCH通訊具有第二格式,來將PUCCH通訊打孔以及發送sTTI通訊。在一些態樣,第二格式包括以下各項中的至少一項:格式2,格式4或格式5。當PUCCH是格式2、格式4或格式5時,則將PUCCH符號的子集打孔可以是可能的,而不引起干擾。然而,在中斷PUCCH通訊以發送sTTI通訊之後恢復對PUCCH通訊的傳輸可能是困難的。因此,在一些態樣,UE可以對PUCCH通訊進行打孔,以及可以丟棄PUCCH通訊的剩餘部分(例如,在PUCCH通訊被打孔的時間之後的部分)。在一些態樣,打孔可以指的是中斷已經開始的傳統TTI通訊,以便發送sTTI通訊。以此方式,UE可以對潛時敏感的sTTI通訊劃分優先次序。如本文其他地方所描述的,在一些態樣,可以將sTTI通訊與傳統TTI通訊的至少一部分進行多工處理。例如,在一些態樣,sTTI通訊可以僅與傳統TTI通訊的ACK/NACK位元多工。在一些態樣,sTTI通訊可以不與傳統TTI通訊的ACK/NACK位元多工。在一些態樣,傳統TTI通訊的其他UCI可以與sTTI通訊(例如CQI、PMI及/或RI)多工。在一些態樣,sTTI通訊可以不與傳統TTI通訊的其他UCI多工。
在一些態樣,傳統TTI通訊是實體上行鏈路共享通道(PUSCH)通訊。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定PUSCH通訊在被發送的閾值時間內,來對PUSCH通訊進行打孔以及發送sTTI通訊。在一些態樣,UE可以丟棄PUSCH通訊的剩餘部分(例如,在PUSCH通訊被打孔的時間之後的部分)。以此方式,UE可以對潛時敏感的sTTI通訊劃分優先次序。在一些態樣,PUSCH通訊的一部分(例如,在PUSCH上背負的UCI)可以與sTTI通訊多工,從而增加傳輸量並減少潛時。在一些態樣,至少部分地基於以下各項中的一項或多項來決定傳統TTI通訊的一部分:sTTI通訊的長度,當sTTI通訊是縮短的實體上行鏈路控制通道(sPUCCH)通訊時sTTI通訊的格式,或其某種組合,如前述。
在一些態樣,sTTI通訊包括sPUCCH通訊和sPUSCH通訊兩者。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定UE能夠發送並行傳輸,來並行地發送sPUCCH通訊和sPUSCH通訊。在一些態樣,發送sTTI通訊或傳統TTI通訊中的至少一者包括:至少部分地基於決定UE不能夠發送並行傳輸以及UE具有在sPUSCH上發送的資料,來使用sPUSCH通訊發送上行鏈路控制資訊。以此種方式,可以增加傳輸量以及可以對UCI的傳輸劃分優先次序。
在一些態樣,UE被配置為在載波聚合PUCCH群組上限制sTTI通訊的支援長度的數量。例如,UE可以被配置為每個PUCCH群組僅支援一個上行鏈路sTTI長度(例如,具有兩個符號的長度的sTTI,具有一個時槽的長度的sTTI等)。以此種方式,UE能夠跨越具有不同TTI長度(例如,傳統TTI長度和有限數量的sTTI長度,例如一)的多個併發上行鏈路傳輸進行功率分割。若支援大於閾值數量的sTTI長度,則UE可能不能在傳統TTI及/或不同長度的多個sTTI上併發傳輸,從而導致不傳輸資訊。藉由限制所支援的sTTI長度的數量,UE可以確保足夠的功率可用於併發傳輸。
在一些態樣,出於上述原因,UE被配置為跨越多個載波聚合PUCCH群組來限制sTTI通訊的支援長度的數量。在一些態樣,UE被配置為跨越多個載波聚合PUCCH群組來分割發射功率,用於發送sTTI通訊或傳統TTI通訊中的至少一者。例如,若UE支援跨越不同PUCCH群組的不同sTTI長度,則UE可以採用半靜態功率分割方案。在此種情況下,UE可以半靜態地配置針對每個PUCCH群組的最大發射功率。在一些態樣,發射功率被分割以確保不超過UE的最大發射功率。例如,跨越所有PUCCH群組的最大發射功率之和可以小於或等於UE的最大發射功率。以此方式,UE可以保證不超過UE的最大發射功率。
儘管圖9圖示無線通訊方法的示例方塊,但在一些態樣,該方法可以包括與圖9中所示的相比額外的方塊、較少的方塊、不同的方塊或者不同排列的方塊。另外或替代地,圖9中所示的兩個或兩個以上方塊可以並行執行。
圖10是無線通訊的方法1000的流程圖。該方法可以由UE(例如,圖1的UE 120、裝置1200/1200'等)執行。
在1005處,UE可以在縮短的實體上行鏈路控制通道(sPUCCH)及/或縮短的實體上行鏈路共享通道(sPUSCH)上產生傳輸。在一些態樣,傳輸可以包括上行鏈路控制資訊(UCI)。在一些態樣,傳輸可以不包括UCI。
在1010處,UE可以決定PUCCH通訊是否在被發送的閾值時間內。若PUCCH通訊不在被發送的閾值時間內(1010-否),則UE可以將來自PUCCH通訊的UCI與sTTI通訊進行多工處理(1015),以及可以發送所多工的通訊(1020)。在一些態樣,sTTI通訊可以包括UCI(例如,來自sPUCCH通訊及/或sPUSCH通訊)。在一些態樣,UE可以在sPUCCH及/或sPUSCH上發送多工的通訊。
若PUCCH通訊在被發送的閾值時間內(1010-是),則UE可以決定PUCCH通訊的格式(1025)。在1030處,若PUCCH通訊的格式是格式1、格式1a、格式1b及/或格式3,則UE可以丟棄sTTI通訊(例如,sPUCCH通訊及/或sPUSCH通訊)。
在1035處,若PUCCH通訊的格式是格式2、格式4或格式5,則UE可以利用sTTI通訊(例如,sPUCCH通訊及/或sPUSCH通訊)來對PUCCH通訊打孔。此外,在1040處,UE可以丟棄剩餘的PUCCH通訊(例如,在打孔發生之後的時間點)。
儘管圖10圖示無線通訊的方法的示例性方塊,但在一些態樣,該方法可以包括與圖10所示的相比額外的方塊、要少的方塊、不同的方塊或者不同排列的方塊。另外或者替代地,圖10中圖示的兩個或兩個以上方塊可以並行執行。
圖11是無線通訊方法1100的流程圖。該方法可以由UE(例如,圖1的UE 120、裝置1200/1200'等)執行。
在1105處,UE可以在縮短的實體上行鏈路控制通道(sPUCCH)及/或縮短的實體上行鏈路共享通道(sPUSCH)上產生傳輸。在一些態樣,該傳輸可以包括UCI。在一些態樣,該傳輸可以不包括UCI。
在1110處,UE可以決定PUSCH通訊是否在被發送的閾值時間內。若PUSCH通訊不在被發送的閾值時間內(1110-否),則UE可以使來自PUSCH通訊的UCI(例如,若PUSCH通訊包括UCI)與sTTI通訊多工,或者可以丟棄PUSCH通訊(例如,若PUSCH通訊不包括UCI)(1115),以及可以發送多工的通訊(1120)。在一些態樣,sTTI通訊可以包括UCI(例如,來自sPUCCH通訊及/或sPUSCH通訊)。在一些態樣,UE可以在sPUCCH及/或sPUSCH上發送所多工的通訊。以此方式,UE可以在增加傳輸量的同時對sTTI通訊的傳輸劃分優先次序(例如,藉由將諸如UCI的一部分PUSCH通訊與sTTI通訊進行多工處理)。
若PUSCH通訊在被發送的閾值時間內(1110-是),則UE可以決定PUSCH通訊的傳輸是否已經開始(1125)。在1130處,若PUSCH通訊的傳輸尚未開始以及用於丟棄PUSCH通訊的截止時間已經過去(例如,PUSCH通訊在被發送的閾值時間內),則UE可以丟棄sTTI通訊(例如, sPUCCH通訊及/或sPUSCH通訊)。以此種方式,UE可以藉由發送已經處理過及/或開始傳輸的傳統TTI通訊(例如,以避免在稍後時間重新處理及/或重新發送傳統TTI通訊)來節約UE資源(例如,處理資源、記憶體資源等)。
在1135處,若PUSCH通訊的傳輸已經開始,則UE可以利用sTTI通訊(例如,sPUCCH通訊及/或sPUSCH通訊)來對PUSCH通訊打孔。此外,在1140處,UE可以丟棄剩餘的PUSCH通訊(例如,在打孔發生之後的時間點)。以此方式,UE可以對潛時敏感的sTTI通訊劃分優先次序。
儘管圖11圖示無線通訊的方法的示例方塊,但在一些態樣,該方法可以包括與圖11所示的相比額外的方塊、要少的方塊、不同的方塊或者不同排列的方塊。另外或者替代地,圖11中所示的兩個或兩個以上方塊可以並行執行。
圖12是圖示示例性裝置1202中的不同模組/構件/部件之間的資料流的概念資料流圖1200。裝置1202可以是UE,例如本文描述的UE中的一或多個UE。在一些態樣,裝置1202包括接收模組1204、辨識模組1206、決定模組1208及/或發送模組1210。
接收模組1204可以從eNB 1250接收資料1212,例如用於傳統TTI通訊及/或sTTI通訊的一或多個上行鏈路授權及/或下行鏈路授權。接收模組1204可以將此種資料(例如資料1214)提供給辨識模組1206。辨識模組1206可以辨識在排程的傳統TTI通訊和排程的sTTI通訊之間的潛在衝突,以及可以將關於潛在衝突的資料1216提供給決定模組1208。決定模組1208可以決定傳統TTI通訊是否在被發送的閾值時間內,以及可以向發送模組1210提供關於該決定的資料1218。發送模組1210可以至少部分地基於資料1220來發送sTTI通訊、傳統TTI通訊或其任何組合中的至少一者作為資料1220。
該裝置可以包括執行上述圖9、圖10及/或圖11的流程圖中的演算法的方塊之每一者方塊的額外模組。以此方式,在上述圖9、圖10及/或圖11的流程圖之每一者方塊可以由模組執行,以及該裝置可以包括該等模組中的一或多個模組。模組可以是被特別配置為執行所述過程/演算法的一或多個硬體部件,由被配置為執行所述過程/演算法的處理器來實施,儲存於電腦可讀取媒體中用於由處理器來實施,或者其某種組合。
圖12中所示的模組的數量和佈置作為實例而提供。在實踐中,可能存在與圖12所示的相比額外的模組、要少的模組、不同的模組,或者不同佈置的模組。此外,圖12中圖示的兩個或兩個以上模組可以在單個模組中實施,或者圖12中所示的單個模組可以被實施為多個分散式模組。另外或替代地,圖12中所示的一組模組(例如,一或多個模組)可以執行被描述為由圖12所示的另一組模組執行的一或多個功能。
圖13是圖示採用處理系統1302的裝置1202'的硬體實施方式的實例的圖1300。裝置1202'可以是UE,例如本文別處描述的一或多個UE。
處理系統1302可以藉由匯流排架構(通常藉由匯流排1304來表示)來實施。取決於處理系統1302的特定應用和整體設計約束,匯流排1304可以包括任意數量的互連匯流排和橋接器。匯流排1304將各種電路連結在一起,包括藉由處理器1306表示的一或多個處理器及/或硬體部件,模組1204、1206、1208及/或1210,以及電腦可讀取媒體/記憶體1308。匯流排1304亦可以連結本領域公知的各種其他電路,例如時序源、周邊設備、穩壓器和功率管理電路,將不再進行任何進一步的描述。
處理系統1302可以耦合到收發機1310。收發機1310耦合到一或多個天線1312。收發機1310提供用於經由傳輸媒體與各種其他裝置進行通訊的構件。收發機1310從一或多個天線1312接收信號,從接收到的信號中提取資訊,以及將提取出的資訊提供給處理系統1302,特別是接收模組1204。另外,收發機1310從處理系統1302(特別是發送模組1210)接收資訊,以及至少部分地基於接收到的資訊,來產生將被應用於一或多個天線1312的信號。處理系統1302包括耦合到電腦可讀取媒體/記憶體1308的處理器1306。處理器1306負責一般處理,包括對儲存在電腦可讀取媒體/記憶體1308上的軟體的執行。當由處理器1306執行時,軟體使處理系統1302執行上文針對任何特定裝置描述的各種功能。電腦可讀取媒體/記憶體1308亦可以用於儲存在執行軟體時由處理器1306操縱的資料。處理系統亦包括模組1204、1206、1208及/或1210中的至少一者。模組可以是執行在處理器1306中、常駐/儲存在電腦可讀取媒體/記憶體1308中的軟體模組,耦合到處理器1306的一或多個硬體模組,或其某種組合。處理系統1302可以是UE 120的部件,以及可以包括記憶體282及/或TX MIMO處理器266、RX處理器258及/或控制器/處理器280中的至少一者。
在一些態樣中,用於無線通訊的裝置1202/1202'包括用於辨識在排程的傳統傳輸時間間隔(TTI)通訊和排程的縮短的TTI(sTTI)通訊之間的潛在衝突的構件,用於決定傳統TTI通訊是否在被發送的閾值時間內的構件,用於至少部分地基於該決定來發送sTTI通訊、傳統TTI通訊或其任何組合中的至少一者的構件,等等。上述構件可以是裝置1202及/或裝置1202'的處理系統1302中的上述模組的一者或多者,其被配置為執行藉由上述構件所述的功能。如前述,處理系統1302可以包括TX MIMO處理器266、RX處理器258及/或控制器/處理器280。以此方式,在一種配置中,上述構件可以是TX MIMO處理器266、RX處理器258及/或控制器/處理器280,其被配置為執行藉由前述構件所述的功能。
提供圖13作為實例。其他實施是可能的,以及可以不同於結合圖13所描述的實例。
應該理解,所揭示的過程/流程圖中的方塊的特定次序或層級是示例方法的圖示。基於設計偏好,可以理解的是,過程/流程圖中的方塊的特定次序或層級可以重新排列。此外,一些方塊可以被組合或省略。所附方法請求項以取樣次序呈現了各種方塊的要素,以及並不意味著限於所呈現的特定次序或層級。
提供先前的描述以使本領域的任何技藝人士能夠實踐本文描述的各個態樣。對該等態樣的各種修改對於本領域技藝人士來說將是顯而易見的,以及本文定義的一般原理可以應用於其他態樣。因此,申請專利範圍不意欲限於本文所示的各態樣,而是要符合與申請專利範圍的語言表達相一致的全部範疇,其中以單數形式引用要素並非意欲表示「一個且僅一個」,除非另有明確表述,否則表示「一或多個」。本文使用詞語「示例性」來表示「用作示例、實例或說明」。本文描述為「示例性」的任何態樣不一定被解釋為較佳的或者優於其他態樣。除非明確指出,否則術語「一些」是指一或多個。諸如「A、B或C中的至少一個」、「A、B和C中的至少一個」和「A、B、C或其任何組合」的組合包括A、B及/或C,以及可以包括倍數的A、倍數的B或倍數的C。特別地,諸如「A、B或C中的至少一個」、「A、B和C中的至少一個」以及「A、B、C或其任何組合」的組合可以是僅A、僅B、僅C、A和B、A和C、B和C或者A和B和C,其中任何此種組合可以包含A、B或C的一或多個成員。本領域一般技藝人士已知或稍後將知的貫穿本案內容描述的各個態樣的要素的所有結構和功能均等物明確地藉由引用方式併入本文,以及意欲被申請專利範圍所涵蓋。此外,在本文中揭露的任何內容皆不意欲貢獻給公眾,不管此種揭露內容是否在申請專利範圍中明確記載。除非使用短語「用於……的構件」來明確敘述要素,否則沒有申請專利範圍要素要被解釋為手段加功能。
100‧‧‧網路102a‧‧‧巨集細胞102b‧‧‧微微細胞102c‧‧‧毫微微細胞110‧‧‧基地台110a‧‧‧巨集BS/BS110b‧‧‧BS110c‧‧‧BS110d‧‧‧BS120‧‧‧UE120a‧‧‧UE120b‧‧‧UE120c‧‧‧UE120d‧‧‧UE130‧‧‧網路控制器200‧‧‧方塊圖212‧‧‧資料來源220‧‧‧發送處理器230‧‧‧發送(TX)多輸入多輸出(MIMO)處理器232a‧‧‧調制器(MOD)232t‧‧‧調制器(MOD)234a‧‧‧天線234t‧‧‧天線236‧‧‧MIMO偵測器238‧‧‧接收處理器239‧‧‧資料槽240‧‧‧控制器/處理器242‧‧‧記憶體244‧‧‧通訊單元246‧‧‧排程器252a‧‧‧天線252r‧‧‧天線254a‧‧‧解調器(DEMOD)/調制器254r‧‧‧解調器(DEMOD)/調制器256‧‧‧MIMO偵測器258‧‧‧接收(RX)處理器260‧‧‧資料槽262‧‧‧資料來源264‧‧‧發送處理器266‧‧‧TX MIMO處理器280‧‧‧控制器/處理器282‧‧‧記憶體290‧‧‧控制器/處理器292‧‧‧記憶體294‧‧‧通訊單元300‧‧‧訊框結構410‧‧‧子訊框格式420‧‧‧子訊框格式500‧‧‧分散式RAN502‧‧‧存取節點控制器(ANC)504‧‧‧下一代核心網路(NG-CN)506‧‧‧5G存取節點508‧‧‧TRP510‧‧‧下一代AN(NG-AN)600‧‧‧分散式RAN602‧‧‧集中式核心網路單元(C-CU)604‧‧‧集中式RAN單元(C-RU)606‧‧‧分散式單元(DU)700‧‧‧圖702‧‧‧控制部分704‧‧‧DL資料部分706‧‧‧UL短脈衝部分800‧‧‧圖802‧‧‧控制部分804‧‧‧UL長脈衝部分806‧‧‧UL短脈衝部分900‧‧‧方法910‧‧‧步驟920‧‧‧步驟930‧‧‧步驟1000‧‧‧方法1005‧‧‧步驟1010‧‧‧步驟1015‧‧‧步驟1020‧‧‧步驟1025‧‧‧步驟1030‧‧‧步驟1035‧‧‧步驟1040‧‧‧步驟1100‧‧‧無線通訊方法1105‧‧‧步驟1110‧‧‧步驟1115‧‧‧步驟1120‧‧‧步驟1125‧‧‧步驟1130‧‧‧步驟1135‧‧‧步驟1140‧‧‧步驟1200‧‧‧概念資料流圖1202‧‧‧裝置1202'‧‧‧裝置1204‧‧‧接收模組1206‧‧‧辨識模組1208‧‧‧決定模組1210‧‧‧發送模組1212‧‧‧資料1214‧‧‧資料1216‧‧‧資料1218‧‧‧資料1220‧‧‧資料1250‧‧‧eNB1300‧‧‧圖1302‧‧‧處理系統1304‧‧‧匯流排1306‧‧‧處理器1308‧‧‧電腦可讀取媒體/記憶體1310‧‧‧收發機1312‧‧‧天線
圖1是圖示無線通訊網路的實例的圖。
圖2是圖示在無線通訊網路中使用者設備(UE)與基地台相通訊的的實例的圖。
圖3是圖示在無線通訊網路中的訊框結構的實例的圖。
圖4是圖示具有普通循環字首的兩個示例性子訊框格式的圖。
圖5是圖示分散式無線電存取網路(RAN)的示例性邏輯架構的圖。
圖6是圖示分散式RAN的示例性實體架構的圖。
圖7是圖示下行鏈路(DL)中心無線通訊結構的實例的圖。
圖8是圖示上行鏈路(UL)中心無線通訊結構的實例的圖。
圖9至圖11是示例性無線通訊方法的流程圖。
圖12是圖示在示例性裝置中的不同模組/構件/部件之間的資料流的概念資料流圖。
圖13是圖示採用處理系統的裝置的硬體實施方式的實例的圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
1000‧‧‧方法
1005‧‧‧步驟
1010‧‧‧步驟
1015‧‧‧步驟
1020‧‧‧步驟
1025‧‧‧步驟
1030‧‧‧步驟
1035‧‧‧步驟
1040‧‧‧步驟

Claims (30)

  1. 一種無線通訊方法,包括以下步驟:由一使用者設備(UE)辨識在一排程的傳統傳輸時間間隔(TTI)通訊與一排程的縮短的TTI(sTTI)通訊之間的一潛在衝突,該傳統TTI通訊具有比與該sTTI通訊相關聯的一sTTI持續時間要長的一傳統TTI持續時間;由該UE決定該傳統TTI通訊是否在被發送的一閾值時間內,被發送的該閾值時間等於或小於在準備用於傳輸的該傳統TTI通訊的一截止時間與該傳統TTI通訊的一實際傳輸之間的一時間量;及由該UE至少部分地基於該決定,來發送該sTTI通訊或該傳統TTI通訊中的至少一者。
  2. 如請求項1所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該傳統TTI通訊不在被發送的該閾值時間內,來發送與來自該傳統TTI通訊的上行鏈路控制資訊多工的該sTTI通訊。
  3. 如請求項1所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該傳統TTI通訊不在被發送 的該閾值時間內,來發送與該傳統TTI通訊的至少一部分多工的該sTTI通訊。
  4. 如請求項3所述之方法,其中該傳統TTI通訊的該部分是至少部分地基於以下各項中的一項或多項來決定的:該sTTI通訊的一長度、當該sTTI通訊是一縮短的實體上行鏈路控制通道(SPUCCH)通訊時的該sTTI通訊的格式,或者其某種組合。
  5. 如請求項1所述之方法,其中被發送的該閾值時間是至少部分地基於以下各項中的一項或多項來決定的:與該UE相關聯的一時序提前值、該TTI通訊的一實體上行鏈路控制通道(PUCCH)格式,或者其某種組合。
  6. 如請求項1所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該傳統TTI通訊在被發送的該閾值時間內,來發送該傳統TTI通訊以及丟棄該sTTI通訊。
  7. 如請求項1所述之方法,其中該傳統TTI通 訊是一實體上行鏈路控制通道(PUCCH)通訊;及其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該PUCCH通訊在被發送的該閾值時間內以及該PUCCH通訊具有一第一格式,來發送該PUCCH通訊以及丟棄該sTTI通訊。
  8. 如請求項7所述之方法,其中該第一格式包括以下各項中的至少一項:格式1、格式1a、格式1b,或格式3。
  9. 如請求項1所述之方法,其中該傳統TTI通訊是一實體上行鏈路控制通道(PUCCH)通訊;及其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該PUCCH通訊在被發送的該閾值時間內以及該PUCCH通訊具有一第一格式,來發送該sTTI通訊,以及丟棄該PUCCH通訊的一或多個重疊符號和該PUCCH通訊的一剩餘部分。
  10. 如請求項1所述之方法,其中該傳統TTI通訊是一實體上行鏈路控制通道(PUCCH)通訊;及 其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該PUCCH通訊在被發送的該閾值時間內以及該PUCCH通訊具有一第二格式,來對該PUCCH通訊打孔以及發送該sTTI通訊。
  11. 如請求項10所述之方法,其中該第二格式包括以下各項中的至少一項:格式2、格式4,或格式5。
  12. 如請求項10所述之方法,亦包括以下步驟:丟棄該PUCCH通訊的一剩餘部分。
  13. 如請求項1所述之方法,其中該傳統TTI通訊是一實體上行鏈路共享通道(PUSCH)通訊;及其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該PUSCH通訊在被發送的該閾值時間內,來對該PUSCH通訊打孔以及發送該sTTI通訊。
  14. 如請求項13所述之方法,亦包括以下步驟:丟棄該PUSCH通訊的一剩餘部分。
  15. 如請求項1所述之方法,其中該sTTI通訊包括以下各項中的至少一項: 一縮短的實體上行鏈路控制通道(sPUCCH)通訊、一縮短的實體上行鏈路共享通道(sPUSCH)通訊,或者其某種組合。
  16. 如請求項1所述之方法,其中該sTTI通訊包括一縮短的實體上行鏈路控制通道(sPUCCH)通訊和一縮短的實體上行鏈路共享通道(sPUSCH)通訊兩者。
  17. 如請求項16所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該UE能夠發送並行傳輸,來並行地發送該sPUCCH通訊和該sPUSCH通訊。
  18. 如請求項16所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該UE不能夠發送並行傳輸以及該UE具有要在該sPUSCH上發送的資料,來使用該sPUSCH通訊發送上行鏈路控制資訊。
  19. 如請求項16所述之方法,其中發送該sTTI通訊或該傳統TTI通訊中的至少一者的步驟包括以下步驟:至少部分地基於決定該UE不能夠發送並行傳輸以及該UE不具有要在該sPUSCH上發送的 資料,來使用該sPUCCH通訊發送上行鏈路控制資訊。
  20. 如請求項1所述之方法,其中被發送的該閾值時間等於零,並指示對該傳統TTI通訊的傳輸是否已經開始。
  21. 如請求項1所述之方法,其中該UE被配置為限制在以下各項中的至少一項上的該sTTI通訊的支援長度的一數量:一載波聚合實體上行控制通道(PUCCH)群組、多載波聚合PUCCH群組,或者其某種組合。
  22. 如請求項1所述之方法,其中該UE被配置為跨越多載波聚合實體上行鏈路控制通道(PUCCH)群組來分離發射功率,用於發送該sTTI通訊或該傳統TTI通訊中的至少一者。
  23. 一種用於無線通訊的裝置,包括:一記憶體;及至少一個處理器,其耦合到該記憶體並被配置為:辨識在一排程的傳統傳輸時間間隔(TTI)通訊與一排程的縮短的TTI(sTTI)通訊之間的一潛在衝突,該傳統TTI通訊具有比與該sTTI通訊相關聯的一sTTI持續時間要長的一傳統TTI持續時 間;決定該傳統TTI通訊是否在被發送的一閾值時間內,該閾值時間等於或小於在準備用於傳輸的該傳統TTI通訊的一截止時間與該傳統TTI通訊的一實際傳輸之間的一時間量;及至少部分地基於該決定,來發送該sTTI通訊或該傳統TTI通訊中的至少一者。
  24. 如請求項23所述之裝置,其中該至少一個處理器在發送該sTTI通訊或該傳統TTI通訊中的至少一者時被配置為:至少部分地基於決定該傳統TTI通訊不在被發送的該閾值時間內,來發送與來自該傳統TTI通訊的上行鏈路控制資訊多工的該sTTI通訊。
  25. 如請求項23所述之裝置,其中該至少一個處理器在發送該sTTI通訊或該傳統TTI通訊中的至少一者時被配置為:至少部分地基於決定該傳統TTI通訊不在被發送的該閾值時間內,來發送與該傳統TTI通訊的至少一部分多工的該sTTI通訊。
  26. 如請求項25所述之裝置,其中該傳統TTI通訊的該部分是至少部分地基於以下各項中的一項或多項來決定的: 該sTTI通訊的一長度、當該sTTI通訊是一縮短的實體上行鏈路控制通道(sPUCCH)通訊時的該sTTI通訊的一格式,或者其某種組合。
  27. 如請求項23所述之裝置,其中被發送的該閾值時間是至少部分地基於以下各項中的一項或多項來決定的:與該裝置相關聯的一時序提前值、該TTI通訊的一實體上行鏈路控制通道(PUCCH)格式,或者其某種組合。
  28. 如請求項23所述之裝置,其中該至少一個處理器在發送該sTTI通訊或該傳統TTI通訊中的至少一者時被配置為:至少部分地基於決定該傳統TTI通訊在被發送的該閾值時間內,來發送該傳統TTI通訊以及丟棄該sTTI通訊。
  29. 一種用於無線通訊的裝置,包括:用於辨識在一排程的傳統傳輸時間間隔(TTI)通訊與一排程的縮短的TTI(sTTI)通訊之間的一潛在衝突的構件,該傳統TTI通訊具有比與該sTTI通訊相關聯的一sTTI持續時間要長的一傳統TTI持續時間; 用於決定該傳統TTI通訊是否在被發送的一閾值時間內的構件,被發送的該閾值時間等於或小於在準備用於傳輸的該傳統TTI通訊的一截止時間與該傳統TTI通訊的一實際傳輸之間的一時間量;及用於至少部分地基於該決定來發送該sTTI通訊或該傳統TTI通訊中的至少一者的構件。
  30. 一種儲存用於無線通訊的電腦可執行代碼的非暫時性電腦可讀取媒體,包括用於進行以下操作的代碼:辨識在一排程的傳統傳輸時間間隔(TTI)通訊與一排程的縮短的TTI(sTTI)通訊之間的一潛在衝突,該傳統TTI通訊具有比與該sTTI通訊相關聯的sTTI持續時間要長的一傳統TTI持續時間;決定該傳統TTI通訊是否在被發送的一閾值時間內,被發送的該閾值時間等於或小於在準備用於傳輸的該傳統TTI通訊的一截止時間與該傳統TTI通訊的一實際傳輸之間的一時間量;及至少部分地基於該決定,來發送該sTTI通訊或該傳統TTI通訊中的至少一者。
TW107100409A 2017-02-06 2018-01-05 處理在傳統傳輸時間間隔(tti)通訊與縮短的tti通訊之間的衝突的技術和裝置 TWI762553B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762455506P 2017-02-06 2017-02-06
US62/455,506 2017-02-06
US15/660,117 US10251200B2 (en) 2017-02-06 2017-07-26 Techniques and apparatuses for handling collisions between legacy transmission time interval (TTI) communications and shortened TTI communications
US15/660,117 2017-07-26

Publications (2)

Publication Number Publication Date
TW201831037A TW201831037A (zh) 2018-08-16
TWI762553B true TWI762553B (zh) 2022-05-01

Family

ID=63038876

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107100409A TWI762553B (zh) 2017-02-06 2018-01-05 處理在傳統傳輸時間間隔(tti)通訊與縮短的tti通訊之間的衝突的技術和裝置

Country Status (9)

Country Link
US (2) US10251200B2 (zh)
EP (1) EP3577970B1 (zh)
CN (2) CN116170886A (zh)
AU (1) AU2017396800B2 (zh)
BR (1) BR112019015820A2 (zh)
CA (1) CA3048818A1 (zh)
SG (1) SG11201905879WA (zh)
TW (1) TWI762553B (zh)
WO (1) WO2018144155A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397941B2 (en) * 2016-08-12 2019-08-27 Lg Electronics Inc. Method of transmitting and receiving uplink signal in wireless communication system and apparatus therefor
EP3549372B1 (en) * 2016-11-30 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Method for handling users with different timing alignment requirements
US10251200B2 (en) 2017-02-06 2019-04-02 Qualcomm Incorporated Techniques and apparatuses for handling collisions between legacy transmission time interval (TTI) communications and shortened TTI communications
KR101988326B1 (ko) * 2017-04-01 2019-06-12 엘지전자 주식회사 무선 통신 시스템에서 짧은 전송 시간 간격을 지원하는 단말을 위한 상향링크 신호 전송 또는 수신 방법 및 이를 위한 장치
US11310778B2 (en) 2017-05-02 2022-04-19 Ntt Docomo, Inc. User terminal and radio communication method
WO2019013572A1 (en) 2017-07-12 2019-01-17 Samsung Electronics Co., Ltd. METHOD AND APPARATUS FOR TRANSMITTING CONTROL SIGNALS AND DATA BASED ON SHORT TTI IN A WIRELESS CELLULAR COMMUNICATION SYSTEM
US20190053218A1 (en) * 2017-08-10 2019-02-14 Electronics And Telecommunications Research Institute Method for transmitting and receiving uplink control information in mobile communication system, and apparatus for the same
US11153060B2 (en) 2017-12-29 2021-10-19 Comcast Cable Communications, Llc Selection of grant and CSI
EP3509343B1 (en) 2018-01-04 2022-03-09 Comcast Cable Communications, LLC Methods and systems for sp-csi information reporting
US10681648B2 (en) 2018-01-10 2020-06-09 Comcast Cable Communications, Llc Power control for channel state information
CA3056971A1 (en) 2018-09-27 2020-03-27 Comcast Cable Communications, Llc Power control for retransmissions
US11172495B2 (en) * 2019-01-11 2021-11-09 Qualcomm Incorporated Collision handling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057476A1 (en) * 2010-09-07 2012-03-08 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks
US20140119331A1 (en) * 2012-10-30 2014-05-01 Qualcomm Incorporated Uplink coverage enhancements
CN104769877A (zh) * 2012-11-02 2015-07-08 索尼公司 远程通信装置和方法
TW201635747A (zh) * 2015-03-15 2016-10-01 高通公司 具有高級引導頻和控制的可縮放tti

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
TWI479933B (zh) * 2006-10-10 2015-04-01 Interdigital Tech Corp 為傳輸至多數無線傳輸/接收單元下行鏈結共用服務發送回饋之方法及裝置
CN101345974B (zh) * 2007-07-09 2011-08-31 电信科学技术研究院 一种调度移动终端发送上行信道探测导频的方法及系统
US9444586B2 (en) * 2013-10-07 2016-09-13 Qualcomm Incorporated TTI-bundling and SPS operation in LTE TDD
US9942881B2 (en) * 2014-03-14 2018-04-10 Telefonaktiebolaget Lm Ericsson (Publ) Uplink multi-TTI scheduling in TDD system
US9497760B2 (en) * 2014-11-25 2016-11-15 Telefonaktiebolaget Lm Ericsson (Publ) Allocating baseband resource capacity to cells based on baseband processing deadline margins
US9948431B2 (en) * 2015-01-12 2018-04-17 Qualcomm Incorporated Techniques for managing soft buffers in wireless communications
JP6878278B2 (ja) 2015-07-17 2021-05-26 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US10461915B2 (en) 2015-07-20 2019-10-29 Lg Electronics Inc. Method and apparatus for handling TDD frame for short TTI in wireless communication system
WO2017018759A1 (ko) * 2015-07-24 2017-02-02 엘지전자 주식회사 하향링크 신호 수신 방법 및 사용자기기와, 하향링크 신호 전송 방법 및 기지국
US10575334B2 (en) 2015-08-13 2020-02-25 Electronics And Telecommunications Research Institute Method and apparatus for fast access and method of supporting fast access in communication system
WO2017099526A1 (ko) * 2015-12-11 2017-06-15 엘지전자 주식회사 하향링크 채널 수신 방법 및 사용자기기와, 하향링크 채널 전송 방법 및 기지국
WO2017105158A1 (ko) * 2015-12-18 2017-06-22 엘지전자 주식회사 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
MX2018009197A (es) * 2016-02-03 2018-11-09 Sony Corp Dispositivo terminal, dispositivo de estacion base y metodo de comunicacion.
US20190068334A1 (en) * 2016-02-03 2019-02-28 Interdigital Patent Holdings, Inc. Methods, systems and apparatus for scheduling of subframes and hybrid automatic repeat request (harq) feedback
KR102455190B1 (ko) * 2016-02-04 2022-10-17 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보의 맵핑, 전송, 또는 수신 방법 및 이를 위한 장치
US10091115B2 (en) * 2016-03-23 2018-10-02 Apple Inc. Handling voice and non-voice data under uplink limited conditions
AR108457A1 (es) * 2016-05-13 2018-08-22 Ericsson Telefon Ab L M Longitud adaptativa de intervalo temporal de transmisión
US10200990B2 (en) * 2016-08-10 2019-02-05 Nokia Technologies Oy Method and apparatus for implementing dynamic signaling of downlink control usage
CN116506260A (zh) * 2016-09-29 2023-07-28 松下电器(美国)知识产权公司 通信方法、通信装置和通信系统
EP3549372B1 (en) * 2016-11-30 2022-06-08 Telefonaktiebolaget LM Ericsson (publ) Method for handling users with different timing alignment requirements
US10455603B2 (en) * 2016-12-06 2019-10-22 Qualcomm Incorporated Wireless transmission timing based on timing advance values in shortened transmission time interval transmissions
US10396943B2 (en) * 2016-12-14 2019-08-27 Qualcomm Incorporated Asymmetric downlink-uplink transmission time interval configurations for low latency operation
US10251200B2 (en) 2017-02-06 2019-04-02 Qualcomm Incorporated Techniques and apparatuses for handling collisions between legacy transmission time interval (TTI) communications and shortened TTI communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057476A1 (en) * 2010-09-07 2012-03-08 Verizon Patent And Licensing Inc. Machine-to-machine communications over fixed wireless networks
US20140119331A1 (en) * 2012-10-30 2014-05-01 Qualcomm Incorporated Uplink coverage enhancements
CN104769877A (zh) * 2012-11-02 2015-07-08 索尼公司 远程通信装置和方法
TW201635747A (zh) * 2015-03-15 2016-10-01 高通公司 具有高級引導頻和控制的可縮放tti

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon, "Handling collision between sTTI and 1ms TTI," R1-1608640, 3GPP TSG RAN WG1 Meeting #86bis, Lisbon, Portugal, 10th-14th Oct 2016. (網址 : https://www.3gpp.org/DynaReport/TDocExMtg--R1-86b--31664.htm); *
Huawei, HiSilicon, "UCI on sPUSCH," R1-1608639, 3GPP TSG RAN WG1 Meeting #86bis, Lisbon, Portugal, 10th-14th Oct 2016. (網址 : https://www.3gpp.org/DynaReport/TDocExMtg--R1-86b--31664.htm) *

Also Published As

Publication number Publication date
CA3048818A1 (en) 2018-08-09
CN110249673B (zh) 2023-02-28
CN116170886A (zh) 2023-05-26
US20180227955A1 (en) 2018-08-09
CN110249673A (zh) 2019-09-17
US10536975B2 (en) 2020-01-14
EP3577970A1 (en) 2019-12-11
EP3577970B1 (en) 2023-05-24
TW201831037A (zh) 2018-08-16
US20190182867A1 (en) 2019-06-13
BR112019015820A2 (pt) 2020-03-31
AU2017396800B2 (en) 2021-12-16
SG11201905879WA (en) 2019-08-27
US10251200B2 (en) 2019-04-02
AU2017396800A1 (en) 2019-07-18
WO2018144155A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
TWI813183B (zh) 至少部分地基於實體下行鏈路控制通道或者實體下行鏈路共享通道參考信號的多鏈路新無線電實體上行鏈路控制通道波束選擇和報告
TWI762553B (zh) 處理在傳統傳輸時間間隔(tti)通訊與縮短的tti通訊之間的衝突的技術和裝置
TWI750282B (zh) 用於新無線電中的同步信號區塊的多傳輸的技術
EP3566357B1 (en) Methods and apparatuses for indication of transmission preemption based on a hybrid automatic repeat request configuration
TWI761553B (zh) 用於定位參考信號(prs)管理的技術和裝置
EP3536076B1 (en) Ultra-reliable low-latency communication mini-slot control
TWI755484B (zh) 用於在新無線電中降低對低時延傳輸量的細胞間干擾的技術和裝置
EP3539250B1 (en) Techniques and apparatuses for configuring a common uplink portion in new radio
TWI759404B (zh) 用於追蹤參考信號配置設計的方法、裝置及電腦可讀取媒體
TWI776649B (zh) 使用迷你時槽的在時槽的下行鏈路公共短脈衝上的單播資料傳輸
KR20190111050A (ko) 강화된 머신 타입 통신 확인응답 번들링을 위한 기술들
TWI741070B (zh) 用於與新無線電中的被中斷訊務流程有關的互補傳輸的技術和裝置