TWI761784B - 儲能裝置、電力系統及其控制方法 - Google Patents

儲能裝置、電力系統及其控制方法 Download PDF

Info

Publication number
TWI761784B
TWI761784B TW109108057A TW109108057A TWI761784B TW I761784 B TWI761784 B TW I761784B TW 109108057 A TW109108057 A TW 109108057A TW 109108057 A TW109108057 A TW 109108057A TW I761784 B TWI761784 B TW I761784B
Authority
TW
Taiwan
Prior art keywords
energy storage
voltage
storage device
bidirectional
intermediate frequency
Prior art date
Application number
TW109108057A
Other languages
English (en)
Other versions
TW202042473A (zh
Inventor
陳麗
王長永
陸岩松
邱愛斌
Original Assignee
台達電子企業管理(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子企業管理(上海)有限公司 filed Critical 台達電子企業管理(上海)有限公司
Publication of TW202042473A publication Critical patent/TW202042473A/zh
Application granted granted Critical
Publication of TWI761784B publication Critical patent/TWI761784B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/002Intermediate AC, e.g. DC supply with intermediated AC distribution
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/106Parallel operation of dc sources for load balancing, symmetrisation, or sharing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/285Single converters with a plurality of output stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/23Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/25Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only arranged for operation in series, e.g. for multiplication of voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

本案為一種儲能裝置,應用於電力系統而電連接於高壓直流輸電網,儲能裝置包含:至少一儲能元件;至少一雙向逆變模組,雙向逆變模組之直流端與對應之儲能元件電連接;至少一中頻變壓器,中頻變壓器之第一傳輸端與對應之雙向逆變模組之交流端電連接;以及至少一雙向交流/直流轉換模組,雙向交流/直流轉換模組之交流端與對應之中頻變壓器之第二傳輸端電連接,雙向交流/直流轉換模組之直流端與高壓直流輸電網電連接。

Description

儲能裝置、電力系統及其控制方法
本案為一種儲能裝置,尤指一種可減少體積及成本的儲能裝置、電力系統及其控制方法。
隨著新能源發電的快速發展,各種發電系統逐步接入電網中。在接入交流電網前,需要進行長距離輸電,故須使用長距離的交流電纜,導致傳輸效率低且成本較高。目前部份電力系統,比如一些海上風電場,由於風機距離海岸上的變電站的距離較遠,故會先接入高壓直流輸電網而採用高壓直流輸電,藉此減小傳輸損耗及降低成本。
為使這種高壓直流輸電網具有電能調度和調節的功能,需要額外接入儲能裝置,以利用儲能裝置達到電網調度和調節的功能。傳統儲能裝置內部所使用的部份元件其體積較大而成本亦較高,導致儲能裝置體積較大和成本較高。
因此,如何發展一種可改善上述現有技術的儲能裝置、電力系統及其控制方法,實為目前迫切的需求。
本案之目的在於提供一種儲能裝置、電力系統及其控制方法,其中儲能裝置採用中頻變壓器,故可使變壓器之體積與成本減少,同時使得與中頻變壓器電連接之儲能裝置之雙向交流/直流轉換模組可減少體積及成本,進而使得儲能裝置之體積與成本減少。
為達上述目的,本案提供一種儲能裝置,應用於電力系統而電連接於高壓直流輸電網,儲能裝置包含:至少一儲能元件;至少一雙向逆變模組,雙向逆變模組之直流端與對應之儲能元件電連接;至少一中頻變壓器,中頻變壓器之第一傳輸端與對應之雙向逆變模組之交流端電連接;以及至少一雙向交流/直流轉換模組,雙向交流/直流轉換模組之一交流端與對應之至少一中頻變壓器之第二傳輸端電連接,雙向交流/直流轉換模組之直流端與高壓直流輸電網電連接。
為達上述目的,本案另提供一種電力系統,電連接於一高壓直流輸電網,該電力系統包含:一發電裝置及前述的儲能裝置。
為達上述目的,本案又提供一種電力系統的控制方法,應用於前述的電力系統,控制方法包含:(S1)確定儲能裝置之運行模式;(S2)運行于並網模式時,儲能裝置調節高壓直流輸電網的電能;以及(S3)運行于離網模式時,儲能裝置為發電裝置提供輔助用電。
1:儲能裝置
2:電力系統
20:發電裝置
21:高壓直流輸電網
220:高壓直流變電站
221:電力設備
10:儲能元件
11:雙向逆變模組
12:中頻變壓器
13:雙向交流/直流轉換模組
23:主控制器
130:模組化多電平轉換器
131:第一控制器
SM:開關模組
SW:開關元件
C:電容
110:逆變器
111:第二控制器
14:濾波器
15:儲能單元
132、212、312:計算器
133、113、233、213、2340、333:座標變換器
134、234、214、334:電壓調節器
135、115、235、215、2360、335:電流調節器
136、116、236、216、2370、336:PWM調變器
ω:工作角頻率
θ:角度信號
I_MMC、I_PCS、I_Con:三相電流量
Ug_MMC、Ug_PCS:三相電壓量
UgdFed_MMC、UgdFed_PCS:d軸電壓回饋值
UgqFed_MMC、UgqFed_PCS:q軸電壓回饋值
IdFed_MMC、IdFed_PCS、IdFed_Con:d軸電流回饋值
IqFed_MMC、IqFed_PCS、IqFed_Con:q軸電流回饋值
IdRef_MMC、IdRef_PCS、IdRef_Con:d軸電流指令
IqRef_MMC、IqRef_PCS、IqRef_Con:q軸電流指令
E_MMC、E_PCS、E_Con:三相控制電勢
112、232、233、2330、332:鎖相器
114、2350:功率調節器
U0、Ug_Con:電壓
PRef_PCS、PRef_Con:有功功率指令
QRef_PCS、QRef_Con:無功功率指令
PFed_PCS、PFed_Con:有功功率回饋值
QFed_PCS、QFed_Con:無功功率回饋值
U0Ref:高壓直流側電壓指令
U0Fed:高壓直流側電壓回饋值
UgdRef_PCS:d軸電壓指令值
UgqRef_PCS:q軸電壓指令
330:轉換器
3300:開關電路
3301:第一控制器
U01Ref:直流側電壓指令
U01Fed:直流側電壓回饋值
圖1為本案第一較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖; 圖2為圖1所示的儲能裝置的細部電路結構示意圖;圖3A為本案第二較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖3B為本案第三較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖3C為本案第四較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖4為本案第五較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖5A為本案第六較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖5B為本案第七較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖5C為本案第八較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖;圖6為圖2所示的儲能裝置在並網模式下時,第一控制器及第二控制器的控制結構示意圖;圖7為圖6所示的第一控制器在並網模式下所執行的控制步驟流程圖;圖8為圖6所示的第二控制器在並網模式下所執行的控制步驟流程圖;圖9為圖2所示的儲能裝置在離網模式下時,第一控制器及第二控制器的控制結構示意圖;圖10為圖9所示的第一控制器在離離模式下所執行的控制步驟流程圖;圖11為圖9所示的第二控制器在離網模式下所執行的控制步驟流程圖;圖12為本案第九較佳實施例的儲能裝置的電路結構示意圖; 圖13為圖12所示的儲能裝置在並網模式下時,第一控制器及第二控制器的控制結構示意圖;圖14為圖13所示的第一控制器在並網模式下所執行的控制步驟流程圖;圖15為圖13所示的第二控制器在並網模式或離網模式下所執行的控制步驟流程圖;圖16為圖12所示的儲能裝置在離網模式下時,第一控制器及第二控制器的控制結構示意圖;圖17為圖16所示的第一控制器在離網模式下所執行的控制步驟流程圖;圖18為本案較佳實施例的電力系統的控制方法的步驟流程圖;圖19為圖18所示的控制方法的步驟S11的子步驟的步驟流程圖;圖20為圖18所示的控制方法的步驟S12的子步驟的步驟流程圖。
體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的實施方式上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖示在本質上是當作說明之用,而非架構於限制本案。
圖1為本案第一較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。如圖1所示,本實施例的儲能裝置1可應用於電力系統2中,其中電力系統2包含發電裝置20、高壓直流輸電網21、儲能裝置1。進一步地,高壓直流輸電網21接入高壓直流變電站220,高壓直流變電站220將接收的直流電升壓後傳輸至後方的電力設備221。發電裝置20可為但不限於光伏發電裝置或 風力發電裝置等,且發電裝置20與高壓直流輸電網21電連接,儲能裝置1也與高壓直流輸電網21電連接,實現電網的調度及調節。
在一些實施例中,電力系統2應用於海上風力發電,發電裝置20為風力發電廠或風力發電廠中的發電單元,風力發電裝置輸出高壓直流電(例如30KV或60KV),經過高壓直流輸電網傳輸至海上高壓直流變電站。
儲能裝置1電連接於高壓直流輸電網21,且可於發電裝置20發電時,運作於並網模式,以在並網模式下實現高壓直流輸電網21的調節和調度功能,而在發電裝置20不發電時,儲能裝置1運作於離網模式,以在離網模式下為發電裝置20提供所需的輔助用電。在容量運行的情況,離網模式時,儲能裝置1可同時為後方的電力設備221供電。以海上風電應用為例,當環境中無風時,發電裝置(即風力發電機)處於待機模式,然風力發電機中的部分系統需要根據風速準備隨時啟動,故此時儲能裝置可為風力發電機提供輔助用電,以便風力發電機可根據風速而隨時啟動。
儲能裝置1包含至少一儲能元件10、至少一雙向逆變模組11、至少一中頻變壓器12及至少一雙向交流/直流轉換模組13。儲能元件10可為但不限於電池或電容等。雙向逆變模組11具有直流端及交流端,其中雙向逆變模組11之直流端與對應之儲能元件10電連接。中頻變壓器12具有第一傳輸端及第二傳輸端,其中中頻變壓器12之第一傳輸端與對應之雙向逆變模組11之交流端電連接,且中頻變壓器12之工作頻率可為400Hz,但不侷限於此。雙向交流/直流轉換模組13具有交流端及直流端,其中雙向交流/直流轉換模組13之交流端與對應之中頻變壓器12之第二傳輸端電連接,雙向交流/直流轉換模組13之直流端與高壓直流輸電網21電連接。
由上可知,由於本案的儲能裝置1使用中頻變壓器12,又中頻變壓器12與一般工頻變壓器相比其工作頻率較高,故可降低變壓器的體積和成 本,同時因儲能裝置1選用中頻變壓器12,則雙向交流/直流轉換模組13對應為中頻變換器,亦可以減小與中頻變壓器12電連接之雙向交流/直流轉換模組13之內部元件之體積和成本,例如減小電感和電容等元件之體積和成本,如此一來,儲能裝置1便可達到減少體積和成本之功效。
於上述實施例中,當儲能裝置1運作於並網模式,且發電裝置20提供之電能大於電力設備221所需之電能時,儲能裝置1可使用高壓直流輸電網21上的電能而對儲能元件10進行充電,即雙向交流/直流轉換模組13先將高壓直流輸電網21上的電壓(如30KV或60KV)轉換成具第一電壓準位元的交流電壓(如18KV或36KV),而中頻變壓器12則將雙向交流/直流轉換模組13所輸出的具第一電壓準位元的交流電壓降壓為具第二電壓準位元的交流電壓(如480V),雙向逆變模組11則轉換由中頻變壓器12所傳來的具第二電壓準位元的交流電壓為直流充電電壓,以對儲能元件10進行充電。當儲能裝置1運作於並網模式,且發電裝置20提供的電能小於電力設備221所需的電能時,雙向逆變模組11先轉換儲能元件10所提供的儲能電壓為具第二電壓準位元的交流電壓,中頻變壓器12則將雙向逆變模組11所輸出的具第二電壓準位元的交流電壓升壓成具第一電壓準位元的交流電壓,雙向交流/直流轉換模組13再將具第一電壓準位元的交流電壓轉換成高壓直流電壓,以饋入高壓直流輸電網21。當儲能裝置1運作於離網模式時,其內部電路的運作方式相似于儲能裝置1運作於並網模式而發電裝置20提供的電能小於電力設備221所需電能,於此不再贅述,唯在儲能裝置1運作於離網模式時,儲能裝置1需要為發電裝置20提供所需的輔助用電。
於一些實施例中,電力系統2更包含主控制器23,主控制器23可檢測發電裝置20之輸出功率,並根據電網調度命令計算儲能裝置1之功率指令,以控制儲能裝置1之充放電運行,使高壓直流輸電網21實現固定功率輸 出;或者主控制器23根據上級控制命令計算儲能裝置1之功率指令,以控制儲能裝置1之充放電運行,實現削峰填谷,平滑新能源等目標。通過控制儲能裝置1靈活調整電力系統2中的功率分配。
在一些實施例中,主控制器23檢測發電裝置20之發電功率,並對發電功率進行濾波平滑處理後得到目標功率,進而將目標功率減去發電功率,並依據其差值調整儲能裝置1中各儲能單元(例如涵蓋儲能元件10與對應雙向逆變模組11及對應中頻變壓器12等)的功率指令以控制儲能單元的充放電運作,平滑功率波動,借此使高壓直流輸電網21中的實際功率與目標功率一致。
在一些實施例中,主控制器23可依據負荷需求及發電裝置20的發電情況進行能量調度,控制儲能裝置1實現能量時移。例如在發電裝置20的發電量較多且負荷需求較小時,可將多餘的能量存儲于儲能裝置1的儲能元件10中,而在發電裝置20的發電量較少且負荷需求較大時,則可將儲能元件10所存儲的能量釋出並供給至高壓直流輸電網21。
在一些實施例中,當高壓直流輸電網21要求輸出固定功率時,主控制器23檢測發電裝置20的輸出功率,固定功率輸出的目標功率減去發電裝置20的輸出功率,得到儲能裝置1之功率指令,根據儲能元件10之荷電狀態將儲能裝置1之功率指令分配給每一儲能單元,通過控制儲能裝置1之充放電運行實現固定功率輸出。
在一些實施例中,當儲能裝置1處於離網模式,則可將儲能元件10所存儲的能量釋出並供給至高壓直流輸電網21,為發電裝置20提供輔助用電。具體地,雙向逆變模組11將儲能元件10釋出的直流電轉換為具有第二電壓準位元的交流電(例如660/480Vac),中頻變壓器12將具有第二電壓準位元的交流電升壓成具有第一電壓準位元的交流電壓輸入至雙向交流/直流轉換模組13,雙向交流/直流轉換模組13再將具第一電壓準位元的交流電壓轉換成高壓直 流電,以饋入高壓直流輸電網21,為發電裝置20提供輔助用電。同時,在儲能裝置1容量允許的情況下,儲能裝置1釋出的電能一部分經過高壓直流輸電網21傳輸至高壓直流變電站220,為後方的電力設備221供電。
圖2為圖1所示的儲能裝置的細部電路結構示意圖。請參閱圖2並配合圖1,於本實施例中,雙向交流/直流轉換模組13包含模組化多電平轉換器130及第一控制器131,其中模組化多電平轉換器130包含複數個橋臂,每一橋臂上包含複數個串聯連接之開關模組SM,每一開關模組SM包含兩個串聯電連接之開關元件SW及與兩個開關元件SW電連接之電容C。第一控制器131與模組化多電平轉換器130電連接,用以控制模組化多電平轉換器130之開關運作。中頻變壓器12之第一傳輸端及第二傳輸端分別具有單一繞組,其中中頻變壓器12第二傳輸端之繞組電連接於模組化多電平轉換器130。雙向逆變模組11包含逆變器110以及第二控制器111,其中逆變器110與儲能元件10及中頻變壓器12第一傳輸端之繞組電連接,第二控制器111與逆變器110電連接,用以控制逆變器110之開關運作。當然,圖2所示模組化多電平轉換器130及逆變器110的電路結構僅為例示,並非局限於此,可依不同需求而有不同實施態樣。於一些實施例中,模組化多電平轉換器130可為中頻模組化多電平轉換器(MF-MMC)。當然,雙向交流/直流轉換模組13亦可改為包含多重化變換器,以取代模組化多電平轉換器130。
于一些實施例中,儲能裝置1還包含濾波器14,濾波器14電連接於雙向逆變模組11與中頻變壓器12之間,濾波器14架構於對雙向逆變模組11的輸出電流或中頻變壓器12的第一傳輸端上的電流進行濾波。
圖3A為本案第二較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。如圖3A所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、複數個中頻變壓器12及一個雙向交流/直流轉換 模組13,其中每一個儲能元件10與對應雙向逆變模組11及對應中頻變壓器12構成儲能單元15,複數個儲能單元15之中頻變壓器12之第二傳輸端並聯電連接於雙向交流/直流轉換模組13之交流端。由於儲能裝置1具有複數個儲能單元15,故提升了儲能裝置1之儲能能力及供電能力。在一些實施例中,主控制器23更可根據不同儲能單元15中儲能元件10之荷電狀態(State-Of-Charge;SOC)來分配各儲能單元15之功率指令。
圖3B為本案第三較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。儲能裝置1中的複數個中頻變壓器12可由一個大容量變壓器代替。如圖3B所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、一個中頻變壓器12及一個雙向交流/直流轉換模組13中。圖3B中所示儲能裝置1與圖3A類似,區別在於圖3B中複數個雙向逆變模組11之交流端並聯電連接後與中頻變壓器12之第一傳輸端電連接,中頻變壓器12之第二傳輸端電連接於雙向交流/直流轉換模組13之交流端。進一步地,圖3B中的雙向交流/直流轉換模組13包含一多電平轉換器例如模組化多電平轉換器(MMC)。
圖3C為本案第四較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。儲能裝置1中的複數個中頻變壓器12可由一個多繞組變壓器實現。如圖3C所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、一個中頻變壓器12及一個雙向交流/直流轉換模組13。圖3C中所示儲能裝置1與圖3A類似,區別在於圖3C中中頻變壓器12之第一傳輸端包含複數個繞組,每一個繞組電連接於對應之雙向逆變模組11之交流端,中頻變壓器12之第二傳輸端電連接於雙向交流/直流轉換模組13之交流端。進一步地,圖3C中的雙向交流/直流轉換模組13包含一多電平轉換器例如模組化多電平轉換器(MMC)。
圖4為本案第五較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。如圖4所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、複數個中頻變壓器12及複數個雙向交流/直流轉換模組13,其中每一個儲能元件10與對應之雙向逆變模組11、對應之中頻變壓器12及對應之雙向交流/直流轉換模組13構成儲能單元15,複數個儲能單元15之雙向交流/直流轉換模組13之直流端並聯電連接於高壓直流輸電網21。在本實施例中,由於各個儲能單元15相互獨立,故可以單獨地接入或退出儲能裝置1。
圖5A為本案第六較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。如圖5A所示,在本實施例中,儲能裝置1改為包含複數個儲能元件10、複數個雙向逆變模組11、複數個中頻變壓器12及複數個雙向交流/直流轉換模組13,其中每一個儲能元件10與對應之雙向逆變模組11及對應之中頻變壓器12構成儲能單元15,複數個儲能單元15之中頻變壓器12之第二傳輸端並聯電連接形成第一交流埠,複數個雙向交流/直流轉換模組13之交流端並聯電連接形成第二交流埠,第一交流埠電連接於第二交流埠,複數個雙向交流/直流轉換模組13之直流端並聯電連接於高壓直流輸電網21。於本實施例中,由於儲能裝置1包含複數個獨立的雙向交流/直流轉換模組13,因此當任一個雙向交流/直流轉換模組13發生故障,其它雙向交流/直流轉換模組13仍可正常運作,故可增加儲能裝置1的冗餘效果。
於一些實施例中,圖5A所示的複數個雙向交流/直流轉換模組13包含一個主雙向交流/直流轉換模組13及至少一從雙向交流/直流轉換模組13,其中主雙向交流/直流轉換模組13向從雙向交流/直流轉換模組13提供控制指令。例如,儲能裝置1並網運行時,主雙向交流/直流轉換模組13控制第二交流埠的交流電壓以產生電流指令,並將電流指令均分給從雙向交流/直流轉換模組 13;儲能裝置1離網運行時,主雙向交流/直流轉換模組13控制高壓直流輸電網21的電壓以產生電流指令,並將電流指令均分給從雙向交流/直流轉換模組13。
圖5B為本案第七較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。儲能裝置1中的複數個中頻變壓器12可由一個大容量變壓器代替。如圖5B所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、一個中頻變壓器12及複數個雙向交流/直流轉換模組13。圖5B中所示儲能裝置1與圖5A類似,區別在於圖5B中複數個雙向逆變模組11之交流端並聯電連接後與中頻變壓器12之第一傳輸端電連接,中頻變壓器12之第二傳輸端電連接於第二交流埠。進一步地,圖5B中雙向交流/直流轉換模組13包含一多電平轉換器例如模組化多電平轉換器(MMC)。
圖5C為本案第八較佳實施例的儲能裝置及所應用的電力系統的電路結構示意圖。儲能裝置1中的複數個中頻變壓器12可由一個多繞組變壓器實現。如圖5C所示,在本實施例中,儲能裝置1包含複數個儲能元件10、複數個雙向逆變模組11、一個中頻變壓器12及複數個雙向交流/直流轉換模組13。圖5C中所示儲能裝置1與圖5A類似,區別在於圖5C中中頻變壓器12之第一傳輸端包含複數個繞組,每一個繞組電連接於對應之雙向逆變模組11之交流端,中頻變壓器12之第二傳輸端電連接於第二交流埠。進一步地,圖5C中雙向交流/直流轉換模組13包含一多電平轉換器例如模組化多電平轉換器(MMC)。
以下將再說明第一控制器131及第二控制器111分別在並網模式下及離網模式下的控制方法及對應的控制架構。圖6為圖2所示的儲能裝置在並網模式下時,第一控制器及第二控制器的控制結構示意圖,圖7為圖6所示的第一控制器在並網模式下所執行的控制步驟流程圖,圖8為圖6所示的第二控制器在並網模式下所執行的控制步驟流程圖。如圖6、圖7及圖8所示並配合圖2,當儲能裝置1運作于並網模式時,第一控制器131控制模組化多電平轉換器130的 之開關運作而調整中頻變壓器12第二傳輸端上的電壓為中頻高壓交流電,其中中頻高壓交流電之頻率等於中頻變壓器12之工作頻率(例如400Hz)。
因此當儲能裝置1運作于並網模式時,第一控制器131執行圖7所示之控制方法,即首先,執行步驟S1A,根據中頻變壓器12第二傳輸端上的電壓設定值,調節中頻變壓器12第二傳輸端上的電壓,產生電流指令。接著,執行步驟S2A,根據電流指令,調節中頻變壓器12第二傳輸端上的電流,產生控制信號。最後,執行步驟S3A,依據控制信號產生脈衝寬度調變信號,以控制模組化多電平轉換器130之開關運作。
而對應上述第一控制器131在儲能裝置1運作于並網模式時的控制方法,第一控制器131的控制架構對應包含計算器132、座標變換器133、電壓調節器134、電流調節器135及PWM(Pulse Width Modulation)調變器136。計算器132依據中頻變壓器12之工作角頻率ω產生角度信號θ,即對工作角頻率ω積分產生角度信號θ。座標變換器133依據模組化多電平轉換器130交流端的三相電流量I_MMC、三相電壓量Ug_MMC及角度信號θ產生d軸電壓回饋值UgdFed_MMC、q軸電壓回饋值UgqFed_MMC、d軸電流回饋值IdFed_MMC及q軸電流回饋值IqFed_MMC。電壓調節器134依據d軸電壓回饋值UgdFed_MMC、q軸電壓回饋值UgqFed_MMC、d軸電壓指令值UgdRef_MMC及q軸電壓指令UgqRef_MMC產生d軸電流指令IdRef_MMC及q軸電流指令IqRef_MMC,其中中頻變壓器12第二傳輸端上的電壓設定值包含d軸電壓指令值UgdRef_MMC和q軸電壓指令值UgqRef_MMC,d軸電壓指令值UgdRef_MMC為固定值即對應中頻變壓器12之第二傳輸端的額定電壓幅值,例如18kV或36kV,q軸電壓指令值UgqRef_MMC為0。電流調節器135依據d軸電流指令IdRef_MMC、q軸電流指令IqRef_MMC、d軸電流回饋值IdFed_MMC、q軸電流回饋值IqFed_MMC及角度信號θ產生三相控制電勢E_MMC。PWM調變器136依 據三相控制電勢E_MMC產生脈衝寬度調變信號,以控制模組化多電平轉換器130之開關運作。PWM調變器136可為例如但不限於通過SPWM(Sinusoidal PWM)或SVPWM(Space Vector PWM)技術產生脈衝寬度調變信號。
當儲能裝置1運作于並網模式時,第二控制器111控制逆變器110之開關運作而調整雙向逆變模組11之轉換功率。
因此當儲能裝置1運作于並網模式時,第二控制器111執行圖8所示的控制方法,即首先,執行步驟S1B,根據雙向逆變模組11之功率目標,調整雙向逆變模組11之轉換功率,產生電流指令。接著,執行步驟S2B,根據電流指令,調節雙向逆變模組11交流端之電流,產生控制信號。最後,執行步驟S3B,依據控制信號產生脈衝寬度調變信號,以控制逆變器110之開關運作。
而對應上述第二控制器111在儲能裝置1運作于並網模式時的控制方法,第二控制器111的控制架構對應包含鎖相器112、座標變換器113、功率調節器114、電流調節器115及PWM調變器116。鎖相器112依據中頻變壓器12第一傳輸端上的電壓Ug_PCS產生角度信號θ,即對第二傳輸端上的電壓Ug_PCS進行鎖相產生角度信號θ。座標變換器113依據逆變器110交流端的三相電流量I_PCS及角度信號θ產生d軸電流回饋值IdFed_PCS及q軸電流回饋值IqFed_PCS。功率調節器114依據有功功率指令PRef_PCS、無功功率指令QRef_PCS、有功功率回饋值PFed_PCS及無功功率回饋值QFed_PCS產生d軸電流指令IdRef_PCS及q軸電流指令IqRef_PCS,其中雙向逆變模組11之功率目標包含有功功率指令PRef_PCS和無功功率指令QRef_PCS,有功功率指令PRef_PCS由主控制器23所提供,無功功率指令QRef_PCS為零,有功功率回饋值PFed_PCS及無功功率回饋值QFed_PCS則由雙向逆變模組11交流端的電壓Ug_PCS和三相電流量I_PCS計算得到。電流調節器115依據d軸電流指令IdRef_PCS、q軸電流指令IqRef_PCS、d軸電流回饋值IdFed_PCS、q軸電流回饋 值IqFed_PCS及角度信號θ產生三相控制電勢E_PCS。PWM調變器116依據三相控制電勢E_PCS產生脈衝寬度調變信號,以控制逆變器110之開關運作。PWM調變器116可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
於一些實施例中,主控制器23接收多個儲能元件10之荷電狀態,基於上級控制命令及荷電狀態產生雙向逆變模組11之功率指令,借此可根據實際需求調整雙向逆變模組11之轉換功率。
圖9為圖2所示的儲能裝置在離網模式下時,第一控制器及第二控制器的控制結構示意圖,圖10為圖9所示的的第一控制器在離網模式下所執行的控制步驟流程圖,圖11為圖9所示的第二控制器在離網模式下所執行的控制步驟流程圖。如圖9、圖10及圖11所示並配合圖2,當儲能裝置1運作於離網模式時,第一控制器131會控制模組化多電平轉換器130之開關運作,以調整雙向交流/直流轉換模組13直流端上的電壓等於高壓直流輸電網21的額定電壓。
因此當儲能裝置1運作於離網模式時,第一控制器131執行圖10所示的控制方法,即首先,執行步驟S1C,根據高壓直流輸電網21的額定電壓,調節雙向交流/直流轉換模組13直流端上的電壓,產生電流指令。接著,執行步驟S2C,根據電流指令,調節雙向交流/直流轉換模組13交流端上的電流,產生控制信號。最後,執行步驟S3C,依據控制信號產生脈衝寬度調變信號,以控制模組化多電平轉換器130之開關運作。
而對應上述第一控制器131在儲能裝置1運作於離網模式時的控制方法,第一控制器131的控制架構對應包含鎖相器232、座標變換器233、電壓調節器234、電流調節器235及PWM(Pulse Width Modulation)調變器236。鎖相器232依據中頻變壓器12第二傳輸端上的電壓Ug_MMC產生角度信號θ,即對中頻變壓器12的第二傳輸端上的電壓Ug_MMC進行鎖相產生角度信號θ。座標 變換器233依據模組化多電平轉換器130交流端的三相電流量I_MMC及角度信號θ產生d軸電流回饋值IdFed_MMC及q軸電流回饋值IqFed_MMC。電壓調節器234依據雙向交流/直流轉換模組13直流端的電壓指令U0Ref及電壓回饋值U0Fed產生d軸電流指令IdRef_MMC,q軸電流指令IqRef_MMC為零,其中雙向交流/直流轉換模組13直流端的電壓指令值U0Ref為高壓直流輸電網21的額定電壓幅值,雙向交流/直流轉換模組13直流端的電壓回饋值U0Fed為採樣高壓直流輸電網21上的電壓U0得到。電流調節器235依據d軸電流指令IdRef_MMC、q軸電流指令IqRef_MMC、d軸電流回饋值IdFed_MMC、q軸電流回饋值IqFed_MMC及角度信號θ產生三相控制電勢E_MMC。PWM調變器236依據三相控制電勢E_MMC產生脈衝寬度調變信號,以控制模組化多電平轉換器130之開關運作。PWM調變器236可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
當儲能裝置1運作於離網模式時,第二控制器111控制逆變器110之開關運作而調整雙向逆變模組11交流端的電壓,其中雙向逆變模組11交流端的電壓之頻率等於中頻變壓器12之工作頻率。
因此第二控制器111在儲能裝置1運作於離網模式時,執行如圖11所示的控制方法,即首先,執行步驟S1D,根據雙向逆變模組11交流端上的電壓設定值,調節雙向逆變模組11交流端的電壓,產生電流指令。接著,執行步驟S2D,根據電流指令,調節雙向逆變模組11交流端的電流,產生控制信號。最後,執行步驟S3D,依據控制信號產生脈衝寬度調變信號,以控制逆變器110之開關運作。
而對應上述第二控制器111在儲能裝置1運作於離網模式時的控制方法,第二控制器111的控制架構對應包含計算器212、座標變換器213、電壓調節器214、電流調節器215及PWM調變器216。計算器212依據中頻變壓器12 之工作角頻率ω產生角度信號θ,即對工作角頻率ω積分產生角度信號θ。座標變換器213依據逆變器110交流端的三相電流量I_PCS、三相電壓量Ug_PCS及角度信號θ產生d軸電壓回饋值UgdFed_PCS、q軸電壓回饋值UgqFed_PCS、d軸電流回饋值IdFed_PCS及q軸電流回饋值IqFed_PCS。電壓調節器214依據d軸電壓回饋值UgdFed_PCS、q軸電壓回饋值UgqFed_PCS、d軸電壓指令值UgdRef_PCS及q軸電壓指令值UgqRef_PCS產生d軸電流指令IdRef_PCS及q軸電流指令IqRef_PCS,其中雙向逆變模組11交流端上的電壓設定值包括d軸電壓指令值UgdRef_PCS及q軸電壓指令值UgqRef_PCS,UgdRef_PCS為中頻變壓器12第一傳輸端上的額定電壓的幅值,UgqRef_PCS為0。電流調節器215依據d軸電流指令IdRef_PCS、q軸電流指令IqRef_PCS、d軸電流回饋值IdFed_PCS、q軸電流回饋值IqFed_PCS及角度信號θ產生三相控制電勢E_PCS。PWM調變器216依據三相控制電勢E_PCS產生脈衝寬度調變信號,以控制逆變器110之開關運作。PWM調變器216可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
進一步地,圖1、圖3A、圖4及圖5A中的雙向交流/直流轉換模組13可包含多電平轉換器,如模組化多電平轉換器MMC;或者可包含多重化轉換器。雙向交流/直流轉換模組13包含多重化轉換器的架構如圖12所示。圖12為本案第九較佳實施例的儲能裝置的電路結構示意圖。如圖12所示,本實施例的儲能裝置1的電路結構相似於圖2所示儲能裝置1的電路結構,故以相同符號標示來表示電路結構相似,唯相較於圖2所示的儲能裝置1,本實施例儲能裝置1的中頻變壓器12的第二傳輸端包含複數個繞組,且雙向交流/直流轉換模組13包含串聯連接之複數個轉換器330,每一繞組電連接於對應之轉換器330,每一轉換器330包含開關電路3300和第一控制器3301,第一控制器3301與對應之開關電路3300電連接。
以下將再說明圖12所示的第一控制器3301及第二控制器111分別在並網模式下及離網模式下的控制方法及對應的控制架構。圖13為圖12所示儲能裝置在並網模式下時,第一控制器及第二控制器的控制結構示意圖,圖14為圖13所示第一控制器在並網模式下所執行的控制步驟流程圖,圖15為圖13所示第二控制器在並網模式或離網模式下所執行的控制步驟流程圖。如圖13、圖14及圖15所示,當儲能裝置1運作于並網模式時,每一第一控制器3301控制對應開關電路3300之開關運作而調整中頻變壓器12第二傳輸端對應繞組上的功率。
因此當儲能裝置1運作于並網模式時,每一第一控制器3301執行圖14所示的控制方法,即首先,執行步驟S1E,根據對應轉換器330之功率目標,調節中頻變壓器12第二傳輸端的對應繞組上的功率,產生電流指令。接著,執行步驟S2E,根據電流指令,調節中頻變壓器12第二傳輸端之對應繞組上的電流,產生控制信號。最後,執行步驟S3E,依據控制信號產生脈衝寬度調變信號,以控制開關電路3300之開關運作。
而對應上述第一控制器3301在儲能裝置1運作于並網模式時的控制方法,第一控制器3301的控制架構對應包含鎖相器2330、座標變換器2340、功率調節器2350、電流調節器2360及PWM調變器2370。鎖相器2330依據中頻變壓器12第二傳輸端上對應繞組上的電壓Ug_Con產生角度信號θ,即對第二傳輸端上對應繞組上的電壓Ug_Con進行鎖相產生角度信號θ。座標變換器234依據對應開關電路3300交流端的三相電流量I_Con及角度信號θ產生d軸電流回饋值IdFed_Con及q軸電流回饋值IqFed_Con。功率調節器2350依據有功功率指令PRef_Con、無功功率指令QRef_Con、有功功率回饋值PFed_Con及無功功率回饋值QFed_Con產生d軸電流指令IdRef_Con及q軸電流指令IqRef_Con,其中轉換器330之功率目標包含有功功率指令PRef_Con和無功功率指令QRef_Con,有功功率指令PRef_Con由主控制器23所提供,無功功率指令QRef_Con為0,有功功 率回饋值PFed_Con及無功功率回饋值QFed_Con則由中頻變壓器12第二傳輸端對應繞組上的電壓Ug_Con和三相電流量I_Con計算得到。電流調節器2360依據d軸電流指令IdRef_Con、q軸電流指令IqRef_Con、d軸電流回饋值IdFed_Con、q軸電流回饋值IqFed_Con及角度信號θ產生三相控制電勢E_Con。PWM調變器2370依據三相控制電勢E_Con產生脈衝寬度調變信號,以控制對應之開關電路3300之開關運作。PWM調變器2370可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
當儲能裝置1運作于並網模式時,第二控制器111控制逆變器110之開關運作而調整雙向逆變模組11交流端的電壓,其中雙向逆變模組11交流端的電壓的頻率等於中頻變壓器12之工作頻率。
因此第二控制器111在儲能裝置1運作于並網模式時,執行如圖15所示的控制方法,即首先,執行步驟S1F,根據雙向逆變模組11交流端之電壓設定值,調節雙向逆變模組11交流端的電壓,產生電流指令。接著,執行步驟S2F,根據電流指令,調節雙向逆變模組11交流端的電流,產生控制信號。最後,執行步驟S3F,依據控制信號產生脈衝寬度調變信號,以控制逆變器110之開關運作。
而對應上述第二控制器111在儲能裝置1運作于並網模式時的控制方法,第二控制器111的控制架構對應包含計算器312、座標變換器313、電壓調節器314、電流調節器315及PWM調變器316。計算器312依據中頻變壓器12之工作角頻率ω產生角度信號θ,即對工作角頻率ω積分產生角度信號θ。座標變換器313依據逆變器110交流端的三相電流量I_PCS、三相電壓量Ug_PCS及角度信號θ產生d軸電壓回饋值UgdFed_PCS、q軸電壓回饋值UgqFed_PCS、d軸電流回饋值IdFed_PCS及q軸電流回饋值IqFed_PCS。電壓調節器314依據d軸電壓回饋值UgdFed_PCS、q軸電壓回饋值UgqFed_PCS、d軸電壓指令值UgdRef_PCS 及q軸電壓指令值UgqRef_PCS產生d軸電流指令IdRef_PCS及q軸電流指令IqRef_PCS,其中雙向逆變模組11交流端之電壓設定值包含d軸電壓指令值UgdRef_PCS及q軸電壓指令值UgqRef_PCS,UgdRef_PCS為中頻變壓器12第一傳輸端上的額定電壓的幅值,UgqRef_PCS為0。電流調節器315依據d軸電流指令IdRef_PCS、q軸電流指令IqRef_PCS、d軸電流回饋值IdFed_PCS、q軸電流回饋值IqFed_PCS及角度信號θ產生三相控制電勢E_PCS。PWM調變器316依據三相控制電勢E_PCS產生脈衝寬度調變信號,以控制逆變器110之開關運作。PWM調變器316可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
圖16為圖12所示的儲能裝置在離網模式下時,第一控制器及第二控制器的控制結構示意圖,圖17為圖16所示的第一控制器在離網模式下所執行的控制步驟流程圖。如圖16及圖17所示,當儲能裝置1運作於離網模式時,每一第一控制器3301控制對應開關電路3300之開關運作而調整對應轉換器330的一直流側的電壓U01。
因此當儲能裝置1運作於離網模式時,第一控制器3301執行圖17所示的控制方法,即首先,執行步驟S1G,根據對應的轉換器330直流側之電壓目標,調節轉換器330直流側的電壓U01,產生電流指令。接著,執行步驟S2G,根據電流指令,調節中頻變壓器12第二傳輸端的對應繞組的電流,產生控制信號。最後,執行步驟S3G,依據控制信號產生脈衝寬度調變信號,以控制對應開關電路3300之開關運作。
而對應上述第一控制器3301在儲能裝置1運作於離網模式時的控制方法,第一控制器3301的控制架構對應包含鎖相器332、座標變換器333、電壓調節器334、電流調節器335及PWM調變器336。鎖相器332依據中頻變壓器12第二傳輸端對應繞組上的電壓Ug_Con產生角度信號θ,即對第二傳輸端對應繞 組上的電壓Ug_Con進行鎖相產生角度信號θ。座標變換器333依據對應開關電路3300的交流端的三相電流量I_Con及角度信號θ產生d軸電流回饋值IdFed_Con及q軸電流回饋值IqFed_Con。電壓調節器334依據轉換器330直流側直流側電壓指令U01Ref及直流側電壓回饋值U01Fed產生d軸電流指令IdRef_Con及q軸電流指令IqRef_Con,轉換器330直流側之電壓目標U01Ref為高壓直流輸電網21的電壓幅值除以轉換器330的個數,直流側電壓回饋值U01Fed為採樣轉換器330直流側的電壓U01得到。電流調節器335依據d軸電流指令IdRef_Con、q軸電流指令IqRef_Con、d軸電流回饋值IdFed_Con、q軸電流回饋值IqFed_Con及角度信號θ產生三相控制電勢E_Con。PWM調變器336依據三相控制電勢E_Con產生脈衝寬度調變信號,以控制對應的開關電路3300的開關運作。PWM調變器336可為例如但不限於通過SPWM或SVPWM技術產生脈衝寬度調變信號。
當儲能裝置1運作於離網模式時,第二控制器111控制逆變器110的開關運作而調整中頻變壓器12第一傳輸端上的電壓,其中中頻變壓器12第一傳輸端上的電壓的頻率等於中頻變壓器12的工作頻率,且在儲能裝置1運作於離網模式時第二控制器111的控制方法及控制架構相同于儲能裝置1運作于並網模式時的控制方法及控制架構,具體請參考圖13及圖15,故於此不再贅述。
圖18為本案較佳實施例的電力系統的控制方法的步驟流程圖。電力變換方法可適用於圖1、圖3、圖4及圖5所示的電力系統2中。如圖18所示,電力系統的控制方法包含下列步驟S10、S11及S12。
於步驟S10中,確定儲能裝置1的運行模式。于步驟S11中,運行于並網模式時,儲能裝置1調節高壓直流輸電網21中的電能。于步驟S12中,運行於離網模式時,儲能裝置1為發電裝置20提供輔助用電。
圖19為圖18所示的控制方法的步驟S11的子步驟的步驟流程圖。在步驟S11中,更包含子步驟如下:首先執行子步驟S110,判斷發電裝置20提供 的電能是否大於負載所需的電能,。當子步驟S110判斷結果為發電裝置20提供的電能小於負載所需的電能時,執行子步驟S111,利用雙向逆變模組11將儲能元件10所提供的儲能電壓轉換為第一交流電壓,其中第一交流電壓具有第二電壓準位元(如480V),優選為三相交流電壓。接著,執行子步驟S112,利用中頻變壓器12將第一交流電壓升壓為第二交流電壓,其中第二交流電壓具有第一電壓準位元(如18KV或36KV等),優選為三相交流電壓。然後,執行子步驟S113,利用雙向交流/直流轉換模組13將第二交流電壓轉換為直流電壓並饋入高壓直流輸電網21中。當子步驟S110判斷結果為發電裝置20提供的電能大於負載所需的電能時,執行子步驟S114,利用雙向交流/直流轉換模組13將高壓直流輸電網21上的電壓轉換為將第二交流電壓。然後,執行子步驟S115,利用中頻變壓器12將第二交流電壓降壓為第一交流電壓。最後,執行子步驟S116,利用雙向逆變模組11將第一交流電壓轉換為充電電壓而對儲能元件10進行充電。
圖20為圖18所示的控制方法的步驟S12的子步驟的步驟流程圖。在步驟S12中,更包含子步驟如下:執行子步驟S120,利用雙向逆變模組11將儲能元件10所提供的儲能電壓轉換為第一交流電壓。接著,執行子步驟S121,利用中頻變壓器12將第一交流電壓升壓為第二交流電壓。然後,執行子步驟S122,利用雙向交流/直流轉換模組13將第二交流電壓轉換為直流電壓並饋入高壓直流輸電網21中,為發電裝置20提供輔助用電。同時,在儲能裝置1容量足夠大的情況,饋入高壓直流輸電網21的直流電傳輸至高壓直流變電站220,為後方的電力設備221供電。
本案提供一種儲能裝置、電力系統及其控制方法,其中儲能裝置採用中頻變壓器,故可使變壓器的體積與成本減少,同時使得與中頻變壓器電連接的儲能裝置的雙向交流/直流轉換模組可減少體積及成本,進而使得儲能裝置的體積與成本減少。
此外,通過儲能裝置可靈活調節電網,實現削峰填谷、平滑新能源及固定功率輸出等功能,且當發電裝置不發電時,儲能裝置可提供發電裝置所需的輔助用電,保證發電裝置可以隨時啟動。
綜上所述,本案的電力系統及方法是採用高壓直流輸電,可降低成本並減小輸電過程中的損耗。再者,通過設置儲能裝置,主控制器可通過控制儲能裝置靈活調整電力系統中的功率分配,實現控制目標。
須注意,上述僅是為說明本案而提出的優選實施例,本案不限於所述的實施例,本案的範圍由請求項決定。且本案得由熟習此技術的人士任施匠思而為諸般修飾,然皆不脫請求項所欲保護者。
1:儲能裝置
2:電力系統
20:發電裝置
21:高壓直流輸電網
220:高壓直流變電站
221:電力設備
10:儲能元件
11:雙向逆變模組
12:中頻變壓器
13:雙向交流/直流轉換模組
23:主控制器

Claims (33)

  1. 一種儲能裝置,應用於一電力系統而電連接於一高壓直流輸電網,其中該儲能裝置包含:至少一儲能元件;至少一雙向逆變模組,該雙向逆變模組之一直流端與對應之該儲能元件電連接;至少一中頻變壓器,該中頻變壓器之一第一傳輸端與對應之該雙向逆變模組之一交流端電連接;以及至少一雙向交流/直流轉換模組,該雙向交流/直流轉換模組之一交流端與對應之該中頻變壓器之一第二傳輸端電連接,該雙向交流/直流轉換模組之一直流端與該高壓直流輸電網電連接。
  2. 如請求項1所述之儲能裝置,其中該中頻變壓器之工作頻率為400Hz。
  3. 如請求項1或2任一項所述之儲能裝置,其中該電力系統更包含一發電裝置,與該高壓直流輸電網電連接,其中於該發電裝置發電時,該儲能裝置運作於一並網模式,於該發電裝置不發電時,該儲能裝置運作於一離網模式。
  4. 如請求項3所述之儲能裝置,其中該雙向交流/直流轉換模組包含一模組化多電平轉換器及一第一控制器,該第一控制器電連接於該模組化多電平轉換器。
  5. 如請求項4所述之儲能裝置,其中于該儲能裝置運作於該並網模式時,該第一控制器控制該模組化多電平轉換器之開關運作而調整該中頻變 壓器該第二傳輸端的電壓為一中頻高壓交流電,該中頻高壓交流電的頻率等於該中頻變壓器之工作頻率。
  6. 如請求項5所述之儲能裝置,其中該第一控制器執行下列步驟:(a)根據該中頻變壓器該第二傳輸端之電壓設定值,調節該中頻變壓器該第二傳輸端之電壓,產生一電流指令;(b)根據該電流指令,調節該中頻變壓器該第二傳輸端之電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該模組化多電平轉換器之開關運作。
  7. 如請求項4所述的儲能裝置,其中于該儲能裝置運作於該離網模式時,該第一控制器控制該模組化多電平轉換器之開關運作,以調整該模組化多電平轉換模組該直流端的電壓。
  8. 如請求項7所述的儲能裝置,其中該第一控制器執行下列步驟:(a)根據該高壓直流輸電網之電壓額定值,調節該模組化多電平轉換模組該直流端之電壓,產生一電流指令;(b)根據該電流指令,調節該模組化多電平轉換模組該交流端之電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該模組化多電平轉換器之開關運作。
  9. 如請求項3所述之儲能裝置,其中於該離網模式下,該儲能裝置為該發電裝置提供所需之輔助用電。
  10. 如請求項4所述之儲能裝置,其中該雙向逆變模組包含一逆變器及一第二控制器,該第二控制器電連接於該逆變器,于該儲能裝置運作於該 並網模式時,該第二控制器控制該逆變器之開關運作而調整該雙向逆變模組之轉換功率。
  11. 如請求項10所述的儲能裝置,其中該第二控制器執行下列步驟:(a)根據該雙向逆變模組之功率目標,調整該雙向逆變模組之轉換功率,產生一電流指令;(b)根據該電流指令,調節該雙向逆變模組該交流端之電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該逆變器之開關運作。
  12. 如請求項4所述的儲能裝置,其中該雙向逆變模組包含一逆變器及一第二控制器,該第二控制器電連接於該逆變器,于該儲能裝置運作於該離網模式時,該第二控制器控制該逆變器之開關運作而調整該雙向逆變模組該交流端之電壓,其中該雙向逆變模組該交流端之電壓頻率等於該中頻變壓器之工作頻率。
  13. 如請求項12所述之儲能裝置,其中該第二控制器執行下列步驟:(a)根據該雙向逆變模組該交流端之電壓設定值,調節該雙向逆變模組該交流端之電壓,產生一電流指令;(b)根據該電流指令,調節該雙向逆變模組該交流端之電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該逆變器之開關運作。
  14. 如請求項3所述之儲能裝置,其中該中頻變壓器之該第二傳輸端包含複數個繞組,且該雙向交流/直流轉換模組包含串聯連接之複數個轉換器,每一該繞組電連接於對應之該轉換器,每一該轉換器包含一開關電路和一第一控制器,該第一控制器與對應之該開關電路電連接。
  15. 如請求項14所述之儲能裝置,其中于該儲能裝置運作於該並網模式時,每一該第一控制器控制對應之該開關電路之開關運作而調整該中頻變壓器該第二傳輸端對應之該繞組上的功率。
  16. 如請求項15所述的儲能裝置,其中每一該第一控制器執行下列步驟:(a)根據對應之該轉換器之功率目標,調節該中頻變壓器該第二傳輸端對應之該繞組上的功率,產生一電流指令;(b)根據該電流指令,調節該中頻變壓器該第二傳輸端對應之該繞組的電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該開關電路之開關運作。
  17. 如請求項14所述的儲能裝置,其中于該儲能裝置運作於該離網模式時,每一該第一控制器控制對應之該開關電路之開關運作而調整對應之該轉換器一直流側的電壓。
  18. 如請求項17所述的儲能裝置,其中該第一控制器執行下列步驟:(a)根據對應之該轉換器該直流側之電壓目標,調節該轉換器該直流側之電壓,產生一電流指令;(b)根據該電流指令,調節該中頻變壓器該第二傳輸端對應之該繞組的電流,產生一控制信號;以及 (c)依據該控制信號產生一脈衝寬度調變信號,以控制對應之該開關電路之開關運作。
  19. 如請求項14所述的儲能裝置,其中該雙向逆變模組包含一逆變器及一第二控制器,該第二控制器電連接於該逆變器,該第二控制器控制該逆變器之開關運作而調整該雙向逆變模組該交流端的電壓,其中該該雙向逆變模組該交流端的電壓的頻率等於該中頻變壓器之工作頻率。
  20. 如請求項19所述之儲能裝置,其中該第二控制器執行下列步驟:(a)根據該雙向逆變模組該交流端之電壓設定值,調節該雙向逆變模組該交流端之電壓,產生一電流指令;(b)根據該電流指令,調節該雙向逆變模組該交流端的電流,產生一控制信號;以及(c)依據該控制信號產生一脈衝寬度調變信號,以控制該逆變器之開關運作。
  21. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組、複數個該中頻變壓器,其中每一該儲能元件與對應之該雙向逆變模組及對應之該中頻變壓器構成一儲能單元,複數個該儲能單元之該中頻變壓器之該第二傳輸端並聯電連接於該雙向交流/直流轉換模組之該交流端。
  22. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組,其中每一個該儲能元件電連接於對應之該雙向逆變模組之該直流端,複數個該雙向逆變模組之該交流端並聯電連接後與該中頻變壓器之該第一傳輸端電連接,該中頻變壓器之該第二傳輸端電連接於該雙向交流/直流轉換模組之該交流端。
  23. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組,其中每一個該儲能元件電連接於對應之該雙向逆變模組之該直流端,該中頻變壓器之該第一傳輸端包含複數個繞組,每一該繞組電連接於對應之該雙向逆變模組之該交流端,該中頻變壓器之該第二傳輸端電連接於該雙向交流/直流轉換模組之該交流端。
  24. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組、複數個該中頻變壓器及複數個該雙向交流/直流轉換模組,其中每一個該儲能元件與對應之該雙向逆變模組、對應之該中頻變壓器及對應之該雙向交流/直流轉換模組構成一儲能單元,複數個該儲能單元之該雙向交流/直流轉換模組之該直流端並聯電連接於該高壓直流輸電網。
  25. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組、複數個該中頻變壓器及複數個該雙向交流/直流轉換模組,其中每一該儲能元件與對應之該雙向逆變模組及對應之該中頻變壓器構成一儲能單元,複數個該儲能單元之該中頻變壓器之該第二傳輸端並聯電連接形成一第一交流埠,複數個該雙向交流/直流轉換模組之該交流端並聯電連接形成一第二交流埠,該第一交流埠電連接於該第二交流埠,複數個該雙向交流/直流轉換模組之該直流端並聯電連接於該高壓直流輸電網。
  26. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組及複數個該雙向交流/直流轉換模組,其中每一個該儲能元件電連接於對應之該雙向逆變模組之該直流端,複數個該雙向逆變模組之該交流端並聯電連接後與該中頻變壓器之該第一傳輸端電連接,複數個該雙向交流/直流轉換模組之該交流端並聯電連接形成一交流埠,該中頻變壓器之該第二傳輸端電連接於該交流埠。
  27. 如請求項1所述之儲能裝置,其中該儲能裝置包含複數個該儲能元件、複數個該雙向逆變模組及複數個該雙向交流/直流轉換模組,其中每一該儲能元件電連接於對應之該雙向逆變模組之該直流端,該中頻變壓器之該第一傳輸端包含複數個繞組,每一該繞組電連接於對應之該雙向逆變模組之該交流端,複數個該雙向交流/直流轉換模組之該交流端並聯電連接形成一交流埠,該中頻變壓器之該第二傳輸端電連接於該交流埠。
  28. 如請求項25-27任一項所述之儲能裝置,其中複數個該雙向交流/直流轉換模組包含一主雙向交流/直流轉換模組及至少一從雙向交流/直流轉換模組,其中該主雙向交流/直流轉換模組向該從雙向交流/直流轉換模組提供控制指令。
  29. 如請求項1所述之儲能裝置,其中該雙向交流/直流轉換模組包含一中頻模組化多電平轉換器;或者該雙向交流/直流轉換模組包含一中頻多重化變換器。
  30. 一種電力系統,電連接於一高壓直流輸電網,該電力系統包含:一發電裝置及請求項1-29任一項所述之儲能裝置。
  31. 一種電力系統的控制方法,應用於請求項30所述之電力系統,其中該控制方法包含:(S1)確定該儲能裝置之運行模式;(S2)運行於一並網模式時,該儲能裝置調節該高壓直流輸電網的電能;以及(S3)運行於一離網模式時,該儲能裝置為該發電裝置提供輔助用電。
  32. 如請求項31所述之控制方法,其中該步驟(S2)更包含子步驟:(a)判斷該發電裝置提供的電能是否大於一負載所需的電能; 當該步驟(a)的判斷結果為該發電裝置提供的電能小於該負載所需的電能時,利用該雙向逆變模組將該儲能元件提供的一儲能電壓轉換為一第一交流電壓;利用該中頻變壓器將該第一交流電壓升壓為一第二交流電壓;利用該雙向交流/直流轉換模組將該第二交流電壓轉換為一直流電壓並饋入該高壓直流輸電網中;當該步驟(a)的判斷結果為該發電裝置提供的電能大於該負載所需的電能時,利用該雙向交流/直流轉換模組將該高壓直流輸電網上的電壓轉換為該第二交流電壓;利用該中頻變壓器將該第二交流電壓降壓為該第一交流電壓;以及利用該雙向逆變模組將該第一交流電壓轉換為一充電電壓而對該儲能元件進行充電。
  33. 如請求項31所述之控制方法,其中該步驟(S3)更包含子步驟:利用該雙向逆變模組將該儲能元件提供的一儲能電壓轉換為一第一交流電壓;利用該中頻變壓器將該第一交流電壓升壓為一第二交流電壓;以及利用該雙向交流/直流轉換模組將該第二交流電壓轉換為一直流電壓並饋入該高壓直流輸電網中。
TW109108057A 2020-03-09 2020-03-11 儲能裝置、電力系統及其控制方法 TWI761784B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010157585.3 2020-03-09
CN202010157585.3A CN111244933A (zh) 2020-03-09 2020-03-09 储能装置、电力系统及其控制方法

Publications (2)

Publication Number Publication Date
TW202042473A TW202042473A (zh) 2020-11-16
TWI761784B true TWI761784B (zh) 2022-04-21

Family

ID=70880257

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109108057A TWI761784B (zh) 2020-03-09 2020-03-11 儲能裝置、電力系統及其控制方法

Country Status (4)

Country Link
US (1) US11239663B2 (zh)
EP (1) EP3879663A1 (zh)
CN (1) CN111244933A (zh)
TW (1) TWI761784B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021116418A1 (de) 2021-06-24 2022-12-29 Sma Solar Technology Ag Verfahren zum Betrieb eines Energieversorgungssystems, Vorrichtung zum Austausch elektrischer Leistung in einem Energieversorgungssystem und Energieversorgungssystem
CN114400697B (zh) * 2021-12-01 2022-11-18 深圳市海和科技股份有限公司 一种双向移动发电电路及双向移动发电终端设备
CN115001304B (zh) * 2022-06-20 2024-04-09 怀化学院 一种带远程控制的硬件可配置双向逆变器设计方法
CN114825407B (zh) * 2022-06-22 2022-10-18 锦浪科技股份有限公司 一种双向变换器的充放电切换方法、装置、系统及介质
US20240086934A1 (en) * 2022-09-09 2024-03-14 Inventus Holdings, Llc Identification of renewable energy site
CN115663974A (zh) * 2022-11-21 2023-01-31 宁波芯合为一电子科技有限公司 一种移动储能式脉冲焊接电源的控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201308817A (zh) * 2011-08-05 2013-02-16 Ching-Wu Wang 適用於多種電力來源的智慧型電能儲存系統
TW201315094A (zh) * 2011-09-27 2013-04-01 Delta Electronics Shanghai Co 不斷電電源系統
CN108134409A (zh) * 2017-12-29 2018-06-08 国网北京市电力公司 储能变流器的控制方法、装置、存储介质和处理器
CN109103911A (zh) * 2017-06-21 2018-12-28 中车株洲电力机车研究所有限公司 基于电力电子变压器的中压直流储能装置及能量管理方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427887B (zh) 2010-11-03 2014-02-21 Delta Electronics Inc 高壓電源供應模組及其所適用之供電系統
CN102064702B (zh) * 2010-12-31 2013-09-11 刘闯 双向隔离式的串联谐振dc/dc变换器
US9509218B2 (en) 2011-08-01 2016-11-29 Alstom Technology Ltd. DC to DC converter assembly
CN103023290B (zh) 2011-09-23 2015-11-25 台达电子企业管理(上海)有限公司 中压变频驱动系统与总谐波失真补偿控制方法
CN103219740A (zh) 2012-01-18 2013-07-24 同济大学 一种永磁同步风力发电机并网系统
WO2014026840A2 (en) * 2012-08-16 2014-02-20 Abb Technology Ag Electrical power distribution system for data centers
JP2014176163A (ja) * 2013-03-07 2014-09-22 Sharp Corp 直流給電システム、電力変換装置、および直流給電システムの制御方法
CN203398807U (zh) 2013-04-22 2014-01-15 广东电网公司电力科学研究院 电力混合变换系统
EP2919354A1 (en) 2014-03-14 2015-09-16 Siemens Aktiengesellschaft Power supply arrangement of a wind farm
CN104410095B (zh) 2014-03-21 2015-11-18 南车株洲电力机车研究所有限公司 基于多端直流输电的交流电气化铁道同相贯通供电系统
CN103986339B (zh) 2014-05-30 2017-09-15 台达电子企业管理(上海)有限公司 电源转换系统的、电压调变装置及其方法
CN104242341A (zh) 2014-09-12 2014-12-24 周细文 基于mmc和双极式直流传输结构的直驱风电变流结构
CN204145305U (zh) * 2014-09-16 2015-02-04 安徽理工大学 一种应用于高压直流输电的新型dc-ac-dc换流器
US10116159B1 (en) 2015-06-02 2018-10-30 The Florida State University Research Foundation, Inc. Family of isolated battery energy storage system (BESS) with multiple functions for DC grid application
CN104917393B (zh) 2015-06-09 2018-02-16 合肥科威尔电源系统有限公司 一种基于mmc技术的光伏储能一体化直流变换器结构
CN105262125B (zh) 2015-11-12 2018-02-13 南方电网科学研究院有限责任公司 混合直流输电拓扑系统
CN107026463A (zh) * 2016-02-02 2017-08-08 天津理工大学 一种应用于光伏发电系统的有源并联式混合储能系统
CN105790305B (zh) 2016-04-20 2018-12-11 清华大学 基于全桥mmc直流侧串联的海上风电并网系统及其控制方法
JP6736370B2 (ja) 2016-06-16 2020-08-05 東海旅客鉄道株式会社 電力変換システム
US10404181B2 (en) 2016-08-16 2019-09-03 General Electric Company System and method for integrating hybrid energy storage into direct current power systems
CN108092577B (zh) 2016-11-23 2022-04-08 台达电子工业股份有限公司 风力发电系统及其适用的控制方法
SE1750290A1 (en) 2017-03-14 2017-03-14 Abb Schweiz Ag Interface arrangement between a first and a second power system
CN107294130B (zh) 2017-06-28 2020-01-17 东北电力大学 一种风储发电黑启动系统及其储能配置方法
CN108631293B (zh) * 2018-05-24 2021-04-30 山东大学 一种直流配网用dc/dc变换器运行模式及控制方法
CN108988667B (zh) 2018-07-19 2019-11-12 山东大学 降低三电平vienna整流器系统共模电压的预测控制系统及方法
CN209298898U (zh) * 2018-11-15 2019-08-23 西安西电电气研究院有限责任公司 一种分布式光伏远距离直流输电系统
CN109742780A (zh) 2019-01-25 2019-05-10 北京交通大学 基于模块化多电平变换器的相间分布式储能系统
CN110247421B (zh) 2019-02-02 2020-09-22 国网浙江省电力有限公司湖州供电公司 一种模块化双有源桥变流器系统及电气量均衡控制方法
CN110266034A (zh) 2019-06-03 2019-09-20 深圳市禾望电气股份有限公司 一种海上风电直流输电系统
CN110460101A (zh) * 2019-09-05 2019-11-15 北京双登慧峰聚能科技有限公司 海岛微电网储能子系统及控制方法
CN110829479A (zh) 2019-10-30 2020-02-21 浙江大学 一种海上风电场高频不控整流直流输电系统
CN110768240A (zh) * 2019-11-18 2020-02-07 台达电子企业管理(上海)有限公司 电力变换系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201308817A (zh) * 2011-08-05 2013-02-16 Ching-Wu Wang 適用於多種電力來源的智慧型電能儲存系統
TW201315094A (zh) * 2011-09-27 2013-04-01 Delta Electronics Shanghai Co 不斷電電源系統
CN109103911A (zh) * 2017-06-21 2018-12-28 中车株洲电力机车研究所有限公司 基于电力电子变压器的中压直流储能装置及能量管理方法
CN108134409A (zh) * 2017-12-29 2018-06-08 国网北京市电力公司 储能变流器的控制方法、装置、存储介质和处理器

Also Published As

Publication number Publication date
TW202042473A (zh) 2020-11-16
US11239663B2 (en) 2022-02-01
CN111244933A (zh) 2020-06-05
US20210281072A1 (en) 2021-09-09
EP3879663A1 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
TWI761784B (zh) 儲能裝置、電力系統及其控制方法
CN102891497A (zh) 利用静止同步补偿启动极弱受端高压直流输电系统的方法
US11799293B2 (en) High-voltage DC transformation apparatus and power system and control method thereof
CN210041352U (zh) 一种新型风电储能电站的多站合一拓扑结构
US20160181809A1 (en) Grid system conducive to enhancement of power supply performance
CN102611144A (zh) 基于多重化技术的光伏并网发电装置
TWI730649B (zh) 電力變換系統及方法
CN115085241B (zh) 一种交流直接并网型电池储能系统的功率变换方法
Vandoorn et al. Voltage control in islanded microgrids by means of a linear-quadratic regulator
EP4360182A2 (en) System and method for stabilizing a power distribution network
CN212850275U (zh) 高压直流变电装置及其所适用的电力系统
CN112072684B (zh) 一种电力电子变压器及控制方法、交直流混合微网充电系统
Yan et al. A novel converter system for DFIG based on DC transmission
CN210927096U (zh) 直流耦合系统
RU95434U1 (ru) Многофункциональный энергетический комплекс (мэк)
Gundogdu et al. Bi-directional power control of grid-tied battery energy storage system operating in frequency regulation
CN115224739A (zh) 一种新能源孤岛电网经柔性直流架空线送出系统
CN115207937A (zh) 一种家用电能路由器及其控制方法和软起动方法
Dias et al. Power electronics in the context of renewables, power quality and smart grids
Ghazanfari et al. A control method for integrating hybrid power source into an islanded microgrid through CHB multilevel inverter
CN218586894U (zh) 一种基于集中整流装置的调频系统
CN114513009B (zh) 一种基于低压配电台区的柔直控制方法、装置及系统
CN202513595U (zh) 基于多重化技术的光伏并网发电装置
CN112736892B (zh) 一种防止直流电网电压越限的协调控制方法
Piedra et al. Transformer-less Alternative Topologies of a Unified Power Quality Conditioner with Embedded Hybrid Energy Storage