TWI760885B - High-frequency noise signal filtering method and digital chip thereof - Google Patents
High-frequency noise signal filtering method and digital chip thereof Download PDFInfo
- Publication number
- TWI760885B TWI760885B TW109135138A TW109135138A TWI760885B TW I760885 B TWI760885 B TW I760885B TW 109135138 A TW109135138 A TW 109135138A TW 109135138 A TW109135138 A TW 109135138A TW I760885 B TWI760885 B TW I760885B
- Authority
- TW
- Taiwan
- Prior art keywords
- pass filter
- low
- transfer function
- digital
- frequency
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000012546 transfer Methods 0.000 claims abstract description 30
- 238000006243 chemical reaction Methods 0.000 claims abstract description 12
- 230000009466 transformation Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 9
- 230000006870 function Effects 0.000 description 18
- 238000005516 engineering process Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Analogue/Digital Conversion (AREA)
- Noise Elimination (AREA)
Abstract
Description
本發明涉及一種高頻雜訊濾波的技術,尤指一種可將高頻雜訊濾除且可簡化傳統控制系統架構的高頻雜訊濾波方法。 The present invention relates to a high-frequency noise filtering technology, in particular to a high-frequency noise filtering method that can filter out high-frequency noise and simplify the structure of a traditional control system.
隨著電子技術快速發展,3C家電越趨普及,而這些3C家電產品的設計製造則皆離不開電源,其中包括電鍍產業也必須利用直流電。而當中最常應用的元件當屬開關電源,然而,開關電源雖效率高且體積小,但是缺點則極其明顯,由於開關電源中有開關頻率,它本身具有強大的電路干擾源,使得許多電路系統容易受到開關電源的干擾而影響正常工作。 With the rapid development of electronic technology, 3C household appliances are becoming more and more popular, and the design and manufacture of these 3C household appliances are inseparable from the power supply, including the electroplating industry, which must also use direct current. The most commonly used component is switching power supply. However, although switching power supply has high efficiency and small size, its shortcomings are extremely obvious. Because switching power supply has switching frequency, it has a strong source of circuit interference, which makes many circuit systems. It is easy to be interfered by the switching power supply and affect the normal work.
在應用中,若將開關電源部分電路做好抗干擾的處理,就可把此較佳的電路應用到各種常用的電路設備上,進以提高電路的效率,然而,該些干擾的雜訊通常皆是高頻的,所以在傳統的切換開關的電源控制器,往往都有許多的高頻雜訊進到數位控制器,尤其越是大功率的直流變頻器,這一現象越是明顯。 In the application, if the circuit of the switching power supply is treated with anti-interference, this better circuit can be applied to various common circuit devices to improve the efficiency of the circuit. However, the interference noise is usually All are high-frequency, so in the traditional switch power controller, there are often many high-frequency noises entering the digital controller, especially the more high-power DC inverter, the more obvious this phenomenon is.
近年來,場域可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)晶片被大量運用在工業控制、手機與人工智慧深度學習的技術 上,因為其可以平行運算,且速度係為一般中央處理器(Central Processing Unit,CPU)運算的兩倍以上,而且內部程式設計非常彈性,可以堆疊式地架構一個完整功能程式,而且FPGA是以硬體描述語言來設計,可將許多的功能寫在一個晶片內,不需用大量的類比元件來設計,所以原則上用FPGA晶片來設計數位控制系統係比用類比元件設計具有較高的抗擾現象。 In recent years, Field Programmable Gate Array (FPGA) chips have been widely used in industrial control, mobile phones and artificial intelligence deep learning technologies Because it can operate in parallel, and the speed is more than twice that of the general central processing unit (Central Processing Unit, CPU), and the internal programming is very flexible, a complete functional program can be built in a stack, and the FPGA is based on It is designed with hardware description language, many functions can be written in one chip, and there is no need to use a large number of analog components to design, so in principle, using FPGA chip to design digital control system has higher resistance than analog component design. disturbance phenomenon.
但控制訊號進入數位控制器時若是混合著高頻雜訊時,將會使控制法則失效,進而使得系統功能紊亂。如圖1所示,先前技術之控制系統架構通常是由一低通濾波器10、一類比數位轉換元件11及一數位控制晶片12所構成,其係由該低通濾波器10接收到夾帶有高頻雜訊的連續控制訊號且進行一濾波作業後,再將濾波後的該控制訊號傳輸予該類比數位轉換元件11進行類比數位轉換作業,最後再由該數位控制晶片12接收該控制訊號,然而,由於該控制訊號經由該類比數位轉換元件11轉換後,容易帶有其他雜訊,使得該數位控制晶片12接收到該控制訊號時,仍可能帶有其他高頻雜訊,再者,先前技術的控制架構必須藉由三項硬體才可達成,其係造成了成本上的浪費。
However, when the control signal enters the digital controller, if it is mixed with high-frequency noise, the control law will be invalid, and the system will be disordered. As shown in FIG. 1 , the structure of the control system of the prior art is usually composed of a low-
因此,現今技術上亟需一種可有效的將高頻雜訊濾除且可簡化傳統控制系統架構的技術,進而改善先前技術所存在的問題。 Therefore, there is an urgent need for a technology that can effectively filter out high-frequency noise and simplify the structure of the traditional control system, thereby improving the problems existing in the prior art.
本發明之目的在於提供一差分方程式設定低通濾波器,使得低通濾波器可被設置於數位晶片內,且使得二者可相配合作業。藉此,當控制訊號被類比數位元件輸出後,即可先經由低通濾波器濾除高頻雜訊,再由數位晶片進行相關控制作業,進而達成有效地將高頻雜訊濾除且可簡化傳統控制系統架構的目的,以改善先前技術所存在的問題。 The purpose of the present invention is to provide a differential equation to set the low-pass filter, so that the low-pass filter can be set in the digital chip, and the two can work together. In this way, when the control signal is output by the analog digital device, the high-frequency noise can be filtered out by the low-pass filter first, and then the digital chip performs the related control operation, so as to effectively filter out the high-frequency noise and be able to The purpose of simplifying the traditional control system architecture in order to improve the problems of the previous technology.
為達上揭之目的者,本發明係提供一種高頻雜訊濾波的方法,其包括:定義一低通濾波器的規格中的通帶區域的最高頻率為通帶截止頻率(wp)、阻帶區域的最低頻率為阻帶截止頻率(ws)、通帶區域的衰減率為通帶漣波(Ap)、阻帶區域的衰減率為阻帶漣波(As);決定一類比低通濾波器轉移函數(Ha(s))中的一極點個數(N)與一截止頻率(wc);根據該極點個數(N)與該截止頻率(wc)求出該類比低通濾波器轉移函數(Ha(s))中的一確實極點(pk);根據該確實極點(pk)計算出該類比低通濾波器轉移函數(Ha(s));利用一脈衝不變轉換公式計算該類比低通濾波器轉移函數(Ha(s)),以得出與該類比低通濾波器轉移函數(Ha(s))相對的一數位濾波器轉換函數(H(z));根據一反Z轉換計算出該數位濾波器轉換函數(H(z))的一差分方程式;以及根據該差分方程式設定該低通濾波器。 In order to achieve the purpose disclosed above, the present invention provides a method for filtering high-frequency noise, comprising: defining the highest frequency of the passband region in the specification of a low-pass filter as the passband cutoff frequency (w p ), The lowest frequency in the stop-band region is the stop-band cutoff frequency (w s ), the attenuation rate of the pass-band region is the pass-band ripple (A p ), and the attenuation rate of the stop-band region is the stop-band ripple (A s ); A pole number (N) and a cut-off frequency (w c ) in the transfer function (H a (s)) of the analog low-pass filter; according to the pole number (N) and the cut-off frequency (w c ) to obtain A definite pole (p k ) in the analog low-pass filter transfer function (H a (s)); the analog low-pass filter transfer function (H a (s)) is calculated from the definite pole (p k ) ; Calculate the analog low-pass filter transfer function (H a (s)) using a pulse-invariant conversion formula to obtain a digital filter relative to the analog low-pass filter transfer function (H a (s)) transfer function (H(z)); calculate a differential equation of the digital filter transfer function (H(z)) according to an inverse Z transformation; and set the low-pass filter according to the differential equation.
較佳地,該極點個數(N)係根據如下公式計算:
其中如上公式中的係為大於x的最小整數。 where in the above formula is the smallest integer greater than x.
較佳地,該截止頻率(wc)係根據如下公式計算:
較佳地,該確實極點(pk)係根據如下公式計算:
其中常數K係為2N-1。 The constant K is 2N-1.
較佳地,該類比低通濾波器轉移函數(Ha(s))係根據如下公式計算:
較佳地,該脈衝不變轉換公式係為z=esT。 Preferably, the pulse-invariant conversion formula is z= esT .
較佳地,該數位濾波器轉換函數(H(z))係根據如下公式計算:
其中Y(z)是濾波器的輸出,X(z)是濾波器的輸入。 where Y(z) is the output of the filter and X(z) is the input of the filter.
較佳地,該反Z轉換係根據如下公式計算該差分方程式:
本發明之另一目的在於提供一種將低通濾波器設置於數位晶片內,且使得二者可相配合作業的技術。藉此,當控制訊號被類比數位元件輸出後,即可先經由低通濾波器濾除高頻雜訊,再由數位晶片進行相關控制作業,進而達成有效地將高頻雜訊濾除且可簡化傳統控制系統架構的目的,以改善先前技術所存在的問題。 Another object of the present invention is to provide a technology for disposing a low-pass filter in a digital chip and enabling the two to work together. In this way, when the control signal is output by the analog digital device, the high-frequency noise can be filtered out by the low-pass filter first, and then the digital chip performs the related control operation, so as to effectively filter out the high-frequency noise and be able to The purpose of simplifying the traditional control system architecture in order to improve the problems of the previous technology.
為達上揭之另一目的者,本發明係提供一種數位晶片,係用於執行上述之高頻雜訊濾波的方法,其包含:一訊號接收器,其被設置以從一類比數位轉換元件接收具有至少一高頻雜訊的一訊號;一低通濾波器,其耦合於該訊號接收器,該低通濾波器係去除該訊號內的該高頻雜訊,且輸出濾波後的該訊號;以及一處理器,其耦合於該低通濾波器以接收且處理該控制訊號。 In order to achieve another object disclosed above, the present invention provides a digital chip for performing the above-mentioned method for filtering high-frequency noise, comprising: a signal receiver configured to convert components from an analog digital converter receiving a signal with at least one high-frequency noise; a low-pass filter coupled to the signal receiver, the low-pass filter removes the high-frequency noise in the signal, and outputs the filtered signal ; and a processor coupled to the low-pass filter to receive and process the control signal.
為使本發明之上述目的、特徵和優點能更明顯易懂,下文茲配合各圖式所列舉之具體實施例詳加說明。 In order to make the above-mentioned objects, features and advantages of the present invention more clearly understood, the following detailed description is given in conjunction with the specific embodiments listed in the drawings.
10:低通濾波器 10: Low pass filter
11:類比數位轉換元件 11: Analog-to-digital conversion components
12:數位控制晶片 12: Digital control chip
20:低通濾波器 20: low pass filter
30:數位晶片 30: Digital Chip
31:訊號接收器 31: Signal receiver
32:處理器 32: Processor
40:類比數位轉換器 40: Analog to Digital Converter
Ap:通帶漣波 A p : passband ripple
As:阻帶漣波 A s : stopband ripple
wp:通帶截止頻率 w p : passband cutoff frequency
ws:阻帶截止頻率 ws : stopband cutoff frequency
S101~S107:步驟流程 S101~S107: Step flow
圖1係為先前技術之控制系統架構示意圖;圖2係為本發明之步驟流程圖;圖3係為本發明之類比低通濾波器的響應規格示意圖;圖4係為本發明之低通濾波器的輸出波形示意圖;圖5係為本發明之控制系統架構示意圖。 Fig. 1 is a schematic diagram of the control system structure of the prior art; Fig. 2 is a flow chart of the steps of the present invention; Fig. 3 is a schematic diagram of the response specification of the analog low-pass filter of the present invention; Fig. 4 is a low-pass filter of the present invention Figure 5 is a schematic diagram of the structure of the control system of the present invention.
本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解為其本發明僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所為定義。 The advantages, features, and technical means of achieving the present invention will be more easily understood by being described in more detail with reference to the exemplary embodiments and the accompanying drawings, and the present invention may be implemented in different forms, so it should not be construed as the present invention. It is limited only to the embodiments set forth herein. On the contrary, to those of ordinary skill in the art, the provided embodiments will make the present disclosure more thorough, complete and complete to convey the scope of the present invention, and the present invention will only be Defined by the appended claims.
另外,術語「包括」及/或「包含」指所述特徵、區域、整體、步驟、操作、元件及/或部件的存在,但不排除一個或多個其他特徵、區域、整體、步驟、操作、元件、部件及/或其組合的存在或添加。 Additionally, the terms "comprising" and/or "comprising" refer to the presence of stated features, regions, integers, steps, operations, elements and/or components, but do not exclude one or more other features, regions, integers, steps, operations , elements, components and/or the presence or addition of combinations thereof.
為使 貴審查委員方便瞭解本發明之內容,以及所能達成之功效,茲配合圖式列舉之各項具體實施例以詳細說明如下:請參閱圖2至圖4,其係為本發明之步驟流程圖、類比低通濾波器的響應規格示意圖、以及低通濾波器的輸出波形示意圖。如圖所示,本發明主
要是提供一種高頻雜訊濾波的方法,以利用一差分方程式設定一低通濾波器20,使得該低通濾波器20可被設置於一數位晶片30內,且使得二者可相配合作業。如此,該差分方程式主要是經由如下的設計步驟所得出的:
In order to facilitate your reviewers to understand the content of the present invention and the effects that can be achieved, the specific embodiments listed in the drawings are described in detail as follows: Please refer to FIG. 2 to FIG. 4 , which are the steps of the present invention. Flow chart, schematic diagram of the response specification of an analog low-pass filter, and a schematic diagram of the output waveform of the low-pass filter. As shown in the figure, the main
If a method for filtering high frequency noise is provided, a low-
S101:首先,先依據類比低通濾波器的響應規格(如圖4所示)定義出於通帶區域中的最高頻率為通帶截止頻率(wp)、於阻帶區域中的最低頻率為阻帶截止頻率(ws)、於通帶區域中的衰減率為通帶漣波(Ap)、於阻帶區域中的衰減率為阻帶漣波(As)。 S101: First, according to the response specification of the analog low-pass filter (as shown in Figure 4), define the highest frequency in the passband region as the passband cutoff frequency (w p ), and the lowest frequency in the stopband region as The stop-band cutoff frequency (w s ), the attenuation rate in the pass-band region is the pass-band ripple (A p ), and the attenuation rate in the stop-band region is the stop-band ripple (A s ).
S102:依據公式(1)及公式(2)決定一類比低通濾波器轉移函數(Ha(s))中的一極點個數(N)與一截止頻率(wc)。 S102: Determine a pole number (N) and a cutoff frequency (w c ) in the transfer function (H a (s)) of the analog low-pass filter according to formula (1) and formula (2).
S103:再根據該極點個數(N)與該截止頻率(wc)由公式(3)求出該類比低通濾波器轉移函數(Ha(s))中的一確實極點(pk)。其中,常數K係為2N-1。 S103: According to the number of poles (N) and the cut-off frequency (w c ), obtain a certain pole (p k ) in the transfer function (H a (s)) of the analog low-pass filter by formula (3) . Among them, the constant K is 2N-1.
S104:其後則根據該確實極點(pk)由公式(4)計算出該類比低通濾波器轉移函數(Ha(s))。 S104: Then, the analog low-pass filter transfer function (H a (s)) is calculated by formula (4) according to the exact pole (p k ).
S105:利用一脈衝不變轉換公式(z=esT)計算該類比低通濾波器轉移函數(Ha(s)),以得出如下公式(5)之與該類比低通濾波器轉移函數(Ha(s))相對的一數位濾波器轉換函數(H(z))。 S105: Calculate the transfer function (H a (s)) of the analog low-pass filter by using a pulse-invariant conversion formula (z=e sT ) to obtain the following formula (5) and the transfer function of the analog low-pass filter (H a (s)) versus a digital filter transfer function (H(z)).
S106:根據一反Z轉換(如下公式(6))計算出該數位濾波器轉換函數(H(z))的一差分方程式。 S106: Calculate a differential equation of the digital filter transfer function (H(z)) according to an inverse Z transformation (the following formula (6)).
S107:最後即可根據該差分方程式設定該低通濾波器20。
S107: Finally, the low-
以實作來說,假設取樣頻率為1KHz、通帶截止頻率(wp)為20Hz、阻帶截止頻率(ws)為100Hz,選擇最少的階數來設計,通帶漣波(Ap)為1db、阻帶漣波(As)為80db,由濾波器設計及分析工具(filter design and analysis tool,FDATool)依據這些規格的設定值以及上述所提及的各步驟及公式來完成該低通濾波器20的設計工作,並將數位化的差分方程式設定此規格的該低通濾波器20,以轉出成一模擬連結(Simulink)模型後,若設定一個高於100Hz的訊號sin波型,上下振幅為1,頻率為(2×π×200)rad/sce,外加上一個低頻常數2,同時進入該低通濾波器20,其輸出的波形即會如圖5所示,當控制訊號經由該低通濾波器20出來的波形,其可明顯看出,sin波在0.1秒時就被濾掉,且僅剩下低頻常數2的輸出,故可了解,本發明將該低通濾波器20整合至該數位晶片30上時,係可達成將高頻雜訊濾除且可簡化傳統控制系統架構的功效。
In practice, assuming that the sampling frequency is 1KHz, the pass-band cut-off frequency (w p ) is 20 Hz, and the stop-band cut-off frequency (w s ) is 100 Hz, select the least order to design, the pass-band ripple (A p ) It is 1db, and the stopband ripple (A s ) is 80db. The filter design and analysis tool (FDATool) completes the low voltage according to the set values of these specifications and the steps and formulas mentioned above. The design work of the
請再參閱圖5,其係為本發明之控制系統架構示意圖。如圖所示,當本發明利用該低通濾波器20整合至該數位晶片30(例如場域可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)晶片)上時,該數位晶片30主要是從一
類比數位轉換器40接收到一控制訊號後,以先經由該低通濾波器20針對該控制訊號進行濾波作業後,再由該數位晶片30進行後續的訊號處理動作。
Please refer to FIG. 5 again, which is a schematic diagram of the structure of the control system of the present invention. As shown in the figure, when the present invention utilizes the low-
如此,為達成上述功用,該數位晶片30至少包括有一訊號接收器31、該低通濾波器20及一處理器32,其中該訊號接收器20主要是從一類比數位轉換器40接收到一控制訊號;該低通濾波器20則是耦合該訊號接收器20後,以針對該控制訊號進行相關的濾波作業;而該處理器32係耦合於該低通濾波器20以接收完成濾波作業的該控制訊號,且根據該控制訊號內所儲存的訊號進行相關的處理作業。
Thus, in order to achieve the above functions, the digital chip 30 at least includes a
故藉由本發明之該差分方程式所設定的該低通濾波器20係可被整合至該數位晶片30上,以接收從該類比數位轉換器40輸出的該控制訊號,進而進行濾波及處理的相關作業。
Therefore, the low-
本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。 What is disclosed in this case is a preferred embodiment, and any partial changes or modifications that originate from the technical ideas of this case and are easily inferred by those who are familiar with the art are within the scope of the patent right of this case.
綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。 To sum up, in terms of purpose, means and efficacy, this case is showing its technical characteristics that are completely different from those of the prior art, and its first invention is suitable for practical use, and it also meets the requirements of a patent for invention. Granting a patent as soon as possible will benefit the society, and it will be a real sense of virtue.
S101~S107:步驟流程 S101~S107: Step flow
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109135138A TWI760885B (en) | 2020-10-12 | 2020-10-12 | High-frequency noise signal filtering method and digital chip thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109135138A TWI760885B (en) | 2020-10-12 | 2020-10-12 | High-frequency noise signal filtering method and digital chip thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI760885B true TWI760885B (en) | 2022-04-11 |
TW202215779A TW202215779A (en) | 2022-04-16 |
Family
ID=82197263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109135138A TWI760885B (en) | 2020-10-12 | 2020-10-12 | High-frequency noise signal filtering method and digital chip thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI760885B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7035328B2 (en) * | 1999-02-08 | 2006-04-25 | Sunil Shukla | Method of slewing a digital filter providing filter sections with matched gain |
TW200939209A (en) * | 2008-03-11 | 2009-09-16 | Sino Empire Internat Co Ltd | Execution method of digital device |
US8412360B2 (en) * | 2010-08-23 | 2013-04-02 | Hitachi Asia Ltd. | Method and system for robust attenuation of mechanical resonances using a multi-rate low pass filter |
TW201639312A (en) * | 2015-04-06 | 2016-11-01 | 高通公司 | Self-interference cancellation using digital filter and auxiliary receiver |
-
2020
- 2020-10-12 TW TW109135138A patent/TWI760885B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7035328B2 (en) * | 1999-02-08 | 2006-04-25 | Sunil Shukla | Method of slewing a digital filter providing filter sections with matched gain |
TW200939209A (en) * | 2008-03-11 | 2009-09-16 | Sino Empire Internat Co Ltd | Execution method of digital device |
US8412360B2 (en) * | 2010-08-23 | 2013-04-02 | Hitachi Asia Ltd. | Method and system for robust attenuation of mechanical resonances using a multi-rate low pass filter |
TW201639312A (en) * | 2015-04-06 | 2016-11-01 | 高通公司 | Self-interference cancellation using digital filter and auxiliary receiver |
Also Published As
Publication number | Publication date |
---|---|
TW202215779A (en) | 2022-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lin | Intelligent neural network-based fast power system harmonic detection | |
JP2009290867A (en) | System and method for synthesizing signal | |
TWI760885B (en) | High-frequency noise signal filtering method and digital chip thereof | |
Chierchie et al. | Simple real-time digital PWM implementation for class-D amplifiers with distortion-free baseband | |
CN105334381B (en) | A kind of measuring method and device for exchanging active power | |
US20120114033A1 (en) | Using multi-level pulse width modulated signal for real time noise cancellation | |
DK1339256T3 (en) | Process for the manufacture of acoustic appliances and to reduce wind disturbance | |
CN104123943B (en) | A kind of method and apparatus of audio signal resampling | |
JP2022540399A (en) | Drive control circuit and home appliance | |
CN111830318B (en) | Wireless charging high-frequency current sampling system and sampling method thereof | |
CN103458430B (en) | The power detecting method of GSM time slot signal and power-sensing circuit | |
CN204362013U (en) | The digital filter apparatus of high-frequency resonant soft switch transducer measuring circuit | |
Borges et al. | Analysis of iir filters by interval response | |
CN105353197B (en) | A kind of measuring method and device for exchanging real effective | |
Caponetto et al. | Analog implementation of non integer order integrator via field programmable analog array | |
Bellili et al. | A simple architecture for high performance class-D audio amplifier with novel RC network as negative feedback loop | |
CN107894242A (en) | A kind of sensor signal processing system | |
Sharma et al. | Design and analysis of IIR notch filter using LabVIEW | |
CN115314015A (en) | Chaotic power amplifier and chaotic SPWM signal generation method | |
CN111525932A (en) | Frequency identification method and filtering method of power frequency signal and microwave sensor | |
TWI351805B (en) | ||
CN105099452B (en) | A kind of circuit for voltage signal to be converted to frequency signal | |
Ghanmare et al. | Microcontroller based three phase inverter | |
Gourisetti | A new approach to harmonic elimination based on a real-time comparison method | |
Badarov et al. | Mains Frequency Deviation Measurement by Using Elements of the Subtraction Procedure Based on Xilinx FPGA |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |