TWI760808B - 雷達距離探測裝置與方法 - Google Patents

雷達距離探測裝置與方法 Download PDF

Info

Publication number
TWI760808B
TWI760808B TW109126347A TW109126347A TWI760808B TW I760808 B TWI760808 B TW I760808B TW 109126347 A TW109126347 A TW 109126347A TW 109126347 A TW109126347 A TW 109126347A TW I760808 B TWI760808 B TW I760808B
Authority
TW
Taiwan
Prior art keywords
analog
frequency
measured
filter
digital signal
Prior art date
Application number
TW109126347A
Other languages
English (en)
Other versions
TW202206848A (zh
Inventor
何忠誠
Original Assignee
何忠誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何忠誠 filed Critical 何忠誠
Priority to TW109126347A priority Critical patent/TWI760808B/zh
Publication of TW202206848A publication Critical patent/TW202206848A/zh
Application granted granted Critical
Publication of TWI760808B publication Critical patent/TWI760808B/zh

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

一種雷達距離探測裝置與方法,於一數位信號處理器實施,該數位信號處理器通過至少一類比/數位轉換器電連接複數濾波器的輸出端,該方法包含:從該至少一類比/數位轉換器接收至少一數位待測信號,並得到該至少一數位待測信號的待測頻率,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率的一半;根據該至少一數位待測信號的待測頻率、該至少一類比/數位轉換器的取樣頻率與一距離換算值計算一待測距離;該複數濾波器的截止頻率或通帶彼此不同,且其提供的增益彼此不同;藉此,本發明可兼具較近及較遠距離的探測。

Description

雷達距離探測裝置與方法
本發明是有關距離探測裝置與方法,特別是指雷達距離探測裝置與方法。
請參考圖9,習知雷達距離探測裝置包含一天線80、一本地振盪器(Local Oscillator)81、一混頻器(Mixer)82、一類比/數位轉換器(A/D converter)83與一數位信號處理器(Digital Signal Processor,DSP)84。
該混頻器82的一輸入端電連接該天線80,該混頻器82的另一輸入端電連接該本地振盪器81,該類比/數位轉換器83的一類比輸入端電連接該混頻器82的一輸出端,該數位信號處理器84電連接該類比/數位轉換器83的一數位輸出端。習知雷達距離探測裝置透過該天線80發射一電磁波發射信號,該電磁波發射信號為線性調頻(Linear Frequency Modulation,LFM)信號,當該電磁波發射信號被一物體反射,該天線80即可對應接收一電磁波反射信號,該電磁波反射信號通過該混頻器82後,由該類比/數位轉換器83進行取樣,並產生一數位待測信號給該數位信號處理器84,由該數位信號處理器84根據數位待測信號判斷習知雷達距離探測裝置所設置之處(例如車輛)與該物體之間的相對距離。
因為從該天線80所發出的電磁波發射信號的頻率為已知,當該電磁波反射信號的頻率與該電磁波發射信號的頻率的差異越低,代表習知雷達距離探測裝置與該物體之間的相對距離越近;相對的,當該電磁波反射信號的頻率與該電磁波發射信號的頻率的差異越大,代表習知雷達距離探測裝置與該物體之間的相對距離越遠。是以,該數位信號處理器84所接收的該數位待測信號的頻率即可反映習知雷達距離探測裝置與該物體之間的相對距離。
當習知雷達距離探測裝置與該物體之間的相對距離越遠,所接收的該電磁波反射信號的信號強度越弱,導致可探測距離有限。為了改善前述該電磁波反射信號的信號強度越弱的問題,以達到延伸可探測距離的目標,習知雷達距離探測裝置可包含一信號放大器,透過該信號放大器直接放大該電磁波反射信號的信號強度。然而,當習知雷達距離探測裝置與該物體之間的相對距離越近,所接收的該電磁波反射信號的信號強度越強。如此一來,當信號強度已經較強的電磁波反射信號又受到該信號放大器的放大後,信號恐直接飽和,導致該數位信號處理器84無法據以運算相對距離。由此可見,習知雷達距離探測裝置無法兼具較近及較遠距離的探測。
另一方面,依據奈奎斯特(Nyquist)取樣定理,通常為了避免信號混疊(aliasing)的現象,尤其在需延伸更遠的探測距離時,習知雷達距離探測裝置所需處理的資料量更大,故習知雷達距離探測裝置不僅必須採用更高階的類比/數位轉換器83以具備更高位元(bits)及實施更高的取樣轉換速率(sample per second,sps),也要採用更高階的數位信號處理器84以實施更快的運算速度。如此一來,昂貴、高階的類比/數位轉換器83以及數位信號處理器84導致裝置成本大幅提高。
有鑒於此,本發明的主要目的是提供一種雷達距離探測裝置與方法,以期克服習知雷達距離探測裝置無法兼具較近及較遠距離的探測,以及裝置成本大幅提高的缺點。
本發明雷達距離探測裝置包含:一天線;一本地振盪器; 一混頻器,包含一第一輸入端、一第二輸入端與一輸出端,該第一輸入端電連接該天線,該第二輸入端電連接該本地振盪器,該輸出端輸出一類比待測信號;一濾波模組,包含複數濾波器,該複數濾波器的輸入端電連接該混頻器的輸出端,其中,該複數濾波器的截止頻率或通帶彼此不同,該複數濾波器提供的增益彼此不同;以及一數位信號處理器,通過至少一類比/數位轉換器電連接該複數濾波器的輸出端以接收至少一數位待測信號,其中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率的一半;該數位信號處理器根據該至少一數位待測信號的待測頻率、該至少一類比/數位轉換器的取樣頻率與一距離換算值計算一待測距離。
本發明雷達距離探測方法於一數位信號處理器實施,該數位信號處理器通過至少一類比/數位轉換器電連接複數濾波器的輸出端,該方法包含:從該至少一類比/數位轉換器接收至少一數位待測信號,並得到該至少一數位待測信號的待測頻率,其中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率的一半;以及根據該至少一數位待測信號的待測頻率、該至少一類比/數位轉換器的取樣頻率與一距離換算值計算一待測距離;該複數濾波器的截止頻率或通帶彼此不同,該複數濾波器提供的增益彼此不同。
本發明係根據被物體反射之電磁波信號的頻率高低探測與物體之間相對距離的遠近,該濾波模組的複數濾波器可分別提供高低不同的增益且不相互干涉,當進行較遠距離的探測時,具有較大增益的濾波器可提升信號強 度,以利識別判讀;當進行較近距離的探測時,具有較低增益的濾波器可避免信號飽和。藉此,本發明可兼具較近及較遠距離的探測。
另一方面,依據奈奎斯特(Nyquist)取樣定理,當該待測頻率高於取樣頻率的一半,會產生信號混疊(aliasing)的現象。以探測距離範圍為150公尺為例,為了避免信號混疊的現象,習知雷達距離探測裝置需採用高階類比/數位轉換器,以具備足夠位元(bits)及實施較高的取樣轉換速率(sample per second,sps),以達成150公尺的探測距離範圍;在本發明中,本發明並不刻意避免混疊現象,本發明透過該複數濾波器分別對應遠近不同的探測距離範圍的特徵,也就是說,每個濾波器對應的探測距離範圍較短,所需處理的資料量變低,同樣以探測距離範圍為150公尺來看,當本發明的濾波器的數量為N個,每個濾波器對應的探測距離範圍例如可僅為150/N公尺,故本發明的類比/數位轉換器僅需具備習知高階類比/數位轉換器之所需位元的N分之一位元及較低的取樣轉換速率(sps),本發明不需刻意選用昂貴、高階的類比/數位轉換器以及數位信號處理器,就可達成150公尺的探測距離範圍,進而能有效控管成本、降低成本。需說明的示,前述150公尺的探測距離範圍、N...等數值僅做為示意的範例,用以比較本發明與習知技術的差別而已,並非用以限制本發明。
前述是以固定探測距離範圍為條件去比較本發明與習知技術的差異,另以硬體規格所能達成功能的條件來看(暫不論及在更遠的探測距離時,習知類比/數位轉換器與習知數位信號處理器的昂貴與高階),在相同硬體規格的前提下,例如本發明的類比/數位轉換器與習知類比/數位轉換器具相同規格,本發明的數位信號處理器與習知數位信號處理器具相同規格,如前所述,因為本發明所需處理的資料量較低,故在相同硬體規格的前提下,和習知技術相比,本發明的類比/數位轉換器與數位信號處理器有更多資源去實施提高空間解析度的運算或延長更遠的探測距離。
10:天線
20:本地振盪器
30:混頻器
31:第一輸入端
32:第二輸入端
33:輸出端
40:濾波模組
41:低通濾波器
42:第一帶通濾波器
43:第二帶通濾波器
50:切換開關
51:切換端
52:共同端
53:控制端
60:類比/數位轉換器
61:類比輸入端
62:數位輸出端
601:第一類比/數位轉換器
602:第二類比/數位轉換器
603:第三類比/數位轉換器
70:數位信號處理器
80:天線
81:本地振盪器
82:混頻器
83:類比/數位轉換器
84:數位信號處理器
S1:電磁波反射信號
S2:本地振盪信號
S3:類比待測信號
S4:數位待測信號
x:第一數位待測信號
y:第二數位待測信號
z:第三數位待測信號
S4':混疊信號
f s :類比/數位轉換器的取樣頻率
f x :數位待測信號的待測頻率
f xa :數位待測信號的實際的待測頻率超出f s 的部分
f C :截止頻率
f LC_1:第一下截止頻率
f UC_1:第一上截止頻率
f LC_2:第二下截止頻率
f UC_2:第二上截止頻率
Figure 109126347-A0305-02-0019-6
:混疊頻率
Passband_1:第一通帶
Passband_2:第二通帶
A1:第一增益
A2:第二增益
A3:第三增益
圖1:本發明雷達距離探測裝置的基本架構的方塊示意圖。
圖2:本發明雷達距離探測裝置的第一實施例的方塊示意圖。
圖3:本發明雷達距離探測裝置的第一實施例的方塊示意圖(濾波模組包含低通濾波器與帶通濾波器)。
圖4:本發明雷達距離探測裝置的第二實施例的方塊示意圖(濾波模組包含低通濾波器與帶通濾波器)。
圖5A:本發明實施例的低通濾波器的頻率響應示意圖。
圖5B:本發明實施例的第一帶通濾波器的頻率響應示意圖。
圖5C:本發明實施例的第二帶通濾波器的頻率響應示意圖。
圖6:數位待測信號的待測頻率低於取樣頻率的一半的示意圖。
圖7:數位待測信號的待測頻率高於取樣頻率的一半的示意圖。
圖8:數位待測信號的待測頻率高於取樣頻率的示意圖。
圖9:習知雷達距離探測裝置的方塊示意圖。
本發明雷達距離探測裝置可供用以探測其本身與一物體之間的相對距離(後稱一待測距離),在應用上,舉例來說,本發明雷達距離探測裝置可安裝在自駕車,供自駕車根據本發明雷達距離探測裝置所判讀出的該待測距離進行導航決策或執行閃避障礙物等功能,但不以此應用為限。
請參考圖1,本發明雷達距離探測裝置的基本架構包含一天線10、一本地振盪器(Local Oscillator)20、一混頻器(Mixer)30、一濾波模組40、至少一類比/數位轉換器(A/D converter)60與一數位信號處理器(Digital Signal Processor,DSP)70。
一般而言,該天線10發出一電磁波發射信號後,該天線10可接收該電磁波發射信號被該物體反射的一電磁波反射信號S1,其中,該電磁波發射信號可為一線性調頻(Linear Frequency Modulation,LFM)信號。該本地振盪器20的輸出信號為一本地振盪信號S2,該本地振盪信號S2具有一本地振盪頻率。
該混頻器30包含一第一輸入端31、一第二輸入端32與一輸出端33,該第一輸入端31電連接該天線10以供接收該電磁波反射信號S1,該第二輸入端S2電連接該本地振盪器20以供接收該本地振盪信號S2,該輸出端33輸出一類比待測信號S3。
一般而言,該混頻器30將該電磁波反射信號S1與該本地振盪信號S2進行混合以產生該類比待測信號S3,該類比待測信號S3的頻率即包含該電磁波反射信號S1的頻率成份。當該電磁波反射信號S1的頻率與該電磁波發射信號的頻率的差異越低,代表本發明雷達距離探測裝置與該物體之間的相對距離越近;相對的,當該電磁波反射信號S1的頻率與該電磁波發射信號的頻率與的差異越大,代表本發明雷達距離探測裝置與該物體之間的相對距離越遠。是以,因為該類比待測信號S3的頻率包含該電磁波反射信號S1的頻率成份,故該類比待測信號S3的頻率高低即可反映該待測距離的遠近。本段所述為本發明所屬技術領域中的通常知識。
該濾波模組40包含複數濾波器(圖1未示,容後說明),該複數濾波器用以分別對應遠近不同的探測距離範圍,該複數濾波器的輸入端電連接該混頻器30的輸出端33,該複數濾波器的截止頻率或通帶彼此不同。舉例來說,各該濾波器的種類可為低通濾波器(low-pass filter)、高通濾波器(high-pass filter)、帶通濾波器(band-pass filter)或帶拒濾波器(notch filter)。另一方面,各該濾波器可包含運算放大器(Operational Amplifier,OP)與電連接所述運算放大器的電阻、電容及/或電感,該等濾波器的信號放大倍率可彼此不同,具有較高截止 頻率或通帶之濾波器的信號放大倍率(增益,Gain)比具有較低截止頻率或通帶之濾波器的信號放大倍率(增益,Gain)更高。
該數位信號處理器70通過該至少一類比/數位轉換器60電連接該濾波模組40的該複數濾波器的輸出端,以從該至少一類比/數位轉換器60接收至少一數位待測信號S4,其中,該至少一類比/數位轉換器60操作在一取樣頻率(f s ),透過該取樣頻率(f s )對所傳來經過濾波的該類比待測信號S3進行取樣後,輸出該至少一數位待測信號S4至該數位信號處理器70,該至少一數位待測信號S4的頻率為待測頻率,該至少一數位待測信號S4的待測頻率即可反映該類比待測信號S3的待測頻率。本發明中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器60的取樣頻率(f s )的一半。該數位信號處理器70根據該至少一數位待測信號S4的待測頻率、該至少一類比/數位轉換器60的取樣頻率(f s )與一距離換算值計算一待測距離,詳述如後。
請參考圖2,為本發明雷達距離探測裝置的第一實施例,其可進一步包含一切換開關50,該切換開關50包含一切換端51、一共同端52與一控制端53,該切換端51選擇性地電連接該濾波模組40的該複數濾波器的其中之一濾波器的輸出端。其中,該切換開關50可為電子開關或繼電器,其根據控制指令而使該切換端51被切換連接到該濾波模組40的該複數濾波器的其中之一濾波器的輸出端。
在第一實施例中,該至少一類比/數位轉換器60為一個類比/數位轉換器60,該類比/數位轉換器60具有一類比輸入端61與一數位輸出端62,該類比輸入端61電連接該切換開關50的共同端52,其中,該濾波模組40的該複數濾波器中的一濾波器的截止頻率為該類比/數位轉換器60的取樣頻率(f s )的一半,該複數濾波器中的其他濾波器的截止頻率或通帶大於該類比/數位轉換器60的取樣頻率(f s )的一半。
藉由該濾波模組40與該切換開關50的協同運作,只有在該類比待測信號S3的待測頻率落在被切換連接到的濾波器的允許頻率範圍(即:通帶)時,經過濾波的該類比待測信號S3才可抵達該類比/數位轉換器60。相對的,當該類比待測信號S3的頻率落在被切換連接到的濾波器的允許頻率範圍以外時,該類比待測信號S3即被濾除。
該數位信號處理器70電連接該切換開關50的控制端53與該類比/數位轉換器60的數位輸出端62,故請參考圖2,整體來看,該數位信號處理器70除了通過該類比/數位轉換器60更通過該切換開關50而電連接該濾波模組40的該複數濾波器的輸出端。該數位信號處理器70可輸出所述控制指令給該切換開關50,使該切換開關50的切換端51可依序(或不依序)並循環切換連接到該複數濾波器。
該數位信號處理器70可對通過該天線10、該混頻器30、該濾波模組40、該切換開關50及該類比/數位轉換器60的信號(即:該數位待測信號S4)轉換為頻域而得到一待測頻率(f x )(單位:GHz),並根據該類比/數位轉換器60的該取樣頻率(f s )、該數位待測信號S4的該待測頻率(f x )與一距離換算值R計算該待測距離(容後說明)。其中,所述將信號轉換為頻域以得到該待測頻率(f x )的技術手段可為快速傅利葉轉換(Fast Fourier Transform,FFT),此為本發明所屬技術領域中的通常知識,在此不加以詳述。
該數位信號處理器70從一記憶體讀取該距離換算值R,該距離換算值R例如可為比例值(單位:公尺/頻率(GHz)),該記憶體可為該數位信號處理器70的內部記憶體或外部記憶體。其中,該距離換算值R可為經過實際測試的數值,以儲存在所述記憶體供該數位信號處理器70讀取。需說明的是,如前所述,該類比待測信號S3的待測頻率高低可反映本發明雷達距離探測裝置與物體之間的相對距離,並且該數位待測信號S4的待測頻率可反映該類比待測信號 S3的待測頻率。為了建立該距離換算值R,使用者可先準備一物件,將該物件放在與本發明雷達距離探測裝置的不同相對距離的位置,並分別實際量測在不同位置時的該數位待測信號S4的待測頻率,即可得到不同相對距離所對應的不同待測頻率,據以得到該距離換算值R。
如圖3所示,本發明中該濾波模組40的複數濾波器可包含一低通濾波器41與一帶通濾波器(後稱一第一帶通濾波器42),若使用上有更遠距探測的需求,可進一步包含一第二帶通濾波器43。在本發明中,以該濾波模組40包含該低通濾波器41、該第一帶通濾波器42與該第二帶通濾波器43為例說明。
另請參考圖4,為本發明雷達距離探測裝置的第二實施例,該至少一類比/數位轉換器60包含複數類比/數位轉換器,該複數類比/數位轉換器的類比輸入端分別對應電連接該濾波模組40的該複數濾波器的輸出端,該複數類比/數位轉換器的數位輸出端分別電連接該數位信號處理器70。舉例來說,該濾波模組40可包含如前所述的低通濾波器41、第一帶通濾波器42與第二帶通濾波器43,對應的,該至少一類比/數位轉換器60包含一第一類比/數位轉換器601、一第二類比/數位轉換器602與一第三類比/數位轉換器603,該第一類比/數位轉換器601的類比輸入端電連接該低通濾波器41的輸出端,該第二類比/數位轉換器602的類比輸入端電連接該第一帶通濾波器42的輸出端,該第三類比/數位轉換器603的類比輸入端電連接該第二帶通濾波器43的輸出端,該第一、該第二與該第三類比/數位轉換器601、602、603的數位輸出端分別電連接該數位信號處理器70。
如圖2所示的第一實施例中,該數位信號處理器70係控制切換該切換開關50,故利用一個該類比數位轉換器60即可接收該數位待測信號S4進行待測距離的運算;如圖4所示的第二實施例中,包含複數類比/數位轉換器601、602、603,該等類比/數位轉換器601、602、603可同時取樣而各別輸出數位待 測信號給該數位信號處理器70,供該數位信號處理器70可針對從該等類比/數位轉換器601、602、603傳來的數位待測信號同步進行待測距離的運算。如前所述,該複數濾波器41、42、43用以分別對應遠近不同的探測距離範圍。
請配合參考圖5A,該低通濾波器41具有一截止頻率(f C )並提供一第一增益A1;請配合參考圖5B,該第一帶通濾波器42具有一第一下截止頻率(f LC_1)與一第一上截止頻率(f UC_1)並提供一第二增益A2,該第一下截止頻率(f LC_1)與該第一上截止頻率(f UC_1)之間的頻帶即為該第一帶通濾波器42的第一通帶(Passband_1),該第一帶通濾波器42的第一下截止頻率(f LC_1)可等於該低通濾波器41的截止頻率(f C ),該第一帶通濾波器42的第一上截止頻率(f UC_1)大於該取樣頻率(f s )的一半;請配合參考圖5C,該第二帶通濾波器43具有一第二下截止頻率(f LC_2)與一第二上截止頻率(f UC_2)並提供一第三增益A3,該第二下截止頻率(f LC_2)與該第二上截止頻率(f UC_2)之間的頻帶即為該第二帶通濾波器43的第二通帶(Passband_2),該第二下截止頻率(f LC_2)可等於該第一上截止頻率(f UC_1),該第二上截止頻率(f UC_2)大於該第一上截止頻率(f UC_1)。該第三增益A3大於該第二增益A2,且該第二增益A2大於該第一增益A1,換言之,該第二帶通濾波器43提供最大的信號放大倍率,該第一帶通濾波器42次之。
依據奈奎斯特(Nyquist)取樣定理,當該待測頻率(f x )低於該取樣頻率(f s )的一半,即f x <f s /2,可避免信號混疊(aliasing)的現象;相對的,當該待測頻率(f x )高於該取樣頻率(f s )的一半,即f x >f s /2,會產生信號混疊(aliasing)的現象。在本發明中,該低通濾波器41的截止頻率(f C )設計為等於該類比/數位轉換器60的取樣頻率(f s )的一半,即f C =f s /2,該第一帶通濾波器42的第一上截止頻率(f UC_1)設計為等於該類比/數位轉換器60的取樣頻率(f s ),即f UC_1=f s ;由此可見,該第一帶通濾波器42的第一通帶(Passband_1)與該第二 帶通濾波器43的第二通帶(Passband_2)的頻率都大於該類比/數位轉換器60的取樣頻率(f s )的一半。
基於圖3所示的實施例,以下透過範例說明本發明的情境。
1、情境一:
請參考圖3,當該數位信號處理器70控制該切換開關50的切換端51電連接該低通濾波器41,且該數位信號處理器70有接收到通過該低通濾波器41的該數位待測信號S4,請配合參考圖5A與圖6,表示該類比待測信號S3的待測頻率小於該低通濾波器41的截止頻率(f C )而未被濾除,故該數位信號處理器70可經運算得到該數位待測信號S4的待測頻率(f x ),此時,本發明雷達距離探測裝置與物體之間的該待測距離可表示如下:
Figure 109126347-A0305-02-0013-1
上式中,R為該距離換算值。當該數位信號處理器70控制該切換開關50的切換端51電連接該低通濾波器41時,該數位信號處理器70根據上式計算該待測距離。
請參考圖3,當該數位信號處理器70控制該切換開關50的切換端51電連接該第一帶通濾波器42及該第二帶通濾波器43時,因為該類比待測信號S3的待測頻率落在該第一帶通濾波器42及該第二帶通濾波器43的通帶之外,故該類比待測信號S3已被該第一帶通濾波器42及該第二帶通濾波器43濾除。
舉例來說,該距離換算值R為50(公尺/GHz)。當f x 等於f s 的一半時,該待測距離為50公尺,表示當該數位信號處理器70控制該切換開關50的切換端51電連接該低通濾波器41時,最遠的探測距離是50公尺,即該待測距離的範圍是0~50公尺。
2、情境二:
請參考圖3,當該數位信號處理器70控制該切換開關50的切換端51電連接該第一帶通濾波器42,且該數位信號處理器70有接收到通過該第一帶通濾波器42的該數位待測信號S4,請配合參考圖5B與圖7,表示該類比待測信號S3的待測頻率落在該第一帶通濾波器42的第一通帶(Passband_1)而未被濾除,故該數位信號處理器70可經運算得到該數位待測信號S4的待測頻率(f x ),此時,本發明雷達距離探測裝置與物體之間的該待測距離可表示如下:
Figure 109126347-A0305-02-0014-2
上式中,R為該距離換算值。當該數位信號處理器70控制該切換開關50的切換端51電連接該第一帶通濾波器42時,該數位信號處理器70根據上式計算該待測距離。
需說明的是,請參考圖7,因為該待測頻率(f x )大於該類比/數位轉換器60的取樣頻率(f s )的一半,故在頻域中,該數位待測信號S4有對應的一混疊信號S4',該數位待測信號S4與該混疊信號S4'是對襯的,該混疊信號S4'的混疊頻率(
Figure 109126347-A0305-02-0014-4
)落在該第一帶通濾波器42的第一通帶(Passband_1)之外而被濾除,故不影響本發明對於待測距離的判斷。
請參考圖3,當該數位信號處理器70控制該切換開關50的切換端51電連接該低通濾波器41及該第二帶通濾波器43時,因為該類比待測信號S3的待測頻率大於該低通濾波器41的截止頻率(f C )且落在該第二帶通濾波器43的第二通帶(Passband_2)之外,故該類比待測信號S3已被該低通濾波器41及該第二帶通濾波器43濾除。
舉例來說,該距離換算值R為50(公尺/GHz)。當f x 等於f s 時,該待測距離為100公尺,表示當該數位信號處理器70控制該切換開關50電連接該第一帶通濾波器42時,最遠的探測距離是100公尺,即該待測距離的範圍是50~100公尺。
3、情境三:
請參考圖3,當該數位信號處理器70控制該切換開關50的切換端51電連接該第二帶通濾波器43時,且該數位信號處理器70有接收到通過該第二帶通濾波器43的該數位待測信號S4,請配合參考圖5C與圖8,表示該類比待測信號S3的待測頻率落在該第二帶通濾波器43的第二通帶(Passband_2)而未被濾除,故該數位信號處理器70可經運算得到該數位待測信號S4的待測頻率(f x ),此時,本發明雷達距離探測裝置與物體之間的該待測距離可表示如下:
Figure 109126347-A0305-02-0015-3
上式中,R為該距離換算值。當該數位信號處理器70控制該切換開關50的切換端51電連接該第二帶通濾波器43時,該數位信號處理器70根據上式計算該待測距離。
需說明的是,請參考圖8,當一頻率大於該類比/數位轉換器60的取樣頻率,在頻域計算時,基於週期性,該頻率視為重回座標軸的原點(0GHz)起算,是以,上式的頻率(f xa )即為該數位待測信號的實際的待測頻率(f x )超出取樣頻率(f s )的部分,而該數位信號處理器70所計算而得的頻率值是(f xa ),換言之,該數位待測信號S4的實際的待測頻率(f x )即可表示為f x =f xa +f s (GHz)。另一方面,該數位待測信號S4對應之混疊信號S4'的混疊頻率 (
Figure 109126347-A0305-02-0016-5
)落在該第二帶通濾波器43的第二通帶(Passband_2)之外而被濾除,故不影響本發明對於待測距離的判斷。
此外,因為與物體之機的距離較遠,故該第二帶通濾波器43提供較大的第三增益A3放大信號強度,以利信號的讀取與判讀。當該數位信號處理器70控制該切換開關50的切換端51電連接該低通濾波器41及該第一帶通濾波器42時,因為該類比待測信號S3的待測頻率大於該低通濾波器41的截止頻率(f C )且落在該第一帶通濾波器42的第一通帶(Passband_1)之外,故該類比待測信號S3已被該低通濾波器41及該第一帶通濾波器42濾除。
舉例來說,該距離換算值R為50(公尺/GHz)。當f x 大於f s 時,該待測距離為大於100公尺,表示當該數位信號處理器70控制該切換開關50電連接該第二帶通濾波器43時,最遠的探測距離是大於100公尺。
前述「情境一」至「情境三」係基於圖3所示的實施例的範例,其可類推至圖4所示的實施例。舉例來說,在圖4所示的實施例中,該數位信號處理器70同時收到該第一類比/數位轉換器601所輸出的一第一數位待測信號x、該第二類比/數位轉換器601所輸出的一第二數位待測信號y與該第三類比/數位轉換器603所輸出的一第三數位待測信號z,在前述「情境一」的情況下,根據該第一數位待測信號x可運算出該待測距離,透過該第二、第三數位待測信號y、z則未運算出所述待測距離;依此類推,在前述「情境二」的情況下,根據該第二數位待測信號y可運算出所述待測距離,在前述「情境三」的情況下,根據該第三數位待測信號z可運算出所述待測距離。換言之,在同一時間,該數位信號處理器70根據該第一至該第三數位待測信號x、y、z分別對應運算出三筆數值,而僅有其中一筆數值為所述待測距離。
歸納以上內容,本發明雷達距離探測方法係於雷達距離探測裝置的數位信號處理器70實施,該數位信號處理器70通過至少一類比/數位轉換器 電連接該複數濾波器的輸出端,該複數濾波器可例如包含低通濾波器41、第一帶通濾波器42、第二帶通濾波器43,其中,該複數濾波器的截止頻率或通帶彼此不同,該複數濾波器提供的增益彼此不同。本發明方法基本上可包含以下步驟:從該至少一類比/數位轉換器接收至少一數位待測信號,並得到該至少一數位待測信號的待測頻率(f x ),其中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率(f s )的一半;以及,該數位信號處理器70根據該至少一數位待測信號的待測頻率(f x )、該至少一類比/數位轉換器的取樣頻率(f s )與一距離換算值R計算所述待測距離。
綜上所述,本發明雷達距離探測裝置根據被物體反射之電磁波信號的頻率高低探測與物體之間相對距離的遠近,尤其該濾波模組40的複數濾波器可分別提供高低不同的增益,當探測距離較遠的物體時,較大的增益提升信號強度,以利識別判讀,相對的,當探測距離較近的物體時,較低的增益避免信號飽和。在本發明中,基於該濾波模組40具備複數濾波器的架構,每個濾波器對應一探測距離範圍,該複數濾波器對應的探測距離範圍銜接而成一有效探測距離範圍,對於本發明的類比/數位轉換器60、601、602、603與數位信號處理器70來說,對應各該濾波器所需處理的資料量較低,不需刻意採用高階昂貴的產品即可應付距離的探測,有效達成成本控管。
10:天線
20:本地振盪器
30:混頻器
31:第一輸入端
32:第二輸入端
33:輸出端
40:濾波模組
60:類比/數位轉換器
61:類比輸入端
62:數位輸出端
70:數位信號處理器
S1:電磁波反射信號
S2:本地振盪信號
S3:類比待測信號
S4:數位待測信號

Claims (14)

  1. 一種雷達距離探測裝置,包含: 一天線; 一本地振盪器; 一混頻器,包含一第一輸入端、一第二輸入端與一輸出端,該第一輸入端電連接該天線,該第二輸入端電連接該本地振盪器,該輸出端輸出一類比待測信號; 一濾波模組,包含複數濾波器,該複數濾波器的輸入端電連接該混頻器的輸出端,其中,該複數濾波器的截止頻率或通帶彼此不同,該複數濾波器提供的增益彼此不同;以及 一數位信號處理器,通過至少一類比/數位轉換器電連接該複數濾波器的輸出端以接收至少一數位待測信號,其中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率的一半; 該數位信號處理器根據該至少一數位待測信號的待測頻率、該至少一類比/數位轉換器的取樣頻率與一距離換算值計算一待測距離。
  2. 如請求項1所述之雷達距離探測裝置,進一步包含一切換開關,該切換開關包含一切換端、一共同端與一控制端; 該至少一類比/數位轉換器為一類比/數位轉換器,其具有一類比輸入端與一數位輸出端,該類比輸入端電連接該切換開關的共同端; 該數位信號處理器電連接該切換開關的控制端與該類比/數位轉換器的數位輸出端,以控制該切換開關的切換端電連接該複數濾波器中之一濾波器的輸出端。
  3. 如請求項1所述之雷達距離探測裝置,其中,該至少一類比/數位轉換器包含複數類比/數位轉換器,該複數類比/數位轉換器的類比輸入端分別對應電連接該複數濾波器的輸出端,該複數類比/數位轉換器的數位輸出端電連接該數位信號處理器。
  4. 如請求項2或3所述之雷達距離探測裝置,其中,該濾波模組包含: 一低通濾波器,具有一截止頻率並提供一第一增益,該低通濾波器的截止頻率等於該類比/數位轉換器的取樣頻率的一半; 一帶通濾波器,具有一下截止頻率與一上截止頻率並提供一第二增益,該帶通濾波器的上截止頻率大於該類比/數位轉換器的取樣頻率的一半,該第二增益大於該第一增益。
  5. 如請求項4所述之雷達距離探測裝置,其中,該帶通濾波器的下截止頻率等於該低通濾波器的截止頻率。
  6. 如請求項5所述之雷達距離探測裝置,其中,該數位信號處理器根據下式計算該待測距離:
    Figure 03_image025
    上式中,
    Figure 03_image027
    :所述數位待測信號的待測頻率;
    Figure 03_image029
    :所述類比/數位轉換器的取樣頻率; R:所述距離換算值。
  7. 如請求項4所述之雷達距離探測裝置,其中,該帶通濾波器定義為一第一帶通濾波器,該下截止頻率與該上截止頻率分別定義為一第一下截止頻率與一第一上截止頻率; 該濾波模組進一步包含一第二帶通濾波器,該第二帶通濾波器具有一第二下截止頻率與一第二上截止頻率並提供一第三增益,該第二上截止頻率大於該第一上截止頻率,該第三增益大於該第二增益。
  8. 如請求項7所述之雷達距離探測裝置,其中,該第二帶通濾波器的第二下截止頻率等於該第一帶通濾波器的第一上截止頻率; 該第一帶通濾波器的第一上截止頻率等於所述類比/數位轉換器的取樣頻率。
  9. 如請求項8所述之雷達距離探測裝置,其中,該數位信號處理器根據下式計算對應於該第二帶通濾波器的待測距離:
    Figure 03_image055
    上式中,
    Figure 03_image029
    :所述類比/數位轉換器的該取樣頻率;
    Figure 03_image039
    :為所述數位待測信號的實際的待測頻率超出
    Figure 03_image029
    的部分; R:該距離換算值。
  10. 一種雷達距離探測方法,於一數位信號處理器實施,該數位信號處理器通過至少一類比/數位轉換器電連接複數濾波器的輸出端,該方法包含: 從該至少一類比/數位轉換器接收至少一數位待測信號,並得到該至少一數位待測信號的待測頻率,其中,各該濾波器的截止頻率或通帶大於或等於該至少一類比/數位轉換器的取樣頻率的一半;以及 根據該至少一數位待測信號的待測頻率、該至少一類比/數位轉換器的取樣頻率與一距離換算值計算一待測距離; 該複數濾波器的截止頻率或通帶彼此不同,該複數濾波器提供的增益彼此不同。
  11. 如請求項10所述之雷達距離探測方法,其中,該濾波模組包含: 一低通濾波器,具有一截止頻率並提供一第一增益,該低通濾波器的截止頻率等於該類比/數位轉換器的取樣頻率的一半; 一帶通濾波器,具有一下截止頻率與一上截止頻率並提供一第二增益,該下截止頻率等於該低通濾波器的截止頻率,該上截止頻率等於該類比/數位轉換器的取樣頻率,該第二增益大於該第一增益; 該數位信號處理器根據下式計算該待測距離:
    Figure 03_image025
    上式中,
    Figure 03_image027
    :該數位待測信號的該待測頻率;
    Figure 03_image029
    :該類比/數位轉換器的該取樣頻率; R:該距離換算值。
  12. 如請求項11所述之雷達距離探測方法,其中,該帶通濾波器定義為一第一帶通濾波器,該下截止頻率與該上截止頻率分別定義為一第一下截止頻率與一第一上截止頻率; 該複數濾波器進一步包含一第二帶通濾波器,該第二帶通濾波器具有一第二下截止頻率與一第二上截止頻率並提供一第三增益,該第二下截止頻率等於該第一上截止頻率,該第三增益大於該第二增益; 當該數位信號處理器控制該切換開關電連接該第二帶通濾波器時,根據下式計算該待測距離:
    Figure 03_image057
    上式中,
    Figure 03_image029
    :該類比/數位轉換器的該取樣頻率;
    Figure 03_image039
    :為該數位待測信號的實際的待測頻率超出
    Figure 03_image029
    的部分; R:該距離換算值。
  13. 如請求項10所述之雷達距離探測方法,其中,該至少一類比/數位轉換器為一類比/數位轉換器,該數位信號處理器通過該類比/數位轉換器與一切換開關而電連接該濾波模組的該複數濾波器的輸出端; 該數位信號處理器輸出控制指令給該切換開關,使該切換開關循環切換連接到該複數濾波器。
  14. 如請求項10所述之雷達距離探測方法,其中,該至少一類比/數位轉換器包含複數類比/數位轉換器,該複數類比/數位轉換器的類比輸入端分別對應電連接該複數濾波器的輸出端,該複數類比/數位轉換器的數位輸出端分別電連接該數位信號處理器。
TW109126347A 2020-08-04 2020-08-04 雷達距離探測裝置與方法 TWI760808B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109126347A TWI760808B (zh) 2020-08-04 2020-08-04 雷達距離探測裝置與方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109126347A TWI760808B (zh) 2020-08-04 2020-08-04 雷達距離探測裝置與方法

Publications (2)

Publication Number Publication Date
TW202206848A TW202206848A (zh) 2022-02-16
TWI760808B true TWI760808B (zh) 2022-04-11

Family

ID=81323360

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109126347A TWI760808B (zh) 2020-08-04 2020-08-04 雷達距離探測裝置與方法

Country Status (1)

Country Link
TW (1) TWI760808B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2449244Y (zh) * 2000-12-25 2001-09-19 中国航空工业第六○七研究所 雷达液位仪分程处理电路装置
CN104380139A (zh) * 2012-02-23 2015-02-25 艾尔默斯半导体股份公司 用于测量发射器与接收器之间的测量系统的传输路径的性质的方法和传感器系统
CN106019254A (zh) * 2016-05-20 2016-10-12 中国人民解放军第四军医大学 一种uwb冲击生物雷达多人体目标距离向分离辨识方法
US20170315209A1 (en) * 2011-12-30 2017-11-02 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
US20180329047A1 (en) * 2016-11-04 2018-11-15 Intelligent Fusion Technology, Inc Gated range scanning lfmcw radar structure
CN108919251A (zh) * 2018-06-28 2018-11-30 天津煋鸟科技有限公司 一种基于lfmcw雷达探测轨迹设备
US20190212428A1 (en) * 2018-01-11 2019-07-11 Infineon Technologies Ag System and Method to Improve Range Accuracy in FMCW Radar Using FSK Modulated Chirps
TW202005295A (zh) * 2018-05-24 2020-01-16 美商波音公司 使用共同信號波形的組合雷達和通信系統
US20200064457A1 (en) * 2018-08-22 2020-02-27 Infineon Technologies Americas Corp. Radar range accuracy improvement method
TW202009650A (zh) * 2018-08-24 2020-03-01 美商谷歌有限責任公司 促進使用者與擴增實境介面中之顯示物件互動之簡易性及準確性之基於智慧型手機之雷達系統

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2449244Y (zh) * 2000-12-25 2001-09-19 中国航空工业第六○七研究所 雷达液位仪分程处理电路装置
US20170315209A1 (en) * 2011-12-30 2017-11-02 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
CN104380139A (zh) * 2012-02-23 2015-02-25 艾尔默斯半导体股份公司 用于测量发射器与接收器之间的测量系统的传输路径的性质的方法和传感器系统
CN106019254A (zh) * 2016-05-20 2016-10-12 中国人民解放军第四军医大学 一种uwb冲击生物雷达多人体目标距离向分离辨识方法
US20180329047A1 (en) * 2016-11-04 2018-11-15 Intelligent Fusion Technology, Inc Gated range scanning lfmcw radar structure
US20190212428A1 (en) * 2018-01-11 2019-07-11 Infineon Technologies Ag System and Method to Improve Range Accuracy in FMCW Radar Using FSK Modulated Chirps
TW202005295A (zh) * 2018-05-24 2020-01-16 美商波音公司 使用共同信號波形的組合雷達和通信系統
CN108919251A (zh) * 2018-06-28 2018-11-30 天津煋鸟科技有限公司 一种基于lfmcw雷达探测轨迹设备
US20200064457A1 (en) * 2018-08-22 2020-02-27 Infineon Technologies Americas Corp. Radar range accuracy improvement method
TW202009650A (zh) * 2018-08-24 2020-03-01 美商谷歌有限責任公司 促進使用者與擴增實境介面中之顯示物件互動之簡易性及準確性之基於智慧型手機之雷達系統

Also Published As

Publication number Publication date
TW202206848A (zh) 2022-02-16

Similar Documents

Publication Publication Date Title
JP5352011B2 (ja) 温度補償用の切換え可能な基準折返し経路を用いて、ディーゼル微粒子除去装置の無線周波数伝送損失から同フィルタの負荷を求めること
CN110366689A (zh) 雷达装置
CN102324990B (zh) 仅用幅度检波器的矢量反射系数检测电路及其检测方法
TWI481892B (zh) 脈波雷達測距裝置及其測距演算法
CN104122444A (zh) 全数字中频频谱分析仪及频谱分析方法
CN205749892U (zh) 一种基于微波干涉仪的高精度测船雷达
CN110243436A (zh) 一种用于雷达物位计的近距离干扰信号消除系统
TWI760808B (zh) 雷達距離探測裝置與方法
CN106501796B (zh) 一种列车测速方法、装置及系统
US20230003570A1 (en) Fmcw-based distance measuring device
CN111076793B (zh) 窨井专用超声波液位测量装置及方法
WO2002025299A1 (en) Electronic circuit and method for testing a line
CN212845568U (zh) 一种用于远传型故障指示器的电流采样电路
CN112751547B (zh) 一种干涉式模拟微波复相关器装置
KR100925016B1 (ko) 유전율 측정 장치 및 방법
CN218412774U (zh) 一种新型的gis设备局部放电监测传感装置
CN206114773U (zh) 一种高性能频谱分析仪
US11639948B2 (en) Signal analysis method and measurement system
CN212460077U (zh) 一种单线圈探头差分数字式金属探测器
CN220752151U (zh) 一种雷达流速仪信号放大电路
CN115235514B (zh) 用于角振动传感器的信号处理方法、装置和系统
CN211236213U (zh) 一种交直流标准电能表装置
CN217278623U (zh) 一种线路负载网络检测与故障定位装置
KR100414066B1 (ko) Cdma 송신 전력 검출 장치
CN113311240A (zh) 一种超外差高频阻抗测试设备