CN104122444A - 全数字中频频谱分析仪及频谱分析方法 - Google Patents

全数字中频频谱分析仪及频谱分析方法 Download PDF

Info

Publication number
CN104122444A
CN104122444A CN201410382713.9A CN201410382713A CN104122444A CN 104122444 A CN104122444 A CN 104122444A CN 201410382713 A CN201410382713 A CN 201410382713A CN 104122444 A CN104122444 A CN 104122444A
Authority
CN
China
Prior art keywords
signal
filter
digital
frequency
baseband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410382713.9A
Other languages
English (en)
Other versions
CN104122444B (zh
Inventor
邓志成
蒋富雄
王树庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIJIAZHUANG SUIN INSTRUMENTS CO Ltd
Original Assignee
SHIJIAZHUANG SUIN INSTRUMENTS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIJIAZHUANG SUIN INSTRUMENTS CO Ltd filed Critical SHIJIAZHUANG SUIN INSTRUMENTS CO Ltd
Priority to CN201410382713.9A priority Critical patent/CN104122444B/zh
Publication of CN104122444A publication Critical patent/CN104122444A/zh
Application granted granted Critical
Publication of CN104122444B publication Critical patent/CN104122444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供了一种全数字中频频谱分析仪及频谱分析方法。该全数字中频频谱分析仪包括模数转换器、正交数字下变频器、中频带宽滤波器、鉴幅鉴相器、频率计数器、视频滤波器、采样率提升模块、检波器、快速扫描补偿模块和控制及显示模块。本发明中的模数转换器可采用较低成本的中低速模数转换器,模数转换器对模拟中频信号进行采样后,后续通过单片的FPGA就可实现整个的数字中频频谱分析,成本低廉,调试方便,经过实际生产测试,稳定性高。采用本发明可以实现1Hz~1MHz的分析带宽。

Description

全数字中频频谱分析仪及频谱分析方法
技术领域
本发明涉及一种频谱分析仪,具体地说是一种全数字中频频谱分析仪及频谱分析方法。
背景技术
频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用于测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。频谱分析仪按对信号的分析处理方式可分为模拟式频谱分析仪和数字式频谱分析仪。
模拟式频谱分析仪采用滤波器或混频器将被分析信号中各频率分量逐一分离,再配合后续的检波得到信号的频谱。中频电路全部采用模拟器件,因而精度低、一致性差、体积大;且其性能随温度变化,受环境影响较大,当温度、湿度变化时,整机的性能下降严重,难以满足进一步减小体积和功耗的要求。
数字式频谱分析仪采用数字信号处理(Digital Signal Processing,DSP)的方法来完成信号的频谱分析。数字式频谱分析仪相比模拟式频谱分析仪来说,具有分析速度快、分析精度高的优点;而且,数字式频谱分析仪还可以通过DSP算法来扩展频谱分析仪的功能,因此,越来越多的频谱分析仪都采用数字式的实现方式。
现有的数字式频谱分析仪使用较多的是全数字实时快速傅氏变换(Fast FourierTransformation,FFT)频谱分析仪。全数字实时FFT频谱分析仪首先通过ADC(模数转换器)对整个频段的模拟信号进行采样,之后进行FFT运算,得到被测信号的频域信息。这种频谱分析仪有两种实现方式,第一种实现方式是把高频信号经过混频搬移到低频,然后经过高速模数转换,对一小段频谱进行FFT运算,得到一段频谱;通过多次频谱搬移和FFT运算,可以得到整个频段内的频谱信息。第二种实现方式是直接对射频信号进行采样,实时进行FFT运算,得到整个频段内的频谱信息。这两种实现方式都需要高速的ADC和运算能力超强的DSP处理器,因此成本较高。而且,如果要实现比较窄的分析带宽(Resolution Band Width,RBW)(例如1Hz),需要非常大的存储空间,实现起来难度较大。
发明内容
本发明的目的之一就是提供一种全数字中频频谱分析仪,以解决现有的全数字实时FFT频谱分析仪成本高以及实现窄分析带宽难度大的问题。
本发明的目的之二就是提供一种全数字中频频谱分析方法,以较低的成本实现对中频信号的频谱分析,且能比较容易实现窄分析带宽。
本发明的目的之一是这样实现的:一种全数字中频频谱分析仪,包括:
模数转换器,与正交数字下变频器相接,用于对模拟中频信号进行采样并进行模数转换以得到数字中频信号;
正交数字下变频器,分别与所述模数转换器和中频带宽滤波器相接,用于产生两路正交信号,并将所产生的两路正交信号与所述数字中频信号混频,以得到零中频的宽带复基带信号s;其中,s=sr+j*si;
中频带宽滤波器,分别与所述正交数字下变频器和鉴幅鉴相器相接,用于对所述宽带复基带信号s进行滤波,以得到窄带复基带信号s′;其中,s′=sr′+j*si′;
鉴幅鉴相器,分别与所述中频带宽滤波器、视频滤波器和频率计数器相接,用于对所述窄带复基带信号s′进行振幅和相角的运算,以得出基带包络信号和复基带相位信号;
频率计数器,分别与所述鉴幅鉴相器和控制及显示模块相接,用于对所述复基带相位信号进行计数运算,以得出宽带复基带信号s的频率值;
视频滤波器,分别与所述鉴幅鉴相器和采样率提升模块相接,用于对所述基带包络信号进行滤波处理,以得到滤波后基带包络信号;
采样率提升模块,分别与所述视频滤波器和检波器相接,用于将所述滤波后基带包络信号的采样率进行提升,以得到高采样率基带包络信号;
检波器,分别与所述采样率提升模块和快速扫描补偿模块相接,用于对所述高采样率基带包络信号进行检波,以得到检波后基带包络信号;
快速扫描补偿模块,分别与所述检波器和控制及显示模块相接,用于对所述检波后基带包络信号进行补偿,以得到补偿后基带包络信号;以及
控制及显示模块,分别与所述频率计数器和所述快速扫描补偿模块相接,用于接收所述宽带复基带信号s的频率值和所述补偿后基带包络信号并进行显示。
所述中频带宽滤波器包括:
第一CIC抽取滤波器,其输出端与第二CIC抽取滤波器的输入端相接,用于实现3~1000倍的抽取速率;
第二CIC抽取滤波器,其输入端与所述第一CIC抽取滤波器的输出端相接,其输出端与高斯FIR滤波器的输入端相接,用于实现1~3000倍的抽取速率;以及
高斯FIR滤波器,其输入端与所述第二CIC抽取滤波器的输出端相接。
所述视频滤波器包括:
第三CIC抽取滤波器,其输出端与第四CIC抽取滤波器的输入端相接,用于实现1~1000倍的抽取速率;
第四CIC抽取滤波器,其输入端与所述第三CIC抽取滤波器的输出端相接,其输出端与FIR滤波器的输入端相接,用于实现1~3000倍的抽取速率;以及
FIR滤波器,其输入端与所述第四CIC抽取滤波器的输出端相接。
所述采样率提升模块包括第一CIC内插滤波器和第二CIC内插滤波器,所述第一CIC内插滤波器的输出端与所述第二CIC内插滤波器的输入端相接。
本发明中的模数转换器无需采用成本较高的高速模数转换器,只需使用成本较低的中低速模数转换器即可;而且,正交数字下变频器、中频带宽滤波器、鉴幅鉴相器、频率计数器、视频滤波器、采样率提升模块、检波器和快速扫描补偿模块均是基于现场可编程逻辑门阵列(FPGA)来实现的,因此,本发明通过单片的FPGA就可以实现整个数字中频频谱分析,成本低廉,调试方便,经过实际生产测试,稳定性高。采用本发明可以实现1Hz~1MHz的分析带宽,1Hz的分析带宽即为比较窄的分析带宽。
通过采样率提升模块来提升视频滤波器输出信号的速率(或称采样率),可以轻易地扩展检波器的点数。在实际设计中,可以把速率提升到30~45.5MHz,很容易扩展实现10000个点的检波点数。
通过快速扫描补偿模块对中频带宽滤波器中的高斯FIR滤波器和视频滤波器中的FIR滤波器的衰减进行补偿,可降低仪器的RBW切换误差,理论上可以达到零切换误差。
本发明的目的之二是这样实现的:一种全数字中频频谱分析方法,包括如下步骤:
a、采用模数转换器对模拟中频信号进行采样并进行模数转换,以得到数字中频信号;
b、由正交数字下变频器产生两路正交信号,所述两路正交信号与所述数字中频信号混频,得到零中频的宽带复基带信号s;其中,s=sr+j*si;
c、采用中频带宽滤波器对所述宽带复基带信号s进行滤波,得到窄带复基带信号s′;其中,s′=sr′+j*si′;
d、由鉴幅鉴相器对所述窄带复基带信号s′进行振幅和相角的运算,以得出基带包络信号和复基带相位信号;
e、由频率计数器对所述复基带相位信号进行计数运算,以得出宽带复基带信号s的频率值;
f、由视频滤波器对所述基带包络信号进行滤波处理,以得出滤波后基带包络信号;
g、采用采样率提升模块对所述滤波后基带包络信号的采样率进行提升,以得到高采样率基带包络信号;
h、采用检波器对所述高采样率基带包络信号进行检波,以得到检波后基带包络信号;
i、采用快速扫描补偿模块对所述检波后基带包络信号进行补偿,以得到补偿后基带包络信号;
j、通过控制及显示模块对所述宽带复基带信号s的频率值和所述补偿后基带包络信号进行显示。
所述步骤c具体包括如下步骤:
c1、第一CIC抽取滤波器接收所述宽带复基带信号s,并实现3~1000倍的抽取速率;
c2、第二CIC抽取滤波器接收所述第一CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;
c3、高斯FIR滤波器接收所述第二CIC抽取滤波器输出的信号并进行滤波处理,以得到窄带复基带信号s′。
所述步骤f具体包括如下步骤:
f1、第三CIC抽取滤波器接收所述基带包络信号,并实现1~1000倍的抽取速率;
f2、第四CIC抽取滤波器接收所述第三CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;
f3、FIR滤波器接收所述第四CIC抽取滤波器输出的信号并进行滤波处理,以得到滤波后基带包络信号。
本发明所提供的方法,可采用中低速的模数转换器对模拟中频信号进行采样,后续可通过单片的FPGA实现全数字中频频谱分析,成本低廉,调试方便,稳定性高,采用本发明可实现1Hz~1MHz的分析带宽。通过采样率提升模块提升视频滤波器输出信号的速率,可轻易地扩展检波器的点数。通过快速扫描补偿模块对中频带宽滤波器中的高斯FIR滤波器和视频滤波器中的FIR滤波器的衰减进行补偿,可降低仪器的RBW切换误差。
附图说明
图1是本发明所提供的全数字中频频谱分析仪的结构框图。
图2是图1中中频带宽滤波器的结构框图。
图3是图1中视频滤波器的结构框图。
图4是图1中采样率提升模块的结构框图。
图5是图1中检波器的结构框图。
具体实施方式
实施例1,一种全数字中频频谱分析仪。
如图1所示,本发明所提供的全数字中频频谱分析仪包括模数转换器、正交数字下变频器、中频带宽滤波器、鉴幅鉴相器、频率计数器、视频滤波器、采样率提升模块、检波器、快速扫描补偿模块和控制及显示模块。
模数转换器的输出端与正交数字下变频器的输入端相接,其输入端连接模拟中频信号。模数转换器用于对模拟中频信号进行采样并进行模数转换,以得到数字中频信号。本发明中所用模数转换器一般为中低速的模数转换器,例如采用60MHz(中速)或20MHz(低速)的模数转换器,这种中低速模数转换器的成本较低。
正交数字下变频器的输入端连接模数转换器的输出端,其输出端连接中频带宽滤波器的输入端。正交数字下变频器的振荡频率与模拟中频信号的频率相等。正交数字下变频器产生两路正交信号,分别为同相信号和正交信号。所产生的两路正交信号与模数转换器输出的数字中频信号进行混频,得到零中频的宽带复基带信号s,其中,s=sr+j*si,sr为同相基带信号,si为正交基带信号。该宽带复基带信号s的幅度就反应了模拟中频信号的频谱信息。
正交数字下变频器的输出送入中频带宽滤波器,由中频带宽滤波器实现仪器所需的各种中频带宽滤波。参考图2,本发明中的中频带宽滤波器包括第一CIC(级联积分梳状)抽取滤波器、第二CIC抽取滤波器和Gaussian(高斯)FIR(有限长单位冲激响应)滤波器。第一CIC抽取滤波器和第二CIC抽取滤波器均可以为5阶CIC抽取滤波器。第一CIC抽取滤波器接收正交数字下变频器输出的宽带复基带信号s,并实现3~1000倍的抽取速率;第一CIC抽取滤波器的输出送入第二CIC抽取滤波器。第二CIC抽取滤波器接收第一CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率,第一CIC抽取滤波器和第二CIC抽取滤波器级联实现3~3000000倍的抽取速率;第二CIC抽取滤波器的输出送入高斯FIR滤波器。高斯FIR滤波器接收第二CIC抽取滤波器输出的信号并进行滤波处理,实现精确的RBW(3dB带宽)及形状因子(60dB带宽与3dB带宽之比),最终输出滤波后的降低了采样率和带宽的窄带复基带信号s′;其中,s′=sr′+j*si′,sr′为滤波后的同相基带信号,si′为滤波后的正交基带信号。
中频带宽滤波器的输出送入鉴幅鉴相器,本发明中的鉴幅鉴相器为CORDIC(CoordinateRotation Digital Computer,坐标旋转数字计算方法)鉴幅鉴相器,该鉴幅鉴相器依据CORDIC算法,对窄带复基带信号s′进行振幅和相角的运算,得出基带包络信号和复基带相位信号。基带包络信号被送入视频滤波器,复基带相位信号被送入频率计数器。
频率计数器接收由鉴幅鉴相器输出的复基带相位信号并进行计数运算,以得出窄带复基带信号s′的频率值(或宽带复基带信号s的频率值,两者相等)。窄带复基带信号s′的频率值可以为正,也可以为负;需要频率计数器能够判别。频率计数器的具体工作原理为:在计数器开始工作前,将计数器清0;对于每一个窄带复基带信号s′=sr′+j*si′的周期,判断si′的相位是超前还是滞后sr′;如果si′相位超前sr′,则计数器减1;如果si′相位滞后sr′,则计数器加1。待所设定的若干计数周期都计数完成后,计数过程结束,最终所得计数值为中频偏差;之后由频率计数器进行相应运算,可得出窄带复基带信号s′(或宽带复基带信号s)的频率值。频率计数器输出的窄带复基带信号s′(或宽带复基带信号s)的频率值送至控制及显示模块。
如图3所示,视频滤波器包括第三CIC抽取滤波器、第四CIC抽取滤波器和FIR滤波器。第三CIC抽取滤波器和第四CIC抽取滤波器均可以为5阶CIC抽取滤波器。第三CIC抽取滤波器接收由鉴幅鉴相器输出的基带包络信息,并实现1~1000倍的抽取速率;第三CIC抽取滤波器的输出送入第四CIC抽取滤波器。第四CIC抽取滤波器接收第三CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;第四CIC抽取滤波器的输出送入FIR滤波器。FIR滤波器接收第四CIC抽取滤波器输出的信号并进行滤波处理,得到滤波后基带包络信号,该滤波后基带包络信号其实就是对噪声进行了抑制后的基带包络信号,以满足频谱分析仪整机的视频带宽指标需求。FIR滤波器的输出送入采样率提升模块。
采样率提升模块是为了满足后面检波器的需要。当视频滤波器工作在10Hz时,若放大倍数为15,则数据的总体采样率只有150Hz左右。如果扫描时间设置为1s,检波器的采样点数设置为3001点,则1s内的总点数150<<3001,因此需要提升采样率。如图4所示,采样率提升模块包括第一CIC内插滤波器和第二CIC内插滤波器,这两个CIC内插滤波器可以均为5阶CIC内插滤波器。第一CIC内插滤波器的输入端与FIR滤波器的输出端(或视频滤波器的输出端)相接,第一CIC内插滤波器的输出端与第二CIC内插滤波器的输入端相接。由视频滤波器输出的滤波后基带包络信号为低速率(或称低采样率)信号,该低速率信号通过采样率提升模块后,在第一CIC内插滤波器和第二CIC内插滤波器的作用下,得到高采样率基带包络信号,以满足后面检波器对数据速率的需求。
检波器是为了完成频谱仪需要的各种检波方式,每一种检波方式均由一组专门的检波电路组成。如图5所示,检波器包括信号驱动器、信号选择器和六路检波电路。由采样率提升模块输出的高采样率基带包络信号首先进入信号驱动器,由信号驱动器将高采样率基带包络信号分别分到六个不同的检波电路,对高采样率基带包络信号分别进行正峰值检波、负峰值检波、抽样检波、正常检波、电压平均值检波和有效值平均检波;六路检波电路的输出送入信号选择器,由信号选择器根据频谱仪的需要输出其中一种检波后基带包络信号。检波器输出的检波后基带包络信号送入快速扫描补偿模块。
快速扫描补偿模块是为了对检波器的输出进行幅度补偿。当快速扫描时,中频带宽滤波器中的高斯FIR滤波器和视频滤波器中的FIR滤波器,都会对被测中频信号的幅度进行衰减。两个FIR滤波器都是低通滤波器,在直流处的增益为1,即当输入信号是直流的时候,FIR滤波器的输出也是等幅度的直流。但中频带宽滤波器中高斯FIR滤波器的输入信号是一个扫频信号,视频滤波器中FIR滤波器的输入信号是一个包络为中频带宽滤波器中高斯FIR滤波器冲击响应的信号,两个输入信号都不是直流,首先生成这两个FIR滤波器输入信号的模拟信号,之后使所生成的模拟信号分别与对应FIR滤波器的冲击响应求卷积,最后再将两个卷积进行求和,即得到需要的补偿值。根据该补偿值对检波器输出的检波后基带包络信号进行补偿,得到补偿后基带包络信号。
控制及显示模块可以由CPU控制器及LCD显示屏组成。快速扫描补偿模块输出的补偿后基带包络信号和频率计数器输出的窄带复基带信号s′(或宽带复基带信号s)的频率值均送入控制及显示模块,在CPU控制器的控制下,由LCD显示屏对补偿后基带包络信号和窄带复基带信号s′(或宽带复基带信号s)的频率值进行显示。
实施例2,一种全数字中频频谱分析方法。
结合图1~图5,本发明所提供的全数字中频频谱分析方法包括如下步骤:
a、采用模数转换器对模拟中频信号进行采样并进行模数转换,以得到数字中频信号。
模数转换器为中低速的模数转换器,例如可以为60MHz(中速)或20MHz(低速)的模数转换器,这种中低速模数转换器的成本较低。
b、由正交数字下变频器产生两路正交信号,所产生的两路正交信号与模数转换器输出的数字中频信号进行混频,得到零中频的宽带复基带信号s;其中,s=sr+j*si。
正交数字下变频器的振荡频率与模拟中频信号的频率相等。正交数字下变频器所产生的两路正交信号分别为同相信号和正交信号。两路正交信号与模数转换器输出的数字中频信号混频后,得到零中频的宽带复基带信号s=sr+j*si,其中,sr为同相基带信号,si为正交基带信号。该宽带复基带信号s的幅度就反应了模拟中频信号的频谱信息。
c、采用中频带宽滤波器对宽带复基带信号s进行滤波,得到窄带复基带信号s′;其中,s′=sr′+j*si′。
中频带宽滤波器包括依序连接的第一CIC抽取滤波器、第二CIC抽取滤波器和高斯FIR滤波器。第一CIC抽取滤波器和第二CIC抽取滤波器可以均为5阶CIC抽取滤波器。第一CIC抽取滤波器可实现3~1000倍的抽取速率,第二CIC抽取滤波器可实现1~3000倍的抽取速率;第一CIC抽取滤波器和第二CIC抽取滤波器级联实现3~3000000倍的抽取速率;宽带复基带信号s经过两级CIC抽取滤波器后降低了采样率;之后经过高斯FIR滤波器实现精确的RBW及形状因子,最终输出滤波后的降低了采样率和带宽的窄带复基带信号s′;其中,s′=sr′+j*si′,sr′为滤波后的同相基带信号,si′为滤波后的正交基带信号。
d、由鉴幅鉴相器对窄带复基带信号s′进行振幅和相角的运算,以得出基带包络信号和复基带相位信号。
鉴幅鉴相器为CORDIC鉴幅鉴相器,该鉴幅鉴相器依据CORDIC算法,对窄带复基带信号s′进行振幅和相角的运算,得出基带包络信号和复基带相位信号。基带包络信号被送入视频滤波器,复基带相位信号被送入频率计数器。
e、由频率计数器对复基带相位信号进行计数运算,以得出宽带复基带信号s的频率值。
宽带复基带信号s的频率值和窄带复基带信号s′的频率值相等。窄带复基带信号s′的频率值可以为正,也可以为负;需要频率计数器能够判别。频率计数器的具体工作原理为:在计数器开始工作前,将计数器清0;对于每一个窄带复基带信号s′=sr′+j*si′的周期,判断si′的相位是超前还是滞后sr′;如果si′相位超前sr′,则计数器减1;如果si′相位滞后sr′,则计数器加1。待所设定的若干计数周期都计数完成后,计数过程结束,最终所得计数值为中频偏差;之后由频率计数器进行相应运算,可得出宽带复基带信号s(或窄带复基带信号s′)的频率值。由频率计数器输出的宽带复基带信号s的频率值送至控制及显示模块。
f、由视频滤波器对基带包络信号进行滤波处理,以得到滤波后基带包络信号。
视频滤波器包括依序连接的第三CIC抽取滤波器、第四CIC抽取滤波器和FIR滤波器。第三CIC抽取滤波器和第四CIC抽取滤波器可以均为5阶CIC抽取滤波器。第三CIC抽取滤波器接收由鉴幅鉴相器输出的基带包络信号,并实现1~1000倍的抽取速率;第三CIC抽取滤波器的输出送入第四CIC抽取滤波器。第四CIC抽取滤波器接收第三CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;第四CIC抽取滤波器的输出送入FIR滤波器。FIR滤波器接收第四CIC抽取滤波器输出的信号并进行滤波处理,得到滤波后基带包络信号,以满足频谱分析仪整机的视频带宽指标需求。FIR滤波器的输出送入采样率提升模块。
g、采用采样率提升模块对由视频滤波器输出的滤波后基带包络信号的采样率进行提升,得到高采样率基带包络信号。
当视频滤波器工作在10Hz时,若放大倍数为15,则数据的总体采样率只有150Hz左右。如果扫描时间设置为1s,检波器的采样点数设置为3001点,则1s内的总点数150<<3001,因此需要提升采样率。采样率提升模块包括第一CIC内插滤波器和第二CIC内插滤波器,这两个CIC内插滤波器可以均为5阶CIC内插滤波器。第一CIC内插滤波器的输入端与视频滤波器的输出端相接,第一CIC内插滤波器的输出端与第二CIC内插滤波器的输入端相接。由视频滤波器输出的滤波后基带包络信号为低速率(或称低采样率)信号,该低速率信号通过采样率提升模块后,在第一CIC内插滤波器和第二CIC内插滤波器的作用下,得到高采样率基带包络信号,以满足后面检波器对数据速率的需求。
h、采用检波器对由采样率提升模块输出的高采样率基带包络信号进行检波,得到检波后基带包络信号。
检波器包括信号驱动器、信号选择器和六路检波电路。由采样率提升模块输出的高采样率基带包络信号首先进入信号驱动器,由信号驱动器将高采样率基带包络信号分别分到六个不同的检波电路,对高采样率基带包络信号分别进行正峰值检波、负峰值检波、抽样检波、正常检波、电压平均值检波和有效值平均检波;六路检波电路的输出送入信号选择器,由信号选择器根据频谱仪的需要输出其中一种检波后基带包络信号。检波器输出的检波后基带包络信号送入快速扫描补偿模块。
i、采用快速扫描补偿模块对由检波器输出的检波后基带包络信号进行补偿,得到补偿后基带包络信号。
当快速扫描时,中频带宽滤波器中的高斯FIR滤波器和视频滤波器中的FIR滤波器,都会对被测中频信号的幅度进行衰减。两个FIR滤波器都是低通滤波器,在直流处的增益为1,即当输入信号是直流的时候,FIR滤波器的输出也是等幅度的直流。但中频带宽滤波器的高斯FIR滤波器的输入信号是一个扫频信号,视频滤波器中FIR滤波器的输入信号是一个包络为中频带宽滤波器中高斯FIR滤波器冲击响应的信号,两个输入信号都不是直流,本步骤中采用快速扫描补偿模块生成这两个FIR滤波器输入信号的模拟信号,所生成的模拟信号分别与对应FIR滤波器的冲击响应求卷积,最后再将两个卷积进行求和,即得到需要的补偿值。根据该补偿值对检波器输出的检波后基带包络信号进行补偿,得到补偿后基带包络信号。
j、通过控制及显示模块对所述宽带复基带信号s的频率值和所述补偿后基带包络信号进行显示。
控制及显示模块包括CPU控制器及LCD显示屏。快速扫描补偿模块输出的补偿后基带包络信号和频率计数输出的宽带复基带信号s的频率值被送入控制及显示模块,在CPU控制器的控制下,由LCD显示屏对宽带复基带信号s的频率值和补偿后基带包络信号进行显示。

Claims (7)

1.一种全数字中频频谱分析仪,其特征是,包括:
模数转换器,与正交数字下变频器相接,用于对模拟中频信号进行采样并进行模数转换以得到数字中频信号;
正交数字下变频器,分别与所述模数转换器和中频带宽滤波器相接,用于产生两路正交信号,并将所产生的两路正交信号与所述数字中频信号混频,以得到零中频的宽带复基带信号s;其中,s=sr+j*si;
中频带宽滤波器,分别与所述正交数字下变频器和鉴幅鉴相器相接,用于对所述宽带复基带信号s进行滤波,以得到窄带复基带信号s′;其中,s′=sr′+j*si′;
鉴幅鉴相器,分别与所述中频带宽滤波器、视频滤波器和频率计数器相接,用于对所述窄带复基带信号s′进行振幅和相角的运算,以得出基带包络信号和复基带相位信号;
频率计数器,分别与所述鉴幅鉴相器和控制及显示模块相接,用于对所述复基带相位信号进行计数运算,以得出宽带复基带信号s的频率值;
视频滤波器,分别与所述鉴幅鉴相器和采样率提升模块相接,用于对所述基带包络信号进行滤波处理,以得到滤波后基带包络信号;
采样率提升模块,分别与所述视频滤波器和检波器相接,用于将所述滤波后基带包络信号的采样率进行提升,以得到高采样率基带包络信号;
检波器,分别与所述采样率提升模块和快速扫描补偿模块相接,用于对所述高采样率基带包络信号进行检波,以得到检波后基带包络信号;
快速扫描补偿模块,分别与所述检波器和控制及显示模块相接,用于对所述检波后基带包络信号进行补偿,以得到补偿后基带包络信号;以及
控制及显示模块,分别与所述频率计数器和所述快速扫描补偿模块相接,用于接收所述宽带复基带信号s的频率值和所述补偿后基带包络信号并进行显示。
2.根据权利要求1所述的全数字中频频谱分析仪,其特征是,所述中频带宽滤波器包括:
第一CIC抽取滤波器,其输出端与第二CIC抽取滤波器的输入端相接,用于实现3~1000倍的抽取速率;
第二CIC抽取滤波器,其输入端与所述第一CIC抽取滤波器的输出端相接,其输出端与高斯FIR滤波器的输入端相接,用于实现1~3000倍的抽取速率;以及
高斯FIR滤波器,其输入端与所述第二CIC抽取滤波器的输出端相接。
3.根据权利要求2所述的全数字中频频谱分析仪,其特征是,所述视频滤波器包括:
第三CIC抽取滤波器,其输出端与第四CIC抽取滤波器的输入端相接,用于实现1~1000倍的抽取速率;
第四CIC抽取滤波器,其输入端与所述第三CIC抽取滤波器的输出端相接,其输出端与FIR滤波器的输入端相接,用于实现1~3000倍的抽取速率;以及
FIR滤波器,其输入端与所述第四CIC抽取滤波器的输出端相接。
4.根据权利要求1、2或3所述的全数字中频频谱分析仪,其特征是,所述采样率提升模块包括第一CIC内插滤波器和第二CIC内插滤波器,所述第一CIC内插滤波器的输出端与所述第二CIC内插滤波器的输入端相接。
5.一种全数字中频频谱分析方法,其特征是,包括如下步骤:
a、采用模数转换器对模拟中频信号进行采样并进行模数转换,以得到数字中频信号;
b、由正交数字下变频器产生两路正交信号,所述两路正交信号与所述数字中频信号混频,得到零中频的宽带复基带信号s;其中,s=sr+j*si;
c、采用中频带宽滤波器对所述宽带复基带信号s进行滤波,得到窄带复基带信号s′;其中,s′=sr′+j*si′;
d、由鉴幅鉴相器对所述窄带复基带信号s′进行振幅和相角的运算,以得出基带包络信号和复基带相位信号;
e、由频率计数器对所述复基带相位信号进行计数运算,以得出宽带复基带信号s的频率值;
f、由视频滤波器对所述基带包络信号进行滤波处理,以得出滤波后基带包络信号;
g、采用采样率提升模块对所述滤波后基带包络信号的采样率进行提升,以得到高采样率基带包络信号;
h、采用检波器对所述高采样率基带包络信号进行检波,以得到检波后基带包络信号;
i、采用快速扫描补偿模块对所述检波后基带包络信号进行补偿,以得到补偿后基带包络信号;
j、通过控制及显示模块对所述宽带复基带信号s的频率值和所述补偿后基带包络信号进行显示。
6.根据权利要求5所述的全数字中频频谱分析方法,其特征是,所述步骤c具体包括如下步骤:
c1、第一CIC抽取滤波器接收所述宽带复基带信号s,并实现3~1000倍的抽取速率;
c2、第二CIC抽取滤波器接收所述第一CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;
c3、高斯FIR滤波器接收所述第二CIC抽取滤波器输出的信号并进行滤波处理,以得到窄带复基带信号s′。
7.根据权利要求5或6所述的全数字中频频谱分析方法,其特征是,所述步骤f具体包括如下步骤:
f1、第三CIC抽取滤波器接收所述基带包络信号,并实现1~1000倍的抽取速率;
f2、第四CIC抽取滤波器接收所述第三CIC抽取滤波器输出的信号,并实现1~3000倍的抽取速率;
f3、FIR滤波器接收所述第四CIC抽取滤波器输出的信号并进行滤波处理,以得到滤波后基带包络信号。
CN201410382713.9A 2014-08-06 2014-08-06 全数字中频频谱分析仪及频谱分析方法 Active CN104122444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410382713.9A CN104122444B (zh) 2014-08-06 2014-08-06 全数字中频频谱分析仪及频谱分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410382713.9A CN104122444B (zh) 2014-08-06 2014-08-06 全数字中频频谱分析仪及频谱分析方法

Publications (2)

Publication Number Publication Date
CN104122444A true CN104122444A (zh) 2014-10-29
CN104122444B CN104122444B (zh) 2016-10-19

Family

ID=51767934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410382713.9A Active CN104122444B (zh) 2014-08-06 2014-08-06 全数字中频频谱分析仪及频谱分析方法

Country Status (1)

Country Link
CN (1) CN104122444B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483547A (zh) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 电力信号的滤波方法及系统
CN105137182A (zh) * 2015-09-14 2015-12-09 张俊华 一种sdr应用中信号幅度计量定标方法
CN106353594A (zh) * 2016-08-15 2017-01-25 中国电子科技集团公司第四十研究所 一种快速多分辨率频谱分析系统及方法
CN106990288A (zh) * 2017-03-20 2017-07-28 成都米风通信技术有限公司 基于stm32f4的高速信号频谱分析方法
CN109327413A (zh) * 2018-09-13 2019-02-12 阳光电源股份有限公司 一种模拟与数字结合的解调系统以及解调方法
CN109521269A (zh) * 2018-11-09 2019-03-26 中电科仪器仪表有限公司 一种幅度调制信号数字化测频方法
CN109541309A (zh) * 2018-12-18 2019-03-29 深圳市鼎阳科技有限公司 一种频谱分析仪及其信号处理方法
CN111487476A (zh) * 2020-05-06 2020-08-04 深圳市鼎阳科技股份有限公司 一种准峰值检波方法和准峰值检波器
JP2020193965A (ja) * 2019-05-28 2020-12-03 イノワイアレス カンパニー、リミテッド スペクトラムアナライザ及びその制御方法
CN112382862A (zh) * 2021-01-15 2021-02-19 四川斯艾普电子科技有限公司 一种瓦片式多波束相控阵天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068730B (zh) * 2019-05-07 2020-08-07 中国科学院电子学研究所 双频段频谱数据采集方法及装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271101A (zh) * 1999-04-21 2000-10-25 特克特朗尼克公司 宽频带信号分析的带通采样结构
JP2005057652A (ja) * 2003-08-07 2005-03-03 Toshiba Microelectronics Corp 無線受信システム
US20050074073A1 (en) * 2000-11-03 2005-04-07 Jiren Yuan Direct digital amplitude modulator
CN1804642A (zh) * 2006-01-23 2006-07-19 天津市德力电子仪器有限公司 中频全数字化频谱仪
CN1959420A (zh) * 2005-11-04 2007-05-09 特克特朗尼克公司 时间任意的信号功率统计的测量装置和方法
CN100401640C (zh) * 1997-12-31 2008-07-09 三星电子株式会社 抽取滤波装置和方法
CN102109555A (zh) * 2009-12-24 2011-06-29 北京普源精电科技有限公司 具有数字中频信号处理系统的频谱分析仪及其实现方法
CN102928665A (zh) * 2012-11-01 2013-02-13 南京国睿安泰信科技股份有限公司 一种中频数字化的频谱分析仪及其方法
CN103134984A (zh) * 2013-03-02 2013-06-05 安徽白鹭电子科技有限公司 基于ad9864中频数字化系统fft宽带频谱仪设计
CN103809024A (zh) * 2012-11-09 2014-05-21 江苏绿扬电子仪器集团有限公司 基于fpga的实时频谱分析系统
CN103957010A (zh) * 2014-05-20 2014-07-30 石家庄数英仪器有限公司 一种高精度模数转换器及模数转换方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401640C (zh) * 1997-12-31 2008-07-09 三星电子株式会社 抽取滤波装置和方法
CN1271101A (zh) * 1999-04-21 2000-10-25 特克特朗尼克公司 宽频带信号分析的带通采样结构
US20050074073A1 (en) * 2000-11-03 2005-04-07 Jiren Yuan Direct digital amplitude modulator
JP2005057652A (ja) * 2003-08-07 2005-03-03 Toshiba Microelectronics Corp 無線受信システム
CN1959420A (zh) * 2005-11-04 2007-05-09 特克特朗尼克公司 时间任意的信号功率统计的测量装置和方法
CN1804642A (zh) * 2006-01-23 2006-07-19 天津市德力电子仪器有限公司 中频全数字化频谱仪
CN102109555A (zh) * 2009-12-24 2011-06-29 北京普源精电科技有限公司 具有数字中频信号处理系统的频谱分析仪及其实现方法
CN102928665A (zh) * 2012-11-01 2013-02-13 南京国睿安泰信科技股份有限公司 一种中频数字化的频谱分析仪及其方法
CN103809024A (zh) * 2012-11-09 2014-05-21 江苏绿扬电子仪器集团有限公司 基于fpga的实时频谱分析系统
CN103134984A (zh) * 2013-03-02 2013-06-05 安徽白鹭电子科技有限公司 基于ad9864中频数字化系统fft宽带频谱仪设计
CN103957010A (zh) * 2014-05-20 2014-07-30 石家庄数英仪器有限公司 一种高精度模数转换器及模数转换方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘祖深: "频谱分析仪全数字中频设计研究与实现", 《电子测量与仪器学报》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483547A (zh) * 2014-11-27 2015-04-01 广东电网有限责任公司电力科学研究院 电力信号的滤波方法及系统
CN105137182A (zh) * 2015-09-14 2015-12-09 张俊华 一种sdr应用中信号幅度计量定标方法
CN106353594A (zh) * 2016-08-15 2017-01-25 中国电子科技集团公司第四十研究所 一种快速多分辨率频谱分析系统及方法
CN106353594B (zh) * 2016-08-15 2019-01-18 中国电子科技集团公司第四十一研究所 一种快速多分辨率频谱分析系统及方法
CN106990288A (zh) * 2017-03-20 2017-07-28 成都米风通信技术有限公司 基于stm32f4的高速信号频谱分析方法
CN109327413A (zh) * 2018-09-13 2019-02-12 阳光电源股份有限公司 一种模拟与数字结合的解调系统以及解调方法
CN109521269A (zh) * 2018-11-09 2019-03-26 中电科仪器仪表有限公司 一种幅度调制信号数字化测频方法
CN109521269B (zh) * 2018-11-09 2021-09-28 中电科思仪科技股份有限公司 一种幅度调制信号数字化测频方法
CN109541309A (zh) * 2018-12-18 2019-03-29 深圳市鼎阳科技有限公司 一种频谱分析仪及其信号处理方法
CN109541309B (zh) * 2018-12-18 2020-12-01 深圳市鼎阳科技股份有限公司 一种频谱分析仪及其信号处理方法
JP2020193965A (ja) * 2019-05-28 2020-12-03 イノワイアレス カンパニー、リミテッド スペクトラムアナライザ及びその制御方法
US11740269B2 (en) 2019-05-28 2023-08-29 Innowireless Co., Ltd. Spectrum analyzer and method of controlling the same
US11906558B2 (en) 2019-05-28 2024-02-20 Innowireless Co., Ltd. Spectrum analyzer and method of controlling the same
CN111487476A (zh) * 2020-05-06 2020-08-04 深圳市鼎阳科技股份有限公司 一种准峰值检波方法和准峰值检波器
CN112382862A (zh) * 2021-01-15 2021-02-19 四川斯艾普电子科技有限公司 一种瓦片式多波束相控阵天线

Also Published As

Publication number Publication date
CN104122444B (zh) 2016-10-19

Similar Documents

Publication Publication Date Title
CN104122444A (zh) 全数字中频频谱分析仪及频谱分析方法
CN102571483B (zh) 适用于脉冲状态的一体化网络参数测试仪及其测试方法
CN102109555B (zh) 具有数字中频信号处理系统的频谱分析仪及其实现方法
CN105676008B (zh) 一种数字式电场传感器
WO2018032645A1 (zh) 一种宽带宽频率捷变信号测量仪器及测量方法
CN104092442B (zh) 一种模拟数字混合结构的锁相放大器及其锁相放大方法
JP2010212252A (ja) プラズマrf源測定用マルチレート処理
CN107239611B (zh) 一种矢量信号分析装置及方法
CN211348423U (zh) 一种高频信号测量装置
CN113064021B (zh) 用于实现电力电子化电网高次谐波抑制的测控装置和方法
CN103604500B (zh) 光栅扫描型光谱仪的检测系统及检测方法
CN103983849A (zh) 一种实时高精度的电力谐波分析方法
CN106645942A (zh) 一种低成本高精度嵌入式信号采集分析系统和方法
CN102200550B (zh) 一种用于高精度测量相位差的延迟正交数字中频鉴相方法
CN202502168U (zh) 一种相位噪声测量装置
CN110161310B (zh) 一种基于差频调制锁相的微弱信号检测方法
CN109596694B (zh) 一种适用于不同阻抗电化学体系的测量分析装置
CN109541309B (zh) 一种频谱分析仪及其信号处理方法
CN206114773U (zh) 一种高性能频谱分析仪
CN220289718U (zh) 一种用于检测相位的装置及系统
CN202330599U (zh) Lcr数字电桥
CN103902811A (zh) 一种emccd的正弦倍增信号参数提取方法
CN215953730U (zh) 一种基于零中频解调原理的频率特性测试仪
CN111736016B (zh) 一种交流传输特性检测电路
Lai et al. The study and implementation of signal processing algorithm for digital beam position monitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant