TWI760078B - Plate-acoustic-wave microfluidic structure - Google Patents

Plate-acoustic-wave microfluidic structure Download PDF

Info

Publication number
TWI760078B
TWI760078B TW110102569A TW110102569A TWI760078B TW I760078 B TWI760078 B TW I760078B TW 110102569 A TW110102569 A TW 110102569A TW 110102569 A TW110102569 A TW 110102569A TW I760078 B TWI760078 B TW I760078B
Authority
TW
Taiwan
Prior art keywords
acoustic wave
microfluidic
flat
electrode group
piezoelectric substrate
Prior art date
Application number
TW110102569A
Other languages
Chinese (zh)
Other versions
TW202229156A (en
Inventor
許進成
趙之磊
Original Assignee
國立雲林科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立雲林科技大學 filed Critical 國立雲林科技大學
Priority to TW110102569A priority Critical patent/TWI760078B/en
Application granted granted Critical
Publication of TWI760078B publication Critical patent/TWI760078B/en
Publication of TW202229156A publication Critical patent/TW202229156A/en

Links

Images

Abstract

The present disclosure provides a plate-acoustic-wave microfluidic structure, which includes a piezoelectric substrate, at least one first transducer set, at least one second transducer set, and a microfluidic channel. The at least one first transducer set is disposed on a first surface of the piezoelectric substrate. The at least one second transducer set is disposed on a second surface of the piezoelectric substrate. The microfluidic channel is disposed on the first surface of the piezoelectric substrate and for a microfluidic to be accommodated therein. The microfluidic includes at least one particle. At least one of the first transducer set and the second transducer set is driven to actuate the piezoelectric substrate in at least two plate-acoustic-wave modes. When the piezoelectric substrate is actuated in one of the plate-acoustic-wave modes, the particle swims in a first way. When the piezoelectric substrate is actuated in another of the plate-acoustic-wave modes, the particle swims in a second way. Through changing the plate-acoustic-wave mode, the application diversity of the plate-acoustic-wave microfluidic structure is increased.

Description

平板聲波微流體結構Flat Sonic Microfluidic Structures

本發明是有關一種微流體結構,且尤其是有關一種應用平板聲波的平板聲波微流體結構。 The present invention relates to a microfluidic structure, and more particularly, to a flat-panel acoustic wave microfluidic structure using flat-panel acoustic waves.

微流體結構係將流體置於微小通道中,並藉由聲波振動使微流體內部產生聲壓變化而可推動微流體中的部分粒子,因而常應用於微小粒子的篩選或排列等,例如生醫領域中用以培養細胞或分析血液。相關業者於壓電基板上設置電極以將電能轉換成聲波,然壓電基板、電極與流道皆為精密結構,不但製作難度較高,且必須對應微流體中的粒子特性進行配置,一旦完成製作便僅限用於特定的部分微流體而難以做其他有效應用。 The microfluidic structure places the fluid in a tiny channel, and generates sound pressure changes inside the microfluid through acoustic vibration, which can push some of the particles in the microfluid, so it is often used in the screening or arrangement of tiny particles, such as biomedicine. In the field of culturing cells or analyzing blood. Relevant manufacturers set electrodes on piezoelectric substrates to convert electrical energy into sound waves. However, piezoelectric substrates, electrodes and flow channels are all precise structures, which are not only difficult to manufacture, but also have to be configured according to the characteristics of particles in microfluidics. The fabrication is limited to a specific part of the microfluidics and it is difficult to make other effective applications.

有鑑於此,如何改善聲波微流體結構,提升聲波微流體結構的應用多元性,遂成為相關業者努力的目標。 In view of this, how to improve the acoustic wave microfluidic structure and enhance the application diversity of the acoustic wave microfluidic structure has become the goal of the relevant industry.

依據本發明之一實施方式提供一種平板聲波微流體結構,其包含一壓電基板、至少一第一電極組、至少一 第二電極組以及一微流體流道;前述至少一第一電極組設置於壓電基板之一第一面;前述至少一第二電極組設置於壓電基板之一第二面;微流體流道設置於壓電基板之第一面,且供一微流體容置;其中,微流體內包含至少一粒子,前述至少一第一電極組及前述至少一第二電極組中至少其中之一被驅動使壓電基板作動於至少二平板聲波模態,當壓電基板作動於一平板聲波模態時,前述至少一粒子以一第一方式聲泳,當壓電基板作動於另一平板聲波模態時,前述至少一粒子以一第二方式聲泳。 According to an embodiment of the present invention, a flat-panel acoustic wave microfluidic structure is provided, which includes a piezoelectric substrate, at least one first electrode group, at least one The second electrode group and a microfluidic channel; the at least one first electrode group is disposed on a first surface of the piezoelectric substrate; the at least one second electrode group is disposed on a second surface of the piezoelectric substrate; the microfluidic flow The channel is arranged on the first surface of the piezoelectric substrate, and accommodates a microfluid; wherein, the microfluid contains at least one particle, and at least one of the at least one first electrode group and the at least one second electrode group is The piezoelectric substrate is driven to act in at least two flat-plate acoustic wave modes. When the piezoelectric substrate is actuated in a flat-plate acoustic wave mode, the at least one particle is acoustophores in a first manner. When the piezoelectric substrate is actuated in another flat-plate acoustic wave mode In the state, the at least one particle performs acoustophoresis in a second manner.

藉此,透過改變平板聲波模態,可提升平板聲波微流體結構的應用多元性。 Thereby, by changing the mode of the plate acoustic wave, the application diversity of the plate acoustic wave microfluidic structure can be improved.

依據前述之平板聲波微流體結構,其中壓電基板受一平板聲波作用而振動。 According to the aforementioned flat-plate acoustic wave microfluidic structure, the piezoelectric substrate vibrates under the action of a flat-plate acoustic wave.

依據前述之平板聲波微流體結構,其中前述至少一第一電極組與前述至少一第二電極組的位置對應。 According to the aforementioned flat-panel acoustic wave microfluidic structure, the positions of the at least one first electrode group correspond to the positions of the at least one second electrode group.

依據前述之平板聲波微流體結構,其中前述至少一第一電極組的數量可為四,四第一電極組設置於第一面且環繞微流體流道,且前述至少一第二電極組的數量可為四,各第二電極組與各第一電極組的位置對應。 According to the aforementioned flat-panel acoustic wave microfluidic structure, the number of the at least one first electrode group can be four, the four first electrode groups are disposed on the first surface and surround the microfluidic channel, and the number of the at least one second electrode group It can be four, and each second electrode group corresponds to the position of each first electrode group.

依據前述之平板聲波微流體結構,其中微流體流道可包含至少一出口,前述至少一粒子以第一方式聲泳至前述至少一出口。 According to the aforementioned flat-panel acoustic wave microfluidic structure, the microfluidic channel can include at least one outlet, and the at least one particle acoustophores to the at least one outlet in a first manner.

依據前述之平板聲波微流體結構,其中微流體流道之一截面可概呈圓弧形。 According to the aforementioned flat-plate acoustic wave microfluidic structure, a section of the microfluidic flow channel can be approximately in the shape of a circular arc.

依據本發明之一實施方式提供一種平板聲波微流體結構,包含一壓電基板、至少一第一電極組、至少一第二電極組以及至少二微流體流道;至少一第一電極組設置於壓電基板之一第一面;至少一第二電極組設置於壓電基板之一第二面;至少二微流體流道設置於壓電基板之第一面;其中,各微流體內包含至少一粒子,前述至少一第一電極組及前述至少一第二電極組中至少其中之一被驅動使壓電基板作動於至少二平板聲波模態,當壓電基板作動於一平板聲波模態時,觸發前述至少二微流體流道中的其中一微流體流道,當壓電基板作動於另一平板聲波模態時,觸發前述至少二微流體流道中的所有微流體流道。 According to an embodiment of the present invention, a flat-panel acoustic wave microfluidic structure is provided, comprising a piezoelectric substrate, at least one first electrode group, at least one second electrode group, and at least two microfluidic flow channels; at least one first electrode group is disposed on the a first surface of the piezoelectric substrate; at least one second electrode group is arranged on a second surface of the piezoelectric substrate; at least two microfluidic flow channels are arranged on the first surface of the piezoelectric substrate; wherein, each microfluidic contains at least one A particle, at least one of the at least one first electrode group and the at least one second electrode group is driven to make the piezoelectric substrate act in at least two flat-plate acoustic wave modes, and when the piezoelectric substrate is actuated in one flat-plate acoustic wave mode , triggering one of the at least two microfluidic flow channels, and triggering all the microfluidic flow channels in the at least two microfluidic flow channels when the piezoelectric substrate acts in another flat-panel acoustic wave mode.

依據前述之平板聲波微流體結構,其中前述至少二微流體流道的數量可為四,且各微流體流道的尺寸不同。 According to the aforementioned flat-plate acoustic wave microfluidic structure, the number of the aforementioned at least two microfluidic flow channels can be four, and the sizes of the microfluidic flow channels are different.

依據前述之平板聲波微流體結構,其中前述至少一第一電極組與前述至少一第二電極組的位置對應。 According to the aforementioned flat-panel acoustic wave microfluidic structure, the positions of the at least one first electrode group correspond to the positions of the at least one second electrode group.

依據前述之平板聲波微流體結構,其中前述至少一第一電極組的數量可為四,四第一電極組設置於第一面且環繞微流體流道,且前述至少一第二電極組的數量可為四,各第二電極組與各第一電極組的位置對應。 According to the aforementioned flat-panel acoustic wave microfluidic structure, the number of the at least one first electrode group can be four, the four first electrode groups are disposed on the first surface and surround the microfluidic channel, and the number of the at least one second electrode group It can be four, and each second electrode group corresponds to the position of each first electrode group.

10,10a,10b,10c,10d:平板聲波微流體結構 10, 10a, 10b, 10c, 10d: Flat Sonic Microfluidic Structures

110:第一電極組 110: The first electrode group

111,112:第一指叉電極 111, 112: First interdigitated electrode

120:第二電極組 120: The second electrode group

121,122:第二指叉電極 121, 122: Second interdigitated electrode

130:壓電基板 130: Piezoelectric substrate

131:第一面 131: The first side

132:第二面 132: The second side

140,140a,140b,140c,140d,140e,140f,140g:微流 體流道 140, 140a, 140b, 140c, 140d, 140e, 140f, 140g: Microfluidics body flow channel

141:出口 141: Export

150:基體 150: Matrix

F:微流體 F: Microfluidics

H1:厚度 H1: Thickness

H2:高度 H2: height

P:粒子 P: particle

PAW:平板聲波 PAW: Plate Acoustic Wave

T:基板厚度 T: substrate thickness

W1:寬度 W1: width

X,Y,Z:軸 X, Y, Z: axis

第1圖繪示依照本發明一第一實施例之一種平板聲波微流體結構的立體示意圖; 第2圖繪示第1圖第一實施例之平板聲波微流體結構沿剖面線2-2的剖視圖;第3A圖繪示第2圖第一實施例之平板聲波微流體結構的一局部剖視圖;第3B圖繪示第2圖第一實施例之平板聲波微流體結構的另一局部剖視圖;第3C圖繪示第2圖第一實施例之平板聲波微流體結構的又一局部剖視圖;第4A圖繪示第3A圖第一實施例之平板聲波微流體結構的一局部俯視圖;第4B圖繪示第3B圖第一實施例之平板聲波微流體結構的另一局部俯視圖;第4C圖繪示第3C圖第一實施例之平板聲波微流體結構的又一局部俯視圖;第5圖繪示依照本發明一第二實施例之一種平板聲波微流體結構的剖視圖;第6圖繪示依照本發明一第三實施例之一種平板聲波微流體結構的立體示意圖;第7圖繪示依照本發明一第四實施例之一種平板聲波微流體結構的立體示意圖;第8圖繪示依照本發明一第五實施例之一種平板聲波微流體結構的立體示意圖;以及第9圖繪示依照本發明一第六實施例之一種平板聲波微流體結構的細部放大圖。 FIG. 1 is a three-dimensional schematic diagram of a flat-panel acoustic wave microfluidic structure according to a first embodiment of the present invention; Fig. 2 shows a cross-sectional view of the flat-plate acoustic wave microfluidic structure of the first embodiment of Fig. 1 along section line 2-2; Fig. 3A shows a partial cross-sectional view of the flat-plate acoustic wave microfluidic structure of the first embodiment of Fig. 2; Fig. 3B shows another partial cross-sectional view of the flat-plate acoustic wave microfluidic structure of the first embodiment of Fig. 2; Fig. 3C shows another partial cross-sectional view of the flat-plate acoustic wave microfluidic structure of the first embodiment of Fig. 2; Fig. 4A Figure 3A shows a partial top view of the flat-plate acoustic wave microfluidic structure of the first embodiment; Figure 4B shows another partial top view of the flat-plate acoustic wave microfluidic structure of the first embodiment of Figure 3B; Figure 4C shows Fig. 3C is another partial top view of the flat-plate acoustic wave microfluidic structure according to the first embodiment; Fig. 5 shows a cross-sectional view of a flat-plate acoustic wave microfluidic structure according to a second embodiment of the present invention; A schematic perspective view of a flat-panel acoustic wave microfluidic structure according to a third embodiment; FIG. 7 is a schematic perspective view of a flat-panel acoustic wave microfluidic structure according to a fourth embodiment of the present invention; A three-dimensional schematic diagram of a flat-plate acoustic wave microfluidic structure according to the fifth embodiment; and FIG. 9 is a detailed enlarged view of a flat-plate acoustic wave microfluidic structure according to a sixth embodiment of the present invention.

以下將參照圖式說明本發明之實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,閱讀者應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示;並且重複之元件將可能使用相同的編號或類似的編號表示。 Embodiments of the present invention will be described below with reference to the drawings. For the sake of clarity, many practical details are set forth in the following description. The reader should understand, however, that these practical details should not be used to limit the invention. That is, in some embodiments of the present invention, these practical details are unnecessary. In addition, for the purpose of simplifying the drawings, some well-known and conventional structures and elements are shown in a simplified and schematic manner in the drawings; and repeated elements may be denoted by the same numerals or similar numerals.

此外,本文中當某一元件(或機構或模組等)「連接」、「設置」或「耦合」於另一元件,可指所述元件是直接連接、直接設置或直接耦合於另一元件,亦可指某一元件是間接連接、間接設置或間接耦合於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接」、「直接設置」或「直接耦合」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件或成分,而對元件/成分本身並無限制,因此,第一元件/成分亦可改稱為第二元件/成分。且本文中之元件/成分/機構/模組之組合非此領域中之一般周知、常規或習知之組合,不能以元件/成分/機構/模組本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。 In addition, when a certain element (or mechanism or module, etc.) is "connected", "arranged" or "coupled" to another element herein, it may mean that the element is directly connected, directly arranged or directly coupled to another element , can also mean that an element is indirectly connected, indirectly arranged or indirectly coupled to another element, that is, there are other elements interposed between the element and the other element. When it is expressly stated that an element is "directly connected", "directly arranged" or "directly coupled" to another element, it means that no other element is interposed between the said element and the other element. The terms first, second, and third are only used to describe different elements or components, and do not limit the elements/components themselves. Therefore, the first element/component may also be renamed as the second element/component. Moreover, the combination of elements/components/mechanisms/modules in this article is not a generally known, conventional or conventional combination in this field, and whether the components/components/mechanisms/modules themselves are known to determine whether their combination relationship is not Easily accomplished by those of ordinary knowledge in the technical field.

請參照第1圖及第2圖,其中,第1圖繪示依照本發明第一實施例之一種平板聲波微流體結構10的立體示意圖;第2圖繪示第1圖實施例之平板聲波微流體結構 10沿剖面線2-2的剖視圖。由第1圖及第2圖可知,平板聲波微流體結構10包含一壓電基板130、至少一第一電極組110、至少一第二電極組120以及一微流體流道140;前述至少一第一電極組110設置於壓電基板130之一第一面131;前述至少一第二電極組120設置於壓電基板130之一第二面132;微流體流道140設置於壓電基板130之第一面131,且供一微流體F容置;其中,微流體F內包含至少一粒子P,前述至少一第一電極組110及前述至少一第二電極組120中至少其中之一被驅動使壓電基板130作動於至少二平板聲波模態,當壓電基板130作動於一平板聲波模態時,前述至少一粒子P以一第一方式聲泳,當壓電基板130作動於另一平板聲波模態時,前述至少一粒子P以一第二方式聲泳。 Please refer to FIG. 1 and FIG. 2, wherein, FIG. 1 shows a three-dimensional schematic diagram of a flat-panel acoustic wave microfluidic structure 10 according to the first embodiment of the present invention; FIG. 2 shows the flat-panel acoustic wave microfluidic structure according to the first embodiment fluid structure 10. Sectional view along section line 2-2. As can be seen from FIG. 1 and FIG. 2, the flat-panel acoustic wave microfluidic structure 10 includes a piezoelectric substrate 130, at least one first electrode group 110, at least one second electrode group 120, and a microfluidic channel 140; the aforementioned at least one first electrode group 110 An electrode group 110 is disposed on a first surface 131 of the piezoelectric substrate 130 ; the aforementioned at least one second electrode group 120 is disposed on a second surface 132 of the piezoelectric substrate 130 ; the microfluidic channel 140 is disposed on the piezoelectric substrate 130 The first surface 131 is for accommodating a microfluid F; wherein, the microfluid F contains at least one particle P, and at least one of the at least one first electrode group 110 and the at least one second electrode group 120 is driven The piezoelectric substrate 130 is actuated in at least two flat-plate acoustic wave modes. When the piezoelectric substrate 130 is actuated in a flat-plate acoustic wave mode, the at least one particle P acoustophores in a first manner. When the piezoelectric substrate 130 is actuated in another In the plate acoustic wave mode, the at least one particle P performs acoustophoresis in a second manner.

藉此,透過改變平板聲波模態,可提升平板聲波微流體結構10的應用多元性。 Therefore, by changing the mode of the flat-panel acoustic wave, the application diversity of the flat-panel acoustic wave microfluidic structure 10 can be improved.

在製程上,可以是於一基體150的底部製成特定形狀之開口槽,再將基體150設置於壓電基板130後,開口槽與壓電基板130之間所形成之空間即是微流體流道140,基體150可以是高分子有機矽化物(PDMS),且可例如是使用微機電系統技術(Microelectromechanical Systems;MEMS)製作。平板聲波微流體結構10的壓電基板130的基板厚度T小至足以受平板聲波PAW作用而產生振動,例如小於數釐米,於其他實施例中,壓電基板的基板厚度可在設計時根 據欲進行篩選或控制的粒子尺寸與特性而改變,然不以此限制本發明。 In the manufacturing process, an opening groove with a specific shape can be formed at the bottom of a base body 150, and after the base body 150 is disposed on the piezoelectric substrate 130, the space formed between the opening groove and the piezoelectric substrate 130 is the microfluidic flow. In the track 140, the substrate 150 may be a polymer organosilicon compound (PDMS), and may be fabricated using, for example, Microelectromechanical Systems (MEMS). The substrate thickness T of the piezoelectric substrate 130 of the plate acoustic wave microfluidic structure 10 is small enough to be vibrated by the plate acoustic wave PAW, for example, less than a few centimeters. It varies according to the size and characteristics of the particles to be screened or controlled, but the present invention is not limited thereto.

於本實施例中,平板聲波微流體結構10的第一電極組110的數量可為四,四第一電極組110設置於第一面131且環繞微流體流道140,第二電極組120的數量可為四,且各第二電極組120與各第一電極組110的位置可於二維方向,例如於X軸-Y軸上互相對應,其中對應可指位置完全相同或有偏移錯位但仍是以相同的對稱方式排列。在其他實施例中,第一電極組與第二電極組的數量可依實際應用改變,且第一電極組與第二電極組可呈不對稱配置,不同的電極組配置具有不同的聲波頻譜,藉由改變電極組的配置,於相同輸入訊號情況下,亦可激發出不同的平板聲波模態。各電極組的配置與數量可視實際運用情況改變,不以此限制本發明。 In this embodiment, the number of the first electrode groups 110 of the flat acoustic wave microfluidic structure 10 can be four. The number can be four, and the positions of each second electrode group 120 and each first electrode group 110 can correspond to each other in a two-dimensional direction, for example, on the X-axis-Y-axis, wherein the corresponding position can refer to the same position or offset dislocation But still arranged in the same symmetrical way. In other embodiments, the number of the first electrode group and the second electrode group can be changed according to the actual application, and the first electrode group and the second electrode group can be arranged asymmetrically, and different electrode group configurations have different acoustic wave spectrums, By changing the configuration of the electrode group, different flat-panel acoustic wave modes can also be excited under the same input signal. The configuration and quantity of each electrode group can be changed according to the actual application, and the present invention is not limited by this.

如第1圖所示,各第一電極組110可包含二第一指叉電極111、112,於接收訊號後建立電場,壓電基板130受電場作用而產生耦合振動,以發出平板聲波PAW,並傳遞至微流體流道140,微流體F受平板聲波PAW推動而形成聲壓節點和聲射流,改變訊號可使得微流體F中的部分粒子P受不同聲壓、聲射流或其他可引起聲泳效應之作用影響而產生不同的聲泳行為,不以上述為限。如第2圖所示,各第二電極組120亦包含二第二指叉電極121、122,分別與第一指叉電極111、112對應設置,換句話說,各第一指叉電極111對應各第二指叉電極121,各第 一指叉電極112對應各第二指叉電極122。 As shown in FIG. 1, each first electrode group 110 may include two first interdigitated electrodes 111 and 112. After receiving the signal, an electric field is established, and the piezoelectric substrate 130 is subjected to the action of the electric field to generate coupled vibration, so as to emit a flat-panel acoustic wave PAW, It is transmitted to the microfluidic flow channel 140, and the microfluidic F is pushed by the flat-panel acoustic wave PAW to form a sound pressure node and an acoustic jet. Changing the signal can cause some particles P in the microfluidic F to be affected by different sound pressures, acoustic jets, or other sounds that can cause sound. Different acoustophoretic behaviors can be produced due to the effect of the swimming effect, not limited to the above. As shown in FIG. 2 , each of the second electrode groups 120 also includes two second interdigital electrodes 121 and 122 , which are respectively disposed corresponding to the first interdigitated electrodes 111 and 112 . In other words, each of the first interdigitated electrodes 111 corresponds to each other. Each second interdigitated electrode 121, each An interdigitated electrode 112 corresponds to each of the second interdigitated electrodes 122 .

請參照第3A圖及第4A圖,並請一併參考第2圖,其中,第3A圖繪示第2圖實施例之平板聲波微流體結構10的局部剖視圖,此時僅第一電極組110接收訊號;第4A圖繪示第3A圖第一實施例之平板聲波微流體結構10的一局部俯視圖。本實施例中,壓電基板130於第一電極組110與第二電極組120接收不同訊號時可作動於三種平板聲波模態,而第3A圖及第4A圖繪示第一種平板聲波模態。由第3A圖可知,單獨輸入訊號於第一電極組110時,各第一指叉電極111、112接受訊號並建立第一種電場,使壓電基板130被作動於第一種平板聲波模態,微流體F中的複數粒子P以第一方式聲泳,呈現如第4A圖中的第一種排列方式。 Please refer to FIG. 3A and FIG. 4A, and also refer to FIG. 2, wherein, FIG. 3A shows a partial cross-sectional view of the flat-panel acoustic wave microfluidic structure 10 according to the embodiment of FIG. 2, at this time only the first electrode group 110 Receive a signal; Fig. 4A shows a partial top view of the flat-panel acoustic wave microfluidic structure 10 of the first embodiment of Fig. 3A. In this embodiment, the piezoelectric substrate 130 can act in three flat panel acoustic wave modes when the first electrode group 110 and the second electrode group 120 receive different signals, and FIG. 3A and FIG. 4A illustrate the first flat panel acoustic wave mode state. It can be seen from FIG. 3A that when a signal is input to the first electrode group 110 alone, each of the first interdigitated electrodes 111 and 112 receives the signal and establishes a first electric field, so that the piezoelectric substrate 130 is actuated in the first flat acoustic wave mode. , the complex particles P in the microfluidic F are acoustophores in the first way, showing the first arrangement as shown in Figure 4A.

請參照第3B圖及第4B圖,並請一併參考第2圖,其中,第3B圖繪示第2圖實施例之平板聲波微流體結構10的局部剖視圖,且第一電極組110及第二電極組120接收相位相同的訊號;第4B圖繪示第3B圖第一實施例之平板聲波微流體結構10的另一局部俯視圖。由第3B圖及第4B圖可知,第一電極組110與第二電極組120同時輸入相同相位的訊號,意即各第一指叉電極112與各第二指叉電極122相位相同,且各第一指叉電極111與各第二指叉電極121相位相同,使壓電基板130被作動於第二種平板聲波模態,且微流體F中的複數粒子P以第二方式聲泳,而呈現如第4B圖中的第二種排列方式。 Please refer to FIG. 3B and FIG. 4B, and also refer to FIG. 2, wherein, FIG. 3B is a partial cross-sectional view of the flat-panel acoustic wave microfluidic structure 10 according to the embodiment of FIG. 2, and the first electrode set 110 and the The two electrode sets 120 receive signals of the same phase; FIG. 4B shows another partial top view of the flat-panel acoustic wave microfluidic structure 10 according to the first embodiment of FIG. 3B . It can be seen from FIG. 3B and FIG. 4B that the first electrode group 110 and the second electrode group 120 simultaneously input signals of the same phase, that is, each of the first interdigital electrodes 112 and each of the second interdigitated electrodes 122 have the same phase, and each The first interdigitated electrode 111 and each of the second interdigitated electrodes 121 are in the same phase, so that the piezoelectric substrate 130 is actuated in the second plate acoustic wave mode, and the plurality of particles P in the microfluid F are acoustophores in the second mode, and A second arrangement as shown in Figure 4B is presented.

請參照第3C圖及第4C圖,並請一併參考第2圖,其中,第3C圖繪示第2圖實施例之平板聲波微流體結構10的局部剖視圖,且第一電極組110及第二電極組120接收相位相反的訊號;第4C圖繪示第3C圖第一實施例之平板聲波微流體結構10的又一局部俯視圖。由第3C圖及第4C圖可知,於第一電極組110與第二電極組120分別輸入相反的訊號時,意即各第一指叉電極112與各第二指叉電極122相位相反,且各第一指叉電極111與各第二指叉電極121相位相反,此時壓電基板130被作動於第三種平板聲波模態,微流體F中的複數粒子P則以第三方式聲泳,而呈現如第4C圖中的第三種排列方式。綜上所述,在相同第一電極組110與第二電極組120的配置下,透過改變訊號可切換平板聲波模態,並改變微流體F中粒子P的聲泳方式,另外,輸入訊號的頻率、波長等亦會影響所激發的平板聲波模態。 Please refer to FIG. 3C and FIG. 4C, and also refer to FIG. 2, wherein, FIG. 3C shows a partial cross-sectional view of the flat-panel acoustic wave microfluidic structure 10 according to the embodiment of FIG. 2, and the first electrode set 110 and the The two electrode sets 120 receive signals of opposite phases; FIG. 4C shows another partial top view of the flat-panel acoustic wave microfluidic structure 10 according to the first embodiment of FIG. 3C . It can be seen from FIG. 3C and FIG. 4C that when the first electrode group 110 and the second electrode group 120 input opposite signals respectively, it means that the phases of the first interdigital electrodes 112 and the second interdigital electrodes 122 are opposite, and Each of the first interdigitated electrodes 111 and each of the second interdigitated electrodes 121 have opposite phases. At this time, the piezoelectric substrate 130 is actuated in the third plate acoustic wave mode, and the complex particles P in the microfluidic F are acoustophores in the third mode. , and present the third arrangement as shown in Figure 4C. To sum up, under the same configuration of the first electrode group 110 and the second electrode group 120, the flat-panel acoustic wave mode can be switched by changing the signal, and the acoustophoresis mode of the particle P in the microfluidic F can be changed. Frequency, wavelength, etc. also affect the excited flat-panel acoustic wave modes.

請參照第5圖,第5圖繪示依照本發明一第二實施例之一種平板聲波微流體結構10a的剖視圖。由第5圖可知,微流體流道140是設置於基體150的內部而非底部,微流體流道140具有一寬度W1、一厚度H1及相對於壓電基板130的一高度H2,於本實施例中,寬度W1、厚度H1及高度H2均可小於數釐米。在設計時,可依據不同的微流體F及粒子的特性,以及所欲進行之聲泳而改變微流體流道140的尺寸、形狀或位置。另外,基體150的總高度亦會影響所激發的平板聲波模態,第一電極組、第二 電極組受訊號激發之行波向上傳遞遇到空氣介面反彈相干涉形成駐波,微流體F中較高位置的聲壓分佈不受限於壓電基板130節點位置,轉而由激發頻率控制其橫向節點距離,並且可使接近基體150頂部區域之粒子受縱向駐波移動至縱向位置,呈現縱向分布。 Please refer to FIG. 5, which is a cross-sectional view of a flat-panel acoustic wave microfluidic structure 10a according to a second embodiment of the present invention. It can be seen from FIG. 5 that the microfluidic channel 140 is disposed inside the substrate 150 instead of the bottom. The microfluidic channel 140 has a width W1, a thickness H1 and a height H2 relative to the piezoelectric substrate 130. In this embodiment In an example, the width W1, the thickness H1 and the height H2 can all be less than several centimeters. During design, the size, shape or position of the microfluidic channel 140 can be changed according to the characteristics of different microfluidics F and particles, and the desired acoustophoresis. In addition, the total height of the substrate 150 will also affect the excited flat-panel acoustic wave mode, the first electrode group, the second The traveling wave excited by the signal of the electrode group propagates upward and encounters the rebound of the air interface and interferes to form a standing wave. The sound pressure distribution at a higher position in the microfluidic F is not limited by the node position of the piezoelectric substrate 130, but is controlled by the excitation frequency instead. The lateral node distance can make the particles close to the top area of the substrate 150 move to the longitudinal position by the longitudinal standing wave, and present longitudinal distribution.

請參照第6圖及第7圖,其中,第6圖繪示依照本發明一第三實施例之一種平板聲波微流體結構10b的部分立體示意圖;第7圖繪示依照本發明一第四實施例之一種平板聲波微流體結構10c的部分立體示意圖,且為求圖面簡潔,第6圖及第7圖中僅繪示微流體流道140a、140b分別設置於壓電基板130的示意圖。由第6圖及第7圖可知,微流體流道140a、140b之一截面可概呈圓弧形,意即,於Y軸-Z軸平面上呈現半圓弧形,然微流體流道140a實際上呈一半球形,而微流體流道140b實際上呈一半圓柱形,由第一電極組或第二電極組中至少一者所激發出的平板聲波PAW會因微流體流道140a、140b的形狀不同而影響入射角度並產生不同的高度節點,進而使微流體流道140a、140b中的粒子受不同的力量作用而產生不同變化。於其他實施例中,微流體流道的截面可視實際欲控制的粒子特性而變化,例如曲線、曲面狀等,並不依此限制本發明。 Please refer to FIG. 6 and FIG. 7, wherein, FIG. 6 shows a partial perspective view of a flat-panel acoustic wave microfluidic structure 10b according to a third embodiment of the present invention; FIG. 7 shows a fourth embodiment of the present invention. An example is a partial three-dimensional schematic diagram of a flat-panel acoustic wave microfluidic structure 10c, and for the sake of brevity, FIGS. It can be seen from FIG. 6 and FIG. 7 that a cross-section of the microfluidic flow channels 140a and 140b can be roughly arc-shaped, that is, a semi-circular arc is presented on the Y-axis-Z-axis plane. However, the microfluidic flow channel 140a actually The upper surface is hemispherical, while the microfluidic flow channel 140b is actually a semi-cylindrical shape. The plate acoustic wave PAW excited by at least one of the first electrode group or the second electrode group will be affected by the shape of the microfluidic flow channels 140a and 140b. The difference affects the incident angle and produces different height nodes, so that the particles in the microfluidic flow channels 140a and 140b are affected by different forces to produce different changes. In other embodiments, the cross-section of the microfluidic flow channel can be changed according to the actual particle characteristics to be controlled, such as curve, curved surface, etc., which does not limit the present invention.

請參照第8圖,其中,第8圖繪示依照本發明一第五實施例之一種平板聲波微流體結構10d的立體示意圖,為求圖面簡潔,第8圖中並未繪示第一電極組與第二電極 組。由第8圖可知,平板聲波微流體結構10d包含至少二微流體流道140c、140d、140e、140f,當壓電基板130作動於一平板聲波模態時,觸發至少二微流體流道140c、140d、140e、140f中的其中一微流體流道(例如微流體流道140c),當壓電基板130作動於另一平板聲波模態時,觸發至少二微流體流道140c、140d、140e、140f中的所有微流體流道140c、140d、140e、140f。於本實施例中,微流體流道140c、140d、140e、140f的數量為四,由於不同尺寸之微流體流道140c、140d、140e、140f的共振頻率不同,故藉由改變輸入訊號可選擇性觸發各微流體流道140c、140d、140e、140f中的至少一者或同時觸發多者,例如單獨觸發微流體流道140c,或同時觸發微流體流道140d、140e,甚至同時觸發微流體流道140c、140d、140e及140f;於其他實施例中,微流體流道的數量、尺寸、形狀及相對位置可依實際需求改變,不以此限制本發明。 Please refer to FIG. 8, wherein, FIG. 8 is a three-dimensional schematic diagram of a flat-panel acoustic wave microfluidic structure 10d according to a fifth embodiment of the present invention. For the sake of brevity, the first electrode is not shown in FIG. 8. group with second electrode Group. As can be seen from FIG. 8, the flat-plate acoustic wave microfluidic structure 10d includes at least two microfluidic flow channels 140c, 140d, 140e, and 140f. When the piezoelectric substrate 130 operates in a flat-plate acoustic wave mode, the at least two microfluidic flow channels 140c, 140c, and 140f are triggered. One of the microfluidic flow channels 140d, 140e, and 140f (eg, the microfluidic flow channel 140c), when the piezoelectric substrate 130 is actuated in another flat-panel acoustic wave mode, at least two microfluidic flow channels 140c, 140d, 140e, All microfluidic flow channels 140c, 140d, 140e, 140f in 140f. In this embodiment, the number of the microfluidic flow channels 140c, 140d, 140e, and 140f is four. Since the resonant frequencies of the microfluidic flow channels 140c, 140d, 140e, and 140f of different sizes are different, it can be selected by changing the input signal. At least one or more of the microfluidic flow channels 140c, 140d, 140e, 140f are triggered sexually, for example, the microfluidic flow channel 140c is triggered individually, or the microfluidic flow channels 140d, 140e are triggered at the same time, or even the microfluidic flow channels are triggered at the same time. The flow channels 140c, 140d, 140e and 140f; in other embodiments, the number, size, shape and relative position of the microfluidic flow channels can be changed according to actual needs, which is not intended to limit the present invention.

請參考第9圖,第9圖繪示依照本發明一第六實施例之一種平板聲波微流體結構的細部放大圖,且僅繪示微流體流道140g的細部放大圖。由第9圖可知,微流體流道140g可包含至少一出口141,當壓電基板作動於一平板聲波模態時,至少一粒子P以第一方式聲泳到至少一出口141;而當壓電基板作動於另一平板聲波模態時,粒子P以第二方式聲泳到另一出口141,如第9圖所示,微流體流道140g可包含三出口141,而於一平板聲波模態 時,粒子P可以聲泳至最左及最右的出口141。於其他實施例中,各出口亦可於垂直方向呈現高低落差,藉由不同的平板聲波模態可使微流體中的不同粒子分別聲泳至不同出口,且在其他應用領域中,聲波微流體流道亦可為封閉式腔體而不具有任何出口,然不依此限制本發明。 Please refer to FIG. 9. FIG. 9 shows a detailed enlarged view of a flat-panel acoustic wave microfluidic structure according to a sixth embodiment of the present invention, and only shows a detailed enlarged view of the microfluidic channel 140g. As can be seen from FIG. 9, the microfluidic channel 140g may include at least one outlet 141. When the piezoelectric substrate is actuated in a flat-panel acoustic wave mode, at least one particle P acoustophores to the at least one outlet 141 in the first manner; When the electrical substrate operates in another flat plate acoustic wave mode, the particles P acoustophores to another outlet 141 in a second manner. As shown in FIG. 9, the microfluidic flow channel 140g may include three outlets 141, and in a flat plate acoustic wave mode state , the particle P can acoustophore to the leftmost and rightmost exits 141 . In other embodiments, each outlet can also present a height difference in the vertical direction, and different particles in the microfluidic can be acoustophoresed to different outlets respectively through different flat plate acoustic wave modes. The flow channel can also be a closed cavity without any outlet, but the present invention is not limited thereto.

綜上所述,透過改變第一電極組及第二電極組的配置、改變輸入訊號或改變微流體流道的結構以切換平板聲波模態,可提升平板聲波微流體結構的應用多元性。 To sum up, by changing the configuration of the first electrode group and the second electrode group, changing the input signal or changing the structure of the microfluidic flow channel to switch the flat panel acoustic wave mode, the application diversity of the flat panel acoustic wave microfluidic structure can be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope shall be determined by the scope of the appended patent application.

10:平板聲波微流體結構 10: Flat Sonic Microfluidic Structure

110:第一電極組 110: The first electrode group

111,112:第一指叉電極 111, 112: First interdigitated electrode

130:壓電基板 130: Piezoelectric substrate

140:微流體流道 140: Microfluidic flow channel

150:基體 150: Matrix

X,Y,Z:軸 X, Y, Z: axis

Claims (10)

一種平板聲波微流體結構,包含:一壓電基板;一基體,設置於該壓電基板之一第一面;至少一第一電極組,設置於該壓電基板之該第一面;至少一第二電極組,設置於該壓電基板之一第二面;以及一微流體流道,設置於該基體的內部且具有一寬度、一厚度及相對於該壓電基板的一高度,該高度大於零,且該微流體流道供一微流體容置;其中,該微流體內包含至少一粒子,該至少一第一電極組及該至少一第二電極組中至少其中之一被驅動使該壓電基板作動於至少二平板聲波模態,當該壓電基板作動於一該平板聲波模態時,該至少一粒子以一第一方式聲泳,當該壓電基板作動於另一該平板聲波模態時,該至少一粒子以一第二方式聲泳。 A flat-plate acoustic wave microfluidic structure, comprising: a piezoelectric substrate; a base body disposed on a first surface of the piezoelectric substrate; at least one first electrode group disposed on the first surface of the piezoelectric substrate; at least one The second electrode group is arranged on a second surface of the piezoelectric substrate; and a microfluidic channel is arranged inside the base body and has a width, a thickness and a height relative to the piezoelectric substrate, the height greater than zero, and the microfluidic channel accommodates a microfluid; wherein, the microfluidic contains at least one particle, and at least one of the at least one first electrode group and the at least one second electrode group is driven to make The piezoelectric substrate operates in at least two flat-plate acoustic wave modes. When the piezoelectric substrate operates in one of the flat-plate acoustic wave modes, the at least one particle performs acoustophoresis in a first manner. In the flat plate acoustic wave mode, the at least one particle is acoustophores in a second mode. 如請求項1所述之平板聲波微流體結構,其中該壓電基板受一平板聲波作用而振動。 The plate acoustic wave microfluidic structure as claimed in claim 1, wherein the piezoelectric substrate vibrates under the action of a plate acoustic wave. 如請求項1所述之平板聲波微流體結構,其中該至少一第一電極組與該至少一第二電極組的位置對應。 The flat-panel acoustic wave microfluidic structure of claim 1, wherein the at least one first electrode group corresponds to the position of the at least one second electrode group. 如請求項3所述之平板聲波微流體結構,其中該至少一第一電極組的數量為四,四該第一電極組設置於該第一面且環繞該微流體流道,且該至少一第二電極組的數量為四,各該第二電極組與各該第一電極組的位置對應。 The flat-plate acoustic wave microfluidic structure according to claim 3, wherein the number of the at least one first electrode group is four, the four first electrode groups are disposed on the first surface and surround the microfluidic flow channel, and the at least one first electrode group is The number of the second electrode groups is four, and each of the second electrode groups corresponds to the position of each of the first electrode groups. 如請求項1所述之平板聲波微流體結構,其中該微流體流道包含至少一出口,該至少一粒子以該第一方式聲泳至該至少一出口。 The flat-plate acoustic wave microfluidic structure of claim 1, wherein the microfluidic flow channel comprises at least one outlet, and the at least one particle acoustophores to the at least one outlet in the first manner. 如請求項1所述之平板聲波微流體結構,其中該微流體流道之一截面概呈圓弧形。 The flat-plate acoustic wave microfluidic structure according to claim 1, wherein a cross-section of the microfluidic flow channel is approximately arc-shaped. 一種平板聲波微流體結構,包含:一壓電基板;至少一第一電極組,設置於該壓電基板之一第一面;至少一第二電極組,設置於該壓電基板之一第二面;以及至少二微流體流道,設置於該壓電基板之該第一面;其中,該至少一第一電極組及該至少一第二電極組中至少其中之一被驅動使該壓電基板作動於至少二平板聲波模態,當該壓電基板作動於一該平板聲波模態時,觸發該至少二微流體流道中的其中一該微流體流道,當該壓電基板作動於另一該平板聲波模態時,觸發該至少二微流體流道 中的所有該微流體流道。 A flat-plate acoustic wave microfluidic structure, comprising: a piezoelectric substrate; at least one first electrode group disposed on a first surface of the piezoelectric substrate; at least one second electrode group disposed on a second surface of the piezoelectric substrate surface; and at least two microfluidic flow channels disposed on the first surface of the piezoelectric substrate; wherein, at least one of the at least one first electrode group and the at least one second electrode group is driven to make the piezoelectric The substrate operates in at least two flat-plate acoustic wave modes, and when the piezoelectric substrate operates in one of the flat-plate acoustic wave modes, one of the microfluidic flow channels in the at least two microfluidic flow channels is triggered, and when the piezoelectric substrate operates in the other one The at least two microfluidic channels are triggered when the flat plate is in the acoustic wave mode in all of the microfluidic flow channels. 如請求項7所述之平板聲波微流體結構,其中該至少二微流體流道的數量為四,且各該微流體流道的尺寸不同。 The flat-plate acoustic wave microfluidic structure according to claim 7, wherein the number of the at least two microfluidic flow channels is four, and the sizes of the microfluidic flow channels are different. 如請求項7所述之平板聲波微流體結構,其中該至少一第一電極組與該至少一第二電極組的位置對應。 The flat-plate acoustic wave microfluidic structure according to claim 7, wherein the at least one first electrode group corresponds to the position of the at least one second electrode group. 如請求項9所述之平板聲波微流體結構,其中該至少一第一電極組的數量為四,四該第一電極組設置於該第一面且環繞該微流體流道,且該至少一第二電極組的數量為四,各該第二電極組與各該第一電極組的位置對應。 The flat-panel acoustic wave microfluidic structure according to claim 9, wherein the number of the at least one first electrode group is four, the four first electrode groups are disposed on the first surface and surround the microfluidic flow channel, and the at least one first electrode group is The number of the second electrode groups is four, and each of the second electrode groups corresponds to the position of each of the first electrode groups.
TW110102569A 2021-01-22 2021-01-22 Plate-acoustic-wave microfluidic structure TWI760078B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110102569A TWI760078B (en) 2021-01-22 2021-01-22 Plate-acoustic-wave microfluidic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110102569A TWI760078B (en) 2021-01-22 2021-01-22 Plate-acoustic-wave microfluidic structure

Publications (2)

Publication Number Publication Date
TWI760078B true TWI760078B (en) 2022-04-01
TW202229156A TW202229156A (en) 2022-08-01

Family

ID=82199042

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110102569A TWI760078B (en) 2021-01-22 2021-01-22 Plate-acoustic-wave microfluidic structure

Country Status (1)

Country Link
TW (1) TWI760078B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942568B1 (en) * 2005-06-17 2011-05-17 Sandia Corporation Active micromixer using surface acoustic wave streaming
TWI343180B (en) * 2005-07-01 2011-06-01 Ind Tech Res Inst The acoustic wave sensing-device integrated with micro channels
US20140305510A1 (en) * 2011-10-10 2014-10-16 Consiglio Nazionale Delle Ricerche Automatic passive control of liquid positioning in microfluidic chips
CN105204155A (en) * 2015-09-07 2015-12-30 华南师范大学 Display device based on surface acoustic wave technology and method thereof
CN109174426A (en) * 2018-08-01 2019-01-11 哈尔滨工业大学(深圳) A kind of particle sorting unit and the method that particle in liquid is sorted
CN111969975A (en) * 2020-08-28 2020-11-20 哈尔滨工业大学 Surface wave acoustic tweezers and method for independently capturing and controlling microparticles at any position of plane
US20200399583A1 (en) * 2012-03-15 2020-12-24 Flodesign Sonics, Inc. Acoustic perfusion devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7942568B1 (en) * 2005-06-17 2011-05-17 Sandia Corporation Active micromixer using surface acoustic wave streaming
TWI343180B (en) * 2005-07-01 2011-06-01 Ind Tech Res Inst The acoustic wave sensing-device integrated with micro channels
US20140305510A1 (en) * 2011-10-10 2014-10-16 Consiglio Nazionale Delle Ricerche Automatic passive control of liquid positioning in microfluidic chips
US20200399583A1 (en) * 2012-03-15 2020-12-24 Flodesign Sonics, Inc. Acoustic perfusion devices
CN105204155A (en) * 2015-09-07 2015-12-30 华南师范大学 Display device based on surface acoustic wave technology and method thereof
CN109174426A (en) * 2018-08-01 2019-01-11 哈尔滨工业大学(深圳) A kind of particle sorting unit and the method that particle in liquid is sorted
CN111969975A (en) * 2020-08-28 2020-11-20 哈尔滨工业大学 Surface wave acoustic tweezers and method for independently capturing and controlling microparticles at any position of plane

Also Published As

Publication number Publication date
TW202229156A (en) 2022-08-01

Similar Documents

Publication Publication Date Title
US10349182B2 (en) Micromechanical piezoelectric actuators for implementing large forces and deflections
EP3547921B1 (en) Imaging devices having piezoelectric transducers
US7477572B2 (en) Microfabricated capacitive ultrasonic transducer for high frequency applications
EP2312158B1 (en) Piezoelectric microblower
JP6360487B2 (en) Micromachined ultrasonic transducer array with multiple harmonic modes
US8372011B2 (en) Asymmetric membrane cMUT devices and fabrication methods
TWI692984B (en) Mems transducer and capacitive microphone
US7030536B2 (en) Micromachined ultrasonic transducer cells having compliant support structure
JP4984849B2 (en) Component separation device and chemical analysis device using the component separation device
US7612635B2 (en) MEMS acoustic filter and fabrication of the same
EP2508758B1 (en) Piezoelectric micro-blower
WO2006115241A1 (en) Component separation device and method of separating component
EP3450759A1 (en) Micro-electromechanical fluid control device
TWI760078B (en) Plate-acoustic-wave microfluidic structure
CN101746707A (en) Capacitive type micromachined ultrasonic transducer
TW202222677A (en) Mems device, near-field loudspeaker, hearable, mems pump, loudspeaker and method of driving a mems device
KR102434704B1 (en) Omnidirectional acoustic sensor
CN115106275A (en) Micro-mechanical ultrasonic transducer based on support column
JP6001342B2 (en) Vibration detection element and detection element using the same
CN109424519B (en) Micro-electromechanical fluid control device
US20220014162A1 (en) Sensor with Resonator Supported on a Substrate
CN210738778U (en) Micro-electromechanical fluid control device
CN109590032B (en) Control method of fluid device
TWI650284B (en) Controlling method of fliud device
TWM532530U (en) Miniature fluid control device