TWI758231B - Eye gesture tracking system - Google Patents

Eye gesture tracking system Download PDF

Info

Publication number
TWI758231B
TWI758231B TW110137695A TW110137695A TWI758231B TW I758231 B TWI758231 B TW I758231B TW 110137695 A TW110137695 A TW 110137695A TW 110137695 A TW110137695 A TW 110137695A TW I758231 B TWI758231 B TW I758231B
Authority
TW
Taiwan
Prior art keywords
eye
user
display
signal
light
Prior art date
Application number
TW110137695A
Other languages
Chinese (zh)
Other versions
TW202205153A (en
Inventor
那允中
陳建龍
劉漢鼎
陳書履
Original Assignee
光程研創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/228,282 external-priority patent/US9954016B2/en
Priority claimed from US15/359,460 external-priority patent/US10761599B2/en
Application filed by 光程研創股份有限公司 filed Critical 光程研創股份有限公司
Publication of TW202205153A publication Critical patent/TW202205153A/en
Application granted granted Critical
Publication of TWI758231B publication Critical patent/TWI758231B/en

Links

Images

Landscapes

  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

An eye gesture tracking system including a machine with a display, the display including a plurality of tunable optical elements. The eye gesture tracking system can also include an eye gesture tracking device including circuitry configured to obtain an electrical signal that represents a measurement, by a photodetector, of an optical signal reflected from an eye. The circuitry can further be configured to determine a depth map of the eye based on phase differences between a reference signal and the electrical signal generated by the photodetector, and determine a gaze information that represents a gaze of the eye based on the depth map. Additionally, the eye gesture tracking system can include a signal processing unit in communication with the machine and the eye gesture tracking device, the signal processing unit can perform the operations including receiving, from the eye gesture tracking device, output data representing the gaze information and determining the gaze information representing the gaze of the eye in relation to the display of the machine.

Description

眼動追蹤系統eye tracking system

本發明是關於眼動追蹤。The present invention is about eye tracking.

光可被引導至一眼睛,並可觀察到反射光。反射光可經處理以判斷與眼睛具關聯性的資訊。Light can be directed to an eye and reflected light can be observed. The reflected light can be processed to determine information relevant to the eye.

在某些實施方式中,一眼動追蹤方法能夠用以判斷一眼睛的視線資訊。前述的方法包含解調由眼睛反射的調制光學信號,解調光學信號能夠經處理以產生對應眼睛的深度圖並進一步判斷眼睛的視線資訊。眼睛的視線資訊包含對應於,例如是眼睛的瞳孔或虹膜的資訊,並能夠用於各種應用,例如,判斷使用者偏好資料、以視覺控制人機介面設備、提供跨平台周邊控制等。此外,藉由追蹤眼睛的姿勢,對應的眼睛視線資訊能夠用以即時地重新對焦可調光學元件來改變入射眼睛的光,創造不暈眩的視覺體驗。眼動追蹤方法也能夠用於各種平台上,藉由使光學元件動態地重新對焦,可增強視覺體驗,例如提供3D凝視點影像。In some embodiments, an eye tracking method can be used to determine the gaze information of an eye. The aforementioned method includes demodulating the modulated optical signal reflected by the eye, and the demodulated optical signal can be processed to generate a depth map corresponding to the eye and further determine the line-of-sight information of the eye. The sight line information of the eye includes information corresponding to, for example, the pupil or iris of the eye, and can be used for various applications, such as judging user preference data, visually controlling human-machine interface devices, providing cross-platform peripheral control, and the like. In addition, by tracking the posture of the eye, the corresponding eye gaze information can be used to instantly refocus the adjustable optical element to change the light incident on the eye, creating a dizzy-free visual experience. Eye tracking methods can also be used on a variety of platforms to enhance the visual experience by dynamically refocusing optics, such as providing 3D gaze point images.

根據本發明之創新目的的一實施方式中,方法包含:從眼睛反射的一調製光信號,擷取由一光檢測器生成的一電信號,電信號包括一第一相位,其中調製光信號由被一調製信號偏置的一個或多個光源生成,調製信號包括一第二相位;依據光檢測器產生的電信號的第一相位及一參考信號的一第三相位的一相位差來判斷眼睛的一深度圖;前述方法還包含:根據深度圖判斷對應於眼睛視線的視線資訊,並輸出對應於視線資訊的輸出資料。According to one embodiment of the innovative object of the present invention, the method includes: extracting an electrical signal generated by a photodetector from a modulated optical signal reflected from the eye, the electrical signal including a first phase, wherein the modulated optical signal is determined by Generated by one or more light sources biased by a modulation signal, the modulation signal includes a second phase; the eye is judged according to a phase difference between a first phase of an electrical signal generated by the photodetector and a third phase of a reference signal A depth map of the ; the aforementioned method further includes: judging the line of sight information corresponding to the sight line of the eye according to the depth map, and outputting output data corresponding to the line of sight information.

在其它實施方式中,包含用以執行編碼在電腦儲存裝置上的方法的動作的對應系統、裝置和電腦程序。In other embodiments, corresponding systems, devices, and computer programs for performing the actions of the methods encoded on computer storage devices are included.

在本發明之一實施方式中可選擇性地包含一或多個下述特徵。舉例來說,前述方法可以包含提供一或多個濾波器以移除於眼睛反射之調製光信號中的非目標波長信號。此外,前述方法能夠包含提供一或多個透鏡以聚焦眼睛反射之調製光信號於光檢測器。深度圖能夠包含一或多個三維(3D)資訊的資料組。視線資訊能夠包含眼睛的一特定區域辨識、眼睛的一瞳孔的辨識、眼睛的一虹膜的辨識及眼睛的一生理結構的辨識中的一或多者。在某些方面,提供視線資訊的輸出資料包含提供對應於視線資訊的輸出資料以作為其它裝置、機械或系統的輸入。前述方法能夠包含依據視線資訊判斷一眼睛姿勢,並提供表示眼睛姿勢的輸出資料。在這種情況下,眼睛姿勢能夠包含眼睛的移動、眼睛的轉動、眼睛的穩定狀態、眼睛的穩定狀態所對應時間、眼睛的閉合狀態、眼睛的閉合狀態所對應時間、眼睛的睜開狀態、眼睛的睜開狀態所對應的時間、眼睛的眨眼睛的狀態、眼睛的眨眼睛狀態所對應時間,以及眨眼睛狀態所對應頻率中的一或多者。此外,提供表示眼睛姿勢的輸出資料能夠包含提供對應於視線資訊的輸出資料以作為其它裝置、機械或系統的輸入。One or more of the following features may optionally be included in one embodiment of the present invention. For example, the foregoing methods may include providing one or more filters to remove non-target wavelength signals in the modulated optical signal reflected by the eye. Additionally, the aforementioned method can include providing one or more lenses to focus the modulated optical signal reflected by the eye on the photodetector. A depth map can contain one or more data sets of three-dimensional (3D) information. The sight line information can include one or more of an identification of a specific region of the eye, identification of a pupil of the eye, identification of an iris of the eye, and identification of a physiological structure of the eye. In certain aspects, providing output data for line-of-sight information includes providing output data corresponding to line-of-sight information as input to other devices, machines, or systems. The aforementioned method can include determining an eye pose based on the gaze information, and providing output data representing the eye pose. In this case, the eye posture can include movement of the eye, rotation of the eye, steady state of the eye, time corresponding to the steady state of the eye, closed state of the eye, time corresponding to the closed state of the eye, open state of the eye, One or more of the time corresponding to the open state of the eye, the blinking state of the eye, the time corresponding to the blinking state of the eye, and the frequency corresponding to the blinking state. Additionally, providing output data representing eye pose can include providing output data corresponding to gaze information as input to other devices, machines, or systems.

在某些方面,從眼睛反射的調製光信號是由施加以調製信號的一或多個光源所生成,調製信號與參考信號同步。前述方法能夠包含在與眼睛相切之一平面產生一垂直虹膜向量,並根據深度圖及虹膜向量判斷表示眼睛視線的視線資訊。前述方法還能夠包含在與眼睛相切之一平面產生一瞳孔位置,並根據深度圖及瞳孔位置判斷表示眼睛視線的視線資訊。In certain aspects, the modulated optical signal reflected from the eye is generated by one or more light sources to which a modulated signal is applied, the modulated signal being synchronized with a reference signal. The aforementioned method can include generating a vertical iris vector in a plane tangent to the eye, and judging the sight line information representing the sight line of the eye according to the depth map and the iris vector. The aforementioned method can further include generating a pupil position in a plane tangent to the eye, and judging the sight line information representing the sight line of the eye according to the depth map and the pupil position.

根據本發明之創新目的的另一實施方式中,眼動追蹤系統包含:一機械,其具有一顯示器,顯示器包含複數可調光學元件。系統也能夠包含:一裝置,前述裝置包含一電路,前述電路用以擷取以一光檢測器量測眼睛反射之一調製光信號所對應之一電信號,電信號包括一第一相位,其中調製光信號由被一調製信號偏置的一個或多個光源生成,調製信號包括一第二相位。前述電路能夠進一步用以依據一參考信號的一第三相位及光檢測器產生之電信號的第一相位間的相位差判斷眼睛的一深度圖,並依據深度圖判斷代表眼睛之一視線的視線資訊。此外,前述的系統包含能夠與機械或裝置通訊的一或多個處理器,前述的一或多個處理器包含一或多個儲存裝置以於供儲存操作的指令;當執行前述的指令時,會讓一或多個處理器執行包含從裝置接收代表視線資訊的輸出資料並判斷機械的顯示器與表示眼睛視線的視線資訊之間的操作。In another embodiment according to the innovative object of the present invention, an eye tracking system includes: a machine having a display including a plurality of tunable optical elements. The system can also include: a device, the device including a circuit for capturing an electrical signal corresponding to a modulated light signal reflected by an eye measured by a photodetector, the electrical signal including a first phase, wherein The modulated optical signal is generated by one or more light sources biased by a modulation signal that includes a second phase. The aforementioned circuit can be further used to determine a depth map of the eye according to a phase difference between a third phase of a reference signal and a first phase of an electrical signal generated by the photodetector, and to determine a line of sight representing a line of sight of the eye according to the depth map News. In addition, the aforementioned system includes one or more processors capable of communicating with machines or devices, and the aforementioned one or more processors include one or more storage devices for storing instructions for operations; when executing the aforementioned instructions, The one or more processors are caused to perform operations including receiving output data representing line of sight information from the device and determining between the display of the machine and the line of sight information representing the line of sight of the eye.

在某些方面,前述的操作能夠進一步包含判斷眼睛在顯示器上聚焦的一特定位置;前述的特定位置係基於顯示器與表示眼睛視線的視線資訊間之關係,並提供一指示在顯示器上的特定位置。前述操作能夠包含判斷眼睛在顯示器上聚焦的一特定位置;前述的特定位置係基於顯示器與代表眼睛視線的視線資訊間之關係,並提供一凝視點影像(foveated image)在顯示器上的特定區域。前述的多個可調光學元件能夠包含可調透鏡或可調反射鏡。在這種情況下,啟動前述多個可調光學元件的一子集合的調整可依據顯示器與代表眼睛視線的視線資訊間之關係。此外,多個可調元件的一子集合的調整能夠包含動態地對入射於其上的光線做重新對焦。In certain aspects, the aforementioned operations can further include determining a particular location on the display where the eye is focused; the aforementioned particular location is based on a relationship between the display and line-of-sight information representing the eye's line of sight, and providing an indication of the particular location on the display . The aforementioned operations can include determining a specific position on the display where the eye is focused; the aforementioned specific position is based on the relationship between the display and line-of-sight information representing the eye's line of sight, and providing a foveated image of the specific region on the display. The aforementioned plurality of tunable optical elements can include tunable lenses or tunable mirrors. In this case, enabling adjustment of a subset of the aforementioned plurality of tunable optical elements may depend on the relationship between the display and line-of-sight information representing the line of sight of the eye. Additionally, adjustment of a subset of the plurality of tunable elements can include dynamically refocusing light incident thereon.

前述的系統能夠包含一可穿戴裝置,其耦合於前述的機械、裝置及一或多個處理器以形成一一體形式的硬體封裝。機械的顯示器是不透明的,且視覺影像是透過一或多個光源陣列而顯示於顯示器上。在某些方面,前述的系統能夠包含一可穿戴裝置,耦合於機械及裝置以形成一一體形式的硬體封裝,機械的顯示器是不透明的,且視覺影像透過一或多個光源陣列顯示於顯示器上;一或多個處理器位於遠端並透過無線或有線連接與一體形式的硬體封裝通訊。在其他方面,前述的系統能夠包含一可穿戴裝置,耦合於機械、裝置及一或多個處理器以形成一一體形式的硬體封裝;機械的顯示器對於朝向其投影的影像至少部分透明,藉由顯示器上的一或多個可調光學元件來調整朝向顯示器投影的影像特性。The aforementioned system can include a wearable device coupled to the aforementioned machine, device, and one or more processors to form an integrated hardware package. Mechanical displays are opaque and visual images are displayed on the display through an array of one or more light sources. In some aspects, the aforementioned system can include a wearable device coupled to the mechanism and the device to form a one-piece hardware package, the display of the mechanism is opaque, and the visual image is displayed on an array of one or more light sources. on the display; one or more processors are located remotely and communicate with the integrated hardware package through a wireless or wired connection. In other aspects, the aforementioned system can include a wearable device coupled to the machine, the device, and one or more processors to form a one-piece hardware package; the machine's display is at least partially transparent to an image projected toward it, The image characteristics projected toward the display are adjusted by one or more adjustable optical elements on the display.

此外,前述的系統能夠包含一可穿戴裝置,耦合於機械及裝置以形成一一體形式的硬體封裝;機械的顯示器對於朝向其投影的影像至少部分透明,藉由顯示器上的一或多個可調光學元件來調整向顯示器投影的影像特性;機械的一或多個處理器位於遠端並透過無線或有線連接與一一體形式的硬體封裝進行通訊。前述的系統也能夠包含一可插拔裝置,耦合於裝置及一或多個處理器以形成一一體形式的硬體封裝,機械位於遠端,並透過無線或有線連接來與一體形式的硬體封裝進行通訊;機械的顯示器是不透明的,且顯示於顯示器上的視覺影像係透過一或多個光源陣列來實現。Additionally, the aforementioned system can include a wearable device coupled to the mechanism and the device to form a one-piece hardware package; the mechanism's display is at least partially transparent to the image projected toward it, through one or more Adjustable optics to adjust the characteristics of the image projected to the display; one or more mechanical processors are located remotely and communicate with an integral form of hardware package via a wireless or wired connection. The aforementioned system can also include a pluggable device coupled to the device and one or more processors to form an integral form of hardware package, mechanically located remotely, and connected to the integral form of hardware through a wireless or wired connection. The body package communicates; the mechanical display is opaque, and the visual image displayed on the display is realized through one or more light source arrays.

在某些方面,前述的系統能夠包含一可穿戴裝置,耦合與裝置及一或多個處理器以形成一一體形式的硬體封裝;機械位於遠端,並透過無線或有線連接來與一體形式的硬體封裝進行通訊;機械的顯示器是不透明的,且顯示於顯示器上的視覺影像是透過一或多個光源陣列來實現。在這種情況下,前述操作能夠進一步地包含判斷眼睛聚焦在顯示器之一特定位置;前述的特定位置係基於顯示器與代表眼睛視線的視線資訊間之關係,並提供一指示在顯示器上的特定位置。在某些方面,眼睛反射的光學信號是由施加以一調製信號的一或多個光源所生成;前述的調製信號與反射信號同步。In some aspects, the aforementioned system can include a wearable device coupled to the device and one or more processors to form a hardware package in a unitary form; the mechanism is remotely located and integrated with the device through a wireless or wired connection The mechanical display is opaque, and the visual image displayed on the display is realized through an array of one or more light sources. In this case, the aforementioned operations can further include determining that the eye is focused on a specific position on the display; the aforementioned specific position is based on the relationship between the display and the line-of-sight information representing the line of sight of the eye, and providing an indication of the specific position on the display . In some aspects, the optical signal reflected by the eye is generated by one or more light sources to which a modulating signal is applied; the aforementioned modulating signal is synchronized with the reflected signal.

根據本發明之創新目的的又一實施方式中,一眼動追蹤裝置包含複數可調光學元件以調整焦距。可穿戴裝置也能夠包含一或多個處理器,處理器包含一或多個儲存裝置以儲存操作指令;當處理器執行前述的指令時,會讓一或多個處理器進行包含擷取以一光檢測器量測眼睛反射之一調製光信號所對應之一電信號,以及依據光檢測器產生的電信號及一參考信號之相位差判斷眼睛的一深度圖之操作。前述操作能夠更進一步包含根據深度圖判斷表示一眼睛視線的視線資訊,眼睛視線代表眼睛視線與一遠端裝置的顯示器間之關係;以及依據視線資訊來啟動可調元件之一子集合的調整。In another embodiment according to the innovative object of the present invention, the eye movement tracking device includes a plurality of adjustable optical elements to adjust the focal length. The wearable device can also include one or more processors, and the processor includes one or more storage devices to store the operation instructions; when the processor executes the aforementioned instructions, the one or more processors will be included to retrieve to a The photodetector measures an electrical signal corresponding to a modulated light signal reflected by the eye, and determines the operation of a depth map of the eye according to the phase difference between the electrical signal generated by the photodetector and a reference signal. The aforementioned operations can further include determining line of sight information representing a line of sight of an eye according to the depth map, the line of sight of the eye representing the relationship between the line of sight of the eye and a display of a remote device; and initiating adjustment of a subset of adjustable elements according to the line of sight information.

在本發明之一實施方式中可選擇性地包含一或多個下述特徵。本發明的眼動追蹤方法能到用以提供跨平台周邊控制。跨平台周邊控制能夠用以於多個裝置之間交換資訊。前述交換資訊能夠包含眼動資訊、一眼睛的位置等。相較於傳統的眼睛追蹤機制,跨平台周邊控制能夠用以延展操作區域;藉此,歸因於傳統的眼睛追蹤機制的有限的檢測範圍對單一裝置進行檢測,本發明眼動追蹤方法能提供較傳統眼睛追蹤機制更寬廣操作範圍。再者,多個使用者可同時應用跨平台周邊控制多個裝置,能有效地創造使用者對使用者的互動。One or more of the following features may optionally be included in one embodiment of the present invention. The eye tracking method of the present invention can be used to provide cross-platform peripheral control. Cross-platform peripheral control can be used to exchange information between multiple devices. The aforementioned exchange information can include eye movement information, the position of an eye, and the like. Compared with the traditional eye tracking mechanism, the cross-platform peripheral control can be used to extend the operation area; thereby, due to the limited detection range of the traditional eye tracking mechanism to detect a single device, the eye tracking method of the present invention can provide Wider operating range than traditional eye tracking mechanisms. Furthermore, multiple users can simultaneously use the cross-platform peripheral to control multiple devices, which can effectively create user-to-user interaction.

此外,本發明的眼動追蹤方法能夠用以提供不暈眩的視覺經驗。在某些方面,眼動追蹤資訊能夠用於依據眼睛追蹤資訊及已知距離資訊來對可調光學元件重新對焦的光學系統中。可調光學元件調整入射光角度以提供即時對焦。本發明依據眼動追蹤方法即時對焦藉由讓使用者眼睛及腦部之間的深度感知一致,能夠減少暈眩感覺。再者,眼動追蹤資訊能夠用以控制可調光學元件的子集合,以創造一可變對焦,其呈現給觀看者的圖像中的各個區域的焦距可經控制而不同。本發明的可變聚焦通過簡單的可調光學器件提供了自然的3D效果,不同於傳統通過複雜的計算算法提供人造3D效果。Furthermore, the eye tracking method of the present invention can be used to provide a dizzy-free visual experience. In certain aspects, eye tracking information can be used in an optical system that refocuses tunable optics based on eye tracking information and known distance information. Adjustable optics adjust the angle of incident light to provide instant focus. The present invention can reduce the feeling of dizziness by making the depth perception between the user's eyes and the brain consistent with real-time focusing according to the eye tracking method. Furthermore, eye tracking information can be used to control a subset of adjustable optical elements to create a variable focus in which the focal lengths of various regions in the image presented to the viewer can be controlled to vary. The variable focus of the present invention provides a natural 3D effect through simple adjustable optics, which is different from the traditional artificial 3D effect provided through complex calculation algorithms.

附圖和下面的描述闡述了本發明的一個或多個實施方式的細節。通過描述,附圖和申請專利範圍,可更了解本發明的其它特徵和優點。The accompanying drawings and the description below set forth the details of one or more implementations of the invention. Other features and advantages of the present invention will become apparent from the description, drawings and claims.

眼動追蹤方法能夠用以判斷有關一眼睛追蹤的視線資訊。前述方法包含照亮眼睛,並檢測眼睛反射的光信號以追蹤一視線方向和眼睛的焦。判斷眼睛的視線方向和眼睛的焦點能夠用於與另一個裝置通訊。舉例來說,眼睛的視線資訊能夠用於向另一個裝置提供一或多個命令。在一些實施方式中,視線資訊和/或例如手勢的其它資訊能用本發明之嵌入於行動電話中的系統進行檢測;前述的行動電話能夠作為接收使用者指令的遠端控制,並連接於其它裝置,例如平板電腦、電視等以執行前述指令。Eye tracking methods can be used to determine gaze information about an eye tracking. The foregoing method includes illuminating the eye, and detecting the light signal reflected by the eye to track a gaze direction and focus of the eye. Determining the direction of the eye's gaze and the focus of the eye can be used to communicate with another device. For example, the gaze information of the eye can be used to provide one or more commands to another device. In some embodiments, line-of-sight information and/or other information such as gestures can be detected using the system of the present invention embedded in a mobile phone; the aforementioned mobile phone can act as a remote control for receiving user commands and connect to other devices, such as tablet computers, televisions, etc., to execute the aforementioned instructions.

在某些實現中,視線資訊可以包括眼睛的手勢。在某些實施方式中,視線資訊包含眼睛的姿勢 。眼睛姿勢例如眼睛的移動、眼睛的轉動、眼睛的穩定狀態等,能夠用以指示某些要提供給其它裝置的指令。在一些實施方式中,眼睛的視線資訊能夠用以判斷眼睛焦點的位置,例如眼睛聚焦在特定的顯示器。在這種情況下,眼睛聚焦在顯示器上的位置能夠用以收集使用者有興趣的資訊。舉例來說,假設顯示器上提供有一廣告,使用者的眼睛聚焦顯示器上顯示廣告的位置能夠用以判斷使用者是否對這個廣告有興趣。眼睛視線的位置及眼睛維持特定視線的時間長度能夠有助於判斷使用者對提供在特定顯示感興趣的程度。In some implementations, the gaze information may include eye gestures. In some embodiments, the gaze information includes the pose of the eye. Eye gestures, such as eye movement, eye rotation, eye steady state, etc., can be used to indicate certain instructions to be provided to other devices. In some embodiments, the gaze information of the eye can be used to determine the position of the eye focus, eg, the eye is focused on a particular display. In this case, the position where the eye is focused on the display can be used to gather information of interest to the user. For example, if an advertisement is provided on the display, the user's eyes focus on the position of the advertisement displayed on the display to determine whether the user is interested in the advertisement. The location of the eye's line of sight and the length of time the eye maintains a particular line of sight can help determine the level of interest a user is interested in being provided in a particular display.

在本發明的一些實施方式中,眼動追蹤方法能夠整合於可穿戴裝置及/或周邊裝置中。舉例來說,一可穿戴裝置能夠提供眼睛照明,並檢測眼睛反射的光信號。可穿戴裝置能夠包含例如是一加速儀、一陀螺儀或前述兩者的構件來協助追蹤眼睛及眼睛在特定顯示上的焦點,藉此更有效並精確地追蹤眼睛。在某些實施方式中,可穿戴裝置可能進一步包含複數可調光學元件以調整光路徑。前述的可調光學元件包含反射鏡及/或透鏡,反射鏡及/或透鏡依據受追蹤眼睛的移動或靜止以進行調整。可調光學元件能夠即時地用以動態聚焦或離焦,以協助眼睛注視一特定物件或顯示器。舉例來說,可調光學元件能夠解決在觀看一虛擬實境或擴增實境影像時,調焦(accommodation)及輻輳(vergence)不一致的問題。在某些實施方式中,可穿戴裝置的構件能夠由分離於可穿戴裝置的外部遠端裝置來實現。眼動追蹤方法能提供尤其是眼睛視線的資料作為輸出,並以這個輸出作為遠端裝置及/或可調光學元件的指令來協助各種視覺體驗。In some embodiments of the present invention, the eye tracking method can be integrated into a wearable device and/or a peripheral device. For example, a wearable device can provide eye illumination and detect light reflected from the eye. Wearable devices can include components such as an accelerometer, a gyroscope, or both to assist in tracking the eyes and the focus of the eyes on a particular display, thereby tracking the eyes more efficiently and accurately. In some embodiments, the wearable device may further comprise a plurality of tunable optical elements to adjust the light path. The aforementioned tunable optical elements include mirrors and/or lenses, and the mirrors and/or lenses are adjusted according to the movement or stillness of the eye being tracked. Tunable optics can be used to dynamically focus or defocus in real time to assist the eye to focus on a specific object or display. For example, tunable optics can solve the problem of inconsistent focus and vergence when viewing a virtual reality or augmented reality image. In some embodiments, the components of the wearable device can be implemented by an external distal device separate from the wearable device. Eye-tracking methods can provide as output, particularly eye gaze data, and use this output as commands to remote devices and/or tunable optics to assist in various visual experiences.

圖1A繪示一眼動追蹤系統100的示意圖。眼動追蹤系統100能夠用以處理一使用者眼睛資訊並產生對應於眼睛的深度圖。眼動追蹤系統100包含一眼動追蹤裝置110以追蹤一使用者眼睛120的移動、一圖像顯示器130及一信號處理單元140以處理眼動追蹤系統100檢測的眼睛資料。眼動追蹤系統100可選擇性地包含一操控台170以供使用者依實際應用進行輸入。使用者眼睛120可包含用以觀看圖像顯示器130的一只眼或一雙眼。FIG. 1A is a schematic diagram of an eye movement tracking system 100 . The eye tracking system 100 can be used to process a user's eye information and generate a depth map corresponding to the eye. The eye tracking system 100 includes an eye tracking device 110 to track the movement of a user's eyes 120 , an image display 130 and a signal processing unit 140 to process eye data detected by the eye tracking system 100 . The eye tracking system 100 can optionally include a console 170 for the user to input according to practical applications. The user's eyes 120 may include one or both eyes for viewing the image display 130 .

圖像顯示器130能夠為一或多個在電腦、筆記型電腦、桌上型電腦、電視、智慧型手機、平板電腦等的圖像顯示器。圖像顯示器130包含一液晶顯示器、一發光二極體顯示器、一有機發光二極體顯示器、頭戴式顯示器等。在一些實施方式中,圖像顯示器130能夠包含可調光學元件,例如:一反射鏡及/或一可調透鏡。在這種情況下,圖像顯示器130的可調光學元件能夠用以即時地對焦及離焦以協助使用者眼睛120觀看圖像顯示器130。The image display 130 can be one or more image displays on a computer, notebook computer, desktop computer, television, smartphone, tablet computer, or the like. The image display 130 includes a liquid crystal display, a light-emitting diode display, an organic light-emitting diode display, a head-mounted display, and the like. In some embodiments, the image display 130 can include adjustable optical elements, such as a mirror and/or an adjustable lens. In this case, the adjustable optics of the image display 130 can be used to instantly focus and defocus to assist the user's eyes 120 in viewing the image display 130 .

眼動追蹤裝置110包含一或多個與眼動追蹤裝置通訊的信號處理單元140。眼動追蹤裝置110能夠對使用者眼睛120提供照明,並接收使用者眼睛120反射的光信號。眼動追蹤裝置110能夠包含一可調光源,其能以一或多個特定波長來照亮使用者眼睛120。可調光源可能夠包含單一光學發射器或多個光學發射器,其(等)可由一無線電波頻率或一微波頻率的電壓源進行調變而提供照明。在一些實施方式中,光發射器能夠用以照亮整個使用者眼睛120。在其它實施方式中,光發射器能夠用以照亮使用者眼睛120的特定部分。前述用於眼動追蹤系統100中的一或多個波長能夠依據不同的標準進行預定;例如,對人眼的非普及性、在海平面太陽光譜輻照射度低、眼睛安全性等。The eye tracking device 110 includes one or more signal processing units 140 in communication with the eye tracking device. The eye tracking device 110 can provide illumination for the user's eyes 120 and receive light signals reflected by the user's eyes 120 . The eye tracking device 110 can include a tunable light source that can illuminate the user's eye 120 at one or more specific wavelengths. The tunable light source may be able to comprise a single optical transmitter or multiple optical transmitters, which (etc.) may be modulated by a voltage source at a radio frequency or a microwave frequency to provide illumination. In some embodiments, the light emitter can be used to illuminate the entire user's eye 120 . In other embodiments, light emitters can be used to illuminate specific portions of a user's eye 120 . The aforementioned wavelength or wavelengths used in the eye tracking system 100 can be predetermined according to various criteria; eg, non-availability to the human eye, low solar spectral irradiance at sea level, eye safety, and the like.

在一些實施方式中,眼動追蹤裝置110包含一或多個光檢測器以接收使用者眼睛120反射的光信號;使用者眼睛120反射的光信號為眼動追蹤裝置110提供的可調光信號。在某些實施方式中,眼動追蹤裝置110能夠以一或多個光檢測器來檢測受反射之可調光信號。前述光檢測器可為揭示於10月31日申請之美國專利申請號15/338,660,專利名稱為「High-Speed Light Sensing Apparatus」之專利申請案及美國專利申請號15/228,282,以及於2016年8月4日申請之美國專利申請號15/228,282,專利名稱為「GERMANIUM-SILICON LIGHT SENSING APPARATUS」之專利申請案中。In some embodiments, the eye-tracking device 110 includes one or more light detectors to receive the light signal reflected by the user's eye 120 ; the light signal reflected by the user's eye 120 is the adjustable light signal provided by the eye-tracking device 110 . In some embodiments, the eye tracking device 110 can detect the reflected tunable light signal with one or more light detectors. The aforementioned photodetector may be disclosed in US Patent Application No. 15/338,660 filed on October 31 and entitled "High-Speed Light Sensing Apparatus" and US Patent Application No. 15/228,282, filed in 2016 U.S. Patent Application No. 15/228,282 filed on August 4 with the patent name of "GERMANIUM-SILICON LIGHT SENSING APPARATUS" pending.

信號處理單元140包含一或多個信號處理單元,其(等)能夠與圖像顯示器130及眼動追蹤裝置110進行通訊。信號處理單元140能夠經由對應於眼動追蹤裝置110及圖像顯示器130的資料來判斷使用者眼睛120的視線資訊150。眼動追蹤裝置110能夠用以解調經反射的調變光學信號。此外,眼動追蹤裝置110能夠用以創造使用者眼睛120被照亮部分之一深度圖。前述的深度圖對應於眼動追蹤裝置110之檢測器所測得的反射光學信號。具體言之,深度圖可提供有關使用者眼睛120的二維(2D)或三維(3D)資訊。信號處理單元140能夠根據反射光學信號的時差測距資訊的資料來處理深度圖。在一些實施方式中,深度圖是以反射光信號及參考信號的相位差來產生的。舉例來說,眼動追蹤裝置110能夠提供反射光信號及一參考信號的比較,並用以判斷使用者眼睛120的深度圖。深度圖能夠更進一步地包含表示使用者眼睛120的一3D模型;藉此,可產生並建構3D眼部模型,從而允許信號處理單元140判斷使用者眼睛120的視線資訊150。The signal processing unit 140 includes one or more signal processing units, which (etc.) are capable of communicating with the image display 130 and the eye tracking device 110 . The signal processing unit 140 can determine the sight line information 150 of the user's eyes 120 through the data corresponding to the eye tracking device 110 and the image display 130 . The eye tracking device 110 can be used to demodulate the reflected modulated optical signal. Additionally, the eye tracking device 110 can be used to create a depth map of the illuminated portion of the user's eye 120 . The aforementioned depth map corresponds to the reflected optical signal measured by the detector of the eye tracking device 110 . Specifically, the depth map may provide two-dimensional (2D) or three-dimensional (3D) information about the user's eye 120 . The signal processing unit 140 can process the depth map according to the data of the time difference ranging information of the reflected optical signal. In some embodiments, the depth map is generated from the phase difference between the reflected optical signal and the reference signal. For example, the eye tracking device 110 can provide a comparison between the reflected light signal and a reference signal, and use it to determine the depth map of the user's eye 120 . The depth map can further include a 3D model representing the user's eye 120 ; thereby, a 3D eye model can be generated and constructed, thereby allowing the signal processing unit 140 to determine the sight line information 150 of the user's eye 120 .

信號處理單元140能夠設置靠近使用者眼睛120。舉例來說,信號處理單元140及眼動追蹤裝置110可設置在鄰近於使用者眼睛120的單一可穿戴裝置中。信號處理單元140及眼動追蹤裝置110也能夠設置在遠離於使用者眼睛120之單一周邊裝置中。在其它實施方式中,信號處理單元140能夠與眼動追蹤裝置110分離設置。舉例來說,信號處理單元140可位於圖像顯示器130中,並與位於單一可穿戴裝置或周邊裝置的眼動追蹤裝置110進行通訊。The signal processing unit 140 can be disposed close to the user's eyes 120 . For example, the signal processing unit 140 and the eye tracking device 110 may be disposed in a single wearable device adjacent to the user's eye 120 . The signal processing unit 140 and the eye tracking device 110 can also be disposed in a single peripheral device away from the user's eyes 120 . In other embodiments, the signal processing unit 140 can be provided separately from the eye tracking device 110 . For example, the signal processing unit 140 may be located in the image display 130 and communicate with the eye tracking device 110 located in a single wearable device or peripheral device.

視線資訊150能夠包含例如是使用者視線方向及焦點的資訊。信號處理單元140能夠判斷視線資訊150中由眼動追蹤裝置110所接收到的光學信號。視線資訊150能夠用以分析使用者眼睛的行為。此外,視線資訊150能夠用以辨識使用者眼睛120在圖像顯示器130上的聚焦的一位置。在這種情況下,視線資訊150能夠用以判斷使用者眼睛120是聚焦在圖像顯示器130所顯示哪個項目上。藉此,能夠在不需要特殊裝置的實際驅動下判斷使用者感興趣的事物。舉例來說,廣告提供者可在不以滑鼠、軌跡板、觸控螢幕等的狀況下,就以使用者眼睛120來判斷使用者感興趣的事物。在其它狀況下,特殊裝置的實際驅動可用以執行使用者或系統互動的某種功能。利用這樣的裝置可在系統與使用者之間複雜互動時提高效能。舉例來說,戰鬥噴射機的飛行員可利用眼睛的視線資訊150來判斷/選擇在圖像顯示器130上感興趣的目標,並使用操控台170對目標執行任務,例如:取得目標、目標優先分配、武器選擇等。The gaze information 150 can include, for example, information such as the user's gaze direction and focus. The signal processing unit 140 can determine the optical signal received by the eye tracking device 110 in the line of sight information 150 . The gaze information 150 can be used to analyze the behavior of the user's eyes. In addition, the sight line information 150 can be used to identify a focused position of the user's eyes 120 on the image display 130 . In this case, the line of sight information 150 can be used to determine which item the user's eyes 120 focus on on the image display 130 . Thereby, it is possible to judge what the user is interested in without actual driving of a special device. For example, the advertisement provider can use the user's eyes 120 to determine what the user is interested in without using a mouse, a trackpad, a touch screen, or the like. In other cases, the actual actuation of a special device may be used to perform some function of user or system interaction. Utilizing such a device can improve performance during complex interactions between the system and the user. For example, a pilot of a fighter jet can use the sight line information 150 of the eyes to determine/select a target of interest on the image display 130, and use the console 170 to perform tasks on the target, such as: target acquisition, target priority assignment, Weapon selection, etc.

在某些實施方式中,視線資訊150能夠作為提供給其它裝置的指令。在這個情況下,視線資訊150可包含眼部追蹤,例如:眼睛移動、眼睛轉動、眼睛閉合狀置、眼睛睜開狀態或在一段時間內的眼睛移動、眼睛轉動、眼睛閉合狀置、眼睛睜開狀態等。接收視線資訊150的裝置可在眼動追蹤裝置110動態追蹤使用者眼睛120時,即時地分析視線資訊150來判斷一指令。In some embodiments, the line-of-sight information 150 can serve as instructions provided to other devices. In this case, the gaze information 150 may include eye tracking, such as: eye movement, eye movement, eye closed position, eye open status or eye movement over a period of time, eye movement, eye closed position, eye open open state, etc. The device receiving the gaze information 150 can analyze the gaze information 150 in real time to determine a command when the eye tracking device 110 dynamically tracks the user's eyes 120 .

眼動追蹤裝置110、圖像顯示器130及信號處理單元140可為獨立結構或耦合於一體形式的硬體封裝內。舉例來說,眼動追蹤裝置110、圖像顯示器130及信號處理單元140可整合於單一硬體封裝中;前述的圖像顯示器130中的顯示器是不透明的,且視覺影像是透過供產生可見光的一發光二極體陣列、濾除白光的液晶或其它光源陣列而顯示於顯示器上。在一些實施方式中,圖像顯示器130的顯示器至少部分透明且視覺影像可藉由光學折射、衍射、反射、引導或其它光學手段投影至顯示器。The eye tracking device 110 , the image display 130 and the signal processing unit 140 may be independent structures or coupled in a one-piece hardware package. For example, the eye-tracking device 110, the image display 130, and the signal processing unit 140 may be integrated into a single hardware package; the aforementioned display in the image display 130 is opaque and the visual image is transmitted for the generation of visible light An array of light-emitting diodes, liquid crystals that filter out white light, or an array of other light sources is displayed on the display. In some embodiments, the display of image display 130 is at least partially transparent and the visual image can be projected onto the display by optical refraction, diffraction, reflection, directing, or other optical means.

在其它示範例中,眼動追蹤裝置110及信號處理單元140可整合於單一硬體封裝,例如一可穿戴裝置。一可穿戴裝置可為一頭戴裝置、一副眼鏡或其它合適的可穿戴裝置。在這種情況下,可穿戴裝置可與供嵌入圖像顯示器130的主支架或機械連接。此外,供容納圖像顯示器130的主支架或機械能夠利用有線或無線連接來與可穿戴裝置通訊。In other examples, the eye tracking device 110 and the signal processing unit 140 can be integrated into a single hardware package, such as a wearable device. A wearable device can be a head-mounted device, a pair of glasses, or other suitable wearable devices. In this case, the wearable device may be mechanically connected with the main stand for embedding the image display 130 . Additionally, the main stand or mechanism for housing the image display 130 can utilize wired or wireless connections to communicate with the wearable device.

在另一示範例中,眼動追蹤裝置110及信號處理單元140能夠整合於一硬體封裝,例如:可插拔的裝置。一可插拔的裝置可為遊戲箱、一攝錄影機或其它可插拔裝置。在這種情況下,可插拔裝置可與供嵌入圖像顯示器130的主支架或機械連接。此外,供容納圖像顯示器130的支架或機械能夠利用無線或有線連接來與可插拔裝置通訊。In another example, the eye tracking device 110 and the signal processing unit 140 can be integrated into a hardware package, such as a pluggable device. A pluggable device can be a game box, a camcorder, or other pluggable devices. In this case, the pluggable device may be mechanically connected to the main bracket for embedding the image display 130 . Additionally, the stand or mechanism for housing the image display 130 can utilize a wireless or wired connection to communicate with the pluggable device.

圖1B繪示一時差測距裝置之示意圖。時差測距裝置能夠整合於眼動追蹤裝置110中並用以判斷使用者眼睛120的深度圖。圖1B所繪示的時差測距裝置包含一時差測距像素(以下稱TOF像素)160及兩組電晶體。如圖1B所示,每組電晶體包含三個開關電晶體(three switch transistor),意即一重置電晶體(reset transistor)162a或162b、一源極隨耦電晶體(source-follower transistor)164a或164b,以及一選擇電晶體(selection transistor)166a或166b。在其它實施方式中,其它形式的電晶體也可以用以實現類似的功能。TOF像素160為一或多的用以檢測光的TOF像素。當TOF像素檢測到光時,其會判斷電荷應由第一組電晶體或第二組電晶體來處理。在一些方面,一接收光信號可與入射光具有不同相位;在這種情況下,TOF像素可經設計而為一雙開關TOF像素,以讓其中之一開關經調節而與入射光信號具有相同相位,另一開關經調節而與入射光信號具180度的相位差來容納所接受到的反相光信號。前述雙開關TOF像素可揭示於10月31日申請之美國專利申請號15/338,660,專利名稱為「High-Speed Light Sensing Apparatus」之專利申請案,以及於2016年8月4日申請的美國專利申請號15/228,282,專利名稱為「GERMANIUM-SILICON LIGHT SENSING APPARATUS」之專利申請案中。FIG. 1B is a schematic diagram of a time difference ranging device. The time difference ranging device can be integrated into the eye tracking device 110 and used to determine the depth map of the user's eyes 120 . The time difference ranging device shown in FIG. 1B includes a time difference ranging pixel (hereinafter referred to as a TOF pixel) 160 and two sets of transistors. As shown in FIG. 1B , each set of transistors includes three switch transistors, that is, a reset transistor 162a or 162b, a source-follower transistor 164a or 164b, and a selection transistor 166a or 166b. In other embodiments, other forms of transistors may also be used to achieve similar functions. TOF pixel 160 is one or more TOF pixels used to detect light. When a TOF pixel detects light, it determines that the charge should be handled by either the first set of transistors or the second set of transistors. In some aspects, a received light signal can be out of phase with the incident light; in this case, the TOF pixel can be designed as a dual-switch TOF pixel, so that one of the switches is adjusted to have the same phase as the incident light signal Phase, the other switch is adjusted to be 180 degrees out of phase with the incident optical signal to accommodate the received inverted optical signal. The aforementioned dual-switch TOF pixel can be disclosed in US Patent Application No. 15/338,660 filed on Oct. 31 and entitled "High-Speed Light Sensing Apparatus", and U.S. Patent Application filed on Aug. 4, 2016 Application No. 15/228,282, patent application under the patent name "GERMANIUM-SILICON LIGHT SENSING APPARATUS".

在某些方面,前述的兩組電晶體能夠與TOF像素可裝配於單一晶圓上;在這種情況下,前述的兩組電晶體可如同TOF像素160般共享並占據相同的發光區域,以降低TOF的主動填充因子(fill factor)。前述的兩組電晶體可以複數NMOS閘來實現;NMOS閘用以降低電晶體及TOF裝置的尺寸。前述的兩組電晶體也可以複數PMOS閘來實現;PMOS閘用以增加某些操作係數,例如提供較高可用電壓餘裕(voltage headroom)。PMOS及NMOS實現前述電晶體之方式詳參後述。In some aspects, the aforementioned two sets of transistors can be assembled with TOF pixels on a single wafer; in this case, the aforementioned two sets of transistors can share and occupy the same light-emitting area as the TOF pixel 160, so as to Active fill factor to reduce TOF. The aforementioned two sets of transistors can be implemented by a plurality of NMOS gates; the NMOS gates are used to reduce the size of the transistors and the TOF device. The aforementioned two sets of transistors can also be implemented with a complex number of PMOS gates; the PMOS gates are used to increase certain operating coefficients, such as to provide a higher available voltage headroom. The manner in which the PMOS and NMOS realize the aforementioned transistors will be described in detail later.

圖1C繪示一時差測距裝置之示意圖。圖1C所示的TOF裝置包含一第一晶圓及一第二晶圓,第一晶圓及第二晶圓經由晶粒或晶圓接合167而相互結合。第一晶圓包含配置在第一晶圓上的一TOF像素165,TOF像素165可用以檢測光脈衝資訊。第二晶圓可為包含有二組電晶體的電路晶圓169,電路晶圓169於TOF像素165檢測到光脈衝時進行電荷處理。在某些實施方式中,電路晶圓169的電晶體不會占據發光區域,藉以增加TOF的有效填充因子。FIG. 1C is a schematic diagram of a time difference ranging device. The TOF device shown in FIG. 1C includes a first wafer and a second wafer, and the first wafer and the second wafer are bonded to each other through die or wafer bonding 167 . The first wafer includes a TOF pixel 165 disposed on the first wafer, and the TOF pixel 165 can be used to detect light pulse information. The second wafer may be a circuit wafer 169 including two sets of transistors, and the circuit wafer 169 performs charge processing when the TOF pixel 165 detects a light pulse. In some embodiments, the transistors of the circuit wafer 169 do not occupy the light emitting area, thereby increasing the effective fill factor of the TOF.

前述的兩組電晶體能夠以NMOS閘或PMOS閘實現。舉例來說,每一組電晶體可以具有0.7伏特臨界電壓的NMOS閘來實現;在這種情況下,當閘極施加以3.3伏特的電壓且NMOS閘導通時,可得到約2.6伏特的最大源極電壓。因此,當NMOS作為一重置電晶體時,施加於TOF像素的重置電壓最高限制為2.6伏特以供低電壓餘裕。相反地,在另一個示範例中,每一組電晶體可以具有-0.8伏特臨界電壓的PMOS閘來實現;在這種情況下,當閘極施加以0伏特的電壓PMOS閘導通時,可得到約3.3伏特的最大源極電壓。因此,當PMOS作為一重置電晶體時,施加於TOF像素的重置電壓最大限制為3.3伏特以提供高電壓餘裕。The aforementioned two sets of transistors can be implemented with NMOS gates or PMOS gates. For example, each set of transistors can be implemented with NMOS gates having a threshold voltage of 0.7 volts; in this case, a maximum source of about 2.6 volts is obtained when a voltage of 3.3 volts is applied to the gates and the NMOS gate is turned on pole voltage. Therefore, when the NMOS is used as a reset transistor, the reset voltage applied to the TOF pixel is limited to a maximum of 2.6 volts for low voltage margin. Conversely, in another example, each group of transistors can be implemented with a PMOS gate with a threshold voltage of -0.8 volts; in this case, when the gate is applied with a voltage of 0 volts, the PMOS gate turns on, resulting in Maximum source voltage of about 3.3 volts. Therefore, when the PMOS is used as a reset transistor, the reset voltage applied to the TOF pixel is limited to a maximum of 3.3 volts to provide a high voltage margin.

因此,當以PMOS閘實現時,兩組電晶體可帶來高可用電壓餘裕,其一部分源自於負臨界電壓特定。再者,以PMOS實現能夠於其像一開關通時提供一較低的阻抗,讓通過之一電壓接近於一供應電路;如此一來,以PMOS實現的兩組電晶體提供TOF裝置的操作優點。然而,PMOS閘的實際區域可大於NMOS閘的實際區域,且PMOS實施需要一實際上大TOF裝置以提供如此的實施。這樣的問題可以以圖1C所示內容來解決,當TOF像素及PMOS電路以兩個不同的晶圓來實現,隨著一晶圓或晶粒接合以電性連接於兩個分離的晶圓或晶粒。在一些實施方式中,TOF像素如圖1B及圖1C所示可包含內含有鍺的一光吸收層。在一些實施方式中,TOF像素可如圖1B及圖1C所示更包含雙開關電晶體實現的一解調功能或多PN接面所達成的解調功能。前述雙開關TOF像素可為揭露於10月31日申請之美國專利申請號15/338,660,專利名稱為「High-Speed Light Sensing Apparatus」之專利申請案,以及2016年8月4日申請之美國專利申請號15/228,282,專利名稱為「GERMANIUM-SILICON LIGHT SENSING APPARATUS」之專利申請案中。Therefore, when implemented in PMOS gates, the two sets of transistors can provide a high available voltage margin, which is partly due to the negative threshold voltage specification. Furthermore, implementing with PMOS can provide a lower impedance when it is turned on like a switch, allowing a voltage passing through it to be close to a supply circuit; in this way, the two sets of transistors implemented with PMOS provide the operational advantages of TOF devices . However, the actual area of a PMOS gate can be larger than that of an NMOS gate, and a PMOS implementation requires a substantially large TOF device to provide such an implementation. Such a problem can be solved as shown in FIG. 1C, when TOF pixels and PMOS circuits are implemented on two different wafers, as a wafer or die is bonded to be electrically connected to two separate wafers or grains. In some embodiments, the TOF pixel as shown in FIGS. 1B and 1C may include a light absorbing layer containing germanium. In some embodiments, the TOF pixel may further include a demodulation function realized by dual switching transistors or a demodulation function realized by multiple PN junctions as shown in FIG. 1B and FIG. 1C . The aforementioned dual-switch TOF pixel can be disclosed in US Patent Application No. 15/338,660 filed on Oct. 31 with the patent title of "High-Speed Light Sensing Apparatus", and U.S. Patent filed on Aug. 4, 2016 Application No. 15/228,282, patent application under the patent name "GERMANIUM-SILICON LIGHT SENSING APPARATUS".

圖1D繪示一用以判斷使用者眼睛120特徵之技術之示意圖。眼動追蹤裝置110複數光脈衝,其中,光脈衝經調變使具有一頻率fm及50%的工作週期。眼動追蹤裝置110可接收具有相位差

Figure 02_image002
的反射光脈衝。一光二極體陣列經控制以讓一第一讀出電路讀取經收集的電荷Q1,並使一第二讀出電路讀取經收集電荷Q2;其中,電荷Q1與光脈衝具有相同相位(同步),電荷Q2與光脈衝具有相反相位。在一些實施方式中,在眼動追蹤裝置110及使用者眼睛120的一點之間的距離D滿足下式︰
Figure 02_image003
;其中c為光速。眼動追蹤裝置110可掃描使用者眼睛120以獲得使用者眼睛120的深度圖。 FIG. 1D shows a schematic diagram of a technique for determining the characteristics of a user's eye 120 . The eye tracking device 110 has a plurality of light pulses, wherein the light pulses are modulated to have a frequency fm and a duty cycle of 50%. The eye tracking device 110 may receive a phase difference
Figure 02_image002
of reflected light pulses. A photodiode array is controlled to cause a first readout circuit to read the collected charge Q1 and a second readout circuit to read the collected charge Q2; wherein the charge Q1 and the light pulse have the same phase (synchronized ), the charge Q2 has the opposite phase to the light pulse. In some embodiments, the distance D between the eye tracking device 110 and a point on the user's eye 120 satisfies the following equation:
Figure 02_image003
; where c is the speed of light. The eye tracking device 110 may scan the user's eye 120 to obtain a depth map of the user's eye 120 .

圖1E繪示另一用以判斷使用者眼睛120特徵之技術的示意圖。眼動追蹤裝置110可發射光脈衝;其中,光脈衝經調變使具有一頻率fm及50%的工作週期。藉由一因數N來減少光脈衝的工作週期,同時以此因數N增加光脈衝的強度,則可在維持眼動追蹤裝置110實質上相同功率損耗的條件下,讓所接收到的反射光脈衝的訊雜比增強。這使得裝置的頻寬增加,藉此可讓光脈衝在脈衝形狀不歪曲的條件下降低光脈衝的工作週期。眼動追蹤裝置110可接收反射光脈衝;所述的反射光脈衝具有一相位移

Figure 02_image002
。光電二極體經控制使第一讀出電路讀取經收集的電荷Q1’,且一第二讀出電路讀取經收集的電荷Q2’;其中,電荷Q1’的相位相同於光脈衝的相位,電荷Q2’的相位不同於光脈衝的相位。在一些實施方式中,在眼動追蹤裝置110及使用者眼睛120之一點之間的距離D滿足下式︰
Figure 02_image004
FIG. 1E is a schematic diagram of another technique for determining the characteristics of the user's eye 120 . The eye tracking device 110 may emit light pulses; wherein the light pulses are modulated to have a frequency fm and a duty cycle of 50%. By reducing the duty cycle of the optical pulse by a factor N, and increasing the intensity of the optical pulse by the factor N, the received reflected optical pulse can be obtained while maintaining substantially the same power consumption of the eye-tracking device 110. signal-to-noise ratio enhancement. This allows the bandwidth of the device to be increased, thereby reducing the duty cycle of the optical pulse without distorting the pulse shape. The eye tracking device 110 can receive reflected light pulses; the reflected light pulses have a phase shift
Figure 02_image002
. The photodiodes are controlled so that a first readout circuit reads the collected charge Q1', and a second readout circuit reads the collected charge Q2'; wherein the phase of the charge Q1' is the same as the phase of the light pulse , the phase of the charge Q2' is different from that of the light pulse. In some embodiments, the distance D between the eye tracking device 110 and a point on the user's eye 120 satisfies the following equation:
Figure 02_image004

圖1F繪示電荷收集之相位之示意圖。電荷收集的相位表示眼動追蹤裝置110發射的光脈衝及收集到的電荷的相位。電荷收集包含一0度相位、一90度相位、一180相位及一270度相位,以及一控制相位偏移φ。眼動追蹤裝置110發射的光脈衝及其接收到的光脈衝中可觀察到相位差

Figure 02_image002
。在一些實施方式中,相位差
Figure 02_image002
依使用者眼睛120及眼動追蹤裝置110之間的距離而發生。一個小的相位差能夠讓眼動追蹤裝置110難以有效地偵測一使用者眼睛120的姿勢辨識、定位等。因此,增加一相位偏移φ於收集電荷中有利於眼動辨識更有效地執行。圖1G繪示光檢測及電荷收集之示意圖。光檢測及電荷收集包含如下時間步驟:發光、檢測光及眼動讀取裝置110收集電荷。在任一時間步驟中,收集的資料表示接收光,在0度相位收集的電荷、在90度相位收集的電荷、在180度收集的電荷及在270度收集的電荷。在任一角度收集的電荷能夠指示在各角度收集的電荷的數量。在此狀態下,在任一時間步驟收集的電荷的數量能夠影響眼動追蹤裝置110定位使用者眼睛120。 FIG. 1F shows a schematic diagram of the phase of charge collection. The phase of charge collection represents the phase of the light pulses emitted by the eye tracking device 110 and the collected charge. The charge collection includes a 0-degree phase, a 90-degree phase, a 180-degree phase, and a 270-degree phase, and a control phase offset φ. A phase difference can be observed in the light pulses emitted by the eye-tracking device 110 and the light pulses it receives
Figure 02_image002
. In some embodiments, the phase difference
Figure 02_image002
Occurs depending on the distance between the user's eye 120 and the eye tracking device 110 . A small phase difference can make it difficult for the eye tracking device 110 to effectively detect gesture recognition, positioning, etc. of a user's eyes 120 . Therefore, adding a phase offset φ to the charge collection facilitates the eye movement recognition to be performed more efficiently. FIG. 1G shows a schematic diagram of light detection and charge collection. Light detection and charge collection includes the time steps of emitting light, detecting light, and eye movement reading device 110 collecting charge. At any time step, the data collected represents received light, charge collected at 0 degrees phase, charge collected at 90 degrees phase, charge collected at 180 degrees, and charge collected at 270 degrees. The charge collected at any angle can indicate the amount of charge collected at each angle. In this state, the amount of charge collected at any one time step can affect the positioning of the eye tracking device 110 on the user's eye 120 .

舉例來說,眼動追蹤裝置110可發射工作週期為50%且具有調變頻率f m的光脈衝。眼動追蹤裝置110可接收具有一相位差

Figure 02_image002
的反射光脈衝。TOF像素經控制以讓眼動追蹤裝置110的第一讀出電路讀取收集電荷Q0,其相位與發射光脈衝的相位相同,即相當於0度相位。眼動追蹤裝置110還能夠包含一第二讀出電路以讀取收集電荷Q180,其相位相反於發射光的相位,例如為180度相位。在另一時間步驟中,TOF像素經控制以使第一讀出電路讀取收集電荷Q90,其相位與發射光相位具90度相位差,例如90度相位。在這個情況下,第二讀出電路能夠讀取收集電荷Q270,其相位與發射光相位具另一90度相位差,例如270度相位。在一些實施方式中,眼動追蹤裝置110與使用者眼睛120的距離可以如下二式表示之︰
Figure 02_image005
,或
Figure 02_image006
。 For example, the eye-tracking device 110 may emit light pulses with a duty cycle of 50% and a modulated frequency fm . The eye tracking device 110 can receive a phase difference
Figure 02_image002
of reflected light pulses. The TOF pixels are controlled so that the first readout circuit of the eye-tracking device 110 reads the collected charge Q0 in the same phase as the emitted light pulse, ie, equivalent to 0 degree phase. The eye-tracking device 110 can also include a second readout circuit to read the collected charge Q180 whose phase is opposite to the phase of the emitted light, eg, 180 degree phase. In another time step, the TOF pixel is controlled so that the first readout circuit reads the collected charge Q90 with a phase that is 90 degrees out of phase with the emitted light, eg, 90 degrees out of phase. In this case, the second readout circuit is able to read the collected charge Q270 whose phase is another 90 degrees out of phase with the emitted light phase, eg, 270 degrees out of phase. In some embodiments, the distance between the eye tracking device 110 and the user's eyes 120 can be expressed by the following two equations:
Figure 02_image005
,or
Figure 02_image006
.

復參閱圖1G;在眼動追蹤裝置110發射的光脈衝與其接收到的反射光脈衝具有較小的相位差

Figure 02_image002
的條件下,在0度相位收集到的電荷是在整個時間步驟中最大的,且在180度相位收集到的電荷是在整個時間步驟中最小的。如此大的電荷收集差別影響整體電荷收集的準確性。因此,引入相位差Φ可降低在不同相位電荷收集的差異,有助於眼睛姿勢偵測,能夠加強使用者眼睛120的深度圖的準確性。 Referring back to FIG. 1G ; the light pulses emitted by the eye tracking device 110 have a small phase difference with the reflected light pulses received by the eye-tracking device 110
Figure 02_image002
Under the condition of , the charge collected at the 0 degree phase is the largest in the whole time step, and the charge collected at the 180 degree phase is the smallest in the whole time step. Such a large difference in charge collection affects the accuracy of the overall charge collection. Therefore, the introduction of the phase difference Φ can reduce the difference of charge collection in different phases, which is helpful for eye posture detection, and can enhance the accuracy of the depth map of the user's eye 120 .

圖1H繪示在電荷收集時之一信號電壓之示意圖。電荷收集時的信號電壓繪示出多個相位在不同時間點的信號電壓的變化。具體來說,圖1H繪示信號電壓在0度相位、90度相位、180度相位、270度相位的變化。在每一相位中,信號電壓隨的時間減少,這表示電荷的數量在一間隔時間內被儲存於一特定相位。如圖1H所示,180度相位的信號電壓遠高於0度相位的信號電壓,故180度相位較0度相位具有一低電荷儲存率。在這種情況下,在不同相位的電荷儲存率的差異,使眼動追蹤裝置110檢測使用者眼睛120的精確性受到負向影響。因此,引入一相位偏移φ於接收光信號中有助於電荷收集,進能讓使用者眼睛120的深度圖可更精確。FIG. 1H shows a schematic diagram of a signal voltage during charge collection. The signal voltage at the time of charge collection shows the variation of the signal voltage at different time points for a plurality of phases. Specifically, FIG. 1H shows the changes of the signal voltage at 0-degree phase, 90-degree phase, 180-degree phase, and 270-degree phase. In each phase, the signal voltage decreases with time, which means that the amount of charge is stored in a particular phase during an interval. As shown in FIG. 1H , the signal voltage of the 180-degree phase is much higher than the signal voltage of the 0-degree phase, so the 180-degree phase has a lower charge storage rate than the 0-degree phase. In this case, the difference in charge storage rates at different phases negatively affects the accuracy of the eye tracking device 110 in detecting the user's eyes 120 . Therefore, introducing a phase shift [phi] into the received light signal facilitates charge collection, which in turn makes the depth map of the user's eye 120 more accurate.

圖1I繪示電荷收集之偏移相位之示意圖。電荷收集的偏移包含一45度相位、一135度相位、一225度相位及一315度相位。眼動追蹤裝置110發射及接收到的光脈衝中可觀察到相位偏移

Figure 02_image002
。在一些實施方式中,相位差因使用者眼睛120及眼動追蹤裝置110之間的距離而生。一個小的相位差能夠讓眼動追蹤裝置110有效地檢測使用者眼睛120的一姿勢辨識、定位使用者眼睛120等。45度的一相位偏移φ繪示於圖1I中以收集電荷,故所有的相位可偏移45度的相位偏移φ。 FIG. 1I shows a schematic diagram of shift phase of charge collection. The offsets for charge collection include a 45-degree phase, a 135-degree phase, a 225-degree phase, and a 315-degree phase. A phase shift can be observed in the light pulses emitted and received by the eye-tracking device 110
Figure 02_image002
. In some implementations, the phase difference is due to the distance between the user's eyes 120 and the eye tracking device 110 . A small phase difference enables the eye tracking device 110 to effectively detect a gesture recognition of the user's eyes 120, locate the user's eyes 120, and the like. A phase shift φ of 45 degrees is shown in FIG. 1I to collect charges, so all phases can be shifted by a phase shift φ of 45 degrees.

圖1J繪示光檢測及相位偏移之電荷收集之示意圖。光檢測及相位偏移的電荷收集包含光發射、光檢測及在眼動追蹤裝置110的電荷收集。在每一時間步驟中,所收集的資料表示接收光、在45度相位的電荷收集、在135度相位的電荷收集、在225度的電荷收集及在315度的電荷收集。在任一相位的電荷收集能夠指示在任一接收相位的電荷收集的數量。在這種狀況下,在任一時間步驟中,任一相位的電荷收集的數量能夠影響眼動追蹤裝置110在進行使用者眼睛120定位時的精確性。FIG. 1J shows a schematic diagram of charge collection for photodetection and phase shifting. Charge collection for light detection and phase shifting includes light emission, light detection, and charge collection at the eye tracking device 110 . At each time step, the data collected represents received light, charge collection at 45 degrees phase, charge collection at 135 degrees phase, charge collection at 225 degrees, and charge collection at 315 degrees. Charge collection in any phase can indicate the amount of charge collection in any receive phase. In this case, the amount of charge collection in any phase at any one time step can affect the accuracy of the eye tracking device 110 in locating the user's eye 120 .

舉例來說,眼動追蹤裝置110可發射工作週期為50%且具有調變頻率f m的光脈衝。眼動追蹤裝置110可接收具有一相位差

Figure 02_image002
的反射光脈衝。TOF像素經控制以讓眼動追蹤裝置110的第一讀出電路讀取收集電荷Q45,其相位與發射光脈衝的相位具有例如45度相位的偏移。眼動追蹤裝置110還能夠包含一第二讀出電路以讀取收集電荷Q225,其相位與發射光的相位具有例如225度相位的偏移。在另一時間步驟中,TOF像素經控制以使第一讀出電路讀取收集電荷Q135,其相位與發射光的相位具有135度相位偏移。在這個情況下,第二讀出電路能夠讀取收集電荷Q315,其相位與發射光的相位具有315度相位偏移。在某些實施方式中,眼動追蹤裝置110與使用者眼睛120的距離可以如下二式表示之︰
Figure 02_image007
Figure 02_image008
For example, the eye-tracking device 110 may emit light pulses with a duty cycle of 50% and a modulated frequency fm . The eye tracking device 110 can receive a phase difference
Figure 02_image002
of reflected light pulses. The TOF pixels are controlled to cause the first readout circuit of the eye-tracking device 110 to read the collected charge Q45 with a phase offset of, eg, 45 degrees from the phase of the emitted light pulse. The eye-tracking device 110 can also include a second readout circuit to read the collected charge Q225 whose phase is offset from the phase of the emitted light, eg, by 225 degrees. In another time step, the TOF pixel is controlled so that the first readout circuit reads the collected charge Q135 with a phase offset of 135 degrees from the phase of the emitted light. In this case, the second readout circuit is able to read the collected charge Q315 with a phase shift of 315 degrees from the phase of the emitted light. In some embodiments, the distance between the eye tracking device 110 and the user's eyes 120 can be expressed by the following two equations:
Figure 02_image007
Figure 02_image008

復參閱圖1J;在眼動追蹤裝置110發射與接收到的光脈衝具有較小的相位差

Figure 02_image002
的條件下,在45度相位和225度相位收集到的電荷是在整個時間步驟中相近的。相比於圖1G所示不具有相位偏移φ且在0度相位及180度相位收集到的電荷是相當不同的;圖1J式出在不同相位的低差異電荷收集,提供良好的眼睛定位表現。相位收集的差異能夠影響電荷收集的整體準確性,相位差可降低電荷收集在不同相位的差異,有助於眼動偵測並能夠讓使用者眼睛120的深度圖更加準確。 Referring back to FIG. 1J ; the light pulses transmitted and received at the eye tracking device 110 have a small phase difference
Figure 02_image002
Under the conditions of , the charges collected at the 45-degree phase and the 225-degree phase are similar throughout the time step. Compared to that shown in Figure 1G with no phase shift φ and the collected charges at 0 degree phase and 180 degree phase are quite different; Figure 1J shows the low difference charge collection at different phases, providing good eye positioning performance . The difference in phase collection can affect the overall accuracy of charge collection, and the phase difference can reduce the difference in charge collection in different phases, which is helpful for eye movement detection and can make the depth map of the user's eye 120 more accurate.

圖1K繪示在相位偏移電荷收集時之信號電壓之示意圖。相位偏移電荷收集時的信號電壓繪示出多個相位在不同時間時的信號電壓的變化。具體來說,圖1H繪示信號電壓在45度相位偏移、135度相位偏移、225度相位偏移、315度相位偏移的變化。在每一相位中,信號電壓隨的時間減少表示電荷的數量在一間隔時間內被儲存於一特定相位。與圖1H所示不同平均率的信號電壓相比,如圖1K所示的偏移相位的信號電壓包含類似的信號電壓的平均率。偏移相位的信號電壓的相似下降率能後讓眼動偵測和使用者眼睛120的定位更準確。總言之,引入一相位偏移φ於電荷收集中可幫助電荷收集以讓使用者眼睛120的深度圖可更精確。FIG. 1K shows a schematic diagram of the signal voltage during phase-shifted charge collection. The signal voltage at the time of phase shift charge collection shows the variation of the signal voltage at different times for a plurality of phases. Specifically, FIG. 1H shows the change of the signal voltage at a phase shift of 45 degrees, a phase shift of 135 degrees, a phase shift of 225 degrees, and a phase shift of 315 degrees. In each phase, the decrease in the signal voltage with time indicates that the amount of charge is stored in a particular phase for an interval of time. The phase-shifted signal voltages shown in FIG. 1K contain similar average rates of signal voltages compared to the signal voltages of different average rates shown in FIG. 1H . The similar rate of drop in the phase-shifted signal voltage can then allow for more accurate eye movement detection and positioning of the user's eye 120 . In summary, introducing a phase offset φ into the charge collection can help the charge collection so that the depth map of the user's eye 120 can be more accurate.

圖1L繪示一TOF裝置之示意圖。TOF裝置包含一TOF像素190、二電容器192a和192b、及二電晶體組194和196。每組電晶體包含五個開關電晶體(5T)。在一些實施方式中,其它排列型式的電晶體可用來實現類似的功能。TOF像素190可為用以檢測光的一或多個TOF像素。TOF像素生成的電荷可由電容器192a和192b來控制。電晶體M1~M4,可由NMOS、PMOS或NMOS及PMOS的組合來實現,藉由重置共模電荷並連接共模電壓至VREF來重新分配收集到的電荷。電壓VREF可為TOF像素190的操作電壓或一設計需求而生的預設電壓。電晶體M5和M6,可由NMOS、PMOS或NMOS及PMOS的組合來實現,用以重置收集電荷並將其等連接至電壓VREF2。電壓VREF2可相同於電壓VREF,為TOF像素190的操作電壓或一設計需求而生的預設電壓。FIG. 1L shows a schematic diagram of a TOF device. The TOF device includes a TOF pixel 190 , two capacitors 192 a and 192 b , and two transistor sets 194 and 196 . Each group of transistors contains five switching transistors (5T). In some embodiments, other arrangements of transistors may be used to achieve similar functions. TOF pixel 190 may be one or more TOF pixels used to detect light. The charge generated by the TOF pixel can be controlled by capacitors 192a and 192b. The transistors M1~M4, which can be implemented by NMOS, PMOS, or a combination of NMOS and PMOS, redistribute the collected charge by resetting the common-mode charge and connecting the common-mode voltage to VREF. The voltage VREF may be an operating voltage of the TOF pixel 190 or a predetermined voltage generated by a design requirement. Transistors M5 and M6, which can be implemented by NMOS, PMOS, or a combination of NMOS and PMOS, are used to reset the collected charge and connect it, etc., to voltage VREF2. The voltage VREF2 may be the same as the voltage VREF, which is the operating voltage of the TOF pixel 190 or a predetermined voltage generated by a design requirement.

圖2A繪示使用眼動追蹤的跨平台周邊控制系統之一示意圖。使用眼動追蹤的跨平台周邊控制系統可包含一可穿戴裝置及一連接裝置,可穿戴裝置例如為頭戴裝置201,連接裝置例如為一電話220、一平板電腦230、一電腦裝置240及/或一電視250;連接裝置能與頭戴裝置201通訊。當使用者的眼睛216A、216B注視電話220、平板電腦230、電腦裝置240及/或電視250時,可使用頭戴裝置201。頭戴裝置201能夠包含用來實現一眼動追蹤裝置及一信號處理單元的一眼動追蹤模組213、一加速儀211、一陀螺儀212、一無線傳輸單元214及一透明透鏡218,眼動追蹤模組213用以追蹤使用者的第一及第二眼睛216A和216B,加速儀211及陀螺儀212用以判斷使用者的一頭部位置;無線傳輸單元214供與一連接裝置,例如電話220及/或平板電腦230及/或電腦裝置240及/或電視250,進行通訊。在一些實施方式中,透明透鏡218可包含一或多個可調元件以供依照使用者眼睛216A及/或216B進行調整。FIG. 2A shows a schematic diagram of a cross-platform peripheral control system using eye tracking. The cross-platform peripheral control system using eye tracking may include a wearable device and a connected device, such as the wearable device 201, and the connected device such as a phone 220, a tablet computer 230, a computer device 240 and/or Or a television 250 ; the connecting device can communicate with the headset 201 . The headset 201 may be used when the user's eyes 216A, 216B are looking at the phone 220 , the tablet 230 , the computer device 240 and/or the television 250 . The head-mounted device 201 can include an eye movement tracking module 213 for implementing an eye movement tracking device and a signal processing unit, an accelerometer 211, a gyroscope 212, a wireless transmission unit 214 and a transparent lens 218, eye tracking The module 213 is used to track the first and second eyes 216A and 216B of the user, the accelerometer 211 and the gyroscope 212 are used to determine the position of a head of the user; the wireless transmission unit 214 is provided for a connection device, such as a telephone 220 and/or tablet computer 230 and/or computer device 240 and/or television 250 for communication. In some embodiments, the transparent lens 218 may include one or more adjustable elements for adjustment to the user's eyes 216A and/or 216B.

在此,眼動追蹤模組213能夠以光學信號照亮使用者眼睛216A,並檢測受使用者眼睛216A反射的光學信號。受檢測的光信號能夠用以判斷關於使用者眼睛216A的視線資訊。視線資訊能夠包含使用者在連接裝置的顯示器上的視線。視線資訊也包含關於使用者眼睛216A姿勢的指令。眼睛姿勢指令能夠作為連接裝置的輸入指令。在一些實施方式中,眼動追蹤模組213能夠以光學信號照亮使用者雙眼(即眼睛216A和216B),並檢測使用者眼睛216A和216B反射的光學信號以判斷使用者眼睛216A和216B的視線資訊。Here, the eye tracking module 213 can illuminate the user's eye 216A with an optical signal, and detect the optical signal reflected by the user's eye 216A. The detected light signal can be used to determine line-of-sight information about the user's eye 216A. The gaze information can include the user's gaze on the display of the connected device. The gaze information also includes instructions regarding the posture of the user's eyes 216A. Eye gesture commands can be used as input commands to the connected device. In some embodiments, the eye tracking module 213 can illuminate the user's eyes (ie, eyes 216A and 216B) with optical signals, and detect the optical signals reflected by the user's eyes 216A and 216B to determine the user's eyes 216A and 216B sight information.

加速儀211及陀螺儀212能夠用以檢測使用者頭部的定位。使用者頭部的定位能夠用以有效地判斷視線資訊。此外,加速儀211及陀螺儀212能夠用以追蹤使用者頭部的移動;藉此,根據使用者頭部的移動,任何可能的頭部移動能夠經判斷避免視線資訊被曲解。The accelerometer 211 and the gyroscope 212 can be used to detect the positioning of the user's head. The positioning of the user's head can be used to effectively determine the sight line information. In addition, the accelerometer 211 and the gyroscope 212 can be used to track the movement of the user's head; thereby, according to the movement of the user's head, any possible head movement can be judged to avoid misinterpretation of the line-of-sight information.

無線傳輸單元214透過網路以與頭戴裝置201、電話220、平板電腦230、電腦裝置240及/或電視250建立通訊。網路包含Wi-Fi、藍芽、低耗電藍芽(BLUETOOTH, BLUTETOOTH LOW ENERGY ;簡稱BLE)、區域網路等。The wireless transmission unit 214 establishes communication with the headset 201 , the phone 220 , the tablet computer 230 , the computer device 240 and/or the TV 250 through the network. The network includes Wi-Fi, bluetooth, low power bluetooth (BLUETOOTH, BLUTETOOTH LOW ENERGY; BLE for short), local area network, etc.

透明透鏡218能夠用以協助使用者的眼睛216A和216B看到電話220、平板電腦230、電腦裝置240和/或電視250的顯示。透明透鏡218包含可調光學元件,其能夠依據追蹤使用者眼睛216A和216B所代表的視線資訊進行調整。在一些實施方式中,整個透明透鏡218都可依視線資訊進行調整。在其它實施方式中,視線資訊供調整透明透鏡的特定部分;舉例來說,透明透鏡218的特定部分能夠經調整以在電話220的顯示器上的特定位置提供凝視點影像;其中,電話220的特定位置為在顯示器上,使用者眼睛216A和216B的視線注視處。The transparent lens 218 can be used to assist the user's eyes 216A and 216B to see the display of the phone 220 , tablet 230 , computer device 240 and/or television 250 . The transparent lens 218 includes adjustable optical elements that can be adjusted according to the tracking information represented by the user's eyes 216A and 216B. In some embodiments, the entire transparent lens 218 can be adjusted according to the line-of-sight information. In other embodiments, the line-of-sight information is used to adjust specific portions of the transparent lens; for example, specific portions of the transparent lens 218 can be adjusted to provide gaze point images at specific locations on the display of the phone 220; wherein the specific portion of the phone 220 The location is on the display, where the user's eyes 216A and 216B are looking.

在一些實施方式中,電話220包含一加速儀221及一陀螺儀222以供判斷電話220的定位;電話220也能夠包含一無線通訊單元224以供與頭戴裝置201進行通訊。電話220的加速儀221及陀螺儀222能夠協助追蹤電話220的位置及移動。藉由追蹤電話220的位置和移動,頭戴裝置201能夠藉由與使用者在電話220上聚焦位置的比較,有效地判斷使用者眼睛216A和216B的視線資訊。電話220的位置及移動能夠通過無線通訊單元224傳遞至頭戴裝置201。In some embodiments, the phone 220 includes an accelerometer 221 and a gyroscope 222 for determining the location of the phone 220 ; the phone 220 can also include a wireless communication unit 224 for communicating with the headset 201 . The accelerometer 221 and gyroscope 222 of the phone 220 can assist in tracking the location and movement of the phone 220 . By tracking the position and movement of the phone 220 , the headset 201 can effectively determine the gaze information of the user's eyes 216A and 216B by comparing with the user's focus position on the phone 220 . The position and movement of the phone 220 can be communicated to the headset 201 through the wireless communication unit 224 .

在一些實施方式中,平板電腦230能夠包含一加速儀231及一陀螺儀232以供判斷平板電腦230的定位;平板電腦230還包含一無線通訊單元234以與頭戴裝置201通訊。平板電腦230的加速儀231及陀螺儀232能夠協助追蹤及平板電腦230的位置及移動。藉由追蹤平板電腦230的位置和移動,頭戴裝置201能夠有效地判斷使用者眼睛216A的一視線參考點236。平板電腦230的位置和移動能夠經由無線通訊單元234傳遞至頭戴裝置201。In some embodiments, the tablet computer 230 can include an accelerometer 231 and a gyroscope 232 for determining the positioning of the tablet computer 230 ; the tablet computer 230 further includes a wireless communication unit 234 for communicating with the head-mounted device 201 . The accelerometer 231 and the gyroscope 232 of the tablet computer 230 can assist in tracking and the position and movement of the tablet computer 230 . By tracking the position and movement of the tablet computer 230, the headset 201 can effectively determine a sight reference point 236 of the user's eye 216A. The position and movement of the tablet computer 230 can be communicated to the headset 201 via the wireless communication unit 234 .

電腦裝置240能夠包含一無線通訊單元244以與頭戴裝置201通訊。此外,電視250能夠包含一無線通訊單元254以與頭戴裝置201通訊。The computer device 240 can include a wireless communication unit 244 to communicate with the headset 201 . In addition, the television 250 can include a wireless communication unit 254 to communicate with the head-mounted device 201 .

圖2B繪示使用眼動追蹤之一跨平台周邊控制系統之示意圖。眼動追蹤的跨平台周邊控制系統可包含一可穿戴裝置、一連接裝置、一加速儀211、一陀螺儀212、一無線傳輸單元214、一第一透明透鏡218A及一第二透明透鏡218B。可穿戴裝置例如為頭戴裝置202,連接裝置例如為一電話220、一平板電腦230、一電腦裝置240及/或一電視250;連接裝置能與頭戴裝置201通訊。當使用者的眼睛216A、216B注視連接裝置時,可使用頭戴裝置202。頭戴裝置202能夠包含二眼動追蹤模組及一對信號處理單元;其中,第一對由第一眼動追蹤模組213A來實現,第二對由第二眼動追蹤模組213B來實現,以追蹤使用者的眼睛216A和216B。加速儀211及陀螺儀212用以判斷使用者頭部的位置,無線傳輸單元214供與連接裝置通訊,第一透明透鏡218A包含一或多個可調元件,第二透明透鏡218B包含一或多個可調元件。2B shows a schematic diagram of a cross-platform peripheral control system using eye tracking. The cross-platform peripheral control system for eye tracking may include a wearable device, a connecting device, an accelerometer 211 , a gyroscope 212 , a wireless transmission unit 214 , a first transparent lens 218A and a second transparent lens 218B. The wearable device is, for example, the head-mounted device 202 , and the connecting device is, for example, a phone 220 , a tablet computer 230 , a computer device 240 and/or a TV 250 ; the connecting device can communicate with the head-mounted device 201 . The headset 202 may be used when the user's eyes 216A, 216B are looking at the connection device. The headset 202 can include two eye-tracking modules and a pair of signal processing units; wherein the first pair is implemented by the first eye-tracking module 213A, and the second pair is implemented by the second eye-tracking module 213B , to track the user's eyes 216A and 216B. The accelerometer 211 and the gyroscope 212 are used to determine the position of the user's head, the wireless transmission unit 214 is used for communication with the connecting device, the first transparent lens 218A includes one or more adjustable elements, and the second transparent lens 218B includes one or more adjustable element.

第一眼動追蹤模組213A能夠用以照亮第一使用者眼睛216A,並檢測第一使用者眼睛216A所反射的光信號。第一眼動追蹤模組213A檢測到的光信號能夠判斷與第一使用者眼睛216A相關的視線資訊。視線資訊包含第一使用者眼睛216A在連接裝置(例如220、230、240及250)的顯示器上的視線。視線資訊也能夠包含關於第一使用者眼睛216A的姿勢的指令;眼睛姿勢指令能夠作為連接裝置的輸入指令。The first eye tracking module 213A can be used to illuminate the first user's eye 216A and detect the light signal reflected by the first user's eye 216A. The light signal detected by the first eye tracking module 213A can determine the sight line information related to the first user's eye 216A. The line of sight information includes the line of sight of the first user's eye 216A on the displays of the connected devices (eg, 220, 230, 240, and 250). The gaze information can also contain instructions regarding the posture of the first user's eye 216A; the eye posture instructions can serve as input instructions to the connecting device.

第二眼動追蹤模組213B能夠用以照亮第二使用者眼睛216B,並檢測第二使用者眼睛216B反射的光信號。第二眼動追蹤模組213B檢測到的光信號能夠判斷與第二使用者眼睛216B相關的視線資訊。視線資訊包含第二使用者眼睛216B在連接裝置的顯示器上的視線。視線資訊也能夠包含關於第二使用者眼睛216B的姿勢的指令。眼睛姿勢指令能夠作為連接裝置的輸入指令。The second eye tracking module 213B can be used to illuminate the second user's eye 216B and detect the light signal reflected by the second user's eye 216B. The light signal detected by the second eye tracking module 213B can determine the sight line information related to the second user's eye 216B. The sight line information includes the sight line of the second user's eye 216B on the display of the connected device. The gaze information can also contain instructions regarding the posture of the second user's eye 216B. Eye gesture commands can be used as input commands to the connected device.

第一透明透鏡218A能夠用以協助第一使用者眼睛216A觀看連接裝置的顯示器。第一透明透鏡218A能夠包含可調元件,其能夠依據代表第一使用者眼睛216A的視線資訊進行調整。在一些實施方式中,整個第一透明透鏡218A都能夠依據視線資訊進行調整。在其它實施方式中,只有第一透明透鏡218A的特定部分能依據視線資訊進行調整。舉例來說,可調光學元件的特定部分可經調整以變化在電腦裝置240的顯示器的特定位置的影像;其中,電腦裝置240的顯示器的特定位置為使用者眼睛216A和216B聚焦的位置。The first transparent lens 218A can be used to assist the first user's eye 216A to view the display of the connected device. The first transparent lens 218A can include adjustable elements that can be adjusted according to the line of sight information representing the first user's eye 216A. In some embodiments, the entire first transparent lens 218A can be adjusted according to the sight line information. In other embodiments, only a specific part of the first transparent lens 218A can be adjusted according to the sight line information. For example, specific portions of the tunable optics can be adjusted to change the image at a specific location of the display of computer device 240; where the specific location of the display of computer device 240 is where the user's eyes 216A and 216B are focused.

第二透明透鏡218B能夠用以協助第二使用者眼睛216B觀看連接裝置。第二透明透鏡218B能夠包含可調元件,其能夠依據代表第二使用者眼睛216B的視線資訊進行調整。在一些實施方式中,整個第二透明透鏡218B都能夠依據視線資訊進行調整。在其它實施方式中,僅有第二透明透鏡218B的特定部分能夠依據視線資訊進行調整。舉例來說,可調光學元件的特定部分可經調整以加強在電腦裝置240的顯示器的特定位置的聚焦;其中,電腦裝置240的特定位置為使用者眼睛216A和216B聚焦的位置。The second transparent lens 218B can be used to assist the second user's eye 216B to view the connecting device. The second transparent lens 218B can include adjustable elements that can be adjusted according to the line of sight information representing the second user's eye 216B. In some embodiments, the entire second transparent lens 218B can be adjusted according to the line-of-sight information. In other embodiments, only a specific part of the second transparent lens 218B can be adjusted according to the sight line information. For example, specific portions of the tunable optics can be adjusted to enhance focus at specific locations of the display of computer device 240; where the specific locations of computer device 240 are where the user's eyes 216A and 216B are focused.

在某些實施方式中,第一使用者眼睛216A及第二使用者眼睛216B能夠聚焦於單一位置。舉例來說,使用者眼睛216A和216B能夠包含一參考視線246,其位於電腦裝置240,例如筆記型電腦或桌上型電腦,的顯示器。雖然參考視線246可導向筆記型電腦或桌上型電腦的顯示器上的單一點,但在第一透明透鏡218A及第二透明透鏡218B中的可調光學元件能夠依據第一使用者眼睛216A及第二使用者眼睛216B的視線資訊而進行單獨調整。 圖3A繪示使用眼動追縱之一可穿戴裝置300之示意圖。可穿戴裝置300包含一單視力可穿戴裝置,其依據眼動追蹤提供光路徑調整。可穿戴裝置300包含螢幕310、可調光學元件330、無線通訊單元340、一影像投影機350及一眼動追蹤模組360;螢幕310為可供使用者視線穿透的透明螢幕或可供注視於其上的不透明螢幕310,可調光學元件330供調整在透光或不透光螢幕310上光路徑、無線通訊單元340供與遠端裝置通訊、投影機供投影2D視覺資料,使2D視覺資料通過透光螢幕310或顯示在不透光螢幕310少,眼動追蹤模組360供追蹤使用者眼睛320A、320B的動作並判斷對應於使用者眼睛320A、320B的深度圖。 In some embodiments, the first user's eye 216A and the second user's eye 216B can focus on a single location. For example, the user's eyes 216A and 216B can include a reference line of sight 246 at the display of a computer device 240, such as a notebook or desktop computer. Although the reference line of sight 246 may be directed to a single point on the display of a laptop or desktop computer, the adjustable optics in the first transparent lens 218A and the second transparent lens 218B can The line-of-sight information of the user's eyes 216B is adjusted independently. FIG. 3A is a schematic diagram of a wearable device 300 using eye tracking. The wearable device 300 includes a single vision wearable device that provides light path adjustment based on eye tracking. The wearable device 300 includes a screen 310, an adjustable optical element 330, a wireless communication unit 340, an image projector 350 and an eye movement tracking module 360; On the opaque screen 310, the adjustable optical element 330 is used to adjust the light path on the transparent or opaque screen 310, the wireless communication unit 340 is used to communicate with the remote device, and the projector is used to project 2D visual data, so that the 2D visual data is The eye tracking module 360 is used to track the movements of the user's eyes 320A, 320B and determine the depth map corresponding to the user's eyes 320A, 320B through the translucent screen 310 or displayed on the opaque screen 310 .

眼動追蹤模組360能夠判斷使用者眼睛320A和320B的視線325。在某些實施方式中,僅有透光或不透光螢幕310的局部能依使用者眼睛320A和320B的視線325進行調整。眼動追蹤模組360能夠利用對應於視線325的視線資訊調整透光或不透光螢幕310的一特定部分,例如多個可調光學元件330。可調光學元件330經調整能夠改變通過透光或不透光螢幕310的特定部分的一特定光路徑的聚焦或散焦。可調光學元件330包含複數可調反射鏡、可調透鏡、可調光柵或其它合適可調光學元件及其等之組合。可調光學元件330能夠依據對應於視線325的視線資訊進行調整,故可穿戴裝置300能夠提供即時對焦/散焦。The eye tracking module 360 can determine the line of sight 325 of the user's eyes 320A and 320B. In some embodiments, only parts of the transparent or opaque screen 310 can be adjusted according to the line of sight 325 of the user's eyes 320A and 320B. The eye tracking module 360 can adjust a specific part of the transparent or opaque screen 310 , such as the plurality of adjustable optical elements 330 , using the line of sight information corresponding to the line of sight 325 . Tunable optics 330 can be adjusted to change the focus or defocus of a particular light path through particular portions of the light-transmitting or opaque screen 310 . Tunable optics 330 include complex tunable mirrors, tunable lenses, tunable gratings, or other suitable tunable optics, and combinations thereof. The adjustable optical element 330 can be adjusted according to the sight line information corresponding to the sight line 325 , so the wearable device 300 can provide instant focus/defocus.

在觀看螢幕時,可調光學元件330的即時對焦/散焦能夠用以解決調焦及輻輳不一致的問題。舉例來說,傳統VR經驗造成暈眩的感覺源自於不一致的深度感知機制。其中一種深度感知不一致機制發生在使用者眼睛的焦點(調焦)感知到影像位在一顯示器上的相同距離,同時卻也感知到這些影像會聚在使用者眼睛的不同深度(輻輳)。使用者感知到這種調焦及輻輳的不一致的矛盾感覺,而產生暈眩噁心的感覺。When viewing the screen, the instant focus/defocus of the adjustable optical element 330 can be used to solve the problems of focusing and convergence inconsistencies. For example, the feeling of dizziness caused by traditional VR experiences stems from inconsistent depth perception mechanisms. One such depth perception inconsistency mechanism occurs when the focus of the user's eyes (focusing) perceives images at the same distance on a display, but also perceives that the images converge at different depths (convergence) of the user's eyes. The user perceives the inconsistent and contradictory sensations of focusing and vergence, resulting in a feeling of dizziness and nausea.

為了解決前述不一致的深度感知機制,本發明的眼睛追蹤方法能夠在一可穿戴裝置,例如可穿戴裝置300,中實現。可穿戴裝置300能夠依據眼睛視線資訊重新聚焦光,以調整通過透光螢幕310,或在不透光螢幕310的特定部分的眼睛入射光的角度。如此一來,透光或不透光螢幕310的可調光學元件330便能夠用依據經使用者眼睛320A、320B的視線資訊來重新聚焦光,以解決前述的不一致問題,並在某種觀看經驗中提高調焦及輻輳。To address the aforementioned inconsistent depth perception mechanisms, the eye tracking method of the present invention can be implemented in a wearable device, such as the wearable device 300 . The wearable device 300 can refocus the light according to the eye sight information, so as to adjust the angle of the light incident to the eye through the light-transmitting screen 310 or at a specific part of the opaque screen 310 . In this way, the adjustable optical element 330 of the transparent or opaque screen 310 can refocus the light according to the line-of-sight information through the user's eyes 320A, 320B, so as to solve the aforementioned inconsistency problem and improve certain viewing experience. Improve focus and vergence.

圖3B繪示使用一透鏡之一光學影像重新對焦系統的示意圖。使用一透鏡之光學影像重新對焦系統繪示依據一使用者眼睛的視線資訊,使用一透鏡對一物件虛像進行重新對焦。3B shows a schematic diagram of an optical image refocusing system using a lens. The optical image refocusing system using a lens shows that a lens is used to refocus a virtual image of an object according to the sight line information of a user's eyes.

在示範例1的利用透鏡對光學影像系統重新對焦系統中,使用者眼睛320透過一介質,例如不具有螢幕(例如一VR螢幕)的空氣,觀看一物件370;使用者眼睛320可不透過一透明透鏡注視物件370。此外,使用者眼睛320是觀看一實體物件370,而不是代表物件的虛擬影像。In the refocusing system of the optical image system using a lens in Example 1, the user's eyes 320 view an object 370 through a medium, such as air without a screen (eg, a VR screen); the user's eyes 320 may not see through a transparent The lens looks at object 370 . In addition, the user's eyes 320 are viewing a physical object 370 rather than a virtual image representing the object.

在示範例2的利用透鏡對光學影像重新聚焦系統中,使用者眼睛320透過螢幕380觀看物件虛像375。在這種狀態下,一影像投影機可透過一螢幕380投影代表物件之一虛像以作為物件虛像375。在這種狀態下,使用者眼睛320可體驗調焦及輻輳的不一致。In the optical image refocusing system using lenses of Example 2, the user's eyes 320 view the virtual image 375 of the object through the screen 380 . In this state, an image projector can project a virtual image representing the object through a screen 380 as the object virtual image 375 . In this state, the user's eyes 320 may experience inconsistencies in focusing and vergence.

在示範例3的利用透鏡對光學影像重新對焦系統中,使用者眼睛320透過位於使用者眼睛320及螢幕380之間的一透鏡330觀看物件虛像375。透鏡330能夠為用以重新對焦物件虛像的一固定式透鏡。在其它實施方式中,透鏡330能夠為用以動態地對物件虛像375重新對焦的可調透鏡;在這種情況下,透鏡330能夠依據使用者眼睛320的視線資訊進行調整。In the optical image refocusing system using lenses of Example 3, the user's eye 320 views the object virtual image 375 through a lens 330 located between the user's eye 320 and the screen 380 . Lens 330 can be a fixed lens used to refocus the virtual image of the object. In other embodiments, the lens 330 can be an adjustable lens for dynamically refocusing the virtual image 375 of the object; in this case, the lens 330 can be adjusted according to the sight line information of the user's eye 320 .

圖3C繪示使用一反射鏡之一光學影像重新對焦系統。使用反射鏡之光學影像重新對焦系統繪示依據一使用者眼睛的視線資訊,利用一反射鏡對一物件虛像進行重新對焦。Figure 3C illustrates an optical image refocusing system using a mirror. The optical image refocusing system using a mirror is shown to refocus a virtual image of an object with a mirror according to the sight line information of a user's eyes.

在示範例1的利用反射鏡之光學影像重新對焦系統中,使用者的眼睛透過一介質,例如空氣而非螢幕(例如VR螢幕),觀看物件370。使用者的眼睛320可不透過一透明透鏡觀看物件370,而不是代表物件的虛擬影像。In the optical image refocusing system using mirrors of Example 1, the user's eyes view the object 370 through a medium, such as air, rather than a screen (eg, a VR screen). The user's eye 320 may not view the object 370 through a transparent lens, instead of representing a virtual image of the object.

在示範例2的使用反射鏡的光學影像重新對焦系統中,使用者的眼睛320透過一螢幕380觀看一物件虛像376。在這種情況下,一影像投影機可透過螢幕380投影代表物件370之一虛像作為物件虛像376。在這種情況下,使用者的眼睛320可體驗到調焦及輻輳之間的不一致。In the optical image refocusing system using mirrors of Example 2, the user's eyes 320 view a virtual image 376 of an object through a screen 380 . In this case, an image projector can project a virtual image representing the object 370 as the object virtual image 376 through the screen 380 . In this case, the user's eyes 320 may experience inconsistencies between focus and vergence.

在示範例3中的使用反射鏡之光學影像重新對焦系統中,使用者的眼睛320透過包含一反射鏡385的螢幕380觀看一物件虛像376。反射鏡385能夠為用以重新對焦物件虛像的一固定反射鏡。在其它實施方式中,反射鏡385能夠為一可調反射鏡,藉以即時地通過聚有反射鏡385的螢幕380來對動態的物件虛像376進行重新對焦。在這種狀態下,反射鏡385能夠依據使用者眼睛320的視線資訊進行調整。In the optical image refocusing system using mirrors in Example 3, the user's eyes 320 view a virtual image 376 of an object through a screen 380 including a mirror 385 . Mirror 385 can be a fixed mirror used to refocus the virtual image of the object. In other embodiments, the mirror 385 can be an adjustable mirror to refocus the dynamic object virtual image 376 on-the-fly through the screen 380 on which the mirror 385 is assembled. In this state, the mirror 385 can be adjusted according to the sight line information of the user's eyes 320 .

圖4繪示使用眼動追蹤之一可穿戴裝置400之示意圖。使用眼動追蹤之可穿戴裝置400包含一立體視覺可穿戴裝置以依據眼動追蹤調整光路徑。可穿戴裝置400包含一第一透光或不透光螢幕410A及一第二透光或不透光螢幕410B以供使用者觀看、一第一組可調光學元件430A及一第二組可調光學元件430B;第一組可調光學元件430A供調整第一透光或不透光螢幕410A的光路徑,第二組可調光學元件430B供調整第二透光或不透光螢幕410B的光路徑。FIG. 4 shows a schematic diagram of a wearable device 400 using eye tracking. The wearable device 400 using eye tracking includes a stereo vision wearable device to adjust the light path according to the eye tracking. The wearable device 400 includes a first transparent or opaque screen 410A and a second transparent or opaque screen 410B for viewing by a user, a first set of adjustable optical elements 430A and a second set of adjustable optical elements Optical element 430B; the first group of adjustable optical elements 430A is used to adjust the light path of the first transparent or opaque screen 410A, and the second group of adjustable optical elements 430B is used to adjust the light of the second transparent or opaque screen 410B path.

可穿戴裝置400可更包含一第一無線通訊單元440A供與複數遠端裝置通訊或一第二無線通訊單元440B供與前述遙控裝置通訊、一第一影像投影機450A、一第二影像投影機450B、一第一眼動追蹤模組460A及一第二眼動追蹤模組460B;第一影像投影機450A供投影2D視覺資料,以讓2D視覺資料穿透或投射在第一透光或不透光螢幕410A;第二影像投影機450B供投影2D視覺資料,以讓2D視覺資料通過或投射在第二透光或不透光螢幕410B,第一眼動追蹤模組460A供追蹤第一使用者眼睛420A的姿勢並判斷對應於第一使用者眼睛420A的深度圖,第二眼動追蹤模組460B供追蹤第二使用者眼睛420B的姿勢並判斷對應於第二使用者眼睛420B的深度圖。The wearable device 400 may further include a first wireless communication unit 440A for communicating with a plurality of remote devices or a second wireless communication unit 440B for communicating with the aforementioned remote control device, a first image projector 450A, and a second image projector 450B, a first eye-tracking module 460A, and a second eye-tracking module 460B; the first image projector 450A is used for projecting 2D visual data, so that the 2D visual data can be transmitted or projected on the first transparent or non-transparent light. The light-transmitting screen 410A; the second image projector 450B is used for projecting 2D visual data, so that the 2D visual data can pass through or be projected on the second light-transmitting or non-light-transmitting screen 410B, and the first eye tracking module 460A is used for tracking the first use The posture of the user's eye 420A is used to determine the depth map corresponding to the first user's eye 420A, and the second eye tracking module 460B is used to track the posture of the second user's eye 420B and determine the depth map corresponding to the second user's eye 420B. .

可穿戴裝置400可進一步包含一連續的或兩個分離的第一透光或不透光螢幕410A和第二透光或不透光螢幕410B,其能夠判斷兩個不同的視線點425A和425B。當使用者任一眼睛420A和420B受到對應的第一眼動追蹤模組460A和第二眼動追蹤模組460B單獨追蹤時,第一組可調光學元件430A及第二組可調光學元件430B能夠單獨地調整。此外,第一影像投影機450A及第二影像投影機450B能夠單獨地操作。如此一來,能夠選擇讓第一透光或不透光螢幕410A和第二透光或不透光螢幕410B的一特定部分對進入使用者眼睛420A和420B的光進行重新對焦。在這種情況下,使用者的眼睛420A和420B能夠解讀同時透過第一透光或不透光螢幕410A和第二透光或不透光螢幕410B上由複數影像構成的3D投影。The wearable device 400 may further include a continuous or two separate first translucent or opaque screens 410A and second translucent or opaque screens 410B capable of judging two different sight points 425A and 425B. When either of the user's eyes 420A and 420B is individually tracked by the corresponding first eye tracking module 460A and the second eye tracking module 460B, the first group of adjustable optical elements 430A and the second group of adjustable optical elements 430B can be adjusted individually. In addition, the first image projector 450A and the second image projector 450B can operate independently. In this way, a specific portion of the first transmissive or opaque screen 410A and the second translucent or opaque screen 410B can be selected to refocus light entering the user's eyes 420A and 420B. In this case, the user's eyes 420A and 420B can interpret the 3D projection composed of the plurality of images transmitted through the first transparent or opaque screen 410A and the second transparent or opaque screen 410B simultaneously.

圖5A繪示安裝在一機械上之一分離式眼動追蹤裝置之示意圖。分離式眼動追蹤裝置能為於機械(例如顯示裝置520)周圍的一分離式周邊裝置。分離式眼動追蹤裝置安裝於一機械上,機械包含一顯示裝置520以與一分離式周邊裝置530進行通訊,分離式周邊裝置530設置遠離於使用者眼睛510A和510B。Figure 5A shows a schematic diagram of a separate eye tracking device mounted on a machine. The separate eye tracking device can be a separate peripheral device around the machine (eg, display device 520). The separate eye-tracking device is mounted on a machine that includes a display device 520 to communicate with a separate peripheral device 530 disposed away from the user's eyes 510A and 510B.

分離式周邊裝置530包含一機械模組532以供控制發射光的方向及一眼動追蹤裝置534的檢測,藉此使用者眼睛便總能位在分離式周邊裝置。眼動追蹤裝置534追蹤使用者眼睛510A和510B的姿勢並判斷對應於使用者眼睛510A和510B的視線資訊。顯示裝置520包含一視線參考點515,其對應於使用者眼睛510A和510B在顯示裝置520上的焦點。分離式周邊裝置530的眼動追蹤裝置534能夠判斷視線參考點515。在某些實施方式中,顯示裝置520能包含依據視線參考點515進行調整的複數可調光學元件。可調光學元件包含在顯示裝置520上的可調反射鏡。在其它實施方式中,顯示裝置520能夠包含固定光學元件,例如固定反射鏡以對光路徑重新對焦。The detachable peripheral device 530 includes a mechanical module 532 for controlling the direction of the emitted light and the detection of the eye tracking device 534, so that the user's eyes can always be positioned on the detachable peripheral device. The eye tracking device 534 tracks the posture of the user's eyes 510A and 510B and determines the gaze information corresponding to the user's eyes 510A and 510B. The display device 520 includes a line-of-sight reference point 515 that corresponds to the focal point of the user's eyes 510A and 510B on the display device 520 . The eye tracking device 534 of the separate peripheral device 530 can determine the gaze reference point 515 . In some implementations, the display device 520 can include complex tunable optical elements that adjust according to the line-of-sight reference point 515 . The tunable optics include tunable mirrors on display device 520 . In other embodiments, the display device 520 can include fixed optical elements, such as fixed mirrors, to refocus the light path.

分離式周邊裝置530能夠用以提供輸出資料給顯示裝置520。輸出資料包含使用者眼睛510A和510B的視線資訊。顯示裝置520能夠以視線資訊運算在螢幕上對應於使用者視線參考點515之特定位置的一影像。影像能夠以產生可見光的發光二極體陣列、濾除白光的液晶或其它位在顯示裝置520的螢幕的光源陣列呈現在顯示裝置520的螢幕。此外,運算影像可以光學折射、繞射、反射、導光或其它光學技術來顯示於顯示裝置520的螢幕。The discrete peripheral device 530 can be used to provide output data to the display device 520 . The output data includes line-of-sight information of the user's eyes 510A and 510B. The display device 520 can use the sight line information to calculate an image corresponding to a specific position of the user's sight line reference point 515 on the screen. The image can be presented on the screen of the display device 520 with an array of light emitting diodes that generate visible light, liquid crystals that filter out white light, or other arrays of light sources located on the screen of the display device 520 . In addition, the computational image can be displayed on the screen of the display device 520 by optical refraction, diffraction, reflection, light guiding or other optical techniques.

圖5B繪示封裝於一機械內之一嵌入式眼動追蹤裝置之示意圖。封裝於機械之眼動追蹤裝置包含一嵌入式周邊裝置545,嵌入式周邊裝置545整合於一機械,例如一顯示裝置540。嵌入式周邊裝置545包含一機械模組546以控制光發射的方向及來自於眼動追蹤裝置的檢測,藉此,使用者眼睛總能受到嵌入式周邊裝置545定位。眼動追蹤裝置547追蹤使用者眼睛510A和510B的眼睛姿勢並依據使用者眼睛510A和510B判斷視線資訊。5B shows a schematic diagram of an embedded eye tracking device packaged in a machine. The eye-tracking device packaged in the machine includes an embedded peripheral device 545 , and the embedded peripheral device 545 is integrated into a machine, such as a display device 540 . The embedded peripheral device 545 includes a mechanical module 546 to control the direction of light emission and detection from the eye tracking device, whereby the user's eyes can always be positioned by the embedded peripheral device 545 . The eye tracking device 547 tracks the eye postures of the user's eyes 510A and 510B and determines the sight line information according to the user's eyes 510A and 510B.

顯示裝置540更包含一視線參考點555,其對應於使用者眼睛510A和510B在顯示裝置540上的焦點。在某些實施方式中,顯示裝置540包含複數可調光學元件,其等能依據視線參考點555進行調整。可調光學元件包含為於顯示裝置540的複數可調反射鏡。在其它實施方式中,顯示裝置540包含固定光學元件,例如固定反射鏡。The display device 540 further includes a line-of-sight reference point 555 , which corresponds to the focus of the user's eyes 510A and 510B on the display device 540 . In some embodiments, the display device 540 includes a plurality of adjustable optical elements, which can be adjusted according to the line-of-sight reference point 555 . Tunable optical elements are included as complex tunable mirrors in display device 540 . In other embodiments, display device 540 includes fixed optical elements, such as fixed mirrors.

在某些實施方式中,眼睛510A、510B與眼動追蹤裝置534、537之間的距離可依據TOF概念或其它方法,例如影像處理或三角測量法來判斷。光學發射功率能依據在眼睛510A、510與眼動追蹤裝置534、547之間的距離來調整。舉例來說,光學發射功率可被動態地降低以降低眼睛510A或510B於其與眼動追蹤裝置534、537之間的距離非常靠近時所見到的光學放射。In some embodiments, the distance between the eyes 510A, 510B and the eye tracking devices 534, 537 may be determined according to the TOF concept or other methods, such as image processing or triangulation. The optical transmit power can be adjusted depending on the distance between the eye 510A, 510 and the eye tracking device 534, 547. For example, the optical transmit power can be dynamically lowered to reduce the optical emissions seen by the eye 510A or 510B when the distance between it and the eye tracking device 534, 537 is very close.

圖6繪示一眼動追蹤之一程序600。眼動追蹤的程序600描述依據眼睛深度圖監視一眼睛移動之一程序。在步驟610,擷取對應測量一眼睛反射一光學信號所得之一電子信號,光學信號能夠由一光源(optical source)提供。光源為與一預定參考信號同步的一可調電壓信號,藉此,光源能夠朝向眼睛的方向提供能由眼睛反射的一光學信號。FIG. 6 shows a procedure 600 of eye movement tracking. The procedure 600 for eye tracking describes a procedure for monitoring an eye movement based on an eye depth map. In step 610, an electronic signal corresponding to measuring an optical signal reflected by an eye is captured, and the optical signal can be provided by an optical source. The light source is an adjustable voltage signal synchronized with a predetermined reference signal, whereby the light source can provide an optical signal that can be reflected by the eye toward the direction of the eye.

反射光學信號能被一或複數的光檢測器所接收。在一些實施方式中,被接收後的光信號能經濾波以移除某些波長。舉例來說,一或複數濾波器供對光信號濾波,藉此,只有目標波長保留在濾波後的光學信號中。在某些實施方式中,一或多個透鏡用以光學信號傳遞至光檢測器前對光學信號進行對焦。透鏡能夠為透明透鏡、固定式透鏡、可調透鏡、光子柵欄或類似元件。The reflected optical signal can be received by one or more photodetectors. In some embodiments, the received optical signal can be filtered to remove certain wavelengths. For example, an or complex filter is used to filter the optical signal, whereby only the wavelengths of interest remain in the filtered optical signal. In some embodiments, one or more lenses are used to focus the optical signal before it is passed to the photodetector. The lens can be a clear lens, a fixed lens, a tunable lens, a photonic barrier, or the like.

在步驟620,依據接收光信號及參考信號的相位差判斷深度圖。接收光信號能於其被接收時即與參考信號進行比較。在其它實施方式中,接收光信號可經濾波後在與參考信號進行比較。深度圖包含對應於眼睛的一或複數3D資訊的資料組。在某些實施方式中,能夠依據深度圖的三維資訊產生眼睛的一3D圖像。深度圖能即時且持續地進行判斷。深度圖也能夠在預定的時間點進行判斷及更新。舉例來說,深度圖能夠於每微秒、每毫米或每秒等時間間隔內進行判斷及更新。In step 620, the depth map is determined according to the phase difference between the received optical signal and the reference signal. The received optical signal can be compared to the reference signal as it is received. In other embodiments, the received optical signal may be filtered and compared to a reference signal. The depth map contains one or more sets of 3D information corresponding to the eyes. In some embodiments, a 3D image of the eye can be generated based on the 3D information of the depth map. The depth map enables immediate and continuous judgment. The depth map can also be judged and updated at a predetermined time point. For example, the depth map can be determined and updated at time intervals such as every microsecond, every millimeter, or every second.

在步驟630,視線資訊依據深度圖進行判斷。視線資訊能表示依據深度圖的眼睛的視線。在一些實施方式中,視線資訊能夠依據參考信號及反射光信號的比較進行判斷。此外,視線資訊能夠包含針對眼睛之一特定區域的辨識、針對眼睛之一瞳孔的辨識、針對眼睛之一虹膜的辨識,以及針對眼睛之一生理結構的辨識中之一或多者。在某些實施方式中,眼睛的姿勢能夠由視線資訊進行辨識。眼睛姿勢能夠包含眼睛的移動、眼睛的轉動、眼睛的穩定狀態、眼睛的穩定狀態所對應時間、眼睛的閉合狀態、眼睛的閉合狀態所對應時間、眼睛的睜開狀態、眼睛的睜開狀態所對應時間、眼睛的眨眼睛狀態、眼睛的眨眼睛狀態所對應時間,以及眨眼睛狀態所對應頻率中的一或多者。In step 630, the line of sight information is determined according to the depth map. The sight line information can represent the sight line of the eye according to the depth map. In some embodiments, the line-of-sight information can be determined based on the comparison of the reference signal and the reflected light signal. In addition, the sight line information can include one or more of identification for a specific area of the eye, identification for a pupil of the eye, identification for an iris of the eye, and identification for a physiological structure of the eye. In some embodiments, the pose of the eye can be identified from the gaze information. Eye posture can include movement of eyes, rotation of eyes, stable state of eyes, time corresponding to stable state of eyes, closed state of eyes, time corresponding to closed state of eyes, open state of eyes, and corresponding time of open state of eyes. One or more of the corresponding time, the blink state of the eye, the time corresponding to the blink state of the eye, and the frequency corresponding to the blink state.

深度圖能夠用以在與眼睛相切之一平面產生一垂直虹膜向量。在這樣的情況下,視線資訊能夠依據虹膜向量及深度圖進行判斷。深度圖也能夠用以產生在與眼睛相切之一平面上的一瞳孔位置。在這樣的狀況下,視線資訊能夠依據眼睛的瞳孔位置及深度圖進行判斷。The depth map can be used to generate a vertical iris vector in a plane tangent to the eye. In such a case, the gaze information can be judged based on the iris vector and the depth map. The depth map can also be used to generate a pupil position in a plane tangent to the eye. In such a situation, the line-of-sight information can be determined based on the pupil position of the eye and the depth map.

在步驟640,以眼睛的視線資訊作為輸出資料。對應於視線資訊的輸出資料能夠傳遞至一裝置、一機械、一系統或其他類似元件。在這種狀況下,視線資訊能夠作為輸入資料傳遞至裝置、機械或系統。此外,來自於視線資訊的眼動判斷能夠作為輸出資料。眼動能作指令給裝置、機械或系統,或與裝置、機械或系統互動。舉例來說,若眼睛快速且連續眨眼三次,可作為提供給遠端裝置,例如電視,的指令。如此一來,若追蹤到眼睛於短時間內連續地眨眼數次時,可使電視關機。In step 640, the line-of-sight information of the eyes is used as the output data. Output data corresponding to line-of-sight information can be communicated to a device, a machine, a system, or other similar elements. In this case, line-of-sight information can be passed as input data to a device, machine, or system. In addition, eye movement judgment from gaze information can be used as output data. Eye movements can give instructions to or interact with a device, machine or system. For example, if the eye blinks three times in rapid succession, it can be used as an instruction to a remote device, such as a television. In this way, if the eye blinks several times in a short period of time is tracked, the TV can be turned off.

圖7繪示根據某些示例性實施方式的依據眼動追蹤調整光學元件的程序700。程序700依據眼動追蹤調整光學元件描述監控一眼移動及依據眼睛的移動調整光學元件。在步驟710,擷取對應測量一眼睛反射一光學信號所得之一電子信號,光學信號能夠由一光源提供。光源為與一預定參考信號同步的一可調電壓信號,藉此,光源能夠朝向眼睛的方向提供能由眼睛反射的一光學信號。FIG. 7 illustrates a procedure 700 for adjusting optics based on eye tracking, according to some exemplary embodiments. Process 700 Adjusting Optics According to Eye Tracking describes monitoring eye movement and adjusting optics according to eye movement. In step 710, an electronic signal corresponding to measuring an optical signal reflected by an eye is captured, and the optical signal can be provided by a light source. The light source is an adjustable voltage signal synchronized with a predetermined reference signal, whereby the light source can provide an optical signal that can be reflected by the eye toward the direction of the eye.

反射光學信號能被一或複數的光檢測器所接收。在一些實施方式中,被接收後的光信號能經濾波以移除某些波長。舉例來說,一或複數濾波器供對光信號濾波,藉此,只有目標波長保留在濾波後的光學信號中。在某些實施方式中,一或多個透鏡用以在光學信號傳遞至光檢測器前對光學信號進行對焦。透鏡能夠為透明透鏡、固定式透鏡、可調透鏡、光子柵欄等。The reflected optical signal can be received by one or more photodetectors. In some embodiments, the received optical signal can be filtered to remove certain wavelengths. For example, an or complex filter is used to filter the optical signal, whereby only the wavelengths of interest remain in the filtered optical signal. In certain embodiments, one or more lenses are used to focus the optical signal before it is passed to the photodetector. The lens can be a transparent lens, a fixed lens, a tunable lens, a photonic fence, or the like.

在步驟720,依據接收光信號及參考信號的相位差判斷深度圖。接收光信號能在其被接收時便與參考信號進行比較。在其它實施方式中,接收光信號可於進行濾波後再與參考信號進行比較。深度圖包含對應於眼睛的一或複數3D資訊的資料組。在一些實施方式中,能夠依據深度圖的3D資訊產生眼睛的一3D圖像。深度圖能夠即時且持續地進行判斷。深度圖也能夠在預定的時間點進行判斷及更新。舉例來說,深度圖能夠於每微秒、每毫米或每秒等時間間隔內進行判斷及更新。In step 720, the depth map is determined according to the phase difference between the received optical signal and the reference signal. The received optical signal can be compared with the reference signal as it is received. In other embodiments, the received optical signal may be filtered and then compared to a reference signal. The depth map contains one or more sets of 3D information corresponding to the eyes. In some embodiments, a 3D image of the eye can be generated according to the 3D information of the depth map. The depth map enables instant and continuous judgment. The depth map can also be judged and updated at a predetermined time point. For example, the depth map can be determined and updated at time intervals such as every microsecond, every millimeter, or every second.

在步驟730,視線資訊依據深度圖進行判斷。視線資訊能表示依據深度圖的眼睛的視線。視線資訊能夠包含針對眼睛之一特定區域的辨識、針對眼睛之一瞳孔的辨識、針對眼睛之一虹膜的辨識,以及針對眼睛之一生理結構的辨識中之一或多者。在某些實施方式中,眼睛的姿勢能夠由視線資訊進行辨識。眼睛姿勢能夠包含眼睛的移動、眼睛的轉動、眼睛的穩定狀態、眼睛的穩定狀態所對應時間、眼睛的閉合狀態、眼睛的閉合狀態所對應時間、眼睛的睜開狀態、眼睛的睜開狀態所對應時間、眼睛的眨眼睛狀態、眼睛的眨眼睛狀態所對應時間,以及眨眼睛狀態所對應頻率中的一或多者。In step 730, the line of sight information is determined according to the depth map. The sight line information can represent the sight line of the eye according to the depth map. The sight line information can include one or more of identification for a specific area of the eye, identification for a pupil of the eye, identification for an iris of the eye, and identification for a physiological structure of the eye. In some embodiments, the pose of the eye can be identified from the gaze information. Eye posture can include movement of eyes, rotation of eyes, stable state of eyes, time corresponding to stable state of eyes, closed state of eyes, time corresponding to closed state of eyes, open state of eyes, and corresponding time of open state of eyes. One or more of the corresponding time, the blink state of the eye, the time corresponding to the blink state of the eye, and the frequency corresponding to the blink state.

深度圖能夠在與眼睛相切之一平面產生一垂直虹膜向量,其與眼睛相切之一平面相互垂直。在這樣的情況下,視線資訊能夠依據虹膜向量及深度圖進行判斷。深度圖也能夠用以產生在與眼睛相切之一平面上的一瞳孔位置。在這樣的狀況下,視線資訊能夠依據眼睛的瞳孔位置及深度圖進行判斷。The depth map can generate a vertical iris vector in a plane tangent to the eye that is perpendicular to a plane tangent to the eye. In such a case, the gaze information can be judged based on the iris vector and the depth map. The depth map can also be used to generate a pupil position in a plane tangent to the eye. In such a situation, the line-of-sight information can be determined based on the pupil position of the eye and the depth map.

在步驟740,依據視線資訊對可調光學元件進行調整。視線資訊能夠用以調整特定的光學元件。舉例來說,視線資訊能夠包含眼睛在顯示器特定位置的焦點。眼睛的眼睛能夠通過一可調光學元件,例如一可調透鏡或反射鏡。可調透鏡或反射鏡能被啟動或調整透鏡或反射鏡來對光路徑進行重新對焦。在一些實施方式中,可調光學元件能於眼睛被追蹤時,在顯示器上即時地啟動或調整。可調光學元件能夠包含一或多個透鏡、反射鏡等。In step 740, the tunable optical element is adjusted according to the line-of-sight information. Line-of-sight information can be used to tune specific optics. For example, line-of-sight information can include the focus of the eye at a particular location on the display. The eye of the eye can pass through an adjustable optical element, such as an adjustable lens or mirror. Adjustable lenses or mirrors can be activated or adjusted to refocus the light path. In some embodiments, the tunable optics can be activated or adjusted instantly on the display while the eye is being tracked. Tunable optics can include one or more lenses, mirrors, or the like.

如此一來,可調光學元件能夠依據所追蹤的眼睛移動與否進行調整。可調光學元件能夠用以即時地提供動態的對焦及離焦。舉例來說,可調光學元件能夠用以解決觀看一VR或AR顯示器時調焦及輻輳不一致的問題。In this way, the tunable optics can adjust according to the movement of the eye being tracked. Tunable optics can be used to provide dynamic focus and defocus on the fly. For example, tunable optics can be used to solve the problem of inconsistency in focusing and vergence when viewing a VR or AR display.

圖8繪示能與在此描述的技術一起使用的一電腦裝置800及一行動電腦裝置850之示意圖。電腦裝置800用以表示各種形式的數位電腦,例如:筆記型電腦、桌上型電腦、工作站、個人數位助理、伺服器、刀鋒伺服器,大型電腦和其它合適的電腦。電腦裝置850用以表示各種形式的行動裝置,例如:個人數位助理、行動電話、智慧型電話和其它類似的電腦裝置。在此所示的器件的連接、關係和功能僅是說明及描述在性質上應被視為例示性的而非用以限制本文中描述和/或要求保護的發明。8 shows a schematic diagram of a computer device 800 and a mobile computer device 850 that can be used with the techniques described herein. Computer device 800 is used to represent various forms of digital computers, such as notebook computers, desktop computers, workstations, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. The computer device 850 is used to represent various forms of mobile devices, such as personal digital assistants, mobile phones, smart phones, and other similar computer devices. The connections, relationships, and functions of the devices shown herein are illustrative and description only and should be regarded as illustrative in nature and not intended to limit the invention described and/or claimed herein.

電腦裝置800包含一處理器802、記憶體804、一儲存裝置806、連接於記憶體804及高速擴展埠810之一高速介面808,以及連接於低速匯流排814及儲存裝置806之一低速介面812。處理器802、記憶體804、儲存裝置806、高速介面808、高速擴展埠810和低速介面812中的每一個使用各種匯流排互連,並可安裝在一主機板或以其它合適的方式進行安裝。處理器802可處理在電腦裝置800內執行的指令,包含儲存在記憶體804中的指令或在儲存裝置806上以對外部輸入/輸出裝置(例如耦合到高速介面808的顯示器816)上之一GUI顯示圖像資訊。在其它實施方式中,除了多個記憶體和不同種類的記憶體外,也可以使用多個處理器和/或多個匯流排。再者,多個電腦裝置800可連接至任一提供必要操作的裝置(例如:伺服器庫,一組刀鋒伺服器或一多處理器系統)。The computer device 800 includes a processor 802, memory 804, a storage device 806, a high-speed interface 808 connected to the memory 804 and the high-speed expansion port 810, and a low-speed interface 812 connected to the low-speed bus 814 and the storage device 806 . Each of processor 802, memory 804, storage device 806, high-speed interface 808, high-speed expansion port 810, and low-speed interface 812 are interconnected using various bus bars and may be mounted on a motherboard or in other suitable manners . Processor 802 may process instructions executed within computer device 800, including instructions stored in memory 804 or on storage device 806 to communicate with one of external input/output devices (eg, display 816 coupled to high-speed interface 808). GUI displays image information. In other embodiments, multiple processors and/or multiple bus bars may be used in addition to multiple memories and different kinds of memory. Furthermore, multiple computer devices 800 may be connected to any device that provides the necessary operations (eg, a server bank, a set of blade servers, or a multiprocessor system).

記憶體804在電腦裝置800內儲存資訊。在一個實施方式中,記憶體804是揮發性記憶體單元;在另一實施方式中,記憶體804是非揮發性記憶體單元。記憶體804還可為另一種形式的電腦可讀媒體,例如:磁盤或光碟。The memory 804 stores information within the computer device 800 . In one embodiment, memory 804 is a volatile memory cell; in another embodiment, memory 804 is a non-volatile memory cell. The memory 804 can also be another form of computer-readable medium, such as a magnetic disk or an optical disk.

儲存裝置806能對電腦裝置800提供大容量的儲存。在一個實施方式中,儲存裝置806可為一電腦可讀媒體或可包含一電腦可讀媒體,例如:一軟碟裝置、一硬碟裝置、一光碟裝置或一磁帶裝置、一快閃記憶體或其它類似的固態儲存裝置,或一陣列裝置,包含一儲存區域網路或其他組態的裝置。一電腦程序產品可有形地實施在的資訊載體中。電腦程序產品也可以包含指令,當前述指令被執行時,能做前述的一或多個方法。資訊載體為一電腦或機械可讀媒體,例如記憶體804、儲存裝置806或處理器802上的儲存器。The storage device 806 can provide large-capacity storage for the computer device 800 . In one embodiment, the storage device 806 may be a computer-readable medium or may include a computer-readable medium, such as a floppy disk device, a hard disk device, an optical disk device or a tape device, a flash memory or other similar solid state storage device, or an array device, including a storage area network or other configuration device. A computer program product can be tangibly embodied in an information carrier. The computer program product may also contain instructions that, when executed, perform one or more of the methods described above. The information carrier is a computer or machine readable medium such as memory 804 , storage device 806 or storage on processor 802 .

高速介面808管理電腦裝置800的頻寬密集型服務操作,低速介面812則管理低頻寬密集操作;在此對於高速介面808及低速介面812的功能分配僅是示例性的說明。在一個實施方式中,高速介面808耦合到記憶體804、顯示器816(例如通過圖像處理器或加速器)及高速擴展埠810,且其可接受各種擴展卡(圖未示)。在此實施方式中,低速介面812耦合到儲存裝置806和低速匯流排814。低速匯流排814包含各種通訊埠(例如:USB、藍芽、以太網路、無線以太網路),並可透過一網路適配器耦合到一或多個輸入/輸出裝置,例如:一鍵盤、一指示裝置、一掃描器或一網路裝置(例如:一網路交換器或一路由器)。The high-speed interface 808 manages the bandwidth-intensive service operations of the computer device 800 , and the low-speed interface 812 manages the low-bandwidth-intensive operations; the function assignments of the high-speed interface 808 and the low-speed interface 812 are merely illustrative. In one embodiment, high-speed interface 808 is coupled to memory 804, display 816 (eg, through a graphics processor or accelerator), and high-speed expansion port 810, which can accept various expansion cards (not shown). In this embodiment, the low-speed interface 812 is coupled to the storage device 806 and the low-speed bus 814 . The low-speed bus 814 includes various communication ports (eg, USB, bluetooth, ethernet, wireless ethernet) and can be coupled to one or more input/output devices through a network adapter, eg, a keyboard, a A pointing device, a scanner, or a network device (eg, a network switch or a router).

如圖所示,電腦裝置800可以多種不同的形式來實現。舉例來說,電腦裝置800可以標準伺服器820來實現,或在一組這樣的伺服器中多次實現。電腦裝置800也能以刀鋒伺服器824中的一部分來實現。此外,電腦裝置800可以個人電腦,例如筆記型電腦822,來實現。電腦裝置800的器件也可與一行動裝置(圖未示),例如電腦裝置850,的其它器件組合。這些裝置可包含一或多個電腦裝置800、850,且整個系統可由能互相通訊的多個電腦裝置800、850組合。As shown, the computer apparatus 800 may be implemented in a number of different forms. For example, computer device 800 may be implemented as standard server 820, or multiple times within a group of such servers. Computer device 800 can also be implemented as part of blade server 824 . Additionally, the computer device 800 may be implemented as a personal computer, such as a notebook computer 822 . The components of the computer device 800 may also be combined with other components of a mobile device (not shown), such as the computer device 850 . These devices may include one or more computer devices 800, 850, and the entire system may be composed of a plurality of computer devices 800, 850 that can communicate with each other.

電腦裝置850包含處理器852、記憶體864、一輸入/輸出裝置(例如顯示器854)、一通訊介面及在器件之間的收發器。電腦裝置850還可含有儲存裝置,例如微驅動器或其它裝置以提供額外的儲存空間。電腦裝置850、處理器852、記憶體864及顯示器854中的每一個都是利用各種匯流排互相連接,且其中的若干器件可安裝在主機板上或以其它合適的方式進行安裝。Computer device 850 includes processor 852, memory 864, an input/output device (eg, display 854), a communication interface, and transceivers between the devices. Computer device 850 may also contain storage devices, such as microdrives or other devices, to provide additional storage space. Each of computer device 850, processor 852, memory 864, and display 854 are interconnected using various busbars, and several of these devices may be mounted on a motherboard or in other suitable manners.

處理器852可以執行電腦裝置850內的指令(包含儲存在記憶體864中的指令)。處理器可以包含分離的多個類比及數位處理器的晶片組來實現。處理器可例如用於電腦裝置850的其它器件,例如:控制使用者界面、處理器852執行的應用程式及電腦裝置850的無線通訊。Processor 852 may execute instructions within computer device 850 (including instructions stored in memory 864). The processor may be implemented with a chip set comprising separate multiple analog and digital processors. The processor may be used, for example, for other components of the computer device 850 , such as controlling the user interface, applications executed by the processor 852 , and wireless communication of the computer device 850 .

處理器852可透過耦合到顯示器854的控制介面858和顯示器介面856與使用者通訊。顯示器854可例如一TFT LCD、一OLED顯示器或其它適當的顯示技術。顯示器介面856可包括用於驅動顯示器854以向使用者呈現圖形和其它資訊的適當電路。控制介面858可接收來自於使用者的命令並將其轉換後供給處理器852。此外,可提供與處理器852通訊的一外部介面862,以供電腦裝置850與其它鄰近的裝置進行通訊。外部介面862可在一些實施方式中提供有線通訊,在其它實施方式中提供無線通訊;當然,也可使用多介面來提供通訊。Processor 852 may communicate with a user through control interface 858 and display interface 856 coupled to display 854 . Display 854 may be, for example, a TFT LCD, an OLED display, or other suitable display technology. Display interface 856 may include appropriate circuitry for driving display 854 to present graphics and other information to a user. The control interface 858 can receive commands from the user and convert them to the processor 852 . In addition, an external interface 862 in communication with the processor 852 may be provided for the computer device 850 to communicate with other adjacent devices. External interface 862 may provide wired communication in some embodiments and wireless communication in other embodiments; of course, multiple interfaces may also be used to provide communication.

記憶體864在電腦裝置850內儲存資訊。記憶體864可以一或多個電腦可讀媒體或介質、揮發性記憶單元或非揮發性記憶單元來實現。擴展記憶體864還可以通過擴展處理器852而與電腦裝置850連接,擴展處理器852可以包含例如SIMM卡埠。這種擴展記憶體864可為電腦裝置850提供額外的儲存空間,或者也可以電腦裝置850使用的應用程式或其它資訊。具體來說,擴展記憶體864可以包含執行或補充前述的程序的指令,也可以包含安全資訊。因此,擴展記憶體864例如可作為電腦裝置850的安全模組,並可編寫讓裝置能夠安全使用的指令。此外,安全應用和額外的資訊可透過SIMM卡來提供,例如放置不可攻擊的識別資訊在SIMM卡上。Memory 864 stores information within computer device 850 . Memory 864 may be implemented in one or more computer-readable media or media, volatile memory cells, or non-volatile memory cells. The expansion memory 864 may also be connected to the computer device 850 through the expansion processor 852, which may include, for example, a SIMM card port. This expansion memory 864 may provide additional storage space for the computer device 850 , or may also be used by the computer device 850 for applications or other information. Specifically, the expansion memory 864 may contain instructions for executing or supplementing the aforementioned programs, and may also contain security information. Therefore, the expansion memory 864 can be used as a security module of the computer device 850, for example, and can write instructions to enable the device to be used safely. In addition, security applications and additional information can be provided through the SIMM card, such as placing invulnerable identification information on the SIMM card.

記憶體可例如包含如下所述的快閃和/或NVRAM記憶體。在一個實施方式中,電腦程序產品係有形地體現在一資訊載體中。電腦程序產品包含指令;當指令被執行時,可進行前述的一或多個方法。資訊載體是電腦或機械可讀介質,例如記憶體864、擴展記憶體864,處理器852上的記憶體,或可例如示通過收發器或外部介面862接收的傳播信號。The memory may include, for example, flash and/or NVRAM memory as described below. In one embodiment, the computer program product is tangibly embodied in an information carrier. The computer program product contains instructions which, when executed, perform one or more of the aforementioned methods. The information carrier is a computer or machine readable medium such as memory 864 , expansion memory 864 , memory on processor 852 , or a propagated signal received by way of a transceiver or external interface 862 , for example.

電腦裝置850可以通過通訊介面進行無線通訊,通訊介面可以在必要時包含數位信號處理電路。通訊介面可提供例如GSM語音電話、SMS、EMS或MMS訊息、CDMA、TDMA、PDC、WCDMA,CDMA2000或GPRS等各種模式或協議的通訊。前述通訊可例如通過射頻收發機發生。此外,短距離通訊,例如使用藍芽,WiFi或其它此類收發器(未示出)也能發生。此外,GPS(全球定位系統)接收機模組可向電腦裝置850提供額外的導航和位置相關的無線資料,其可以作為電腦裝置850上應用程式。The computer device 850 can communicate wirelessly through a communication interface, and the communication interface can include a digital signal processing circuit when necessary. The communication interface can provide communication in various modes or protocols such as GSM voice calls, SMS, EMS or MMS messages, CDMA, TDMA, PDC, WCDMA, CDMA2000 or GPRS. The aforementioned communication may take place, for example, by means of a radio frequency transceiver. Additionally, short-range communications, such as using Bluetooth, WiFi or other such transceivers (not shown), can also occur. In addition, the GPS (Global Positioning System) receiver module can provide additional navigation and location-related wireless data to the computer device 850 , which can be used as an application on the computer device 850 .

電腦裝置850還可以使用音頻編解碼器860進行語音通訊,音頻編解碼器860可以從使用者接收口語資訊並將其轉換為可用的數位資訊。音頻編解碼器860也可例如通過揚聲器(例如,在電腦裝置850的聽筒中)為使用者產生可聽見的聲音。這種聲音可以包含來自語音電話呼叫的聲音,可以包含記錄的聲音(例如:語音訊息、音樂檔案等),並可包含在電腦裝置850上操作應用程式產生的聲音。Computer device 850 may also use audio codec 860 for voice communication, which may receive spoken information from the user and convert it into usable digital information. Audio codec 860 may also produce audible sound to the user, eg, through speakers (eg, in the earpiece of computer device 850). Such sounds may include sounds from voice phone calls, may include recorded sounds (eg, voice messages, music files, etc.), and may include sounds generated by operating applications on computer device 850.

電腦裝置850可以圖式中的多種不同的形式來實現。例如,它可以被實現為行動電話880。電腦裝置850也可以智慧型電話882的一部分來實現,個人數位助理或其它類似行動裝置的一部分。Computer device 850 may be implemented in a number of different forms as shown in the figures. For example, it can be implemented as a mobile phone 880. The computer device 850 may also be implemented as part of a smartphone 882, part of a personal digital assistant or other similar mobile device.

複數應用能夠基於以下概念來實現。例如,如圖1B及圖1C所繪示的TOF像素也能夠用以檢測使用者的臉部特徵,包含眼睛姿勢追蹤、臉部辨識或表情檢測。在另一示範例中,本發明的眼睛姿勢追蹤可用於替換或補充滑鼠以對在顯示器上使用者感興趣或聚焦的顯示內容進行定位。在一些實施方式中,本發明的眼睛姿勢追蹤能夠用於更準確的挑選使用者感興趣的廣告方向或預測使用者的行為。舉例來說,以人工神經網路的機器人學習能夠依據使用者注電位置來學習並判斷使用者的行為。根據不同使用者的行為,能夠給予不同的權重;例如權重可以依照(1)完全不看(2)有看但沒有選擇(3)有看並選擇由小到大。此外,使用者注視特定內容所持續的時間也可用於記錄使用者感興趣的程度,例如持續時間越長,權重越高。在一些實施方式中,相較於傳統點擊或不點擊廣告的行為,根據使用者感興趣程度而在網頁上顯示廣告,能讓廣告商支付不同的費用。The complex number application can be implemented based on the following concepts. For example, the TOF pixels shown in FIGS. 1B and 1C can also be used to detect the facial features of the user, including eye pose tracking, face recognition or expression detection. In another example, the eye gesture tracking of the present invention can be used to replace or supplement a mouse to locate displayed content on a display that is of interest or focus to a user. In some embodiments, the eye pose tracking of the present invention can be used to more accurately select advertising directions of interest to a user or predict user behavior. For example, the robot learning with artificial neural network can learn and judge the user's behavior according to the user's injection position. According to the behavior of different users, different weights can be given; for example, the weights can be based on (1) not watching at all (2) watching but not choosing (3) watching and choosing from small to large. In addition, the duration of the user's gaze at the specific content can also be used to record the degree of interest of the user, for example, the longer the duration, the higher the weight. In some implementations, displaying advertisements on web pages according to the user's level of interest allows advertisers to pay different fees compared to traditional click or no-click advertisements.

本發明的眼睛姿勢追蹤也可用於遊戲。舉例來說,如圖2A所示的使用者的行動電話220或平板電腦230上可播放賽車或飛行遊戲。使用者眼睛視線變化可用於控制車輛的移動(例如方向),使車輛能夠往使用者眼睛視線指示方向移動。在另一示範例中,由加速儀211、陀螺儀212和眼睛追蹤模組收集的資訊可用於追蹤使用者頭部的運動和眼睛視線。在一些實施方式中,可包含一分離式按鈕來控制速度,以及包含另一可選地按鈕來控制一額外動作,例如:射擊或切換工具。單獨或組合的頭部移動及眼睛視線資訊可用在行動電話上的遊戲運行或用於平板電腦上以判斷使用者的動作,且遊戲可相應地進行響應。在此示範例中,可使用表示使用者頭部的轉動位置的向量和表示使用者眼睛的視線向量的組合來判斷是眼睛視線相對於頭部的角度,進而用以解釋使用者的動作或想法。The eye pose tracking of the present invention can also be used in games. For example, a racing or flying game can be played on the user's mobile phone 220 or tablet computer 230 as shown in FIG. 2A . Changes in the user's eye gaze can be used to control the movement (eg, direction) of the vehicle, enabling the vehicle to move in the direction indicated by the user's eye gaze. In another example, the information collected by the accelerometer 211, the gyroscope 212, and the eye tracking module can be used to track the movement of the user's head and eye gaze. In some embodiments, a separate button may be included to control speed, and another optional button may be included to control an additional action, such as shooting or switching tools. Head movement and eye gaze information, alone or in combination, can be used in a game run on a mobile phone or on a tablet to determine the user's actions, and the game can respond accordingly. In this example, a combination of a vector representing the rotational position of the user's head and a line of sight vector representing the user's eyes can be used to determine the angle of the eye's line of sight relative to the head, which can then be used to explain the user's actions or thoughts .

本文雖然已經參考特定的示範性實施例說明過本揭示內容;不過,應該確認的是,本發明並不受限於所述的實施例;相反地,亦能夠以落在隨附申請專利範圍的精神和範疇裡面的修正例及變更例來實行。例如在前所揭示的流程可重新排序、增加或移除步驟。Although the present disclosure has been described herein with reference to specific exemplary embodiments; however, it should be recognized that the present invention is not limited to the described embodiments; Corrections and alterations in the spirit and scope are implemented. For example, the processes previously disclosed may be reordered, steps may be added or removed.

本發明的實施例和本說明書中描述的所有功能操作可以在數位電子電路中或在電腦軟體,固體或韌體中實現,包括本文中公開的結構規範及其結構的同等物,或其一或多種的組合。本發明的實施方式可以由一或多個電腦程序產品來實現,例如:在電腦可讀媒體上編碼的電腦程序指令的一或多個模組,用於由資料處理裝置執行或控制資料處理裝置的操作。電腦可讀媒體可以是機器可讀存儲裝置、機器可讀存儲基板、記憶裝置、影響機械可讀傳播信號之物建的組合,或其等中的一或多個的組合。在本文中,術語「資料處理裝置」包含用於處理資料的所有設備、裝置和機械,例如:包含可編程處理器、電腦或多個處理器或電腦。該設備可包含,除了硬體之外的其它為電腦程序創造執行環境的代碼,例如:構成處理器硬體的代碼、協議堆疊、資料庫管理系統、操作系統或其等中的一或多個的組合。一傳播信號為人工產生的信號,例如:一機械產生之用於傳輸到合適接收設備的編碼資訊的電、光或電磁信號。Embodiments of the invention and all functional operations described in this specification may be implemented in digital electronic circuits or in computer software, solid state or firmware, including the structural specifications disclosed herein and their structural equivalents, or one or various combinations. Embodiments of the present invention may be implemented by one or more computer program products, such as one or more modules of computer program instructions encoded on a computer-readable medium, for execution by or to control a data processing device operation. The computer-readable medium can be a machine-readable storage device, a machine-readable storage substrate, a memory device, a combination of things that affect a machine-readable propagated signal, or a combination of one or more of the like. As used herein, the term "data processing apparatus" includes all equipment, devices and machinery for processing data, eg including a programmable processor, a computer or multiple processors or computers. The apparatus may contain, in addition to hardware, other code that creates an execution environment for computer programs, such as one or more of the code making up the processor hardware, a protocol stack, a database management system, an operating system, or the like The combination. A propagated signal is an artificially generated signal, such as a mechanically generated electrical, optical or electromagnetic signal that encodes information for transmission to suitable receiving equipment.

計算機程式(也稱為程式、軟體、軟體應用程序、腳本程式與言或程式碼) ,包含編譯或解釋語言,可以任何形式的編程語言進行編寫並可包含獨立程式或作為適用於運算環境的模組、器件、子程序或其它單元等任何形式的部署。電腦程式不一定要對應於文件系統中的文件。一程式可儲存在文件保有其它程式或資料的一部分中(例如儲存在標記語言文檔中的一或多個腳本程式)、專用於所詢問程式的單一文件中,或者儲存在多個同一類型的文件中(例如:存儲一或多個模組、子程序或程式碼的文件)。電腦程式可在一個電腦上執行,電腦程式也可在位於同一地點的多個電腦來執行;當然,電腦程式也可以分布在不同地點並以通訊網路互連的多個電腦。Computer programs (also known as programs, software, software applications, scripting programs, and language or code), including compiled or interpreted languages, may be written in any form of programming language and may include stand-alone programs or as modules suitable for use in a computing environment. Any form of deployment such as groups, devices, subroutines, or other units. Computer programs do not necessarily correspond to files in the file system. A program can be stored in a document that holds a portion of other programs or data (such as one or more scripting programs stored in a markup language document), in a single document dedicated to the program in question, or in multiple documents of the same type (for example: a file that stores one or more modules, subroutines, or code). The computer program can be executed on one computer, and the computer program can also be executed on multiple computers located at the same location; of course, the computer program can also be distributed on multiple computers at different locations and interconnected by a communication network.

適合執行電腦程式的處理器例如包含通用和專用微處理器,以及在數位電腦中任何種類的一或多個處理器。一般來說,處理器會從唯讀記憶體及隨機存取記憶體之至少一者中接收指令和資料。電腦的必要元件是用於執行指令的處理器和用於儲存指令和資料的一個或多個記憶體裝置。通常,電腦還可包含或可操作地耦合至從一或多個用於儲存資料的大容量儲存裝置(例如磁、磁光碟或光碟)接收資料或向其傳輸資料。然而,電腦不需要這樣的裝置。此外,電腦可嵌入在另一個裝置中,例如:平板電腦、行動電話、個人數字助理(PDA)、行動音頻播放器、全球定位系統(GPS)接收器等。適用於儲存電腦程式指令和資料的電腦可讀媒體包含非揮發性記憶體、媒體和記憶體裝置的一種形式,包含半導體記憶裝置(例如:EP ROM、EEPROM和快閃記憶體裝置)及磁碟(例如:內部硬碟或可移動磁碟)、磁光碟、CD ROM和DVD-ROM磁碟。處理器和記憶體可補充或併入專用邏輯電路中。Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and one or more processors of any kind in a digital computer. Generally, processors receive instructions and data from at least one of read-only memory and random access memory. The essential elements of a computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Typically, a computer may also include or be operably coupled to receive data from or transfer data to one or more mass storage devices (eg, magnetic, magneto-optical disks, or optical disks) for storing data. However, a computer does not need such a device. In addition, the computer can be embedded in another device, such as a tablet computer, a mobile phone, a personal digital assistant (PDA), a mobile audio player, a global positioning system (GPS) receiver, and the like. Computer-readable media suitable for storing computer program instructions and data include non-volatile memory, media, and a form of memory devices, including semiconductor memory devices (eg, EP ROM, EEPROM, and flash memory devices) and magnetic disks (eg internal hard disk or removable disk), magneto-optical disks, CD ROM and DVD-ROM disks. The processor and memory may supplement or be incorporated in special purpose logic circuitry.

為了提供與使用者的交連,本發明的實施方式可以在具有一顯示裝置(例如CRT或LCD顯示器)、一鍵盤或一指示裝置(例如滑鼠或軌跡球)的電腦上實現,顯示裝置用以向使用者顯示資訊,使用者可透過鍵盤或軌跡球向電腦提供輸入。當然,也可以使用其它類型的裝置來達成與使用者的交連, 例如提供給使用者的反饋可以是任何形式的感覺反饋(例如:視覺反饋、聽覺反饋或觸覺反饋),並可以任何形式接收來自使用者的輸入,包括:聲音、語音或觸覺輸入。In order to provide communication with the user, embodiments of the present invention may be implemented on a computer having a display device (such as a CRT or LCD display), a keyboard, or a pointing device (such as a mouse or trackball) for Displays information to the user, who can provide input to the computer through a keyboard or trackball. Of course, other types of devices can also be used to achieve communication with the user, for example, the feedback provided to the user can be any form of sensory feedback (eg: visual feedback, auditory feedback or tactile feedback), and can receive any form of feedback from User input, including audio, voice, or tactile input.

本發明的實施方式可在包含後端器件(例如資料服務器) 的電腦系統中實現;本發明的實施方式也可在包含中間器件(例如應用服務器) 的電腦系統中實現;當然,本發明的實施方式可在包含前端器件,例如具有圖形使用者界面或網頁瀏覽器的客戶端電腦,以供使用者能與其進行互動。本發明的實施方式可不排除可在包含後端器件、中間器件及前端器件中一或多個組合的電腦系統中實現。系統中的器件可通過任何形式或媒體的數位資料通訊(例如通訊網路)互連。通訊網路例如包括區域網和廣域網,例如網際網路。Embodiments of the present invention may be implemented in a computer system including a back-end device (eg, a data server); embodiments of the present invention may also be implemented in a computer system including an intermediate device (eg, an application server); of course, the implementation of the present invention The approach may include front-end devices, such as client computers with graphical user interfaces or web browsers, for the user to interact with. Embodiments of the present invention may not preclude implementation in a computer system comprising one or more combinations of back-end devices, middle-end devices, and front-end devices. The devices in the system may be interconnected by any form or medium of digital data communication, such as a communication network. Communication networks include, for example, local area networks and wide area networks, such as the Internet.

電腦系統可以包含客戶端和服務器。一般來說,客戶端和服務器彼此遠離,並通過通網路進行互動。藉由各自電腦上運行的電腦程式及彼此間的客戶端-服務器關係,產生客戶端和服務器間的關係。A computer system may contain clients and servers. In general, clients and servers are remote from each other and interact through a network. A client-server relationship is created by the computer programs running on the respective computers and the client-server relationship between them.

雖然本文包含許多細節,但這是作為對特定實施例的特定特徵的描述,不應被用來限制本發明。在本文中,單獨實施例中描述的某些特徵可以只在單個實施例中實現,但在單獨實施例中描述的特徵也可以在多個實施例中單獨或以組合方式來實現。相反地,在前文中單一實施例中所描述的各種特徵也構在多個實施方式中單獨實現或以次組合的方式實現。此外,前文中描述的特徵雖然在某個實施方式中及最初請求保護內容作用,但請求保護的組合中的一或多個特徵在某些情況下可以從組合中移除,且請求保護的組合可為次組合或次組合的變化。Although many details are contained herein, these are descriptions of specific features of specific embodiments and should not be used to limit the invention. In this document, certain features that are described in a single embodiment can be implemented in only a single embodiment, but features that are described in a single embodiment can also be implemented in multiple embodiments separately or in combination. Conversely, various features that are described above in the context of a single embodiment can also be implemented in multiple embodiments separately or in subcombination. Furthermore, although the features described in the foregoing may function in a certain embodiment and in the originally claimed content, one or more features of the claimed combination may in certain circumstances be removed from the combination and the claimed combination Can be a sub-combination or a variation of a sub-combination.

類似地,雖然在圖示敘述特定次序之操作,該些操作可依其他特定次序或序列次序操作,或依據圖示次序操作以達成所需功效。在特定狀況下,多工或是平行處理可達成具體優點。此外,不同系統元件在不同實施例可能彼此分開,但不應視為該些元件必須在所有實施例彼此分開。Similarly, although operations are depicted in a particular order, the operations may be performed in other specific or sequential orders, or in the order shown, to achieve the desired effect. In certain situations, multiplexing or parallel processing can achieve specific advantages. Furthermore, various system elements may be separated from each other in different embodiments, but should not be considered as necessarily separated from each other in all embodiments.

在任一提到HTML文件的示範例中,可以以其它文件類型或格式替換之,例如HTML文件可以被XML、JSON、純文字或其它類型的文件替代。此外,可以其它資料結構(例如電子表格、關係資料庫或結構化文件)來作為前述的表格或散列表(Hash table)。In any of the examples referring to HTML files, other file types or formats may be substituted, eg, HTML files may be replaced by XML, JSON, plain text, or other types of files. In addition, other data structures (eg, spreadsheets, relational databases, or structured documents) can be used as the aforementioned tables or hash tables.

本發明雖然敘述特定實施例,但是其他實施例仍在本發明範圍內。例如在專利範圍內界定之操作可由不同次序操作,仍可達成所需功效。While specific embodiments of the present invention are described, other embodiments are within the scope of the present invention. For example, the operations defined within the scope of the patent may be performed in a different order and still achieve the desired effect.

100…眼動追蹤系統100…Eye Tracking System

110…眼動追蹤裝置110…Eye Tracking Device

120…使用者眼睛120...User's eyes

130…圖像顯示器130…image display

140…信號處理單元140…Signal processing unit

150…視線資訊150…Sight Information

160、165、190…TOF像素160, 165, 190...TOF pixels

162a、162b…重置電晶體162a, 162b...reset transistors

164a、164b…源極隨耦電晶體164a, 164b...source follower transistors

166a、166b…選擇電晶體166a, 166b... select transistors

167…晶粒/晶圓接合167…Die/Wafer Bonding

169…電路晶圓169…Circuit Wafer

170…操控台170…Console

192a、192b…電容器192a, 192b...Capacitors

194、196…電晶體組194, 196…Transistor group

201、202…頭戴裝置201, 202...headsets

211、221、231…加速儀211, 221, 231...accelerometers

212、222、232…陀螺儀212, 222, 232…Gyroscope

213、360…眼動追蹤模組213, 360...Eye Tracking Module

213A、460A…第一眼動追蹤模組213A, 460A…the first eye tracking module

213B、460B…第二眼動追蹤模組213B, 460B...Second eye tracking module

214…無線傳輸單元214…Wireless Transmission Unit

216A、216B、320、320A、320B、420A、420B、510A、510B…眼睛216A, 216B, 320, 320A, 320B, 420A, 420B, 510A, 510B...eyes

218…透明透鏡218…Transparent lens

218A…第一透明透鏡218A...first transparent lens

218B…第二透明透鏡218B...Second transparent lens

220…電話220…Phone

224、234、244、254、340…無線通訊單元224, 234, 244, 254, 340... wireless communication unit

230…平板電腦230…Tablet

236、555…視線參考點236, 555...line of sight reference point

240…電腦裝置240…Computer devices

246…參考視線246…reference sight

250…電視250…TV

300、400…可穿戴裝置300, 400…Wearables

310、380…螢幕310, 380... screen

325…視線325…Sight

330…可調光學元件、透鏡330…tunable optics, lenses

350…影像投影機350…image projector

370…物件370…objects

375、376…物件虛像375, 376...object virtual image

385…反射鏡385…Reflector

410A…第一透光或不透光螢幕410A…First light-transmitting or opaque screen

410B…第二透光或不透光螢幕410B…Second transparent or opaque screen

425A、425B…視線點425A, 425B...Sight point

430A…第一組可調光學元件430A…First set of tunable optics

430B…第二組可調光學元件430B…Second set of tunable optics

440A…第一無線通訊單元440A…the first wireless communication unit

440B…第二無線通訊單元440B...Second wireless communication unit

450A…第一影像投影機450A…First Image Projector

450B…第二影像投影機450B…Second Image Projector

515…視線參考點515…Sight reference point

520、540…顯示裝置520, 540...display devices

530…分離式周邊裝置530…Separate Peripherals

532、546…機械模組532, 546... Mechanical modules

534、547…眼動追蹤裝置534, 547…Eye Tracking Devices

545…嵌入式周邊裝置545…Embedded Peripherals

600、700…程序600, 700... program

610~640、710~740…步驟610~640, 710~740...steps

800…電腦裝置800…computer device

802…處理器802…processor

804…記憶體804...memory

806…儲存裝置806…Storage device

808…高速介面808…High Speed Interface

810…高速擴展埠810…High Speed Expansion Port

812…低速介面812…Low speed interface

814…低速匯流排814…Low-speed busbar

820…標準伺服器820…Standard server

822…筆記型電腦822…Laptop

824…刀鋒伺服器824…Blade Servo

850…電腦裝置850…computer unit

852…處理器852…processor

854…顯示器854…Display

856…顯示器介面856…Display Interface

858…控制介面858…Control Interface

860…音頻編解碼器860…audio codec

864…記憶體864…memory

880…行動電話880…Mobile phone

882…智慧型電話882…Smartphone

M1~M6…電晶體M1~M6…Transistor

VREF、VREF2…電壓VREF, VREF2...Voltage

Q1、Q1、Q1’、Q2’ …電荷Q1, Q1, Q1', Q2'...charge

Figure 02_image002
…相位差
Figure 02_image002
...phase difference

816…顯示器816…Display

862…外部介面862…External Interface

圖1A繪示一眼動追蹤系統之示意圖。FIG. 1A is a schematic diagram of an eye movement tracking system.

圖1B繪示一時差測距裝置之示意圖。FIG. 1B is a schematic diagram of a time difference ranging device.

圖1C繪示一時差測距裝置之示意圖。FIG. 1C is a schematic diagram of a time difference ranging device.

圖1D及圖1E分別繪示判斷使用者眼睛特徵之技術之示意圖。FIG. 1D and FIG. 1E are schematic diagrams of techniques for judging features of a user's eyes, respectively.

圖1F繪示電荷收集之相位之示意圖。FIG. 1F shows a schematic diagram of the phase of charge collection.

圖1G繪示光發射、檢測及電荷收集之示意圖。Figure 1G shows a schematic diagram of light emission, detection and charge collection.

圖1H繪示在電荷收集期間之信號電壓之示意圖。FIG. 1H shows a schematic diagram of the signal voltage during the charge collection period.

圖1I繪示在電荷收集之相位變化之示意圖。FIG. 1I shows a schematic diagram of the phase change in charge collection.

圖1J繪示光發射、檢測及相位變化之電荷收集之示意圖。FIG. 1J shows a schematic diagram of light emission, detection, and charge collection of phase changes.

圖1K繪示在相位變化時電荷收集之信號電壓之示意圖。FIG. 1K shows a schematic diagram of the signal voltage of the charge collection when the phase changes.

圖1L繪示一時差測距裝置之示意圖。FIG. 1L is a schematic diagram of a time difference ranging device.

圖2A繪示使用眼動追蹤之一跨平台周邊控制系統之示意圖。2A shows a schematic diagram of a cross-platform peripheral control system using eye tracking.

圖2B繪示使用眼動追蹤之一跨平台控制系統之示意圖。FIG. 2B shows a schematic diagram of a cross-platform control system using eye tracking.

圖3A繪示使用眼動追蹤之一可穿戴裝置之示意圖。3A shows a schematic diagram of a wearable device using eye tracking.

圖3B繪示使用一透鏡之一光學影像重新對焦系統之示意圖。3B shows a schematic diagram of an optical image refocusing system using a lens.

圖3C繪示使用一反射鏡之一光學影像重新對焦系統之示意圖。3C shows a schematic diagram of an optical image refocusing system using a mirror.

圖4繪示利用眼動追蹤之一可穿戴裝置之示意圖。FIG. 4 is a schematic diagram of a wearable device utilizing eye tracking.

圖5A繪示安裝在一機械上之一分離式眼動追蹤裝置之示意圖。Figure 5A shows a schematic diagram of a separate eye tracking device mounted on a machine.

圖5B繪示封裝於一機械內之一嵌入式眼動追蹤裝置之示意圖。5B shows a schematic diagram of an embedded eye tracking device packaged in a machine.

圖6繪示一眼動追蹤程序之流程圖。FIG. 6 is a flow chart of the eye movement tracking process.

圖7繪示依據眼動追蹤調整可調光學元件之一程序之流程圖。FIG. 7 is a flowchart illustrating a procedure for adjusting the tunable optical element according to eye tracking.

圖8繪示一電腦裝置及一行動電腦裝置之示意圖。FIG. 8 is a schematic diagram of a computer device and a mobile computer device.

本揭示內容的一或更多個實施例會透過範例圖解在附圖的圖式之中而沒有限制意義,其中,相同的元件符號表示相同的元件。One or more embodiments of the present disclosure are illustrated by way of example, and not in a limiting sense, in the figures of the accompanying drawings, wherein like reference numerals refer to like elements.

201…頭戴裝置 211、221、231…加速儀 212、222、232…陀螺儀 213…眼動追蹤模組 214…無線傳輸單元 216A、216B…眼睛 218…透明透鏡 220…電話 224、234、244、254…無線通訊單元 230…平板電腦 236…視線參考點 240…電腦裝置 250…電視 201…headset 211, 221, 231...accelerometers 212, 222, 232…Gyroscope 213…Eye Tracking Module 214…Wireless Transmission Unit 216A, 216B...Eyes 218…Transparent lens 220…Phone 224, 234, 244, 254... wireless communication unit 230…Tablet 236…Sight reference point 240…Computer devices 250…TV

Claims (14)

一種眼動追蹤系統,包含: 一機械,包含一顯示器,該顯示器包含一或複數可調光學元件; 一眼動追蹤裝置,包含: 單一光學發射器或多個光學發射器,用以發射一或多個特定波長以照亮一使用者眼睛; 一或多個光檢測器,用以接收該使用者眼睛反射的一光信號;以及 一電路,該電路用以: 擷取以該一或多個光檢測器量測從該使用者眼睛反射之該光信號所對應之一電信號; 依據一參考信號及該光檢測器產生之該電信號之間的一相位差判斷該使用者眼睛的一深度圖;以及 依據該深度圖判斷代表該使用者眼睛的一視線資訊; 一信號處理單元,其與該眼動追蹤裝置通訊且與該眼動追蹤裝置分離設置,該信號處理單元用以: 從該眼動追蹤裝置接收代表該視線資訊的一輸出資料;以及 判斷該機械的該顯示器與代表該使用者眼睛的該視線資訊間之關係。 An eye tracking system comprising: a machine including a display including one or more tunable optical elements; Eye tracking device, including: A single optical transmitter or multiple optical transmitters for emitting one or more specific wavelengths to illuminate a user's eye; one or more light detectors for receiving a light signal reflected from the user's eye; and A circuit for: capturing an electrical signal corresponding to the optical signal reflected from the user's eye measured by the one or more light detectors; determining a depth map of the user's eye according to a phase difference between a reference signal and the electrical signal generated by the photodetector; and determining a line of sight information representing the user's eyes according to the depth map; A signal processing unit, which communicates with the eye tracking device and is disposed separately from the eye tracking device, the signal processing unit is used for: receiving an output data representing the gaze information from the eye tracking device; and The relationship between the display of the machine and the line of sight information representing the user's eyes is determined. 如請求項第1項所述之眼動追蹤系統,其更包含一或複數濾波器,用以移除於該光信號中的一非目標波長信號。The eye-tracking system of claim 1, further comprising an or complex filter for removing a non-target wavelength signal in the optical signal. 如請求項第1項所述之眼動追蹤系統,其更包含一或複數透鏡,用以聚焦該光信號於該光檢測器。The eye tracking system of claim 1, further comprising one or more lenses for focusing the light signal on the light detector. 如請求項第1項所述之眼動追蹤系統,其中該一或複數可調光學元件包含一可調透鏡或一可調反射鏡。The eye tracking system of claim 1, wherein the one or more adjustable optical elements comprise an adjustable lens or an adjustable mirror. 如請求項第1項所述之眼動追蹤系統,其更包含一可穿戴裝置,其耦合於該機械與該眼動追蹤裝置以形成一一體形式的硬體封裝,該機械的該顯示器是不透明的,且一視覺影像透過一或複數光源陣列而於顯示器上顯示。The eye-tracking system of claim 1, further comprising a wearable device coupled to the machine and the eye-tracking device to form an integrated hardware package, the display of the machine is Opaque, and a visual image is displayed on a display through an array of one or more light sources. 如請求項第1項所述之眼動追蹤系統,其更包含一可穿戴裝置,其耦合於該機械與該眼動追蹤裝置以形成一一體形式的硬體封裝,該機械之該顯示器對朝向顯示器投影的影像至少部分透明,藉由該顯示器上之該一或該複數可調光學元件來調整朝向該顯示器投影的影像特性。The eye-tracking system of claim 1, further comprising a wearable device coupled to the machine and the eye-tracking device to form an integrated hardware package, the display pair of the machine The image projected toward the display is at least partially transparent, and the characteristics of the image projected toward the display are adjusted by the one or the plurality of adjustable optical elements on the display. 如請求項第5項或第6項所述之眼動追蹤系統,其中該信號處理單元透過無線或有線連接與該一體形式的硬體封裝進行通訊。The eye tracking system of claim 5 or 6, wherein the signal processing unit communicates with the integrated hardware package through a wireless or wired connection. 一種眼動追蹤系統,包含: 一機械,包含一顯示器,該顯示器包含一或複數可調光學元件; 一眼動追蹤裝置,包含: 單一光學發射器或多個光學發射器,用以發射一或多個特定波長以照亮一使用者眼睛; 一或多個光檢測器,用以接收該使用者眼睛反射的一光信號;以及 一電路,該電路用以: 擷取以該一或多個光檢測器量測從該使用者眼睛反射之該光信號所對應之一電信號;以及 依據一參考信號及該光檢測器產生之該電信號之間的一相位差判斷該使用者眼睛的一深度圖; 一信號處理單元,其與該眼動追蹤裝置通訊且與該眼動追蹤裝置分離設置,該信號處理單元用以: 依據該深度圖判斷代表該使用者眼睛的一視線資訊;以及 判斷該機械的該顯示器與代表該使用者眼睛的該視線資訊間之關係。 An eye tracking system comprising: a machine including a display including one or more tunable optical elements; Eye tracking device, including: A single optical transmitter or multiple optical transmitters for emitting one or more specific wavelengths to illuminate a user's eye; one or more light detectors for receiving a light signal reflected from the user's eye; and A circuit for: capturing an electrical signal corresponding to the optical signal reflected from the user's eye measured by the one or more light detectors; and determining a depth map of the user's eye according to a phase difference between a reference signal and the electrical signal generated by the photodetector; A signal processing unit, which communicates with the eye tracking device and is disposed separately from the eye tracking device, the signal processing unit is used for: determining a line of sight information representing the user's eyes according to the depth map; and The relationship between the display of the machine and the line of sight information representing the user's eyes is determined. 如請求項第8項所述之眼動追蹤系統,其更包含一或複數濾波器,用以移除於該光信號中的一非目標波長信號。The eye tracking system of claim 8, further comprising an or complex filter for removing a non-target wavelength signal in the optical signal. 如請求項第8項所述之眼動追蹤系統,其更包含一或複數透鏡,用以聚焦該光信號於該光檢測器。The eye tracking system of claim 8, further comprising one or more lenses for focusing the light signal on the light detector. 如請求項第8項所述之眼動追蹤系統,其中該一或複數可調光學元件包含一可調透鏡或一可調反射鏡。The eye tracking system of claim 8, wherein the one or more adjustable optical elements comprise an adjustable lens or an adjustable mirror. 如請求項第8項所述之眼動追蹤系統,其更包含一可穿戴裝置,其耦合於該機械與該眼動追蹤裝置以形成一一體形式的硬體封裝,該機械的該顯示器是不透明的,且一視覺影像透過一或複數光源陣列而於顯示器上顯示。The eye-tracking system of claim 8, further comprising a wearable device coupled to the machine and the eye-tracking device to form an integrated hardware package, the display of the machine is Opaque, and a visual image is displayed on a display through an array of one or more light sources. 如請求項第8項所述之眼動追蹤系統,其更包含一可穿戴裝置,其耦合於該機械與該眼動追蹤裝置以形成一一體形式的硬體封裝,該機械之該顯示器對朝向顯示器投影的影像至少部分透明,藉由該顯示器上之該一或該複數可調光學元件來調整朝向該顯示器投影的影像特性。The eye-tracking system of claim 8, further comprising a wearable device coupled to the machine and the eye-tracking device to form an integrated hardware package, the machine and the display pair The image projected toward the display is at least partially transparent, and the characteristics of the image projected toward the display are adjusted by the one or the plurality of adjustable optical elements on the display. 如請求項第12項或第13項所述之眼動追蹤系統,其中該信號處理單元透過無線或有線連接與該一體形式的硬體封裝進行通訊。The eye tracking system of claim 12 or 13, wherein the signal processing unit communicates with the all-in-one hardware package through a wireless or wired connection.
TW110137695A 2016-07-15 2017-07-14 Eye gesture tracking system TWI758231B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662363179P 2016-07-15 2016-07-15
US62/363,179 2016-07-15
US15/228,282 US9954016B2 (en) 2015-08-04 2016-08-04 Germanium-silicon light sensing apparatus
US15/228,282 2016-08-04
US15/359,460 2016-11-22
US15/359,460 US10761599B2 (en) 2015-08-04 2016-11-22 Eye gesture tracking

Publications (2)

Publication Number Publication Date
TW202205153A TW202205153A (en) 2022-02-01
TWI758231B true TWI758231B (en) 2022-03-11

Family

ID=62014004

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106123684A TWI743148B (en) 2016-07-15 2017-07-14 Eye gesture tracking computer implement method, eye gesture tracking systems and apparatus
TW110137695A TWI758231B (en) 2016-07-15 2017-07-14 Eye gesture tracking system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106123684A TWI743148B (en) 2016-07-15 2017-07-14 Eye gesture tracking computer implement method, eye gesture tracking systems and apparatus

Country Status (1)

Country Link
TW (2) TWI743148B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI705354B (en) * 2018-05-22 2020-09-21 宏達國際電子股份有限公司 Eye tracking apparatus and light source control method thereof
TWI704530B (en) 2019-01-29 2020-09-11 財團法人資訊工業策進會 Gaze angle determination apparatus and method
TWI683132B (en) * 2019-01-31 2020-01-21 創新服務股份有限公司 Application of human face and eye positioning system in microscope
TWI817040B (en) * 2019-09-09 2023-10-01 仁寶電腦工業股份有限公司 Computer device and operation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201403441A (en) * 2012-07-10 2014-01-16 dong-liang Wang Visual oriented module
CN105009039A (en) * 2012-11-30 2015-10-28 微软技术许可有限责任公司 Direct hologram manipulation using IMU
JP2015194838A (en) * 2014-03-31 2015-11-05 株式会社国際電気通信基礎技術研究所 Line-of-sight direction estimation device and line-of-sight direction estimation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003225207A (en) * 2002-02-04 2003-08-12 Minolta Co Ltd Visual axis detector
JP5224319B2 (en) * 2007-07-23 2013-07-03 富士フイルム株式会社 Stereoscopic imaging device, stereoscopic imaging device control method, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201403441A (en) * 2012-07-10 2014-01-16 dong-liang Wang Visual oriented module
CN105009039A (en) * 2012-11-30 2015-10-28 微软技术许可有限责任公司 Direct hologram manipulation using IMU
JP2015194838A (en) * 2014-03-31 2015-11-05 株式会社国際電気通信基礎技術研究所 Line-of-sight direction estimation device and line-of-sight direction estimation method

Also Published As

Publication number Publication date
TW202205153A (en) 2022-02-01
TW201805856A (en) 2018-02-16
TWI743148B (en) 2021-10-21

Similar Documents

Publication Publication Date Title
US11755104B2 (en) Eye gesture tracking
CN108475109B (en) Eye posture tracking
TWI758231B (en) Eye gesture tracking system
CN104755968B (en) Perspective formula near-to-eye
US10643389B2 (en) Mechanism to give holographic objects saliency in multiple spaces
CN103792661B (en) Integrated double-sensing optical texture for head mounted display
KR102305380B1 (en) Automated content scrolling
US9442567B2 (en) Gaze swipe selection
US9285871B2 (en) Personal audio/visual system for providing an adaptable augmented reality environment
KR20190117415A (en) AR Device and Method For Controlling The Same
US20150262424A1 (en) Depth and Focus Discrimination for a Head-mountable device using a Light-Field Display System
US20130083007A1 (en) Changing experience using personal a/v system
US20130083008A1 (en) Enriched experience using personal a/v system
US10698483B1 (en) Eye-tracking systems, head-mounted displays including the same, and related methods
CN105009039A (en) Direct hologram manipulation using IMU
US20210367097A1 (en) Mesa formation for wafer-to-wafer bonding
US11145786B2 (en) Methods for wafer-to-wafer bonding
CN118614071A (en) System and method for predictive subsurface carrier data
EP4369721A1 (en) Electronic device for providing content in association with external display device and content providing method thereof
KR20220000787A (en) Meta optical device and electronic apparatus including the same
KR20230121516A (en) Method and device for acquiring an image of an object
KR20230080276A (en) Electronic device for providing contents in connection with outer electronic device and method of the same
KR20240008910A (en) Capturing an expanded field of view for augmented reality experiences