TWI757288B - Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture - Google Patents

Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture Download PDF

Info

Publication number
TWI757288B
TWI757288B TW106114606A TW106114606A TWI757288B TW I757288 B TWI757288 B TW I757288B TW 106114606 A TW106114606 A TW 106114606A TW 106114606 A TW106114606 A TW 106114606A TW I757288 B TWI757288 B TW I757288B
Authority
TW
Taiwan
Prior art keywords
dielectric resonator
exciter
dielectric
resonators
resonator
Prior art date
Application number
TW106114606A
Other languages
Chinese (zh)
Other versions
TW201803406A (en
Inventor
詹姆斯 史密斯
Original Assignee
美商恩智浦美國公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩智浦美國公司 filed Critical 美商恩智浦美國公司
Publication of TW201803406A publication Critical patent/TW201803406A/en
Application granted granted Critical
Publication of TWI757288B publication Critical patent/TWI757288B/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/662Aspects related to the boost transformer of the microwave heating apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

An embodiment of a microwave heating apparatus includes a solid state microwave energy source, a chamber, a dielectric resonator antenna with an exciter dielectric resonator and a feed structure, and one or more additional dielectric resonators each positioned within a distance of the exciter resonator to form a dielectric resonator antenna array. The distance is selected so that each additional resonator is closely capacitively coupled with the exciter resonator. The feed structure receives an excitation signal from the microwave energy source. The exciter resonator is configured to produce a first electric field in response to the excitation signal, and the first electric field may directly impinge on the additional resonator(s). Impingement of the first electric field may cause each of the additional resonators to produce a second electric field. The electric fields are directed into the chamber to increase the thermal energy of a load within the chamber.

Description

具有介電諧振器天線陣列的固態微波加熱設備及其操作和製造方法 Solid State Microwave Heating Device with Dielectric Resonator Antenna Array and Methods of Its Operation and Fabrication

發明領域 Field of Invention

本文中所描述的標的物的實施例大體上涉及固態微波加熱設備以及所述設備的操作和製造方法。 Embodiments of the subject matter described herein relate generally to solid state microwave heating devices and methods of operation and manufacture of the same.

發明背景 Background of the Invention

多年來,磁控管已普遍用於微波爐中以產生出於加熱食物、飲料或其它物品的目的的微波能源。磁電管基本上由具有圍繞它的邊緣間隔開的多個圓柱形腔室的圓形腔室、構建到腔室中心中的陰極和被配置成產生磁場的磁體構成當併入到微波系統中時,陰極耦合到直流(DC)電源,所述電源被配置成將高電壓電勢提供到陰極。磁場和圓柱形腔室在腔室內產生電子以在腔室中誘發諧振、高頻射頻(RF)場,並且可以通過探針從腔室中提取場的一部分。耦合到探針的波導將射頻能量引導到負載。舉例來說,在微波爐中,負載可以為加熱腔室,所述加熱腔室的阻抗可 以受在加熱腔室內的物體的影響。 For many years, magnetrons have been commonly used in microwave ovens to generate microwave energy for the purpose of heating food, beverages, or other items. A magnetron consists essentially of a circular chamber with a plurality of cylindrical chambers spaced around its edges, a cathode built into the center of the chamber, and a magnet configured to generate a magnetic field when incorporated into a microwave system , the cathode is coupled to a direct current (DC) power supply configured to provide a high voltage potential to the cathode. The magnetic field and cylindrical chamber generate electrons within the chamber to induce a resonant, high frequency radio frequency (RF) field in the chamber, and a portion of the field can be extracted from the chamber by a probe. A waveguide coupled to the probe guides the RF energy to the load. For example, in a microwave oven, the load may be a heating chamber whose impedance may be to be affected by objects in the heating chamber.

儘管磁控管在微波和其它應用中很好地起作用,但是它們並不是沒有其自身的缺點。舉例來說,磁控管通常需要非常高的電壓來操作。此外,磁控管可能易受在延長的操作週期上的輸出功率降級的影響。因此,包括磁控管的系統的性能可能隨時間推移而降低。另外,磁控管趨於是對振動敏感的大體積且沉重的組件,因此使得它們不適合在可擕式應用中使用。 While magnetrons work well in microwave and other applications, they are not without their own drawbacks. For example, magnetrons typically require very high voltages to operate. Furthermore, magnetrons may be susceptible to output power degradation over extended operating periods. Consequently, the performance of a system including a magnetron may degrade over time. Additionally, magnetrons tend to be bulky and heavy components that are sensitive to vibration, thus making them unsuitable for use in portable applications.

依據本發明之一實施例,係特地提出一種微波加熱設備,其特徵在於,包括:固態微波能量來源;第一介電諧振器天線,其包括第一激勵器介電諧振器和接近所述第一激勵器介電諧振器的第一饋送結構,其中所述第一激勵器介電諧振器具有頂部表面和相對的底部表面,其中所述第一饋送結構電耦合到所述微波能量來源以從所述微波能量來源中接收第一激勵信號,並且其中所述第一激勵器介電諧振器被配置成響應於提供到所述第一饋送結構的所述激勵信號產生第一電場;以及一個或多個第二介電諧振器,其放置在所述第一激勵器介電諧振器的距離內以形成介電諧振器天線陣列,其中選擇所述距離使得當提供所述激勵信號時所述第二介電諧振器中的每一個與所述第一激勵器介電諧振器緊密地電容式耦合。 According to an embodiment of the present invention, a microwave heating device is specially proposed, which is characterized by comprising: a solid-state microwave energy source; a first dielectric resonator antenna, which includes a first exciter dielectric resonator and a A first feed structure of an exciter dielectric resonator, wherein the first exciter dielectric resonator has a top surface and an opposing bottom surface, wherein the first feed structure is electrically coupled to the source of microwave energy to remove a first excitation signal is received in the microwave energy source, and wherein the first exciter dielectric resonator is configured to generate a first electric field in response to the excitation signal provided to the first feed structure; and one or A plurality of second dielectric resonators placed within a distance of the first exciter dielectric resonator to form a dielectric resonator antenna array, wherein the distance is selected such that when the excitation signal is provided the first exciter Each of the two dielectric resonators is tightly capacitively coupled to the first exciter dielectric resonator.

100、300、900、2400:微波加熱設備;微波系統 100, 300, 900, 2400: microwave heating equipment; microwave systems

110、910、2410:外殼 110, 910, 2410: Shell

112、912、1012、1112、2412:底座部分 112, 912, 1012, 1112, 2412: base part

114、914、2414:腔室部分 114, 914, 2414: Chamber section

116、916、2416:蓋子 116, 916, 2416: Lid

118:外部連接埠 118: External port

120、320、920、2420:加熱腔室 120, 320, 920, 2420: Heating chamber

122、922:內側壁 122, 922: inner wall

130:控制面板 130: Control Panel

140、940、2440:負載 140, 940, 2440: load

200、1000、1100、1900:微波加熱設備 200, 1000, 1100, 1900: microwave heating equipment

310:系統控制器 310: System Controller

330:使用者介面 330: User Interface

340:供電系統;加熱腔室;電源;電源系統 340: Power Supply System; Heating Chamber; Power Supply; Power Supply System

350、950、1050、1150、2450、2452:模組 350, 950, 1050, 1150, 2450, 2452: Modules

352:固態振盪器子系統 352: Solid State Oscillator Subsystem

354:頻率調諧電路 354: Frequency Tuning Circuit

356:偏置電路 356: Bias circuit

358:放大器輸出節點 358: Amplifier output node

360、1060、1160、1200、1300、1400、1500、1600、1700:DRA陣列 360, 1060, 1160, 1200, 1300, 1400, 1500, 1600, 1700: DRA arrays

370:饋送結構 370: Feeding Structure

400、510、520、1800、1900、2000、2100、2200、2300:介電諧振器 400, 510, 520, 1800, 1900, 2000, 2100, 2200, 2300: Dielectric resonators

410:頂部表面 410: Top Surface

412:底部表面 412: Bottom Surface

416:外部側壁 416: External Sidewall

420、512:中心孔 420, 512: center hole

422:內部側壁 422: Internal Sidewall

430:高度 430: height

432:直徑 432: Diameter

440:周向電子場 440: Circumferential Electron Field

442:正交電子場、電子場 442: Orthogonal Electron Field, Electron Field

450:慣性座標系 450: Inertial Coordinate System

500:DRA陣列、DRA天線 500: DRA array, DRA antenna

530、1330、1640:基板 530, 1330, 1640: Substrate

540:距離 540: Distance

550、968、1250、1260、1350、1352、1550:饋送 550, 968, 1250, 1260, 1350, 1352, 1550: Feed

560、1260、1360、1460、1560、1174、1176:微帶線路 560, 1260, 1360, 1460, 1560, 1174, 1176: Microstrip lines

700:電路圖 700: Circuit Diagram

710:第一諧振電路 710: First Resonant Circuit

720:第二鄰近諧振電路、第二諧振電路 720: Second Adjacent Resonant Circuit, Second Resonant Circuit

730:第三鄰近諧振電路、第三諧振電路 730: Third Adjacent Resonant Circuit, Third Resonant Circuit

740:電容器 740: Capacitor

924:腔室底部表面 924: Chamber Bottom Surface

926:腔室頂部表面 926: Chamber top surface

952、1152:功率電晶體 952, 1152: Power transistor

954:傳導傳輸線路 954: Conductive Transmission Lines

960、2460:第一DRA陣列;DRA陣列 960, 2460: first DRA array; DRA array

962、2462:第二DRA陣列;DRA陣列 962, 2462: Second DRA array; DRA array

964、1210、1310-1313、1410-1412、1512、1520、1522、 1610、1620、1630、:介電諧振器;激勵器諧振器 964, 1210, 1310-1313, 1410-1412, 1512, 1520, 1522, 1610, 1620, 1630,: dielectric resonators; exciter resonators

966、1320、1420:介電諧振器;寄生諧振器 966, 1320, 1420: Dielectric Resonators; Parasitic Resonators

970、1070、1170、1170、2470、2472:電子基板 970, 1070, 1170, 1170, 2470, 2472: Electronic substrates

972、1072、1172:接地平面 972, 1072, 1172: Ground plane

980、1080:DRA陣列基板 980, 1080: DRA array substrate

982:罩蓋 982: Cover

990:遮蔽區 990: Shaded Area

1064、1164:激勵器諧振器 1064, 1164: Exciter Resonator

1066、1166:寄生諧振器 1066, 1166: Parasitic resonators

1082:保形塗層 1082: Conformal Coating

1174:孔隙 1174: Pore

1220:介電諧振器;寄生介電諧振器;寄生諧振器 1220: Dielectric Resonators; Parasitic Dielectric Resonators; Parasitic Resonators

1640:上部表面 1640: Upper Surface

1710:諧振器;介電諧振器;第一介電諧振器 1710: Resonator; Dielectric Resonator; First Dielectric Resonator

1720:諧振器;介電諧振器;第二介電諧振器 1720: Resonator; Dielectric Resonator; Second Dielectric Resonator

1730:諧振器;介電諧振器;第三介電諧振器 1730: Resonators; Dielectric Resonators; Third Dielectric Resonators

2412:座部分 2412: Block part

2420:腔室 2420: Chamber

2502-2508、2602-2608:塊 2502-2508, 2602-2608: Blocks

在結合以下附圖考慮時,通過參考詳細描述 和權利要求書可得到標的物的更透徹理解,其中類似參考標號指代遍及各圖的相似元件。 The detailed description is by reference when considered in conjunction with the following figures A more thorough understanding of the subject matter can be obtained in the claims, wherein like reference numerals refer to like elements throughout the various figures.

圖1和圖2是根據示例實施例相應地在打開狀態和關閉狀態中的可擕式微波加熱設備的透視圖;圖3是根據示例實施例的包括微波功率產生模組和介電諧振器天線(DRA)陣列的微波加熱設備的簡化的框圖;圖4是介電諧振器的透視圖;圖5和圖6是根據示例實施例的DRA陣列的俯視圖和透視圖;圖7是表示根據一個實施例的具有三個鄰近介電諧振器的DRA的電子特性的電路圖;圖8是根據一個實施例描繪DRA陣列的增益頻寬的圖;圖9是根據示例實施例的圖1和圖2的可擕式微波加熱設備的截面側視圖;圖10是根據另一示例實施例的可擕式微波加熱設備的一部分的截面側視圖;圖11是根據又一示例實施例的可擕式微波加熱設備的一部分的截面側視圖;圖12是根據另一示例實施例的適用於微波加熱設備中的DRA陣列的俯視圖;圖13是根據另一示例實施例的適用於微波加熱設備中的DRA陣列的俯視圖; 圖14是根據另一示例實施例的適用於微波加熱設備中的DRA陣列的俯視圖;圖15是根據又一示例實施例的適用於微波加熱設備中的DRA陣列的俯視圖;圖16是根據又一示例實施例的適用於微波加熱設備中的DRA陣列的透視圖;圖17是根據又一示例實施例的適用於微波加熱設備中的DRA陣列的透視圖;圖18到圖23是具有各種形狀的介電諧振器的透視圖;圖24是根據另一示例實施例的可擕式微波加熱設備的截面側視圖;圖25是根據示例實施例的操作包括DRA陣列的微波系統的方法的流程圖;以及圖26是根據示例實施例製造包括DRA陣列的微波系統的方法的流程圖。 1 and 2 are perspective views of a portable microwave heating apparatus in an open state and a closed state, respectively, according to an example embodiment; FIG. 3 is a diagram including a microwave power generation module and a dielectric resonator antenna according to an example embodiment A simplified block diagram of a microwave heating apparatus for a (DRA) array; FIG. 4 is a perspective view of a dielectric resonator; FIGS. 5 and 6 are top and perspective views of a DRA array according to example embodiments; A circuit diagram of the electronic characteristics of a DRA with three adjacent dielectric resonators of an embodiment; FIG. 8 is a graph depicting the gain bandwidth of a DRA array according to an embodiment; FIG. 9 is a diagram of FIGS. 1 and 2 according to an example embodiment. sectional side view of a portable microwave heating device; FIG. 10 is a sectional side view of a portion of a portable microwave heating device according to another example embodiment; FIG. 11 is a portable microwave heating device according to a further example embodiment 12 is a top view of a DRA array suitable for use in a microwave heating apparatus according to another example embodiment; FIG. 13 is a top view of a DRA array suitable for use in a microwave heating apparatus according to another example embodiment ; 14 is a top view of a DRA array suitable for use in a microwave heating apparatus according to another example embodiment; FIG. 15 is a top view of a DRA array suitable for use in a microwave heating apparatus according to yet another example embodiment; FIG. 16 is according to yet another example embodiment A perspective view of a DRA array suitable for use in a microwave heating apparatus of an example embodiment; FIG. 17 is a perspective view of a DRA array suitable for use in a microwave heating apparatus according to yet another example embodiment; FIGS. 18-23 are of various shapes A perspective view of a dielectric resonator; FIG. 24 is a cross-sectional side view of a portable microwave heating device according to another example embodiment; FIG. 25 is a flowchart of a method of operating a microwave system including a DRA array according to an example embodiment; And FIG. 26 is a flowchart of a method of fabricating a microwave system including a DRA array according to an example embodiment.

具體實施方式 Detailed ways

以下詳細描述本質上僅為說明性的,且並非意圖限制標的物的實施例或此類實施例的應用和使用。如本文中所使用,詞語“示例性”和“例子”意味著“充當例子、實例或說明”。本文中描述為示例性或例子的任何實施方案未必應被解釋為比其它實施方案優選或有利。此外,並非意圖受先前技術領域、背景技術或以下詳細描述中呈現的任何 所表達或暗示的理論的限定。 The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the words "exemplary" and "example" mean "serving as an example, instance, or illustration." Any embodiment described herein as illustrative or example should not necessarily be construed as preferred or advantageous over other embodiments. Furthermore, there is no intention to be bound by any presentation of the preceding technical field, background or the following detailed description A limitation of the theory expressed or implied.

本文中所描述的標的物的實施例涉及固態微波加熱設備(例如,固定或可擕式微波爐、微波除霜器等等),然而各種實施例也可以在其它系統中使用。如下文更詳細地描述,示例性微波加熱設備是使用微波產生模組、介電諧振器天線(DRA)陣列和腔室來實現的。微波產生模組將射頻能量提供到DRA陣列,且DRA陣列將能量輻射到腔室中,在所述腔室內可放置負載(例如,食物負載或一些其它型的負載)。 Embodiments of the subject matter described herein relate to solid state microwave heating devices (eg, stationary or portable microwave ovens, microwave defrosters, etc.), although various embodiments may also be used in other systems. As described in more detail below, an exemplary microwave heating apparatus is implemented using a microwave generating module, a dielectric resonator antenna (DRA) array, and a chamber. The microwave generating module provides radio frequency energy to the DRA array, and the DRA array radiates the energy into a chamber in which a load (eg, a food load or some other type of load) can be placed.

如本文所使用,術語“介電諧振器”是指由能夠接收射頻能量的塊狀介電材料(例如,陶瓷)組成的物件並且以一個或多個諧振模式在介電諧振器的諧振頻率處諧振射頻能量。諧振頻率是由介電材料的形狀和尺寸以及塊狀介電材料的介電常數確定的。一般而言,介電諧振器被表徵為具有相對較高的介電常數和相對較高的Q因數。根據各種實施例,可以在介電諧振器中激發若干類型的諧振模式。 As used herein, the term "dielectric resonator" refers to an object composed of a bulk dielectric material (eg, ceramic) capable of receiving radio frequency energy and in one or more resonant modes at the resonant frequency of the dielectric resonator Resonant RF energy. The resonant frequency is determined by the shape and size of the dielectric material and the dielectric constant of the bulk dielectric material. Generally speaking, dielectric resonators are characterized as having relatively high dielectric constants and relatively high Q-factors. According to various embodiments, several types of resonant modes can be excited in a dielectric resonator.

如本文所使用,術語“介電諧振器天線”或“DRA”是指包括介電諧振器和一個或多個射頻信號饋送的天線組合件。射頻信號饋送被配置成攜帶射頻信號並且相對於介電諧振器放置,使得射頻信號激發介電諧振器,並且引起介電諧振器以諧振模式在介電諧振器的諧振頻率處諧振射頻能量。DRA的諧振特性取決於介電諧振器的形狀和大小並且取決於饋送的形狀、大小和位置。如本文所 使用,通過射頻信號從饋送中直接地激發的介電諧振器被稱作“激勵器介電諧振器”。理想地,射頻信號為具有激勵器介電諧振器的諧振頻率處的頻率或接近激勵器介電諧振器的諧振頻率的頻率的振盪信號。 As used herein, the term "dielectric resonator antenna" or "DRA" refers to an antenna assembly that includes a dielectric resonator and one or more radio frequency signal feeds. The radio frequency signal feed is configured to carry the radio frequency signal and is positioned relative to the dielectric resonator such that the radio frequency signal excites the dielectric resonator and causes the dielectric resonator to resonate radio frequency energy in a resonant mode at the resonant frequency of the dielectric resonator. The resonant characteristics of the DRA depend on the shape and size of the dielectric resonator and on the shape, size and location of the feed. as described herein In use, a dielectric resonator that is excited directly from a feed by a radio frequency signal is referred to as an "exciter dielectric resonator". Ideally, the radio frequency signal is an oscillating signal having a frequency at or near the resonant frequency of the exciter dielectric resonator.

根據若干實施例,DRA包括具有插入到介電材料中的一個或多個金屬單極探針(即,饋送)的介電諧振器。在DRA的一側上存在接地平面使得DRA主要在“向前”方向上(例如,到鄰近於DRA的加熱腔室中)輻射功率。在替代實施例中,DRA包括安置在接地基板上或接近接地基板的介電諧振器,所述接地基板具有借助於在接地基板中所提供的單極孔隙饋送傳遞到介電諧振器的能量。還可能直接連接到微帶傳輸線路以及通過微帶傳輸線路激勵。 According to several embodiments, a DRA includes a dielectric resonator with one or more metallic monopole probes (ie, feeds) inserted into a dielectric material. The presence of a ground plane on one side of the DRA causes the DRA to radiate power primarily in the "forward" direction (eg, into the heating chamber adjacent to the DRA). In an alternative embodiment, the DRA includes a dielectric resonator disposed on or near a grounded substrate, the grounded substrate having energy transferred to the dielectric resonator by means of a monopolar aperture feed provided in the grounded substrate. It is also possible to connect directly to the microstrip transmission line and to excite via the microstrip transmission line.

如本文所使用,術語“介電諧振器天線陣列”和“DRA陣列”是指包括至少一個DRA和緊密地電容式耦合到DRA的至少一個額外的介電諧振器的組合件。在一個實施例中,DRA的介電諧振器和額外的介電諧振器佈置在共面配置中。換句話說,DRA陣列包括多個緊密地電容式耦合的介電諧振器和一個或多個饋送,所述一個或多個饋送在多個介電諧振器中的一個或多個中或接近多個介電諧振器中的一個或多個以形成陣列中的一個或多個DRA。 As used herein, the terms "dielectric resonator antenna array" and "DRA array" refer to an assembly that includes at least one DRA and at least one additional dielectric resonator tightly capacitively coupled to the DRA. In one embodiment, the dielectric resonator of the DRA and the additional dielectric resonator are arranged in a coplanar configuration. In other words, the DRA array includes a plurality of closely capacitively coupled dielectric resonators and one or more feeds that are in or near many of the one or more of the plurality of dielectric resonators one or more of the dielectric resonators to form one or more DRAs in the array.

根據一個實施例,DRA的介電諧振器被稱作“激勵器諧振器”,因為它被配置成直接地激發並且通過在饋送上攜帶的信號引起諧振(即,它直接地從饋送接收電 磁能量)。相比之下,DRA陣列中的介電諧振器中的一個或多個可以為“寄生諧振器”,因為它並不直接地從饋送接收電磁能量。在此類實施例中,DRA的一個或多個激勵器諧振器和一個或多個寄生諧振器被佈置成使得電容耦合出現在DRA的介電諧振器之間,或更具體地說出現在DRA的激勵器諧振器和寄生諧振器之間。換句話說,寄生諧振器被佈置成使得由激勵器諧振器產生的電場(被稱作“激勵器產生的電場”)直接地衝擊一個或多個寄生諧振器,這使得寄生諧振器也進行諧振。換句話說,由於激勵器產生的電場衝擊寄生諧振器,所以寄生諧振器繼而產生“寄生產生的電場”。DRA陣列中的介電諧振器被佈置成使得在大體上相同的方向上各自主要地引導激勵器產生的電場和寄生產生的電場。在微波加熱設備的一個實施例中,在微波加熱設備的加熱腔室的方向上各自主要地引導激勵器產生的電場和寄生產生的電場,其中腔室被配置成包含待加熱的負載(例如,食物負載)。如本文所使用,術語“加熱”和它的各種衍生詞指代增加物質的熱能。儘管此類熱能的增加(或“加熱”)可以將物質的溫度升高到明顯的高於環境溫度的溫度,但是“加熱”還可以涉及以任何量提升物質的溫度(例如,解凍物質以將溫度從零下升高到環境溫度)。 According to one embodiment, the DRA's dielectric resonator is referred to as an "exciter resonator" because it is configured to directly excite and induce resonance through a signal carried on the feed (ie, it directly receives electrical power from the feed). magnetic energy). In contrast, one or more of the dielectric resonators in a DRA array may be a "parasitic resonator" in that it does not receive electromagnetic energy directly from the feed. In such embodiments, the one or more exciter resonators and the one or more parasitic resonators of the DRA are arranged such that capacitive coupling occurs between the dielectric resonators of the DRA, or more specifically, the DRA between the exciter resonator and the parasitic resonator. In other words, the parasitic resonators are arranged such that the electric field generated by the exciter resonator (referred to as the "exciter-generated electric field") directly impinges on one or more parasitic resonators, which causes the parasitic resonators to also resonate . In other words, the parasitic resonator then generates a "parasitic generated electric field" as the electric field generated by the exciter impinges on the parasitic resonator. The dielectric resonators in the DRA array are arranged such that the exciter-generated electric field and the parasitic-generated electric field are each primarily directed in substantially the same direction. In one embodiment of the microwave heating device, the exciter-generated electric field and the parasitic-generated electric field are each primarily directed in the direction of a heating chamber of the microwave heating device, wherein the chamber is configured to contain the load to be heated (eg, food load). As used herein, the term "heating" and its various derivatives refer to increasing the thermal energy of a substance. While such an increase in thermal energy (or "heating") can raise the temperature of the substance to temperatures significantly above ambient, "heating" can also involve raising the temperature of the substance by any amount (eg, thawing the substance to cool it down) temperature rises from minus to ambient).

如下文將更詳細地論述,本文所公開的DRA陣列的實施例構成相對寬頻的結構,所述結構將來自微波產生模組的射頻能量有效地耦合到加熱腔室內的負載中。 當與用於微波加熱應用的常規天線相比較時,由於寬的頻寬,DRA陣列的實施例對近場負載很不敏感(例如,由於放置在腔室內的負載)。 As will be discussed in more detail below, embodiments of the DRA arrays disclosed herein constitute relatively broadband structures that efficiently couple radio frequency energy from the microwave generating module into the load within the heating chamber. When compared to conventional antennas for microwave heating applications, embodiments of DRA arrays are very insensitive to near-field loads (eg, due to loads placed within the chamber) due to the wide bandwidth.

圖1和圖2是根據示例實施例相應地在打開狀態和關閉狀態中的可擕式微波加熱設備100的透視圖。微波加熱設備100包括外殼110、加熱腔室120、控制面板130、一個或多個微波功率產生模組(例如,模組350,圖3)、一個或多個DRA陣列(例如,DRA陣列500,圖5)和在下文中更詳細地論述的其它組件。 1 and 2 are perspective views of the portable microwave heating apparatus 100 in an open state and a closed state, respectively, according to an example embodiment. Microwave heating apparatus 100 includes housing 110, heating chamber 120, control panel 130, one or more microwave power generating modules (eg, module 350, FIG. 3), one or more DRA arrays (eg, DRA array 500, 5) and other components discussed in more detail below.

在一個實施例中,外殼110包括底座部分112、腔室部分114和蓋子116。在一個實施例中,底座部分112可以包含微波功率產生模組和至少一個DRA陣列。此外,底座部分112可以包含電源系統,例如對微波功率產生模組和控制面板130供電的可充電電池系統或不可再充電電池系統。當外部連接埠118耦合到對應的纜線(未示出)時,外部介面118可用於接收功率來操作設備100和/或對設備100的可再充電電池系統再充電。此外,外部連接埠118可用於與外部系統通信以接收(例如)軟體更新。 In one embodiment, the housing 110 includes a base portion 112 , a chamber portion 114 and a lid 116 . In one embodiment, the base portion 112 may contain a microwave power generation module and at least one DRA array. Additionally, the base portion 112 may contain a power supply system, such as a rechargeable battery system or a non-rechargeable battery system that powers the microwave power generation module and control panel 130 . When the external port 118 is coupled to a corresponding cable (not shown), the external interface 118 may be used to receive power to operate the device 100 and/or to recharge the rechargeable battery system of the device 100 . Additionally, the external port 118 may be used to communicate with external systems to receive, for example, software updates.

加熱腔室120位於外殼110的腔室部分114內,並且由內側壁122、腔室底部表面(例如,表面924,圖9)和腔室頂部表面(例如,表面926,圖9)限定。如圖1中所示,當打開蓋子116時,可進入加熱腔室120並且可以在腔室120內放置負載140(例如,食物負載或其它負 載)。如圖2中所示,當關閉蓋子116時,加熱腔室120變為封閉的空氣腔室,所述空氣腔室基本上充當具有封閉端部的波導。根據一個實施例,當打開蓋子116時解除啟動微波產生模組,並且僅當關閉蓋子116時可以啟動微波產生模組。因此,微波加熱設備100可以包括感測器或用於檢測蓋子116的狀態(即,打開或關閉)的其它機構。 Heating chamber 120 is located within chamber portion 114 of housing 110 and is defined by inner sidewall 122, a chamber bottom surface (eg, surface 924, FIG. 9), and a chamber top surface (eg, surface 926, FIG. 9). As shown in FIG. 1 , when lid 116 is opened, heating chamber 120 may be accessed and a load 140 (eg, a food load or other negative load) may be placed within chamber 120 load). As shown in FIG. 2, when the lid 116 is closed, the heating chamber 120 becomes a closed air chamber, which essentially acts as a waveguide with closed ends. According to one embodiment, the microwave generating module is deactivated when the lid 116 is opened, and the microwave generating module can be activated only when the lid 116 is closed. Accordingly, microwave heating device 100 may include a sensor or other mechanism for detecting the state (ie, open or closed) of lid 116 .

為了操作微波加熱設備100,使用者可以打開蓋子116、放置一個或多個物體(例如,負載140)到加熱腔室120中、關閉蓋子116以及通過規定所需加熱持續時間和所需功率電平的控制面板130提供輸入。作為響應,系統控制器(例如,控制器310,圖3)使得微波功率產生模組(例如,模組350,圖3)將激勵信號提供到DRA陣列(例如,DRA陣列360,圖3)。作為響應,DRA陣列將微波頻譜中的電磁能量(在本文中被稱作“微波能量”)輻射到加熱腔室120中。更具體地說,系統控制器使得微波功率產生模組致使DRA陣列在與使用者輸入一致的功率電平處將微波能量輻射到加熱腔室120中一段時間。微波能量增加了負載140的熱能(即,微波能量引起負載變熱)。 To operate microwave heating device 100, a user may open lid 116, place one or more objects (eg, load 140) into heating chamber 120, close lid 116, and by specifying desired heating duration and desired power level The control panel 130 provides input. In response, a system controller (eg, controller 310, Figure 3) causes a microwave power generation module (eg, module 350, Figure 3) to provide excitation signals to a DRA array (eg, DRA array 360, Figure 3). In response, the DRA array radiates electromagnetic energy in the microwave spectrum (referred to herein as "microwave energy") into the heating chamber 120 . More specifically, the system controller causes the microwave power generation module to cause the DRA array to radiate microwave energy into the heating chamber 120 for a period of time at a power level consistent with the user input. The microwave energy increases the thermal energy of the load 140 (ie, the microwave energy causes the load to heat up).

每個DRA陣列被配置成將微波能量輻射到加熱腔室120中。在一個實施例中,輻射能量具有微波頻譜中的波長,所述波長具體來說適用於加熱液體和固體物體(例如,液體和食物)。舉例來說,每個DRA陣列可被配置成將具有在約2.0吉赫茲(GHz)到約3.0GHz的範圍內的頻率的微波能量輻射到加熱腔室120中。更具體地 說,在一個實施例中,每個DRA陣列可被配置成將具有約2.45GHz波長的微波能量輻射到加熱腔室120中。 Each DRA array is configured to radiate microwave energy into the heating chamber 120 . In one embodiment, the radiant energy has wavelengths in the microwave spectrum that are particularly suitable for heating liquids and solid objects (eg, liquids and food). For example, each DRA array may be configured to radiate microwave energy having a frequency in the range of about 2.0 gigahertz (GHz) to about 3.0 GHz into the heating chamber 120 . More specifically That said, in one embodiment, each DRA array may be configured to radiate microwave energy having a wavelength of about 2.45 GHz into the heating chamber 120 .

如下文將進一步詳細描述,每個微波功率產生模組可實施為集成的“固態”模組,在所述模組中每個微波功率產生模組包括產生和輻射微波能量的固態電路配置(而不是包括磁電管)。因此,當與常規的基於磁電管的微波系統相比較時,系統的實施例(其中包括微波功率產生模組的實施例)可在相對較低電壓處操作、可不太易受隨時間推移的輸出功率降級的影響和/或可相對較緊湊。 As will be described in further detail below, each microwave power generation module may be implemented as an integrated "solid state" module in which each microwave power generation module includes a solid state circuit configuration that generates and radiates microwave energy (while not including the magnetron). Thus, when compared to conventional magnetron-based microwave systems, embodiments of the system, including embodiments of microwave power generation modules, may operate at relatively lower voltages, may be less susceptible to output over time The effects of power degradation and/or may be relatively compact.

儘管微波加熱設備100經示出其組件相對於彼此呈特定的相對取向,但應理解各種組件也可不同地取向。此外,各種組件的物理配置可以不同。舉例來說,控制面板130可具有更多、更少或不同的使用者介面組件,和/或使用者介面組件可不同地佈置。替代地,控制面板130可以位於設備100的底座部分112或蓋子部分116內。此外,儘管在圖1中示出大體上圓柱形的設備100和加熱腔室120,但是應理解在其它實施例中加熱腔室可具有不同形狀(例如,矩形、橢圓等等)。另外,微波加熱設備100可以包括並未在圖1中具體地描繪的額外組件。更進一步,儘管在本文中示出且詳細地描述“可擕式”微波加熱設備的實施例,但是本領域的技術人員將理解DRA陣列的發明性實施例還可適用於固定的微波加熱設備(例如,大型設備和/或通過外部供電網路(或電網)供電的設備)。 Although microwave heating apparatus 100 is shown with its components in a particular relative orientation relative to one another, it should be understood that the various components may be oriented differently. Additionally, the physical configuration of the various components may vary. For example, the control panel 130 may have more, fewer, or different user interface components, and/or the user interface components may be arranged differently. Alternatively, the control panel 130 may be located within the base portion 112 or the lid portion 116 of the device 100 . Furthermore, although generally cylindrical apparatus 100 and heating chamber 120 are shown in FIG. 1 , it should be understood that the heating chamber may have different shapes (eg, rectangular, elliptical, etc.) in other embodiments. Additionally, microwave heating apparatus 100 may include additional components not specifically depicted in FIG. 1 . Still further, although embodiments of "portable" microwave heating devices are shown and described in detail herein, those skilled in the art will appreciate that the inventive embodiments of DRA arrays are also applicable to stationary microwave heating devices ( For example, large equipment and/or equipment powered by an external power supply network (or grid).

圖3是根據示例實施例包括一個或多個DRA 陣列360的微波加熱設備300(例如,微波加熱設備100,圖1)的簡化的框圖。此外,微波系統300包括系統控制器310、使用者介面330、電源340、加熱腔室320和一個或多個微波功率產生模組350。應理解圖3為出於解釋和易於描述的目的的微波系統300的簡化表示,且其實際實施例可包括其它裝置和組件以提供額外功能和特徵,和/或微波系統300可為大型電力系統的部分。 FIG. 3 is an example of including one or more DRAs according to an example embodiment. Simplified block diagram of microwave heating apparatus 300 of array 360 (eg, microwave heating apparatus 100 , FIG. 1 ). Additionally, the microwave system 300 includes a system controller 310 , a user interface 330 , a power supply 340 , a heating chamber 320 and one or more microwave power generating modules 350 . It should be understood that FIG. 3 is a simplified representation of microwave system 300 for purposes of explanation and ease of description, and that actual embodiments thereof may include other devices and components to provide additional functions and features, and/or microwave system 300 may be a large power system part.

使用者介面330可以對應於控制面板(例如,控制面板130,圖1),舉例來說,所述控制面板使使用者能夠將關於加熱操作的參數(例如,加熱操作的持續時間、加熱操作的功率電平、與特定加熱操作參數相關聯的代碼等等)的輸入提供到系統、開始和取消按鈕等等。此外,使用者介面可被配置成提供指示加熱操作的狀態的使用者可察覺的輸出(例如,倒計時器、指示加熱操作完成的可聽見的音調等等)和其它資訊。 User interface 330 may correspond to a control panel (eg, control panel 130, FIG. 1 ) that, for example, enables a user to set parameters related to a heating operation (eg, duration of heating operation, duration of heating operation, Power levels, codes associated with specific heating operating parameters, etc.) are provided to the system, start and cancel buttons, and the like. Additionally, the user interface may be configured to provide user-perceivable outputs (eg, countdown timers, audible tones indicating completion of the heating operation, etc.) and other information indicating the status of the heating operation.

系統控制器310耦合到使用者介面330且耦合到供電系統340。舉例來說,系統控制器310可以包括一個或多個通用或專用處理器(例如,微處理器、微控制器、專用積體電路(ASIC)等等)、易失性和/或非易失性記憶體(例如,隨機存取記憶體(RAM)、唯讀記憶體(ROM)、快閃記憶體、各種寄存器等等)、一個或多個通信匯流排和其它組件。根據一個實施例,系統控制器310被配置成接收指示通過使用者介面330接收到的使用者輸入的信號,並且對於持續時間和在對應於接收到的使用者 輸入的功率電平處,使得電源340將能量提供到微波功率產生模組350。 System controller 310 is coupled to user interface 330 and to power supply system 340 . For example, system controller 310 may include one or more general-purpose or special-purpose processors (eg, microprocessors, microcontrollers, application-specific integrated circuits (ASICs), etc.), volatile and/or non-volatile non-volatile memory (eg, random access memory (RAM), read only memory (ROM), flash memory, various registers, etc.), one or more communication buses, and other components. According to one embodiment, the system controller 310 is configured to receive a signal indicative of a user input received through the user interface 330, and for a duration and at a time corresponding to the received user input The input power level causes the power supply 340 to provide energy to the microwave power generation module 350 .

電源340可以根據從系統控制器310接收的控制信號將電源電壓選擇性地提供到每個微波功率產生模組350。當向每個微波功率產生模組350供應來自電源340的合適的電源電壓時,每個微波功率產生模組350將產生射頻信號,所述射頻信號被傳送到形成DRA陣列360的部分的一個或多個饋送結構370(或“饋送”)。作為響應,DRA陣列360將微波能量輻射到加熱腔室320中。如先前所提到,加熱腔室320基本上充當具有封閉端部的波導。DRA陣列360的介電諧振器、加熱腔室320和置於加熱腔室320中的任何負載(例如,負載140,圖1)對應於由DRA陣列360產生的微波能量的累積的負載。更具體地說,介電諧振器、加熱腔室320和加熱腔室340內的負載對微波功率產生模組350呈現阻抗。 The power supply 340 may selectively provide a power supply voltage to each microwave power generation module 350 according to a control signal received from the system controller 310 . When each microwave power generation module 350 is supplied with the appropriate supply voltage from the power supply 340 , each microwave power generation module 350 will generate a radio frequency signal that is transmitted to one or more of the parts forming part of the DRA array 360 or A plurality of feed structures 370 (or "feeds"). In response, DRA array 360 radiates microwave energy into heating chamber 320 . As mentioned previously, the heating chamber 320 essentially acts as a waveguide with closed ends. The dielectric resonators of DRA array 360 , heating chamber 320 , and any loads placed in heating chamber 320 (eg, load 140 , FIG. 1 ) correspond to cumulative loads of microwave energy generated by DRA array 360 . More specifically, the dielectric resonator, the heating chamber 320 and the load within the heating chamber 340 present impedance to the microwave power generating module 350 .

根據一個實施例,每個微波功率產生模組350可以包括固態振盪器子系統352、頻率調諧電路354和偏置電路356。根據一個實施例,振盪器子系統352包括固態放大器(例如,包括一個或多個功率電晶體)和諧振電路。在各種實施例中,振盪器子系統352內的功率放大器可以包括單端放大器、雙端放大器、推挽式放大器、多爾蒂放大器、開關模式功率放大器(SMPA)或另一類型的放大器。 According to one embodiment, each microwave power generation module 350 may include a solid state oscillator subsystem 352 , a frequency tuning circuit 354 and a bias circuit 356 . According to one embodiment, oscillator subsystem 352 includes a solid state amplifier (eg, including one or more power transistors) and a resonant circuit. In various embodiments, the power amplifier within oscillator subsystem 352 may include a single-ended amplifier, a double-ended amplifier, a push-pull amplifier, a Doherty amplifier, a switch mode power amplifier (SMPA), or another type of amplifier.

在實施例中,振盪器子系統352為功率微波 振盪器,在所述功率微波振盪器中振盪器子系統352的元件被配置成在輸出節點358處產生振盪電信號,其中所述信號具有微波頻譜中的頻率,所述微波頻譜具有相對較高的輸出功率(例如,在約100瓦特(W)到約300W或更高的範圍內的輸出功率)。沿著功率放大器的輸出與輸入之間的回饋路徑耦合的諧振電路完成諧振回饋回路,所述諧振回饋回路使得由功率放大器產生的放大的電信號在諧振電路的諧振頻率處或接近諧振電路的諧振頻率振盪。在實施例中,諧振電路被配置成在微波頻譜中的頻率處(例如,在約2.45GHz的頻率處)諧振。由放大器佈置產生的放大的電信號在大約諧振電路的諧振頻率處振盪。應注意,實際上,諧振電路的實施例可被配置成在不同頻率處諧振以適合使用微波系統300的特定應用的需要。 In an embodiment, oscillator subsystem 352 is a power microwave an oscillator in which elements of oscillator subsystem 352 are configured to generate an oscillating electrical signal at output node 358, wherein the signal has frequencies in the microwave spectrum having relatively high output power (eg, output power in the range of about 100 watts (W) to about 300 W or higher). A resonant circuit coupled along a feedback path between the output and input of the power amplifier completes a resonant feedback loop that causes the amplified electrical signal produced by the power amplifier to be at or near the resonance frequency of the resonant circuit frequency oscillation. In an embodiment, the resonant circuit is configured to resonate at a frequency in the microwave spectrum (eg, at a frequency of about 2.45 GHz). The amplified electrical signal produced by the amplifier arrangement oscillates at approximately the resonant frequency of the resonant circuit. It should be noted that, in practice, embodiments of the resonant circuit may be configured to resonate at different frequencies to suit the needs of the particular application in which microwave system 300 is used.

根據一個實施例,功率放大器被實施為單級電晶體或多級電晶體,所述電晶體具有耦合到調諧電路354的輸入端(或控制端)和耦合到放大器輸出節點358的輸出端(例如,漏極端)。舉例來說,電晶體可以包括場效應電晶體(FET),所述場效應電晶體具有連接到調諧電路354的柵極端、連接到放大器輸出節點358的漏極端和連接到接地參考電壓(例如,約0伏特,儘管在一些實施例中接地參考電壓可以高於或低於0伏特)的源極端。舉例來說,電晶體可以包括橫向擴散的金屬氧化物半導體FET(LDMOSFET)電晶體。然而,應注意電晶體並不意圖受限於任何特定半導體技術,且在其它實施例中,電晶 體可實現為氮化鎵(GaN)電晶體、另一類型的MOSFET電晶體、雙極結晶體管(BJT),或使用其它半導體技術的電晶體。 According to one embodiment, the power amplifier is implemented as a single-stage transistor or a multi-stage transistor having an input (or control) coupled to the tuning circuit 354 and an output (eg, a control) coupled to the amplifier output node 358 . , the drain terminal). For example, the transistor may comprise a field effect transistor (FET) having a gate terminal connected to tuning circuit 354, a drain terminal connected to amplifier output node 358, and a ground reference voltage (eg, about 0 volts, although in some embodiments the ground reference voltage may be higher or lower than the source terminal of 0 volts). For example, the transistors may include laterally diffused metal oxide semiconductor FET (LDMOSFET) transistors. It should be noted, however, that transistors are not intended to be limited to any particular semiconductor technology, and in other embodiments, transistors are The bulk can be implemented as a gallium nitride (GaN) transistor, another type of MOSFET transistor, a bipolar junction transistor (BJT), or a transistor using other semiconductor technologies.

頻率調諧電路354包括電容元件、電感元件和/或被配置成調節由振盪器子系統352產生的振盪電信號的振盪頻率的電阻元件。在示例性實施例中,頻率調諧電路354耦合在接地參考電壓與振盪器子系統352的輸入之間。 Frequency tuning circuit 354 includes capacitive elements, inductive elements, and/or resistive elements configured to adjust the oscillation frequency of the oscillating electrical signal generated by oscillator subsystem 352 . In the exemplary embodiment, frequency tuning circuit 354 is coupled between the ground reference voltage and the input of oscillator subsystem 352 .

偏置電路356耦合在電源340與振盪器子系統352之間,且被配置成接收來自電源340的正(或電源)電壓。根據一個實施例,偏置電路356被配置成在振盪器子系統352內的電晶體的柵極端和/或漏極端處控制直流(DC)或標稱偏置電壓,以便接通電晶體且在振盪器子系統352的操作期間維持電晶體在活躍模式中操作。儘管沒有所示出,但是偏置電路356還可包括溫度感測器和溫度補償電路,所述溫度補償電路被配置成感測或檢測電晶體的溫度並且響應於電晶體的溫度的升高和/或降低而調節柵極偏置電壓。在此類實施例中,偏置電路356可被配置成響應於溫度變化而大體上維持電晶體的恒定的靜態電流。 Bias circuit 356 is coupled between power supply 340 and oscillator subsystem 352 and is configured to receive a positive (or supply) voltage from power supply 340 . According to one embodiment, the bias circuit 356 is configured to control a direct current (DC) or nominal bias voltage at the gate and/or drain terminals of the transistors within the oscillator subsystem 352 in order to turn on the transistors and at the The transistor is maintained to operate in an active mode during operation of the oscillator subsystem 352 . Although not shown, the bias circuit 356 may also include a temperature sensor and a temperature compensation circuit configured to sense or detect the temperature of the transistor and be responsive to an increase in the temperature of the transistor and /or lower to adjust the gate bias voltage. In such embodiments, the bias circuit 356 may be configured to maintain a substantially constant quiescent current of the transistor in response to temperature changes.

通過一個或多個阻抗匹配電路(未示出),振盪器子系統352耦合到饋送結構370。如將在下文更詳細地闡釋,饋送結構370的實施例包括放置在一個或多個DRA陣列360的一個或多個介電諧振器內的傳導結構。替 代地,饋送結構370可以包括微帶線路,所述微帶線路孔隙耦合到一個或多個DRA陣列360的一個或多個介電諧振器。 Oscillator subsystem 352 is coupled to feed structure 370 through one or more impedance matching circuits (not shown). As will be explained in greater detail below, embodiments of feed structures 370 include conductive structures placed within one or more dielectric resonators of one or more DRA arrays 360 . for Instead, feed structure 370 may include microstrip lines that are apertured coupled to one or more dielectric resonators of one or more DRA arrays 360 .

DRA陣列360被配置成將微波能量輻射到加熱腔室320中。更具體地說,在振盪器輸出節點358處,饋送結構370和DRA陣列360將振盪電信號轉換成電磁微波信號。舉例來說,在振盪器子系統352被配置成產生在約2.45GHz的頻率處的信號的微波加熱設備應用中,在振盪器輸出節點358處,DRA陣列360將振盪電信號轉換為在2.45GHz處的微波電磁信號並且將微波信號引導到微波加熱設備300的加熱腔室320中。 DRA array 360 is configured to radiate microwave energy into heating chamber 320 . More specifically, at oscillator output node 358, feed structure 370 and DRA array 360 convert the oscillating electrical signal into an electromagnetic microwave signal. For example, in a microwave heating device application where oscillator subsystem 352 is configured to generate a signal at a frequency of about 2.45 GHz, at oscillator output node 358, DRA array 360 converts the oscillating electrical signal to a frequency at 2.45 GHz The microwave electromagnetic signal at and direct the microwave signal into the heating chamber 320 of the microwave heating device 300 .

當微波加熱設備300包括多個DRA陣列360時,DRA陣列360可被配置成以相同頻率和功率電平諧振,並且可以同時操作或以限定的順序操作。替代地,DRA陣列360可以不同地配置(例如,它們可以在不同頻率處諧振,和/或可以輻射在不同功率電平處的微波能量)。在此類替代實施例中,DRA陣列360可以同時操作或以限定順序操作。 When microwave heating apparatus 300 includes multiple DRA arrays 360, DRA arrays 360 may be configured to resonate at the same frequency and power level, and may operate simultaneously or in a defined sequence. Alternatively, the DRA arrays 360 may be configured differently (eg, they may resonate at different frequencies, and/or may radiate microwave energy at different power levels). In such alternative embodiments, the DRA arrays 360 may operate concurrently or in a defined order.

如將在圖5到7和圖9到17中更詳細地描繪,每個DRA陣列包括被佈置成使得至少一個寄生諧振器與至少一個激勵器諧振器緊密地電容式耦合的多個介電諧振器。在詳細地論述DRA陣列的各種實施例之前,將結合圖4論述DRA陣列的基本構建塊的實施例,或更具體地說介電諧振器的實施例。 As will be depicted in more detail in FIGS. 5-7 and 9-17, each DRA array includes a plurality of dielectric resonators arranged such that at least one parasitic resonator is tightly capacitively coupled with at least one exciter resonator device. Before discussing various embodiments of a DRA array in detail, an embodiment of the basic building block of a DRA array, or more specifically an embodiment of a dielectric resonator, will be discussed in conjunction with FIG. 4 .

圖4是適用於DRA陣列的一個實施例的介電諧振器400的透視圖。介電諧振器400由塊狀介電材料形成,例如,陶瓷、鈣鈦礦化合物(例如,併入Nd2O3、TiO2、CaO/SrO、BaO、MgO、ZnO、CoO、Ta2O5和/或Nb2O5等等)或其它合適的材料。根據一個實施例,塊狀介電材料具有相對較高的介電常數,例如約8與約70之間的介電常數,儘管介電常數還可以更大或更小。另外,在一個實施例中,塊狀介電材料具有相對較高的品質因數(Q),例如約40,000與約300,000之間的無負載的Q,儘管塊狀介電材料還可具有更低或更高的無負載Q。更進一步,在一個實施例中,塊狀介電材料具有極低的熱膨脹係數(例如,約0ppm)。 FIG. 4 is a perspective view of a dielectric resonator 400 suitable for use in one embodiment of a DRA array. Dielectric resonator 400 is formed from bulk dielectric materials, eg, ceramics, perovskite compounds (eg, incorporating Nd2O3, TiO2 , CaO/SrO, BaO, MgO, ZnO, CoO , Ta2O5 and/or Nb 2 O 5 etc.) or other suitable materials. According to one embodiment, the bulk dielectric material has a relatively high dielectric constant, such as a dielectric constant between about 8 and about 70, although the dielectric constant may also be greater or less. Additionally, in one embodiment, the bulk dielectric material has a relatively high quality factor (Q), such as an unloaded Q of between about 40,000 and about 300,000, although the bulk dielectric material may also have lower or Higher no-load Q. Still further, in one embodiment, the bulk dielectric material has a very low coefficient of thermal expansion (eg, about 0 ppm).

在示出的實施例中,介電諧振器400具有圓柱形形狀,所述圓柱形形狀具有頂部表面410、底部表面412和在頂部表面410與底部表面412之間延伸的外部側壁416。此外,介電諧振器400具有在頂部表面410與底部表面412之間延伸的中心通道或孔420,其中中心孔420由內部側壁422限定。如稍後將結合圖18到圖23更詳細地論述,具有多種其它形狀的介電諧振器可用於DRA陣列的各種其它實施例中。 In the illustrated embodiment, the dielectric resonator 400 has a cylindrical shape with a top surface 410 , a bottom surface 412 , and an outer sidewall 416 extending between the top surface 410 and the bottom surface 412 . Additionally, dielectric resonator 400 has a central channel or hole 420 extending between top surface 410 and bottom surface 412 , wherein central hole 420 is defined by interior sidewalls 422 . As will be discussed in more detail later in conjunction with Figures 18-23, dielectric resonators having a variety of other shapes may be used in various other embodiments of DRA arrays.

所示出的介電諧振器400可以用作DRA陣列中的激勵器諧振器或寄生諧振器。當用作激勵器諧振器時,傳導饋送(例如,饋送550,圖5)可以從介電諧振器400的底部表面412插入到中心孔420中,並且被提供到饋 送的射頻信號可用於使得介電諧振器400在介電諧振器400的特性諧振頻率處諧振。舉例來說,諧振頻率可以在約2.0GHz到約3.0GHz的範圍內,儘管諧振頻率還可以更低或更高。介電諧振器400的諧振頻率至少部分由塊狀介電材料的介電常數以及介電諧振器400的形狀和大小(例如,高度430和直徑432)限定。一般而言,介電常數越高,則給定諧振頻率的介電諧振器可以越小。此外,對於任何給定介電常數和介電諧振器形狀,較小介電諧振器與較大介電諧振器相比在較高諧振頻率處諧振。 The illustrated dielectric resonator 400 can be used as an exciter resonator or a parasitic resonator in a DRA array. When used as an exciter resonator, a conductive feed (eg, feed 550, FIG. 5 ) can be inserted into the center hole 420 from the bottom surface 412 of the dielectric resonator 400 and provided to the feed The transmitted radio frequency signal can be used to cause the dielectric resonator 400 to resonate at the characteristic resonance frequency of the dielectric resonator 400 . For example, the resonant frequency can be in the range of about 2.0 GHz to about 3.0 GHz, although the resonant frequency can also be lower or higher. The resonant frequency of dielectric resonator 400 is defined, at least in part, by the dielectric constant of the bulk dielectric material and the shape and size of dielectric resonator 400 (eg, height 430 and diameter 432). In general, the higher the dielectric constant, the smaller the dielectric resonator can be for a given resonant frequency. Furthermore, for any given dielectric constant and dielectric resonator shape, smaller dielectric resonators resonate at higher resonant frequencies than larger dielectric resonators.

在圖4中所示的實施例中,介電諧振器400具有圓形截面區域。因而,當射頻信號用於激發介電諧振器400時,通過介電諧振器400產生周向電子場440(在本文中被稱作“初級”電場)。此外,當放置在介電諧振器400中的饋送攜帶合適的射頻信號時,還產生垂直或次級電子場442(即,與頂部表面410和/或底部表面412正交的電子場442)。次級或正交電子場442的強度可以至少部分取決於饋送延伸到中心孔420中的距離。無論哪種方式,當通過由饋送攜帶的射頻信號適當地激發時,介電諧振器400可以產生在相對於慣性座標系的正交軸的三個極化(例如,固定的慣性座標系450的正交軸“X”、“Y”和“Z”)中所引導的磁能量場。 In the embodiment shown in FIG. 4, the dielectric resonator 400 has a circular cross-sectional area. Thus, when a radio frequency signal is used to excite dielectric resonator 400, a circumferential electron field 440 (referred to herein as the "primary" electric field) is generated through dielectric resonator 400. In addition, a vertical or secondary electron field 442 (ie, electron field 442 orthogonal to top surface 410 and/or bottom surface 412) is also generated when the feed placed in dielectric resonator 400 carries a suitable radio frequency signal. The strength of the secondary or orthogonal electron field 442 may depend, at least in part, on the distance the feed extends into the central aperture 420 . Either way, when properly excited by the radio frequency signal carried by the feed, the dielectric resonator 400 can produce three polarizations in orthogonal axes relative to the inertial coordinate system (eg, the fixed inertial coordinate system 450 Magnetic energy field directed in orthogonal axes "X", "Y" and "Z").

如上文所提及,可適用於微波加熱設備(例如,微波加熱設備100、200,圖1、2)中的DRA陣列可以包括佈置成使得至少一個寄生諧振器與至少一個激勵器 諧振器緊密地電容式耦合的多個介電諧振器(例如,介電諧振器400的多個實例,圖4)。替代地,DRA陣列中的介電諧振器中的每一個可以由饋送直接地激發,這使得所有的介電諧振器可歸類為激勵器諧振器。 As mentioned above, a DRA array suitable for use in microwave heating devices (eg, microwave heating devices 100, 200, Figures 1, 2) may include an arrangement such that at least one parasitic resonator and at least one exciter The resonators are multiple dielectric resonators that are tightly capacitively coupled (eg, multiple instances of dielectric resonator 400, FIG. 4). Alternatively, each of the dielectric resonators in the DRA array can be directly excited by the feed, which allows all the dielectric resonators to be classified as exciter resonators.

舉例來說,圖5和圖6是根據示例實施例的DRA陣列500的俯視圖和透視圖。所示出的陣列500包括耦合到基板530的七個介電諧振器510、520。在一個實施例中,介電諧振器510、介電諧振器520物理地耦合到基板530的第一側以維持介電諧振器510與介電諧振器520之間的固定空間關係。舉例來說,基板530可以為具有良好的熱導率的剛性的或柔性的非導電材料。舉例來說,但是並不作為限制,基板530可以由玻璃纖維(例如,編織玻璃纖維)、聚四氟乙烯(PTFE)、尼龍或其它合適的材料形成。如稍後將結合圖9更詳細地論述,可以選擇基板530材料以提供與基礎接地平面的足夠的電隔離,基板530可與基礎接地平面可滑動地嚙合。 For example, FIGS. 5 and 6 are top and perspective views of a DRA array 500 according to example embodiments. The illustrated array 500 includes seven dielectric resonators 510 , 520 coupled to a substrate 530 . In one embodiment, dielectric resonator 510 , dielectric resonator 520 is physically coupled to the first side of substrate 530 to maintain a fixed spatial relationship between dielectric resonator 510 and dielectric resonator 520 . For example, the substrate 530 may be a rigid or flexible non-conductive material with good thermal conductivity. By way of example, and not limitation, substrate 530 may be formed of fiberglass (eg, woven fiberglass), polytetrafluoroethylene (PTFE), nylon, or other suitable materials. As will be discussed in more detail later in connection with FIG. 9, the substrate 530 material can be selected to provide sufficient electrical isolation from the underlying ground plane with which the substrate 530 can slidably engage.

被配置成攜帶射頻信號的饋送550被放置在中心介電諧振器510的中心孔512內。如此配置,中心介電諧振器510和饋送550形成介電諧振器天線(DRA)。 A feed 550 configured to carry a radio frequency signal is placed within the center hole 512 of the center dielectric resonator 510 . So configured, center dielectric resonator 510 and feed 550 form a dielectric resonator antenna (DRA).

當合適的射頻信號由饋送550攜帶時,信號將使得中心介電諧振器510在它的諧振頻率處諧振。隨後,這將引起中心介電諧振器510產生圍繞中心介電諧振器510的圓周的初級電子場(例如,電子場440,圖4)。此外,中心介電諧振器510可以產生從中心介電諧振器510 的頂部表面向上正交地延伸的次級電子場(例如,電子場442,圖4)。 When a suitable radio frequency signal is carried by the feed 550, the signal will cause the center dielectric resonator 510 to resonate at its resonant frequency. This will then cause central dielectric resonator 510 to generate a primary electron field around the circumference of central dielectric resonator 510 (eg, electron field 440, Figure 4). In addition, the center dielectric resonator 510 can be generated from the center dielectric resonator 510 A secondary electron field (eg, electron field 442, Figure 4) extending orthogonally upward from the top surface of the .

根據一個實施例,中心介電諧振器510和鄰近介電諧振器520以共平面方式取向,其中介電諧振器510、介電諧振器520的頂部表面和/或底部表面(或穿過介電諧振器510、介電諧振器520所截取的橫截面)是共平面的。此外,中心介電諧振器510和鄰近介電諧振器520彼此“緊密地電容式耦合”,方法是在彼此的合理地較小距離540內定位中心介電諧振器510和鄰近介電諧振器520。更具體地說,選擇介電諧振器510、介電諧振器520的側壁之間的最小距離540使得當合適的激勵信號被提供到饋送550時介電諧振器510、介電諧振器520緊密地電容式耦合。根據一個實施例,中心介電諧振器510和鄰近介電諧振器520的側壁之間的距離540小於中心介電諧振器510的諧振頻率的波長的十分之一(或λ的十分之一)。舉例來說,對於約2.5GHz的諧振頻率,距離540可以是約12.5毫米(mm)或更小。根據另一實施例,距離540小於λ的五十分之一。舉例來說,對於約2.5GHz的諧振頻率,距離540可以是約3.0mm或更小。在一些實施例中,中心介電諧振器510和鄰近介電諧振器520可以相隔約1.0mm和2.0mm之間。在再一實施例中,距離540可為零(即,如圖12中示出的,中心介電諧振器510和鄰近介電諧振器520可接觸)。 According to one embodiment, center dielectric resonator 510 and adjacent dielectric resonator 520 are oriented in a coplanar manner, wherein dielectric resonator 510, the top surface and/or bottom surface of dielectric resonator 520 (or through the dielectric The cross-sections taken by resonator 510, dielectric resonator 520) are coplanar. Furthermore, center dielectric resonator 510 and adjacent dielectric resonator 520 are "closely capacitively coupled" to each other by positioning center dielectric resonator 510 and adjacent dielectric resonator 520 within a reasonably small distance 540 of each other . More specifically, the minimum distance 540 between the sidewalls of the dielectric resonator 510, the dielectric resonator 520 is chosen such that the dielectric resonator 510, the dielectric resonator 520 are closely spaced when a suitable excitation signal is provided to the feed 550. Capacitive coupling. According to one embodiment, the distance 540 between the center dielectric resonator 510 and the sidewalls of adjacent dielectric resonators 520 is less than one tenth of the wavelength of the resonant frequency of the center dielectric resonator 510 (or one tenth of λ) ). For example, for a resonant frequency of about 2.5 GHz, the distance 540 may be about 12.5 millimeters (mm) or less. According to another embodiment, the distance 540 is less than one fiftieth of λ. For example, for a resonant frequency of about 2.5 GHz, the distance 540 may be about 3.0 mm or less. In some embodiments, center dielectric resonator 510 and adjacent dielectric resonator 520 may be between about 1.0 mm and 2.0 mm apart. In yet another embodiment, the distance 540 may be zero (ie, as shown in FIG. 12, the center dielectric resonator 510 and the adjacent dielectric resonator 520 may be in contact).

如上文所述,當中心介電諧振器510和鄰近 介電諧振器520非常接近於彼此時,由中心介電諧振器510產生的周向或初級電子場(例如,電子場440,圖4)可以直接地衝擊鄰近介電諧振器520。這繼而可以引起鄰近介電諧振器520在它們的相應的諧振頻率處諧振。因此,中心介電諧振器510可以被歸類為“激勵器諧振器”。相比之下,在圖5中所示的實施例中,沒有鄰近介電諧振器520由饋送直接地激發。因此,它們可以歸類為“寄生諧振器”。 As described above, when the center dielectric resonator 510 and the adjacent When the dielectric resonators 520 are in close proximity to each other, the circumferential or primary electron field (eg, electron field 440 , FIG. 4 ) generated by the center dielectric resonator 510 can directly impinge the adjacent dielectric resonators 520 . This in turn may cause adjacent dielectric resonators 520 to resonate at their respective resonant frequencies. Accordingly, the center dielectric resonator 510 may be classified as an "exciter resonator". In contrast, in the embodiment shown in Figure 5, no adjacent dielectric resonator 520 is directly excited by the feed. Therefore, they can be classified as "parasitic resonators".

給定合適激勵信號,中心介電諧振器510和鄰近介電諧振器520電容式耦合到彼此,並且每個介電諧振器510、520在它的諧振頻率處諧振。因此,圖5和圖6的DRA陣列500基本上包括多個電容式耦合的諧振器510、520。每個介電諧振器510、520基本上為可在空間中有效地輻射的天線,因此形成“分散式天線”。如將通過圖7的描述變得更清晰的,通過DRA天線(例如,DRA天線500)來實施的分散式天線可以有效地耦合到近場負載(例如,加熱腔室內的食物負載),即使當負載相對較小和/或負載放置在相對於DRA天線500的各種位置中時也是如此。 Given a suitable excitation signal, the central dielectric resonator 510 and adjacent dielectric resonators 520 are capacitively coupled to each other, and each dielectric resonator 510, 520 resonates at its resonant frequency. Thus, the DRA array 500 of FIGS. 5 and 6 essentially includes a plurality of capacitively coupled resonators 510 , 520 . Each dielectric resonator 510, 520 is basically an antenna that can radiate efficiently in space, thus forming a "distributed antenna". As will become clearer from the description of FIG. 7, a decentralized antenna implemented by a DRA antenna (eg, DRA antenna 500) can efficiently couple to near-field loads (eg, a food load within a heating chamber) even when This is also true when the load is relatively small and/or the load is placed in various positions relative to the DRA antenna 500 .

儘管中心介電諧振器510可以由放置在介電諧振器510的中心孔512內的饋送550激發,但是中心介電諧振器510替代地可孔隙耦合到微帶線路560或其它傳導結構,所述微帶線路560或其它傳導結構替代地可用於攜帶射頻信號以用於激發介電諧振器510。另外或替代地,激勵器介電諧振器可以由放置在除了中心孔以外的位置中 的饋送和/或可用於激發介電諧振器的多個饋送激發。 Although the central dielectric resonator 510 may be excited by a feed 550 placed within the central aperture 512 of the dielectric resonator 510, the central dielectric resonator 510 may alternatively be aperture-coupled to a microstrip line 560 or other conductive structure, which Microstrip lines 560 or other conductive structures may alternatively be used to carry radio frequency signals for excitation of dielectric resonator 510 . Additionally or alternatively, the exciter dielectric resonator may be placed in locations other than the center hole by and/or multiple feed excitations that can be used to excite the dielectric resonator.

在圖5和圖6中所示的實施例中,DRA陣列500包括七個介電諧振器510、520。在替代實施例中,DRA陣列可以包括在2到30或更大的範圍內的任何數量的介電諧振器。此外,所有介電諧振器510、520充分地具有相同的大小和形狀。假定它們都是由具有相同介電常數的一種或多種材料形成,那麼介電諧振器510、520中的每一個將在大體上相同的諧振頻率處諧振。在替代實施例中,可選擇在不同諧振頻率處諧振的介電諧振器。舉例來說,這一點可以通過使用不同大小的介電諧振器、不同形狀的介電諧振器和/或具有不同介電常數的介電諧振器來實現。 In the embodiment shown in FIGS. 5 and 6 , the DRA array 500 includes seven dielectric resonators 510 , 520 . In alternate embodiments, the DRA array may include any number of dielectric resonators in the range of 2 to 30 or more. Furthermore, all dielectric resonators 510, 520 are substantially the same size and shape. Assuming they are both formed of one or more materials with the same dielectric constant, then each of the dielectric resonators 510, 520 will resonate at substantially the same resonant frequency. In alternative embodiments, dielectric resonators may be selected that resonate at different resonant frequencies. This can be accomplished, for example, by using dielectric resonators of different sizes, dielectric resonators of different shapes, and/or dielectric resonators with different dielectric constants.

圖7是表示根據一個實施例的具有三個鄰近介電諧振器的DRA的電子特性的電路圖700。更具體地說,第一諧振電路710表示激勵器介電諧振器(例如,中心介電諧振器510,圖5),並且第二鄰近諧振電路720和第三鄰近諧振電路730表示定位成鄰近於第一(激勵器)諧振器710的寄生介電諧振器(例如,兩個介電諧振器520,圖5)。根據一個實施例,饋送被放置在激勵器介電諧振器(或第一諧振電路710)附近,並且通過電容耦合,激勵器介電諧振器(或第一諧振電路710)耦合到寄生介電諧振器(或第二諧振電路720和第三諧振電路730)。 FIG. 7 is a circuit diagram 700 representing the electrical characteristics of a DRA having three adjacent dielectric resonators, according to one embodiment. More specifically, the first resonant circuit 710 represents an exciter dielectric resonator (eg, the center dielectric resonator 510, FIG. 5 ), and the second adjacent resonant circuit 720 and the third adjacent resonant circuit 730 represent locations positioned adjacent to Parasitic dielectric resonators of the first (exciter) resonator 710 (eg, two dielectric resonators 520, Figure 5). According to one embodiment, the feed is placed near the exciter dielectric resonator (or first resonant circuit 710 ), and by capacitive coupling, the exciter dielectric resonator (or first resonant circuit 710 ) is coupled to the parasitic dielectric resonance (or the second resonant circuit 720 and the third resonant circuit 730).

如上所述,寄生介電諧振器放置在足夠接近激勵器介電諧振器處以確保諧振器緊密地電容式耦合,如由電容器740所表示。基本上,諧振電路710、720、730 之間的電容耦合(即,電容器740的值)與由諧振電路710、720、730所表示的介電諧振器之間的距離成反比。介電諧振器之間的不同間隔引起不同強度的電容耦合和不同頻率響應。更具體地說,頻率響應中的改變可以顯著地影響電路700的頻寬。在一些實施例中,介電諧振器可以相對於彼此設定大小、設定形狀和放置以形成相對地寬頻的電路700。換句話說,可以放置個體的介電諧振器(或將其電容式耦合到一起)以給出複合物複合寬頻響應。 As described above, the parasitic dielectric resonator is placed close enough to the exciter dielectric resonator to ensure that the resonators are tightly capacitively coupled, as represented by capacitor 740 . Basically, the resonant circuits 710, 720, 730 The capacitive coupling between (ie, the value of capacitor 740 ) is inversely proportional to the distance between the dielectric resonators represented by resonant circuits 710 , 720 , 730 . Different spacings between dielectric resonators cause different strengths of capacitive coupling and different frequency responses. More specifically, changes in the frequency response can significantly affect the bandwidth of circuit 700 . In some embodiments, the dielectric resonators may be sized, shaped, and positioned relative to each other to form a relatively broadband circuit 700 . In other words, individual dielectric resonators can be placed (or capacitively coupled together) to give a composite composite broadband response.

在圖7的電子錶示中,每個諧振電路710、720、730包括並聯的電感器和電容器(其一起形成諧振器)和表示輻射電阻的電阻(Rr)。更具體地說,因為由電路700表示的DRA陣列用於將能量輻射到加熱腔室中,所以輻射電阻表示由遠離DRA陣列的能量的輻射所致的到腔室中的能量損失。諧振電路710、720、730中的諧振器中的每一個可以在相同頻率處輻射(例如,當介電諧振器相同時),或諧振電路710、720、730中的諧振器可以在不同頻率處諧振(例如,當介電諧振器為不同大小、形狀和/或介電常數時)。 In the electronic representation of Figure 7, each resonant circuit 710, 720, 730 includes a parallel inductor and capacitor (which together form a resonator) and a resistor (Rr) representing the radiation resistance. More specifically, because the DRA array represented by circuit 700 is used to radiate energy into the heating chamber, the radiation resistance represents the energy loss into the chamber due to the radiation of energy away from the DRA array. Each of the resonators in the resonant circuits 710, 720, 730 may radiate at the same frequency (eg, when the dielectric resonators are the same), or the resonators in the resonant circuits 710, 720, 730 may be at different frequencies Resonance (eg, when the dielectric resonators are of different sizes, shapes and/or dielectric constants).

圖8是根據一個實施例描繪DRA陣列(例如,DRA陣列500,圖5)的增益頻寬的圖。更具體地說,所述圖描繪具有約2.45GHz的無負載中心頻率的DRA天線的實施例的增益頻寬。具有單個介電諧振器的DRA可具有相當的窄帶響應(例如,在約2.4GHz與2.5GHz之間)。然而,上文(和稍後)所論述的DRA陣列的實施例包括至 少一個DRA和技術地增大天線的孔隙的一個或多個鄰近介電諧振器,這引起顯著地更寬的頻帶響應(例如,在-10dB點處,在約2.3GHz與2.6GHz之間約200MHz頻寬)。 Figure 8 is a graph depicting the gain bandwidth of a DRA array (eg, DRA array 500, Figure 5), according to one embodiment. More specifically, the graph depicts the gain bandwidth of an embodiment of a DRA antenna with an unloaded center frequency of about 2.45 GHz. A DRA with a single dielectric resonator can have a fairly narrowband response (eg, between about 2.4 GHz and 2.5 GHz). However, embodiments of DRA arrays discussed above (and later) include to One less DRA and one or more adjacent dielectric resonators that technically increase the aperture of the antenna, which results in a significantly wider frequency band response (eg, at the -10dB point, between about 2.3GHz and 2.6GHz about 200MHz bandwidth).

由於相對的寬頻響應且如下文將更詳細地論述,與常規的單極天線、接線天線或其它類型的窄帶天線相比,DRA陣列的實施例可對近場負載極其不敏感。這使得DRA陣列實施例尤其適合於微波加熱應用,在所述應用中加熱腔室非常接近於輻射單元(在此情況下,DRA陣列)。如天線理論中已知,大量的近場負載可以使得相對地窄帶天線變得去調諧到由天線所產生的能量移位離開所需無負載頻帶的程度。如果這是微波加熱應用中的情況,那麼天線將不能把能量發射到加熱腔室中。然而,DRA陣列結構的各種實施例的寬頻響應確保:DRA陣列結構可以在感興趣的頻帶內(在居中圍繞2.45GHz的頻帶內)將大量的能量發射到加熱腔室和負載中,即使當負載為近場負載(例如,放置在DRA陣列結構附近的加熱腔室中的食物負載)時也是如此。換句話說,即使近場負載使得DRA陣列結構響應於在頻率中移動,DRA陣列結構的實施例也是充足的寬頻使得響應並不移動到相對地寬頻的外部,因此允許高效能量傳遞到近場負載中。DRA陣列形成寬頻頻率響應,其對近場負載和放置在加熱腔室內的負載極其不敏感。此外,DRA陣列實施例的寬頻響應確保能量可被有效地提供到具有多種多樣的介電常數的食物負載。由於DRA陣列的各種實施例的寬的頻寬,所以發射到鄰近加熱腔室 中的效率可高達95%或更高。 Due to the relatively broad frequency response and as will be discussed in more detail below, embodiments of the DRA array may be extremely insensitive to near-field loading compared to conventional monopoles, patch antennas, or other types of narrowband antennas. This makes DRA array embodiments particularly suitable for microwave heating applications where the heating chamber is in close proximity to the radiation element (in this case, the DRA array). As is known in antenna theory, a large amount of near-field loading can cause a relatively narrowband antenna to become detuned to the extent that the energy produced by the antenna is shifted away from the desired unloaded frequency band. If this were the case in a microwave heating application, the antenna would not be able to transmit energy into the heating chamber. However, the broad frequency response of the various embodiments of the DRA array structure ensures that the DRA array structure can transmit substantial amounts of energy into the heating chamber and load in the frequency band of interest (in the frequency band centered around 2.45 GHz), even when the load The same is true for near-field loads (eg, food loads placed in a heating chamber adjacent to the DRA array structure). In other words, even if the near-field load causes the DRA array structure to respond in frequency, embodiments of the DRA array structure are sufficiently broadband such that the response does not move outside the relatively broadband, thus allowing efficient energy transfer to the near-field load middle. The DRA array develops a broadband frequency response that is extremely insensitive to near-field loads and loads placed within the heating chamber. Furthermore, the broad frequency response of DRA array embodiments ensures that energy can be efficiently delivered to food loads with a wide variety of dielectric constants. Due to the wide bandwidth of various embodiments of the DRA array, emission to adjacent heating chambers The efficiency can be as high as 95% or higher.

圖9是根據示例實施例的圖1和圖2的可擕式微波加熱設備100的截面側視圖。微波加熱設備900包括外殼910、加熱腔室920、系統控制器(例如,系統控制器310,圖9中未示出)、使用者介面(例如,使用者介面330,圖9中未示出)、電源系統(例如,電源系統340,圖9中未示出)、微波功率產生模組950(例如,模組350,圖3)、一個或多個DRA陣列960、962(例如,DRA陣列360、500,圖3、圖5)和在下文中更詳細地論述的其它組件。根據一個實施例且如在下文中將詳細地論述,第一DRA陣列960可以放置在外殼910的底座部分912內。在另一實施例中,設備900可以包括一個或多個額外的DRA陣列,例如位於蓋子916內的第二DRA陣列962。 9 is a cross-sectional side view of the portable microwave heating apparatus 100 of FIGS. 1 and 2, according to an example embodiment. Microwave heating apparatus 900 includes a housing 910, a heating chamber 920, a system controller (eg, system controller 310, not shown in FIG. 9), a user interface (eg, user interface 330, not shown in FIG. 9) , a power supply system (eg, power supply system 340 , not shown in FIG. 9 ), a microwave power generation module 950 (eg, module 350 , FIG. 3 ), one or more DRA arrays 960 , 962 (eg, DRA array 360 ) , 500, Figures 3, 5) and other components discussed in more detail below. According to one embodiment and as will be discussed in detail below, the first DRA array 960 may be placed within the base portion 912 of the housing 910 . In another embodiment, the device 900 may include one or more additional DRA arrays, such as a second DRA array 962 located within the cover 916 .

在一個實施例中,外殼910包括底座部分912、腔室部分914和蓋子916(其在圖9中為閉合狀態)。在一個實施例中,加熱腔室920位於外殼910的腔室部分914內,並且向上延伸到蓋子916的內部中。加熱腔室920由內側壁922、腔室底部表面924和腔室頂部表面926限定。圖9示出了在腔室920內的負載940(例如,食物負載或其它負載)。如先前所描述,如圖9中所示,通過關閉蓋子916,加熱腔室920是基本上充當具有封閉端部的波導的封閉的空氣腔室。在示出的實施例中,加熱腔室920具有大體上圓形的截面,這使得加熱腔室920為圓柱形波導。在其它實施例中,腔室可具有矩形截面、橢圓形截面 或具有其它形狀的截面。 In one embodiment, the housing 910 includes a base portion 912, a chamber portion 914, and a lid 916 (which is in a closed state in FIG. 9). In one embodiment, the heating chamber 920 is located within the chamber portion 914 of the housing 910 and extends upwardly into the interior of the lid 916 . Heating chamber 920 is defined by inner side walls 922 , chamber bottom surface 924 and chamber top surface 926 . FIG. 9 shows a load 940 (eg, a food load or other load) within the chamber 920 . As previously described, as shown in Figure 9, by closing lid 916, heating chamber 920 is a closed air chamber that essentially acts as a waveguide with closed ends. In the illustrated embodiment, the heating chamber 920 has a generally circular cross-section, which results in the heating chamber 920 being a cylindrical waveguide. In other embodiments, the chamber may have a rectangular cross-section, an oval cross-section or have other shaped sections.

在一個實施例中,腔室壁可以由具有良好的熱導率的材料形成。舉例來說,腔室壁可以由銅、鋁、鋼或其它合適的材料形成。在一些實施例中,腔室920的內側壁922可以塗覆有影響腔室920的頻率的材料。舉例來說,內側壁922可以塗覆有PTFE、尼龍或可降低或影響腔室920的頻率的其它合適的材料。 In one embodiment, the chamber walls may be formed from a material with good thermal conductivity. For example, the chamber walls may be formed from copper, aluminum, steel, or other suitable materials. In some embodiments, the inner sidewall 922 of the chamber 920 may be coated with a material that affects the frequency of the chamber 920 . For example, inner sidewall 922 may be coated with PTFE, nylon, or other suitable material that may reduce or affect the frequency of chamber 920.

根據一個實施例,外殼910的底座部分912包含第一DRA陣列960和至少一個電子基板970。舉例來說,電子基板970可以包括微波或射頻層合物、PTFE基板、印刷電路板(PCB)材料基板(例如,FR-4)、氧化鋁基板、瓷磚或另一類型的基板。根據一個實施例,電子基板970包括在電子基板970的第一表面上面或附近的傳導接地平面972(例如,圖9中的上部表面)和一個或多個其它傳導層,所述一個或多個其它傳導層中的一些可以被圖案化以提供安裝到電子基板970的各種組件之間的電互連。舉例來說,在一個實施例中,可將對應於系統控制器的組件、使用者介面的部分、電源以及微波功率產生模組950安裝到電子基板970的第二表面(例如,圖9中的下部表面),並且那些組件可以穿過在第二表面上或下面的圖案化傳導層電耦合到彼此。 According to one embodiment, the base portion 912 of the housing 910 includes a first DRA array 960 and at least one electronic substrate 970 . For example, the electronic substrate 970 may comprise a microwave or radio frequency laminate, a PTFE substrate, a printed circuit board (PCB) material substrate (eg, FR-4), an alumina substrate, ceramic tile, or another type of substrate. According to one embodiment, electronic substrate 970 includes a conductive ground plane 972 (eg, the upper surface in FIG. 9 ) on or near a first surface of electronic substrate 970 and one or more other conductive layers, the one or more Some of the other conductive layers may be patterned to provide electrical interconnection between various components mounted to the electronic substrate 970 . For example, in one embodiment, components corresponding to the system controller, portions of the user interface, power supply, and microwave power generation module 950 may be mounted to the second surface of the electronic substrate 970 (eg, in FIG. 9 ). lower surface), and those components can be electrically coupled to each other through a patterned conductive layer on or below the second surface.

在一個實施例中,第一DRA陣列960可類似於DRA陣列500(圖5)配置,儘管它也可以不同地配置。當類似DRA陣列500(圖5)配置第一DRA陣列960時,第 一DRA陣列960可以包括一個或多個激勵器諧振器964和鄰近寄生諧振器966,其中如先前描述,寄生諧振器966緊密地電容式耦合到激勵器諧振器964。如結合圖5所描述,激勵器諧振器964和寄生諧振器966可耦合到DRA陣列基板980(例如,基板530,圖5),所述DRA陣列基板980滑動地與電子基板970的第一表面(例如,與接地平面972)嚙合。根據一個實施例,非導電罩蓋982安置於第一DRA陣列960與腔室920之間。罩蓋982用於保護DRA陣列960免受濕氣和其它污染物(例如,食物飛濺物)的影響,並且限定腔室920的底部表面924。 In one embodiment, the first DRA array 960 may be configured similarly to the DRA array 500 (FIG. 5), although it may also be configured differently. When the first DRA array 960 is configured like the DRA array 500 (FIG. 5), the first A DRA array 960 may include one or more exciter resonators 964 and adjacent parasitic resonators 966, wherein the parasitic resonators 966 are tightly capacitively coupled to the exciter resonators 964 as previously described. As described in connection with FIG. 5 , exciter resonator 964 and parasitic resonator 966 may be coupled to a DRA array substrate 980 (eg, substrate 530 , FIG. 5 ) slidably with a first surface of electronic substrate 970 (eg, with ground plane 972). According to one embodiment, a non-conductive cover 982 is disposed between the first DRA array 960 and the chamber 920 . The cover 982 serves to protect the DRA array 960 from moisture and other contaminants (eg, food splashes) and defines the bottom surface 924 of the chamber 920 .

在示出的實施例中,被配置成攜帶射頻信號的饋送968放置在激勵器諧振器964的中心孔內。根據一個實施例,饋送968的直徑小於中心孔的直徑,使得饋送968在它經受熱膨脹時並不壓緊中心孔的內側壁且潛在地引起激勵器諧振器964開裂。如此配置,激勵器諧振器964和饋送968形成DRA,且DRA和寄生諧振器966形成第一DRA陣列960。 In the illustrated embodiment, a feed 968 configured to carry a radio frequency signal is placed within the central hole of the exciter resonator 964 . According to one embodiment, the diameter of the feed 968 is smaller than the diameter of the central hole so that the feed 968 does not compress the inner sidewall of the central hole and potentially cause the exciter resonator 964 to crack when it undergoes thermal expansion. So configured, the driver resonator 964 and feed 968 form a DRA, and the DRA and parasitic resonator 966 form a first DRA array 960 .

如先前所描述,微波功率產生模組950包括調諧電路(例如,調諧電路354,圖3)、偏置電路(例如,偏置電路356,圖3)和振盪器子系統(例如,振盪器子系統352,圖3)。在一個實施例中,振盪器子系統包括一個或多個功率電晶體952。為了有助於將振盪射頻信號提供到饋送968,功率電晶體952的輸出(例如,漏極端)(或功率放大器的輸出)通過傳導傳輸線路954電耦合到饋送 968,所述傳導傳輸線路954在電子基板970的第二表面上或低於電子基板970的第二表面。饋送968延伸穿過電子基板970中的孔、延伸穿過DRA陣列基板980中的孔且延伸到激勵器諧振器964中的中心孔中。 As previously described, microwave power generation module 950 includes a tuning circuit (eg, tuning circuit 354, FIG. 3), a bias circuit (eg, bias circuit 356, FIG. 3), and an oscillator subsystem (eg, oscillator sub-system system 352, Figure 3). In one embodiment, the oscillator subsystem includes one or more power transistors 952 . To assist in providing an oscillating radio frequency signal to the feed 968 , the output (eg, drain terminal) of the power transistor 952 (or the output of the power amplifier) is electrically coupled to the feed through a conductive transmission line 954 968 , the conductive transmission lines 954 are on or below the second surface of the electronic substrate 970 . Feeds 968 extend through holes in electronics substrate 970 , through holes in DRA array substrate 980 , and into the center hole in driver resonator 964 .

響應於由使用者介面(例如,由控制面板130,圖1)提供的使用者輸入,系統控制器(例如,控制器310,圖3)使得微波功率產生模組950將一個或多個激勵信號提供到DRA陣列960、962。作為響應,每個DRA陣列960、962將電磁能量(由遮蔽區990指示)輻射到加熱腔室920中。微波能量增加負載940的熱能並且可以使得負載變熱。 In response to user input provided by a user interface (eg, by control panel 130, FIG. 1), a system controller (eg, controller 310, FIG. 3) causes microwave power generation module 950 to generate one or more excitation signals Provided to DRA arrays 960, 962. In response, each DRA array 960 , 962 radiates electromagnetic energy (indicated by shading region 990 ) into the heating chamber 920 . The microwave energy increases the thermal energy of the load 940 and can heat the load.

如上文所述,當激勵器諧振器964由在饋送968上所攜帶的射頻信號適當地激發時,激勵器諧振器964在諧振頻率處諧振並且產生周向電子場(例如,電子場440,圖4)和垂直電子場(例如,電子場442,圖4)。根據一個實施例,周向電子場直接地衝擊寄生諧振器966,使得它們在它們的諧振頻率處諧振。這使得寄生諧振器966也產生周向電子場和垂直電子場。基本上,DRA陣列960的每個諧振器964、966具有輻射圖案。給定電子場的本質和接地平面972的存在,累積輻射以相當的定向波束被引導朝向腔室920且進入到腔室920中。換句話說,DRA陣列960充當將電磁能量的相當狹窄的固定波束引導到腔室920中的天線陣列。 As described above, when the exciter resonator 964 is properly excited by the radio frequency signal carried on the feed 968, the exciter resonator 964 resonates at the resonant frequency and generates a circumferential electron field (eg, electron field 440, FIG. 4) and the vertical electron field (eg, electron field 442, Figure 4). According to one embodiment, the circumferential electron fields impinge the parasitic resonators 966 directly, causing them to resonate at their resonant frequency. This allows parasitic resonator 966 to also generate circumferential and vertical electron fields. Basically, each resonator 964, 966 of the DRA array 960 has a radiation pattern. Given the nature of the electron field and the presence of ground plane 972, the accumulated radiation is directed towards and into chamber 920 in a comparable directional beam. In other words, the DRA array 960 acts as an antenna array that directs a relatively narrow fixed beam of electromagnetic energy into the chamber 920 .

如先前所提到,腔室920基本上充當具有封 閉端部的電磁波導,其中在腔室920內的電磁波一般在從DRA陣列960到腔室920的頂部表面926的方向上傳播。更具體地說,電磁波可以穿過腔室920以一個或多個傳播模式傳播,所述一個或多個傳播模式包括一個或多個橫向電場(TE)模式、橫向磁場(TM)模式和/或混合的橫向電場和橫向磁場(TEM)模式。然而,僅當由DRA陣列960、962產生的電磁能量的頻率超過下限閾值或腔室920的最小頻率(通常被稱為截止頻率)時,電磁波將在腔室920中傳播。 As previously mentioned, the chamber 920 essentially acts as a seal with A closed-ended electromagnetic waveguide in which electromagnetic waves within the chamber 920 generally travel in a direction from the DRA array 960 to the top surface 926 of the chamber 920 . More specifically, electromagnetic waves may propagate through chamber 920 in one or more propagation modes including one or more transverse electric (TE) modes, transverse magnetic (TM) modes, and/or Mixed transverse electric and transverse magnetic (TEM) modes. However, electromagnetic waves will propagate in the chamber 920 only when the frequency of the electromagnetic energy generated by the DRA arrays 960, 962 exceeds a lower threshold or the minimum frequency of the chamber 920 (often referred to as the cutoff frequency).

腔室920的截止頻率由腔室920的大小(例如,由高度和直徑限定)和形狀(例如,圓柱形、矩形、橢圓形等等)限定。根據一個實施例,且不考慮由於DRA陣列960、962的存在而出現的負載或在腔室920內存在的負載940,腔室920的大小和形狀將腔室920呈現為低於截止點。換句話說,在用於微波加熱的操作所需的頻帶中(例如,在2.3GHz與2.6GHz之間,並且參考在下文中稱為“微波加熱頻帶”)並且不存在DRA陣列960、962和負載940,腔室920被配置成使得對於微波加熱頻帶內的電磁能量在腔室920中沒有模式可以傳播,而與它如何被激發無關。舉例來說,當無負載時,腔室920可具有在由3.0GHz以下的電磁能量激發時可能不支援任何傳播模式的大小和形狀。 The cutoff frequency of the chamber 920 is defined by the size (eg, defined by height and diameter) and shape (eg, cylindrical, rectangular, elliptical, etc.) of the chamber 920 . According to one embodiment, and regardless of the loading due to the presence of the DRA arrays 960, 962 or the loading 940 present within the chamber 920, the size and shape of the chamber 920 presents the chamber 920 below the cut-off point. In other words, the DRA arrays 960, 962 and loads are not present in the frequency band required for operation of microwave heating (eg, between 2.3 GHz and 2.6 GHz, and referred to hereinafter as the "Microwave Heating Band") At 940, the chamber 920 is configured such that no mode can propagate in the chamber 920 for electromagnetic energy in the microwave heating band regardless of how it is excited. For example, when unloaded, the chamber 920 may have a size and shape that may not support any propagation modes when excited by electromagnetic energy below 3.0 GHz.

然而,在微波加熱設備900中並且部分由於介電諧振器964、966的較高的介電常數,DRA陣列960、 962用於以一定的方式載入腔室920,所述方式使得一個或多個模式能夠在微波加熱頻帶中在腔室920內傳播。換句話說,由DRA陣列960、962提供的負載將腔室920帶到在微波加熱頻帶內的諧振頻率(即,當通過DRA陣列960、962載入時腔室920並不低於截止點)。換句話說,在一個實施例中,通過將DRA陣列960、962包括在腔室920內,另外的低於截止點的腔室920的截止頻率降低到微波加熱頻帶內。因此,當通過在微波加熱頻帶內的電磁能量(來自DRA陣列960、962)激發腔室時,一個或多個模式可在腔室920內傳播,即使無負載腔室920可能太小而不能支援那些模式的傳播也是如此。 However, in microwave heating device 900 and due in part to the higher permittivity of dielectric resonators 964, 966, DRA array 960, 962 is used to load the chamber 920 in a manner that enables one or more modes to propagate within the chamber 920 in the microwave heating band. In other words, the loading provided by the DRA arrays 960, 962 brings the chamber 920 to a resonant frequency within the microwave heating band (ie, the chamber 920 is not below the cutoff point when loaded by the DRA arrays 960, 962) . In other words, in one embodiment, by including the DRA arrays 960, 962 within the chamber 920, the cutoff frequency of the additional chambers 920 below the cutoff point is lowered into the microwave heating band. Thus, when the chamber is excited by electromagnetic energy (from the DRA arrays 960, 962) in the microwave heating band, one or more modes may propagate within the chamber 920, even though the unloaded chamber 920 may be too small to support The same goes for the spread of those patterns.

在一個實施例中,取決於載入腔室920的形狀、大小和截止頻率,將幾乎自然地找到傳播的最佳模式。理想地,腔室920被設計成支持混合的和/或複雜的模式,這在以下情況中可為有利的:其中當在腔室920內形成電磁混沌時可強化插入的負載940的均勻加熱。換句話說,當在腔室920中傳播多個模式和/或高階模式時,可更加容易地實現跨越負載940的均勻加熱。由於饋送968可使得電子場在三個正交方向(例如,X、Y和Z)中產生,可以自動地激發腔室920中的主模式。 In one embodiment, depending on the shape, size and cutoff frequency of the loading chamber 920, the optimal mode of propagation will be found almost naturally. Ideally, chamber 920 is designed to support mixed and/or complex modes, which may be advantageous in situations where uniform heating of inserted load 940 may be enhanced when electromagnetic chaos is created within chamber 920 . In other words, uniform heating across load 940 may be more easily achieved when multiple modes and/or higher order modes are propagated in chamber 920 . Since the feed 968 can cause the electron field to be generated in three orthogonal directions (eg, X, Y, and Z), the main mode in the chamber 920 can be excited automatically.

在一些實施例中,基本上,DRA陣列960、962被配置成將能量有效地耦合到腔室920中,即使腔室920可能低於截止點也是如此。如上文所述,儘管微波加熱設備900的實施例可以包括低於截止點的無負載的腔室 920,但是在其它實施例中,無負載的腔室920可經大小和形狀設定以將腔室920呈現為高於截止點(或當在微波加熱頻帶內由電磁能量激發時,能夠支援一個或多個傳播模式,即使在無通過DRA陣列960、962載入存在的情況下也是如此)。 In some embodiments, substantially the DRA arrays 960, 962 are configured to efficiently couple energy into the chamber 920 even though the chamber 920 may be below the cutoff point. As noted above, although embodiments of microwave heating apparatus 900 may include an unloaded chamber below the cutoff point 920, but in other embodiments, the unloaded chamber 920 may be sized and shaped to present the chamber 920 above the cut-off point (or, when excited by electromagnetic energy in the microwave heating band, to support one or Multiple propagation modes, even in the absence of loading through the DRA arrays 960, 962).

在操作期間,除通過DRA陣列960、962提供的負載外,在腔室920中負載940(例如,食物負載)還提供額外的負載。更具體地說,當如圖9中所示的放置時,負載940在DRA陣列960的近場中。使用常規的天線(例如,單極天線或片狀天線),此類近場負載可以將天線去調諧到天線可以並不將能量耦合到腔室或負載中的程度。然而,如預先詳細地論述,DRA陣列960、962的寬頻特性使得它們對近場負載極其不敏感。因此,即使存在近場負載940,DRA陣列960、962可以將能量有效地耦合到腔室920和負載940中。 During operation, a load 940 (eg, a food load) in the chamber 920 provides additional load in addition to the load provided by the DRA arrays 960, 962. More specifically, when placed as shown in FIG. 9 , the load 940 is in the near field of the DRA array 960 . Using conventional antennas (eg, monopoles or patch antennas), such near-field loads can detune the antenna to the extent that the antenna may not couple energy into the chamber or load. However, as discussed in detail beforehand, the broadband nature of the DRA arrays 960, 962 makes them extremely insensitive to near-field loading. Thus, the DRA arrays 960 , 962 can efficiently couple energy into the chamber 920 and the load 940 even in the presence of the near-field load 940 .

在圖9的實施例中,DRA陣列960通過安置於DRA陣列960與腔室920之間的非導電罩蓋982與腔室920分離,其中罩蓋982用於保護DRA陣列960免受濕氣和其它污染物的影響。在替代實施例(例如在圖10中示出的實施例)中,可以使用保形塗層1082來保護DRA陣列1060。舉例來說,圖10是根據另一示例實施例的可擕式微波加熱設備1000的一部分的截面側視圖。更具體地說,微波加熱設備1000的部分對應於設備1000的底座部分1012。 9, the DRA array 960 is separated from the chamber 920 by a non-conductive cover 982 disposed between the DRA array 960 and the chamber 920, wherein the cover 982 is used to protect the DRA array 960 from moisture and effects of other pollutants. In alternative embodiments, such as the embodiment shown in FIG. 10, a conformal coating 1082 may be used to protect the DRA array 1060. For example, FIG. 10 is a cross-sectional side view of a portion of a portable microwave heating apparatus 1000 according to another example embodiment. More specifically, the portion of the microwave heating device 1000 corresponds to the base portion 1012 of the device 1000 .

設備1000的底座部分1012與底座部分912 (圖9)相似,在所述底座部分1012中組合件包括DRA陣列1060和基板1070。DRA陣列1060可以包括一個或多個激勵器諧振器1064和鄰近寄生諧振器1066,其中如先前描述,寄生諧振器1066緊密地電容式耦合到激勵器諧振器1064。如結合圖5所描述,激勵器諧振器1064和寄生諧振器1066可耦合到DRA陣列基板1080(例如,基板530,圖5),所述DRA陣列基板1080滑動地與電子基板1070的第一表面(例如,與接地平面1072)嚙合。 Base portion 1012 and base portion 912 of device 1000 (FIG. 9) Similarly, in the base portion 1012 the assembly includes a DRA array 1060 and a substrate 1070. The DRA array 1060 may include one or more exciter resonators 1064 and adjacent parasitic resonators 1066, wherein the parasitic resonators 1066 are tightly capacitively coupled to the exciter resonators 1064 as previously described. As described in connection with FIG. 5 , the exciter resonator 1064 and the parasitic resonator 1066 may be coupled to a DRA array substrate 1080 (eg, substrate 530 , FIG. 5 ) that slides with the first surface of the electronic substrate 1070 (eg, with ground plane 1072).

基板1070包括在基板1070的第一表面上或附近的傳導接地平面1072(例如,圖10中的上部表面)和一個或多個其它傳導層,所述一個或多個其它傳導層中的一些可以被圖案化以提供安裝到基板1070的各種組件之間的電互連。舉例來說,在一個實施例中,可將對應於系統控制器的組件、使用者介面的部分、電源和微波功率產生模組1050安裝到基板1070的第二表面(例如,圖10中的下部表面),並且那些組件可以穿過圖案化傳導層電耦合到彼此,所述圖案化傳導層在第二表面上或低於第二表面。 Substrate 1070 includes a conductive ground plane 1072 on or near a first surface of substrate 1070 (eg, the upper surface in FIG. 10 ) and one or more other conductive layers, some of which may be are patterned to provide electrical interconnections between various components mounted to the substrate 1070 . For example, in one embodiment, components corresponding to the system controller, the portion of the user interface, the power supply, and the microwave power generation module 1050 may be mounted to the second surface of the substrate 1070 (eg, the lower portion in FIG. 10 ) surface), and those components can be electrically coupled to each other through a patterned conductive layer that is on or below the second surface.

與圖9的微波加熱設備900相對比,使用保形塗層1082來保護DRA陣列1060免受濕氣和其它污染物的影響。舉例來說,保形塗層1082可以包括非傳導包封材料,例如,熱固性塑膠、ABS塑膠、環氧樹脂、PTFE或其它合適的材料。根據一個實施例,保形塗層1082可以限定放置在底座部分1012上面的腔室(未示出)的底部表面 1024。 In contrast to the microwave heating apparatus 900 of FIG. 9, a conformal coating 1082 is used to protect the DRA array 1060 from moisture and other contaminants. For example, the conformal coating 1082 may include a non-conductive encapsulation material, such as thermoset plastic, ABS plastic, epoxy, PTFE, or other suitable materials. According to one embodiment, conformal coating 1082 may define a bottom surface of a chamber (not shown) placed over base portion 1012 1024.

如先前所提到,微波加熱設備的替代實施例可以包括介電諧振器,所述介電諧振器孔隙耦合到射頻信號源而不是通過放置在DRA陣列的激勵器諧振器(例如,諧振器964)內的饋送(例如,饋送968,圖9)耦合。舉例來說,圖11是根據另一示例實施例的可擕式微波加熱設備1100的一部分的截面側視圖,所述可擕式微波加熱設備1100包括孔隙耦合的DRA陣列1160。更具體地說,微波加熱設備1100的部分對應於設備1100的底座部分1112。 As previously mentioned, alternative embodiments of microwave heating devices may include dielectric resonators with apertures coupled to a radio frequency signal source rather than through an exciter resonator (eg, resonator 964) placed in the DRA array ) within the feed (eg, feed 968, Figure 9) coupling. For example, FIG. 11 is a cross-sectional side view of a portion of a portable microwave heating device 1100 that includes an aperture-coupled DRA array 1160 according to another example embodiment. More specifically, the portion of the microwave heating device 1100 corresponds to the base portion 1112 of the device 1100 .

設備1100的底座部分1112與底座部分912(圖9)相似,在所述底座部分1112中組合件包括DRA陣列1160和基板1170。DRA陣列1160可以包括一個或多個激勵器諧振器1164和鄰近寄生諧振器1166,其中如先前描述,寄生諧振器1166緊密地電容式耦合到激勵器諧振器1164。如結合圖5所描述,激勵器諧振器1164和寄生諧振器1166可耦合到DRA陣列基板1180(例如,基板530,圖5),所述DRA陣列基板1180滑動地與電子基板1170的第一表面(例如,與接地平面1172)嚙合。 The base portion 1112 of the device 1100 is similar to the base portion 912 ( FIG. 9 ) in which the assembly includes the DRA array 1160 and the substrate 1170 . The DRA array 1160 may include one or more exciter resonators 1164 and adjacent parasitic resonators 1166, wherein the parasitic resonators 1166 are tightly capacitively coupled to the exciter resonators 1164 as previously described. As described in connection with FIG. 5 , the exciter resonator 1164 and the parasitic resonator 1166 may be coupled to a DRA array substrate 1180 (eg, substrate 530 , FIG. 5 ) that slides with the first surface of the electronic substrate 1170 (eg, with ground plane 1172).

基板1170包括在基板1170的第一表面(例如,圖11中的上部表面)上或附近的傳導接地平面1172和一個或多個其它傳導層,所述一個或多個其它傳導層中的一些可以被圖案化以提供安裝到基板1170的各種組件之間的電互連。舉例來說,在一個實施例中,可以將對應於系統控制器的組件、使用者介面的部分、電源和微波功 率產生模組1150安裝到基板1170的第二表面(例如,圖11中的下部表面),並且那些組件可以穿過圖案化傳導層電耦合到彼此,所述圖案化傳導層在第二表面上或低於第二表面。 Substrate 1170 includes a conductive ground plane 1172 on or near a first surface of substrate 1170 (eg, the upper surface in FIG. 11 ) and one or more other conductive layers, some of which may be are patterned to provide electrical interconnections between various components mounted to the substrate 1170 . For example, in one embodiment, components corresponding to the system controller, portions of the user interface, power supplies, and microwave power may be combined The rate generation modules 1150 are mounted to the second surface of the substrate 1170 (eg, the lower surface in FIG. 11 ), and those components can be electrically coupled to each other through a patterned conductive layer on the second surface or below the second surface.

根據一個實施例,接地平面1172包括位於激勵器諧振器1164下面的開口或孔隙1174。此外,在電子基板1170的表面(例如,圖11中的下部表面)上或低於電子基板1170的表面(例如,圖11中的下部表面)的微帶線路1176或其它傳導結構下伏於接地平面1172中的孔隙1174,並且還下伏於激勵器諧振器1164。 According to one embodiment, the ground plane 1172 includes an opening or aperture 1174 below the exciter resonator 1164 . Additionally, microstrip lines 1176 or other conductive structures on or below the surface of the electronic substrate 1170 (eg, the lower surface in FIG. 11 ) or below the surface of the electronic substrate 1170 (eg, the lower surface in FIG. 11 ) are underlying ground Aperture 1174 in plane 1172, and also underlying exciter resonator 1164.

在一個實施例中,微帶線路1176電耦合到振盪器子系統(例如,振盪器子系統352,圖3)的輸出,且更具體地說電耦合到振盪器子系統的功率電晶體1152的輸出(例如,漏極端)。當向微帶線路1176提供合適的射頻信號時,微帶線路1176產生穿過電子基板1170(且更具體地說,穿過接地平面1172中的孔隙1174)耦合到激勵器諧振器1164的電磁能量。當耦合的射頻能量足夠使得激勵器諧振器1164諧振且產生其自身的電子場時,那些電子場可以直接地衝擊寄生諧振器1166。寄生諧振器1166繼而可以諧振並且產生額外的電子場。同樣,由激勵器諧振器1164和寄生諧振器1166產生的電子場可以延伸到腔室(未示出)中且與腔室耦合,所述腔室放置在底座部分1112上面。 In one embodiment, the microstrip line 1176 is electrically coupled to the output of an oscillator subsystem (eg, oscillator subsystem 352, FIG. 3), and more specifically to the output of the oscillator subsystem's power transistor 1152 output (eg, drain terminal). When a suitable radio frequency signal is provided to the microstrip line 1176, the microstrip line 1176 generates electromagnetic energy that is coupled to the exciter resonator 1164 through the electronic substrate 1170 (and more specifically, through the aperture 1174 in the ground plane 1172). . When the coupled RF energy is sufficient to cause the exciter resonator 1164 to resonate and generate its own electron fields, those electron fields can directly impinge on the parasitic resonator 1166 . The parasitic resonator 1166 can then resonate and generate additional electron fields. Likewise, the electron fields generated by the exciter resonator 1164 and the parasitic resonator 1166 may extend into and couple with a cavity (not shown) placed above the base portion 1112 .

現在將結合圖12到圖17描述不同配置的 DRA陣列的各種實施例。舉例來說,圖12是根據另一示例實施例的適用於微波加熱設備中的DRA陣列1200的俯視圖。與圖5的DRA陣列500相似,DRA陣列1200包括耦合到基板1230的七個介電諧振器1210、1220,所述基板1230包括中心激勵器諧振器1210和鄰近寄生諧振器1220。基板1230可以大體類似於基板530(圖5),所述基板530包括上文所論述的基板530的變體。在一個實施例中,被配置成攜帶射頻信號的饋送1250放置在中心或激勵器介電諧振器1210的中心孔內。如此配置,激勵器諧振器1210和饋送1250形成DRA。在替代實施例中,激勵器諧振器1210替代地可孔隙耦合到微帶線路1260或其它傳導結構,所述微帶線路1260或其它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器1210。另外或替代地,激勵器諧振器可以由放置在除了中心孔以外的位置中的饋送和/或可用於激發介電諧振器的多個饋送激發。 The different configurations will now be described in conjunction with FIGS. 12 to 17 Various embodiments of DRA arrays. For example, FIG. 12 is a top view of a DRA array 1200 suitable for use in a microwave heating apparatus according to another example embodiment. Similar to the DRA array 500 of FIG. 5 , the DRA array 1200 includes seven dielectric resonators 1210 , 1220 coupled to a substrate 1230 including a central exciter resonator 1210 and adjacent parasitic resonators 1220 . Substrate 1230 may be generally similar to substrate 530 (FIG. 5), which includes variations of substrate 530 discussed above. In one embodiment, the feed 1250 configured to carry the radio frequency signal is placed within the center hole of the center or exciter dielectric resonator 1210 . So configured, exciter resonator 1210 and feed 1250 form a DRA. In alternative embodiments, the exciter resonator 1210 may alternatively be pore-coupled to a microstrip line 1260 or other conductive structure, which may alternatively be used to carry radio frequency signals for exciting the exciter resonance device 1210. Additionally or alternatively, the exciter resonator may be excited by a feed placed in a location other than the central hole and/or by multiple feeds that may be used to excite the dielectric resonator.

如同DRA陣列500,當合適的射頻信號由饋送1250或微帶線路1260攜帶時,信號將使得激勵器諧振器1210在它的諧振頻率處諧振。這繼而將使得激勵器諧振器1210產生圍繞激勵器諧振器1210的圓周的初級電子場(例如,電子場440,圖4)。此外,激勵器諧振器1210可以產生從激勵器諧振器1210的頂部表面向上正交地延伸的次級電子場(例如,電子場442,圖4)。 As with DRA array 500, when an appropriate radio frequency signal is carried by feed 1250 or microstrip line 1260, the signal will cause exciter resonator 1210 to resonate at its resonant frequency. This in turn will cause exciter resonator 1210 to generate a primary electron field (eg, electron field 440, Figure 4) around the circumference of exciter resonator 1210. Additionally, the exciter resonator 1210 may generate a secondary electron field (eg, electron field 442, FIG. 4 ) that extends orthogonally upward from the top surface of the exciter resonator 1210 .

與DRA 500相對比,激勵器諧振器1210和鄰近寄生介電諧振器1220通過放置激勵器諧振器1210和寄 生諧振器1220使得它們實際彼此接觸而彼此更加緊密地電容式耦合。更具體地說,介電諧振器1210、1220的側壁之間的距離是零,使得當合適的激勵信號被提供到饋送1250或1260時介電諧振器1210、1220極其緊密地電容式耦合。 In contrast to the DRA 500, the exciter resonator 1210 and the adjacent parasitic dielectric resonator 1220 are formed by placing the exciter resonator 1210 and the parasitic dielectric resonator 1220. The resonators 1220 are capacitively coupled more closely to each other so that they actually touch each other. More specifically, the distance between the sidewalls of the dielectric resonators 1210 , 1220 is zero, so that the dielectric resonators 1210 , 1220 are capacitively coupled extremely tightly when an appropriate excitation signal is provided to the feed 1250 or 1260 .

如上文所述,當激勵器諧振器1210和寄生諧振器1220接觸時,由激勵器諧振器1210產生的周向或初級電子場(例如,電子場440,圖4)可以直接地衝擊鄰近寄生諧振器1220。這繼而可以引起寄生諧振器1220在它們的相應的諧振頻率處諧振。 As described above, when the exciter resonator 1210 and the parasitic resonator 1220 are in contact, the circumferential or primary electron field (eg, electron field 440, FIG. 4) generated by the exciter resonator 1210 can directly impinge adjacent parasitic resonances device 1220. This in turn may cause the parasitic resonators 1220 to resonate at their respective resonant frequencies.

圖13是根據另一示例實施例的適用於微波加熱設備中的DRA陣列1300的俯視圖。DRA陣列1300包括耦合到基板1330的七個介電諧振器1310到1313、介電諧振器1320,包括多個激勵器諧振器1310到1313和鄰近寄生諧振器1320。基板1330可以大體類似於基板530(圖5),所述基板530包括上文所論述的基板530的變體。在示出的實施例中,被配置成攜帶一個或多個射頻信號的多個饋送1350放置在多個激勵器諧振器1310到1313的中心孔內。如此配置,激勵器諧振器1310到1313中的每一個以及它的相關聯的饋送1350形成DRA。因此,與圖5的實施例(其中DRA陣列500僅包括單個DRA)相對比,DRA陣列1300包括多個DRA。在替代實施例中,激勵器諧振器1310到1313中的一個或多個替代地可孔隙耦合到微帶線路1360或一些其它傳導結構,所述微帶線路1360或一些其 它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器1310到1313。在再一替代實施例中,如同針對中心激勵器諧振器1310所指示的,多個饋送1350、1352可以放置在給定介電諧振器1310到1313內的不同位置處。在一些實施例中,不同饋送可以耦合到(或被配置成激發)直到在陣列中的所有介電諧振器(例如,所有介電諧振器可為激勵器諧振器)。 13 is a top view of a DRA array 1300 suitable for use in a microwave heating apparatus according to another example embodiment. DRA array 1300 includes seven dielectric resonators 1310 to 1313 coupled to substrate 1330 , dielectric resonator 1320 including a plurality of exciter resonators 1310 to 1313 and adjacent parasitic resonator 1320 . Substrate 1330 may be substantially similar to substrate 530 (FIG. 5), which includes variations of substrate 530 discussed above. In the illustrated embodiment, a plurality of feeds 1350 configured to carry one or more radio frequency signals are placed within the central bores of the plurality of exciter resonators 1310-1313. So configured, each of the exciter resonators 1310-1313 and its associated feed 1350 form a DRA. Thus, DRA array 1300 includes multiple DRAs in contrast to the embodiment of FIG. 5 in which DRA array 500 includes only a single DRA. In alternate embodiments, one or more of the exciter resonators 1310-1313 may alternatively be pore-coupled to a microstrip line 1360 or some other conductive structure, the microstrip line 1360 or some other conductive structure. Its conductive structure may alternatively be used to carry radio frequency signals for excitation of the exciter resonators 1310-1313. In yet another alternative embodiment, as indicated for the central exciter resonator 1310, multiple feeds 1350, 1352 may be placed at different locations within a given dielectric resonator 1310-1313. In some embodiments, the different feeds may be coupled (or configured to excite) up to all the dielectric resonators in the array (eg, all the dielectric resonators may be exciter resonators).

如同DRA陣列500,當合適射頻信號由饋送1350、1352或微帶線路1360攜帶時,信號將使得對應的激勵器諧振器1310到1313在它的諧振頻率處諧振。這繼而將使得激勵器諧振器1310到1313產生圍繞激勵器諧振器1310到1313的圓周的初級電子場(例如,電子場440,圖4)。此外激勵器諧振器1310到1313可以產生從激勵器諧振器1310到1313的頂部表面向上正交地延伸的次級電子場(例如,電子場442,圖4)。在一些情況下,激勵器諧振器1310到1313可以緊鄰(即,緊密地電容式耦合而沒有中間結構)另一激勵器諧振器1310到1313。在此類情況下,鄰近激勵器諧振器1310到1313可以充當激勵器諧振器和寄生諧振器兩者。舉例來說,考慮到緊鄰彼此的諧振器1310和1311,當激勵器諧振器1310是活躍的且產生周向電子場(例如,電子場440,圖4)時,電子場可以直接地衝擊激勵器諧振器1311。在這些時間,激勵器諧振器1311可以充當寄生諧振器。如果激勵器諧振器1311還接收來自饋送1350或與激勵器諧振器1311相關聯的微帶線路1360 的激勵,那麼同時激勵器諧振器1311可以充當激勵器諧振器和寄生諧振器兩者。 As with the DRA array 500, when an appropriate radio frequency signal is carried by the feeds 1350, 1352 or the microstrip line 1360, the signal will cause the corresponding exciter resonators 1310 to 1313 to resonate at their resonant frequencies. This in turn will cause exciter resonators 1310-1313 to generate a primary electron field (eg, electron field 440, Figure 4) around the circumference of exciter resonators 1310-1313. Further exciter resonators 1310-1313 may generate secondary electron fields (eg, electron fields 442, FIG. 4) extending orthogonally upward from the top surfaces of exciter resonators 1310-1313. In some cases, an exciter resonator 1310-1313 may be in close proximity (ie, tightly capacitively coupled without intervening structures) to another exciter resonator 1310-1313. In such cases, adjacent exciter resonators 1310-1313 may act as both exciter resonators and parasitic resonators. For example, considering resonators 1310 and 1311 in close proximity to each other, when exciter resonator 1310 is active and generates a circumferential electron field (eg, electron field 440, FIG. 4), the electron field may directly impinge on the exciter Resonator 1311. During these times, the exciter resonator 1311 may act as a parasitic resonator. If the exciter resonator 1311 also receives input from the feed 1350 or the microstrip line 1360 associated with the exciter resonator 1311 excitation, then simultaneously the exciter resonator 1311 can act as both an exciter resonator and a parasitic resonator.

根據一個實施例,所有饋送1350、1352和/或微帶線路1360可以接收相同射頻信號。在各種替代實施例中,饋送1350、1352和/或微帶線路1360可以接收不同射頻信號(例如,在不同頻率和/或功率電平處的射頻信號)和/或可以分階段將射頻信號提供到饋送1350、1352和/或微帶線路1360。舉例來說,在第一持續時間期間,可以向激勵器諧振器1310的第一子集提供來自它們的相關聯的饋送1350和/或饋送1352和/或微帶線路1360的激勵,而激勵器諧振器1310的第二且不同的子集可以不接收激勵或接收來自它們的相關聯饋送1350和/或饋送1352和/或微帶線路1360的不同激勵。在第二持續時間期間,可以移除或改變提供到激勵器諧振器1310的第一子集的激勵,並且提供到激勵器諧振器1310的第二子集的激勵可以保持相同或也可以移除或改變提供到激勵器諧振器1310的第二子集的激勵。以此方式,由DRA陣列1300產生的累積的電子場可以隨時間推移改變方向、強度、頻率或其它參數。換句話說,通過提供多個饋送1350、1352和/或微帶線路1360並且依序或以各種組合的方式激發它們,可以形成連續地或遞增地可操控的波束。更具體地說,通過單獨地或以組合的方式啟動多個饋送1350、1352和/或微帶線路1360,可以在方位角和/或高程中操控微波能量的波束。 According to one embodiment, all feeds 1350, 1352 and/or microstrip lines 1360 may receive the same radio frequency signal. In various alternative embodiments, the feeds 1350, 1352 and/or the microstrip line 1360 may receive different radio frequency signals (eg, at different frequencies and/or power levels) and/or may provide the radio frequency signals in stages to feeds 1350, 1352 and/or microstrip line 1360. For example, during a first duration, excitation from their associated feeds 1350 and/or feeds 1352 and/or microstrip lines 1360 may be provided to a first subset of exciter resonators 1310, while the exciter A second and different subset of resonators 1310 may receive no excitation or a different excitation from their associated feeds 1350 and/or feeds 1352 and/or microstrip lines 1360 . During the second duration, the excitation provided to the first subset of exciter resonators 1310 may be removed or changed, and the excitation provided to the second subset of exciter resonators 1310 may remain the same or may also be removed Or change the excitation provided to the second subset of exciter resonators 1310. In this manner, the accumulated electron field produced by the DRA array 1300 may change direction, intensity, frequency, or other parameters over time. In other words, by providing multiple feeds 1350, 1352 and/or microstrip lines 1360 and exciting them sequentially or in various combinations, continuously or incrementally steerable beams can be formed. More specifically, by activating multiple feeds 1350, 1352 and/or microstrip lines 1360 individually or in combination, the beam of microwave energy can be steered in azimuth and/or elevation.

圖14是根據又一示例實施例的適用於微波 加熱設備中的DRA陣列1400的俯視圖。儘管先前所述的DRA陣列中的每一個已經指示用於包括具有圓形截面的加熱腔室(例如,腔室920,圖9)的微波加熱系統中,但是圖14的DRA陣列1400可以具體來說很好地適用於包括具有矩形截面的加熱腔室的微波加熱設備中。換句話說,DRA陣列1400可很好地適用於包括加熱腔室的系統中,所述加熱腔室基本上充當具有封閉端部的矩形波導。 Figure 14 is suitable for use in microwaves according to yet another example embodiment Top view of DRA array 1400 in a heating device. While each of the DRA arrays previously described has been indicated for use in a microwave heating system that includes a heating chamber having a circular cross-section (eg, chamber 920, FIG. 9 ), the DRA array 1400 of FIG. 14 may be specifically Said is well suited for use in microwave heating devices comprising heating chambers with rectangular cross-sections. In other words, the DRA array 1400 may be well suited for use in systems that include heating chambers that essentially act as rectangular waveguides with closed ends.

在示出的實施例中,DRA陣列1400包括耦合到矩形基板1430的十一個介電諧振器1410到1412、1420,包括多個激勵器諧振器1410到1412以及鄰近寄生諧振器1420。除了形狀之外,基板1430可大體類似於基板530(圖5),所述基板530包括上文所論述的基板530的變體。在示出的實施例中,被配置成攜帶一個或多個射頻信號的多個饋送1450放置在多個激勵器諧振器1410到1412的中心孔內。如此配置,激勵器諧振器1410到1412中的每一個以及它的相關聯的饋送1450形成DRA。因此,DRA陣列1400包括多個DRA。在替代實施例中,激勵器諧振器1410到1412中的一個或多個替代地可孔隙耦合到微帶線路1460或一些其它傳導結構,所述微帶線路1460或一些其它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器1410到1412。 In the illustrated embodiment, the DRA array 1400 includes eleven dielectric resonators 1410 - 1412 , 1420 coupled to a rectangular substrate 1430 , including a plurality of exciter resonators 1410 - 1412 and an adjacent parasitic resonator 1420 . Except for the shape, substrate 1430 may be generally similar to substrate 530 (FIG. 5), which includes variations of substrate 530 discussed above. In the illustrated embodiment, a plurality of feeds 1450 configured to carry one or more radio frequency signals are placed within the central bores of the plurality of exciter resonators 1410-1412. So configured, each of the exciter resonators 1410-1412 and its associated feed 1450 form a DRA. Thus, DRA array 1400 includes multiple DRAs. In alternative embodiments, one or more of the exciter resonators 1410-1412 may alternatively be pore-coupled to a microstrip line 1460 or some other conductive structure, which may alternatively be used for A radio frequency signal is carried for excitation of the exciter resonators 1410-1412.

如同DRA陣列500,當合適射頻信號由饋送1450或微帶線路1460攜帶時,信號將使得對應的激勵器諧振器1410到1412在它的諧振頻率處諧振。這繼而將使得激 勵器諧振器1410到1412產生圍繞激勵器諧振器1410到1412的圓周的初級電子場(例如,電子場440,圖4)。此外,激勵器諧振器1410到1412可以產生從激勵器諧振器1410到1412的頂部表面向上正交地延伸的次級電子場(例如,電子場442,圖4)。 As with the DRA array 500, when an appropriate radio frequency signal is carried by the feed 1450 or the microstrip line 1460, the signal will cause the corresponding exciter resonators 1410 to 1412 to resonate at their resonant frequencies. This in turn will make the The exciter resonators 1410-1412 generate a primary electron field (eg, electron field 440, FIG. 4) around the circumference of the exciter resonators 1410-1412. In addition, exciter resonators 1410-1412 may generate secondary electron fields (eg, electron fields 442, FIG. 4) that extend orthogonally upward from the top surfaces of exciter resonators 1410-1412.

如同圖13的實施例並且根據一個實施例,所有饋送1450和/或微帶線路1460可以接收相同的射頻信號。在各種替代實施例中,饋送1450和/或微帶線路1460可以接收不同射頻信號(例如,在不同頻率和/或功率電平處的射頻信號)和/或可以分階段將射頻信號提供到饋送1450和/或微帶線路1460。 As with the embodiment of FIG. 13 and according to one embodiment, all feeds 1450 and/or microstrip lines 1460 may receive the same radio frequency signal. In various alternative embodiments, feed 1450 and/or microstrip line 1460 may receive different radio frequency signals (eg, at different frequencies and/or power levels) and/or may provide radio frequency signals to the feed in stages 1450 and/or microstrip line 1460.

圖15是根據又一示例實施例的適用於微波加熱設備中的DRA陣列1500的俯視圖。DRA陣列1500與圖13中的DRA陣列1300相似,不同之處在於DRA陣列1500包括額外周向放置的介電諧振器的行,而不是僅包括單行周向放置的介電諧振器(如在圖13的DRA陣列1300中)。更具體地說,DRA陣列1500包括耦合到基板1530的十九個介電諧振器1510、1512、1520、1522,包括多個激勵器諧振器1510、1512和鄰近寄生諧振器1520、1522。更具體地說,DRA陣列1500包括居中放置的激勵器諧振器1510、緊鄰中心激勵器諧振器1510的第一周向行的寄生諧振器1520,以及第二周向行的交替的激勵器諧振器1512和寄生諧振器1522。 15 is a top view of a DRA array 1500 suitable for use in a microwave heating apparatus according to yet another example embodiment. The DRA array 1500 is similar to the DRA array 1300 in FIG. 13, except that the DRA array 1500 includes additional rows of circumferentially placed dielectric resonators instead of only a single row of circumferentially placed dielectric resonators (as in FIG. 13 in the DRA array 1300). More specifically, DRA array 1500 includes nineteen dielectric resonators 1510, 1512, 1520, 1522 coupled to substrate 1530, including a plurality of exciter resonators 1510, 1512 and adjacent parasitic resonators 1520, 1522. More specifically, the DRA array 1500 includes a centrally positioned exciter resonator 1510, a first circumferential row of parasitic resonators 1520 next to the central exciter resonator 1510, and a second circumferential row of alternating exciter resonators 1512 and Parasitic resonator 1522.

在如同圖13的DRA陣列1300,被配置成攜 帶一個或多個射頻信號的多個饋送1550放置在多個激勵器諧振器1510、1512的中心孔內。如此配置,激勵器諧振器1510、1512中的每一個以及它的相關聯的饋送1550形成DRA。在替代實施例中,激勵器諧振器1510、1512中的一個或多個替代地可孔隙耦合到微帶線路1560或一些其它傳導結構,所述微帶線路1560或一些其它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器1510、1512。 In a DRA array 1300 like FIG. 13, configured to carry Multiple feeds 1550 with one or more radio frequency signals are placed within the central holes of the multiple exciter resonators 1510, 1512. So configured, each of the exciter resonators 1510, 1512 and its associated feed 1550 form a DRA. In alternative embodiments, one or more of the exciter resonators 1510, 1512 may alternatively be pore-coupled to a microstrip line 1560 or some other conductive structure, which may alternatively be used for A radio frequency signal is carried for excitation of the exciter resonators 1510, 1512.

如同DRA陣列500,當合適射頻信號由饋送1550或微帶線路1560攜帶時,信號將使得對應的激勵器諧振器1510、1512在它的諧振頻率處諧振。這繼而將使得激勵器諧振器1510、1512產生圍繞激勵器諧振器1510、1512的圓周的初級電子場(例如,電子場440,圖4)。此外,激勵器諧振器1510、1512可以產生從激勵器諧振器1510、1512的頂部表面向上正交地延伸的次級電子場(例如,電子場442,圖4)。 As with the DRA array 500, when an appropriate radio frequency signal is carried by the feed 1550 or the microstrip line 1560, the signal will cause the corresponding exciter resonator 1510, 1512 to resonate at its resonant frequency. This in turn will cause the exciter resonators 1510, 1512 to generate a primary electron field (eg, electron field 440, Figure 4) around the circumference of the exciter resonators 1510, 1512. Additionally, the exciter resonators 1510, 1512 may generate secondary electron fields (eg, electron fields 442, FIG. 4) that extend orthogonally upward from the top surfaces of the exciter resonators 1510, 1512.

根據一個實施例,所有饋送1550和/或微帶線路1560可以接收相同射頻信號。在各種替代實施例中,饋送1550和/或微帶線路1560可以接收不同射頻信號(例如,在不同頻率和/或功率電平處的射頻信號),和/或可以分階段將射頻信號提供到饋送1550和/或微帶線路1560。 According to one embodiment, all feeds 1550 and/or microstrip lines 1560 may receive the same radio frequency signal. In various alternative embodiments, feed 1550 and/or microstrip line 1560 may receive different radio frequency signals (eg, at different frequencies and/or power levels), and/or may provide radio frequency signals to Feed 1550 and/or microstrip line 1560.

在一些替代實施例中,DRA陣列可以包括在不同頻率處諧振的介電諧振器。如先前所論述,舉例來說, 這可以通過使用不同大小的介電諧振器、不同形狀的介電諧振器、和/或具有不同介電常數的介電諧振器來實現。圖16是根據另一示例實施例的適用於微波加熱設備中的DRA陣列1600的透視圖,所述DRA陣列1600包括不同大小的介電諧振器1610、1620、1630。與圖5的DRA陣列500相似,DRA陣列1600包括耦合到基板1640的七個介電諧振器1610、1620、1630,包括至少一個激勵器諧振器(例如,諧振器1610、1620、1630中的任何一個或多個)和鄰近寄生諧振器(例如,諧振器1610、1620、1630中的任何其它一個或多個)。基板1640可以大體類似於基板530(圖5),所述基板530包括上文所論述的基板530的變體。在一個實施例中,被配置成攜帶射頻信號的饋送(未示出)放置在每個激勵器介電諧振器的中心孔內。如此配置,激勵器諧振器和饋送形成DRA。在替代實施例中,每個激勵器諧振器替代地可孔隙耦合到微帶線路或其它傳導結構,所述微帶線路或其它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器。另外或替代地,激勵器諧振器可以由放置在除了中心孔以外的位置中的饋送和/或可用於激發介電諧振器的多個饋送激發。 In some alternative embodiments, the DRA array may include dielectric resonators that resonate at different frequencies. As discussed previously, for example, This can be accomplished by using dielectric resonators of different sizes, dielectric resonators of different shapes, and/or dielectric resonators with different dielectric constants. 16 is a perspective view of a DRA array 1600 suitable for use in a microwave heating apparatus, the DRA array 1600 including dielectric resonators 1610, 1620, 1630 of different sizes, according to another example embodiment. Similar to DRA array 500 of FIG. 5 , DRA array 1600 includes seven dielectric resonators 1610 , 1620 , 1630 coupled to substrate 1640 , including at least one exciter resonator (eg, any of resonators 1610 , 1620 , 1630 ) one or more) and adjacent parasitic resonators (eg, any other one or more of resonators 1610, 1620, 1630). Substrate 1640 may be generally similar to substrate 530 (FIG. 5), which includes variations of substrate 530 discussed above. In one embodiment, a feed (not shown) configured to carry a radio frequency signal is placed within the central hole of each exciter dielectric resonator. So configured, the exciter resonator and feed form a DRA. In alternative embodiments, each exciter resonator may alternatively be pore-coupled to a microstrip line or other conductive structure, which may alternatively be used to carry radio frequency signals for exciting the exciter resonators . Additionally or alternatively, the exciter resonator may be excited by a feed placed in a location other than the central hole and/or by multiple feeds that may be used to excite the dielectric resonator.

如同陣列500,當合適射頻信號由饋送或微帶線路攜帶時,信號將使得激勵器諧振器在它的諧振頻率處諧振。這繼而將使得激勵器諧振器產生圍繞激勵器諧振器的圓周的初級電子場(例如,電子場440,圖4)此外,激勵器諧振器可以產生從激勵器諧振器的頂部表面向上正 交地延伸的次級電子場(例如,電子場442,圖4)。 As with array 500, when a suitable radio frequency signal is carried by the feed or microstrip line, the signal will cause the exciter resonator to resonate at its resonant frequency. This, in turn, will cause the exciter resonator to generate a primary electron field around the circumference of the exciter resonator (eg, electron field 440, Figure 4). Additionally, the exciter resonator may generate a positive upward direction from the top surface of the exciter resonator. A secondary electron field that extends across the ground (eg, electron field 442, Figure 4).

與DRA 500相對比,介電諧振器1610、1620、1630具有不同大小。假定介電諧振器1610、1620、1630由具有相同介電常數的材料形成,大小差引起介電諧振器1610、1620、1630在不同諧振頻率處諧振。舉例來說,最大介電諧振器1610可以在第一諧振頻率處諧振,中間大小的介電諧振器1620可以在第二較高諧振頻率處諧振,並且最小介電諧振器1630可以在第三甚至更高諧振頻率處諧振。由於諧振頻率中的差異,源自DRA陣列1600的累積電子場可以與介電諧振器1610、1620、1630的上部表面(例如,上部表面1640)非正交。 In contrast to the DRA 500, the dielectric resonators 1610, 1620, 1630 are of different sizes. Assuming that the dielectric resonators 1610, 1620, 1630 are formed of materials having the same dielectric constant, the magnitude difference causes the dielectric resonators 1610, 1620, 1630 to resonate at different resonant frequencies. For example, the largest dielectric resonator 1610 can resonate at a first resonant frequency, an intermediate-sized dielectric resonator 1620 can resonate at a second higher resonant frequency, and the smallest dielectric resonator 1630 can resonate at a third or even Resonates at higher resonant frequencies. Due to differences in resonant frequencies, the accumulated electron fields originating from the DRA array 1600 may be non-orthogonal to the upper surfaces (eg, upper surface 1640 ) of the dielectric resonators 1610 , 1620 , 1630 .

儘管電子場操控是在圖16的DRA陣列1600中通過併入不同大小的介電諧振器1610、1620、1630到陣列1600中來實現的(因此諧振器具有不同諧振頻率),相似的波束操控作用可以其它方法實現。舉例來說,替代地,電子場操控可以通過如下方法實現:將具有不同介電常數的介電諧振器併入到陣列中、將不同形狀的介電諧振器併入到陣列中,或者改變鄰近介電諧振器的組之間的間隔且因此改變電容耦合的強度。通過將具有各種諧振頻率的介電諧振器併入到DRA陣列中,系統可設計為其中累積電子場在除了與介電諧振器的頂部表面正交的方向之外的一個或多個方向上被引導。 Although the electronic field steering is achieved in the DRA array 1600 of FIG. 16 by incorporating different sized dielectric resonators 1610, 1620, 1630 into the array 1600 (thus the resonators have different resonant frequencies), similar beam steering effects Can be achieved in other ways. For example, electron field manipulation may alternatively be achieved by incorporating dielectric resonators with different dielectric constants into the array, incorporating differently shaped dielectric resonators into the array, or changing the proximity The spacing between groups of dielectric resonators and thus changes the strength of the capacitive coupling. By incorporating dielectric resonators with various resonant frequencies into a DRA array, systems can be designed in which the accumulated electron field is guide.

在一些替代實施例,DRA陣列可以包括具有不同物理配置的介電諧振器中以及因此在不同頻率處諧振 和/或具有不同電子場分佈的介電諧振器。舉例來說,圖17是根據另一示例實施例的適用於微波加熱設備中的DRA陣列1700的透視圖,所述DRA陣列1700包括不同物理配置的介電諧振器1710、1720、1730。DRA陣列1700包括耦合到基板1740的十一個介電諧振器1710、1720、1730,包括至少一個激勵器諧振器(例如,諧振器1710、1720、1730中的任何一個或多個)和鄰近寄生諧振器(例如,諧振器1710、1720、1730中的任何其它一個或多個)。基板1740可以大體類似於基板530(圖5),所述基板530包括上文所論述的基板530的變體。在一個實施例中,被配置成攜帶射頻信號的饋送(未示出)放置在每個激勵器介電諧振器的中心孔內。如此配置,激勵器諧振器和饋送形成DRA。在替代實施例中,每個激勵器諧振器替代地可孔隙耦合到微帶線路或其它傳導結構,所述微帶線路或其它傳導結構替代地可用於攜帶射頻信號以用於激發激勵器諧振器。另外或替代地,激勵器諧振器可以由放置在除了中心孔以外的位置中的饋送和/或可用於激發介電諧振器的多個饋送激發。 In some alternative embodiments, the DRA array may be included in dielectric resonators having different physical configurations and thus resonate at different frequencies and/or dielectric resonators with different electron field distributions. For example, Figure 17 is a perspective view of a DRA array 1700 suitable for use in a microwave heating apparatus including dielectric resonators 1710, 1720, 1730 in different physical configurations, according to another example embodiment. DRA array 1700 includes eleven dielectric resonators 1710, 1720, 1730 coupled to substrate 1740, including at least one exciter resonator (eg, any one or more of resonators 1710, 1720, 1730) and adjacent parasitic A resonator (eg, any other one or more of resonators 1710, 1720, 1730). Substrate 1740 may be generally similar to substrate 530 (FIG. 5), which includes variations of substrate 530 discussed above. In one embodiment, a feed (not shown) configured to carry a radio frequency signal is placed within the central hole of each exciter dielectric resonator. So configured, the exciter resonator and feed form a DRA. In alternative embodiments, each exciter resonator may alternatively be pore-coupled to a microstrip line or other conductive structure, which may alternatively be used to carry radio frequency signals for exciting the exciter resonators . Additionally or alternatively, the exciter resonator may be excited by a feed placed in a location other than the central hole and/or by multiple feeds that may be used to excite the dielectric resonator.

如同陣列500,當合適射頻信號由饋送或微帶線路攜帶時,信號將使得激勵器諧振器在它的諧振頻率處諧振。這繼而將使得激勵器諧振器產生從諧振器向外輻射的一個或多個電子場。 As with array 500, when a suitable radio frequency signal is carried by the feed or microstrip line, the signal will cause the exciter resonator to resonate at its resonant frequency. This in turn will cause the exciter resonator to generate one or more electron fields that radiate outward from the resonator.

與DRA 500相對比,介電諧振器1710、1720、1730具有不同物理配置。具體地說,在示出的實施 例中,第一介電諧振器1710具有帶中心孔的大體上的圓柱形形狀,第二介電諧振器1720具有不帶中心孔的大體上的圓柱形形狀,並且第三介電諧振器1730具有帶中心孔的圓頂形狀。假定介電諧振器1710、1720、1730由具有相同介電常數的材料形成,物理配置差異引起介電諧振器1710、1720、1730在不同諧振頻率處諧振和/或產生具有不同分佈的電子場。 In contrast to the DRA 500, the dielectric resonators 1710, 1720, 1730 have different physical configurations. Specifically, in the implementation shown For example, the first dielectric resonator 1710 has a generally cylindrical shape with a center hole, the second dielectric resonator 1720 has a generally cylindrical shape without a center hole, and the third dielectric resonator 1730 Has a dome shape with a central hole. Given that the dielectric resonators 1710, 1720, 1730 are formed of materials with the same dielectric constant, the physical configuration differences cause the dielectric resonators 1710, 1720, 1730 to resonate at different resonant frequencies and/or generate electron fields with different distributions.

圖17的實施例示出在DRA陣列的各種實施例中可以使用多種不同配置的介電諧振器。為了更進一步示出這一點,圖18到23是具有各種物理配置的介電諧振器1800、1900、2000、2100、2200、2300的透視圖,並且所述介電諧振器可用於DRA陣列中。更具體地說,介電諧振器1800(圖18)具有不帶中心孔的圓柱形形狀,介電諧振器1900(圖19)具有帶中心孔的扁平圓盤形狀,介電諧振器2000(圖20)具有帶中心孔的圓錐形狀,介電諧振器2100(圖21)具有帶中心孔的平行六面體形狀,介電諧振器2200(圖22)具有帶中心孔的球形形狀,且介電諧振器2300(圖23)具有不帶中心孔的圓頂形狀。具有或不具有中心孔或具有其它開口的多種多樣的不同配置的介電諧振器中的任一者可替代地用於各種實施例。 The embodiment of FIG. 17 shows that a variety of different configurations of dielectric resonators can be used in various embodiments of DRA arrays. To illustrate this further, Figures 18-23 are perspective views of dielectric resonators 1800, 1900, 2000, 2100, 2200, 2300 having various physical configurations and which may be used in DRA arrays. More specifically, dielectric resonator 1800 (FIG. 18) has a cylindrical shape without a center hole, dielectric resonator 1900 (FIG. 19) has a flat disc shape with a center hole, and dielectric resonator 2000 (FIG. 19) has a flat disk shape with a center hole. 20) has a conical shape with a center hole, the dielectric resonator 2100 (FIG. 21) has a parallelepiped shape with a center hole, the dielectric resonator 2200 (FIG. 22) has a spherical shape with a center hole, and the dielectric The resonator 2300 (FIG. 23) has a dome shape without a central hole. Any of a wide variety of different configurations of dielectric resonators with or without a central hole or with other openings may alternatively be used in various embodiments.

如先前所指示,微波加熱設備的其它替代實施例可以包括一個以上DRA陣列。舉例來說,在圖9中,在微波加熱設備900的蓋子916中描繪額外的DRA陣列962。在該實施例中,兩個所包括的DRA陣列960、962被 配置成沿著相同的軸引導電磁能量的波束,所述相同的軸具體地說為垂直於加熱腔室920的底部表面924和頂部表面926延伸的軸。在替代實施例中,微波加熱設備可以包括在不共線的多個方向中引導電磁能量的波束的多個DRA陣列。舉例來說,圖19是根據另一示例實施例的微波加熱設備1900的截面側視圖,所述微波加熱設備1900包括在正交方向上引導電磁能量的波束的第一DRA陣列2460和第二DRA陣列2462。 As indicated previously, other alternative embodiments of microwave heating apparatus may include more than one DRA array. For example, in FIG. 9, an additional DRA array 962 is depicted in the lid 916 of the microwave heating apparatus 900. In this embodiment, the two included DRA arrays 960, 962 are The beams of electromagnetic energy are configured to be directed along the same axis, specifically the axis extending perpendicular to the bottom surface 924 and the top surface 926 of the heating chamber 920 . In alternative embodiments, the microwave heating apparatus may include multiple DRA arrays that direct beams of electromagnetic energy in multiple directions that are not collinear. For example, Figure 19 is a cross-sectional side view of a microwave heating apparatus 1900 including a first DRA array 2460 and a second DRA that direct beams of electromagnetic energy in orthogonal directions, according to another example embodiment Array 2462.

與圖9的微波加熱設備900相似,微波加熱設備2400包括外殼2410、加熱腔室2420、系統控制器(例如,系統控制器310,圖24中未示出)、使用者介面(例如,使用者介面330,圖24中未示出),以及電源系統(例如,電源系統340,圖24中未示出)。此外,在一個實施例中,外殼2410包括底座部分2412、腔室部分2414和蓋子2416(其在圖24中為閉合狀態)。與圖9的微波加熱設備900相對比,微波加熱設備2400包括兩個微波功率產生模組2450、2452(例如,模組350的兩個實例,圖3),以及相對於彼此正交地佈置的兩個DRA陣列2460、2462(例如,DRA陣列360、500的兩個實例,圖3、5)。更具體的說,第一DRA陣列2460放置在外殼2410的底座部分2412內,且第二DRA陣列2462放置在設備2400的腔室部分2414的側壁2422內。 Similar to microwave heating apparatus 900 of FIG. 9, microwave heating apparatus 2400 includes a housing 2410, a heating chamber 2420, a system controller (eg, system controller 310, not shown in FIG. 24), a user interface (eg, a user interface) interface 330, not shown in FIG. 24), and a power system (eg, power system 340, not shown in FIG. 24). Additionally, in one embodiment, the housing 2410 includes a base portion 2412, a chamber portion 2414, and a lid 2416 (which is in a closed state in Figure 24). In contrast to microwave heating apparatus 900 of Figure 9, microwave heating apparatus 2400 includes two microwave power generating modules 2450, 2452 (eg, two instances of module 350, Figure 3), and arranged orthogonally with respect to each other Two DRA arrays 2460, 2462 (eg, two instances of DRA arrays 360, 500, Figures 3, 5). More specifically, the first DRA array 2460 is placed within the base portion 2412 of the housing 2410 and the second DRA array 2462 is placed within the sidewall 2422 of the chamber portion 2414 of the device 2400.

加熱腔室2420還位於外殼2410的腔室部分2414內。圖24示出了在腔室2420內的負載2440(例如, 食物負載或其它負載)。再次,如先前所描述,加熱腔室2420是基本上充當具有封閉端部的波導的封閉的空氣腔室。 Heating chamber 2420 is also located within chamber portion 2414 of housing 2410. FIG. 24 shows a load 2440 within the chamber 2420 (eg, food load or other load). Again, as previously described, the heating chamber 2420 is a closed air chamber that essentially acts as a waveguide with closed ends.

根據一個實施例,外殼2410的底座部分2412包含第一DRA陣列2460和容納第一微波功率產生模組2450的電子基板2470。類似地,外殼2410的腔室部分2414包含第二DRA陣列2462和容納第二微波功率產生模組2452的電子基板2472。第一微波功率產生模組2450被配置成將射頻激勵信號提供到第一DRA陣列2460(例如,通過放置在激勵器諧振器中的饋送或通過電容耦合),這使得第一DRA陣列2460在與腔室2420的底部表面2424正交的方向上產生電磁能量的波束,所述方向一般由箭頭2480指示。類似地,第二微波功率產生模組2452被配置成將射頻激勵信號提供到第二DRA陣列2462(例如,通過放置在激勵器諧振器中的饋送或通過電容耦合),這使得第二DRA陣列2462在與腔室側壁2422正交的方向上產生電磁能量的波束,所述方向一般由箭頭2482指示。如從圖24中顯而易見,由第一DRA陣列2460和第二DRA陣列2462產生的電磁能量的波束具有大體上正交的取向。此外,儘管第一DRA陣列2460和第二DRA陣列2462可以在大體上相同的頻率處操作,但是它們可以替代地在不同頻率處操作以提供耦合到腔室2420內的負載2440的更多寬頻能量。 According to one embodiment, the base portion 2412 of the housing 2410 includes a first DRA array 2460 and an electronic substrate 2470 that houses the first microwave power generation module 2450 . Similarly, the chamber portion 2414 of the housing 2410 contains a second DRA array 2462 and an electronic substrate 2472 that houses a second microwave power generation module 2452. The first microwave power generation module 2450 is configured to provide a radio frequency excitation signal to the first DRA array 2460 (eg, through a feed placed in an exciter resonator or through capacitive coupling), which causes the first DRA array 2460 to operate in a A beam of electromagnetic energy is generated in a direction orthogonal to the bottom surface 2424 of the chamber 2420, generally indicated by arrow 2480. Similarly, the second microwave power generation module 2452 is configured to provide radio frequency excitation signals to the second DRA array 2462 (eg, through feeds placed in the exciter resonators or through capacitive coupling), which enables the second DRA array 2462 generates a beam of electromagnetic energy in a direction orthogonal to the chamber sidewall 2422, the direction generally indicated by arrow 2482. As is apparent from Figure 24, the beams of electromagnetic energy generated by the first DRA array 2460 and the second DRA array 2462 have substantially orthogonal orientations. Furthermore, although the first DRA array 2460 and the second DRA array 2462 may operate at substantially the same frequency, they may alternatively operate at different frequencies to provide more broadband energy coupled to the load 2440 within the chamber 2420 .

圖25是根據示例實施例的操作包括一個或多個DRA陣列的微波系統(例如,系統100、300、900、 2400)的方法的流程圖。在塊2502中,當系統控制器(例如,系統控制器310,圖3)接收指示執行微波加熱操作的參數的資訊時,開始方法。舉例來說,資訊可以從通過使用者介面(例如,使用者介面330,圖3)提供的使用者輸入匯出,並且資訊可以傳送加熱操作的持續時間、加熱操作的功率電平和/或與加熱操作相關的其它參數。 25 is an illustration of the operation of a microwave system (eg, systems 100, 300, 900, 2400) is a flowchart of the method. In block 2502, the method begins when a system controller (eg, system controller 310, FIG. 3) receives information indicative of parameters to perform a microwave heating operation. For example, information may be derived from user input provided through a user interface (eg, user interface 330, FIG. 3), and the information may convey the duration of the heating operation, the power level of the heating operation, and/or the Other parameters related to the operation.

在塊2504中,系統控制器使得電源(例如,電源340,圖1)以某種方式將功率提供到一個或多個微波產生模組(例如,模組350,圖3),所述方式將使得微波產生模組產生與加熱操作所規定的參數一致的一個或多個激勵信號。 In block 2504, the system controller causes a power supply (eg, power supply 340, FIG. 1) to provide power to one or more microwave generating modules (eg, module 350, FIG. 3) in a manner that will The microwave generating module is caused to generate one or more excitation signals consistent with the parameters specified for the heating operation.

根據一個實施例,在塊2506中,可通過射頻饋送(例如,饋送550,圖5)或通過微帶線路(例如,微帶線路1176,圖11)將每個激勵信號傳送到DRA陣列(例如,DRA陣列500、960、1060、1160、1200、1300、1400、1500、1600、1700、2460)。作為響應,在塊2508中,DRA陣列產生定向電磁能量波束,所述波束朝向微波系統的加熱腔室(例如,加熱腔室920)取向。如先前所論述,腔室可以包含近場負載(例如,負載940、2440)。DRA陣列繼續產生定向電磁能量波束直至激勵信號的供應被中斷,此時方法結束。 According to one embodiment, in block 2506, each excitation signal may be delivered to a DRA array (eg, feed 550, FIG. 5) or via a microstrip line (eg, microstrip line 1176, FIG. 11) at block 2506 (eg, feed 550, FIG. 5). , DRA arrays 500, 960, 1060, 1160, 1200, 1300, 1400, 1500, 1600, 1700, 2460). In response, in block 2508, the DRA array generates a beam of directed electromagnetic energy directed toward a heating chamber (eg, heating chamber 920) of the microwave system. As previously discussed, the chamber may contain near-field loads (eg, loads 940, 2440). The DRA array continues to generate directed beams of electromagnetic energy until the supply of the excitation signal is interrupted, at which point the method ends.

圖26是根據示例實施例製造包括一個或多個DRA陣列的微波系統(例如,系統100、300、900、2400)的方法的流程圖。在塊2602中,通過將多個介電諧振器(例 如,介電諧振器964、966)耦合到DRA基板(例如,DRA基板980)以形成DRA基板組合件,方法開始。在DRA基板組合件中,激勵器介電諧振器與鄰近介電諧振器之間的距離確保在來自饋送的激勵信號存在的情況下激勵器介電諧振器和鄰近介電諧振器將緊密地電容式耦合(例如,距離小於激勵器介電諧振器的諧振頻率的波長的五分之一或十分之一)。 26 is a flowchart of a method of fabricating a microwave system (eg, system 100, 300, 900, 2400) including one or more DRA arrays, according to an example embodiment. In block 2602, by combining a plurality of dielectric resonators (eg For example, dielectric resonators 964, 966) are coupled to a DRA substrate (eg, DRA substrate 980) to form a DRA substrate assembly, and the method begins. In the DRA substrate assembly, the distance between the exciter dielectric resonator and the adjacent dielectric resonator ensures that the exciter dielectric resonator and the adjacent dielectric resonator will be closely capacitive in the presence of the excitation signal from the feed coupling (eg, distances less than one-fifth or one-tenth the wavelength of the resonant frequency of the exciter dielectric resonator).

在塊2604中,一個或多個電子基板(例如,基板970)安裝到外殼中(例如,到外殼的底座部分或其它部分中)。外殼包括被配置成包含待加熱或解凍的負載(例如,負載940)的加熱腔室(例如,腔室920)。根據一個實施例,每個電子基板容納包括一個或多個饋送結構(例如,饋送968或微帶線路1174)的微波產生模組(例如,模組950)。此外,每個電子基板包括接地平面(例如,接地平面972)。 In block 2604, one or more electronic substrates (eg, substrate 970) are mounted into the housing (eg, into a base portion or other portion of the housing). The enclosure includes a heating chamber (eg, chamber 920 ) configured to contain a load (eg, load 940 ) to be heated or thawed. According to one embodiment, each electronic substrate houses a microwave generating module (eg, module 950 ) that includes one or more feed structures (eg, feed 968 or microstrip line 1174 ). Additionally, each electronic substrate includes a ground plane (eg, ground plane 972).

在塊2606中,DRA基板組合件安裝在電子基板上面的外殼中使得DRA基板安置於接地平面與加熱腔室之間,並且使得一個或多個饋送結構足夠接近激勵器介電諧振器(以及在陣列中的可能的其它介電諧振器)以能夠在供應有來自微波產生模組的合適的射頻激勵信號時激發諧振器進行諧振。在塊2608中,DRA陣列與腔室分離(例如,為了保護DRA陣列),方法是將保形材料(例如,保形材料1082)施加到DRA陣列上面、或放置保護罩蓋(例如,罩蓋982)在DRA陣列上面。 At block 2606, the DRA substrate assembly is mounted in the housing over the electronic substrate such that the DRA substrate is positioned between the ground plane and the heating chamber and the one or more feed structures are sufficiently close to the exciter dielectric resonator (and in possible other dielectric resonators in the array) to be able to excite the resonators to resonate when supplied with a suitable radio frequency excitation signal from the microwave generating module. In block 2608, the DRA array is separated from the chamber (eg, to protect the DRA array) by applying a conformal material (eg, conformal material 1082) over the DRA array, or placing a protective cover (eg, a cover 982) above the DRA array.

為了簡潔起見,本文中可能沒有詳細地描述與系統的諧振器、放大器、偏置、負載調製、阻抗匹配、功率分配器和/或功率組合器、微波應用和其它功能性方面(以及系統的個體的操作組件)相關的常規技術。本文中包含的各圖中所示出的連接線意圖表示各種元件之間的示例性功能關係和/或物理耦合。應注意,標的物的實施例中可以存在許多替代或額外的功能關係或物理連接。此外,本文中還可以僅出於參考的目的使用某些術語,且因此這些術語並不意圖具有限制性,並且除非上下文清楚地指示,否則指代結構的術語“第一”、“第二”和其它此類數值術語並不暗示順序或次序。 For the sake of brevity, resonators, amplifiers, biasing, load modulation, impedance matching, power dividers and/or power combiners, microwave applications, and other functional aspects of the system (as well as the system's) may not be described in detail herein. individual operating components) related conventional techniques. The connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may exist in embodiments of the subject matter. In addition, certain terms may also be used herein for the purpose of reference only, and thus these terms are not intended to be limiting, and the terms "first", "second" refer to structures unless the context clearly dictates otherwise. and other such numerical terms do not imply a sequence or order.

如本文所使用,“節點”意味著任何內部或外部參考點、連接點、接合點、信號線、等等,在“節點”處存在給定信號、邏輯電平、電壓、資料模式、電流或數量。此外,兩個或兩個以上節點可以通過一個物理元件實現(並且儘管在公共節點處接收或輸出,但是仍然可以對兩個或兩個以上信號進行多工、調製或另外區分)。 As used herein, "node" means any internal or external reference point, connection point, junction, signal line, etc. at which a given signal, logic level, voltage, data pattern, current or quantity. Furthermore, two or more nodes may be implemented by one physical element (and the two or more signals may be multiplexed, modulated, or otherwise differentiated despite being received or output at a common node).

以上描述指代元件或節點或特徵“連接”或“耦合”在一起。如本文所使用,除非以其它方式明確地陳述,否則“連接”意味著一個元件直接接合到另一元件(或直接與另一元件連通),且不一定以機械方式接合。類似地,除非以其它方式明確地陳述,否則“耦合”意味著一個元件直接或間接接合到另一元件(或直接或間接與另一元件連通),且不一定以機械方式接合。因此,儘管圖中所 示的示意圖描繪元件的一個示例性佈置,但所描繪的標的物的實施例中可存在額外中間元件、裝置、特徵或組件。 The above description refers to elements or nodes or features being "connected" or "coupled" together. As used herein, unless expressly stated otherwise, "connected" means that one element is directly joined to (or in direct communication with) another element, and not necessarily mechanically. Similarly, unless expressly stated otherwise, "coupled" means that one element is directly or indirectly joined to (or in direct or indirect communication with) another element, and not necessarily mechanically. Therefore, although the figure The schematic diagrams shown depict one exemplary arrangement of elements, although additional intervening elements, devices, features, or components may be present in the depicted embodiments of the subject matter.

微波加熱設備的實施例包括:固態微波能量來源;第一介電諧振器天線,其包括第一激勵器介電諧振器和接近第一激勵器介電諧振器的第一饋送結構;以及一個或多個第二介電諧振器。第一激勵器介電諧振器具有頂部表面和相對的底部表面。第一饋送結構電耦合到微波能量來源以接收來自微波能量來源的第一激勵信號。第一激勵器介電諧振器被配置成響應於提供到第一饋送結構的激勵信號產生第一電場。一個或多個第二介電諧振器放置在第一激勵器介電諧振器的距離內以形成介電諧振器天線陣列。選擇距離使得當提供激勵信號時第二介電諧振器中的每一個與第一激勵器介電諧振器緊密地電容式耦合。 Embodiments of the microwave heating apparatus include: a solid state microwave energy source; a first dielectric resonator antenna including a first exciter dielectric resonator and a first feed structure proximate the first exciter dielectric resonator; and one or a plurality of second dielectric resonators. The first exciter dielectric resonator has a top surface and an opposing bottom surface. The first feed structure is electrically coupled to the microwave energy source to receive the first excitation signal from the microwave energy source. The first exciter dielectric resonator is configured to generate a first electric field in response to an excitation signal provided to the first feed structure. One or more second dielectric resonators are placed within distance of the first exciter dielectric resonator to form a dielectric resonator antenna array. The distances are selected such that each of the second dielectric resonators is tightly capacitively coupled to the first exciter dielectric resonator when the excitation signal is provided.

根據其它實施例,當提供激勵信號時,由第一激勵器介電諧振器產生的第一電場直接地衝擊第二介電諧振器中的每一個,使得第二介電諧振器中的每一個響應於第一電場的衝擊產生第二電場。根據又一其它實施例,一個或多個第二介電諧振器中的每一個是並不直接地從饋送結構中接收激勵信號而是替代地僅響應於第一電場的衝擊產生第二電場的寄生介電諧振器。根據另一其它實施例,第一激勵器介電諧振器和第二介電諧振器佈置在共平面配置中,使得周向電場的一部分直接地衝擊第二介電諧振器。根據另一其它實施例,距離小於第一激勵器介電諧振器的諧振頻率的波長的五分之一。根據又一其它實施 例,距離在0毫米與12.5毫米之間。 According to other embodiments, when the excitation signal is provided, the first electric field generated by the first exciter dielectric resonator directly impinges each of the second dielectric resonators such that each of the second dielectric resonators A second electric field is generated in response to the shock of the first electric field. According to yet other embodiments, each of the one or more second dielectric resonators does not directly receive the excitation signal from the feed structure but instead generates the second electric field only in response to the shock of the first electric field Parasitic Dielectric Resonators. According to yet other embodiments, the first exciter dielectric resonator and the second dielectric resonator are arranged in a coplanar configuration such that a portion of the circumferential electric field directly impinges on the second dielectric resonator. According to yet other embodiments, the distance is less than one fifth of the wavelength of the resonant frequency of the first exciter dielectric resonator. According to yet another implementation For example, the distance is between 0 mm and 12.5 mm.

微波加熱設備的另一實施例包括:腔室;固態微波能量來源;第一介電諧振器天線,其包括第一激勵器介電諧振器和接近第一激勵器介電諧振器的第一饋送結構;以及一個或多個第二介電諧振器。腔室被配置成包含負載,並且所述腔室部分由具有內部腔室壁表面和外部腔室壁表面的第一腔室壁限定。第一激勵器介電諧振器具有頂部表面和相對的底部表面。第一饋送結構電耦合到微波能量來源以從微波能量來源中接收第一激勵信號,並且第一激勵器介電諧振器被配置成響應於提供到第一饋送結構的激勵信號產生第一電場。一個或多個第二介電諧振器放置在第一激勵器介電諧振器的距離內以形成介電諧振器天線陣列。選擇距離使得當提供激勵信號時第二介電諧振器中的每一個與第一激勵器介電諧振器緊密地電容式耦合。 Another embodiment of a microwave heating apparatus includes: a chamber; a solid state microwave energy source; a first dielectric resonator antenna including a first exciter dielectric resonator and a first feed proximate the first exciter dielectric resonator structure; and one or more second dielectric resonators. The chamber is configured to contain a load, and the chamber portion is defined by a first chamber wall having an inner chamber wall surface and an outer chamber wall surface. The first exciter dielectric resonator has a top surface and an opposing bottom surface. The first feed structure is electrically coupled to the microwave energy source to receive a first excitation signal therefrom, and the first exciter dielectric resonator is configured to generate a first electric field in response to the excitation signal provided to the first feed structure. One or more second dielectric resonators are placed within distance of the first exciter dielectric resonator to form a dielectric resonator antenna array. The distances are selected such that each of the second dielectric resonators is tightly capacitively coupled to the first exciter dielectric resonator when the excitation signal is provided.

操作包括第一微波產生模組的微波系統的方法的實施例包括通過第一微波產生模組產生傳送到第一射頻(RF)饋送結構的第一激勵信號,其中第一射頻饋送結構接近第一介電諧振器放置。所述方法還包括通過第一介電諧振器響應於由第一射頻饋送結構傳送的第一激勵信號產生直接地衝擊與第一介電諧振器緊密地電容式耦合的第二介電諧振器的第一電場。所述方法另外包括通過第二介電諧振器響應於第一電場的衝擊產生第二電場,其中第二電場被引導朝向包含近場負載的腔室。 Embodiments of a method of operating a microwave system including a first microwave generation module include generating, by the first microwave generation module, a first excitation signal for delivery to a first radio frequency (RF) feed structure, wherein the first radio frequency feed structure is proximate to the first Dielectric resonator placement. The method also includes generating, by the first dielectric resonator, a second dielectric resonator that directly impacts a second dielectric resonator that is tightly capacitively coupled to the first dielectric resonator in response to a first excitation signal delivered by the first radio frequency feed structure. first electric field. The method additionally includes generating a second electric field by the second dielectric resonator in response to the shock of the first electric field, wherein the second electric field is directed toward the chamber containing the near-field load.

製造微波系統的方法的實施例包括將具有 諧振頻率的第一介電諧振器耦合到第一基板,並且將一個或多個額外的介電諧振器耦合到第一基板使得第一介電諧振器與一個或多個額外的介電諧振器中的每一個之間的距離是緊密地電容式耦合的。第一介電諧振器和額外的介電諧振器形成介電諧振器天線陣列。所述方法另外包括將第二基板安裝到外殼中,其中射頻饋送結構耦合到第二基板。外殼限定被配置成具有封閉端部的波導的腔室。所述方法另外包括將第一基板安裝到外殼中使得射頻饋送結構足夠接近第一介電諧振器以能夠在射頻饋送結構供應有合適的射頻激勵信號時激發第一介電諧振器進行諧振。 An embodiment of a method of making a microwave system includes incorporating A first dielectric resonator of a resonant frequency is coupled to the first substrate, and one or more additional dielectric resonators are coupled to the first substrate such that the first dielectric resonator is connected to the one or more additional dielectric resonators The distance between each is tightly capacitively coupled. The first dielectric resonator and the additional dielectric resonators form a dielectric resonator antenna array. The method additionally includes mounting a second substrate into the housing, wherein the radio frequency feed structure is coupled to the second substrate. The housing defines a cavity configured as a waveguide with closed ends. The method additionally includes mounting the first substrate into the housing such that the radio frequency feed structure is sufficiently close to the first dielectric resonator to be able to excite the first dielectric resonator into resonance when the radio frequency feed structure is supplied with a suitable radio frequency excitation signal.

儘管以上詳細描述中已呈現至少一個示例性實施例,但應瞭解,存在大量變化。還應瞭解,本文中所描述的示例性實施例並不意圖以任何方式限制所主張的標的物的範圍、適用性或配置。實際上,以上詳細描述將向本領域的技術人員提供用於實施所描述的一個或多個實施例的方便的指南。應理解,可在不脫離權利要求書所限定的範圍的情況下對元件的功能和佈置作出各種改變,權利要求書所限定的範圍包括在提交本專利請時的已知等效物和可預見的等效物。 While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient guide for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which include known equivalents and foreseeable at the time of filing this patent application equivalent of .

100:微波加熱設備;微波系統 100: microwave heating equipment; microwave systems

110:外殼 110: Shell

112:底座部分 112: base part

114:腔室部分 114: Chamber Section

116:蓋子 116: Cover

118:外部連接埠 118: External port

120:加熱腔室 120: Heating the chamber

122:內側壁 122: Inner side wall

130:控制面板 130: Control Panel

140:負載 140: load

Claims (32)

一種微波加熱設備,其特徵在於,包括:固態微波能量來源;第一介電諧振器天線,其包括第一激勵器介電諧振器和接近所述第一激勵器介電諧振器的第一饋送結構,其中所述第一激勵器介電諧振器具有頂部表面和相對的底部表面,其中所述第一饋送結構電耦合到所述微波能量來源以從所述微波能量來源中接收第一激勵信號,並且其中所述第一激勵器介電諧振器被配置成響應於提供到所述第一饋送結構的所述激勵信號產生第一電場;以及一個或多個第二介電諧振器,其相鄰於一側壁放置且放置在所述第一激勵器介電諧振器的距離內以形成介電諧振器天線陣列,其中選擇所述距離使得當提供所述激勵信號時所述第二介電諧振器中的每一個與所述第一激勵器介電諧振器緊密地電容式耦合,及其中所述距離小於所述第一激勵器介電諧振器的諧振頻率的波長的五分之一。 A microwave heating device, characterized by comprising: a solid state microwave energy source; a first dielectric resonator antenna including a first exciter dielectric resonator and a first feed proximate to the first exciter dielectric resonator structure wherein the first exciter dielectric resonator has a top surface and an opposing bottom surface, wherein the first feed structure is electrically coupled to the microwave energy source to receive a first excitation signal therefrom , and wherein the first exciter dielectric resonator is configured to generate a first electric field in response to the excitation signal provided to the first feed structure; and one or more second dielectric resonators, which phase placed adjacent to a side wall and within a distance of the first exciter dielectric resonator to form a dielectric resonator antenna array, wherein the distance is selected such that the second dielectric resonates when the excitation signal is provided Each of the exciters is tightly capacitively coupled with the first exciter dielectric resonator, and wherein the distance is less than one fifth of the wavelength of the resonant frequency of the first exciter dielectric resonator. 如請求項1所述的微波加熱設備,其中,當提供所述激勵信號時,由所述第一激勵器介電諧振器產生的所述第一電場直接地衝擊所述第二介電諧振器中的每一個,使得所述第二介電諧振器中的每一個響應於所述第一電場的衝擊產生第二電場。 The microwave heating apparatus of claim 1, wherein the first electric field generated by the first exciter dielectric resonator directly impacts the second dielectric resonator when the excitation signal is provided each of the second dielectric resonators such that each of the second dielectric resonators generates a second electric field in response to a shock of the first electric field. 如請求項2所述的微波加熱設備,其中,所述一個或多個第二介電諧振器中的每一個是並不從饋送結構直接地接收激勵信號而是替代地僅響應於所述第 一電場的所述衝擊產生所述第二電場的寄生介電諧振器。 The microwave heating apparatus of claim 2, wherein each of the one or more second dielectric resonators does not directly receive an excitation signal from a feed structure but instead responds only to the first The impact of an electric field creates a parasitic dielectric resonator of the second electric field. 如請求項1所述的微波加熱設備,其中,當提供所述激勵信號時,所述第一電場包括周向電場,並且其中所述第一激勵器介電諧振器和所述第二介電諧振器佈置在共平面配置中,使得所述周向電場的一部分直接地衝擊所述第二介電諧振器。 The microwave heating apparatus of claim 1, wherein, when the excitation signal is provided, the first electric field comprises a circumferential electric field, and wherein the first exciter dielectric resonator and the second dielectric The resonators are arranged in a coplanar configuration such that a portion of the circumferential electric field directly impinges on the second dielectric resonator. 如請求項1所述的微波加熱設備,其中,所述第一饋送結構包括延伸到所述第一激勵器介電諧振器中的饋送。 The microwave heating apparatus of claim 1, wherein the first feed structure includes a feed extending into the first exciter dielectric resonator. 如請求項5所述的微波加熱設備,其中,所述第一介電諧振器天線包括在所述第一激勵器介電諧振器中的一個或多個額外的饋送,其中所述一個或多個額外的饋送電耦合到所述微波能量來源以從所述微波能量來源中接收一個或多個額外的激勵信號。 The microwave heating apparatus of claim 5, wherein the first dielectric resonator antenna includes one or more additional feeds in the first exciter dielectric resonator, wherein the one or more An additional feed is electrically coupled to the microwave energy source to receive one or more additional excitation signals from the microwave energy source. 如請求項1所述的微波加熱設備,其中,所述第一饋送結構包括孔隙耦合到所述第一激勵器介電諧振器的導體。 The microwave heating apparatus of claim 1, wherein the first feed structure includes a conductor aperture coupled to the first exciter dielectric resonator. 如請求項1所述的微波加熱設備,其中,所述介電諧振器天線陣列進一步包括一個或多個額外的介電諧振器天線,其中所述一個或多個額外的介電諧振器天線中的每一個包括額外的激勵器介電諧振器和接近所述額外的激勵器介電諧振器的額外的饋送結構。 The microwave heating apparatus of claim 1, wherein the dielectric resonator antenna array further comprises one or more additional dielectric resonator antennas, wherein the one or more additional dielectric resonator antennas Each of the includes an additional exciter dielectric resonator and an additional feed structure proximate the additional exciter dielectric resonator. 如請求項1所述的微波加熱設備,其中,所述第一激勵器介電諧振器和所述一個或多個第二介 電諧振器中的每一個具有選自圓柱形、圓盤、圓錐、平行六面體、球體和圓頂中的形狀。 The microwave heating apparatus of claim 1, wherein the first exciter dielectric resonator and the one or more second dielectric resonators Each of the electrical resonators has a shape selected from the group consisting of a cylinder, a disk, a cone, a parallelepiped, a sphere, and a dome. 如請求項1所述的微波加熱設備,其中,所述距離在零毫米與12.5毫米之間。 The microwave heating apparatus of claim 1, wherein the distance is between zero millimeters and 12.5 millimeters. 如請求項1所述的微波加熱設備,其中,所述距離小於所述第一激勵器介電諧振器的諧振頻率的波長的十分之一。 The microwave heating apparatus of claim 1, wherein the distance is less than one tenth of the wavelength of the resonant frequency of the first exciter dielectric resonator. 如請求項1所述的微波加熱設備,其中,所述距離在零毫米與3.0毫米之間。 The microwave heating apparatus of claim 1, wherein the distance is between zero millimeters and 3.0 millimeters. 如請求項1所述的微波加熱設備,其中,進一步包括:接地平面,其放置在所述介電諧振器天線陣列的第一側處;以及腔室,其放置在所述介電諧振器天線陣列與所述接地平面的相對側處,其中所述腔室被配置成包含負載。 The microwave heating apparatus of claim 1, further comprising: a ground plane placed at a first side of the dielectric resonator antenna array; and a cavity placed at the dielectric resonator antenna at the opposite side of the array from the ground plane, wherein the chamber is configured to contain a load. 如請求項13所述的微波加熱設備,其中,在不存在所述介電諧振器天線陣列的情況下所述腔室將低於截止點。 The microwave heating apparatus of claim 13, wherein the cavity would be below a cutoff point in the absence of the dielectric resonator antenna array. 如請求項1所述的微波加熱設備,其中,進一步包括基板,所述基板具有第一側和第二側,其中所述第一激勵器介電諧振器和所述一個或多個第二介電諧振器物理地耦合到所述基板的所述第一側以維持所述第一激勵器介電諧振器與所述一個或多個第二介電諧振器之間的固定空間關係。 The microwave heating apparatus of claim 1, further comprising a substrate having a first side and a second side, wherein the first exciter dielectric resonator and the one or more second dielectric resonators An electrical resonator is physically coupled to the first side of the substrate to maintain a fixed spatial relationship between the first exciter dielectric resonator and the one or more second dielectric resonators. 如請求項15所述的微波加熱設備,其中,進一步包括接地平面,其中所述基板與所述接地平面可滑動地嚙合。 The microwave heating apparatus of claim 15, further comprising a ground plane, wherein the substrate is slidably engaged with the ground plane. 如請求項1所述的微波加熱設備,其中,進一步包括覆蓋所述第一激勵器介電諧振器和所述一個或多個第二介電諧振器的保形材料。 The microwave heating apparatus of claim 1, further comprising a conformal material covering the first exciter dielectric resonator and the one or more second dielectric resonators. 如請求項1所述的微波加熱設備,其中,所述第一激勵器介電諧振器和所述一個或多個第二介電諧振器具有相同的幾何形狀並且是相同大小的。 The microwave heating apparatus of claim 1, wherein the first exciter dielectric resonator and the one or more second dielectric resonators have the same geometry and are the same size. 如請求項1所述的微波加熱設備,其中,所述第一激勵器介電諧振器中的兩個或更多個和所述一個或多個第二介電諧振器具有不同的幾何形狀。 The microwave heating apparatus of claim 1, wherein two or more of the first exciter dielectric resonators and the one or more second dielectric resonators have different geometries. 如請求項1所述的微波加熱設備,其中,所述第一激勵器介電諧振器中的兩個或更多個和所述一個或多個第二介電諧振器具有不同的大小。 The microwave heating apparatus of claim 1, wherein two or more of the first exciter dielectric resonators and the one or more second dielectric resonators have different sizes. 如請求項1所述的微波加熱設備,其中,所述介電諧振器天線陣列中的介電諧振器的數量在二到三十的範圍內。 The microwave heating apparatus of claim 1, wherein the number of dielectric resonators in the dielectric resonator antenna array is in the range of two to thirty. 如請求項1所述的微波加熱設備,其中,所述固態微波能量來源包括:放大器佈置,其包括電晶體,所述電晶體具有電晶體輸入和電晶體輸出,其中所述放大器佈置被配置成在2.3吉赫茲(GHz)到2.6GHz的範圍內的微波頻率處產生所述激勵信號。 The microwave heating apparatus of claim 1, wherein the solid state microwave energy source comprises an amplifier arrangement including a transistor having a transistor input and a transistor output, wherein the amplifier arrangement is configured to The excitation signal is generated at microwave frequencies in the range of 2.3 gigahertz (GHz) to 2.6 GHz. 如請求項22所述的微波加熱設備,其中,所述放大器佈置形成振盪器子系統的一部分,所述振盪器子系統進一步包括:諧振電路,其沿著所述電晶體輸出與所述電晶體輸入之間的回饋路徑,其中所述諧振電路的諧振頻率是所述微波頻率。 The microwave heating apparatus of claim 22, wherein the amplifier arrangement forms part of an oscillator subsystem, the oscillator subsystem further comprising: a resonant circuit that communicates with the transistor along the transistor output A feedback path between inputs, wherein the resonant frequency of the resonant circuit is the microwave frequency. 一種微波加熱設備,其特徵在於,包括:腔室,其被配置成包含負載,其中所述腔室部分由具有內部腔室壁表面和外部腔室壁表面的第一腔室壁限定;固態微波能量來源;第一介電諧振器天線,其包括第一激勵器介電諧振器和接近所述第一激勵器介電諧振器的第一饋送結構,其中所述第一激勵器介電諧振器具有頂部表面和相對的底部表面,其中所述第一饋送結構電耦合到所述微波能量來源以從所述微波能量來源中接收第一激勵信號,並且其中所述第一激勵器介電諧振器被配置成響應於提供到所述第一饋送結構的所述激勵信號產生第一電場;以及一個或多個第二介電諧振器,其相鄰於一側壁放置且放置在所述第一激勵器介電諧振器的距離內以形成介電諧振器天線陣列,其中選擇所述距離使得當提供所述激勵信號時所述第二介電諧振器中的每一個與所述第一激勵器介電諧振器緊密地電容式耦合,及其中所述距離小於所述第一激勵器介電諧振器的諧振頻率的波長的五分之一。 A microwave heating apparatus, comprising: a chamber configured to contain a load, wherein the chamber portion is defined by a first chamber wall having an inner chamber wall surface and an outer chamber wall surface; a solid state microwave energy source; a first dielectric resonator antenna comprising a first exciter dielectric resonator and a first feed structure proximate the first exciter dielectric resonator, wherein the first exciter dielectric resonator having a top surface and an opposing bottom surface, wherein the first feed structure is electrically coupled to the microwave energy source to receive a first excitation signal therefrom, and wherein the first exciter dielectric resonator configured to generate a first electric field in response to the excitation signal provided to the first feed structure; and one or more second dielectric resonators positioned adjacent to a sidewall and on the first excitation to form a dielectric resonator antenna array, wherein the distance is selected such that each of the second dielectric resonators is in a distance from the first exciter when the excitation signal is provided The electrical resonators are tightly capacitively coupled, and wherein the distance is less than one fifth of the wavelength of the resonant frequency of the first exciter dielectric resonator. 如請求項24所述的微波加熱設備,其 中,在不存在所述介電諧振器天線陣列的情況下所述腔室將低於截止點。 The microwave heating device as claimed in claim 24, wherein , the cavity would be below the cutoff point in the absence of the dielectric resonator antenna array. 如請求項24所述的微波加熱設備,其中,所述腔室的截面形狀是選自圓、橢圓和矩形的。 The microwave heating apparatus of claim 24, wherein the cross-sectional shape of the chamber is selected from a circle, an ellipse, and a rectangle. 如請求項24所述的微波加熱設備,其中,當提供所述激勵信號時,所述第一電場包括周向電場,並且其中所述第一激勵器介電諧振器和所述第二介電諧振器佈置在共平面配置中,使得所述周向電場的一部分直接地衝擊所述第二介電諧振器。 The microwave heating apparatus of claim 24, wherein, when the excitation signal is provided, the first electric field comprises a circumferential electric field, and wherein the first exciter dielectric resonator and the second dielectric The resonators are arranged in a coplanar configuration such that a portion of the circumferential electric field directly impinges on the second dielectric resonator. 如請求項24所述的微波加熱設備,其中,所述距離小於所述第一激勵器介電諧振器的諧振頻率的波長的十分之一。 The microwave heating apparatus of claim 24, wherein the distance is less than one tenth of the wavelength of the resonant frequency of the first exciter dielectric resonator. 一種操作包括微波產生模組的微波系統的方法,其特徵在於,所述方法包括:通過所述微波產生模組產生傳送到第一射頻(RF)饋送結構的第一激勵信號,其中所述第一射頻饋送結構接近第一介電諧振器放置;通過所述第一介電諧振器響應於通過所述第一射頻饋送結構傳送的所述第一激勵信號產生直接地衝擊第二介電諧振器的第一電場,所述第二介電諧振器與所述第一介電諧振器緊密地電容式耦合且相鄰於一側壁放置且在小於所述第一介電諧振器的諧振頻率的波長的五分之一的距離內;以及通過所述第二介電諧振器響應於所述第一電場的衝 擊產生第二電場,其中所述第二電場被引導朝向包含近場負載的腔室。 A method of operating a microwave system including a microwave generation module, the method comprising: generating, by the microwave generation module, a first excitation signal that is transmitted to a first radio frequency (RF) feed structure, wherein the first excitation signal is A radio frequency feed structure is placed proximate to the first dielectric resonator; generation by the first dielectric resonator directly impinges on the second dielectric resonator in response to the first excitation signal transmitted through the first radio frequency feed structure the first electric field, the second dielectric resonator is tightly capacitively coupled to the first dielectric resonator and is placed adjacent to a sidewall and at a wavelength less than the resonant frequency of the first dielectric resonator within one-fifth of the distance; and through the second dielectric resonator in response to the impulse of the first electric field The shock generates a second electric field, wherein the second electric field is directed towards the chamber containing the near-field load. 如請求項29所述的方法,其中,進一步包括:產生傳送到第二射頻饋送結構的第二激勵信號,其中所述第二射頻饋送結構接近所述第一介電諧振器、所述第二介電諧振器或第三介電諧振器放置;以及通過所述第一介電諧振器、第二介電諧振器或第三介電諧振器響應於所述第二激勵信號產生第三電場。 The method of claim 29, further comprising: generating a second excitation signal for delivery to a second radio frequency feed structure, wherein the second radio frequency feed structure is proximate to the first dielectric resonator, the second placing a dielectric resonator or a third dielectric resonator; and generating a third electric field by the first dielectric resonator, the second dielectric resonator or the third dielectric resonator in response to the second excitation signal. 如請求項30所述的方法,其中,所述第一和第二激勵信號是同時產生的或分階段的。 The method of claim 30, wherein the first and second excitation signals are generated simultaneously or in stages. 如請求項30所述的方法,其中,所述第一和第二激勵信號具有大體上相同的頻率或不同的頻率。 The method of claim 30, wherein the first and second excitation signals have substantially the same frequency or different frequencies.
TW106114606A 2016-06-30 2017-05-03 Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture TWI757288B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/199,709 US10531526B2 (en) 2016-06-30 2016-06-30 Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture
US15/199,709 2016-06-30

Publications (2)

Publication Number Publication Date
TW201803406A TW201803406A (en) 2018-01-16
TWI757288B true TWI757288B (en) 2022-03-11

Family

ID=59239855

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106114606A TWI757288B (en) 2016-06-30 2017-05-03 Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture

Country Status (5)

Country Link
US (1) US10531526B2 (en)
EP (1) EP3264860B1 (en)
JP (1) JP6940220B2 (en)
CN (1) CN107567129B (en)
TW (1) TWI757288B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10892544B2 (en) * 2018-01-15 2021-01-12 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
US11616302B2 (en) 2018-01-15 2023-03-28 Rogers Corporation Dielectric resonator antenna having first and second dielectric portions
JP7380221B2 (en) * 2018-09-10 2023-11-15 パナソニックホールディングス株式会社 microwave processing equipment
US11552390B2 (en) 2018-09-11 2023-01-10 Rogers Corporation Dielectric resonator antenna system
CN109496005B (en) * 2018-11-23 2022-07-08 电子科技大学 Microwave heating device based on loading of multifrequency multimode antenna
GB2594171A (en) 2018-12-04 2021-10-20 Rogers Corp Dielectric electromagnetic structure and method of making the same
JP7295250B2 (en) * 2019-03-01 2023-06-20 マーク タラソフ、 Microwave oscillator and matrix type microwave oscillator based on it
CN114245954B (en) * 2019-06-14 2023-03-24 上海诺基亚贝尔股份有限公司 Dielectric resonator antenna and dielectric resonator antenna array
KR102348260B1 (en) * 2020-11-04 2022-01-07 알에프에이치아이씨 주식회사 Apparatus for heating fluid using microwave for synthesis of compounds
TW202222100A (en) * 2020-11-18 2022-06-01 財團法人工業技術研究院 Microwave heating method and microwave heating device
RU2752941C1 (en) * 2020-12-17 2021-08-11 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет (НГИЭУ) Radio-hermetic multi-resonator installation for defrosting and heating of colostrum of animals
RU2752938C1 (en) * 2020-12-17 2021-08-11 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет (НГИЭУ) Two-module continuous-flow microwave installation for defrosting and heating cow colostrum
RU2753424C1 (en) * 2021-02-19 2021-08-16 Государственное бюджетное образовательное учреждение высшего образования Нижегородский государственный инженерно-экономический университет (НГИЭУ) Continuous-flow microwave installation with quasi-stationary toroidal resonators for defrosting and heating of animal colostrum
CN113038650B (en) * 2021-04-14 2022-09-06 西华师范大学 Microwave heating device and microwave emission control circuit
CN113766689B (en) * 2021-09-22 2023-02-03 四川大学 Microwave heating structure, method and system
WO2024049255A1 (en) * 2022-08-31 2024-03-07 주식회사 케이티앤지 Heater assembly, aerosol-generating apparatus comprising same, and method for manufacturing same heater assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081624A1 (en) * 2004-10-01 2006-04-20 Yutaka Takada High-frequency heating device, semiconductor manufacturing device, and light source device
US20070115080A1 (en) * 2005-09-27 2007-05-24 M/A-Com, Inc. Dielectric resonators with axial gaps and circuits with such dielectric resonators

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121078A (en) 1975-04-30 1978-10-17 Matsushita Electric Industrial Co., Ltd. Microwave heating apparatus
JPS57130395A (en) 1981-02-05 1982-08-12 Sanyo Electric Co High frequency heater
US5453754A (en) * 1992-07-02 1995-09-26 The Secretary Of State For Defence In Her Brittanic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Dielectric resonator antenna with wide bandwidth
DE4240104A1 (en) 1992-11-28 1994-06-01 Battelle Institut E V Microwave heating and drying device - has flat patch antenna arrangement with dimensions selected according to radiating medium
WO1996013140A1 (en) * 1994-10-20 1996-05-02 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
EP0899807B1 (en) * 1997-08-28 2006-05-03 The Boeing Company Coupling mechanism for TE011 and TE01delta mode resonators
US6093921A (en) 1999-03-04 2000-07-25 Mt Systems, Llc Microwave heating apparatus for gas chromatographic columns
CA2389161A1 (en) 1999-10-29 2001-05-03 Simon Philip Kingsley Steerable-beam multiple-feed dielectric resonator antenna of various cross-sections
US6452565B1 (en) 1999-10-29 2002-09-17 Antenova Limited Steerable-beam multiple-feed dielectric resonator antenna
ES2256546T3 (en) 2001-10-19 2006-07-16 Biotage Ab APPARATUS FOR HEATING BY MICROWAVE.
US6630654B2 (en) 2001-10-19 2003-10-07 Personal Chemistry I Uppsala Ab Microwave heating apparatus
GB0207052D0 (en) 2002-03-26 2002-05-08 Antenova Ltd Novel dielectric resonator antenna resonance modes
AU2003234005A1 (en) 2002-05-15 2003-12-02 Antenova Limited Improvements relating to attaching dielectric resonator antennas to microstrip lines
GB2391154A (en) 2002-07-22 2004-01-28 Antenova Ltd Dielectric resonator antennas for use as microwave heating applicators
US7310031B2 (en) 2002-09-17 2007-12-18 M/A-Com, Inc. Dielectric resonators and circuits made therefrom
GB2403069B8 (en) * 2003-06-16 2008-07-17 Antenova Ltd Hybrid antenna using parasiting excitation of conducting antennas by dielectric antennas
CN1764332A (en) * 2004-10-01 2006-04-26 精工爱普生株式会社 High-frequency heating device, semiconductor manufacturing device, and light source device
CN2886832Y (en) * 2006-01-26 2007-04-04 东南大学 Medium resonator antenna
US8839527B2 (en) * 2006-02-21 2014-09-23 Goji Limited Drying apparatus and methods and accessories for use therewith
US7443363B2 (en) * 2006-06-22 2008-10-28 Sony Ericsson Mobile Communications Ab Compact dielectric resonator antenna
US7710325B2 (en) * 2006-08-15 2010-05-04 Intel Corporation Multi-band dielectric resonator antenna
DE102006053472B4 (en) 2006-11-14 2009-12-10 Bruker Biospin Ag Method for producing a tuned RF resonator system
US8674550B2 (en) * 2010-03-25 2014-03-18 General Electric Company Contactless power transfer system and method
CN102448208B (en) * 2010-09-30 2013-05-01 中国农业机械化科学研究院 Microwave heating energy-feedback antenna and manufacturing method thereof
LU91776B1 (en) * 2011-01-10 2012-07-11 Axess Europ S A DIELECTRIC RESONATOR ANTENNA
US9013191B2 (en) 2011-09-12 2015-04-21 The United States Of America As Represented By The Secretary Of The Army Microwave cavity with dielectric region and method thereof
US20130175262A1 (en) 2012-01-06 2013-07-11 Ranjit Gharpurey Microwave oven with antenna array
CN103378390B (en) 2012-04-20 2018-04-10 恩智浦美国有限公司 The oscilator system of microwave adapter and correlation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060081624A1 (en) * 2004-10-01 2006-04-20 Yutaka Takada High-frequency heating device, semiconductor manufacturing device, and light source device
US20070115080A1 (en) * 2005-09-27 2007-05-24 M/A-Com, Inc. Dielectric resonators with axial gaps and circuits with such dielectric resonators

Also Published As

Publication number Publication date
EP3264860B1 (en) 2021-02-24
US20180007746A1 (en) 2018-01-04
CN107567129A (en) 2018-01-09
CN107567129B (en) 2021-09-03
TW201803406A (en) 2018-01-16
US10531526B2 (en) 2020-01-07
JP6940220B2 (en) 2021-09-22
EP3264860A1 (en) 2018-01-03
JP2018006328A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
TWI757288B (en) Solid state microwave heating apparatus with dielectric resonator antenna array, and methods of operation and manufacture
CN107567128B (en) Solid state microwave heating apparatus and methods of operating and manufacturing the same
US10785833B2 (en) Integrated solid state microwave power generation modules
US10270170B2 (en) Compound loop antenna system with isolation frequency agility
CN106463842B (en) Antenna system using capacitively coupled composite loop antenna with antenna isolation provisions
EP1146589A1 (en) Chip antenna element, antenna apparatus and communication apparatus comprising the same
KR101306547B1 (en) Radiation Device for Planar Inverted F Antenna and Antenna using it
WO2008013112A1 (en) Microwave plasma source and plasma processing apparatus
WO2018089947A1 (en) Compound loop antenna system with isolation frequency agility
KR20210030665A (en) Microwave heating device with cylindrical antenna
CN113711331B (en) Heat-insulating device for high-frequency antenna
KR100702998B1 (en) Ultra wide-band antenna having uni-directional radiation pattern characteristic
Thalluri et al. Structural analysis and design of microstrip antenna for S-Band applications
Ranjan et al. Dual Band Cylindrical Dielectric Resonator Antenna for WiMAX Application
JP3271697B2 (en) Antenna device
WO2013168690A1 (en) Antenna device
Aliakbari et al. Characteristic mode analysis of millimeter-wave series patch array
KR101354088B1 (en) Antenna device having characteristic complementing element of antenna
Gong et al. Design of substrate integrated dielectric resonator antenna for millimeter-wave applications
JP2021136633A (en) Patch antenna with F-class load function
JP2011071639A (en) Planar antenna