WO2013168690A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2013168690A1
WO2013168690A1 PCT/JP2013/062809 JP2013062809W WO2013168690A1 WO 2013168690 A1 WO2013168690 A1 WO 2013168690A1 JP 2013062809 W JP2013062809 W JP 2013062809W WO 2013168690 A1 WO2013168690 A1 WO 2013168690A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
radiation electrode
radiation
antenna
antenna device
Prior art date
Application number
PCT/JP2013/062809
Other languages
French (fr)
Japanese (ja)
Inventor
駒木邦宏
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013168690A1 publication Critical patent/WO2013168690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/02Antennas or antenna systems providing at least two radiating patterns providing sum and difference patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to an antenna including a radiation electrode connected to a feeding point and a radiation electrode connected to a ground conductor, and in particular, mobile communication devices such as mobile phone terminals and GPS receivers, Bluetooth (registered trademark)
  • the present invention relates to a small antenna device used in an electronic device having such a short-range wireless communication function.
  • an antenna device having a chip antenna is often used.
  • the basic structure of a chip antenna is that in which a radiation electrode is formed on a dielectric substrate, but radiation electrodes of various shapes are provided according to required antenna characteristics.
  • a chip antenna having a plurality of radiation electrodes is often used for the purpose of widening the bandwidth.
  • Patent Document 1 discloses an antenna including a feeding element connected to a feeding terminal and a parasitic element connected to the ground.
  • FIG. 6 is a perspective view of a chip antenna provided in the antenna device disclosed in Patent Document 1.
  • the chip antenna 10 is formed on a base body 11, first and second radiation electrodes 12 and 13 constituting comb-shaped electrodes on the upper surface of the base body 11, and side surfaces of the base body 11.
  • a power supply electrode 14 connected to one end of the electrode 12, a first ground electrode 15 formed on the side surface and connected to the second radiation electrode 13, and terminal electrodes 17 to 19 formed on the bottom surface of the substrate 11. It has.
  • the first terminal electrode 17 is connected to a power supply line formed on the printed circuit board, and is connected to a ground pattern on the printed circuit board through an inductance pattern formed on the printed circuit board.
  • the second terminal electrode 18 is connected to a ground pattern on the printed board.
  • the optimal antenna directivity during use is determined by the positional relationship of the communication partner (base station, etc.) with the antenna and the attitude of the portable electronic device (own device) in use. It cannot be determined.
  • an antenna using a ground pattern has a direction (Null point) where radio wave emission is weak due to the mechanism of its operation, and the direction cannot be changed. Therefore, depending on the posture at the time of use, the null point is directed in the direction of the antenna of the communication partner, and a state in which communication is not possible occurs.
  • the null point is directed in this direction, there is a problem that positioning cannot be performed or positioning accuracy is deteriorated.
  • a chip antenna having a feeding element and a parasitic element as shown in FIG. 6 so-called multiple resonance characteristics are generated by the feeding element and the parasitic element, so as to widen the band.
  • the two obtained antenna characteristics both obtain radiation characteristics by passing a current through the ground pattern.
  • the parasitic element operates by electromagnetic coupling with the feeding element, and the two elements operate in the same mode for the convenience of coupling. Therefore, the distribution of the ground current by each element is very similar, and as a result, the radiation patterns are almost the same. Therefore, with regard to directivity, only a single directivity pattern can be obtained as with a single resonance antenna.
  • the bandwidth and the radiation efficiency can be appropriately designed depending on the shape of the radiating element, but it is difficult to determine the directivity depending on the shape of the radiating element.
  • An object of the present invention is to provide an antenna device in which directivity is defined or directivity can be controlled.
  • the antenna device of the present invention includes a first radiation electrode connected to a feeding point and a second radiation electrode connected to a ground conductor, and the first radiation electrode and the second radiation electrode are electromagnetically coupled, The first radiation electrode and the second radiation electrode resonate in a degenerate relationship at a use frequency.
  • the first radiating electrode and the second radiating electrode are composed of a conductor pattern formed on a dielectric substrate which is a dielectric composite resin material molded body in which a dielectric ceramic filler is dispersed in a resin material. Is preferred.
  • the dielectric substrate has a groove formed between the first radiation electrode and the second radiation electrode.
  • the first radiation electrode and the second radiation electrode have a mirror-symmetric or rotationally symmetric relationship.
  • the first radiation electrode and the second radiation electrode are set to substantially the same resonance frequency, and are electromagnetically coupled to resonate in a degenerate relationship. Thereby, two types of directivity can be obtained at the same time without switching with one antenna.
  • FIG. 1 is a perspective view of an antenna device 201 according to an embodiment of the present invention.
  • 2A and 2B are diagrams showing electric field distributions in the vicinity of the first radiation electrode and the second radiation electrode.
  • FIG. 3A and FIG. 3B are diagrams showing current distribution in the vicinity of the first radiation electrode and the second radiation electrode.
  • 4A and 4B are diagrams showing the directivity of the antenna device in the two coupling modes.
  • FIG. 4A shows the radiation intensity of the electromagnetic field in the odd mode
  • FIG. 4B shows the radiation intensity of the electromagnetic field in the even mode. Expressed in concentration.
  • FIG. 5 is a perspective view of the antenna device 202 according to the second embodiment.
  • FIG. 6 is a perspective view of a chip antenna provided in the antenna device disclosed in Patent Document 1.
  • FIG. 1 is a perspective view of an antenna device 201 according to an embodiment of the present invention.
  • the antenna device 201 includes a chip antenna 101 and a printed board 40.
  • the chip antenna 101 is mounted on the printed board 40.
  • the chip antenna 101 includes a rectangular parallelepiped dielectric base 30 and a conductor pattern formed on the surface of the dielectric base 30.
  • the dielectric substrate 30 is formed with first radiation electrodes 31a, 31b, 31c extending from the front surface to the upper surface.
  • second radiation electrodes 32a, 32b, and 32c extending from the front surface of the dielectric substrate 30 to the upper surface are formed.
  • the dielectric substrate 30 is, for example, a dielectric ceramic sintered body.
  • the first radiation electrodes (31a, 31b, 31c) are fed at a feeding point FP. That is, the first radiation electrode is a feeding radiation electrode. Of the first radiation electrodes (31a, 31b, 31c), the electrode 31c is close to the open end OE, and a predetermined capacitance is formed between the electrode 31c and the open end OE.
  • the resonance frequency of the first radiation electrode (31a, 31b, 31c) is determined mainly by its inductance and the capacitance generated between the electrode 31c and the open end OE.
  • the second radiation electrodes (32a, 32b, 32c) are grounded at the ground point GP. That is, the second radiation electrode is a parasitic radiation electrode. Of the second radiation electrodes (32a, 32b, 32c), the electrode 32c is close to the open end OE, and a predetermined capacitance is formed between the electrode 32c and the open end OE.
  • the resonance frequency of the second radiation electrode (32a, 32b, 32c) is determined mainly by its inductance and the capacitance generated between the electrode 32c and the open end OE.
  • an impedance matching pattern 33 is formed between the middle of the electrode 31a and the ground conductor of the printed board 40.
  • an impedance matching pattern 34 is formed between the second radiation electrode (32a, 32b, 32c) and the ground conductor of the printed board 40 in the middle of the electrode 32a.
  • the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) are mirror-symmetric. That is, the plane is symmetrical with respect to a plane that passes through the center of the dielectric substrate 30 and is perpendicular to the mounting surface and perpendicular to the longitudinal direction.
  • a ground conductor is formed on almost the entire surface of the upper surface of the printed circuit board 40.
  • a ground conductor is also formed on the mounting surface of the chip antenna 101.
  • no ground conductor is formed in the vicinity where the wiring pattern 41 connected to the feeding point FP is formed. That is, the wiring pattern 41 is insulated from the ground conductor.
  • No electrode is formed on the lower surface of the dielectric substrate 30.
  • the first radiation electrodes (31 a, 31 b, 31 c) and the second radiation electrodes (32 a, 32 b, 32 c) are mainly coupled at the coupling portion CP.
  • FIGS. 2 and 3 are views showing a state of coupling between the first radiation electrode and the second radiation electrode.
  • 2A and 2B are diagrams showing electric field distributions in the vicinity of the first radiation electrode and the second radiation electrode
  • FIGS. 3A and 3B show the first radiation electrode and the second radiation electrode. It is a figure which shows the electric current distribution of a radiation electrode vicinity.
  • FIG. 2A shows the electric field distribution near the first and second radiation electrodes in the odd mode.
  • FIG. 2B shows the electric field distribution near the first and second radiation electrodes in the Even mode.
  • the direction of the electric field is indicated by the direction of the arrow, and the electric field strength is indicated by the size of the arrow.
  • the Odd mode the electric field strength between the feeding element and the parasitic element (coupling portion CP) is high. This indicates that the first radiation electrode and the second radiation electrode are electric field coupled.
  • the Even mode the electric field strength between the first radiation electrode and the second radiation electrode (coupling portion CP) is low. That is, the magnetic field strength is high, indicating that the first radiation electrode and the second radiation electrode are magnetically coupled.
  • FIG. 3A shows the current distribution in the vicinity of the first radiation electrode and the second radiation electrode in the odd mode.
  • FIG. 3B shows current distribution in the vicinity of the first radiation electrode and the second radiation electrode in the Even mode.
  • the direction of the current represents the direction of current
  • the magnitude of the arrow represents the current intensity.
  • Arrows Af and An indicate rough directions of current on the ground conductor of the printed circuit board.
  • 3A and 3B also show the currents flowing through the first and second radiation electrodes, so the current flowing through the ground conductor near the chip antenna mounting position is hidden in the figure. Yes.
  • the Odd mode the currents flowing in the ground conductors near the first radiation electrode and the second radiation electrode are in the same direction.
  • the Even mode the current flowing through the ground conductor near the first and second radiation electrodes is in the reverse direction.
  • the state of the resonance current of the coupling portion (CP in FIG. 1) is greatly different, so that the current distribution of the entire ground conductor of the printed circuit board is different.
  • the mounting position of the chip antenna 101 becomes a node of current flowing in the ground conductor.
  • the antinode of the current flowing through the ground conductor in the Even mode occurs on a side different from (adjacent to) the side of the printed circuit board along the chip antenna 101.
  • FIG. 4 is a diagram showing the directivity of the antenna device in the two coupling modes.
  • FIG. 4A shows the radiation intensity of the electromagnetic field in the Odd mode as a concentration.
  • FIG. 4B shows the radiation intensity of the electromagnetic field in the Even mode as a concentration.
  • the directivity can be seen from the density in the circle in the figure. This indicates that radiation is strongly radiated in a higher concentration direction, and the antenna directivity is in that direction. Conversely, the recessed portion is a so-called Null point, indicating a direction of lower gain.
  • a small antenna mounted on a mounting board as in the present invention obtains radiation characteristics by using a mounting board as a radiating element by passing a current through the mounting board.
  • the mounting position of the chip antenna 101 becomes an anti-node of the current flowing through the ground conductor. Therefore, radio waves are radiated by operating the mounted side as a dipole antenna. Therefore, since the axis of the dipole antenna is the X axis, directivity is directed in the Y axis direction orthogonal to the axis.
  • the directivity of the antenna device 201 is obtained by superimposing the two patterns shown in FIGS. 4A and 4B. . This superposition eliminates the NULL point, and a nearly omnidirectional antenna characteristic can be obtained.
  • the current distribution on the ground conductor of the substrate near the antenna differs between the Even mode and the Odd mode because there is a difference in the coupling mechanism between magnetic field coupling and electric field coupling.
  • the distribution of current flowing through the ground conductor is different between the Even mode and the Odd mode, although they have substantially the same frequency. Therefore, two types of directivity can be used at the same frequency.
  • Even mode frequency is slightly lower than Odd mode frequency, and by setting the frequency of Even mode and Odd mode so that the frequency used is intermediate between the frequency of Even mode and Odd mode, An almost omnidirectional antenna can be configured at the operating frequency.
  • the antenna can be used as an antenna having directivity different between the frequency of the Even mode and the frequency of the Odd mode.
  • the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) are substantially mirror-symmetrical and are arranged so that parts of the electrodes are substantially parallel to each other.
  • the area ratio of the formation range of the first radiation electrodes (31a, 31b, 31c) and the formation range of the second radiation electrodes (32a, 32b, 32c) is set within a range of approximately 1: 3 to 3: 1, It is easy to obtain two coupled modes that are degenerate.
  • FIG. 5 is a perspective view of the antenna device 202 according to the second embodiment.
  • the antenna device 202 includes a chip antenna 102 and a printed board 40.
  • the chip antenna 102 is mounted on the printed board 40.
  • the dielectric substrate 30 made of dielectric ceramics is used.
  • the dielectric composite resin material molding in which the dielectric ceramic filler is dispersed in the resin material is used as the dielectric substrate.
  • a groove SL is formed at the center of the upper surface of the dielectric substrate 30.
  • Other configurations are the same as those shown in FIG. 1 in the first embodiment.
  • the groove SL is formed to adjust the capacitance between the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c).
  • the capacity between the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) decreases as the width and depth of the groove SL increase. And, by this capacitance, the resonance frequency of the Odd mode due to electric field coupling can be adjusted independently of the resonance frequency of the Even mode due to magnetic field coupling.
  • the dielectric substrate 30 is formed of a dielectric composite resin material molded body, it can be manufactured by molding, so that the degree of freedom of the shape is high and the resonance frequency of each mode can be easily controlled.
  • the dielectric substrate 30 may simply be a resin molded body.
  • the first radiating electrode and the second radiating electrode have a mirror-symmetrical relationship with each other.
  • the first radiating electrode and the second radiating electrode resonate with each other at a use frequency. do it.
  • the first radiation electrode and the second radiation electrode may be rotationally symmetric.
  • CP coupling portion FP ... feeding point GP ... grounding point OE ... open end SL ... groove 30 ... dielectric substrate 31a, 31b, 31c ... first radiation electrode 32a, 32b, 32c ... second radiation electrode 33, 34 ... for alignment Pattern 40 ... Printed circuit board 41 ... Wiring patterns 101, 102 ... Chip antennas 201, 202 ... Antenna device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)

Abstract

An antenna device (201) comprises a chip antenna (101) and a print substrate (40). The chip antenna (101) is mounted upon the print substrate (40). The chip antenna (101) is configured from a rectangular dielectric substrate (30), and a conductor pattern which is formed on the surface of this dielectric substrate. The dielectric substrate (30) has first radiating electrodes (31a, 31b, 31c) formed thereon which extend from a near side face thereof toward an upper face thereof. Similarly, second radiating electrodes (32a, 32b, 32c) are formed extending from the near side face of the dielectric substrate (30) to the upper face thereof. In the upper face of the dielectric substrate (30), the first radiating electrodes (31a, 31b, 31c) and the second radiating electrodes (32a, 32b, 32c) are primarily coupled with a coupling part (CP), and an Odd mode from an electrical field coupling and an Even mode from a magnetic field coupling arise. Directionality is determined thereby.

Description

アンテナ装置Antenna device
 この発明は、給電点に接続される放射電極とグランド導体に接続される放射電極とを備えたアンテナに関し、特に、携帯電話端末、GPS受信機などの移動体通信機器、Bluetooth(登録商標)のような近距離無線通信機能を有する電子機器に用いられる小型のアンテナ装置に関するものである。 The present invention relates to an antenna including a radiation electrode connected to a feeding point and a radiation electrode connected to a ground conductor, and in particular, mobile communication devices such as mobile phone terminals and GPS receivers, Bluetooth (registered trademark) The present invention relates to a small antenna device used in an electronic device having such a short-range wireless communication function.
 移動体通信機器や近距離無線通信機能を有する電子機器においては、チップアンテナを備えたアンテナ装置が多く用いられる。チップアンテナの基本的な構造は、誘電体基体に放射電極が形成されたものであるが、要求されるアンテナ特性に応じて各種形状の放射電極が設けられる。例えば広帯域化を目的として複数の放射電極を備えたチップアンテナは多く用いられている。特許文献1には、給電端子に接続される給電素子と、グランドに接続される無給電素子とを備えたアンテナが開示されている。 In mobile communication devices and electronic devices having a short-range wireless communication function, an antenna device having a chip antenna is often used. The basic structure of a chip antenna is that in which a radiation electrode is formed on a dielectric substrate, but radiation electrodes of various shapes are provided according to required antenna characteristics. For example, a chip antenna having a plurality of radiation electrodes is often used for the purpose of widening the bandwidth. Patent Document 1 discloses an antenna including a feeding element connected to a feeding terminal and a parasitic element connected to the ground.
 図6は特許文献1に示されているアンテナ装置が備えるチップアンテナの斜視図である。図6において、チップアンテナ10は、基体11と、基体11の上面において櫛歯状電極を構成する第1及び第2の放射電極12,13と、基体11の側面に形成され、第1の放射電極12の一端に接続された給電電極14と、側面に形成され、第2の放射電極13に接続された第1の接地電極15と、基体11の底面に形成された端子電極17~19とを備えている。第1の端子電極17は、プリント基板上に形成された給電ラインに接続されると共に、プリント基板上に形成されたインダクタンスパターンを介してプリント基板上のグランドパターンに接続される。第2の端子電極18はプリント基板上のグランドパターンに接続される。 FIG. 6 is a perspective view of a chip antenna provided in the antenna device disclosed in Patent Document 1. FIG. In FIG. 6, the chip antenna 10 is formed on a base body 11, first and second radiation electrodes 12 and 13 constituting comb-shaped electrodes on the upper surface of the base body 11, and side surfaces of the base body 11. A power supply electrode 14 connected to one end of the electrode 12, a first ground electrode 15 formed on the side surface and connected to the second radiation electrode 13, and terminal electrodes 17 to 19 formed on the bottom surface of the substrate 11. It has. The first terminal electrode 17 is connected to a power supply line formed on the printed circuit board, and is connected to a ground pattern on the printed circuit board through an inductance pattern formed on the printed circuit board. The second terminal electrode 18 is connected to a ground pattern on the printed board.
特開2011-61638号公報JP 2011-61638 A
 小型アンテナは携帯電子機器に使われることが多く、使用時の姿勢が安定していない。したがって、使用時における最適なアンテナの指向性は、通信相手(基地局など)のアンテナとの位置関係および携帯電子機器(自装置)の使用時の姿勢によって決定されることになり、一義的に定めることはできない。 Small antennas are often used in portable electronic devices, and their posture during use is not stable. Therefore, the optimal antenna directivity during use is determined by the positional relationship of the communication partner (base station, etc.) with the antenna and the attitude of the portable electronic device (own device) in use. It cannot be determined.
 一方、グランドパターンを利用したアンテナは、その動作の仕組みに起因して電波の放射が弱い方向(Null点)が発生し、その方向を変えることはできない。したがって、使用時の姿勢などによっては、通信相手のアンテナ方向にNull点が向いてしまい、通信がでないという状態が発生する。特にGPSにおいては、通信対象が天頂方向に存在するため、この方向にNull点が向いていると、測位できなかったり測位精度が劣化したりする問題が生じる。 On the other hand, an antenna using a ground pattern has a direction (Null point) where radio wave emission is weak due to the mechanism of its operation, and the direction cannot be changed. Therefore, depending on the posture at the time of use, the null point is directed in the direction of the antenna of the communication partner, and a state in which communication is not possible occurs. In particular, in GPS, since the communication target exists in the zenith direction, if the null point is directed in this direction, there is a problem that positioning cannot be performed or positioning accuracy is deteriorated.
 図6に示されるような給電素子と無給電素子とを備えたチップアンテナにおいては、給電素子と無給電素子とで2つの共振点が生じる、いわゆる複共振特性が利用して広帯域化を図っている。そして、得られている2つのアンテナ特性はどちらもグランドパターンに電流を流すことで放射特性を得ている。無給電素子は給電素子に対して電磁界結合することで動作し、結合する都合上2つの素子は同じモードで動作する。したがって、各々の素子によるグランド電流の分布はよく似た分布となり、その結果、放射パターンもほぼ同等となる。したがって、指向性については、単共振のアンテナと同じく単一の指向性パターンしか得られない。 In a chip antenna having a feeding element and a parasitic element as shown in FIG. 6, so-called multiple resonance characteristics are generated by the feeding element and the parasitic element, so as to widen the band. Yes. The two obtained antenna characteristics both obtain radiation characteristics by passing a current through the ground pattern. The parasitic element operates by electromagnetic coupling with the feeding element, and the two elements operate in the same mode for the convenience of coupling. Therefore, the distribution of the ground current by each element is very similar, and as a result, the radiation patterns are almost the same. Therefore, with regard to directivity, only a single directivity pattern can be obtained as with a single resonance antenna.
 このように、従来のチップアンテナにおいては、放射素子の形状によって帯域幅や放射効率を適宜設計することはある程度可能であるが、放射素子の形状によって指向性を定めることは困難であった。 As described above, in the conventional chip antenna, the bandwidth and the radiation efficiency can be appropriately designed depending on the shape of the radiating element, but it is difficult to determine the directivity depending on the shape of the radiating element.
 この発明の目的は、指向性を定めた、または指向性を制御できるようにしたアンテナ装置を提供しようとするものである。 An object of the present invention is to provide an antenna device in which directivity is defined or directivity can be controlled.
 本発明のアンテナ装置は、給電点に接続された第1放射電極とグランド導体に接続された第2放射電極とを備え、前記第1放射電極と前記第2放射電極とは電磁界結合し、使用周波数で前記第1放射電極および前記第2放射電極は縮退関係で共振することを特徴とする。 The antenna device of the present invention includes a first radiation electrode connected to a feeding point and a second radiation electrode connected to a ground conductor, and the first radiation electrode and the second radiation electrode are electromagnetically coupled, The first radiation electrode and the second radiation electrode resonate in a degenerate relationship at a use frequency.
 前記第1放射電極および前記第2放射電極は、誘電体セラミックスフィラーが樹脂材料中に分散された誘電体複合樹脂材料成形体である誘電体基体上に形成された導体パターンで構成されていることが好ましい。 The first radiating electrode and the second radiating electrode are composed of a conductor pattern formed on a dielectric substrate which is a dielectric composite resin material molded body in which a dielectric ceramic filler is dispersed in a resin material. Is preferred.
 前記誘電体基体は、前記第1放射電極と前記第2放射電極との間に溝が形成されていることが好ましい。 It is preferable that the dielectric substrate has a groove formed between the first radiation electrode and the second radiation electrode.
 前記第1放射電極および前記第2放射電極は鏡映対称または回転対称の関係にあることが好ましい。 It is preferable that the first radiation electrode and the second radiation electrode have a mirror-symmetric or rotationally symmetric relationship.
 本発明によれば、第1放射電極と第2放射電極とをほぼ同じ共振周波数にして、電磁気的に結合して縮退関係で共振する。それにより、1つのアンテナで切り替えなど無く、同時に2種類の指向性が得られる。 According to the present invention, the first radiation electrode and the second radiation electrode are set to substantially the same resonance frequency, and are electromagnetically coupled to resonate in a degenerate relationship. Thereby, two types of directivity can be obtained at the same time without switching with one antenna.
図1は本発明の一実施形態であるアンテナ装置201の斜視図である。FIG. 1 is a perspective view of an antenna device 201 according to an embodiment of the present invention. 図2(A)、図2(B)は第1放射電極および第2放射電極付近の電界分布を示す図である。2A and 2B are diagrams showing electric field distributions in the vicinity of the first radiation electrode and the second radiation electrode. 図3(A)、図3(B)は第1放射電極および第2放射電極付近の電流分布を示す図である。FIG. 3A and FIG. 3B are diagrams showing current distribution in the vicinity of the first radiation electrode and the second radiation electrode. 図4は2つの結合モードにおけるアンテナ装置の指向性を示す図であり、図4(A)はOddモードにおける電磁界の放射強度、図4(B)はEvenモードにおける電磁界の放射強度をそれぞれ濃度で表している。4A and 4B are diagrams showing the directivity of the antenna device in the two coupling modes. FIG. 4A shows the radiation intensity of the electromagnetic field in the odd mode, and FIG. 4B shows the radiation intensity of the electromagnetic field in the even mode. Expressed in concentration. 図5は第2の実施形態に係るアンテナ装置202の斜視図である。FIG. 5 is a perspective view of the antenna device 202 according to the second embodiment. 図6は特許文献1に示されているアンテナ装置が備えるチップアンテナの斜視図である。FIG. 6 is a perspective view of a chip antenna provided in the antenna device disclosed in Patent Document 1. FIG.
《第1の実施形態》
 図1は本発明の一実施形態であるアンテナ装置201の斜視図である。このアンテナ装置201はチップアンテナ101とプリント基板40を備えている。チップアンテナ101はプリント基板40に実装されている。チップアンテナ101は直方体形状の誘電体基体30と、この誘電体基体30の表面に形成された導体パターンとで構成されている。誘電体基体30には、その手前の面から上面にかけて延びる第1放射電極31a,31b,31cが形成されている。同様に、誘電体基体30の手前の面から上面にかけて延びる第2放射電極32a,32b,32cが形成されている。誘電体基体30は例えば誘電体セラミックスの焼結体である。
<< First Embodiment >>
FIG. 1 is a perspective view of an antenna device 201 according to an embodiment of the present invention. The antenna device 201 includes a chip antenna 101 and a printed board 40. The chip antenna 101 is mounted on the printed board 40. The chip antenna 101 includes a rectangular parallelepiped dielectric base 30 and a conductor pattern formed on the surface of the dielectric base 30. The dielectric substrate 30 is formed with first radiation electrodes 31a, 31b, 31c extending from the front surface to the upper surface. Similarly, second radiation electrodes 32a, 32b, and 32c extending from the front surface of the dielectric substrate 30 to the upper surface are formed. The dielectric substrate 30 is, for example, a dielectric ceramic sintered body.
 第1放射電極(31a,31b,31c)は給電点FPで給電される。すなわち第1放射電極は給電放射電極である。この第1放射電極(31a,31b,31c)のうち電極31cは開放端OEに近接して、この電極31cと開放端OEとの間に所定の容量を形成している。第1放射電極(31a,31b,31c)は主にそのインダクタンスと電極31cと開放端OEとの間に生じる容量とで共振周波数が定められている。 The first radiation electrodes (31a, 31b, 31c) are fed at a feeding point FP. That is, the first radiation electrode is a feeding radiation electrode. Of the first radiation electrodes (31a, 31b, 31c), the electrode 31c is close to the open end OE, and a predetermined capacitance is formed between the electrode 31c and the open end OE. The resonance frequency of the first radiation electrode (31a, 31b, 31c) is determined mainly by its inductance and the capacitance generated between the electrode 31c and the open end OE.
 第2放射電極(32a,32b,32c)は接地点GPで接地される。すなわち第2放射電極は無給電放射電極である。この第2放射電極(32a,32b,32c)のうち電極32cは開放端OEに近接して、この電極32cと開放端OEとの間に所定の容量を形成している。第2放射電極(32a,32b,32c)は主にそのインダクタンスと電極32cと開放端OEとの間に生じる容量とで共振周波数が定められている。 The second radiation electrodes (32a, 32b, 32c) are grounded at the ground point GP. That is, the second radiation electrode is a parasitic radiation electrode. Of the second radiation electrodes (32a, 32b, 32c), the electrode 32c is close to the open end OE, and a predetermined capacitance is formed between the electrode 32c and the open end OE. The resonance frequency of the second radiation electrode (32a, 32b, 32c) is determined mainly by its inductance and the capacitance generated between the electrode 32c and the open end OE.
 第1放射電極(31a,31b,31c)のうち電極31aの途中とプリント基板40のグランド導体との間にインピーダンス整合用パターン33が形成されている。同様に、第2放射電極(32a,32b,32c)のうち電極32aの途中とプリント基板40のグランド導体との間にインピーダンス整合用パターン34が形成されている。 Among the first radiation electrodes (31a, 31b, 31c), an impedance matching pattern 33 is formed between the middle of the electrode 31a and the ground conductor of the printed board 40. Similarly, an impedance matching pattern 34 is formed between the second radiation electrode (32a, 32b, 32c) and the ground conductor of the printed board 40 in the middle of the electrode 32a.
 図1に表れているように、第1放射電極(31a,31b,31c)と第2放射電極(32a,32b,32c)は鏡映対称である。すなわち、誘電体基体30の中心を通り、実装面に対して垂直且つ長手方向に対して垂直な面に対して面対称である。 As shown in FIG. 1, the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) are mirror-symmetric. That is, the plane is symmetrical with respect to a plane that passes through the center of the dielectric substrate 30 and is perpendicular to the mounting surface and perpendicular to the longitudinal direction.
 プリント基板40の上面には、そのほぼ全面にグランド導体が形成されている。チップアンテナ101の実装面にもグランド導体が形成されている。但し、給電点FP部分に繋がる配線パターン41が形成されている付近にはグランド導体が形成されていない。すなわち、配線パターン41はグランド導体から絶縁されている。誘電体基体30の下面には電極が形成されていない。チップアンテナ101がプリント基板40に実装されることにより、プリント基板40の端面に形成されている配線パターン41は第1放射電極の給電点FPと導通する。また、第2放射電極の接地点GPはプリント基板40の端面に形成されているグランド導体と導通する。プリント基板40の下面には高周波回路と給電点FPとの間をつなぐ給電線路が形成されている。 A ground conductor is formed on almost the entire surface of the upper surface of the printed circuit board 40. A ground conductor is also formed on the mounting surface of the chip antenna 101. However, no ground conductor is formed in the vicinity where the wiring pattern 41 connected to the feeding point FP is formed. That is, the wiring pattern 41 is insulated from the ground conductor. No electrode is formed on the lower surface of the dielectric substrate 30. When the chip antenna 101 is mounted on the printed circuit board 40, the wiring pattern 41 formed on the end surface of the printed circuit board 40 is electrically connected to the feeding point FP of the first radiation electrode. The ground point GP of the second radiation electrode is electrically connected to the ground conductor formed on the end surface of the printed board 40. On the lower surface of the printed circuit board 40, a power supply line that connects the high-frequency circuit and the power supply point FP is formed.
 誘電体基体30の上面において、第1放射電極(31a,31b,31c)と第2放射電極(32a,32b,32c)は主に結合部CPで結合する。 On the upper surface of the dielectric substrate 30, the first radiation electrodes (31 a, 31 b, 31 c) and the second radiation electrodes (32 a, 32 b, 32 c) are mainly coupled at the coupling portion CP.
 図2・図3は前記第1放射電極と第2放射電極との結合の様子を示す図である。図2(A)、図2(B)は第1放射電極および第2放射電極付近の電界分布を示す図であり、図3(A)、図3(B)は第1放射電極および第2放射電極付近の電流分布を示す図である。 FIGS. 2 and 3 are views showing a state of coupling between the first radiation electrode and the second radiation electrode. 2A and 2B are diagrams showing electric field distributions in the vicinity of the first radiation electrode and the second radiation electrode, and FIGS. 3A and 3B show the first radiation electrode and the second radiation electrode. It is a figure which shows the electric current distribution of a radiation electrode vicinity.
 図1に示した第1放射電極(31a,31b,31c)による共振と第2放射電極(32a,32b,32c)による共振とで、二つの結合モード(OddモードとEvenモード)が生じる。図2(A)はOddモードによる第1放射電極および第2放射電極付近の電界分布を示している。図2(B)はEvenモードによる第1放射電極および第2放射電極付近の電界分布を示している。これらの図中の矢印の方向で電界の方向を表し、矢印の大きさで電界強度を表している。Oddモードにおいては、給電素子と無給電素子の間(結合部CP)の電界強度が高くなっている。これは第1放射電極と第2放射電極とが電界結合していることを示している。それに対しEvenモードにおいては第1放射電極と第2放射電極との間(結合部CP)の電界強度が低い。すなわち磁界強度が高く、第1放射電極と第2放射電極とが磁界結合していることを示している。 Two coupling modes (Odd mode and Even mode) are generated by the resonance by the first radiation electrode (31a, 31b, 31c) and the resonance by the second radiation electrode (32a, 32b, 32c) shown in FIG. FIG. 2A shows the electric field distribution near the first and second radiation electrodes in the odd mode. FIG. 2B shows the electric field distribution near the first and second radiation electrodes in the Even mode. In these figures, the direction of the electric field is indicated by the direction of the arrow, and the electric field strength is indicated by the size of the arrow. In the Odd mode, the electric field strength between the feeding element and the parasitic element (coupling portion CP) is high. This indicates that the first radiation electrode and the second radiation electrode are electric field coupled. On the other hand, in the Even mode, the electric field strength between the first radiation electrode and the second radiation electrode (coupling portion CP) is low. That is, the magnetic field strength is high, indicating that the first radiation electrode and the second radiation electrode are magnetically coupled.
 図3(A)はOddモードによる第1放射電極および第2放射電極付近の電流分布を示している。図3(B)はEvenモードによる第1放射電極および第2放射電極付近の電流分布を示している。これらの図中の矢印の方向で電流の方向を表し、矢印の大きさで電流強度を表している。また、矢印Af,Anはプリント基板のグランド導体上の大まかな電流の向きを示している。図3(A)、図3(B)においては第1放射電極および第2放射電極に流れる電流についても表しているので、チップアンテナの実装位置付近のグランド導体に流れる電流については図では隠れている。Oddモードにおいては第1放射電極および第2放射電極付近のグランド導体に流れる電流が同方向である。それに対しEvenモードにおいては第1放射電極および第2放射電極付近のグランド導体に流れる電流が逆方向である。このように、結合部(図1中のCP)の共振電流の様子が大きく異なることにより、プリント基板のグランド導体全体の電流分布が異なり、Oddモードにおいてはチップアンテナ101の実装位置がグランド導体に流れる電流の腹(anti-node) となり、Evenモードにおいてはチップアンテナ101の実装位置がグランド導体に流れる電流の節(node) となる。Evenモードにおけるグランド導体に流れる電流の腹はチップアンテナ101に沿ったプリント基板の辺とは異なる(隣接する)辺に生じる。 FIG. 3A shows the current distribution in the vicinity of the first radiation electrode and the second radiation electrode in the odd mode. FIG. 3B shows current distribution in the vicinity of the first radiation electrode and the second radiation electrode in the Even mode. In these drawings, the direction of the current represents the direction of current, and the magnitude of the arrow represents the current intensity. Arrows Af and An indicate rough directions of current on the ground conductor of the printed circuit board. 3A and 3B also show the currents flowing through the first and second radiation electrodes, so the current flowing through the ground conductor near the chip antenna mounting position is hidden in the figure. Yes. In the Odd mode, the currents flowing in the ground conductors near the first radiation electrode and the second radiation electrode are in the same direction. On the other hand, in the Even mode, the current flowing through the ground conductor near the first and second radiation electrodes is in the reverse direction. As described above, the state of the resonance current of the coupling portion (CP in FIG. 1) is greatly different, so that the current distribution of the entire ground conductor of the printed circuit board is different. In the Even mode, the mounting position of the chip antenna 101 becomes a node of current flowing in the ground conductor. The antinode of the current flowing through the ground conductor in the Even mode occurs on a side different from (adjacent to) the side of the printed circuit board along the chip antenna 101.
 図4は前記2つの結合モードにおけるアンテナ装置の指向性を示す図である。図4(A)はOddモードにおける電磁界の放射強度を濃度で表している。図4(B)はEvenモードにおける電磁界の放射強度を濃度で表している。図中の円内の濃度で指向性がわかる。濃度が高い方向に強く放射し、アンテナの指向性がその方向に向いていることを示している。逆に凹んでいる部分はいわゆるNull点であり、利得の低い方向を示している。 FIG. 4 is a diagram showing the directivity of the antenna device in the two coupling modes. FIG. 4A shows the radiation intensity of the electromagnetic field in the Odd mode as a concentration. FIG. 4B shows the radiation intensity of the electromagnetic field in the Even mode as a concentration. The directivity can be seen from the density in the circle in the figure. This indicates that radiation is strongly radiated in a higher concentration direction, and the antenna directivity is in that direction. Conversely, the recessed portion is a so-called Null point, indicating a direction of lower gain.
 図中の両端矢じりの矢印はアンテナ全体としての大まかな指向性を示している。図4から明らかなようにOddモードでの指向性はy軸方向(図における縦方向)、Evenモードでの指向性はx軸方向(図における横方向)をそれぞれ向いている。 ◎ Arrows at both ends in the figure indicate the general directivity of the antenna as a whole. As is clear from FIG. 4, the directivity in the Odd mode is in the y-axis direction (vertical direction in the figure), and the directivity in the Even mode is in the x-axis direction (horizontal direction in the figure).
 本発明のような実装基板に実装される小型アンテナは、前述のとおり、実装基板に電流を流すことにより、実装基板を放射素子として用いることで放射特性を得ている。Oddモードにおいてはチップアンテナ101の実装位置がグランド導体に流れる電流の腹(anti-node) となるため、実装されている辺をダイポールアンテナと見立てた動作をすることで電波を放射する。そのため、ダイポールアンテナアンテナの軸がX軸となるため、その軸と直交するY軸方向に指向性が向く。 As described above, a small antenna mounted on a mounting board as in the present invention obtains radiation characteristics by using a mounting board as a radiating element by passing a current through the mounting board. In the Odd mode, the mounting position of the chip antenna 101 becomes an anti-node of the current flowing through the ground conductor. Therefore, radio waves are radiated by operating the mounted side as a dipole antenna. Therefore, since the axis of the dipole antenna is the X axis, directivity is directed in the Y axis direction orthogonal to the axis.
 同様にEvenモードにおけるグランド導体に流れる電流の腹はチップアンテナ101に沿ったプリント基板の辺とは異なる(隣接する)辺に生じるため、この辺をダイポールアンテナと見立てた動作をすることで電波を放射する。この場合、ダイポールアンテナアンテナの軸がY軸となるため、その軸と直交するX軸方向に指向性が向く。 Similarly, since the antinode of the current flowing through the ground conductor in the Even mode is generated on a side different from (adjacent to) the side of the printed circuit board along the chip antenna 101, radio waves are radiated by operating this side as a dipole antenna. To do. In this case, since the axis of the dipole antenna is the Y axis, the directivity is directed in the X axis direction orthogonal to the axis.
 アンテナ装置201はOddモードとEvenモードとが重なった特性を示すので、アンテナ装置201の指向性は、図4(A)、図4(B)に示した2つのパターンを重ね合わさったものとなる。この重ね合わせにより、NULL点が無くなり、ほぼ無指向性のアンテナ特性を得ることができる。 Since the antenna device 201 has a characteristic in which the Odd mode and the Even mode overlap, the directivity of the antenna device 201 is obtained by superimposing the two patterns shown in FIGS. 4A and 4B. . This superposition eliminates the NULL point, and a nearly omnidirectional antenna characteristic can be obtained.
 以上に示したように、EvenモードとOddモードとでは、その結合の仕組みが磁界結合と電界結合という違いがあるため、アンテナ付近の基板のグランド導体上の電流分布が異なる。これにより、EvenモードとOddモードとでは、ほぼ同じ周波数であるにもかかわらず、グランド導体に流れる電流分布が異なる。そのため、同じ周波数で2種類の指向性を利用することができる。Evenモードの周波数はOddモードの周波数より僅かに低く、使用周波数がEvenモードの周波数とOddモードの周波数との中間の周波数となるように、Evenモードの周波数とOddモードの周波数を定めることにより、使用周波数でほぼ無指向性のアンテナを構成することができる。また、場合によっては、Evenモードの周波数とOddモードの周波数とで異なる指向性を持つアンテナとして使用できる。 As described above, the current distribution on the ground conductor of the substrate near the antenna differs between the Even mode and the Odd mode because there is a difference in the coupling mechanism between magnetic field coupling and electric field coupling. As a result, the distribution of current flowing through the ground conductor is different between the Even mode and the Odd mode, although they have substantially the same frequency. Therefore, two types of directivity can be used at the same frequency. Even mode frequency is slightly lower than Odd mode frequency, and by setting the frequency of Even mode and Odd mode so that the frequency used is intermediate between the frequency of Even mode and Odd mode, An almost omnidirectional antenna can be configured at the operating frequency. In some cases, the antenna can be used as an antenna having directivity different between the frequency of the Even mode and the frequency of the Odd mode.
 なお、第1放射電極(31a,31b,31c)と第2放射電極(32a,32b,32c)の形状をほぼ鏡映対称とし、電極の一部が互いにほぼ平行になるように配置されていて、第1放射電極(31a,31b,31c)の形成範囲と第2放射電極(32a,32b,32c)の形成範囲の面積比をおおよそ1:3~3:1の範囲内に定めると、前記縮退関係の2つの結合モードを得やすい。 The first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) are substantially mirror-symmetrical and are arranged so that parts of the electrodes are substantially parallel to each other. When the area ratio of the formation range of the first radiation electrodes (31a, 31b, 31c) and the formation range of the second radiation electrodes (32a, 32b, 32c) is set within a range of approximately 1: 3 to 3: 1, It is easy to obtain two coupled modes that are degenerate.
《第2の実施形態》
 図5は第2の実施形態に係るアンテナ装置202の斜視図である。このアンテナ装置202はチップアンテナ102とプリント基板40を備えている。チップアンテナ102はプリント基板40に実装されている。第1の実施形態では、誘電体セラミックスの誘電体基体30を用いたが、第2の実施形態では、誘電体基体として、誘電体セラミックスフィラーが樹脂材料中に分散された誘電体複合樹脂材料成形体を用いている。誘電体基体30の上面の中央には溝SLが形成されている。その他の構成は第1の実施形態で図1に示したものと同じである。
<< Second Embodiment >>
FIG. 5 is a perspective view of the antenna device 202 according to the second embodiment. The antenna device 202 includes a chip antenna 102 and a printed board 40. The chip antenna 102 is mounted on the printed board 40. In the first embodiment, the dielectric substrate 30 made of dielectric ceramics is used. However, in the second embodiment, the dielectric composite resin material molding in which the dielectric ceramic filler is dispersed in the resin material is used as the dielectric substrate. Using the body. A groove SL is formed at the center of the upper surface of the dielectric substrate 30. Other configurations are the same as those shown in FIG. 1 in the first embodiment.
 前記溝SLは第1放射電極(31a,31b,31c)と第2放射電極(32a,32b,32c)との間の容量を調整するために形成されている。この溝SLの幅および深さが大きいほど、第1放射電極(31a,31b,31c)と第2放射電極(32a,32b,32c)との間の容量は小さくなる。そして、この容量によって電界結合によるOddモードの共振周波数を、磁界結合によるEvenモードの共振周波数とは独立して調整できる。 The groove SL is formed to adjust the capacitance between the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c). The capacity between the first radiation electrode (31a, 31b, 31c) and the second radiation electrode (32a, 32b, 32c) decreases as the width and depth of the groove SL increase. And, by this capacitance, the resonance frequency of the Odd mode due to electric field coupling can be adjusted independently of the resonance frequency of the Even mode due to magnetic field coupling.
 このように、誘電体基体30を誘電体複合樹脂材料成形体で構成することにより、成型により製造できるので、その形状の自由度が高く、各モードの共振周波数の制御も容易になる。 As described above, since the dielectric substrate 30 is formed of a dielectric composite resin material molded body, it can be manufactured by molding, so that the degree of freedom of the shape is high and the resonance frequency of each mode can be easily controlled.
 なお、誘電体基体30は単に樹脂成形体であってもよい。 The dielectric substrate 30 may simply be a resin molded body.
《他の実施形態》
 第1・第2の実施形態では、第1放射電極および第2放射電極は互いに鏡映対称の関係であったが、使用周波数で第1の放射電極および第2の放射電極が縮退関係で共振すればよい。例えば、第1放射電極および第2放射電極は回転対称形であってもよい。
<< Other embodiments >>
In the first and second embodiments, the first radiating electrode and the second radiating electrode have a mirror-symmetrical relationship with each other. However, the first radiating electrode and the second radiating electrode resonate with each other at a use frequency. do it. For example, the first radiation electrode and the second radiation electrode may be rotationally symmetric.
CP…結合部
FP…給電点
GP…接地点
OE…開放端
SL…溝
30…誘電体基体
31a,31b,31c…第1放射電極
32a,32b,32c…第2放射電極
33,34…整合用パターン
40…プリント基板
41…配線パターン
101,102…チップアンテナ
201,202…アンテナ装置
CP: coupling portion FP ... feeding point GP ... grounding point OE ... open end SL ... groove 30 ... dielectric substrate 31a, 31b, 31c ... first radiation electrode 32a, 32b, 32c ... second radiation electrode 33, 34 ... for alignment Pattern 40 ... Printed circuit board 41 ... Wiring patterns 101, 102 ... Chip antennas 201, 202 ... Antenna device

Claims (5)

  1.  誘電体基体およびこの誘電体基体に形成された放射電極を有するチップアンテナと、基材およびこの基材に形成されたグランド導体を有する基板と、を備え、前記基板の実装面に前記チップアンテナが実装されて構成されたアンテナ装置において、
     前記チップアンテナは給電点に接続される第1放射電極と前記グランド導体に接続される第2放射電極とを備え、前記第1放射電極と前記第2放射電極とは電磁界結合し、使用周波数で前記第1放射電極および前記第2放射電極は縮退関係で共振することを特徴とするアンテナ装置。
    A chip antenna having a dielectric substrate and a radiation electrode formed on the dielectric substrate; and a substrate having a substrate and a ground conductor formed on the substrate; and the chip antenna is mounted on a mounting surface of the substrate. In the antenna device configured and implemented,
    The chip antenna includes a first radiating electrode connected to a feeding point and a second radiating electrode connected to the ground conductor, and the first radiating electrode and the second radiating electrode are electromagnetically coupled to each other and used frequency In the antenna device, the first radiation electrode and the second radiation electrode resonate in a degenerate relationship.
  2.  前記第1放射電極および前記第2放射電極は、誘電体セラミックスフィラーが樹脂材料中に分散された誘電体複合樹脂材料成形体である誘電体基体上に形成された導体パターンで構成されている、請求項1に記載のアンテナ装置。 The first radiating electrode and the second radiating electrode are composed of a conductor pattern formed on a dielectric substrate which is a dielectric composite resin material molded body in which a dielectric ceramic filler is dispersed in a resin material. The antenna device according to claim 1.
  3.  前記誘電体基体は、前記第1放射電極と前記第2放射電極との間に溝が形成されている、請求項1または2に記載のアンテナ装置。 The antenna device according to claim 1 or 2, wherein the dielectric substrate has a groove formed between the first radiation electrode and the second radiation electrode.
  4.  前記第1放射電極および前記第2放射電極は鏡映対称の関係にある、請求項1ないし3のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 3, wherein the first radiation electrode and the second radiation electrode are in a mirror-symmetrical relationship.
  5.  前記第1放射電極および前記第2放射電極は回転対称の関係にある、請求項1ないし3のいずれかに記載のアンテナ装置。 The antenna device according to any one of claims 1 to 3, wherein the first radiation electrode and the second radiation electrode are in a rotationally symmetric relationship.
PCT/JP2013/062809 2012-05-11 2013-05-07 Antenna device WO2013168690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-109078 2012-05-11
JP2012109078 2012-05-11

Publications (1)

Publication Number Publication Date
WO2013168690A1 true WO2013168690A1 (en) 2013-11-14

Family

ID=49550725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/062809 WO2013168690A1 (en) 2012-05-11 2013-05-07 Antenna device

Country Status (1)

Country Link
WO (1) WO2013168690A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581353A (en) * 2018-06-07 2019-12-17 株式会社东芝 chip antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028734A (en) * 2006-07-21 2008-02-07 Hitachi Metals Ltd Surface mounting antenna and communication apparatus mounting it
WO2008136244A1 (en) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. Antenna structure and wireless communication apparatus comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028734A (en) * 2006-07-21 2008-02-07 Hitachi Metals Ltd Surface mounting antenna and communication apparatus mounting it
WO2008136244A1 (en) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. Antenna structure and wireless communication apparatus comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581353A (en) * 2018-06-07 2019-12-17 株式会社东芝 chip antenna

Similar Documents

Publication Publication Date Title
US20220393360A1 (en) Electronic Device
KR20060042232A (en) Reverse f-shaped antenna
US20180123236A1 (en) Antenna System and Antenna Module With a Parasitic Element For Radiation Pattern Improvements
JP6426493B2 (en) Antenna structure and electronic device
JP4128934B2 (en) Multi-frequency antenna
US20130120198A1 (en) Antenna device
JP2017092644A (en) Patch antenna
WO2016186091A1 (en) Antenna device and electronic apparatus
KR100674667B1 (en) Dual-band chip antenna with stacked meander structures for mobile communication applications
JP5078732B2 (en) Antenna device
WO2013168690A1 (en) Antenna device
JP2020174285A (en) Antenna device
JP3997517B2 (en) Diversity antenna device, card type module using the same, and communication device
JP4845052B2 (en) Small antenna
JP3880295B2 (en) Chip antenna
WO2016186092A1 (en) Antenna device and electronic apparatus
JP2013131901A (en) Antenna device
JP6183269B2 (en) Antenna device and portable wireless terminal equipped with the same
JP3551368B2 (en) Chip antenna
KR100581712B1 (en) Internal Ring Antenna for Mobile Handsets
JP6004173B2 (en) Antenna device
JP6338401B2 (en) Inverted L antenna
JP2002198724A (en) Microstrip antenna
JP6776979B2 (en) Antenna device
JP6489153B2 (en) Antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13787182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13787182

Country of ref document: EP

Kind code of ref document: A1