TWI757136B - 用於小資料傳輸的方法和使用者裝置 - Google Patents

用於小資料傳輸的方法和使用者裝置 Download PDF

Info

Publication number
TWI757136B
TWI757136B TW110111619A TW110111619A TWI757136B TW I757136 B TWI757136 B TW I757136B TW 110111619 A TW110111619 A TW 110111619A TW 110111619 A TW110111619 A TW 110111619A TW I757136 B TWI757136 B TW I757136B
Authority
TW
Taiwan
Prior art keywords
resource
rrc
rsrp
value
specific
Prior art date
Application number
TW110111619A
Other languages
English (en)
Other versions
TW202143790A (zh
Inventor
魏嘉宏
汪海瀚
蔡馨璽
靳亨立
Original Assignee
香港商鴻穎創新有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港商鴻穎創新有限公司 filed Critical 香港商鴻穎創新有限公司
Publication of TW202143790A publication Critical patent/TW202143790A/zh
Application granted granted Critical
Publication of TWI757136B publication Critical patent/TWI757136B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/328Reference signal received power [RSRP]; Reference signal received quality [RSRQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • H04W76/36Selective release of ongoing connections for reassigning the resources associated with the released connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一種用於小資料傳輸的方法和使用者裝置(User Equipment,UE)。該方法包括接收無線電資源控制(Radio Resource Control ,RRC)釋放訊息;測量至少一下行鏈路(Downlink,DL)參考信號(Reference Signal,RS)以獲取測量結果;根據測量結果選擇用於小資料傳輸的一特定配置授權(Configure Grant,CG)資源;根據(i)與特定CG資源相關聯的DL RS的參考信號接收功率(Reference Signal Received Power,RSRP)變化量和(ii)時序提前(Timing Advance,TA)相關計時器是否正在運行,確定該特定CG資源的TA值對於小資料傳輸是否有效;以及在確定該TA值有效之後對該特定CG資源執行小資料傳輸。

Description

用於小資料傳輸的方法和使用者裝置
本揭露係關於用於小資料傳輸的方法和使用者裝置(UE)。
隨著連接裝置數量的巨大增長和使用者/網絡業務的快速增長,做出了各種努力:通過提高資料速率,延遲,可靠性和移動性,以改善針對下一代無線通訊系統的無線通訊如第五代(fifthgeneration ;5G)無線電(New Radio ;NR)的各個方面。
5G NR系統經設計以提供靈活性及可配置性來最佳化網路服務及類型,從而適應諸如增強型行動寬頻(enhanced Mobile Broadband;eMBB)、大規模機器型通訊(massive Machine-Type Communication;mMTC)及超可靠低時延通訊(Ultra-Reliable and Low-Latency Communication;URLLC)之各種使用情形。
然而,隨著對無線電存取的需求持續增加,針對下一代無線通訊系統的無線通訊需要進一步改進。
本揭露係關於用於小資料傳輸的方法和使用者裝置(User Equipment ;UE)。
根據本揭露,提供一種由用於小資料傳輸的使用者裝置(User Equipment,UE)執行的方法。該方法包括:當在無線電資源控制(Radio Resource Control,RRC)_連接(CONNECTED)狀態下操作時,從基站(Base Station,BS)接收RRC釋放訊息,該RRC釋放訊息指示至少一下行鏈路(Downlink,DL)參考信號(Reference Signal,RS),至少一配置的授權(Configured Grant,CG)資源和指示該至少一DL RS和該至少一CG資源之間的關聯的資訊;轉變到RRC_非活動(INACTIVE)狀態以回應接收到的該RRC釋放訊息;發起針對該小資料傳輸的嘗試(attempt);測量該至少一DL RS以獲取測量結果;根據該測量結果,從該至少一CG資源中選擇用於該小資料傳輸的特定CG資源;根據(i)與該特定CG資源相關聯的DL RS的參考信號接收功率(Reference Signal Received Power,RSRP)變化量, DL RS是該至少一DL RS之一,以及(ii)時序提前(Timing Advance ,TA)相關的計時器是否正在運行,確定針對該特定CG資源的TA值對於該小資料傳輸是否有效;和在確定該TA值有效之後,對在該特定CG資源上執行該小資料傳輸,其中:該TA相關計時器定義允許將該TA值確定為有效的時間間隔;該TA相關計時器由該BS提供的TA相關計時器配置來配置;當接收到該TA值時,該TA相關計時器被啟動;和當該TA相關計時器期滿時,釋放該至少一CG資源。
根據本揭露,提供一種用於小資料傳輸的UE,該UE包括:一處理器;及 耦接到該處理器的一記憶體,其中該記憶體存儲至少一個電腦可執行程式,該至少一個電腦可執行程式在由該處理器執行時使該處理器:當在RRC_CONNECTED狀態下操作時,從BS接收RRC釋放訊息,該RRC釋放訊息指示至少一DL RS,至少一CG資源和指示該至少一DL RS和該至少一CG資源之間的關聯的資訊;轉變到RRC_INACTIVE狀態以回應接收到的該RRC釋放訊息;發起針對該小資料傳輸的嘗試;測量該至少一DL RS以獲取測量結果;根據該測量結果,從該至少一CG資源中選擇用於該小資料傳輸的特定CG資源;根據(i)與該特定CG資源相關聯的DL RS的RSRP變化量, DL RS是該至少一DL RS之一,以及(ii)TA相關計時器是否正在運行,確定針對該特定CG資源的TA值對於該小資料傳輸是否有效;和在確定該TA值有效之後,對在該特定CG資源上執行該小資料傳輸,其中:該TA相關計時器定義允許將該TA值確定為有效的時間間隔;該TA相關計時器由該BS提供的TA相關計時器配置來配置;當接收到該TA值時,該TA相關計時器被啟動;和當該TA相關計時器期滿時,釋放該至少一CG資源。
本揭露中提到的首字母縮略詞定義如下。 除非另有說明,否則本揭露中的術語具有以下含義。 縮寫 全稱3GPP               第三代合作夥伴計劃 AS                 存取層 BFR                波束故障恢復 BSR                緩衝狀態報告 BFD                波束故障偵測 BWP                部分頻寬 CCCH               共有控制通道 CSI-RS              通道狀態資訊參考信號 CBRA               基於隨機存取的競爭 CFRA               隨機存取無競爭 C-RNTI              小區無線電網路臨時識別符 CS-RNTI             經配置的排程無線電網路臨時識別符 CRC                 循環冗餘檢查 CORESET            控制資源集 CSS                 共用檢索空間 DC                  雙連接 DCI                 下行鏈路控制資訊 DL                  下行鏈路 DG                  動態授權 DL-SCH              下行鏈路共用通道 DRB                 資料無線電承載 DRX                 不連續接收 DTCH                專用業務通道 E-UTRA              演進通用地面無線電存取網路 EN-DC               E-UTRA NR雙連接 HARQ                混合自動重傳請求 ID                    識別符 IE                    資訊元素 I-RNTI                非活動無線電網絡臨時識別符 LCH                  邏輯通道 LCP                  邏輯通道優先級 LCID                 邏輯通道識別符 LBT                  先聽後說 M&A                 多路復用及組裝 MAC                 媒體存取控制 MAC CE              MAC 控制元素 MCS                 調製編碼策略 MCS-C-RNTI          調製編碼策略小區無線電網絡臨時標識符 MSGA                訊息 A MSGB                訊息 B MSG1                  訊息 1 MSG2                   訊息 2 MSG3                   訊息 3 MSG4                   訊息 4 MSGB-RNTI             訊息B無線電網絡臨時標識符 MIB                     主資訊塊 NR                      新無線電 NDI                     新資料指示符 NR-U                    無執照NR PCell                     主小區 PHY                      實體層 PHR                      功率餘量報告 PDCCH                   實體下行鏈路控制通道 PDU                      協定資料單元 PDCP                     封包資料聚合協定 PRACH                    實體隨機存取通道 P-RNTI                    尋呼無線電網絡臨時標識符 PUSCH                    實體上行鏈路共用通道 RA                        隨機存取 RAN                       無線電存取網路 RAR                       隨機存取回應 RLC                       無線電鏈路控制 RS                         參考訊號 RSRP                       參考信號接收功率 RNTI                       無線電網路臨時識別符 ROHO                      魯棒報頭壓縮 RRC                        無線電資源控制 SCell                        輔小區 SDAP                       服務資料適應協定 SIB                         系統資訊塊 SLIV                        起點和長度指示符值 SUL                        輔助UL SS                          同步信號 SSB                         同步信號塊 SRB                         信令無線電承載 SFN                         系統幀號 TA                          時序提前 TAG                        時序提前組 TB                          傳輸塊 TS                          技術規範 UL                          上行鏈路 USS                         UE特定檢索空間
以下描述含有與本揭露中之示例性實施方式有關的特定資訊。圖式及其隨附詳細揭露內容僅針對示例性實施方式。然而,本揭露不僅限於該等示例性實施方式。熟習此項技術者將想到本揭露之其他變型及實施方式。除非另外指出,否則附圖中相似或對應的元件可由相似或對應的參考數字指示。此外,本揭露中的圖式及說明通常未按比例繪製,且並不旨在對應於實際的相對尺寸。
出於一致性及易於理解之目的,在示例性圖式中透過數字以標示相似特徵(雖在一些示例中並未如此標示)。然而,不同實施方式中的特徵在其他方面可能不同,因此不應狹義地侷限於圖式所示的特徵。
提及「一個實施方式」、「一實施方式」、「示例性實施方式」、「各種實施方式」、「一些實施方式」、「本揭露之實施方式」等可指示如此描述的本揭露之實施方式可包括特定特徵、結構或特性,但並非本揭露之每種可能的實施方式一定包括該特定特徵、結構或特性。再者,重複使用短語「在一個實施方式中」、「在一示例性實施方式中」或「一實施方式」不一定指代同一實施方式,儘管它們可指代同一實施方式。此外,任何結合「本揭露」使用的短語像「實施方式」絕不意圖表徵本揭露之所有實施方式必須包括特定特徵、結構或特性,而是應理解成意謂「本揭露之至少一些實施方式」包括所陳述之特定特徵、結構或特性。術語「耦接」被定義為連接,不論是直接連接還是由介入組件(component)間接連接,且不一定限於實體連接。術語「包含」在利用時意指「包括但不一定限於」;其特定指示在如此描述的組合、群組、系列及等效形式中的開放式包括或成員身份。此外,本揭露中的術語「系統」和「網路」可以互換使用。
術語「及/或」僅為用於揭示相關聯物件的關聯關係,並且表示可存在三種關係,例如,「A及/或B」可指示A單獨存在、A及B同時存在或者B單獨存在。「A及/或B及/或C」可表示A、B及C中之至少一者存在。字元「/」通常表示前一個和後一個相關聯物件處於「或者」關係。
再者,出於非限制性的說明目的,將闡述例如:功能實體、技術、協定、標準等具體細節以利於理解所述的技術。在其他示例中,省略了對眾所周知的方法、技術、系統、架構等的詳細敘述,以免以不必要的細節模糊敘述。
熟習此項技術者將立即認識到,任何所揭示之(多個)網路功能或(多個)演算法可由硬體、軟體或軟體與硬體之組合來實施。所揭示功能可對應於可為軟體、硬體、韌體或其任何組合的模組。軟體實施方式可包括儲存於諸如記憶體或其他類型儲存裝置之電腦可讀媒體上的電腦可執行指令。例如,具有通訊處理能力的一或多個微處理器或通用電腦可用對應的可執行指令程式化,並且執行所揭示之(多個)網路功能或(多個)演算法。微處理器或通用電腦可包括特殊應用積體電路(Application Specific Integrated Circuit;ASIC)、可程式化邏輯陣列,且/或使用一或多個數位信號處理器(Digital Signal Processor;DSP)。儘管所揭示實施方式中之一些面向在電腦硬體上安裝並執行的軟體,但實施為韌體或硬體或硬體與軟體之組合的替代實施方式完全在本揭露之範疇內。
微處理器或通用電腦可包括特殊應用積體電路(Application Specific Integrated Circuit;ASIC)、可程式化邏輯陣列,且/或使用一或多個數位信號處理器(Digital Signal Processor;DSP)。儘管所揭示實施方式中之一些面向在電腦硬體上安裝並執行的軟體,但實施為韌體或硬體或硬體與軟體之組合的替代實施方式完全在本揭露之範疇內。電腦可讀媒體可包括但不限於隨機存取記憶體(Random Access Memory;RAM)、唯讀記憶體(Read-Only Memory;ROM)、可抹除可程式化唯讀記憶體(Erasable Programmable Read-Only Memory;EPROM)、電可抹除可程式化唯讀記憶體(Electrically Erasable Programmable Read-Only Memory;EEPROM)、快閃記憶體、光碟唯讀記憶體(Compact Disc Read-Only Memory;CD-ROM)、卡式磁帶、磁帶、磁碟儲存器或者能夠儲存電腦可讀指令之任何其他等效媒體。
諸如長期演進(Long Term Evolution;LTE)系統、進階長期演進(LTE-Advanced;LTE-A)系統、升級版進階LTE系統或5G NR無線電存取網路(Radio Access Network;RAN)之無線電通訊網路架構通常可包括在網路內提供連接的至少一個基地台(BS)、至少一個UE及一或多個可選網路元件。UE可由BS所建立的無線電存取網路RAN與諸如核心網路(Core Network;CN)、演進封包核心(Evolved Packet Core;EPC)網路、演進型通用地面RAN(Evolved Universal Terrestrial RAN;E-UTRAN)、下一代核心(Next-Generation Core;NGC)或網際網路進行通訊。
根據本揭露的UE可包括但不限於行動台、行動終端機或裝置,或使用者通訊無線電終端機。例如,UE可為可攜式無線電裝置,該可攜式無線電裝置包括但不限於具有無線通訊能力之行動電話、平板電腦、可穿戴裝置、感測器、或個人數位助理(Personal Digital Assistant;PDA)。UE可被配置以由空中介面接收信號且向RAN中的一或多個小區發射信號。
根據本揭露之BS,BS可包括但不限於如在通用行動通訊系統(Universal Mobile Telecommunications System;UMTS)中之節點B (node B,NB)、長期演進技術升級版(LTE-Advanced;LTE-A)中的演進節點B(evolved node B;eNB)、UMTS中的無線電網路控制器(Radio Network Controller;RNC)、全球行動通訊系統(Global System for Mobile Communications;GSM)/用於GSM演進的GSM增強型資料速率無線電存取網路(GSM EDGE (Enhanced Data Rate for GSM Evolution)Radio Access Network,GERAN)中的基地台控制器(Base Station Controller;BSC)、結合5GC之演進型通用陸地無線電存取(Evolved Universal Terrestrial Radio Access;E-UTRA) BS中之下一代eNB (next-generation eNB;ng-eNB)、5G存取網路(5G Access Network;5G-AN)中的下一代節點B(gNB),以及任何能夠透過小區控制無線電通訊及管理無線電資源之其他裝置。BS可由無線電介面連結一或多個UE,以服務一或多個UE連結至網路。
BS可被配置以根據至少一種無線電存取技術(Radio Access Technology;RAT)提供通訊服務,無線電存取技術諸如:全球互通微波存取(Worldwide Interoperability for Microwave Access;WiMAX),常常稱為2G的全球行動通訊系統(Global System for Mobile communications;GSM)、GSM增強資料速率GSM演進(GSM Enhanced Data rates for GSM Evolution;EDGE)RAN(EDGE RAN;GERAN)、通用封包無線電服務(General Packet Radio Service;GPRS)、常常稱為3G的基於基礎寬頻分碼多重存取(Wideband-Code Division Multiple Access;W-CDMA)的通用行動電信系統(Universal Mobile Telecommunication System;UMTS)、高速封包存取(High-Speed Packet Access;HSPA)、LTE、LTE-A、演進型/增強型LTE(evolved/enhanced LTE;eLTE)(即,連接至5G核心的LTE)、新無線電(常常稱為5G)及/或升級版LTE-A。然而,本揭露之範疇並不限於此等協定。
BS可使用RAN中所包括的複數個小區以向特定地理區域提供無線電覆蓋。BS可支援此等小區之操作。每個小區可向在其無線電覆蓋範圍內的至少一個UE提供服務。特殊地,每個小區(常常稱為服務小區)可提供服務以服務於在其無線電覆蓋範圍內的一或多個UE,使得每個小區將下行鏈路(downlink;DL)資源及選擇性地將上行鏈路(uplink;UL)資源排程給在其無線電覆蓋範圍內的至少一個UE,以進行DL封包傳輸及選擇性的UL封包傳輸。BS可由複數個小區與無線電通訊系統中的一或多個UE進行通訊。
小區可分配側鏈路(SL)資源以支援斴近性服務(ProSe)、LTE SL服務及LTE/NR 車聯網(V2X)服務。每個小區可以具有與其他小區之重疊覆蓋區域。在多RAT雙連接(Multi-RAT Dual Connectivity,MR-DC)情況中,主小區群組(Master Cell Group,MCG)或輔小區群組(Secondary Cell Group,SCG)中之主小區可稱作特殊小區(Special Cell,SpCell)。主小區(Primary Cell,PCell)可指MCG之SpCell。主SCG小區(Primary SCG Cell,PSCell)可指SCG之SpCell。MCG可指與主節點(Master Node,MN)相關聯的服務小區之群組,包含SpCell及可選的一或多個輔小區(Secondary Cell,SCell)。SCG可指與次節點(Secondary Node,SN)相關聯的服務小區之群組,包含SpCell及可選的一或多個SCell。
如前文所揭示,用於NR之訊框結構支援靈活的配置以用於適應各種下一代(例如:5G)通訊要求,諸如:增強型行動寬頻(enhanced Mobile Broadband;eMBB)、大規模機器型通訊(massive Machine-Type Communication;mMTC)及超可靠低時延通訊(Ultra-Reliable and Low-Latency Communication;URLLC),同時滿足高可靠性、高資料速率及低時延要求。第三代合作夥伴計劃(3rd Generation Partnership Project;3GPP)中的正交分頻多工(Orthogonal Frequency-Division Multiplexing;OFDM)技術可用作NR波形之基線。亦可使用可擴展的OFDM參數集,諸如:適應性子載波間隔、通道頻寬及循環首碼(Cyclic Prefix;CP)。另外,針對NR考慮兩個編碼方案,具體而言為(1)低密度同位元元檢查(Low-Density Parity-Check;LDPC)碼及(2)極化碼。編碼方案適應可基於通道條件及/或服務應用來配置。
此外,亦考慮到,在單一NR訊框之傳輸時間間隔中,應至少包括DL傳輸資料、保護時段及UL傳輸資料,其中DL傳輸資料、保護時段及UL傳輸資料之各個部分亦應可例如基於NR之網路動態來配置。此外,亦可在NR訊框中提供SL資源以支援ProSe服務。
不同類型的 RA 程序
除了4步RA程序外,下一代蜂巢式無線通訊系統(例如3GPP NR無線通訊系統)中還支援2步RA程序。在下一代蜂巢式無線通訊系統中可以支援以下三種類型的RA過程:四步CBRA、兩步CBRA和CFRA。參考圖1、2、3和4對三種RA程序進行了詳細說明。
圖1繪示根據本揭露之一實施方式之4步CBRA。在動作102中,UE 120可以向BS 140發送包括RA前導碼的MSG1。在動作104中,BS 140可回應於接收MSG1而向UE 120發送MSG2(例如,RAR)。在動作106中,UE 120可以在排程的傳輸中(例如,由RAR排程)向BS 140發送MSG3。在動作108中,UE 120可以從BS 140接收MSG4(例如,包括競爭解決訊息)。
圖2繪示根據本揭露之一實施方式之2步CBRA。在動作202中,RA前導碼可由UE 220被發送。在動作204中,PUSCH有效載荷可由UE 220被發送。注意,動作202連同動作204可被視為MSGA傳輸。即,2步CBRA的MSGA傳輸可以包括PRACH上的前導碼傳輸和PUSCH上的有效載荷傳輸。在MSGA傳輸之後,UE 220可以在配置的視窗內監視包括來自BS 204的競爭解決訊息的MSGB。如果在動作206中,UE 220接收到MSGB時競爭解決成功,則UE可以結束2步CBRA程序。
圖3繪示根據本揭露之一實施方式之CFRA。如圖3所示,在動作302中,UE 320可以從BS 340接收RA前導碼分派(例如,由MSG0)。 RA前導碼分派可以指示RA前導碼傳輸的資源分派。在動作304中,UE 320可以根據所指示的資源分派來發送MSG1(例如,包括RA前導碼)。在動作306中,UE 320可以接收MSG2(例如,RAR)作為對MSG1的回應。
圖4繪示根據本揭露之一從2步RA程序回退到4步RA程序的過程。該過程可以透過在MSGB中包括回退指示來實現。如圖4所示,UE 420可以在動作402和404中分別向BS 440發送RA前導碼和PUSCH有效載荷。如果UE 420在動作406中接收到MSGB中的回退指示,則UE 420可以在動作408中執行MSG3傳輸,並在動作410中監視MSG4(競爭解決訊息)。在執行MSG3(重新)傳輸一定次數之後,如果競爭解決不成功,UE 420可以返回到執行MSGA傳輸。如果2步RA過程在配置數目的MSGA傳輸之後沒有被成功完成,UE 420可以切換到執行4步CBRA程序。
對於使用配置有SUL載波的服務小區執行的RA程序,BS可以明確地向UE指示要使用哪個載波(例如,UL載波或SUL載波)。否則,如果所測量的DL質量低於由BS廣播的閾值 ,則UE可以在選擇2步RA和4步RA之前執行載波選擇。一旦開始,RA程序的所有UL傳輸可以保持在選擇的載波上。
經配置授權
在3GPP NA無線通訊系統中,gNB可由PDCCH上的UE特定RNTI(例如,C-RNTI)向UE動態分派UL資源。 UE可以週期性地監視PDCCH,以便為UL傳輸找到可能的授權。
與前面描述的DG機制不同,gNB可以透過CG在PUSCH上預先配置具有週期性UL資源的UE。提供兩種類型的CG,即CG類型1和CG類型2,如下所示:
CG類型1:gNB可以透過DL-RRC信令提供CG(包括CG資源的週期性),並且當UE接收到CG並且相應的重新配置被完成時,CG被認為對傳輸有效。有效CG可意味著該CG可被UE應用於UL傳輸。如本文所使用的,CG資源可指PUSCH資源,並且CG可指CG配置。術語「CG」和術語「CG配置」可在本揭露中互換使用。
CG類型2:gNB可以透過DL RRC信令提供CG(包括CG資源的週期性)。當UE從gNB接收到啟動信令時,CG可以被認為是有效的,直到UE從gNB接收到去啟動信令為止。啟動信令和去啟動信令可以是PHY信令。例如,可以在尋址到CS-RNTI的PDCCH上發送啟動信令和去啟動信令。
在NR中,支援三種RRC狀態:RRC_CONNECTED狀態、RRC_IDLE狀態和RRC_INACTIVE非活動狀態。 UE(或UE的RRC層)可以在三種RRC狀態之一下操作。除了在RA程序期間執行的UL資料傳輸之外,UL資料傳輸通常僅允許由處於RRC_CONNECTED狀態的UE執行。如本文所述,UL資料傳輸可指UE在PUSCH或其它實體UL通道上向BS(例如,gNB)發送資料的過程。在LTE中引入的傳統RA程序中,MSGA或MSG3只能攜帶少量和有限量的資料,因為gNB為MSGA/MSG3傳輸分派的PUSCH資源主要用於從公共控制通道(CCCH)發送資料(例如,來自RRC層的資料)。如果UE需要向gNB發送UL資料(不是來自CCCH),並且UE不處於RRC_ CONNECTED狀態(即,在RRC_IDLE狀態或RRC_ INACTIVE狀態下操作),即使資料量很小,UE仍然需要觸發並執行RRC連接建立程序或RRC連接恢復程序,以轉變到RRC_CONNECTED狀態以發送資料。因此,由UE進行的不頻繁的小UL資料傳輸可能由於應用於RRC狀態轉變的信令開銷而導致相當大的功率消耗。為了節省UE的功耗,允許UE在RRC_INACTIVE狀態或RRC_IDLE狀態下執行UL傳輸(用於發送從與SRB或DRB相關聯的LCH接收的(小)資料)而不轉變到RRC_CONNECTED狀態可能是有益的。這種UL傳輸可指可透過BS提供的RA程序和/或CG來執行的小資料傳輸。如本文所述,從與SRB或DRB相關聯的LCH接收的資料可以指小資料。在這個意義上,小資料可以包括控制信令和/或使用者資料。在本揭露中,如果資料由UE在RRC_ INACTIVE狀態或RRC_IDLE狀態下被發送,則術語「小資料」和術語「資料」可以互換地使用。
為了允許UE在不處於RRC_CONNECTED狀態(例如,處於RRC_INACTIVE或RRC_ IDLE)時由CG發送資料,提出了幾種UE行為。基於UE行為,(小)資料可由一或多個TB攜帶,以在從gNB提供(配置)的CG配置導出的PUSCH資源上被發送。注意,儘管在RRC_INACTIVE狀態或RRC_IDLE狀態下執行的資料傳輸可以指小資料傳輸,但是本揭露中的各種UE行為也可以被應用於任何大小的資料的UL傳輸。例如,在RRC_INACTIVE狀態或RRC_IDLE狀態下要發送的資料的大小可以取決於從CG導出的PUSCH資源的大小。此外,在本揭露中,適用於RRC_INACTIVE狀態的UE行為也可以適用於RRC_IDLE狀態。
RRC暫停和CG配置
圖5繪示根據本揭露之一實施方式之用於在RRC_INACTIVE狀態或RRC_IDLE狀態下執行小資料傳輸的UE的方法500。在動作502中,UE在RRC_CONNECTED狀態下操作。位於NR的RAN中的BS(例如,gNB)可透過發送RRC釋放訊息(或「RRCRelease」,其可在本揭露中互換地使用)向UE指示從RRC_CONNECTED狀態轉變到RRC_INACTIVE狀態或RRC_IDLE狀態。例如,如果UE在RRC_CONNECTED狀態下操作時接收到RRC釋放訊息,則UE可以執行RRC連接釋放程序以從RRC_CONNECTED狀態轉變到RRC_INACTIVE狀態或RRC_IDLE狀態。如本文所使用的,RRC_CONNECTED UE可指在RRC_CONNECTED狀態下操作的UE;RRC_INACTIVE UE可指在RRC_INACTIVE狀態下操作的UE;RRC_IDLE UE可指在RRC_IDLE狀態下操作的UE。
在動作504中,UE可以從BS接收RRC釋放訊息,該訊息包括RRC指示符和用於小資料傳輸的配置。 RRC指示符可以是或對應於表示為State_Indicator的IE。 RRC指示符可指示UE應轉變/切換到RRC_INACTIVE狀態和RRC_IDLE狀態中的哪一個。 RRC指示符也可以作為隱含的指示來實施。例如,BS可以透過在RRC釋放訊息中包括特定配置來向UE指示轉變到RRC_INACTIVE狀態,並且透過不在RRC釋放訊息中包括特定配置來向UE指示轉變到RRC_IDLE狀態。這樣,根據RRC釋放訊息中存在的特定配置,UE可以知道應切換/轉變到哪個RRC狀態(例如,RRC_INACTIVE狀態或RRC_IDLE狀態)。該特定配置可以是包含由UE在RRC_INACTIVE狀態期間維持其AS上下文所需的資訊的暫停配置(或「SuspendConfig」,其可在本揭露中互換地使用)。用於小資料傳輸的配置(或「SD_Config」,其可在本揭露中互換使用)可包含由UE在RRC_INACTIVE狀態或RRC_IDLE狀態下執行(小)資料傳輸所需的資訊。
在動作506中,UE可應用用於小資料傳輸的配置,並根據用於小資料傳輸的配置重新配置其AS層(例如,MAC、RLC、PDCP和/或SDAP層)。在動作508中,UE可根據RRC狀態指示符轉變到RRC_INACTIVE狀態或RRC_IDLE狀態。在動作510中,UE可以根據在RRC_INACTIVE狀態或RRC_IDLE狀態下操作時由BS提供的CG進行小資料傳輸的配置來執行資料傳輸(例如,小資料傳輸)。
基於針對小資料傳輸的配置(SD_Config)是否被包括在暫停配置(SuspendConfig)中,UE可確定其應轉變到哪個RRC狀態並執行資料傳輸。例如,如果UE確定SD_Config被包括在SuspendConfig中,則UE可以進入RRC_INACTIVE狀態並在RRC_INACTIVE狀態下操作時由CG或RA程序執行資料傳輸。否則,如果UE確定SD_Config不被包括在SuspendConfig中而是包括在RRCRelease中,則UE可以進入RRC_IDLE狀態並且在RRC_IDLE狀態下操作時由CG或RA程序執行資料傳輸。
如前所述,SD_Config可以包含UE在RRC_INACTIVE狀態或RRC_IDLE狀態下執行(小)資料傳輸所需的資訊。例如,SD_Config可以包括以下部分(A)到(L)中描述的一或多個指示符(例如,第一到第十指示符)/配置。
(A)當UE在RRC_CONNECTED狀態下操作時,UE可以由gNB在RRC釋放程序中至少被配置一UL BWP。另外,在NR中,CG資源可以被配置在多個UL BWP上。為了平衡UL BWP之間的系統負載平衡,允許BS(例如,gNB)限制UE在特定UL BWP上由處於RRC_INACTIVE狀態或RRC_IDLE狀態的CG執行UL資料傳輸(例如,小資料傳輸)可能是有益的。 BS可向UE指示由CG(處於RRC_INACTIVE狀態和/或RRC_IDLE狀態)的小資料傳輸只能在特定UL BWP上被執行。例如,SD_Config可以包含第一指示符,該指示符指示一或多個UL BWP,在該UL BWP上允許由CG配置的一組CG資源來執行小資料傳輸。如本文所使用的,為簡單起見,由從CG導出的CG資源集執行的小資料傳輸可被稱為「由CG的小資料傳輸」。當接收到SD_Config時,UE可以知道當在RRC_INACTIVE狀態或RRC_IDLE狀態下操作時,由CG的小資料傳輸可以在由SD_Config中包含的第一指示符指示的UL BWP上被執行。由第一指示符指示的UL BWP可被認為是經CG配置用於小傳輸的UL BWP。以下第1)至9)項中提供了與SD_Config中包含的第一指示符相關的示例。每項可以獨立於本節中列出的其他項或與之結合實施。
1)針對由CG的小傳輸的第一指示符所指示的UL BWP可以與(由BS)針對在RRC_CONNECTED狀態下執行的資料傳輸所配置的UL BWP相同。
2)第一指示符可以由BWP ID顯式表示。例如,UE可以由BS在RRC_CONNECTED狀態下操作時被配置有四個BWP。四個BWP中的每一BWP可以與BWP ID(例如,1、2、3或4)相關聯。每個BWP ID可被認爲是第一指示符(的一部分)。
3)第一指示符可以由3GPP TS 38.331和TS 38.321中提供的至少一個與BWP相關的IE隱式表示:
initialUplinkBWP
firstActiveUplinkBWP-Id;以及
特定的BWP索引。
BS可以經由與BWP相關的IE向UE隱式地指示被配置用於經由CG的小數據傳輸的一個或多個UL BWP。例如,經CG配置針對小資料傳輸的UL BWP可以是由IE initialUplinkBWP指示的BWP。
4)由CG針對小傳輸配置的UL BWP可以是在RRC_CONNECTED狀態下配置的所有BWP中具有最小或最大BWP ID的BWP。
5)由CG針對小傳輸配置的UL BWP可以是被配置為具有專用於小資料傳輸的CG配置的BWP。由CG配置配置的CG資源可以是UE的專用資源,或者可以與多個UE共用。 CG資源可以是PUSCH資源。
6)第一指示符可以由3GPP TS 38.331和TS 38.321中提供的一或多個CG相關IE(例如configuredGrantConfig)隱式表示。 例如,第一指示符可以被包含在configuredGrantConfig中,並且指示UE在轉變到RRC_INACTIVE狀態之後保持CG配置(對應於configuredGrantConfig)。 以這種方式,BS可以透過使用CG相關的IE隱式地為UE配置針對由CG的小資料傳輸的一個或多個ULBWP。
由CG針對小傳輸配置的UL BWP可以是與特定DL BWP具有相同ID的BWP。 UE可以應用特定的DL-BWP來接收由BS回應於小資料而發送的確認。 特定DL BWP可由UE應用於監視PDCCH以排程DCI,其可包括以下命令中的至少一:
TA命令,
DL/UL BWP切換命令(例如,特定BWP索引),以及
CG切換命令(例如,請求UE切換用於小資料傳輸的CG配置的命令);
8)經由CG針對小傳輸配置的的UL BWP可以是配置有特定DL RS集的DL BWP。每個DL-RS可以是SSB或CSI-RS。
9)第一指示符可以是特定的UE ID。特定UE ID可指RNTI(例如,I-RNTI、fullI-RNTI、shortI-RNTI、或特定RNTI)、UE AS上下文ID或UE非活動的AS上下文。
(B)SD_Config可以包括第二個指示符,該指示符指示多個BWP的優先順序列表。 利用第二指示符,UE可以確定多個BWP的優先順序順序。 多個BWP可以是(也可以不是)UL BWP,如第(a)節所述,該UL BWP被配置為由CG進行小傳輸。 例如,如果UE配置有三個BWP(例如,BWP1、BWP2和BWP3)用於由CG的小資料傳輸,則BS可以向UE提供這三個BWP的優先順序列表,從而允許UE確定這三個BWP的優先順序順序。 根據優先順序順序,可以優先選擇具有最高優先順序的BWP,以便由CG執行小資料傳輸。
以下第1)至3)項中提供了與第二指示符和BWP相關的示例,以及各自的優先級。每項可以獨立於本節中列出的其他項或與之結合實施。
1)BWP可以是(也可以不是)由BS透過前面描述的第一指示符指示的BWP。
2)根據第二指示符指示的優先級列表,UE可以透過CG在至少一BWP上依次執行小資料傳輸。
3)當以下事件(i)至(iv)中至少發生一個時,UE可以從一BWP切換到另一BWP以由CG執行小資料傳輸。
(i)從BS接收的第二個指示符被包含在:
DCI欄位;
具有由(預配置/預定義的)RNTI加擾的CRC位元的DCI(例如 CS-RNTI)或UE ID;
DL MAC PDU;
MAC subPDU;
MAC subPDU的(子)報頭;或
DL MAC CE。
(ii)從BS接收第二指示符以回應由CG的小資料傳輸。
(iii)透過廣播信令從BS接收第二指示符(例如MIB或SIB)。
(iv)由尋呼訊息和/或短訊息,從BS接收第二指示符。 UE可以檢查被包括在尋呼訊息中的參數PagingRecord中的UE ID是否與存儲的UE ID和/或存儲的fullI-RNTI匹配。如果被包括在尋呼訊息中的參數PagingRecord中的UE ID與存儲的UE ID和/或存儲的fullI-RNTI匹配,則UE可以根據優先級列表從一BWP切換到另一BWP以由CG執行小資料傳輸。
(C)SD_Config可包括第三指示符,該指示符指示針對由CG的小資料傳輸、UE應執行的PUSCH重複次數。例如,當執行小資料傳輸時, UE可以將對應於小資料的TB的傳輸在PUSCH(例如,CG資源)上重複,該重複次數為由第三指示符指示的特定次數。
(D)SD_Config可包括第四指示符,該第四指示符指示用於小資料傳輸的PUSCH配置。 PUSCH配置可以包括以下參數中的至少之一:
mcs-Table:該參數可以指示UE在不轉變預編碼排程的情況下應用於PUSCH傳輸的mcs表;以及
pusch-TimeDomainAllocationList:此參數表示UL分派到UL資料的時域分派列表。
(E)SD_Config可包括第五指示符,該第五指示符指示被包括在經預配置的CG配置清單中的CG配置。當UE在RRC_CONNECTED狀態下操作時,UE可以被預配置有多個CG配置。第五指示符可以指示一或多個經預配置的CG配置。
由第五指示符指示的CG配置可由UE應用於小資料傳輸。
例如,CG配置可以指示/確定可經UE應用於小資料傳輸的實體資源。
當UE在RRC_CONNECTED狀態下操作時,BS可透過DL RRC訊息發送經預配置的CG配置的清單。例如,BS可以提供三個CG配置(例如,CG配置#1、CG配置#2和CG配置#3),並且第五指示符可以指示三個CG配置中之一。
經預配置的CG配置清單中的每CG配置可以與由BS配置的相應UL BWP上的一組PUSCH資源(例如,或「CG資源」)相關聯。例如,假設UE被配置有UL BWP#1和UL BWP#2,則預配置的CG配置清單中的CG配置#1可以與UL BWP#1上的一組PUSCH資源相關聯,並且預配置的CG配置清單中的CG配置#2可以與UL BWP#2上的一組PUSCH資源相關聯。
預配置的CG配置清單中的每個CG配置可以與由BS配置的相應(服務)小區上的一組PUSCH/CG資源相關聯。例如,假設UE配置有小區#1和小區#2,預配置的CG配置清單中的CG配置#1可以與UL小區#1上的一組PUSCH資源相關聯,預配置的CG配置清單中的CG配置#2可以與小區#2上的一組PUSCH資源相關聯。
(F)SD_Config可包括第六指示符,該第六指示符可指示由CG在BWP和/或小區上傳輸的TB/資料的最大大小;
(G)SD_Config可包括第七指示符/配置,其指示當UE執行RRC(連接)釋放程序時,UE應保持(或不釋放)一或多無線電承載(例如SRB和/或DRB)。根據第七指示符,即使UE轉變到RRC_INACTIVE狀態或RRC_IDLE狀態,所指示的無線電承載也可以由UE保持。與所指示的無線電承載相關聯的LCH可被UE的MAC實體選擇以用於小資料傳輸的複用和組裝程序。
(H)SD_Config可能包括LCP限制的配置(例如,smalldata_allowance),用於針對RRC_CONNECTED狀態配置的至少一LCH。 LCP限制可以由BS由SD_Config基於每個LCH來配置。例如,當UE在RRC_INACTIVE狀態下操作並且正在執行用於準備/生成用於由CG的小資料傳輸的MAC PDU的M&A程序時,UE的MAC實體可以僅選擇被配置有smalldata_allowance的LCH以加入M&A和LCP程序。
(I)SD_Config可以包括一組配置,該配置提供UE執行MAC程序/過程所需的資訊,用於透過CG完成小資料傳輸。 MAC程序/過程可以包括以下至少之一:
LCP程序;
UL共用通道資料傳輸程序;
UL共用通道資料傳輸程序的混合自動重複請求(HARQ)過程;和
BSR程序。
(J) SD_Config可包括第八指示符,該第八指示符指示由CG的小資料傳輸所允許的存取類別(例如,資料的服務類型)和/或存取標識。第八指示符還可以指示一組允許的存取類別或特定值。如果存取類別的ID小於特定值,則該存取類別被認為是允許的。
SD_Config可以包括一或多個CG配置。在接收到CG配置之後,UE可以向BS發送UL指示符,其中UL指示符可以是UE ID,其可以指代RNTI(例如,I-RNTI、 fullI-RNTIshortI-RNTI或其他特定RNTI)、 UE AS上下文ID和/或UE非活動AS上下文。 UE ID可以與小資料傳輸一起被發送。例如,UE ID可以由MSG1、MSG3、MSGA和/或從CG被導出的UL資源來被發送。 UE ID可被UE用於請求BS(例如,gNB)以允許UE執行小資料傳輸(例如,由CG)。例如,UE ID可被用於與DCI的CRC位元加擾,其中DCI被用作對小資料傳輸的回應。在多個UE共用用於小資料傳輸的相同資源的情況下,BS可以根據UE的相應UE ID識別來自不同UE的小資料傳輸。
如前所述,BS可透過RRC釋放訊息向UE提供 SD_Config。 UE可以執行小資料特定的RRC連接釋放程序以回應RRC釋放訊息,如圖6所示。
圖6繪示根據本揭露之一實施方式之小資料特定RRC連接釋放程序。在動作602中,UE 620在RRC_CONNECTED狀態下操作。在動作604中,UE 620在RRC_CONNECTED狀態下操作時從BS 640接收RRC釋放訊息。 RRC釋放訊息可以包括RRC配置(例如, SD_Config),其提供UE在RRC_INACTIVE狀態下由CG執行小資料傳輸所需的資訊。一旦UE 620的RRC層成功地接收到RRC釋放訊息,在動作606中,RRC層可向較低層(例如,PHY、MAC、RLC、PDCP和/或SDAP層)提供相應的配置,並指示較低層透過應用RRC配置(例如, SD_Config)來執行重配置過程。之後,UE 620離開RRC_CONNECTED狀態,並在動作608中進入RRC_INACTIVE狀態。
(K)RRC釋放訊息中的SD_Config可包括以下指示符/配置1)至4)中的至少之一:
1)第九個指示符,該第九個指示符指示一或多個無線電承載透過CG被應用於小資料傳輸。例如,指示符可以是:
參數,該參數指示相應的無線電承載ID;或
位元圖,該位元圖的每一位元可以與在RRC_CONNECTED狀態中配置的無線電承載相關聯。例如,位元圖中的位元可以被設置為「1」以指示與該位元對應的無線電承載應被應用於由CG的小資料傳輸,並且被設置為「0」以指示與該位元對應的無線電承載不應被應用於由CG的小資料傳輸。例如,位元圖的第i位元可與無線電承載相關聯,該無線電承載具有所有配置的無線電承載或所有配置的資料無線電承載中的第i個最大/最小ID。
第十指示符(例如,HARQ ID),該第十指示符指示一個或多個HARQ過程將由UE的MAC和/或PHY層應用於由CG的小數據傳輸。
3)小資料特定LCH配置(例如, LogicalChannelConfig),包括UE的MAC實體所需的一或多個參數,以用於與所指示的無線承載相關聯的LCH。被包括在 LogicalChannelConfig中的參數可以包括表1中所示的以下參數中的至少之一。 表 1
LogicalChannelConfig 欄位描述
allowedSCS-List 如果存在,則來自邏輯通道的UL MAC SDU只能被映射到所指示的參數集。否則,來自邏輯通道的UL MAC SDU可以被映射到任何配置的參數集。只有值15/30/60 kHz(針對FR1)和60/120 kHz(針對FR2)才適用。對應於TS 38.321中規定的「allowedSCS-List」。
allowedServingCells 如果存在,則來自邏輯通道的UL MAC SDU只能被映射到此列表中指示的服務單元。否則,來自該邏輯通道的UL MAC SDU可以被映射到該小區組的任何配置的服務小區。 對應於TS 38.321中的「allowedServingCells」。
bucketSizeDuration ms. ms5中的值對應於5 ms, ms10中的值對應於10ms,依此類推。
logicalChannelGroup 邏輯通道所屬的邏輯通道組的ID,如TS 38.321中所指定。
logicalChannelSR-Mask 控制SR在配置類型1或類型2的配置的UL授權時觸發。 true指示SR遮罩被配置用於如TS38.321中指定的邏輯通道。
logicalChannelSR-DelayTimerApplied 指示是否為此邏輯通道應用SR傳輸的延遲計時器。如果 BSRConfig中不包括 logicalChannelSR-DelayTimer,則設置為 false
maxPUSCH-Duration 如果存在,來自該邏輯通道的UL MAC SDU只能通過使用導致PUSCH持續時間短於或等於該欄位指示的持續時間的UL授權被發送。否則,來自該邏輯通道的UL MAC SDU可以通過使用導致任何PUSCH持續時間的UL授權被發送。 對應於TS 38.321中的「maxPUSCH-Duration」。
priority 邏輯通道優先級,如TS 38.321中所指定。
prioritisedBitRate 以千字節/s計的值。值kBps0對應於0千字節/s,值kBps8對應於8千字節/s,值kBps16對應於16千字節/s,等等。對於SRB,該值僅可被設置為無窮大。
schedulingRequestId 如果存在,它指示適用於該邏輯通道的排程請求配置,如TS 38.321中所指定的。
對於不同的RRC狀態,LCH可以透過不同的LCH配置被配置。例如, LCH可以由用於RRC_CONNECTED狀態的第一LCH配置來配置和由用於RRC_INACITVE狀態的第二LCH配置來配置。RRC_CONNECTED狀態並且由用於RRC_INACITVE狀態的第二LCH配置被配置。當在RRC_INACTIVE狀態下經由CG執行小資料傳輸時,MAC實體可以釋放至少一部分第一LCH配置,並應用第二LCH配置。
LCH可與BS指示的第一無線電承載相關聯。第一無線電承載可由UE應用於由CG執行的小資料傳輸。在接收到包括 SD_Config的RRC釋放訊息之前,當UE在RRC_CONNECTED狀態下工作時,UE的MAC實體可以應用第一組LCP相關參數(例如, priority 、prioritisedBitRate和/或 bucketSizeDuration)和/或LCP限制相關參數(例如, allowedSCS-List 、allowedServingCell 、allowedCG List 、allowedPHY-PriorityIndex和/或 maxPUSCH-Duration)。 allowedCG清單可被用於為配置的LCH設置傳輸的允許CG。 allowedPHY-PriorityIndex可被用於設置用於傳輸的CG的允許PHY優先級索引。 UE的MAC實體可以在透過處於RRC_INACTIVE狀態的CG執行小資料傳輸時應用第二組LCP相關參數和/或LCP限制相關參數。第二組LCP相關參數和/或LCP限制相關參數可以,但不限於被包括在 SD_Config中。
4)特定MAC小區組配置包括一或多個參數(如3GPP TS 38.331中所提供的)。每個參數的示例性值如表2所示。表2中所示的值僅用於說明目的。 2
參數 ( 示例 )
MAC Cell Group configuration  
bsr-Config  
>periodicBSR-Timer sf10
>retxBSR-Timer sf80
phr-Config  
>phr-PeriodicTimer sf10
>phr-ProhibitTimer sf10
>phr-Tx-PowerFactorChange dB1
UE的MAC實體可被BS允許/指示/配置以由CG執行小資料傳輸。在接收到包括 SD_Config的RRC釋放訊息之前,當UE在RRC_CONNECTED狀態下操作時,UE的MAC實體可以針對BSR相關參數(例如, periodicBSR-Timer和/或 retxBSR-Timer)和/或PHR相關參數(例如, phr-PeriodicTimerphr-ProhibitTimer和/或 phr-Tx-PowerFactorChange)應用第一MAC小區組配置。當在RRC_INACTIVE狀態下由CG執行小數據傳輸時,當UE在RRC_CONNECTED狀態下操作時,UE的MAC實體可以應用針對BSR相關參數和/或PHR相關參數的第二MAC小區組配置。針對BSR相關參數和/或PHR相關參數的第二MAC小區群組配置可以但不限於被包括在 SD_Config中。
BS可以用表2中所示的多組參數和相應的值來配置UE。多組參數中的一組可由UE被應用於在UE在RRC_INACTIVE狀態下操作時由CG執行的小資料傳輸。
在轉變到RRC_INACTIVE狀態之後,UE可以維持與被配置用於RRC_CONNECTED狀態的與BSR / PHR / LCP程序和/或與LCP限制相關的參數相對應的一個或多個參數的配置。
上述配置和/或指示符(例如,第一至第十指示符)可由BS透過RRC重新配置訊息或在BS啟動RRC釋放程序之前被預配置。
上述配置和/或指示符也可由gNB透過被包括在 RRCRelease訊息中的 suspendConfigIE(如3GPP TS 38.331中引入和定義)預先配置。
(L)如前所述,在BS發起RRC(連接)釋放程序並向UE發送RRC釋放訊息之後,UE的RRC層可以重新配置較低層。如果RRC釋放訊息包括 SD_Config,則UE的RRC層可以根據 SD_Config重新配置較低層。
圖7繪示根據本揭露之一實施方式之RRC(連接)釋放程序700。在動作702中,UE可以在RRC_CONNECTED狀態中操作。在動作704中,當在RRC_CONNECTED狀態下操作時,UE可以從BS接收RRC釋放訊息。在動作706中,UE可以確定RRC釋放訊息是否包括 SD_Config。如果RRC釋放訊息包括 SD_Config,則UE的RRC層可在動作708中根據 SD_Config重新配置較低層。如果RRC釋放訊息不包括 SD_Config,則UE可以根據動作710中NR release Rel.15中定義的傳統RRC釋放程序來重新配置較低層。例如,如果UE透過執行傳統的RRC釋放程序從RRC_CONNECTED狀態轉變到RRC_INACTIVE狀態,則處於RRC_INACTIVE狀態的UE可以僅被授權透過隨機存取執行RRC信令傳輸,並且不被允許執行小資料傳輸。與由隨機存取的RRC信令傳輸相比,小資料傳輸可以是針對從與SRB或DRB相關聯的LCH接收的資料的UL傳輸。因此,如果從與DRB相關聯的LCH接收到小資料,則小資料傳輸可以包括使用者資料(或來自使用者平面的資料)的傳輸。
在動作708中對較低層的重新配置可包括以下UE行為1)到15)中的至少之一:
1)應用接收到的 SD_Config配置。
2)至少保留一部分或全部MAC配置(即,並非所有MAC配置都被重置/釋放)。例如,UE可以透過不停止CG相關計時器、BWP相關計時器和/或TA計時器來部分地重置MAC實體。
3)保持默認的MAC小區組配置。
4)釋放默認MAC小區組配置。
5)應用前面描述的特定MAC小區組配置。
6)針對由BS指示的無線電承載重新建立UE的RLC實體(透過 SD_Config)。
7)針對由BS指示的無線電承載(重新)配置UE的RLC實體(透過 SD_Config)。
8)暫停所有SRB和DRB,除了SRB0和BS指示的無線電承載,以便透過CG進行小資料傳輸。
9)暫停所有SRB和DRB,除了SRB0和BS指示的無線電承載(經由 SD_Config)。
10)指示PDCP層暫停所有DRB的較低層,除了BS指示的用於透過CG的小資料傳輸的無線電承載。
11)指示PDCP層暫停所有DRB的較低層,但BS指示的無線電承載除外(透過 SD_Config)。
12)向較低層(例如MAC層和/或PHY層)指示由BS指示的HARQ過程(透過 SD_Config),用於經由CG的小資料傳輸;
13)如果沒有接收到包括 SD_Config的RRC釋放訊息對 RRCResumeRequest的回應,或未接收到對 RRCResumeRequest1的回應,在UE非活動AS上下文中存儲已配置的 suspendConfig、當前的K gNB和K RRCint密鑰、ROHC狀態、源PCell中使用的C-RNTI、源PCell的 cellIdentity和實體小區識別符、以及除 ReconfigurationWithSync配置的其他參數。
14)通知上層存取限制適用於BS指示的存取類別(透過SD_Config)。
15)向上層(例如,RRC層)指示與 SD_Config相對應的重新配置已完成。 UE的RRC層可以從較低層接收指示,該指示指示與 SD_Config相對應的重新配置完成。
動作706可由以下一項或多項動作(i)至(iii)代替:
(i)UE確定RRC釋放訊息是否包括 suspendConfig(由BS應用的IE,用於指示3GPP TS 38.331中定義的RRC_INACTIVE狀態的配置)。 suspendConfig可以包括 SD_Config
(ii)UE確定 suspendConfigIE是否包括 SD_ConfigIE。如果確定結果是「是」,則程序轉到動作708;否則,程序轉到動作710。
(iii) RRCRelease訊息包括 suspendConfig以及包括 SD_ConfigIE的 suspendConfigIE。如果確定結果是「是」,則程序轉到動作708;否則,程序轉到動作710。
RRC(連接)釋放程序700的提議如表3所示。
UE應該: 1> 如果 RRCRelease包括 suspendConfig: 2> 如果suspendConfig包括 SD_Config: 3>應用接收到的 SD_Config; 3>應用特定MAC小區組配置,如果有; 3>針對由 SD_Config指示的無線電承載(重新)配置RLC實體; 3>暫停所有SRB和DRB,除了由gNB指示的SRB0和無線電承載(由 SD_Config); 3>向所有DRB的較低層指示PDCP暫停,gNB指示(由 SD_Config)的無線電承載除外(由 SD_Config); 3>指示由gNB(由 SD_Config)指示的較低層(即,MAC和/或PHY)HARQ過程;
UL 時間校準(TA )驗證檢查
在NR中,如果UE沒有針對服務小區的有效TA值、該有效TA值針對與未在運行的服務小屋相關聯的服務小區(例如,時間)校準計時器(timeAlignmentTimer),UE可以不在服務小區上執行任何UL傳輸,除了對應於RA程序的傳輸之外。在RRC_CONNECTED狀態下,BS可以保持TA值。具有相同UL TA值和相同計時參考小區的服務小區可以分組為TAG。每個TAG可以包括至少一具有配置UL的服務小區。服務小區和TAG之間的映射關係可以由RRC配置。
基站可透過DL RRC訊息為每個TAG配置 timeAlignmentTimer,以配置RRC_CONNECTED UE。當UE從BS接收到TA值時, timeAlignmentTimer可以(重新)啟動。 TA值可以是UE在確定UL傳輸的時域位置時應當考慮的絕對計時值。 TA值可以是UE在調整用於UL傳輸的當前TA值時應考慮的時域偏移。例如,調整後的TA值可以由[當前TA值± K× 偏移量] 來確定,其中K是整數。
如果與TA值對應的 timeAlignmentTimer正在運行,則TA值可能被視為有效。 TA值可以由被包括在RAR訊息或DL MAC CE中的TA命令來指示。 DL MAC CE可由DL MAC subPDU攜帶。在RRC_CONNECTED狀態下,UE可以動態地或不定期地接收TA命令以進行TA維護。然而,在諸如LTE的傳統系統中,RRC_INACTIVE UE可能不具有有效的TA值,因為當執行RRC釋放程序(導致MAC實體/層的重置)時,所有 timeAlignmentTimer應被認爲是期滿。為了支援在RRC_INACTIVE狀態下由CG的小資料傳輸,提供了考慮TA維護的由CG的小資料傳輸的方法。
圖8繪示根據本揭露之一實施方式之由CG進行小資料傳輸的過程。在動作802中,UE 820(作為RRC_CONNECTED UE)可以從BS 840接收RS配置和CG配置。在動作804中,UE 820可以從RRC_CONNECTED狀態轉變到RRC_INACTIVE狀態。 RS配置可以包括至少一RS ID。 RS ID可以指由BS發送的特定類型的DL RS。 DL RS可以是SSB、CSI-RS或任何其他類型的RS。 RS ID可以是與要測量並用於報告的SS突發內與SSB相關聯的SSI索引( SSB-Index)。 RS ID可以是與要測量(並被用於報告)的CSI-RS資源相關聯的CSI-RS資源索引( CSI-RS-Index)。 SSB-IndexCSI-RS-Index可在TS 38.331、TS 38.321和TS 38.214中被指定。 CG配置可被專用於UE(或由一組UE共用/共用),用於在RRC_INACTIVE狀態下由CG執行小資料傳輸。 CG配置可以被包括在前面描述的 SD_Config中。
在動作806中,UE 820(作為RRC_INACTIVE UE)可生成針對小資料傳輸的嘗試(例如,當UE 820的AS層具有準備好傳輸的資料時)。在動作808中,UE 820可以從BS 840接收RS。在動作810中,UE 820可執行TA驗證檢查以確定是否存在適用於小資料傳輸的任何有效TA值。僅當UE 820具有有效TA值時,UE 820才可以在RRC_INACTIVE狀態下執行小資料傳輸。如圖8所示,在UE 820在動作810中確定TA值有效之後,UE 820可以在動作814中由CG執行小資料傳輸。
對於TA驗證檢查,UE 820可測量在動作808中接收的RS,並根據測量結果確定相應TA值的有效性。待測量的RS可由BS 840預配置(或指示)。 RS(s)的測量結果可以是RS的RSRP值。 UE 820可將RS的RSRP值與預配置值(例如,偏移量)、閾值或另一RS的RSRP值進行比較,以確定TA值是否有效,其中預配置值、閾值和另一RS的RSRP值可以在執行TA驗證檢查之前由BS 840配置(或者由UE 820基於由BS 840指示/觸發的測量過程導出)。
圖9繪示根據本揭露之一實施方式之配置TA驗證檢查的程序。在UE 920進入RRC_INACTIVE狀態(例如,UE 920處於RRC_CONNECTED狀態)之前,BS 940可以使用用於TA驗證檢查的配置來配置UE 920。用於TA驗證檢查的配置可由BS 940由廣播MIB、廣播SIB和/或單播(RRC)訊息來發送。
如圖9所示,UE 920可在動作902中從BS 940接收RSRP偏移,並在動作904中從BS 940接收TA值和RS ID。 RSRP偏移、TA值和/或RS ID可被視為針對TA驗證檢查的配置的一部分。
用於TA驗證檢查的配置可以由DL RRC訊息、DL MAC PDU、DL MAC subPDU、MAC subPDU的子報頭、DL MAC CE或DCI格式的欄位攜帶。例如,UE 920可以由廣播MIB和/或廣播SIB接收RSRP偏移。 RSRP偏移可由一組UE共用。例如,RSRP偏移可由位於小區/RAN通知區域(RNA)內的所有UE共用。
在動作906中,在接收到用於TA驗證檢查的配置(並且執行了相應的重新配置)之後,UE 920可以接收由在動作904中接收到的RS ID指示的RS。在動作908中,UE 920可以執行RS測量以測量在動作906中接收的RS。在動作910中,UE 920可以存儲/保持RS的測量結果。例如,UE 920可以考慮RS的RSRP值作為測量結果,並且UE可以存儲/保持RSRP值。 RSRP值可由UE 920存儲/保持在RRC、MAC或PHY層中。
動作908和910可由BS 940動態觸發。例如,當UE 920處於RRC_INACTIVE狀態時,如果滿足特定條件,UE 920可以重新測量在動作904中接收的RS ID所指示的RS(或BS 940所指示的其他RS)。具體條件可以是新接收到指示UE 920執行RS重新測量的TA值、TA命令和/或指示符。一旦執行RS重新測量,UE 920可以用新獲取的測量結果更新先前存儲的測量結果,並且根據新獲取的測量結果執行TA驗證檢查。
圖10繪示根據本揭露之一實施方式之TA驗證檢查的詳細過程。在動作1002中,UE 1020可以從BS 1040接收RS。在動作1004中,執行TA驗證檢查。如圖10所示,動作1006和1008在TA驗證檢查期間執行。
在動作1006中,UE 1020可以執行RS測量(例如,透過測量動作1002中接收的RS)並獲取相應的測量結果。在動作1008中,UE 1020可以將RS的測量結果與RSRP偏移進行比較,以確定對應於RS的TA值是否有效。
每次執行RS測量時,UE可以從初始值(重新)啟動計時器。如果計時器期滿,UE可以釋放/清除/刷新存儲的RS測量結果。可以由BS基於每個服務小區/BWP來配置計時器。計時器的單位可以是(符號的一部分)、時隙子幀、系統幀、SFN、毫秒(ms)或從CG配置導出的PUSCH資源的時間段。當以下事件(i)到(vi)中的至少之一發生時,UE可以釋放存儲測量結果。
(i)啟動RA程序。
(ii)用於小資料傳輸的CG配置被釋放或暫停。
(iii)UE在服務小區的覆蓋區域之外,其中存儲的測量結果是透過對服務小區執行RS測量獲取的。
(iv)TA值被視為無效。
(v)UE進入RRC_IDLE狀態或RRC_CONNECTED狀態。
(vi)UE執行RNA更新程序。
如前所述,一旦要觸發和/或需要由UE執行的TA驗證檢查,UE可以執行RS測量。在RS測量期間,UE可以測量特定RS(的RSRP值)。特定RS可以是由BS指示和/或與CG配置相關聯的DL RS。 UE可以將特定RS的RSRP值與RSRP偏移量進行比較。可選地或另外,UE可以計算特定RS的第一RSRP值和特定RS的第二RSRP值之間的差。第一RSRP值和第二RSRP值可以透過測量不同時間點的特定RS來獲取。換句話說,第二RSRP值可以被認為是特定RS的先前存儲的測量結果(例如,圖9的動作910中描述的存儲的測量結果),並且第一RSRP值可以被認為是在第二RSRP值之後獲取的當前測量結果。因此,第一RSRP值和第二RSRP值之間的差可以被認為是特定RS在一時間段內的RSRP變化量。 UE可以將該差與RSRP偏移進行比較,以確定相應TA值的有效性。
RSRP偏移可由BS配置。RSRP偏移可以是CGconfiguration-specific偏移。對於配置有多個RSRP偏移的UE,UE可以將特定RS的RSRP與多個RSRP偏移中的一個進行比較。BS可以為UE配置針對不同BWP的不同RSRP偏移。RSRP偏移可以是正偏移或負偏移。如果第一RSRP值和第二RSRP值之間的差是正值,則UE可以將該差與正偏移進行比較。如果第一RSRP值和第二RSRP值之間的差是負值,則UE可以將該差與負偏移進行比較。
UE可以根據以下條件A-1判斷TA驗證檢查是否通過:
| 第一 𝑅𝑆𝑅𝑃 值 − (第二 𝑅𝑆𝑅𝑃 值) | ≤ (𝑅𝑆𝑅𝑃 偏移) (A-1)
如果滿足條件A-1和/或還滿足以下限制(i)到(iii)中的至少之一,UE可以確定TA驗證檢查通過(或相應的TA值有效):
(i)確定在特定時間點滿足條件A-1。特定時間點可以在最近的RS時刻,其中UE在用於TA驗證(T 驗證)的時間間隔內接收用於RS測量的特定RS。具體時間點可以在時間間隔T 驗證內的第一RS時刻或最後一RS時刻。具體時間點可由BS由DL RRC訊息來配置。
(ii)已確定滿足條件A-1一段時間。時間段可以是預定義的時間段或由BS預先配置的時間段。該時間段可由BS經DL RRC訊息來配置。
(iii)在從CG導出PUSCH資源之前的時間點確定滿足條件A-1。換句話說,在確定滿足條件A-1的時間點和PUSCH資源的起點之間可能存在時間偏移。時間偏移可由BS由DL RRC訊息來配置。如本文所使用的,從CG導出的PUSCH資源也可被稱為CG的PUSCH資源或CG資源。
圖11繪示根據本揭露之一實施方式之TA驗證(T 驗證)的時間間隔和PUSCH資源的相對時間位置的示意圖。如圖11所示,時間間隔T 驗證1102的時間位置在PUSCH資源1106的時間位置之前。 PUSCH資源1106可以是CG資源。在T 驗證1102和PUSCH資源1106之間,可以存在用於M&A(T M&A)的時間間隔1104。 T M&A1104可被認為是為UE保留的用於執行用於小資料傳輸的層2MAC PDU M&A過程的時間段。 T M&A1104可以由BS由DL RRC訊息或者發送到處於RRC_CONNECTED狀態的UE的其他信令預先配置。如果在T M&A1104的起點確定滿足先前描述的條件A-1,則UE可以確定TA驗證檢查通過(或相應的TA值有效)。
T M&A1104的長度對於不同的UE可能不同,這取決於每個UE的能力。因此,允許UE報告其與T M&A的支援長度/值相關的能力(或「T M&A-related能力」)可能是有益的。當UE處於RRC_CONNECTED狀態時,可以由UE由UL RRC訊息來執行T M&A相關能力的報告。例如,UE可以向BS報告T M&A的多個支援值,其中T M&A的一支援值用於單個CG配置的情況,而T M&A的另一支援值用於多個CG配置的情況。
在多個CG配置的情況下(例如,UE配置有多個CG配置),可以允許UE透過使用一或多個配置的CG配置來執行小資料傳輸。因此,在這種情況下,UE可以向BS報告T M&A的特定值以供參考。 T M&A的值的單位可以是參數集相關單位(例如,符號或時隙)或絕對時間單位(例如,ms)。
TA相關計時器(例如,TA有效計時器(TVT 計時器))可被應用於TA 驗證檢查。 TA-related可以定義允許TA值被視為有效的計時器間隔。 TA相關計時器可由UE的RRC層或MAC層維護。 TA相關計時器可以由UE基於RS來維護。
圖12繪示根據本揭露之一實施方式之TA相關計時器的操作。如圖12所示,TA相關計時器在時間點1220開始,在時間點1240期滿/停止。在時間點1220和1240之間的時間間隔期間, TA相關計時器被認爲正在運行。
當TA相關計時器運行時,TA值可能(或允許)被視為有效。如果當前存儲/接收的TA值(例如,在時間點1220處(或在時間點1220之前)接收的TA值)被認為是有效的,在於CG導出的PUSCH資源上執行小資料傳輸之前,則UE不執行相應的RS測量和RSRP比較。換句話說,TA驗證檢查可以在TA相關計時器運行時不執行,並且可以在TA相關計時器未運行時執行。或者,當TA相關計時器正在運行時,仍然可以執行TA驗證檢查。在這種情況下,當滿足前面描述的條件A-1(和/或限制(i)到(iii)中的至少一個)並且同時TA相關計時器正在運行時,TA值可以被認為是有效的。當TA相關計時器未運行時,TA值可能被視為無效。
如果相關的TA值有效,CG的PUSCH資源可用於傳輸小資料。如圖12所示,PUSCH#1 1202、PUSCH#2 1204、PUSCH#3 1206和PUSCH#4 1208是從CG導出的PUSCH資源(即CG的PUSCH資源)。 UE可以在PUSCH#1 1202、PUSCH#2 1204和PUSCH#3 1206上執行小資料傳輸,因為TA相關計時器正在運行並且相關聯的TA值被認為是有效的。 UE可以不在PUSCH#4 1208上執行資料傳輸,因為TA相關計時器沒有運行並且相關聯的TA值變得無效。
TA-related的初始值可由BS預先配置或在3GPP TS中預定義。 TA相關計時器的單位可以是符號(的一部分)、時隙(的一部分)、ms(的一部分)、子幀(的一部分)、系統幀(的一部分)等。
當從BS接收到TA值時,可以啟動或重新啟動TA相關計時器。 TA值可指示UE應提前多少時間執行UL傳輸以減輕傳播延遲的影響。如上所述,TA值可以是UE在確定UL傳輸的時域位置時應當考慮的絕對時間值。 TA值可以是UE在調整用於UL傳輸的當前TA值時應考慮的時域偏移。
TA值可由RAR訊息或DL MAC CE中包括的TA命令指示。 DL MAC CE可由DL MAC subPDU攜帶。
當執行TA驗證檢查程序並且TA值被認為有效時,可以啟動或重新啟動TA相關計時器。如果與CG相對應的TA相關計時器在PUSCH持續時間內(重新)啟動/期滿,則UE可以認為從CG導出的PUSCH資源無效。
當以下事件1)到4)中的至少一個發生時,UE可以停止TA相關計時器:
1)UE觸發RRC連接程序;
2)UE釋放CG配置;
3)CG配置被認爲是無效的;和
4)從基站接收CG配置釋放指示符。
CG配置釋放指示符可被包括在以下資料格式1)至9)中的至少一個中:
1)DCI欄位;
2)具有通過(預配置/預定義的)RNTI(例如,CS-RNTI)和/或先前描述的特定UE ID加擾的CRC位元的DCI格式;
3)DL-MAC-PDU;
4)MAC subPDU;
5)MAC subPDU的(子)報頭;
6)DL MAC CE;
7)SIB;
8)特定DCI欄位(例如,短訊息欄位/短訊息指示符被包括在具有由特定RNTI(例如,P-RNTI)加擾的CRC位元的DCI格式中)指示UE執行相應的釋放程序;
9)PDSCH在尋呼時機/窗口中透過由UE解碼的DCI格式被排程(例如,由BS由具有透過特定RNTI(例如,P-RNTI)加擾的CRC位元的特定類型的DCI排程的DL RRC訊息或尋呼訊息),PDSCH指示UE執行相應的釋放程序;和
UE是否可以跳過CG的PUSCH可以由網絡配置。例如,UE可以配置一參數,該參數指示UE是否被允許跳過CG資源(例如,當MAC PDU包括零MAC SDU時),其中該參數可以被包括在SD_Config和/或CG配置中。
如果滿足確定條件,則UE可以釋放CG配置(和/或將其視為無效)。例如,如果UE跳過CG的若干(連續的)PUSCH資源,則UE可以釋放CG配置,其中UE可以不發送關於CG的跳過的PUSCH資源上的任何資料。釋放CG配置的其他條件1)到10)描述如下:
1)跳過的PUSCH資源數達到閾值。
2)跳過的PUSCH資源的數目已經達到閾值一段時間。
3)對應的TA相關計時器期滿。
4)相應的TA相關計時器被BS停止。
5)UE切換UL BWP。
6)UE被切換以在當前活動UL BWP或另一UL BWP上應用具有一組PUSCH資源的另一CG配置。例如,UE可以去啟動第一CG配置和啟動第二CG配置。去啟動的第一CG配置可以由UE釋放。
7)UE接收指示UE執行網絡進入的尋呼訊息。
8)TA指控程序失敗。
9)接收特定DCI欄位(例如,短訊息欄位/短訊息指示符被包括在具有透過特定RNTI(例如,P-RNTI)加擾的CRC位元的DCI格式中),該特定DCI欄位指示UE執行相應的釋放程序;
接收由UE在尋呼時機/窗口中解碼的DCI格式排程的PDSCH(DL RRC訊息或尋呼(paging)訊息,該尋呼訊息由BS經由具有透過特定RNTI(例如,P-RNTI)加擾的CRC位元的特定類型的DCI來排程訊息),並且PDSCH指示UE執行相應的釋放程序;
在多波束操作中,BS和UE可以具有多個發送波束和接收波束。 BS和UE可以選擇具有最佳通訊質量的波束。例如,當在服務SSB/CSI-RS上偵測到波束故障時,UE可以透過發起BFR程序來通知新服務波束的服務BS(例如,對應於新SSB或CSIRS)。
BFR程序可由BFD程序觸發,在此期間,可計算從較低層傳輸到MAC實體的波束故障指示。小資料傳輸可以基於多波束操作來執行,如圖13所示。
圖13繪示根據本揭露之一實施方式之配置有用於多波束操作的多GG配置的UE 1320的小資料傳輸程序。多CG配置( Multi-CG config)可由BS 1340在RRC釋放程序啟動期間或之前配置。每個CG配置可對應於將在多波束操作中使用的特定波束。
在動作1302中,UE 1320可從BS 1340接收RRC釋放訊息。 RRC釋放訊息可以包括多個CG配置( Multi-CG-Config),用於UE在RRC_INACTIVE狀態下執行小資料傳輸。 RRC釋放訊息還可以包括RS配置和指示RS配置中指示的DL RS與CG配置(或從CG配置導出的CG資源)之間關聯的關聯資訊。每個CG配置可與至少一DL RS相關聯。換句話說,CG配置和DL RS之間的關聯可能具有一對一映射關係、一對多映射關係、多對一映射關係或多對多映射關係。例如,在多對一映射的情況下,多個CG配置可以與一DL RS相關聯,在一對一映射的情況下,每個CG配置可以與不同的DL RS相關聯。
在動作1304中,UE 1320可從RRC_CONNECTED狀態轉變到RRC_INACTIVE狀態以回應RRC釋放訊息。在動作1306中,UE 1320(為RRC_INACTIVE UE)可生成小資料傳輸的嘗試(例如,當UE 1320的AS層具有準備好傳輸的資料時)。在動作1308中,UE 1320可以對所指示的CG執行TA驗證檢查。在動作1310中,UE 1320可以從BS 1340接收(DL)RS。如果UE 1320在動作1312中確定相關聯的TA值有效,則UE 1320可以在動作1314中經由所指示的CG執行小資料傳輸。
如前所述,當UE 1320處於RRC_INACTIVE狀態時,UE 1320可以在應用CG的PUSCH資源之前執行TA驗證檢查以執行小資料傳輸。 UE 1320可以一次僅應用一CG配置的PUSCH資源。例如,UE 1320可以配置有兩個CG(例如,CG配置#1和CG配置#2),並且一次可能只有一活動CG。
只有從活動CG導出的PUSCH資源可用於小資料傳輸。在RRC釋放程序期間(例如,透過動作1302中的RRC釋放訊息),BS 1340可指示初始活動。一旦向UE 1320提供了特定CG作為RRC_INACTIVE狀態下小資料傳輸的初始活動CG,如果生成了小資料傳輸的嘗試(在動作1306中),UE 1320可以在執行小資料傳輸之前對所指示的初始活動CG執行TA驗證檢查(在動作1308中)。可以基於與初始活動CG相關聯的RS(在動作1310中接收)的測量結果來執行所指示的初始活動CG的TA驗證檢查。如前所述,在動作1302中的RRC釋放程序期間,BS可以指示RS和初始活動CG之間的關係。在動作1310中接收的RS可以是SSB、CSI-RS或其他類型的DL RS。在動作1314中,當在動作1312中確定所指示CG的TA值有效時,UE 1320可(僅)經由從所指示CG導出的PUSCH資源執行小資料傳輸。
活動CG可由BS指示以於CG切換。例如,BS可以透過在DCI欄位中發送用於CG切換的指示符(例如,短訊息欄位/短訊息指示符被包括在具有由特定RNTI(例如,P-RNTI)加擾的CRC位元的DCI格式中)來指示UE切換當前活動CG,在尋呼時機/窗口中透過由UE解碼的DCI格式排程的PDSCH(例如,由BS由具有透過特定RNTI(例如,P-RNTI)加擾的CRC位元的特定類型的DCI排程的DL RRC訊息或尋呼訊息),具有由(預配置/預定義的)RNTI(例如,CS-RNTI)以及/或透過前面描述的特定UE ID加擾的CRC位元的DCI格式、DL MAC PDU、MAC subPDU、MAC subPDU的(子)報頭、DL MAC CE和/或SIB。例如,DL MAC CE可以包括用於指示UE切換活動CG的位元圖(為用於CG切換的指示符)。位元圖的每一位元可以與多個配置的CG配置之一相關聯。例如,該位元可被設置為「1」以指示UE應啟動相關聯的CG配置,並且可被設置為「0」以指示UE應去啟動相關聯的CG配置。 UE可以監視BWP和/或服務小區上的PDCCH/CORESET/CSS/USS以接收用於CG切換的指示符。 CG切換可以是指在同一UL BWP內的CG之間將活動CG從一個切換到另一個的過程,或者在不同UL BWP內的CG之間將活動CG從一個切換到另一個的過程。
UE可以自己切換活動CG,而不是由BS指示。例如,當特定計時器期滿時(例如,TA相關計時器),UE可以將活動CG從一個切換到另一個(即,從當前活動CG切換到目標CG)。為了在CG切換過程中確定目標CG,UE可以執行CG選擇程序,在此程序中UE可以對一組RS執行總體RS測量,並且根據測量結果(例如,RS集中的每個RS的RSRP)選擇CG之一作為目標CG。信號質量相關閾值(例如,RSRP閾值)可由BS配置。如果相關RS的RSRP大於或等於信號質量相關閾值,則可以選擇CG作為目標CG。可以從CG選擇程序中排除在小資料傳輸中使用或選擇用於小資料傳輸的當前活動CG和/或所有CG。例如,如果當前活動CG被排除在CG選擇程序之外,則無論當前活動CG的RSRP是否大於或等於信號質量相關閾值,當前活動CG都不被選擇為目標CG。
如果指示CG的TA驗證檢查失敗(即,與指示CG對應的TA值無效),UE可以使用TA獲取機制從BS獲取有效TA值,如圖14所示。
圖14繪示根據本揭露之一實施方式之具有TA獲取機制的小資料傳輸的程序。
在動作1402中,UE 1420可以對所指示的CG執行TA驗證檢查。在動作1404中,UE 1420可以從BS 1440接收(DL)RS。如果在動作1406中與RS相關聯的指示CG的TA值被確定為無效,則UE 1420可在動作1408中執行TA指控程序以獲取支援經由指示CG的小資料傳輸的有效TA值。在動作1410中,UE 1420可以透過使用新獲取的有效TA值來經由所指示的CG執行小資料傳輸。
UE可被配置有CG特定RA資源。 BS可在RRC釋放程序期間(例如,經由RRC釋放訊息)向UE提供指示CG配置與CG特定RA資源之間關聯的關聯資訊。如果TA值無效,UE可以透過應用與CG相關聯的RA資源來發起RA程序。在發起的RA程序期間,可以在MSGB、MSG2或MSG4中接收TA值。 UE可以透過應用在發起的RA程序中接收到的TA值在CG上執行小資料傳輸。
一旦UE接收到有效的TA值,就可以(重新)啟動TA相關計時器。 UE可透過應用與所指示CG或當前活動CG相關聯的RA資源來發起RA程序。 BS可在RA程序期間指示UE經由MSGB/MSG2/MSG4切換活動CG。 BS可以透過為另一CG配置提供TA值來隱式地指示UE切換活動CG。 BS可在RRC釋放程序期間經由RRC釋放訊息向UE提供指示RA資源(或RA資源集)與核心集之間的關聯的關聯資訊。 BS可以透過在與RA資源相關聯的CORESET上發送確認來指示UE執行從當前活動CG到與RA資源相關聯的CG的CG切換,其中可以發送確認以回應RA資源上的PRACH前導碼。確認可以包括DL RS或UL CG資源的重新配置。確認可以包括TA調整值。
在UE發起用於獲取TA值的RA程序之前,UE可以執行前面描述的CG選擇程序。在CG選擇程序中,UE可以基於確定的RS測量結果選擇目標CG。可以選擇合適的CG作為目標CG。例如,UE可以應用對應於RA資源的CG來發起用於獲取有效TA值的RA程序。
UE可以透過發起RRC恢復程序來獲取TA值。一旦UE發起RA程序,UE可以透過在RA程序期間將TA指控請求包括在MSG1/MSGA/MSG3中來向BS發送TA指控請求。 BS可以向UE發送TA值,作為對TA指控請求的回應。
TA指控請求可由UE經由特定CG上的PUSCH資源來發送。如果相應的TA指控程序已經觸發但失敗,UE可以釋放特定CG。
對於不同的CG,TA值的有效性可能不同。例如,即使針對所指示的CG,TA值被確定為無效,TA值對於其他CG配置仍然有效。例如,在確定TA值無效(對於所指示的CG)之後,UE可以測量與其他配置的CG配置相關聯的其他DL RS的RSRP,並將測量結果與由BS預配置的RSRP偏移進行比較。根據比較結果,UE確定TA值是否適用於經由新選擇的CG的資料傳輸。
UE可以在PUSCH/PUCCH/PRACH上向BS發送指示符,以通知UE已經切換了活動CG。該指示符可以被包括在UL MAC CE、RRC訊息或RRC IE中。
當UE從BS接收到確認(例如,HARQ反饋/DCI欄位/DL MAC CE)時,UE可以(僅)將新選擇的CG應用於資料傳輸。
當相應的TA值無效時,UE可以認為特定資源(例如CG的PUSCH)無效。例如,當滿足以下條件A-2時,特定資源可能被認為無效:
(RSRP_ref_0 – RSRP_meas_0) > RSRP_threshold (A-2) 其中RSRP_meas_0是基於與CG配置的CG資源相關聯的RS在CG資源驗證時(例如,在圖11中的時間間隔1120期間)獲取的測量RSRP電平,並且RSRP_ref_0是參考RSRP電平,其可以是UE之前存儲的測量結果。例如,在UE測量RSRP_meas_0的時間之前,UE可以測量與CG配置的CG資源相關聯的RS,並將相應的測量結果存儲為先前存儲的測量結果。
如果UE在RAR/MAC CE中接收到TA命令,或者如果UE啟動CG資源,則UE可以根據與啟動CG資源相關聯的RS的測量結果,將RSRP_ref_0設置為測量的RSRP電平。
例如,當滿足以下條件A-3時,特定資源可能被認為無效:
(RSRP_ref_1 – RSRP_meas_1) > RSRP_threshold (A-3) 其中RSRP_ref_1是參考RSRP等級,RSRP_meas_1可以是以下之一:
TA驗證檢查期間測得的RSRP等級;
在與啟動CG資源相關聯的RS上測量的RSRP等級;
與啟動CG資源相關聯的RS的RSRP等級和去啟動CG資源相關聯的RS的RSRP等級中的最高RSRP等級;並且
通過對與啟動CG資源相關聯的RS的RSRP等級和與去啟動CG資源相關聯的RS的RSRP等級求平均而獲得的平均RSRP等級。
如果UE在RAR訊息中接收到TA命令或TA命令MAC CE,或者如果UE啟動CG資源,則UE可以將RSRP_ref_1設置為與啟動CG資源相關聯的RS的測量RSRP等級。
圖15繪示根據本揭露之一實施方式之由UE執行的用於小資料傳輸的方法1500的流程圖。儘管動作1502、1504、1506、1508、1510、1512和1514被示為在圖15中表示為獨立方塊的單獨動作,但這些單獨圖示的動作不應被解釋為必然依賴於順序。在圖15中執行動作的順序不打算被解釋為限制,並且可以以任何順序組合任意數目的揭露塊來實施該方法或替代方法。此外,動作1502、1504、1506、1508、1510、1512和1514中的每一個可以獨立於其他動作來執行,並且在本揭露的一些實施方式中可以省略。
在動作1502中,當在RRC_CONNECTED狀態下操作時,UE可以從BS接收RRC釋放訊息。 RRC釋放訊息可以指示至少一DL RS、至少一CG資源以及指示至少一DL RS和至少一CG資源之間的關聯的資訊。前面描述的RRC配置(例如, SD_Config)也可以被包括在RRC釋放訊息中。
該資訊可以包括至少一RS ID和至少一CG配置ID。至少一RS ID可以指示至少一DL RS。該至少一CG配置ID可以指示至少一CG配置,該至少一CG配置配置至少一CG資源。 RRC釋放訊息指示的至少一RS ID和至少一CG配置可以具有一對一映射關係、一對多映射關係、多對一映射關係或多對多映射關係。例如,在多對一映射的情況下,至少一RS ID可以包括第一RS ID和第二RS ID,並且第一RS ID和第二RS ID可以與由至少一CG配置ID指示的相同CG配置相關聯。在多對多或一對一映射的情況下,至少一RS ID可以包括第一RS ID和第二RS ID,並且第一RS ID和第二RS ID可以與由至少一CG配置ID指示的不同CG配置相關聯。
在動作1504中,UE可(從RRC_CONNECTED狀態)轉變/切換到RRC_INACTIVE狀態以回應接收到的RRC釋放訊息。
在動作1506中,UE可以發起小資料傳輸的嘗試。如前所述,當UE的AS層具有準備好傳輸的資料時,可以生成小資料傳輸的嘗試。
在動作1508中,UE可測量至少一DL RS(在RRC釋放訊息中指示的)以獲取測量結果。
在動作1510中,UE可以根據測量結果從至少一CG資源(在RRC釋放訊息中指示的)中選擇用於小資料傳輸的特定CG資源。
在動作1512中,UE可以根據以下兩個因素(i)和(ii)來確定特定CG資源的TA值對於小資料傳輸是否有效:
(i)與特定CG資源相關聯的DL RS的RSRP改變量,DL RS是至少一DL RS中的一個,以及
(ii)TA相關計時器是否正在運行。
在動作1514中,在確定TA值有效之後,UE可以在特定CG資源上執行小資料傳輸。在一示例中,僅在確定TA值有效之後,UE可以在特定CG資源上執行小資料傳輸。
TA相關計時器可以定義時間間隔,允許將TA值確定為有效的。 TA相關計時器可以在由BS提供的TA相關計時器配置中配置(例如,經由RRC訊息)。當接收到TA值時,可以啟動或重新啟動TA相關計時器。當TA相關計時器期滿時,可以釋放至少一CG資源。
圖16繪示根據本揭露之一實施方式之CG資源選擇的過程1600。圖15的動作1510中描述的特定CG資源可以基於過程1600來確定。換句話說,根據過程1600,如果與特定CG資源相關聯的DL RS的RSRP值大於RSRP閾值,則可以選擇RRC釋放訊息所指示的CG資源之一作為特定CG資源。
如圖16所示,在動作1602中,UE可以從RRC釋放訊息獲取RSRP閾值。在動作1604中,UE可從測量結果獲取與特定CG資源相關聯的DL RS的RSRP值。在動作1606中,UE可以在確定與特定CG資源相關聯的DL RS的RSRP值大於RSRP閾值之後,從至少一CG資源中選擇特定CG資源。
圖17繪示根據本揭露之一實施方式之確定TA值的有效性的過程1700。過程1700可以被包括在圖15的動作1512中,用於確定與特定資源相關聯的DL RS的RSRP改變量。
在動作1702中,UE可從RRC釋放訊息獲取RSRP偏移閾值。在動作1704中,UE可在第一時間點測量與特定CG資源相關聯的DL RS以獲取DL RS的第一RSRP值。在動作1706中,UE可在第二時間點測量與特定CG資源相關聯的DL RS以獲取DL RS的第二RSRP值。在動作1708中,UE可以透過計算第一RSRP值和第二RSRP值之間的差來確定DL RS的RSRP變化量。
如前所述,第一RSRP值和第二RSRP值之間的差可以被認為是在一時間段內(從第一時間點到第二時間點)DL RS的RSRP變化量。如果第二時間點早於時域中的第一時間點,則與第一RSRP值相比,第二RSRP值可被認為是之前存儲的測量結果。在這種情況下,條件A-1可被用於檢查針對特定CG資源的TA值的有效性。
如圖17所示,在動作1710中,在RSRP改變量小於或等於RSRP偏移閾值的情況下,UE可以確定針對特定CG資源的TA值有效。在動作1712中,在RSRP改變量大於RSRP偏移閾值的情況下,UE可以確定針對特定CG資源的TA值無效。
與LTE情景相比,本揭露中描述的UE行為更靈活,並且適用於高級情景,例如,在RRC_INACTIVE狀態下的小資料傳輸。本文所揭露的UE行為的至少一部分支援在RRC_INACTIVE狀態下經由CG的小資料傳輸,並且透過考慮TA有效性來改進小資料傳輸的性能和CG資源的利用效率。
本揭露中處於RRC_INACTIVE狀態的UE行為也可適用於RRC_IDLE狀態或其他RRC子狀態(例如,屬於RRC_CONNECTED狀態的RRC子狀態)。
先前描述的RSID可以由顯式地或隱式地指示新波束的ID替換。
前面描述的DL RRC訊息可以是RRC重新配置訊息( RRCReconfiguration)、RRC釋放訊息( RRCResume)、RRC重建訊息( RRCReestablishment)、RRC設置訊息( RRCSetup)或任何其他單播DL RRC訊息。
注意,本揭露中的「波束」相當於空間(域)濾波。在一示例中,透過在由相應的天線元素發送之前調整信號的相位和/或幅度,在類比域中應用空間濾波。在另一示例中,透過多輸入多輸出(MIMO)技術將空間濾波應用於無線通訊系統中的數位域。例如,UE透過使用特定波束進行PUSCH傳輸意味著UE透過使用特定空間/數位域濾波器進行PUSCH傳輸。「波束」還可以但不限於表示為天線、天線埠、天線元件、一組天線、一組天線埠或一組天線元件。波束也可以由某種RS資源形成。簡言之,波束可以等效為一空間域濾波器,透過該波束可以輻射電磁波。
注意,本揭露中的「經發送的」可以定義為相應的MAC CE/MAC PDU/層1信令/更高層信令,開始發送或完全發送,或者已經遞送到相應的HARQ處理/緩存器以進行發送。此外,本揭露中的「經發送的」也可以定義為接收攜帶MAC CE/MAC PDU/層1信令/更高層信令的MAC PDU的HARQ_ACK反饋(來自BS的回應)。此外,本揭露中的「傳輸」也可以定義為相應地構造MAC-CE/MAC-PDU。注意,「HARQ_ACK feedback」可以實施為DCI格式0_0、0_1或UE經由PDCCH從BS接收的DCI的一些其它格式。接收到的DCI包含被設置為特定值(例如,設置為1)的新資料指示符(NDI),並且DCI還指示HARQ過程ID,該HARQ過程ID與由MAC PDU(攜帶BFRQ MAC CE)傳輸的HARQ過程應用/指示用於該MAC PDU的HARQ過程的HARQ過程ID相同。
本揭露中的PDCCH由BS發送到UE。或者我們可以說PDCCH是由UE從BS接收的。本揭露中的PDSCH由BS發送到UE。或者我們可以說PDSCH是由UE從BS接收的。本揭露中的PUSCH由UE發送到BS。或者我們可以說,PUCCH是由BS從UE接收的。
PDSCH/PDSCH/PUSCH傳輸可以跨越時域中的多個符號。 PDSCH/PDSCH/PUSCH(傳輸)的持續時間表示從PDSCH/PDSCH/PUSCH(傳輸)的第一符號的開始到PDSCH/PDSCH/PUSCH(傳輸)的最後一符號的結束的時間間隔。
術語「確認」可能與本揭露中的「HARQ-ACK」或「HARQ-ACK反饋」具有相同的含義。
以下進一步披露了本披露中的術語、實例、實施例、動作、和/或行為:
小區:可以由使用者裝置從一UTRAN存取點在地理區域上廣播的(小區)標識來唯一標識的無線網絡對象。小區是FDD或TDD模式。
服務小區:對於未配置CA/雙連接 (DC)的RRC_CONNECTED中的UE,只有由主小區組成的服務小區。對於配置有CA/DC的處於RRC_CONNECTED的UE,術語「服務小區」被用於表示由特殊小區和所有輔小區組成的小區組。
CA:在載波聚合(CA)中,兩個或多個分量載波(CC)被聚合。 UE可根據其能力在一或多個CC上同時接收或發送。 CA被支援用於連續和非連續CC兩者。當CA被部署時,幀計時和SFN在可以在被聚合的小區之間校準。針對UE配置的CC的最大數目是16(對於DL)和16(對於UL)。當配置CA時,UE與網絡只有一RRC連接。在RRC連接建立/重建/切換時,一服務小區提供NAS移動性資訊,在RRC連接重建/切換時,一服務小區提供安全輸入。這個小區被稱為主小區(PCell)。取決於UE能力,輔小區(SCell)可以被配置成與PCell一起形成一組服務小區。因此,針對UE配置的服務小區組總是由一PCell和一或多個SCell組成。
配置的授權(CG :gNB給UE分派針對初始HARQ傳輸的資源,定義了兩種類型的CG:
類型1:RRC直接提供配置的UL授權(包括週期性)。
類型2:RRC定義經配置的UL授權的週期,尋址到CS-RNTI的PDCCH可以用信號通知並啟動配置的UL授權,或者去啟動配置的UL授權;即,尋址到CS-RNTI的PDCCH指示UL授權可以根據RRC定義的週期隱式地重新使用,直到被去啟動。
當配置的UL授權啟動時,如果UE在PDCCH上找不到其C-RNTI/CSRNTI/MCS-C-RNTI,則可以根據配置的UL授權進行UL傳輸。否則,如果UE在PDCCH上找到其C-RNTI/CS-RNTI/MCS-C-RNTI,則PDCCH分派覆蓋配置的UL授權。注意,MCS-CRNTI的使用與MAC程序中的C-RNTI的使用是等效的(C-RNTI MAC CE除外)。
HARQ:功能性確保在層1(即,實體層)的對等實體之間遞送。當實體層未被配置用於下行鏈路/UL空間復用時,單個HARQ過程支援一傳輸塊(TB),並且當實體層被配置用於下行鏈路/上行鏈路空間復用時,單個HARQ過程支援一或多個TB。每個服務小區有一HARQ實體。每個HARQ實體都支援並行(數目)的DL和UL HARQ過程。
混合自動重複請求確認(HARQ-ACK :HARQACK資訊位元值0表示否定確認(NACK),而HARQACK資訊位元值1表示肯定確認(ACK)。
計時器:MAC實體可以為個別目的設置一或多個計時器,例如,觸發某些UL信令重傳或限制某些UL信令重傳週期。計時器一經啟動即開始運行,直至停止或期滿;否則,它不會運行。計時器可以在不運行時啟動,也可以在運行時重新啟動。計時器總是從其初始值開始或重新啟動。其中,初始值可以但不限於由gNB經由下行鏈路RRC信令或者在一些規範中尋址的預定義/預定值來配置。
BWP:小區的總小區頻寬的子集被稱為部分頻寬(BWP),並且透過使用BWP配置UE並告訴UE哪個配置的BWP當前是活動的,以實現BA。為了在PCell上啟用頻寬適配(BA),gNB用UL和DL BWP配置UE。為了在CA的情況下啟用SCell上的BA,gNB將UE配置為至少具有DL BWP(即,UL中可能沒有)。對於PCell,初始BWP是用於初始存取的BWP。對於SCell,初始BWP是配置用於UE在SCell啟動時首先操作的BWP。 UE可由firstActiveUplinkBWP IE配置有第一活動UL BWP。如果針對SpCell配置了第一活動UL BWP,則firstActiveUplinkBWP IE欄位包含在執行RRC(重新)配置時要啟動UL BWP的ID。如果該欄位不存在,則RRC(重新)配置不會施加BWP切換。如果針對SCell配置了第一活動UL BWP,則firstActiveUplinkBWP IE欄位包含啟動SCell時要使用的UL頻寬部分的ID。
PDCCH:在下行鏈路中,gNB可以透過PDCCH上的C-RNTI/MCS-C-RNTI/CS-RNTI向UE動態分派資源。當UE的下行鏈路接收被啟用時(在配置時由DRX控制的活動),UE總是監視PDCCH,以便找到可能的分派。當配置CA時,相同的C-RNTI應用於所有服務社區。
PDSCH/PUSCH:PDCCH可用於排程PDSCH上的DL傳輸和PUSCH上的UL傳輸。
時間校準計時器:計時器用於維護UL時間校準。其中,時間校準計時器根據保持的時序提前組。計時器控制MAC實體認為屬於相關聯的標籤的服務小區被UL時間校準的時間。計時器的初始值由gNB配置。
SLIV:PUSCH/PDSCH的時域分派的起始和長度指示符。其定義了PUSCH/PDSCH分派的開始符號和連續符號數。
傳輸塊:從上層(或MAC)提供給實體層的資料基本上被稱為傳輸塊。
LBT gNB和UE可以在NR-U小區上執行傳輸之前應用先聽後說(LBT)。當應用LBT時,發射機聽/感測通道以確定通道是空閒還是忙,並且僅當感測到通道空閒時才執行傳輸。
NR-U:在未授權頻譜中操作的NR無線電存取(稱為NR-U)可以在PCell、SCell或PSCell中操作。
本揭露中的術語、定義和縮寫是從本揭露(ETSI、ITU或其他地方)導入的或者每當識別出對精確詞彙表的需要時由3GPP專家新創建的。
圖18繪示根據本揭露之一實施方式之用於無線通訊之節點1800之方塊圖。如圖18所例示,節點1800可包括收發器1806、處理器1808、記憶體1802,、一或多個呈現組件1804及至少一個天線1810。節點1800亦可包括射頻(RF)譜帶模組、BS通訊模組、網路通訊模組及系統通訊管理模組、輸入/輸出(I/O)埠、I/O元件及電源(圖18中未明確例示)。
此等組件中之每一者可經由一或多個匯流排1824直接地或間接地彼此通訊。節點1800可為執行本文中例如參考圖1至圖17所揭露之各種功能的UE或BS。
具有發射器1816 (例如,發射(transmitting/transmission)電路)及接收器1818 (例如,接收(receiving/reception)電路)的收發器1806可經配置以發射及/或接收時間及/或頻率資源分割訊息。收發器1806可經配置以在不同類型的子訊框及時隙中進行發射,該等子訊框及時隙包括但不限於可用的、不可用的及靈活可用的子訊框及時隙格式。收發器1806可經配置以接收資料及控制通道。
節點1800可包括多種電腦可讀取媒體。電腦可讀取媒體可為可由節點1800存取之任何可用媒體,且包括揮發性(及非揮發性)媒體、可移(及不可移媒體)兩者。作為示例而非限制,電腦可讀取媒體可包括電腦儲存媒體及通訊媒體。電腦儲存媒體可包括根據用於儲存諸如電腦可讀指令、資料結構、程式模組或資料之資訊的任何方法或技術實現的揮發性(及/或非揮發性)、及可移(及/或不可移)媒體兩者。
電腦儲存媒體包括RAM、ROM、EEPROM、快閃記憶體(或其他記憶體技術)、CD-ROM、數位多功能光碟(DVD)(或其他光碟儲存器)、卡式磁帶、磁帶、磁碟儲存器(或其他磁性儲存裝置)等。電腦可讀取媒體不包括傳播資料信號。
通訊媒體通常可在調變資料信號(諸如載波)或其他發送機構中體現電腦可讀取指令、資料結構、程式模組或其他資料,且包括任何資訊傳遞媒體。術語「調變資料信號」可意謂以下信號:其特性中之一或多者以某種方式被設定或改變以便在信號中對資訊進行編碼。以舉例而非限制的方式,通訊媒體包括有線媒體(諸如有線網路或直接有線連接)及無線媒體(諸如聲學、RF、紅外及其他無線媒體)。先前揭露內容中之任一者之組合亦應包括在電腦可讀取媒體之範疇內。
記憶體1802可包括呈揮發性及/或非揮發性記憶體形式的電腦儲存媒體。記憶體1802可為可移的、不可移的或其組合。舉例來說,記憶體包括固態記憶體、硬碟驅動器、光碟驅動器等。如圖18所例示,記憶體1802可儲存電腦可讀取、電腦可執行指令1814 (例如,軟體程式碼),該等電腦可讀取及/或電腦可執行指令1814經配置以在被執行時致使處理器1808執行本文中例如參考圖1至圖17所揭露之各種功能。替代地,指令1814可能不可由處理器1808直接執行,而是可經配置以致使節點1800 (例如,在被編譯且執行時)執行本文所揭露之各種功能。
處理器1808 (例如,具有處理電路)可包括智慧硬體裝置、中央處理單元(CPU)、微控制器、ASIC等。處理器1808可包括記憶體。處理器1808可處理自記憶體1802接收之資料1812及指令1814,及經由收發器1806、基頻通訊模組及/或網路通訊模組發送及接收之資訊。處理器1808亦可處理要發送至收發器1806以經由天線1810發射的資訊、要發送至網路通訊模組以發射至CN的資訊。
一或多個呈現組件1804可將資料指示呈現給人或其他裝置。呈現組件1804之實例可包括顯示裝置、揚聲器、列印元件、振動元件等。
根據本揭露,顯然,在不脫離本揭露中所描述之概念之範疇的情況下,可使用各種技術來實施彼等概念。此外,雖然已經具體參考特定實施方式來揭露概念,但一般熟習此項技術者將認識到,在不脫離彼等概念之範疇的情況下,可在形式及細節上做出改變。因此,所揭露之實施方式在所有方面應被認為係說明性而非限制性的。亦應理解,本揭露不限於特定所揭露之實施方式。並且,在不脫離本揭露之範疇的情況下,許多重新排列、修改及替換係可能的。
102、104、106、108、202、204、206、302、304、306、402、404、406、408、410、502、504、506、508、510、602、604、606、608、702、704、706、708、710、802、804、806、808、810、812、814、902、904、906、908、910、1002、1004、1006、1008、1302、1304、1306、1308、1310、1312、1314、1402、1404、1406、1408、1410、1502、1504、1506、1508、1510、1512、1514、1602、1604、1606、1702、1704、1706、1708、1710、1712:動作 120、220、320、420、620、820、920、1020、1320、1420:UE 140、240、340、440、640、840、940、1040、1340、1440:BS 500、700、1500、1600、1700:方法 1102:TA驗證的時間間隔 1104:M&A的時間間隔 1106:PUSCH資源 1202、1204、1206、1208:PUSCH資源 1220、1240:時間點 1802:記憶體 1804:呈現組件 1806:收發器 1808:處理器 1810:天線 1812:資料 1814:指令 1816:發射器 1818:接收器
當結合附圖閱讀時,從以下詳細說明中可幫助理解本揭露的各個面向。各種特徵未按比例繪製。為了清楚說明,各種特徵的尺寸可能會任意地放大或縮小。 [圖1]係繪示根據本揭露之一實施方式之基於隨機存取(CBRA)的4步競爭。 [圖2]係繪示根據本揭露之一實施方式之2步CBRA。 [圖3]係繪示根據本揭露之一實施方式之無競爭隨機存取(CFRA)。 [圖4]係繪示根據本揭露之一實施方式之從2步隨機存取(RA)程序回退到4步RA程序的過程。 [圖5]係繪示根據本揭露之一實施方式之用於在RRC_INACTIVE狀態或RRC_空閒(IDLE)狀態下執行小資料傳輸的UE的方法。 [圖6]係繪示根據本揭露之一實施方式之小資料特定RRC連接釋放程序。 [圖7]係繪示根據本揭露之一實施方式之RRC釋放程序。 [圖8]係繪示根據本揭露之一實施方式之由CG的小資料傳輸的程序程序。 [圖9]係繪示根據本揭露之一實施方式之配置TA驗證檢查的程序。 [圖10]係繪示根據本揭露之一實施方式之TA驗證檢查的詳細過程。 [圖11]係繪示根據本揭露之一實施方式之用於TA驗證的時間間隔和實體上行鏈路共用通道(PUSCH)資源的相對時間位置的示圖。 [圖12]係繪示根據本揭露之一實施方式之TA相關計時器的操作。 [圖13]係繪示根據本揭露之一實施方式之配置有用於多波束操作的多CG配置的UE的小資料傳輸過程。 [圖14]係繪示根據本揭露之一實施方式之TA獲取機制的小資料傳輸程序。 [圖15]係繪示根據本揭露之一實施方式之由UE針對小資料傳輸執行的方法的流程圖。 [圖16]係繪示根據本揭露之一實施方式之CG資源選擇過程。 [圖17]係繪示根據本揭露之一實施方式之確定TA值的有效性的過程。 [圖18]係繪示根據本揭露之一實施方式之用於無線通訊的節方塊圖。
1502、1504、1506、1508、1510、1512、1514:動作 1500:方法

Claims (12)

  1. 一種由使用者裝置(User Equipment,UE)執行的用於小資料傳輸方法,該方法包括: 當在無線電資源控制(Radio Resource Control,RRC)­_連接(CONNECTED)狀態下操作時,從基站(Base Station,BS)接收RRC釋放訊息,該RRC釋放訊息指示至少一下行鏈路(Downlink,DL)參考信號(Reference Signal,RS),至少一配置的授權(Configured Grant,CG)資源和指示該至少一DL RS和該至少一CG資源之間的關聯的資訊; 轉變到RRC_非活動(INACTIVE)狀態以回應接收到的該RRC釋放訊息; 發起針對該小資料傳輸的嘗試; 測量該至少一DL RS以獲取測量結果; 根據該測量結果,從該至少一CG資源中選擇用於該小資料傳輸的特定CG資源; 根據(i)與該特定CG資源相關聯的一DL RS的參考信號接收功率(Reference Signal Received Power,RSRP)變化量,其中該DL RS是該至少一DL RS之一,以及(ii)時序提前(Timing Advance ,TA)相關的計時器是否正在運行,確定針對該特定CG資源的TA值對於該小資料傳輸是否有效;和 在確定該TA值有效之後,在該特定CG資源上執行該小資料傳輸,其中: 該TA相關計時器定義允許將該TA值確定為有效的時間間隔; 該TA相關計時器由該BS提供的TA相關計時器配置來配置; 當接收到該TA值時,該TA相關計時器被啟動;和 當該TA相關計時器期滿時,釋放該至少一CG資源。
  2. 如請求項1之方法,該方法還包括: 從該RRC釋放訊息獲取RSRP閾值; 從該測量結果獲取與該特定CG資源相關聯的該DL RS的RSRP值;和 在確定與該特定CG資源相關聯的該DL RS的該RSRP值大於該RSRP閾值之後,從該至少一CG資源中選擇該特定CG資源。
  3. 如請求項1之方法,其中,該關聯資訊包括至少一RS標識符(Identifier,ID)和至少一CG配置ID,該至少一RS ID指示該至少一DL RS,並且該至少一CG配置ID指示配置該至少一CG資源的至少一CG配置。
  4. 如請求項3之方法,其中,該至少一RS ID包括第一RS ID和第二RS ID,並且該第一RS ID和該第二RS ID與由該至少一CG配置ID指示的相同CG配置相關聯。
  5. 如請求項3之方法,其中該至少一RS ID包括第一RS ID和第二RS ID,並且該第一RS ID和該第二RS ID與由該至少一CG配置ID指示的不同CG配置相關聯。
  6. 如請求項1之方法,該方法還包括: 從該RRC釋放訊息獲取RSRP偏移閾值; 在第一時間點測量與該特定CG資源相關聯的該DL RS以獲取該DL RS的第一RSRP值; 在第二時間點測量與該特定CG資源相關聯的該DL RS以獲取該DL RS的第二RSRP值; 透過計算該第一RSRP值和該第二RSRP值之間的差來確定該DL RS的該RSRP變化量;和 在該RSRP改變量小於或等於該RSRP偏移閾值的情況下,確定針對該特定CG資源的該TA值有效;和 在該RSRP改變量大於該RSRP偏移閾值的情況下,確定針對該特定CG資源的該TA值無效。
  7. 一種用於小資料傳輸的使用者裝置(User Equipment;UE),該UE包括: 一處理器;及 耦接到該處理器的一記憶體,其中該記憶體存儲至少一個電腦可執行程式,該至少一個電腦可執行程式在由該處理器執行時使該處理器: 當在無線電資源控制(RRC)_連接(CONNECTED)狀態下操作時,從基站(Base Station,BS)接收RRC釋放訊息,該RRC釋放訊息指示至少一下行鏈路(Downlink,DL)參考信號(Reference Signal,RS),至少一配置的授權(Configured Grant,CG)資源和指示該至少一DL RS和該至少一CG資源之間的關聯的資訊; 轉變到RRC_非活動(INACTIVE)狀態以回應接收到的該RRC釋放訊息; 發起針對該小資料傳輸的嘗試; 測量該至少一DL RS以獲取測量結果; 根據該測量結果,從該至少一CG資源中選擇用於該小資料傳輸的特定CG資源; 根據(i)與該特定CG資源相關聯的一DL RS的參考信號接收功率(Reference Signal Received Power ,RSRP)變化量,其中該DL RS是該至少一DL RS之一,以及(ii)時序提前(Timing Advance ,TA)相關的計時器是否正在運行,確定針對該特定CG資源的TA值對於該小資料傳輸是否有效;和 在確定該TA值有效之後,在該特定CG資源上執行該小資料傳輸,其中: 該TA相關計時器定義允許將該TA值確定為有效的時間間隔; 該TA相關計時器由該BS提供的TA相關計時器配置來配置; 當接收到該TA值時,該TA相關計時器被啟動;和 當該TA相關計時器期滿時,釋放該至少一CG資源。
  8. 如請求項7之UE,其中,該至少一個電腦可執行程式在由該處理器執行時還使該處理器: 從該RRC釋放訊息獲取RSRP閾值; 從該測量結果獲取與該特定CG資源相關聯的該DL RS的RSRP值;和 在確定與該特定CG資源相關聯的該DL RS的該RSRP值大於該RSRP閾值之後,從該至少一CG資源中選擇該特定CG資源。
  9. 如請求項7之UE,其中,該關聯資訊包括至少一RS標識符(Identity,ID)和至少一CG配置ID,該至少一RS ID指示該至少一DL RS,並且該至少一CG配置ID指示配置該至少一CG資源的至少一CG配置。
  10. 如請求項9之UE,其中,該至少一RS ID包括第一RS ID和第二RS ID,並且該第一RS ID和該第二RS ID與由該至少一CG配置ID指示的相同CG配置相關聯。
  11. 如請求項9之UE,其中該至少一RS ID包括第一RS ID和第二RS ID,並且該第一RS ID和該第二RS ID與由該至少一CG配置ID指示的不同CG配置相關聯。
  12. 如請求項7之UE,其中,該至少一個電腦可執行程式在由該處理器執行時還使該處理器: 從該RRC釋放訊息獲取RSRP偏移閾值; 在第一時間點測量與該特定CG資源相關聯的該DL RS以獲取該DL RS的第一RSRP值; 在第二時間點測量與該特定CG資源相關聯的該DL RS以獲取該DL RS的第二RSRP值; 透過計算該第一RSRP值和該第二RSRP值之間的差來確定該DL RS的該RSRP變化量;和 在該RSRP改變量小於或等於該RSRP偏移閾值的情況下,確定針對該特定CG資源的該TA值有效;和 在該RSRP改變量大於該RSRP偏移閾值的情況下,確定針對該特定CG資源的該TA值無效。
TW110111619A 2020-03-30 2021-03-30 用於小資料傳輸的方法和使用者裝置 TWI757136B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063002269P 2020-03-30 2020-03-30
US63/002269 2020-03-30

Publications (2)

Publication Number Publication Date
TW202143790A TW202143790A (zh) 2021-11-16
TWI757136B true TWI757136B (zh) 2022-03-01

Family

ID=77921734

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111619A TWI757136B (zh) 2020-03-30 2021-03-30 用於小資料傳輸的方法和使用者裝置

Country Status (7)

Country Link
US (2) US11617223B2 (zh)
EP (1) EP4091388A4 (zh)
JP (1) JP7332818B2 (zh)
KR (1) KR20220154766A (zh)
CN (1) CN115299143A (zh)
TW (1) TWI757136B (zh)
WO (1) WO2021197326A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4122250A4 (en) * 2020-04-14 2024-03-20 FG Innovation Company Limited WIRELESS COMMUNICATION METHOD AND USER DEVICE FOR PERFORMING TRANSMISSION IN RRC_INACTIVE STATE
CN116438853A (zh) * 2020-06-26 2023-07-14 康卡斯特有线通信有限责任公司 用于非活动或空闲状态下的无线通信的配置
US11751277B2 (en) * 2020-07-15 2023-09-05 Asustek Computer Inc. Method and apparatus for selecting Bandwidth part (BWP) for subsequent transmission in pre-configured resources based Small Data Transmission (SDT) in a wireless communication system
US11838920B2 (en) * 2020-07-30 2023-12-05 Qualcomm Incorporated Beam-based configured grant—small data transfer occasions
US11895665B2 (en) * 2020-07-30 2024-02-06 Qualcomm Incorporated Nesting configured grant—small data transfer occasions
US11690131B2 (en) * 2020-08-06 2023-06-27 Ofinno, Llc Beam failure management for preconfigured resource in RRC inactive state
US11665772B2 (en) * 2020-08-10 2023-05-30 Acer Incorporated Apparatuses and methods for small data transmission in a radio resource control (RRC) inactive state
KR20220037346A (ko) * 2020-09-17 2022-03-24 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 스몰 데이터 송신을 위한 방법 및 장치
US11696343B2 (en) * 2020-09-22 2023-07-04 Lg Electronics Inc. Method and apparatus for transmitting data unit in RRC inactive state by user equipment in wireless communication system
US11751231B2 (en) * 2020-09-23 2023-09-05 Qualcomm Incorporated Switching configuration for periodic resources
US11689325B2 (en) * 2020-12-16 2023-06-27 Qualcomm Incorporated Feedback transmission via a sidelink feedback channel resource of a sidelink resource pool
EP4415462A2 (en) 2021-01-05 2024-08-14 Ofinno, LLC Logical channel configuration
US11864145B2 (en) * 2021-01-13 2024-01-02 Nokia Technologies Oy Neighbor cell measurement based timing advance validation
WO2022154637A1 (ko) * 2021-01-18 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 신호 송수신 방법 및 장치
AU2022243958A1 (en) * 2021-03-23 2023-10-12 Nokia Technologies Oy Methods and apparatuses for small data transmissions in inactive state
EP4292384A4 (en) * 2021-04-01 2024-04-10 Apple Inc. METHOD OF MEASUREMENT IN SDT
KR102583515B1 (ko) * 2021-04-06 2023-09-27 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN117693947A (zh) * 2021-07-19 2024-03-12 高通股份有限公司 在经预配置上行链路资源上用于小数据传递的搜索空间的配置和规程
EP4406303A1 (en) * 2021-10-21 2024-07-31 Google Llc Managing uplink time alignment
US11910397B2 (en) * 2021-11-17 2024-02-20 Lenovo (Singapore) Pte. Ltd. Notification for configured grant-small data transmission action
WO2023087243A1 (en) * 2021-11-19 2023-05-25 Qualcomm Incorporated Channel state information reports during a small data transfer session
WO2023130264A1 (zh) * 2022-01-05 2023-07-13 北京小米移动软件有限公司 一种上行同步方法、装置及可读存储介质
WO2023211235A1 (ko) * 2022-04-28 2023-11-02 엘지전자 주식회사 무선 통신 시스템에서 설정된 그랜트 pusch 송수신 방법 및 장치
CN118201075A (zh) * 2022-12-14 2024-06-14 夏普株式会社 由用户设备执行的方法以及用户设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046707A (zh) * 2016-02-06 2017-08-15 中兴通讯股份有限公司 频点选择方法及装置
CN108886751A (zh) * 2016-03-30 2018-11-23 夏普株式会社 终端装置以及方法
TW201937975A (zh) * 2018-02-15 2019-09-16 美商高通公司 用於由使用者裝備進行的波束故障恢復請求的系統和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565896B (zh) * 2016-08-11 2023-05-12 三星电子株式会社 低功率rrc操作方法和装置
KR20180035638A (ko) * 2016-09-29 2018-04-06 삼성전자주식회사 RRC Inactive 및 active 상태에서 data 전송 결정 및 방법 및 장치
US10728927B2 (en) * 2016-11-11 2020-07-28 FG Innovation Company Limited Data packet delivery in RRC inactive state
KR102685320B1 (ko) * 2017-02-10 2024-07-17 삼성전자 주식회사 이동 통신 시스템에서 다중연결을 사용한 핸드오버 시 보안키를 처리하는 방법 및 장치
EP3691400A4 (en) * 2017-09-27 2021-06-16 Mitsubishi Electric Corporation COMMUNICATION SYSTEM, BASE STATION DEVICE AND COMMUNICATION TERMINAL DEVICE
US11659615B2 (en) * 2018-04-16 2023-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Handling of periodic radio access network (RAN) based notification area (RNA) timer
WO2019215694A1 (en) * 2018-05-10 2019-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Release cause for transition from connected state
US11057938B2 (en) 2018-05-23 2021-07-06 Qualcomm Incorporated Wireless communication including random access
WO2020004321A1 (ja) * 2018-06-28 2020-01-02 京セラ株式会社 無線端末及び基地局
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation
US11259331B2 (en) * 2018-09-27 2022-02-22 Ofinno, Llc RACH type switching
WO2020087280A1 (en) * 2018-10-30 2020-05-07 Qualcomm Incorporated Configurations for small data transmission
EP4114124A1 (en) * 2019-01-04 2023-01-04 Beijing Xiaomi Mobile Software Co., Ltd. Two-step random access procedure in unlicensed bands
CN115225228B (zh) * 2019-01-11 2023-04-18 中兴通讯股份有限公司 在空闲模式下预配置专用资源信息
US12016051B2 (en) * 2019-02-05 2024-06-18 Qualcomm Incorporated Techniques for configuring random access transmissions
US20220256618A1 (en) * 2019-08-20 2022-08-11 Qualcomm Incorporated Mobile-originated data over dedicated preconfigured uplink resource while in an idle mode or an inactive mode
CN114303427A (zh) * 2019-09-06 2022-04-08 诺基亚技术有限公司 基于到达时间的上行链路同步校正和验证
US11212022B2 (en) * 2019-10-04 2021-12-28 At&T Intellectual Property I, L.P. Radio sharing for multiple wireless subscriber identities

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107046707A (zh) * 2016-02-06 2017-08-15 中兴通讯股份有限公司 频点选择方法及装置
CN108886751A (zh) * 2016-03-30 2018-11-23 夏普株式会社 终端装置以及方法
TW201937975A (zh) * 2018-02-15 2019-09-16 美商高通公司 用於由使用者裝備進行的波束故障恢復請求的系統和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP, SA WG2 Meeting #110ah S2-152809, Sophia Antipolis, France, 31 Aug-3 Sep 2015. https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_110AH_Sophia/Docs/S2-152809.zip; *
3GPP, SA WG2 Meeting #111, S2-153150, Chengdu, China, 19th-23rd Oct 2015. https://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_111_Chengdu/Docs/S2-153150.zip *

Also Published As

Publication number Publication date
JP2023514600A (ja) 2023-04-06
JP7332818B2 (ja) 2023-08-23
CN115299143A (zh) 2022-11-04
US11617223B2 (en) 2023-03-28
US20210315049A1 (en) 2021-10-07
US11743969B2 (en) 2023-08-29
KR20220154766A (ko) 2022-11-22
US20230083841A1 (en) 2023-03-16
TW202143790A (zh) 2021-11-16
EP4091388A1 (en) 2022-11-23
WO2021197326A1 (en) 2021-10-07
EP4091388A4 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
TWI757136B (zh) 用於小資料傳輸的方法和使用者裝置
US11202336B2 (en) Small data transmission in radio resource control (RRC) inactive state
US12022461B2 (en) User equipment and method for small data transmission
US11342980B2 (en) Methods and apparatuses for uplink transmission prioritization
US20220210753A1 (en) Method for small data transmission and related device
JP2022540393A (ja) 大きいランダムアクセス応答(rar)ウィンドウサイズをサポートするためのランダムアクセス手順方法
WO2021228197A1 (en) Data transmission management in radio resource control (rrc) inactive state
US20220210860A1 (en) Methods for data transmission and user equipment using the same
US11659597B2 (en) User equipment and method for two-step random access procedure
US11696341B2 (en) Methods and apparatuses for random access procedure in medium access control layer
WO2023143268A1 (en) Method and user equipment for performing uplink transmissions and related base station
US20230120155A1 (en) Method related to random access and user equipment
US20230292314A1 (en) Method of uplink resource allocation and user equipment thereof
WO2023143259A1 (en) Method and user equipment for performing uplink transmissions for random access and related base station
US20230122869A1 (en) Method and user equipment for small data transmission
US20220361279A1 (en) Method and apparatus for handling random access failures in rrc inactive state
US20230122493A1 (en) Method and user equipment for logical channel configuration in small data transmission