TWI755228B - Functional device and method for controlling variable physical parameter - Google Patents

Functional device and method for controlling variable physical parameter Download PDF

Info

Publication number
TWI755228B
TWI755228B TW109146950A TW109146950A TWI755228B TW I755228 B TWI755228 B TW I755228B TW 109146950 A TW109146950 A TW 109146950A TW 109146950 A TW109146950 A TW 109146950A TW I755228 B TWI755228 B TW I755228B
Authority
TW
Taiwan
Prior art keywords
physical parameter
range
clock time
measurement value
application
Prior art date
Application number
TW109146950A
Other languages
Chinese (zh)
Other versions
TW202127159A (en
Inventor
鍾國誠
Original Assignee
鍾國誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鍾國誠 filed Critical 鍾國誠
Publication of TW202127159A publication Critical patent/TW202127159A/en
Application granted granted Critical
Publication of TWI755228B publication Critical patent/TWI755228B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Electrotherapy Devices (AREA)
  • Feedback Control In General (AREA)
  • Executing Machine-Instructions (AREA)
  • Telephone Function (AREA)

Abstract

A functional device for controlling a variable physical parameter includes a timer and a processing unit, wherein the variable physical parameter is characterized based on a physical parameter target state. The timer senses a clock time to generate a sense signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range. The processing unit is coupled to the timer, obtains a measurement value in response to the sense signal, and causes the variable physical parameter be in the physical parameter target state under a condition that the processing unit determines the clock time application interval in which the clock time is currently be by checking a mathematical relation between the measurement value and the measurement value application range.

Description

用於控制可變物理參數的功能裝置及方法 Functional device and method for controlling variable physical parameters

本揭露是關於一功能裝置,並特別是關於用於控制一可變物理參數的功能裝置及方法。 The present disclosure relates to a functional device, and more particularly, to a functional device and method for controlling a variable physical parameter.

一控制裝置能夠產生一控制訊號以控制包含於一功能裝置中的一物理參數應用單元。該功能裝置使用該控制訊號以控制該物理參數應用單元。該物理參數應用單元能夠使用一機械能、一電能和一光能的至少其中之一,並能夠是用於一門禁管制的一電動機、用於一電力控制的一繼電器、和用於一能量轉換的一能量轉換器的其中之一。為了有效地控制該物理參數應用單元,該功能裝置能夠獲得基於一時鐘時間而被提供的一測量值。該功能裝置可能需要一改良的機制以有效地使用該測量值,並藉此有效地控制該物理參數應用單元。 A control device can generate a control signal to control a physical parameter application unit included in a functional device. The functional device uses the control signal to control the physical parameter application unit. The physical parameter application unit can use at least one of a mechanical energy, an electrical energy, and a light energy, and can be a motor for an access control, a relay for a power control, and an energy conversion One of the energy converters of . In order to effectively control the physical parameter application unit, the functional device can obtain a measurement value provided based on a clock time. The functional device may require an improved mechanism to effectively use the measured value and thereby effectively control the physical parameter application unit.

美國第2015/0357887 A1號公開專利揭露一種製品規格設定裝置及具備其之風扇馬達。美國第7,411,505 B2號公告專利揭露一種開關狀態及射頻識別標籤。 US Published Patent No. 2015/0357887 A1 discloses a product specification setting device and a fan motor having the same. US Patent No. 7,411,505 B2 discloses a switch state and a radio frequency identification tag.

本揭露的一目的在於提供一種依靠一控制 訊號和根據一時鐘時間而被提供的一測量值而有效地控制一可變物理參數的功能裝置。 An object of the present disclosure is to provide a method that relies on a control The signal and a measurement provided according to a clock time effectively control a functional device of a variable physical parameter.

本揭露的一實施例在於提供一種用於控制一可變物理參數的功能裝置,其中該可變物理參數基於一物理參數目標狀態而被特徵化。該功能裝置包含一定時器和一處理單元。該定時器感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化。該處理單元耦合於該定時器,響應該感測訊號來獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一第一數學關係而確定該時鐘時間進入該時鐘時間應用區間的一情況的條件下使該可變物理參數處於該物理參數目標狀態。 An embodiment of the present disclosure is to provide a functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state. The functional device includes a timer and a processing unit. The timer senses a clock time to generate a sense signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range. The processing unit is coupled to the timer, obtains a measurement value in response to the sensing signal, and determines the clock time by checking a first mathematical relationship between the measurement value and the application range of the measurement value in the processing unit The variable physical parameter is brought into the physical parameter target state under a condition of entering the clock time application interval.

本揭露的另一實施例在於提供一種用於控制一可變物理參數的方法,其中該可變物理參數基於一物理參數目標狀態而被特徵化。該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;響應該感測訊號,獲得一測量值;以及在該時鐘時間進入該時鐘時間應用區間的一情況藉由檢查該測量值和該測量值應用範圍之間的一第一數學關係而被確定的條件下,使該可變物理參數處於該物理參數目標狀態。 Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state. The method includes the steps of: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; and in response to the sensing signal, obtaining a a measured value; and under the condition that a situation where the clock time enters the clock time application interval is determined by examining a first mathematical relationship between the measured value and the measured value application range, make the variable physical parameter in the target state of this physical parameter.

本揭露的另一實施例在於提供一種用於控制一可變物理參數的功能裝置,其中該可變物理參數基於一物理參數目標狀態而被特徵化。該功能裝置包含一定時器和一處理單元。該定時器感測一時鐘時間以產生一感測 訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化。該處理單元耦合於該定時器,響應該感測訊號來獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下使該可變物理參數處於該物理參數目標狀態。 Another embodiment of the present disclosure is to provide a functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state. The functional device includes a timer and a processing unit. The timer senses a clock time to generate a sense A signal wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range. The processing unit is coupled to the timer, obtains a measurement value in response to the sensing signal, and determines the current time of the clock time by checking a mathematical relationship between the measurement value and the application range of the measurement value. The variable physical parameter is in the physical parameter target state under the condition of the clock time application interval.

本揭露的另一實施例在於提供一種用於控制一可變物理參數的方法,其中該可變物理參數基於一物理參數目標狀態而被特徵化。該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;響應該感測訊號,獲得一測量值;以及在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,使該可變物理參數處於該物理參數目標狀態。 Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state. The method includes the steps of: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; and in response to the sensing signal, obtaining a a measured value; and under the condition that the clock time application interval in which the clock time is currently located is determined by examining a mathematical relationship between the measured value and the measured value application range, placing the variable physical parameter in the Physical parameter target state.

130:功能裝置 130: Functional device

210、212:控制裝置 210, 212: Control device

220:讀取器 220: Reader

230、331:處理單元 230, 331: Processing unit

240:傳輸單元 240: Transmission unit

246、386:通訊介面單元 246, 386: Communication interface unit

250、332:儲存單元 250, 332: storage unit

25Y1:記憶體單元 25Y1: Memory unit

260、334:感測單元 260, 334: Sensing unit

261、3341、3342:感測組件 261, 3341, 3342: Sensing components

263、363:多工器 263, 363: Multiplexer

2631、2632、3631、3632:輸入端 2631, 2632, 3631, 3632: Input

263C、363C:控制端 263C, 363C: control terminal

263P、363P、338P、338Q:輸出端 263P, 363P, 338P, 338Q: output terminal

270、337:接收單元 270, 337: Receiver unit

2701、2702、3371、3372、3374:接收組件 2701, 2702, 3371, 3372, 3374: Receiver components

275、276、285、286:電使用目標 275, 276, 285, 286: Electricity usage target

280:伺服器 280: Server

288、28H、387:觸發應用單元 288, 28H, 387: Trigger application unit

290:物理參數形成單元 290: Physical Parameters Forming Units

295:使用者 295:User

297、397:操作單元 297, 397: Operation unit

310:識別媒介 310: Identifying Mediums

330:控制目標裝置 330: Control target device

335、735:物理參數應用單元 335, 735: Physical parameter application unit

3351:物理參數形成部分 3351: Physical parameters forming part

3355:驅動電路 3355: Driver circuit

3371:接收器 3371: Receiver

338:輸出組件 338: Output Components

340、342、343、539、545、546:定時器 340, 342, 343, 539, 545, 546: Timer

350:電子標籤 350: Electronic Label

360:條碼媒介 360: Barcode Media

370:生物識別作用媒介 370: Biometric Action Media

380、440:輸入單元 380, 440: input unit

3801:按鈕 3801: Button

382:顯示單元 382: Display unit

384:傳輸單元 384: Transmission Unit

3842、3843:傳輸組件 3842, 3843: Transmission components

410:網路 410: Internet

4401:觸控螢幕 4401: Touch screen

441:指向裝置 441: Pointing Device

450、452、455:傳輸組件 450, 452, 455: Transmission components

460:顯示單元 460: Display unit

475:狀態改變偵測器 475: State Change Detector

485:極限開關 485: Limit switch

610:外部裝置 610: External Devices

70M:支撐媒介 70M: Supporting Medium

70U:材料層 70U: material layer

734、7341、7342:感測器類型 734, 7341, 7342: Sensor type

801、901:控制系統 801, 901: Control system

8011、8012、8013、8014、8015、8016、8017、8018、9011、9012、9013、9014、9015、9016、9017、9018、9019、9020、9021、9022、9023、9024、9025、9026、9027、9028、9029、9030、9031、9032、9033、9034、9035、9036、9037、9038、9039、9040、9041、9042、9043、9044、9045、9046、9047、9048、9049、9050、9051、9052、9053、9054、9055、9056、9057、9058、9059、9060、9061、9062、9063、9064、9065、9066、9067、9068、9069:實施結構 8011, 8012, 8013, 8014, 8015, 8016, 8017, 8018, 9011, 9012, 9013, 9014, 9015, 9016, 9017, 9018, 9019, 9020, 9021, 9022, 9023, 9024, 9025, 9026, 9027, 9028, 9029, 9030, 9031, 9032, 9033, 9034, 9035, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9043, 9044, 9045, 9046, 9047, 9048, 9049, 9050, 9051, 9052, 9053, 9054, 9055, 9056, 9057, 9058, 9059, 9060, 9061, 9062, 9063, 9064, 9065, 9066, 9067, 9068, 9069: Implementation Structure

AA81、AA82、AE81、AE82:資料確定操作 AA81, AA82, AE81, AE82: Data determination operation

AA8A、AE8A、AK8A:資料確定 AA8A, AE8A, AK8A: Data confirmed

AC1:響應區域 AC1: Response area

AD81、AD82、AF81、AF82、AF95、AF96、AG81、AG82:資料獲取操作 AD81, AD82, AF81, AF82, AF95, AF96, AG81, AG82: Data acquisition operations

AD8A、AF8A、AF9C、AG8A:資料獲取 AD8A, AF8A, AF9C, AG8A: Data acquisition

AJ11:物理參數應用區 AJ11: Physical parameter application area

AK81:第一資料確定操作 AK81: The first information confirms the operation

AK82:第二資料確定操作 AK82:Second data confirm operation

AM82、AM85、AM8L、AM8T、AN81、AS81、AS82、AS8T、AS8U、AX82、AX85、AX8L、AX8T、EC92、EC9T、FF9T、FM8L、FV8L:記憶體位址 AM82, AM85, AM8L, AM8T, AN81, AS81, AS82, AS8T, AS8U, AX82, AX85, AX8L, AX8T, EC92, EC9T, FF9T, FM8L, FV8L: Memory address

AP11、AP21:使用者介面區 AP11, AP21: User interface area

AT11、AT21、AU11、AU21:物理參數形成區 AT11, AT21, AU11, AU21: Physical parameter formation area

BA83、BM51、BV11、BV22、BV51、BV81、BV85、BV86、ZP81、ZP85、ZQ81:檢查操作 BA83, BM51, BV11, BV22, BV51, BV81, BV85, BV86, ZP81, ZP85, ZQ81: Check operation

BC1T、BC8V、BD81、BE81:計數操作 BC1T, BC8V, BD81, BE81: count operation

BH82、ZH81:特定功能操作 BH82, ZH81: specific function operation

BJ81:特定實際操作 BJ81: Specific Practical Operations

BQ81、BQ82、BQ8A、BQ8B、BU83、JU81、JU8A、JU91、JU92、JV81、JV82、JV83:使用者輸入操作 BQ81, BQ82, BQ8A, BQ8B, BU83, JU81, JU8A, JU91, JU92, JV81, JV82, JV83: User input operation

BS81、BS88、BS91、BY81、BY85、BY89、BY97:訊號產生操作 BS81, BS88, BS91, BY81, BY85, BY89, BY97: Signal generation operation

BR81:讀取操作 BR81: read operation

BZ81、ZM81、ZS81:感測操作 BZ81, ZM81, ZS81: Sensing operation

CA81、CA91、CD81、CD82、CE81、CE85、CE8T:資料比較 CA81, CA91, CD81, CD82, CE81, CE85, CE8T: Data Comparison

CC12、CC15、CC1L、CC1T、CC1U、CC1V:控制碼 CC12, CC15, CC1L, CC1T, CC1U, CC1V: Control code

CF81:資料比較 CF81: Data Comparison

CG81、CG88:控制訊息 CG81, CG88: Control message

CJ1T、CJ1U、CK8T、CK8V:控制資料碼 CJ1T, CJ1U, CK8T, CK8V: Control data code

CL1T、CL8V:測量時間長度值 CL1T, CL8V: Measurement time length value

CM82、CM83、CM84、CM85:控制資訊碼 CM82, CM83, CM84, CM85: Control information code

CN82、CN83、CN84、CN85:控制資料訊息 CN82, CN83, CN84, CN85: Control data message

CP11、CP21:定時操作模式碼 CP11, CP21: timing operation mode code

DA81、DF81、DG81、DG83、DX81、DX82、DX85、DX88:碼差異 DA81, DF81, DG81, DG83, DX81, DX82, DX85, DX88: code differences

DB81、DB86、DS81:範圍差異 DB81, DB86, DS81: Range Differences

DC11、DC12、DD11、DD12:額定範圍界限值 DC11, DC12, DD11, DD12: rated range limit value

DC1A、DD1A:額定範圍界限值對 DC1A, DD1A: Rated range limit value pair

DH81、DH82、DJ81、DJ82、DJ83、DJ91:輸入資料 DH81, DH82, DJ81, DJ82, DJ83, DJ91: Input data

DM15、DM16、DN15、DN16:應用範圍界限值 DM15, DM16, DN15, DN16: Limits of application range

DM1B、DN1B、DQ1B:候選範圍界限值對 DM1B, DN1B, DQ1B: Candidate range limit value pair

DM1L、DN1L、DQ1L:應用範圍界限值對 DM1L, DN1L, DQ1L: Application range limit value pair

DN17、DN18:目標範圍界限值 DN17, DN18: target range limit value

DN1E:特定範圍界限值對 DN1E: specific range limit value pair

DN1T:目標範圍界限值對 DN1T: Target range limit value pair

DP1A:額定範圍界限值對 DP1A: rated range limit value pair

DQ13、DQ14:指定範圍界限值 DQ13, DQ14: Specified range limit value

DQ15:第一應用範圍界限值 DQ15: The first application range limit value

DQ16:第二應用範圍界限值 DQ16: Second application range limit value

DQ1T:指定範圍界限值對 DQ1T: Specifies the range limit value pair

DQ1U:應用範圍界限值對 DQ1U: Application range limit value pair

DT81:物理參數狀態差異 DT81: Physical parameter state difference

DU81:物理參數資料記錄 DU81: Physical parameter data record

DY81:編碼資料 DY81: Coded data

EA81、EA82、EJ81、EJ82、EJ83、ZR81、ZR82、ZR83、ZR8KV、ZR8TR、ZX81、ZX82、ZX83、ZX8HE、ZX8HR、ZX8HJ、ZX8HT、ZX8HU、ZX8KV、ZX8TR、ZX91、ZX92:資料編碼操作 EA81, EA82, EJ81, EJ82, EJ83, ZR81, ZR82, ZR83, ZR8KV, ZR8TR, ZX81, ZX82, ZX83, ZX8HE, ZX8HR, ZX8HJ, ZX8HT, ZX8HU, ZX8KV, ZX8TR, ZX91, ZX92: Data encoding operation

EH11、EM11:測量值參考範圍碼 EH11, EM11: Measured value reference range code

EH12:測量值參考範圍碼、測量值候選範圍碼 EH12: Measured value reference range code, measured value candidate range code

EH14、EH17、EM14、EM15:特定測量值範圍碼 EH14, EH17, EM14, EM15: Specific measurement value range codes

EH1L、EM1L:測量值應用範圍碼 EH1L, EM1L: Measured value application range code

EL11、EL12:測量值參考範圍碼 EL11, EL12: Measured value reference range code

EL14:特定測量值範圍碼 EL14: specific measurement value range code

EL1T:測量值指定範圍碼 EL1T: Measured value specified range code

EL1U:測量值應用範圍碼 EL1U: Measured value application range code

EM12:測量值參考範圍碼、測量值候選範圍碼 EM12: Measured value reference range code, measured value candidate range code

EM1T:測量值目標範圍碼 EM1T: Measured value target range code

EP81:操作情況 EP81: Operational Conditions

EQ81、EQ88、EQ8H、JQ81:觸發事件 EQ81, EQ88, EQ8H, JQ81: Trigger events

EQ8P:識別媒介出現事件 EQ8P: Identify Media Emergence Events

EW11、EW12:物理參數參考狀態碼 EW11, EW12: Physical parameter reference status code

EW16:特定物理參數狀態碼 EW16: specific physical parameter status code

EW1T:物理參數應用狀態碼 EW1T: Physical parameter application status code

EW1U、EW1V:物理參數目標狀態碼 EW1U, EW1V: Physical parameter target status code

EX81:應用環境 EX81: Application Environment

FA81、FB81:測量應用功能 FA81, FB81: Measurement application function

FK8E:全測量值範圍表示 FK8E: Full measurement value range representation

FP81、FR81:拘束條件 FP81, FR81: Binding conditions

FQ11、FU11:感測器規格 FQ11, FU11: Sensor Specifications

FT21、FW11、FW22:定時器規格 FT21, FW11, FW22: Timer Specifications

FY81、FZ81:編碼影像 FY81, FZ81: Encoded image

GA812、GA8T1:物理參數表示 GA812, GA8T1: Physical parameter representation

GA83、GB82:物理參數候選範圍表示 GA83, GB82: Physical parameter candidate range representation

GA8E、GB8E:額定物理參數範圍表示 GA8E, GB8E: Rated physical parameter range representation

GA8L、GB8L:物理參數應用範圍表示 GA8L, GB8L: Physical parameter application range representation

GA8HE:額定時鐘時間區間表示 GA8HE: Rated clock time interval representation

GA8HU:時鐘時間應用區間表示 GA8HU: Clock time application interval representation

GA8HR:時鐘時間參考區間表示 GA8HR: Clock time reference interval representation

GA8HT:時鐘時間指定區間表示 GA8HT: Clock time specified interval representation

GA8KV、GB8KV:時間長度表示 GA8KV, GB8KV: time length representation

GA8T:物理參數候選範圍表示 GA8T: Physical parameter candidate range representation

GA8TR、GB8TR:時鐘時間表示 GA8TR, GB8TR: Clock time indication

GAL8、GBL8:測量應用功能規格 GAL8, GBL8: Measurement application functional specifications

GD81、GE81:時間控制 GD81, GE81: time control

GM8T、GM8U、GT81、GU11、GU81:資料儲存控制操作 GM8T, GM8U, GT81, GU11, GU81: Data storage control operation

GQ81、GW81:感測器靈敏度表示 GQ81, GW81: Sensor sensitivity indication

GQ8R、GW8R:感測器測量範圍表示 GQ8R, GW8R: Indication of sensor measurement range

GS11、GS81、GY80、GY81、GY85、GY89:訊號產生控制 GS11, GS81, GY80, GY81, GY85, GY89: Signal generation control

GX8T、GX8U:物理參數關係檢查控制 GX8T, GX8U: Physical parameter relationship check control

HZ11:電使用目標識別符 HZ11: Electrical use target identifier

HZ12:電使用目標識別符 HZ12: Electrical use target identifier

HA0T:控制裝置識別符 HA0T: Control device identifier

HA22、HA2T:應用單元識別符 HA22, HA2T: Application unit identifier

HC81:控制碼類型識別符 HC81: Control code type identifier

HE81、HE82、HF81、HF82:感測訊號產生 HE81, HE82, HF81, HF82: Sensing signal generation

HH81、HH91、HH95、HQ81、HQ92:指定測量值格式 HH81, HH91, HH95, HQ81, HQ92: Specify the measurement value format

HK81:控制資料碼類型識別符 HK81: Control Data Code Type Identifier

HM81:測量範圍界限資料碼類型識別符 HM81: Measuring range limit data code type identifier

HR1E:額定時鐘時間區間 HR1E: Rated clock time interval

HR1E1、HR1E2:時鐘時間參考區間 HR1E1, HR1E2: Clock time reference interval

HR1E4、HR1E7:特定時鐘時間區間 HR1E4, HR1E7: specific clock time interval

HR1ET:時鐘時間指定區間 HR1ET: Clock time specified interval

HR1ET1:開始界限時間 HR1ET1: Start limit time

HR1ET2:結束界限時間 HR1ET2: End limit time

HR1EU:時鐘時間應用區間 HR1EU: Clock time application interval

HR1N:額定測量值範圍 HR1N: Rated measurement value range

HZ22、HZ2T:電使用目標識別符 HZ22, HZ2T: Electrical use target identifier

JA1A、JB1A、QG1A、QL1A、QP1A、QP2A、QU1A、QY1A:可變物理參數 JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A: Variable physical parameters

JE11、JE12:物理參數參考狀態 JE11, JE12: Physical parameter reference status

JE16:特定物理參數狀態 JE16: Specific Physical Parameter Status

JE1T:物理參數應用狀態 JE1T: Physical parameter application status

JE1U、JE1V、JE1W:物理參數目標狀態 JE1U, JE1V, JE1W: Physical parameter target state

JN81:測量值序列 JN81: Sequence of measured values

JP81:情況 JP81: Situation

JY81:測量值序列 JY81: Sequence of measured values

KD85、KD8L、KD8T、KD8U、KD9T、KD9U:物理參數關係 KD85, KD8L, KD8T, KD8U, KD9T, KD9U: Physical parameter relationship

KA81、KA91、KH81、KM51、KV11、KV22、KV51、KQ81、KV83、KV85、KY81、KK91、KK92:數學關係 KA81, KA91, KH81, KM51, KV11, KV22, KV51, KQ81, KV83, KV85, KY81, KK91, KK92: Mathematical relationship

KE8A、KE8B、KE9A、KE9B:範圍關係 KE8A, KE8B, KE9A, KE9B: Scope relationship

KJ81:數值關係 KJ81: Numerical relationship

KP81、KP85:算術關係 KP81, KP85: Arithmetic Relations

KQ81:數學關係、第一數學關係 KQ81: Mathematical relationship, first mathematical relationship

KQ82:第二數學關係 KQ82: Second Mathematical Relationship

KT81:時間關係 KT81: Time Relationship

KV81、KV86、KV91:數學關係 KV81, KV86, KV91: Mathematical relationship

KW81:數值交集關係 KW81: Numerical intersection relation

LA81、LA82:狀態指示 LA81, LA82: Status indication

LB81、LB82:狀態指示 LB81, LB82: Status indication

LC81、LD81:實際位置 LC81, LD81: Actual position

LC21、LC22、LD91、LD92:空間位置 LC21, LC22, LD91, LD92: Spatial position

LE81:相對區間位置 LE81: Relative range position

LF1A、LF8A:可變時間長度 LF1A, LF8A: Variable time length

LH8T:指定時間長度 LH8T: Specify the length of time

LH8U:應用時間長度 LH8U: Length of application time

LJ1T、LJ8V:參考時間長度 LJ1T, LJ8V: Reference time length

LK81、LK91:無線鏈接 LK81, LK91: wireless link

LP81、SP81:電訊號 LP81, SP81: electrical signal

LQ81、SQ11、SQ81:光訊號 LQ81, SQ11, SQ81: Optical signal

LT8V:應用時間長度 LT8V: Length of application time

LX8H、LY11、LY12、LY81、LZ82、LZ8H:測量資訊 LX8H, LY11, LY12, LY81, LZ82, LZ8H: Measurement Information

MC81:第一科學計算 MC81: First Scientific Computing

MD81:第二科學計算 MD81: Second Scientific Computing

ME81、ME85、MF81、MF83、MG81、MH81、MH85、MK81、MQ81、MR81、MR82、MZ81:科學計算 ME81, ME85, MF81, MF83, MG81, MH81, MH85, MK81, MQ81, MR81, MR82, MZ81: Scientific Computing

NA8A、NE8A、NK8A:資料確定程序 NA8A, NE8A, NK8A: Data Determination Procedure

ND8A、NF8A:資料獲取程序 ND8A, NF8A: Data acquisition procedures

NP91:特定計數值 NP91: specific count value

NR81:時鐘參考時間值 NR81: Clock reference time value

NS81:總參考範圍數目 NS81: Total number of reference ranges

NT81:總參考範圍數目 NT81: Total number of reference ranges

NY80、NY81:測量值 NY80, NY81: Measured value

NY8A:可變計數值 NY8A: Variable count value

PB51、PB81、PB82、PB91、PE81、PH81、PH91、PR81、PY81、PZ81、PZ82、PZ91、PZ92:邏輯決定 PB51, PB81, PB82, PB91, PE81, PH81, PH91, PR81, PY81, PZ81, PZ82, PZ91, PZ92: Logic decision

PF9T、PM8L、PV8L、XC9T、XC92、YM82、YM85、YN81、YX82、YX85、YX8L:記憶體位置 PF9T, PM8L, PV8L, XC9T, XC92, YM82, YM85, YN81, YX82, YX85, YX8L: Memory location

PW81:合理決定 PW81: Reasonable Decision

QB81:預設時間參考區間順序 QB81: Preset time reference interval sequence

QD12、QD1L、QD1T、QD5T:指定物理參數 QD12, QD1L, QD1T, QD5T: Specify physical parameters

QK8E:全測量值範圍 QK8E: Full measurement value range

QP15:特定物理參數 QP15: specific physical parameters

QU15、QU17、QU18:特定物理參數 QU15, QU17, QU18: specific physical parameters

RA8E、RB8E:感測器測量範圍 RA8E, RB8E: Sensor measurement range

RC1E、RD1E:額定物理參數範圍 RC1E, RD1E: Rated physical parameter range

RC1E1、RD1E1:物理參數參考範圍 RC1E1, RD1E1: Physical parameter reference range

RC1E2:物理參數參考範圍、物理參數候選範圍 RC1E2: Physical parameter reference range, physical parameter candidate range

RC1E3:物理參數候選範圍 RC1E3: Physical parameter candidate range

RC1E4、RC1E7、RD1E4、RD1E5、RD1E6、RD1EA、RD1EB、RD2E2、RD2E5、RD2E6:特定物理參數範圍 RC1E4, RC1E7, RD1E4, RD1E5, RD1E6, RD1EA, RD1EB, RD2E2, RD2E5, RD2E6: Range of specific physical parameters

RC1EL、RD1EJ、RD1EL:物理參數應用範圍 RC1EL, RD1EJ, RD1EL: Application range of physical parameters

RC1N、RD1N:額定測量值範圍 RC1N, RD1N: Rated measurement value range

RD1E2:物理參數參考範圍、物理參數候選範圍 RD1E2: Physical parameter reference range, physical parameter candidate range

RD1ET、RD1EU、RD1EV、RD1EW:物理參數目標範圍 RD1ET, RD1EU, RD1EV, RD1EW: Physical parameter target range

RL81:肯定操作報告 RL81: Positive Operation Report

RM11、RN11:測量值參考範圍 RM11, RN11: Measured value reference range

RM12:測量值參考範圍、測量值候選範圍 RM12: Measurement value reference range, measurement value candidate range

RM17、RN15:特定測量值範圍 RM17, RN15: specific measurement value range

RM1L、RN1L:測量值應用範圍 RM1L, RN1L: Measured value application range

RN12:測量值參考範圍、測量值候選範圍 RN12: Measurement value reference range, measurement value candidate range

RN1G、RN1H:測量值指示範圍 RN1G, RN1H: Measured value indication range

RN1T、RN1U:測量值目標範圍 RN1T, RN1U: Measured value target range

RQ11、RQ12:測量值參考範圍 RQ11, RQ12: Measured value reference range

RQ1T:測量值指定範圍 RQ1T: Measured value specified range

RQ1U:測量值應用範圍 RQ1U: Measured value application range

RW1EL、RY1ET、RY1EV:對應物理參數範圍 RW1EL, RY1ET, RY1EV: Corresponding physical parameter range

RX1T:對應測量值範圍 RX1T: Corresponding measurement value range

SB81:物理參數訊號 SB81: Physical parameter signal

SC10、SC11、SC15、SC1A、SC22、SC37、SC38、SC80、SC81、SC82、SC83、SC88、SC97、SD81、SD82、SF81、SF85、SF97、SV81、SV82:控制訊號 SC10, SC11, SC15, SC1A, SC22, SC37, SC38, SC80, SC81, SC82, SC83, SC88, SC97, SD81, SD82, SF81, SF85, SF97, SV81, SV82: Control signal

SE21、SE22:操作回應訊號 SE21, SE22: Operation response signal

SE81、SE8H:控制回應訊號 SE81, SE8H: Control response signal

SG15、SG72、SG77、SG80、SG81、SG82、SG85、SG87、SG88、SG89、SG8A、SG8B、SG97:操作訊號 SG15, SG72, SG77, SG80, SG81, SG82, SG85, SG87, SG88, SG89, SG8A, SG8B, SG97: Operation signal

SJ11、SJ12、SJ31、SJ61、SJ6A、SJ71、SJ72、SJ81、 SJ91、SJ92、SJ9A、SJ9B、SM27、SM28、SX81、SX88、SX8H、SZ81、SZ91、SZ92:操作請求訊號 SJ11, SJ12, SJ31, SJ61, SJ6A, SJ71, SJ72, SJ81, SJ91, SJ92, SJ9A, SJ9B, SM27, SM28, SX81, SX88, SX8H, SZ81, SZ91, SZ92: Operation request signal

SK91:時鐘時間訊號 SK91: Clock time signal

SL81:驅動訊號 SL81: drive signal

SM81、SM82、SM91、SN11、SN12、SN81、SN82、SN83、SN85、SN91、SY80、SY81:感測訊號 SM81, SM82, SM91, SN11, SN12, SN81, SN82, SN83, SN85, SN91, SY80, SY81: Sensing signal

SN811、SN812:感測訊號分量 SN811, SN812: Sensing signal components

SS11、SU11:儲存空間 SS11, SU11: storage space

SW82、SW83、SW84、SW85:指令訊號 SW82, SW83, SW84, SW85: command signal

SX8A:觸發訊號 SX8A: Trigger signal

TB81、TB82、TD11、TD81、TF81、TF82、TX21、TX22、TX81、TX82、TY81:操作時間 TB81, TB82, TD11, TD81, TF81, TF82, TX21, TX22, TX81, TX82, TY81: Operation time

TE82、TG12、TG82、TG83、TW81、TY81:指定時間 TE82, TG12, TG82, TG83, TW81, TY81: Specified time

TH1A:時鐘時間 TH1A: Clock time

TJ1T、TJ8V:特定時間 TJ1T, TJ8V: specific time

TK81:控制資料碼類型 TK81: Control data code type

TL11、TP11、TU11、TU1G:物理參數類型 TL11, TP11, TU11, TU1G: Physical parameter type

TM81:測量範圍界限資料碼類型 TM81: Measurement range limit data code type

TQ11:時鐘時間類型 TQ11: Clock time type

TR81:時鐘參考時間 TR81: Clock reference time

TT81:觸發時間 TT81: Trigger time

TT82:啟動時間 TT82: Startup time

TZ8V:結束時間 TZ8V: end time

UA8T:控制應用碼 UA8T: Control application code

UF8A:可變時鐘時間區間碼 UF8A: Variable Clock Time Interval Code

UF8T、UF8U:時鐘時間應用區間碼 UF8T, UF8U: Clock time application interval code

UH8T:中斷請求訊號 UH8T: Interrupt request signal

UL81:預設特徵物理參數 UL81: Preset characteristic physical parameters

UN1A、UM8A、UN8A:可變物理參數範圍碼 UN1A, UM8A, UN8A: Variable physical parameter range codes

UM8L:物理參數應用範圍碼 UM8L: Physical parameter application range code

UN15、UN85、UN86:特定物理參數範圍碼 UN15, UN85, UN86: specific physical parameter range codes

UN1T、UN8T、UQ1T、UQ1U、UN1V、UN1W:物理參數目標範圍碼 UN1T, UN8T, UQ1T, UQ1U, UN1V, UN1W: Physical parameter target range code

UQ11:物理參數指定範圍碼 UQ11: Physical parameter specifying range code

UQ12:物理參數指定範圍碼 UQ12: Physical parameter specifying range code

UW11、UW81、UW82:特定輸入碼 UW11, UW81, UW82: specific input code

UX81、UX92、UY81、UY91、UY95:指定位元數目 UX81, UX92, UY81, UY91, UY95: Specify the number of bits

VA11、VC11、VL81:相對值 VA11, VC11, VL81: Relative value

VG81:可允許值 VG81: allowable value

VH8T、VH8U:測量時間長度值 VH8T, VH8U: Measurement time length value

VM81、VM82、VM91、VN11、VN12、VN81、VN82、VN83、VN85、VN91:測量值 VM81, VM82, VM91, VN11, VN12, VN81, VN82, VN83, VN85, VN91: Measured values

WA8L、WB8L、WC8T、WD81、WN8L、WN8T、WS8T、WS8U:寫入請求訊息 WA8L, WB8L, WC8T, WD81, WN8L, WN8T, WS8T, WS8U: Write request message

WJ11、WJ12:電應用目標 WJ11, WJ12: Electrical application target

WP11:按鈕目標 WP11: Button Target

WU11、WU21:定時操作模式 WU11, WU21: Timing operation mode

WX8HE:第一資料編碼規則 WX8HE: First Data Encoding Rules

WX8HU:第二資料編碼規則 WX8HU: Second Data Encoding Rules

XA8A:可變物理狀態 XA8A: Mutable Physical State

XA81:非特徵物理參數到達狀態 XA81: Non-characteristic physical parameter arrival state

XA82:實際特徵物理參數到達狀態 XA82: Actual Feature Physical Parameter Arrival Status

XH81、XH82、XJ81、XJ82:特定狀態 XH81, XH82, XJ81, XJ82: specific state

XK81、XU81:操作參考資料碼 XK81, XU81: Operation reference code

XP81、XR81:特定經驗公式 XP81, XR81: Specific experience formula

XS81:特定經驗公式 XS81: Formula for specific experience

XV81:操作參考資料碼 XV81: Operation reference code

YA82:特定情況 YA82: Specific circumstances

YJ81:選擇工具 YJ81: Selection tool

YM8L、YM8T、YX8T:記憶體位置 YM8L, YM8T, YX8T: Memory location

YQ81、YW81:感測器靈敏度 YQ81, YW81: Sensor sensitivity

YS81、YS82、YS8T、YS8U:記憶體位置 YS81, YS82, YS8T, YS8U: memory location

YU91:預設資料導出規則 YU91: Default data export rules

ZD1L1、ZD1L2:預設物理參數應用範圍界限 ZD1L1, ZD1L2: Limits of application range of preset physical parameters

ZD1T1、ZD1T2、ZD1U1、ZD1U2:預設物理參數目標範圍界限 ZD1T1, ZD1T2, ZD1U1, ZD1U2: Preset physical parameter target range limits

ZF81:減法運算 ZF81: Subtraction operation

ZL82:特徵物理參數到達 ZL82: Characteristic physical parameters arrive

ZT81、ZW81、ZW82:感測操作 ZT81, ZW81, ZW82: Sensing operation

ZU11、ZU81:驗證操作 ZU11, ZU81: Verify operation

本揭露得藉由下列圖式之詳細說明,俾得更深入之瞭解: This disclosure may be better understood through the detailed description of the following figures:

圖1:為在本揭露各式各樣實施例中一控制系統的示意圖。 FIG. 1 is a schematic diagram of a control system in various embodiments of the present disclosure.

圖2:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 2 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖3:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 3 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖4:為繪示於圖1中的該控制系統的一實施結構的示 意圖。 FIG. 4 is a diagram showing an implementation structure of the control system shown in FIG. 1 intention.

圖5:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 5 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖6:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 6 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖7:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 7 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖8:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 8 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖9:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 9 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖10:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 10 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖11:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 11 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖12:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 12 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖13:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 13 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖14:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 14 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖15:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 15 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖16:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 16 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖17:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 17 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖18:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 18 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖19:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 19 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖20:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 20 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖21:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 21 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖22:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 22 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖23:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 23 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖24:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 24 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖25:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 25 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖26:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 26 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖27:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 27 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖28:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 28 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖29:為繪示於圖1中的該控制系統的一實施結構的 示意圖。 FIG. 29 : is an implementation structure of the control system shown in FIG. 1 Schematic.

圖30:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 30 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖31:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 31 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖32:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 32 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖33:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 33 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖34:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 34 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖35:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 35 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖36:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 36 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖37:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 37 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖38:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 38 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖39:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 39 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖40:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 40 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖41:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 41 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖42:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 42 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖43:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 43 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖44:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 44 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖45:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 45 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖46:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 46 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖47:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 47 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖48:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 48 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖49:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 49 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖50:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 50 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖51:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 51 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖52:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 52 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖53:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 53 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖54:為繪示於圖1中的該控制系統的一實施結構的 示意圖。 FIG. 54 : is an implementation structure of the control system shown in FIG. 1 Schematic.

圖55:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 55 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖56:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 56 is a schematic diagram of an implementation structure of the control system shown in FIG. 1 .

圖57:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 57 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖58:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 58 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖59:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 59 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖60:為繪示於圖1中的該控制系統的一實施結構的示意圖。 FIG. 60 is a schematic diagram illustrating an implementation structure of the control system shown in FIG. 1 .

圖61:為在本揭露各式各樣實施例中一控制系統的示意圖。 FIG. 61 is a schematic diagram of a control system in various embodiments of the present disclosure.

圖62:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 62 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖63:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 63 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖64:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 64 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖65:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 65 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖66:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 66 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖67:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 67 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖68:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 68 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

圖69:為繪示於圖61中的該控制系統的一實施結構的示意圖。 FIG. 69 is a schematic diagram of an implementation structure of the control system shown in FIG. 61 .

請參閱圖1,其為在本揭露各式各樣實施例中一控制系統901的示意圖。該控制系統901包含用於控制一可變物理參數QU1A的一功能裝置130。例如,該可變物理參數QU1A基於一物理參數目標狀態JE1U而被特徵化。該功能裝置130包含一定時器342和一處理單元331。該定時器342感測一時鐘時間TH1A以產生一感測訊號SY81。例如,該時鐘時間TH1A基於由一測量值應用範圍RQ1U所代表的一時鐘時間應用區間HR1EU而被特徵化。 Please refer to FIG. 1 , which is a schematic diagram of a control system 901 in various embodiments of the present disclosure. The control system 901 includes a functional device 130 for controlling a variable physical parameter QU1A. For example, the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U. The functional device 130 includes a timer 342 and a processing unit 331 . The timer 342 senses a clock time TH1A to generate a sense signal SY81. For example, the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U.

該處理單元331耦合於該定時器342,響應該感測訊號SY81來獲得一測量值NY81,並在該處理單元331藉由檢查該測量值NY81和該測量值應用範圍RQ1U之間的一數學關係KQ81而確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU的條件下使該可變物理參數QU1A處於該物理參數目標狀態JE1U。 The processing unit 331 is coupled to the timer 342 to obtain a measurement value NY81 in response to the sensing signal SY81, and the processing unit 331 checks a mathematical relationship between the measurement value NY81 and the measurement value application range RQ1U KQ81 determines that the variable physical parameter QU1A is in the physical parameter target state JE1U under the condition of the clock time application interval HR1EU in which the clock time TH1A is currently located.

請參閱圖2和圖3。圖2為繪示於圖1中的該控制系統901的一實施結構9011的示意圖。圖3為繪示於圖1中的該控制系統901的一實施結構9012的示意圖。如圖2和圖3所示,該實施結構9011和該實施結構9012 的每一結構包含該功能裝置130。在一些實施例中,該功能裝置130進一步包含耦合於該處理單元331的一接收單元337、和耦合於該處理單元331的一物理參數應用單元335。例如,該功能裝置130是一控制目標裝置。該物理參數應用單元335是一功能目標。 See Figures 2 and 3. FIG. 2 is a schematic diagram illustrating an implementation structure 9011 of the control system 901 shown in FIG. 1 . FIG. 3 is a schematic diagram illustrating an implementation structure 9012 of the control system 901 shown in FIG. 1 . As shown in FIGS. 2 and 3 , the implementation structure 9011 and the implementation structure 9012 Each structure of includes the functional device 130 . In some embodiments, the functional device 130 further includes a receiving unit 337 coupled to the processing unit 331 , and a physical parameter applying unit 335 coupled to the processing unit 331 . For example, the functional device 130 is a control target device. The physical parameter application unit 335 is a functional object.

該時鐘時間TH1A進一步基於不同於該時鐘時間應用區間HR1EU的一時鐘時間指定區間HR1ET而被特徵化。例如,該時鐘時間指定區間HR1ET早於該時鐘時間應用區間HR1EU。在該接收單元337從一控制裝置212接收一控制訊號SC81之後,該處理單元331由於該控制訊號SC81來響應該感測訊號SY81而獲得該測量值NY81。例如,該控制訊號SC81起到指示該時鐘時間指定區間HR1ET的作用。該控制裝置212是一移動裝置和一遙控器的其中之一。在該控制裝置212是該遙控器的條件下,該控制訊號SC81是一光訊號。該功能裝置130基於該控制訊號SC81來使用該定時器342以檢查該時鐘時間TH1A和該時鐘時間應用區間HR1EU之間的一時間關係KT81。例如,該感測訊號SY81是一時鐘時間訊號。該測量值NY81是一特定計數值。例如,在該控制裝置212是該移動裝置的條件下,該接收單元337從該控制裝置212通過一無線鏈接而接收該控制訊號SC81,或該控制訊號SC81是一無線電訊號。 The clock time TH1A is further characterized based on a clock time designation interval HR1ET that is different from the clock time application interval HR1EU. For example, the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU. After the receiving unit 337 receives a control signal SC81 from a control device 212, the processing unit 331 obtains the measurement value NY81 due to the control signal SC81 in response to the sensing signal SY81. For example, the control signal SC81 functions to indicate the clock time designation interval HR1ET. The control device 212 is one of a mobile device and a remote control. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal. The functional device 130 uses the timer 342 based on the control signal SC81 to check a time relationship KT81 between the clock time TH1A and the clock time application interval HR1EU. For example, the sensing signal SY81 is a clock time signal. The measurement value NY81 is a specific count value. For example, if the control device 212 is the mobile device, the receiving unit 337 receives the control signal SC81 from the control device 212 through a wireless link, or the control signal SC81 is a radio signal.

該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍 QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一部分。該測量值NY81以一指定測量值格式HH95而被獲得。該測量值應用範圍RQ1U基於該定時器規格FT21來用該指定測量值格式HH95而被預設。例如,該時鐘時間應用區間HR1EU是一時鐘時間候選區間。該測量值應用範圍RQ1U是一測量時間值候選範圍。該時鐘時間指定區間HR1ET是一時鐘時間目標區間。該指定測量值格式HH95是一指定計數值格式。 The timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 contains a range for representing a full measured value A full measurement range of the QK8E represents the FK8E. For example, the measured value application range RQ1U is equal to a portion of the full measured value range QK8E. The measurement value NY81 is obtained in a specified measurement value format HH95. The measurement value application range RQ1U is preset with the specified measurement value format HH95 based on the timer specification FT21. For example, the clock time application interval HR1EU is a clock time candidate interval. The measurement value application range RQ1U is a measurement time value candidate range. The clock time designation interval HR1ET is a clock time target interval. The specified measurement value format HH95 is a specified count value format.

該測量值應用範圍RQ1U具有一應用範圍界限值對DQ1U,並由一測量值應用範圍碼EL1U所代表。例如,該應用範圍界限值對DQ1U被預設。該處理單元331響應該控制訊號SC81來獲得該應用範圍界限值對DQ1U和該測量值應用範圍碼EL1U,並藉由比較該測量值NY81和所獲得的該應用範圍界限值對DQ1U來檢查該數學關係KQ81。該物理參數目標狀態JE1U由一物理參數目標狀態碼EW1U所代表。該物理參數應用單元335具有該可變物理參數QU1A。例如,該可變物理參數QU1A目前處於一物理參數應用狀態JE1T。該應用範圍界限值對DQ1U是一候選範圍界限值對。該測量值應用範圍碼EL1U是一測量時間值候選範圍碼。 The measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U. For example, the application range limit value is preset for DQ1U. The processing unit 331 obtains the application range limit value pair DQ1U and the measured value application range code EL1U in response to the control signal SC81, and checks the math by comparing the measurement value NY81 with the obtained application range limit value pair DQ1U Relationship KQ81. The physical parameter target state JE1U is represented by a physical parameter target state code EW1U. The physical parameter application unit 335 has the variable physical parameter QU1A. For example, the variable physical parameter QU1A is currently in a physical parameter application state JE1T. The application range limit value pair DQ1U is a candidate range limit value pair. The measurement value application range code EL1U is a measurement time value candidate range code.

在一些實施例中,在該處理單元331藉由檢查該數學關係KQ81而確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於所獲得的該測量值應用範圍碼EL1U來獲得該物理參數 目標狀態碼EW1U,並基於所獲得的該物理參數目標狀態碼EW1U來執行用於檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的一物理參數關係KD9U的一物理參數關係檢查控制GX8U。 In some embodiments, under the condition that the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently in by checking the mathematical relationship KQ81, the processing unit 331 applies based on the obtained measurement value range code EL1U to obtain this physical parameter target state code EW1U, and based on the obtained physical parameter target state code EW1U, a physical parameter relationship check control for checking a physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U is executed GX8U.

在該物理參數應用狀態JE1T不同於該物理參數目標狀態JE1U且該處理單元331藉由執行該物理參數關係檢查控制GX8U而確定該物理參數目標狀態JE1U和該物理參數應用狀態JE1T之間的一物理參數狀態差異DT81的條件下,該處理單元331基於所獲得的該物理參數目標狀態碼EW1U來執行一訊號產生控制GY85以產生一操作訊號SG85,並向該物理參數應用單元335傳輸該操作訊號SG85。例如,該操作訊號SG85是一功能訊號和一控制訊號的其中之一。 When the physical parameter application state JE1T is different from the physical parameter target state JE1U and the processing unit 331 determines a physical parameter between the physical parameter target state JE1U and the physical parameter application state JE1T by executing the physical parameter relationship check control GX8U Under the condition of the parameter state difference DT81, the processing unit 331 executes a signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate an operation signal SG85, and transmits the operation signal SG85 to the physical parameter application unit 335 . For example, the operation signal SG85 is one of a function signal and a control signal.

該物理參數應用單元335響應該操作訊號SG85來使該可變物理參數QU1A從該物理參數應用狀態JE1T進入該物理參數目標狀態JE1U。在該處理單元331藉由檢查該數學關係KQ81而確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU的條件下,該處理單元331執行一資料儲存控制操作GM8U,該資料儲存控制操作GM8U用於導致代表所確定的該時鐘時間應用區間HR1EU的一時鐘時間應用區間碼UF8U被儲存。該可變物理參數QU1A和該時鐘時間TH1A分別屬於一物理參數類型TU11和一時鐘時間類型TQ11。例如,該物理參數類型TU11不同於該時鐘時間類型TQ11。 The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T in response to the operation signal SG85. Under the condition that the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located by checking the mathematical relationship KQ81, the processing unit 331 executes a data storage control operation GM8U, the data storage control operation GM8U A clock time application interval code UF8U for causing the determined clock time application interval HR1EU to be stored is stored. The variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively. For example, the physical parameter type TU11 is different from the clock time type TQ11.

請參閱圖4、圖5和圖6。圖4為繪示於圖 1中的該控制系統901的一實施結構9013的示意圖。圖5為繪示於圖1中的該控制系統901的一實施結構9014的示意圖。圖6為繪示於圖1中的該控制系統901的一實施結構9015的示意圖。如圖4、圖5和圖6所示,該實施結構9013、該實施結構9014和該實施結構9015的每一結構包含該功能裝置130。該功能裝置130包含該處理單元331、耦合於該處理單元331的該定時器342、耦合於該處理單元331的該接收單元337、耦合於該處理單元331的一輸入單元380、和耦合於該處理單元331的該物理參數應用單元335。 See Figure 4, Figure 5 and Figure 6. Figure 4 is shown in the figure 1 is a schematic diagram of an implementation structure 9013 of the control system 901. FIG. 5 is a schematic diagram illustrating an implementation structure 9014 of the control system 901 shown in FIG. 1 . FIG. 6 is a schematic diagram illustrating an implementation structure 9015 of the control system 901 shown in FIG. 1 . As shown in FIGS. 4 , 5 and 6 , each of the implementation structure 9013 , the implementation structure 9014 , and the implementation structure 9015 includes the functional device 130 . The functional device 130 includes the processing unit 331, the timer 342 coupled to the processing unit 331, the receiving unit 337 coupled to the processing unit 331, an input unit 380 coupled to the processing unit 331, and the The physical parameter application unit 335 of the processing unit 331 .

在一些實施例中,該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一第一部分。該處理單元331被配置以執行與該時鐘時間應用區間HR1EU相關的一測量應用功能FA81。該測量應用功能FA81符合與該時鐘時間應用區間HR1EU相關的一測量應用功能規格GAL8。例如,該測量應用功能FA81是一物理參數控制功能。該測量應用功能規格GAL8是一物理參數控制功能規格。 In some embodiments, the timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 includes a full measured value range representation FK8E for representing a full measured value range QK8E. For example, the measured value application range RQ1U is equal to a first part of the full measured value range QK8E. The processing unit 331 is configured to execute a measurement application function FA81 associated with the clock time application interval HR1EU. The measurement application function FA81 conforms to a measurement application function specification GAL8 related to the clock time application interval HR1EU. For example, the measurement application function FA81 is a physical parameter control function. The measurement application functional specification GAL8 is a physical parameter control functional specification.

該處理單元331響應該感測訊號SY81來以一指定測量值格式HH95獲得該測量值NY81。例如,該指定測量值格式HH95基於一指定位元數目UY95而被特徵化。該時鐘時間TH1A進一步基於一額定時鐘時間區間 HR1E而被特徵化。例如,該額定時鐘時間區間HR1E由一額定測量值範圍HR1N所代表,並包含由複數不同測量值參考範圍RQ11、RQ12、…所分別代表的複數不同時鐘時間參考區間HR1E1、HR1E2、…。例如,該額定時鐘時間區間HR1E被均勻地分割以形成該複數不同時鐘時間參考區間HR1E1、HR1E2、…。該額定測量值範圍HR1N是一額定測量時間值範圍。該複數不同測量值參考範圍RQ11、RQ12、…是複數測量時間值參考範圍,並皆基於該定時器規格ET21而被預設。 The processing unit 331 obtains the measurement value NY81 in a specified measurement value format HH95 in response to the sensing signal SY81. For example, the specified measurement value format HH95 is characterized based on a specified number of bits UY95. The clock time TH1A is further based on a nominal clock time interval HR1E was characterized. For example, the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, . . . respectively represented by a plurality of different measurement value reference ranges RQ11, RQ12, . For example, the nominal clock time interval HR1E is divided evenly to form the plurality of different clock time reference intervals HR1E1, HR1E2, . . . The rated measurement value range HR1N is a rated measurement time value range. The complex different measurement value reference ranges RQ11 , RQ12 , . . . are complex measurement time value reference ranges, and are all preset based on the timer specification ET21 .

該複數不同時鐘時間參考區間HR1E1、HR1E2、…包含該時鐘時間應用區間HR1EU。該測量應用功能規格GAL8包含該定時器規格FT21、用於表示該額定時鐘時間區間HR1E的一額定時鐘時間區間表示GA8HE、和用於表示該時鐘時間應用區間HR1EU的一時鐘時間應用區間表示GA8HU。 The plurality of different clock time reference intervals HR1E1, HR1E2, . . . include the clock time application interval HR1EU. The measurement application functional specification GAL8 includes the timer specification FT21, a rated clock time interval representation GA8HE for representing the rated clock time interval HR1E, and a clock time application interval representation GA8HU for representing the clock time application interval HR1EU.

該額定測量值範圍HR1N等於該全測量值範圍QK8E的至少一第二部分,基於該定時器規格ET21、該測量應用功能規格GAL8和一第一資料編碼規則WX8HE的其中之一來用該指定測量值格式HH95而被預設,具有一額定範圍界限值對DP1A,並包含由複數不同測量值參考範圍碼EL11、EL12、…所分別代表的該複數不同測量值參考範圍RQ11、RQ12、…。 The rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, which is used for the specified measurement based on one of the timer specification ET21, the measurement application function specification GAL8 and a first data encoding rule WX8HE The value format HH95 is preset with a nominal range limit value pair DP1A, and includes the plural different measured value reference ranges RQ11, RQ12, . . . respectively represented by the plural different measured value reference range codes EL11, EL12, .

例如,該額定範圍界限值對DP1A用該指定測量值格式HH95而被預設,且該複數不同測量值參考範圍RQ11、RQ12、…包含該測量值應用範圍RQ1U。該第一 資料編碼規則WX8HE用於轉換該額定時鐘時間區間表示GA8HE,並基於該定時器規格FT21而被制定。例如,該複數不同測量值參考範圍碼EL11、EL12、…分別是複數測量時間值參考範圍碼。 For example, the rated range limit value pair DP1A is preset with the specified measurement value format HH95, and the plurality of different measurement value reference ranges RQ11, RQ12, . . . includes the measurement value application range RQ1U. the first The data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21. For example, the complex different measurement value reference range codes EL11, EL12, ... are respectively complex measurement time value reference range codes.

在一些實施例中,該測量值應用範圍RQ1U由包含於該複數不同測量值參考範圍碼EL11、EL12、…中的一測量值應用範圍碼EL1U所代表,具有一應用範圍界限值對DQ1U,並基於該定時器規格FT21、該測量應用功能規格GAL8和一第二資料編碼規則WX8HU的其中之一來用該指定測量值格式HH95而被預設。例如,該複數不同測量值參考範圍碼EL11、EL12、…皆基於該測量應用功能規格GAL8而被預設。該第二資料編碼規則WX8HU用於轉換該時鐘時間應用區間表示GA8HU,並基於該定時器規格FT21而被制定。該應用範圍界限值對DQ1U包含一第一應用範圍界限值DQ15和相對於該第一應用範圍界限值DQ15的一第二應用範圍界限值DQ16。 In some embodiments, the measurement value application range RQ1U is represented by a measurement value application range code EL1U included in the plurality of different measurement value reference range codes EL11, EL12, . . . , has an application range limit value pair DQ1U, and The specified measurement value format HH95 is preset based on one of the timer specification FT21, the measurement application function specification GAL8 and a second data encoding rule WX8HU. For example, the reference range codes EL11, EL12, . . . of the plurality of different measurement values are all preset based on the measurement application function specification GAL8. The second data encoding rule WX8HU is used to convert the clock time application interval to represent GA8HU, and is formulated based on the timer specification FT21. The application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.

該功能裝置130進一步包含耦合於該處理單元331的一儲存單元332,並包含耦合於該處理單元331的一觸發應用單元387。該儲存單元332儲存所預設的該額定範圍界限值對DP1A和一可變時鐘時間區間碼UF8A。當與該觸發應用單元387相關的一觸發事件JQ81發生時,該可變時鐘時間區間碼UF8A等於選擇自該複數不同測量值參考範圍碼EL11、EL12、…的一特定測量值範圍碼EL14。例如,該特定測量值範圍碼EL14指示基於一感測操作ZT81而被先前確定的一特定時鐘時間區間HR1E4。該特定時鐘 時間區間HR1E4選擇自該複數不同時鐘時間參考區間HR1E1、HR1E2、…。由該定時器342所執行的該感測操作ZT81用於感測該時鐘時間TH1A。 The functional device 130 further includes a storage unit 332 coupled to the processing unit 331 , and includes a trigger application unit 387 coupled to the processing unit 331 . The storage unit 332 stores the preset rated range limit value pair DP1A and a variable clock time interval code UF8A. When a trigger event JQ81 related to the trigger application unit 387 occurs, the variable clock time interval code UF8A is equal to a specific measurement value range code EL14 selected from the plurality of different measurement value reference range codes EL11, EL12, . . . For example, the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81. that particular clock The time interval HR1E4 is selected from the plurality of different clock time reference intervals HR1E1, HR1E2, . . . The sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.

在該觸發事件JQ81發生之前,該特定測量值範圍碼EL14被指定到該可變時鐘時間區間碼UF8A。該觸發應用單元387響應該觸發事件JQ81來使該處理單元331接收一操作請求訊號SJ81。在該觸發事件JQ81發生的條件下,該處理單元331響應該操作請求訊號SJ81來從該儲存單元332獲得一操作參考資料碼XV81,並藉由運行一資料確定程序NK8A來執行使用該操作參考資料碼XV81的一資料確定AK8A以確定選擇自該複數不同測量值參考範圍碼EL11、EL12、…的該測量值應用範圍碼EL1U以便從該複數不同測量值參考範圍RQ11、RQ12、…中選擇該測量值應用範圍RQ1U。該操作參考資料碼XV81相同於基於該測量應用功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NK8A基於該測量應用功能規格GAL8而被建構。 Before the trigger event JQ81 occurs, the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A. The trigger application unit 387 causes the processing unit 331 to receive an operation request signal SJ81 in response to the trigger event JQ81. Under the condition that the trigger event JQ81 occurs, the processing unit 331 obtains an operation reference data code XV81 from the storage unit 332 in response to the operation request signal SJ81, and executes and uses the operation reference data by running a data determination program NK8A A profile of code XV81 determines AK8A to determine the measurement value selected from the complex different measurement value reference range codes EL11, EL12, ... Apply range code EL1U to select the measurement from the complex different measurement value reference range RQ11, RQ12, ... Value application range RQ1U. The operation reference code XV81 is the same as a permissible reference code preset based on the measurement application functional specification GAL8. The data determination program NK8A is constructed based on the measurement application functional specification GAL8.

該資料確定AK8A是一第一資料確定操作AK81和一第二資料確定操作AK82的其中之一。在該操作參考資料碼XV81藉由存取被儲存在該儲存單元332中的該可變時鐘時間區間碼UF8A而被獲得以相同於該特定測量值範圍碼EL14的條件下,是該第一資料確定操作AK81的該資料確定AK8A基於所獲得的該特定測量值範圍碼EL14來確定該測量值應用範圍碼EL1U。例如,該第一資料確定操作AK81是使用所獲得的該特定測量值範圍碼EL14的一 第一科學計算MC81。所確定的該測量值應用範圍碼EL1U相同或不同於所獲得的該特定測量值範圍碼EL14。 The data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82. Under the condition that the operation reference data code XV81 is obtained by accessing the variable clock time interval code UF8A stored in the storage unit 332 to be the same as the specific measurement value range code EL14, is the first data The profile determination AK8A of the determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14. For example, the first data determination operation AK81 is to use the obtained one of the specific measurement value range code EL14 The first scientific computing MC81. The determined measured value application range code EL1U is the same or different from the obtained specific measured value range code EL14.

在該操作參考資料碼XV81藉由存取被儲存在該儲存單元332中的該額定範圍界限值對DP1A而被獲得以相同於所預設的該額定範圍界限值對DP1A的條件下,是該第二資料確定操作AK82的該資料確定AK8A藉由執行使用該測量值NY81和所獲得的該額定範圍界限值對DP1A的一第二科學計算MD81來從該複數不同測量值參考範圍碼EL11、EL12、…中選擇該測量值應用範圍碼EL1U以確定該測量值應用範圍碼EL1U。例如,該第二科學計算MD81基於一特定經驗公式XS81而被執行。該特定經驗公式XS81基於所預設的該額定範圍界限值對DP1A和該複數不同測量值參考範圍碼EL11、EL12、…而被預先制定。 Under the condition that the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage unit 332 to be the same as the preset rated range limit value pair DP1A, is the The data determination AK8A of the second data determination operation AK82 refers to the range codes EL11, EL12 from the complex different measurement values by performing a second scientific calculation MD81 for DP1A using the measurement value NY81 and the obtained nominal range limit value , , select the range code EL1U for the measurement value to determine the range code EL1U for the measurement value. For example, the second scientific calculation MD81 is performed based on a specific empirical formula XS81. The specific empirical formula XS81 is predetermined based on the preset nominal range limit value pair DP1A and the complex number of different measurement value reference range codes EL11, EL12, . . .

在一些實施例中,該處理單元331基於所確定的該測量值應用範圍碼EL1U來獲得該應用範圍界限值對DQ1U,並基於該測量值NY81和所獲得的該應用範圍界限值對DQ1U之間的一資料比較CF81來檢查該數學關係KQ81以做出該測量值NY81是否為於所選擇的該測量值應用範圍RQ1U之內的一邏輯決定PQ81。在該邏輯決定PQ81是肯定的條件下,該處理單元331確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU。 In some embodiments, the processing unit 331 applies a range code EL1U based on the determined measurement value to obtain the application range limit value pair DQ1U, and based on the measurement value NY81 and the obtained application range limit value pair DQ1U A data comparison of CF81 checks the mathematical relationship KQ81 to make a logical decision PQ81 whether the measurement value NY81 is within the selected measurement value application range RQ1U. Under the condition that the logic decision PQ81 is affirmative, the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located.

在該特定測量值範圍碼EL14不同於所確定的該測量值應用範圍碼EL1U且該處理單元331藉由做出該邏輯決定PQ81而確定該時鐘時間TH1A目前所處於的該時 鐘時間應用區間HR1EU的條件下,該處理單元331基於等於該特定測量值範圍碼EL14的該可變時鐘時間區間碼UE8A和所確定的該測量值應用範圍碼EL1U之間的一碼差異DG81來使用該儲存單元332以將所確定的該測量值應用範圍碼EL1U指定到該可變時鐘時間區間碼UF8A。 After the specific measurement value range code EL14 is different from the determined measurement value application range code EL1U and the processing unit 331 determines the time at which the clock time TH1A is currently at by making the logic decision PQ81 Under the condition of the clock time application interval HR1EU, the processing unit 331 determines a code difference DG81 between the variable clock time interval code UE8A equal to the specific measurement value range code EL14 and the determined measurement value application range code EL1U. The storage unit 332 is used to assign the determined measurement value to the variable clock time interval code UF8A using range code EL1U.

該輸入單元380包含一按鈕3801。該物理參數應用單元335具有該可變物理參數QU1A。該可變物理參數QU1A進一步基於不同於該物理參數目標狀態JE1U的一特定物理參數狀態JE16而被特徵化。在該處理單元331藉由檢查該第一數學關係KQ81而導致該可變物理參數QU1A處於該物理參數目標狀態JE1U的條件下,該輸入單元380接收使用該按鈕3801的一使用者輸入操作BQ82。該處理單元331響應該使用者輸入操作BQ82來向該物理參數應用單元335傳輸用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1U以進入該特定物理參數狀態JE16的一操作訊號SG87。 The input unit 380 includes a button 3801 . The physical parameter application unit 335 has the variable physical parameter QU1A. The variable physical parameter QU1A is further characterized based on a particular physical parameter state JE16 that is different from the physical parameter target state JE1U. Under the condition that the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1U by checking the first mathematical relationship KQ81 , the input unit 380 receives a user input operation BQ82 using the button 3801 . The processing unit 331 responds to the user input operation BQ82 to transmit to the physical parameter application unit 335 an operation signal SG87 for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16.

請參閱圖1、圖2、圖3、圖4、圖5和圖6。一種用於控制一可變物理參數QU1A的方法ML80被揭露。例如,該可變物理參數QU1A基於一物理參數目標狀態JE1U而被特徵化。該方法ML80包含下列步驟:感測一時鐘時間TH1A以產生一感測訊號SY81,其中該時鐘時間TH1A基於由一測量值應用範圍RQ1U所代表的一時鐘時間應用區間HR1EU而被特徵化;響應該感測訊號SY81,獲得一測量值NY81;以及在該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU藉由檢查該測量值NY81和該 測量值應用範圍RQ1U之間的一數學關係KQ81而被確定的條件下,使該可變物理參數QU1A處於該物理參數目標狀態JE1U。 Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6. A method ML80 for controlling a variable physical parameter QU1A is disclosed. For example, the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U. The method ML80 includes the steps of: sensing a clock time TH1A characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U to generate a sensing signal SY81; responding to the Sensing the signal SY81 to obtain a measured value NY81; and by checking the measured value NY81 and the clock time application interval HR1EU in which the clock time TH1A is currently located The variable physical parameter QU1A is placed in the physical parameter target state JE1U under the condition that the measured value is determined using a mathematical relationship KQ81 between the ranges RQ1U.

在一些實施例中,該時鐘時間TH1A進一步基於不同於該時鐘時間應用區間HR1EU的一時鐘時間指定區間HR1ET而被特徵化。例如,該時鐘時間指定區間HR1ET早於該時鐘時間應用區間HR1EU。該方法ML80進一步包含下列步驟:提供一定時器342,其中感測該時鐘時間TH1A的步驟藉由使用該定時器342而被執行;以及從一控制裝置212接收一控制訊號SC81,其中該控制訊號SC81起到指示該時鐘時間指定區間HR1ET的作用。該控制裝置212是一移動裝置和一遙控器的其中之一。在該控制裝置212是該遙控器的條件下,該控制訊號SC81是一光訊號。例如,在該控制裝置212是該移動裝置的條件下,該控制訊號SC81從該控制裝置212通過一無線鏈接而被接收,或該控制訊號SC81是一無線電訊號。 In some embodiments, the clock time TH1A is further characterized based on a clock time designation interval HR1ET that is different from the clock time application interval HR1EU. For example, the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU. The method ML80 further includes the steps of: providing a timer 342, wherein the step of sensing the clock time TH1A is performed by using the timer 342; and receiving a control signal SC81 from a control device 212, wherein the control signal SC81 functions to indicate the clock time designation interval HR1ET. The control device 212 is one of a mobile device and a remote control. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal. For example, if the control device 212 is the mobile device, the control signal SC81 is received from the control device 212 via a wireless link, or the control signal SC81 is a radio signal.

獲得該測量值NY81的步驟包含一子步驟:在該控制訊號SC81被接收之後,由於該控制訊號SC81來響應該感測訊號SY81而獲得該測量值NY81。該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一部分。該測量值NY81以一指定測量值格式HH95而被獲得。 The step of obtaining the measurement value NY81 includes a sub-step: after the control signal SC81 is received, the measurement value NY81 is obtained because the control signal SC81 responds to the sensing signal SY81. The timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 includes a full measured value range representation FK8E for representing a full measured value range QK8E. For example, the measured value application range RQ1U is equal to a portion of the full measured value range QK8E. The measurement value NY81 is obtained in a specified measurement value format HH95.

該測量值應用範圍RQ1U基於該定時器規格FT21來用該指定測量值格式HH95而被預設。該測量值應用範圍RQ1U具有一應用範圍界限值對DQ1U,並由一測量值應用範圍碼EL1U所代表。例如,該應用範圍界限值對DQ1U被預設。該方法ML80進一步包含下列步驟:響應該控制訊號SC81,獲得該應用範圍界限值對DQ1U和該測量值應用範圍碼EL1U;以及藉由比較該測量值NY81和所獲得的該應用範圍界限值對DQ1U,檢查該數學關係KQ81。 The measurement value application range RQ1U is preset with the specified measurement value format HH95 based on the timer specification FT21. The measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U. For example, the application range limit value is preset for DQ1U. The method ML80 further includes the steps of: in response to the control signal SC81, obtaining the application range limit value pair DQ1U and the measurement value application range code EL1U; and by comparing the measurement value NY81 with the obtained application range limit value pair DQ1U , check the mathematical relationship KQ81.

在一些實施例中,該物理參數目標狀態JE1U由一物理參數目標狀態碼EW1U所代表。該可變物理參數QU1A目前處於一物理參數應用狀態JE1T。使該可變物理參數QU1A處於該物理參數目標狀態JE1U的步驟包含下列子步驟:在該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU藉由檢查該數學關係KQ81而被確定的條件下,基於所獲得的該測量值應用範圍碼EL1U來獲得該物理參數目標狀態碼EW1U;以及基於所獲得的該物理參數目標狀態碼EW1U,執行用於檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的一物理參數關係KD9U的一物理參數關係檢查控制GX8U。 In some embodiments, the physical parameter target state JE1U is represented by a physical parameter target state code EW1U. The variable physical parameter QU1A is currently in a physical parameter application state JE1T. The step of bringing the variable physical parameter QU1A into the physical parameter target state JE1U includes the following sub-steps: under the condition that the clock time application interval HR1EU in which the clock time TH1A is currently located is determined by examining the mathematical relationship KQ81, Applying a range code EL1U based on the obtained measurement value to obtain the physical parameter target status code EW1U; and based on the obtained physical parameter target status code EW1U, performing checks for the variable physical parameter QU1A and the physical parameter target status A physical parameter relationship between JE1U A physical parameter relationship check of KD9U controls GX8U.

使該可變物理參數QU1A處於該物理參數目標狀態JE1U的步驟進一步包含下列子步驟:在該物理參數應用狀態JE1T不同於該物理參數目標狀態JE1U且該物理參數目標狀態JE1U和該物理參數應用狀態JE1T之間的一物理參數狀態差異DT81藉由執行該物理參數關係檢查 控制GX8U而被確定的條件下,基於所獲得的該物理參數目標狀態碼EW1U來執行一訊號產生控制GY85以產生一操作訊號SG85;以及響應該操作訊號SG85,使該可變物理參數QU1A從該物理參數應用狀態JE1T進入該物理參數目標狀態JE1U。 The step of making the variable physical parameter QU1A in the physical parameter target state JE1U further comprises the following sub-steps: in the physical parameter application state JE1T different from the physical parameter target state JE1U and the physical parameter target state JE1U and the physical parameter application state A physical parameter state difference DT81 between JE1T is checked by performing the physical parameter relationship Under the condition that the control GX8U is determined, based on the obtained physical parameter target state code EW1U, a signal generation control GY85 is executed to generate an operation signal SG85; and in response to the operation signal SG85, the variable physical parameter QU1A is changed from the The physical parameter application state JE1T enters the physical parameter target state JE1U.

該方法ML80進一步包含一步驟:在該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU藉由檢查該數學關係KQ81而被確定的條件下,執行一資料儲存控制操作GM8U,該資料儲存控制操作GM8U用於導致代表所確定的該時鐘時間應用區間HR1EU的一時鐘時間應用區間碼UF8U被儲存。該可變物理參數QU1A和該時鐘時間TH1A分別屬於一物理參數類型TU11和一時鐘時間類型TQ11。例如,該物理參數類型TU11不同於該時鐘時間類型TQ11。 The method ML80 further includes a step of executing a data storage control operation GM8U under the condition that the clock time application interval HR1EU in which the clock time TH1A is currently located is determined by checking the mathematical relationship KQ81, the data storage control operation GM8U is used to cause a clock time application interval code UF8U representing the determined clock time application interval HR1EU to be stored. The variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively. For example, the physical parameter type TU11 is different from the clock time type TQ11.

在一些實施例中,該方法ML80進一步包含下列步驟:提供一定時器342,其中感測該時鐘時間TH1A的步驟藉由使用該定時器342而被執行;以及執行與該時鐘時間應用區間HR1EU相關的一測量應用功能FA81。該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一第一部分。 In some embodiments, the method ML80 further includes the steps of: providing a timer 342, wherein the step of sensing the clock time TH1A is performed by using the timer 342; and performing the steps associated with the clock time application interval HR1EU A measurement application function of FA81. The timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 includes a full measured value range representation FK8E for representing a full measured value range QK8E. For example, the measured value application range RQ1U is equal to a first part of the full measured value range QK8E.

該測量應用功能FA81符合與該時鐘時間應用區間HR1EU相關的一測量應用功能規格GAL8。該測量 值NY81以一指定測量值格式HH95而被獲得。例如,該指定測量值格式HH95基於一指定位元數目UY95而被特徵化。該時鐘時間TH1A進一步基於一額定時鐘時間區間HR1E而被特徵化。例如,該額定時鐘時間區間HR1E由一額定測量值範圍HR1N所代表,並包含由複數不同測量值參考範圍RQ11、RQ12、…所分別代表的複數不同時鐘時間參考區間HR1E1、HR1E2、…。該複數不同時鐘時間參考區間HR1E1、HR1E2、…包含該時鐘時間應用區間HR1EU。 The measurement application function FA81 conforms to a measurement application function specification GAL8 related to the clock time application interval HR1EU. the measurement The value NY81 is obtained in a specified measured value format HH95. For example, the specified measurement value format HH95 is characterized based on a specified number of bits UY95. The clock time TH1A is further characterized based on a nominal clock time interval HR1E. For example, the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, . . . respectively represented by a plurality of different measurement value reference ranges RQ11, RQ12, . The plurality of different clock time reference intervals HR1E1, HR1E2, . . . include the clock time application interval HR1EU.

該測量應用功能規格GAL8包含該定時器規格FT21、用於表示該額定時鐘時間區間HR1E的一額定時鐘時間區間表示GA8HE、和用於表示該時鐘時間應用區間HR1EU的一時鐘時間應用區間表示GA8HU。該額定測量值範圍HR1N等於該全測量值範圍QK8E的至少一第二部分,基於該定時器規格FT21、該測量應用功能規格GAL8和一第一資料編碼規則WX8HE的其中之一來用該指定測量值格式HH95而被預設,具有一額定範圍界限值對DP1A,並包含由複數不同測量值參考範圍碼EL11、EL12、…所分別代表的該複數不同測量值參考範圍RQ11、RQ12、…。例如,該額定範圍界限值對DP1A用該指定測量值格式HH95而被預設。該複數不同測量值參考範圍RQ11、RQ12、…包含該測量值應用範圍RQ1U。該第一資料編碼規則WX8HE用於轉換該額定時鐘時間區間表示GA8HE,並基於該定時器規格FT21而被制定。 The measurement application functional specification GAL8 includes the timer specification FT21, a rated clock time interval representation GA8HE for representing the rated clock time interval HR1E, and a clock time application interval representation GA8HU for representing the clock time application interval HR1EU. The rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, based on one of the timer specification FT21, the measurement application function specification GAL8 and a first data encoding rule WX8HE for the specified measurement The value format HH95 is preset with a nominal range limit value pair DP1A, and includes the plural different measured value reference ranges RQ11, RQ12, . . . respectively represented by the plural different measured value reference range codes EL11, EL12, . For example, the nominal range limit value is preset for DP1A with the specified measurement value format HH95. The complex number of different measurement value reference ranges RQ11, RQ12, . . . includes the measurement value application range RQ1U. The first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.

該測量值應用範圍RQ1U由包含於該複數不同測量值參考範圍碼EL11、EL12、…中的一測量值應用 範圍碼EL1U所代表,具有一應用範圍界限值對DQ1U,並基於該定時器規格FT21、該測量應用功能規格GAL8和一第二資料編碼規則WX8HU的其中之一來用該指定測量值格式HH95而被預設。例如,該複數不同測量值參考範圍碼EL11、EL12、…皆基於該測量應用功能規格GAL8而被預設。該第二資料編碼規則WX8HU用於轉換該時鐘時間應用區間表示GA8HU,並基於該定時器規格FT21而被制定。該應用範圍界限值對DQ1U包含一第一應用範圍界限值DQ15和相對於該第一應用範圍界限值DQ15的一第二應用範圍界限值DQ16。 The measurement value application range RQ1U is applied by a measurement value contained in the plurality of different measurement value reference range codes EL11, EL12, . . . The range code EL1U represents, has an application range limit value pair DQ1U, and is based on one of the timer specification FT21, the measurement application function specification GAL8 and a second data encoding rule WX8HU to use the specified measurement value format HH95. is preset. For example, the reference range codes EL11, EL12, . . . of the plurality of different measurement values are all preset based on the measurement application function specification GAL8. The second data encoding rule WX8HU is used to convert the clock time application interval to represent GA8HU, and is formulated based on the timer specification FT21. The application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.

在一些實施例中,該方法ML80進一步包含下列步驟:提供一儲存空間SU11;以及在該儲存空間SU11中儲存所預設的該額定範圍界限值對DP1A和一可變時鐘時間區間碼UF8A。當一觸發事件JQ81發生時,該可變時鐘時間區間碼UF8A等於選擇自該複數不同測量值參考範圍碼EL11、EL12、…的一特定測量值範圍碼EL14。例如,該特定測量值範圍碼EL14指示基於一感測操作ZT81而被先前確定的一特定時鐘時間區間HR1E4。該特定時鐘時間區間HR1E4選擇自該複數不同時鐘時間參考區間HR1E1、HR1E2、…。由該定時器342所執行的該感測操作ZT81用於感測該時鐘時間TH1A。 In some embodiments, the method ML80 further includes the following steps: providing a storage space SU11; and storing the preset pair of rated range limit values DP1A and a variable clock time interval code UF8A in the storage space SU11. When a trigger event JQ81 occurs, the variable clock time interval code UF8A is equal to a specific measurement value range code EL14 selected from the plurality of different measurement value reference range codes EL11, EL12, . . . For example, the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81. The specific clock time interval HR1E4 is selected from the plurality of different clock time reference intervals HR1E1, HR1E2, . . . The sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.

在該觸發事件JQ81發生之前,該特定測量值範圍碼EL14被指定到該可變時鐘時間區間碼UF8A。該方法ML80進一步包含下列步驟:響應該觸發事件JQ81,接收一操作請求訊號SJ81;在該觸發事件JQ81發生的條件 下,響應該操作請求訊號SJ81來從該儲存空間SU11獲得一操作參考資料碼XV81;以及藉由運行一資料確定程序NK8A來執行使用該操作參考資料碼XV81的一資料確定AK8A,確定選擇自該複數不同測量值參考範圍碼EL11、EL12、…的該測量值應用範圍碼EL1U以便從該複數不同測量值參考範圍RQ11、RQ12、…中選擇該測量值應用範圍RQ1U。該操作參考資料碼XV81相同於基於該測量應用功能規格GAL8而被預設的一可允許參考資料碼。 Before the trigger event JQ81 occurs, the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A. The method ML80 further includes the following steps: in response to the trigger event JQ81, receiving an operation request signal SJ81; the condition that the trigger event JQ81 occurs Next, in response to the operation request signal SJ81, an operation reference data code XV81 is obtained from the storage space SU11; and a data determination AK8A using the operation reference data code XV81 is executed by running a data determination program NK8A, and the selection is determined from the The measured value application range code EL1U of the complex different measured value reference range codes EL11, EL12, . . . is used to select the measured value application range RQ1U from the complex different measured value reference ranges RQ11, RQ12, . The operation reference code XV81 is the same as a permissible reference code preset based on the measurement application functional specification GAL8.

在一些實施例中,該資料確定程序NK8A基於該測量應用功能規格GAL8而被建構。該資料確定AK8A是一第一資料確定操作AK81和一第二資料確定操作AK82的其中之一。在該操作參考資料碼XV81藉由存取被儲存在該儲存空間SU11中的該可變時鐘時間區間碼UF8A而被獲得以相同於該特定測量值範圍碼EL14的條件下,是該第一資料確定操作AK81的該資料確定AK8A基於所獲得的該特定測量值範圍碼EL14來確定該測量值應用範圍碼EL1U。例如,該第一資料確定操作AK81是使用所獲得的該特定測量值範圍碼EL14的一第一科學計算MC81,且所確定的該測量值應用範圍碼EL1U相同或不同於所獲得的該特定測量值範圍碼EL14。 In some embodiments, the data determination program NK8A is constructed based on the measurement application functional specification GAL8. The data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82. Under the condition that the operation reference data code XV81 is obtained by accessing the variable clock time interval code UF8A stored in the storage space SU11 to be the same as the specific measurement value range code EL14, is the first data The profile determination AK8A of the determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14. For example, the first data determination operation AK81 is a first scientific calculation MC81 using the obtained specific measurement value range code EL14, and the determined measurement value application range code EL1U is the same or different from the obtained specific measurement Value range code EL14.

在該操作參考資料碼XV81藉由存取被儲存在該儲存空間SU11中的該額定範圍界限值對DP1A而被獲得以相同於所預設的該額定範圍界限值對DP1A的條件下,是該第二資料確定操作AK82的該資料確定AK8A藉由執行使用該測量值NY81和所獲得的該額定範圍界限值 對DP1A的一第二科學計算MD81來從該複數不同測量值參考範圍碼EL11、EL12、…中選擇該測量值應用範圍碼EL1U以確定該測量值應用範圍碼EL1U。例如,該第二科學計算MD81基於一特定經驗公式XS81而被執行。該特定經驗公式XS81基於所預設的該額定範圍界限值對DP1A和該複數不同測量值參考範圍碼EL11、EL12、…而被預先制定。 Under the condition that the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage space SU11 to be the same as the preset rated range limit value pair DP1A, is the The second data determination operation AK82 determines the data determination AK8A by performing the use of the measured value NY81 and the nominal range limit value obtained A second scientific calculation MD81 of DP1A is performed to select the measurement value application range code EL1U from the plurality of different measurement value reference range codes EL11, EL12, . . . to determine the measurement value application range code EL1U. For example, the second scientific calculation MD81 is performed based on a specific empirical formula XS81. The specific empirical formula XS81 is predetermined based on the preset nominal range limit value pair DP1A and the complex number of different measurement value reference range codes EL11, EL12, . . .

在一些實施例中,該方法ML80進一步包含下列步驟:基於所確定的該測量值應用範圍碼EL1U,獲得該應用範圍界限值對DQ1U;基於該測量值NY81和所獲得的該應用範圍界限值對DQ1U之間的一資料比較CF81,檢查該數學關係KQ81以做出該測量值NY81是否為於所選擇的該測量值應用範圍RQ1U之內的一邏輯決定PQ81;以及在該邏輯決定PQ81是肯定的條件下,確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU。 In some embodiments, the method ML80 further comprises the steps of: applying a range code EL1U based on the determined measurement value, obtaining the pair of application range limit values DQ1U; based on the measurement value NY81 and the obtained pair of application range limit values A data comparison CF81 between DQ1U, checking the mathematical relationship KQ81 to make a logical decision PQ81 whether the measured value NY81 is within the selected application range RQ1U of the measured value; and in the logical decision PQ81 is positive Under the conditions, determine the clock time application interval HR1EU in which the clock time TH1A is currently located.

該方法ML80進一步包含一步驟:在該特定測量值範圍碼EL14不同於所確定的該測量值應用範圍碼EL1U且該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU藉由做出該邏輯決定PQ81而被確定的條件下,基於等於該特定測量值範圍碼EL14的該可變時鐘時間區間碼UF8A和所確定的該測量值應用範圍碼EL1U之間的一碼差異DG81來將所確定的該測量值應用範圍碼EL1U指定到該可變時鐘時間區間碼UF8A。 The method ML80 further comprises the step of making the logical decision by making the logical decision in the clock time application interval HR1EU in which the specific measurement value range code EL14 is different from the determined measurement value application range code EL1U and the clock time TH1A is currently in Under the condition that PQ81 is determined, based on the variable clock time interval code UF8A equal to the specific measurement value range code EL14 and the determined measurement value, a code difference DG81 between the range code EL1U is applied to the determined measurement value. The measurement value application range code EL1U is assigned to the variable clock time interval code UF8A.

該可變物理參數QU1A進一步基於不同於該物理參數目標狀態JE1U的一特定物理參數狀態JE16而 被特徵化。該方法ML80進一步包含下列步驟:提供一按鈕3801;在該可變物理參數QU1A藉由檢查該第一數學關係KQ81而被導致處於該物理參數目標狀態JE1U的條件下,接收使用該按鈕3801的一使用者輸入操作BQ82;以及響應該使用者輸入操作BQ82,產生用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1U以進入該特定物理參數狀態JE16的一操作訊號SG87。 The variable physical parameter QU1A is further based on a specific physical parameter state JE16 different from the physical parameter target state JE1U be characterized. The method ML80 further comprises the steps of: providing a button 3801; receiving a button using the button 3801 under the condition that the variable physical parameter QU1A is brought into the physical parameter target state JE1U by checking the first mathematical relationship KQ81 User input operation BQ82; and in response to the user input operation BQ82, generating an operation signal SG87 for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16.

請參閱圖6。圖6為繪示於圖1中的該控制系統901的該實施結構9015的示意圖。如圖6所示,該實施結構9015包含用於控制一可變物理參數QU1A的一功能裝置130。例如,該可變物理參數QU1A基於一物理參數目標狀態JE1U而被特徵化。該功能裝置130包含一定時器342和一處理單元331。該定時器342感測一時鐘時間TH1A以產生一感測訊號SY81。例如,該時鐘時間TH1A基於由一測量值應用範圍RQ1U所代表的一時鐘時間應用區間HR1EU而被特徵化。 See Figure 6. FIG. 6 is a schematic diagram of the implementation structure 9015 of the control system 901 shown in FIG. 1 . As shown in FIG. 6, the implementation structure 9015 includes a functional device 130 for controlling a variable physical parameter QU1A. For example, the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U. The functional device 130 includes a timer 342 and a processing unit 331 . The timer 342 senses a clock time TH1A to generate a sense signal SY81. For example, the clock time TH1A is characterized based on a clock time application interval HR1EU represented by a measurement value application range RQ1U.

該處理單元331耦合於該定時器342,響應該感測訊號SY81來獲得一測量值NY81,並在該處理單元331藉由檢查該測量值NY81和該測量值應用範圍RQ1U之間的一第一數學關係KQ81而確定該時鐘時間TH1A進入該時鐘時間應用區間HR1EU的一情況JP81的條件下使該可變物理參數QU1A處於該物理參數目標狀態JE1U。 The processing unit 331 is coupled to the timer 342 to obtain a measurement value NY81 in response to the sensing signal SY81, and the processing unit 331 checks a first measurement value NY81 between the measurement value NY81 and the measurement value application range RQ1U The variable physical parameter QU1A is in the physical parameter target state JE1U under the condition that the clock time TH1A enters the clock time application interval HR1EU under the condition JP81 of the mathematical relationship KQ81.

請參閱圖2、圖3、圖4、圖5和圖6。在一些實施例中,該功能裝置130進一步包含耦合於該處理單元331的一接收單元337、和耦合於該處理單元331的一物 理參數應用單元335。該時鐘時間TH1A進一步基於不同於該時鐘時間應用區間HR1EU的一時鐘時間指定區間HR1ET而被特徵化。例如,該時鐘時間指定區間HR1ET早於該時鐘時間應用區間HR1EU。在該接收單元337從一控制裝置212接收一控制訊號SC81之後,該處理單元331由於該控制訊號SC81來響應該感測訊號SY81而獲得包含該測量值NY81的一測量值序列JY81。例如,該控制訊號SC81起到指示該時鐘時間指定區間HR1ET的作用。該控制裝置212是一移動裝置和一遙控器的其中之一。在該控制裝置212是該遙控器的條件下,該控制訊號SC81是一光訊號。例如,在該控制裝置212是該移動裝置的條件下,該接收單元337從該控制裝置212通過一無線鏈接而接收該控制訊號SC81,或該控制訊號SC81是一無線電訊號。 Please refer to Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6. In some embodiments, the functional device 130 further includes a receiving unit 337 coupled to the processing unit 331 and an object coupled to the processing unit 331 Parameter application unit 335. The clock time TH1A is further characterized based on a clock time designation interval HR1ET that is different from the clock time application interval HR1EU. For example, the clock time designation interval HR1ET is earlier than the clock time application interval HR1EU. After the receiving unit 337 receives a control signal SC81 from a control device 212, the processing unit 331 obtains a measurement value sequence JY81 including the measurement value NY81 in response to the sensing signal SY81 due to the control signal SC81. For example, the control signal SC81 functions to indicate the clock time designation interval HR1ET. The control device 212 is one of a mobile device and a remote control. Under the condition that the control device 212 is the remote controller, the control signal SC81 is an optical signal. For example, if the control device 212 is the mobile device, the receiving unit 337 receives the control signal SC81 from the control device 212 through a wireless link, or the control signal SC81 is a radio signal.

該處理單元331藉由檢查該測量值序列JY81和該測量值應用範圍RQ1U之間的一第二數學關係KQ82而做出該時鐘時間TH1A是否從該時鐘時間指定區間HR1ET進入該時鐘時間應用區間HR1EU的一邏輯決定PR81。在該邏輯決定PR81是肯定的條件下確定所進入的該時鐘時間應用區間HR1EU。該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一部分。 The processing unit 331 determines whether the clock time TH1A enters the clock time application interval HR1EU from the clock time designation interval HR1ET by checking a second mathematical relationship KQ82 between the measurement value sequence JY81 and the measurement value application range RQ1U A logical decision of PR81. The entered clock time application interval HR1EU is determined under the condition that the logic decision PR81 is positive. The timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 includes a full measured value range representation FK8E for representing a full measured value range QK8E. For example, the measured value application range RQ1U is equal to a portion of the full measured value range QK8E.

該測量值NY81以一指定測量值格式HH95 而被獲得。該測量值應用範圍RQ1U基於該定時器規格FT21來用該指定測量值格式HH95而被預設。該測量值應用範圍RQ1U具有一應用範圍界限值對DQ1U,並由一測量值應用範圍碼EL1U所代表。例如,該應用範圍界限值對DQ1U被預設。該處理單元331響應該控制訊號SC81來獲得該應用範圍界限值對DQ1U和該測量值應用範圍碼EL1U,並藉由比較該測量值NY81和所獲得的該應用範圍界限值對DQ1U來檢查該第一數學關係KQ81。該物理參數目標狀態JE1U由一物理參數目標狀態碼EW1U所代表。 The measured value NY81 is in a specified measured value format HH95 and obtained. The measurement value application range RQ1U is preset with the specified measurement value format HH95 based on the timer specification FT21. The measurement value application range RQ1U has an application range limit value pair DQ1U, and is represented by a measurement value application range code EL1U. For example, the application range limit value is preset for DQ1U. The processing unit 331 obtains the application range limit value pair DQ1U and the measured value application range code EL1U in response to the control signal SC81, and checks the first application range limit value pair DQ1U by comparing the measured value NY81 with the obtained application range limit value pair DQ1U A mathematical relation KQ81. The physical parameter target state JE1U is represented by a physical parameter target state code EW1U.

在一些實施例中,該物理參數應用單元335具有該可變物理參數QU1A。例如,該可變物理參數QU1A目前處於一物理參數應用狀態JE1T。在該處理單元331藉由檢查該第一數學關係KQ81而確定所進入的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於所獲得的該測量值應用範圍碼EL1U來獲得該物理參數目標狀態碼EW1U,並基於所獲得的該物理參數目標狀態碼EW1U來執行用於檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的一物理參數關係KD9U的一物理參數關係檢查控制GX8U。 In some embodiments, the physical parameter application unit 335 has the variable physical parameter QU1A. For example, the variable physical parameter QU1A is currently in a physical parameter application state JE1T. Under the condition that the processing unit 331 determines the entered clock time application interval HR1EU by checking the first mathematical relation KQ81, the processing unit 331 applies a range code EL1U based on the obtained measurement value to obtain the physical parameter target Status code EW1U, and based on the obtained physical parameter target status code EW1U to perform a physical parameter relationship check control GX8U for checking a physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U .

在該物理參數應用狀態JE1T不同於該物理參數目標狀態JE1U且該處理單元331藉由執行該物理參數關係檢查控制GX8U而確定該物理參數目標狀態JE1U和該物理參數應用狀態JE1T之間的一物理參數狀態差異DT81的條件下,該處理單元331基於所獲得的該物理參數目標狀態碼EW1U來執行一訊號產生控制GY85以產生一操作 訊號SG85,並向該物理參數應用單元335傳輸該操作訊號SG85。該物理參數應用單元335響應該操作訊號SG85來使該可變物理參數QU1A從該物理參數應用狀態JE1T進入該物理參數目標狀態JE1U。 When the physical parameter application state JE1T is different from the physical parameter target state JE1U and the processing unit 331 determines a physical parameter between the physical parameter target state JE1U and the physical parameter application state JE1T by executing the physical parameter relationship check control GX8U Under the condition of the parameter state difference DT81, the processing unit 331 executes a signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate an operation signal SG85, and transmit the operation signal SG85 to the physical parameter application unit 335. The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T in response to the operation signal SG85.

在該處理單元331藉由檢查該第一數學關係KQ81而確定所進入的該時鐘時間應用區間HR1EU的條件下,該處理單元331執行一資料儲存控制操作GM8U,該資料儲存控制操作GM8U用於導致代表所確定的該時鐘時間應用區間HR1EU的一時鐘時間應用區間碼UF8U被儲存。該可變物理參數QU1A和該時鐘時間TH1A分別屬於一物理參數類型TU11和一時鐘時間類型TQ11。例如,該物理參數類型TU11不同於該時鐘時間類型TQ11。 Under the condition that the processing unit 331 determines the entered clock time application interval HR1EU by checking the first mathematical relation KQ81, the processing unit 331 executes a data storage control operation GM8U for causing A clock time application interval code UF8U representing the determined clock time application interval HR1EU is stored. The variable physical parameter QU1A and the clock time TH1A belong to a physical parameter type TU11 and a clock time type TQ11, respectively. For example, the physical parameter type TU11 is different from the clock time type TQ11.

在一些實施例中,該定時器342符合一定時器規格FT21。例如,該測量值應用範圍RQ1U基於該定時器規格FT21而被預設。該定時器規格FT21包含用於表示一全測量值範圍QK8E的一全測量值範圍表示FK8E。例如,該測量值應用範圍RQ1U等於該全測量值範圍QK8E的一第一部分。該處理單元331被配置以執行與該時鐘時間應用區間HR1EU相關的一測量應用功能FA81。該測量應用功能FA81符合與該時鐘時間應用區間HR1EU相關的一測量應用功能規格GAL8。 In some embodiments, the timer 342 conforms to a timer specification FT21. For example, the measurement value application range RQ1U is preset based on the timer specification FT21. The timer specification FT21 includes a full measured value range representation FK8E for representing a full measured value range QK8E. For example, the measured value application range RQ1U is equal to a first part of the full measured value range QK8E. The processing unit 331 is configured to execute a measurement application function FA81 associated with the clock time application interval HR1EU. The measurement application function FA81 conforms to a measurement application function specification GAL8 related to the clock time application interval HR1EU.

該處理單元331響應該感測訊號SY81來以一指定測量值格式HH95獲得該測量值NY81。例如,該指定測量值格式HH95基於一指定位元數目UY95而被特徵化。該時鐘時間TH1A進一步基於一額定時鐘時間區間 HR1E而被特徵化。例如,該額定時鐘時間區間HR1E由一額定測量值範圍HR1N所代表,並包含由複數不同測量值參考範圍RQ11、RQ12、…所分別代表的複數不同時鐘時間參考區間HR1E1、HR1E2、…。該複數不同時鐘時間參考區間HR1E1、HR1E2、…包含該時鐘時間應用區間HR1EU。該測量應用功能規格GAL8包含該定時器規格FT21、用於表示該額定時鐘時間區間HR1E的一額定時鐘時間區間表示GA8HE、和用於表示該時鐘時間應用區間HR1EU的一時鐘時間應用區間表示GA8HU。 The processing unit 331 obtains the measurement value NY81 in a specified measurement value format HH95 in response to the sensing signal SY81. For example, the specified measurement value format HH95 is characterized based on a specified number of bits UY95. The clock time TH1A is further based on a nominal clock time interval HR1E was characterized. For example, the rated clock time interval HR1E is represented by a rated measurement value range HR1N, and includes a plurality of different clock time reference intervals HR1E1, HR1E2, . . . respectively represented by a plurality of different measurement value reference ranges RQ11, RQ12, . The plurality of different clock time reference intervals HR1E1, HR1E2, . . . include the clock time application interval HR1EU. The measurement application functional specification GAL8 includes the timer specification FT21, a rated clock time interval representation GA8HE for representing the rated clock time interval HR1E, and a clock time application interval representation GA8HU for representing the clock time application interval HR1EU.

在一些實施例中,該額定測量值範圍HR1N等於該全測量值範圍QK8E的至少一第二部分,基於該定時器規格FT21、該測量應用功能規格GAL8和一第一資料編碼規則WX8HE的其中之一來用該指定測量值格式HH95而被預設,具有一額定範圍界限值對DP1A,並包含由複數不同測量值參考範圍碼EL11、EL12、…所分別代表的該複數不同測量值參考範圍RQ11、RQ12、…。例如,該額定範圍界限值對DP1A用該指定測量值格式HH95而被預設。該複數不同測量值參考範圍RQ11、RQ12、…包含該測量值應用範圍RQ1U。該第一資料編碼規則WX8HE用於轉換該額定時鐘時間區間表示GA8HE,並基於該定時器規格FT21而被制定。 In some embodiments, the rated measurement value range HR1N is equal to at least a second portion of the full measurement value range QK8E, based on one of the timer specification FT21, the measurement application function specification GAL8 and a first data encoding rule WX8HE It is preset with the specified measurement value format HH95, has a nominal range limit value pair DP1A, and includes the plurality of different measurement value reference ranges RQ11 represented by the plurality of different measurement value reference range codes EL11, EL12, . . . , RQ12, …. For example, the nominal range limit value is preset for DP1A with the specified measurement value format HH95. The complex number of different measurement value reference ranges RQ11, RQ12, . . . includes the measurement value application range RQ1U. The first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21.

該測量值應用範圍RQ1U由包含於該複數不同測量值參考範圍碼EL11、EL12、…中的一測量值應用範圍碼EL1U所代表,具有一應用範圍界限值對DQ1U,並基於該定時器規格FT21、該測量應用功能規格GAL8和一 第二資料編碼規則WX8HU的其中之一來用該指定測量值格式HH95而被預設。例如,該複數不同測量值參考範圍碼EL11、EL12、…皆基於該測量應用功能規格GAL8而被預設。該第二資料編碼規則WX8HU用於轉換該時鐘時間應用區間表示GA8HU,並基於該定時器規格FT21而被制定。該應用範圍界限值對DQ1U包含一第一應用範圍界限值DQ15和相對於該第一應用範圍界限值DQ15的一第二應用範圍界限值DQ16。 The measurement value application range RQ1U is represented by a measurement value application range code EL1U included in the plurality of different measurement value reference range codes EL11, EL12, ..., has an application range limit value pair DQ1U, and is based on the timer specification FT21 , the measurement application functional specification GAL8 and a One of the second data encoding rules WX8HU is preset with the specified measurement value format HH95. For example, the reference range codes EL11, EL12, . . . of the plurality of different measurement values are all preset based on the measurement application function specification GAL8. The second data encoding rule WX8HU is used to convert the clock time application interval to represent GA8HU, and is formulated based on the timer specification FT21. The application range limit value pair DQ1U includes a first application range limit value DQ15 and a second application range limit value DQ16 relative to the first application range limit value DQ15.

在一些實施例中,該功能裝置130進一步包含耦合於該處理單元331的一儲存單元332,並包含耦合於該處理單元331的一觸發應用單元387。該儲存單元332儲存所預設的該額定範圍界限值對DP1A和一可變時鐘時間區間碼UF8A。當與該觸發應用單元387相關的一觸發事件JQ81發生時,該可變時鐘時間區間碼UF8A等於選擇自該複數不同測量值參考範圍碼EL11、EL12、…的一特定測量值範圍碼EL14。例如,該特定測量值範圍碼EL14指示基於一感測操作ZT81而被先前確定的一特定時鐘時間區間HR1E4。該特定時鐘時間區間HR1E4選擇自該複數不同時鐘時間參考區間HR1E1、HR1E2、…。由該定時器342所執行的該感測操作ZT81用於感測該時鐘時間TH1A。 In some embodiments, the functional device 130 further includes a storage unit 332 coupled to the processing unit 331 , and includes a trigger application unit 387 coupled to the processing unit 331 . The storage unit 332 stores the preset rated range limit value pair DP1A and a variable clock time interval code UF8A. When a trigger event JQ81 related to the trigger application unit 387 occurs, the variable clock time interval code UF8A is equal to a specific measurement value range code EL14 selected from the plurality of different measurement value reference range codes EL11, EL12, . . . For example, the specific measurement value range code EL14 indicates a specific clock time interval HR1E4 previously determined based on a sensing operation ZT81. The specific clock time interval HR1E4 is selected from the plurality of different clock time reference intervals HR1E1, HR1E2, . . . The sensing operation ZT81 performed by the timer 342 is used to sense the clock time TH1A.

在該觸發事件JQ81發生之前,該特定測量值範圍碼EL14被指定到該可變時鐘時間區間碼UF8A。該觸發應用單元387響應該觸發事件JQ81來使該處理單元331接收一操作請求訊號SJ81。在該觸發事件JQ81發生的條件下,該處理單元331響應該操作請求訊號SJ81來從該 儲存單元332獲得一操作參考資料碼XV81,並藉由運行一資料確定程序NK8A來執行使用該操作參考資料碼XV81的一資料確定AK8A以確定選擇自該複數不同測量值參考範圍碼EL11、EL12、…的該測量值應用範圍碼EL1U以便從該複數不同測量值參考範圍RQ11、RQ12、…中選擇該測量值應用範圍RQ1U。該操作參考資料碼XV81相同於基於該測量應用功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NK8A基於該測量應用功能規格GAL8而被建構。 Before the trigger event JQ81 occurs, the specific measurement value range code EL14 is assigned to the variable clock time interval code UF8A. The trigger application unit 387 causes the processing unit 331 to receive an operation request signal SJ81 in response to the trigger event JQ81. Under the condition that the trigger event JQ81 occurs, the processing unit 331 responds to the operation request signal SJ81 to The storage unit 332 obtains an operation reference data code XV81, and executes a data determination AK8A using the operation reference data code XV81 by running a data determination program NK8A to determine the reference range code EL11, EL12, The measured value application range code EL1U of ... in order to select the measured value application range RQ1U from the complex number of different measured value reference ranges RQ11, RQ12, .... The operation reference code XV81 is the same as a permissible reference code preset based on the measurement application functional specification GAL8. The data determination program NK8A is constructed based on the measurement application functional specification GAL8.

在一些實施例中,該資料確定AK8A是一第一資料確定操作AK81和一第二資料確定操作AK82的其中之一。在該操作參考資料碼XV81藉由存取被儲存在該儲存單元332中的該可變時鐘時間區間碼UF8A而被獲得以相同於該特定測量值範圍碼EL14的條件下,是該第一資料確定操作AK81的該資料確定AK8A基於所獲得的該特定測量值範圍碼EL14來確定該測量值應用範圍碼EL1U。例如,該第一資料確定操作AK81是使用所獲得的該特定測量值範圍碼EL14的一第一科學計算MC81。所確定的該測量值應用範圍碼EL1U相同或不同於所獲得的該特定測量值範圍碼EL14。 In some embodiments, the data determination AK8A is one of a first data determination operation AK81 and a second data determination operation AK82. Under the condition that the operation reference data code XV81 is obtained by accessing the variable clock time interval code UF8A stored in the storage unit 332 to be the same as the specific measurement value range code EL14, is the first data The profile determination AK8A of the determination operation AK81 determines the measurement value application range code EL1U based on the obtained specific measurement value range code EL14. For example, the first data determination operation AK81 is a first scientific calculation MC81 using the obtained specific measurement value range code EL14. The determined measured value application range code EL1U is the same or different from the obtained specific measured value range code EL14.

在該操作參考資料碼XV81藉由存取被儲存在該儲存單元332中的該額定範圍界限值對DP1A而被獲得以相同於所預設的該額定範圍界限值對DP1A的條件下,是該第二資料確定操作AK82的該資料確定AK8A藉由執行使用該測量值NY81和所獲得的該額定範圍界限值 對DP1A的一第二科學計算MD81來從該複數不同測量值參考範圍碼EL11、EL12、…中選擇該測量值應用範圍碼EL1U以確定該測量值應用範圍碼EL1U。例如,該第二科學計算MD81基於一特定經驗公式XS81而被執行。該特定經驗公式XS81基於所預設的該額定範圍界限值對DP1A和該複數不同測量值參考範圍碼EL11、EL12、…而被預先制定。 Under the condition that the operation reference data code XV81 is obtained by accessing the rated range limit value pair DP1A stored in the storage unit 332 to be the same as the preset rated range limit value pair DP1A, is the The second data determination operation AK82 determines the data determination AK8A by performing the use of the measured value NY81 and the nominal range limit value obtained A second scientific calculation MD81 of DP1A is performed to select the measurement value application range code EL1U from the plurality of different measurement value reference range codes EL11, EL12, . . . to determine the measurement value application range code EL1U. For example, the second scientific calculation MD81 is performed based on a specific empirical formula XS81. The specific empirical formula XS81 is predetermined based on the preset nominal range limit value pair DP1A and the complex number of different measurement value reference range codes EL11, EL12, . . .

在一些實施例中,該處理單元331基於所確定的該測量值應用範圍碼EL1U來獲得該應用範圍界限值對DQ1U,並基於該測量值NY81和所獲得的該應用範圍界限值對DQ1U之間的一資料比較CF81來檢查該第一數學關係KQ81以做出該測量值NY81是否為於所選擇的該測量值應用範圍RQ1U之內的一邏輯決定PQ81。在該邏輯決定PQ81是肯定的條件下,該處理單元331確定該情況JP81。例如,該情況JP81是一特定情況。 In some embodiments, the processing unit 331 applies a range code EL1U based on the determined measurement value to obtain the application range limit value pair DQ1U, and based on the measurement value NY81 and the obtained application range limit value pair DQ1U A data comparison of CF81 checks the first mathematical relationship KQ81 to make a logical decision PQ81 whether the measurement value NY81 is within the selected measurement value application range RQ1U. Under the condition that the logic decision PQ81 is positive, the processing unit 331 determines the condition JP81. For example, the case JP81 is a specific case.

在該特定測量值範圍碼EL14不同於所確定的該測量值應用範圍碼EL1U且該處理單元331藉由做出該邏輯決定PQ81而確定所進入的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於等於該特定測量值範圍碼EL14的該可變時鐘時間區間碼UF8A和所確定的該測量值應用範圍碼EL1U之間的一碼差異DG81來使用該儲存單元332以將所確定的該測量值應用範圍碼EL1U指定到該可變時鐘時間區間碼UF8A。 Under the condition that the specific measurement value range code EL14 is different from the determined measurement value application range code EL1U and the processing unit 331 determines the entered clock time application interval HR1EU by making the logic decision PQ81, the processing Unit 331 uses the storage unit 332 based on a code difference DG81 between the variable clock time interval code UF8A equal to the specific measurement value range code EL14 and the determined measurement value application range code EL1U to store the determined measurement value The measurement value application range code EL1U is assigned to the variable clock time interval code UF8A.

該輸入單元380包含一按鈕3801。該物理參數應用單元335具有該可變物理參數QU1A。該可變物理 參數QU1A進一步基於不同於該物理參數目標狀態JE1U的一特定物理參數狀態JE16而被特徵化。在該處理單元331藉由檢查該第一數學關係KQ81而導致該可變物理參數QU1A處於該物理參數目標狀態JE1U的條件下,該輸入單元380接收使用該按鈕3801的一使用者輸入操作BQ82。該處理單元331響應該使用者輸入操作BQ82來向該物理參數應用單元335傳輸用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1U以進入該特定物理參數狀態JE16的一操作訊號SG87。 The input unit 380 includes a button 3801 . The physical parameter application unit 335 has the variable physical parameter QU1A. The variable physical The parameter QU1A is further characterized based on a particular physical parameter state JE16 that is different from the physical parameter target state JE1U. Under the condition that the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1U by checking the first mathematical relationship KQ81 , the input unit 380 receives a user input operation BQ82 using the button 3801 . The processing unit 331 responds to the user input operation BQ82 to transmit to the physical parameter application unit 335 an operation signal SG87 for causing the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16.

請參閱圖6。一種用於控制一可變物理參數QU1A的方法ML82被揭露。例如,該可變物理參數QU1A基於一物理參數目標狀態JE1U而被特徵化。該方法包含下列步驟:感測一時鐘時間TH1A以產生一感測訊號SY81,其中該時鐘時間TH1A基於由一測量值應用範圍RQ1U所代表的一時鐘時間應用區間HR1EU而被特徵化;響應該感測訊號SY81,獲得一測量值NY81;以及在該時鐘時間TH1A進入該時鐘時間應用區間HR1EU的一情況JP81藉由檢查該測量值NY81和該測量值應用範圍RQ1U之間的一第一數學關係KQ81而被確定的條件下,使該可變物理參數QU1A處於該物理參數目標狀態JE1U。 See Figure 6. A method ML82 for controlling a variable physical parameter QU1A is disclosed. For example, the variable physical parameter QU1A is characterized based on a physical parameter target state JE1U. The method includes the steps of: sensing a clock time TH1A characterized based on a clock time application interval HR1EU represented by a measured value application range RQ1U to generate a sensing signal SY81; responding to the sensing Measure the signal SY81 to obtain a measured value NY81; and in a case where the clock time TH1A enters the clock time application interval HR1EU JP81 by checking a first mathematical relationship KQ81 between the measured value NY81 and the measured value application range RQ1U Under the determined condition, the variable physical parameter QU1A is placed in the physical parameter target state JE1U.

請參閱圖7和圖8。圖7為繪示於圖1中的該控制系統901的一實施結構9016的示意圖。圖8為繪示於第1圖中的該控制系統901的一實施結構9017的示意圖。如圖7和圖8所示,該實施結構9016和該實施結構9017的每一結構包含該控制裝置212和該功能裝置130。該功能 裝置130包含該處理單元331、該定時器342、該儲存單元332、該物理參數應用單元335和該接收單元337。該定時器342、該儲存單元332、該物理參數應用單元335和該接收單元337皆受該處理單元331控制。例如,該物理參數應用單元335位於該功能裝置130的內部和該功能裝置130的外部的其中之一。 See Figure 7 and Figure 8. FIG. 7 is a schematic diagram illustrating an implementation structure 9016 of the control system 901 shown in FIG. 1 . FIG. 8 is a schematic diagram of an implementation structure 9017 of the control system 901 shown in FIG. 1 . As shown in FIGS. 7 and 8 , each structure of the implementation structure 9016 and the implementation structure 9017 includes the control device 212 and the functional device 130 . the function The device 130 includes the processing unit 331 , the timer 342 , the storage unit 332 , the physical parameter application unit 335 and the receiving unit 337 . The timer 342 , the storage unit 332 , the physical parameter application unit 335 and the receiving unit 337 are all controlled by the processing unit 331 . For example, the physical parameter application unit 335 is located in one of the interior of the functional device 130 and the exterior of the functional device 130 .

在一些實施例中,該接收單元337從該控制裝置212接收起到指示該物理參數應用狀態JE1T的作用的該控制訊號SC81。該處理單元331基於該控制訊號SC81來使該可變物理參數QU1A處於該物理參數應用狀態JE1T。該時鐘時間指定區間HR1ET相鄰於該時鐘時間應用區間HR1EU,並由一測量值指定範圍RQ1T所代表,並具有一開始界限時間HR1ET1和相對於該開始界限時間HR1ET1的一結束界限時間HR1ET2。該測量值指定範圍RQ1T具有一指定範圍界限值對DQ1T,並由一測量值指定範圍碼EL1T所代表。例如,該測量值指定範圍RQ1T是一測量時間值目標範圍。該測量值指定範圍碼EL1T是一時間值目標範圍碼。該指定範圍界限值對DQ1T是一目標範圍界限值對。 In some embodiments, the receiving unit 337 receives the control signal SC81 from the control device 212 to indicate the physical parameter application state JE1T. The processing unit 331 enables the variable physical parameter QU1A to be in the physical parameter application state JE1T based on the control signal SC81. The clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU, is represented by a measurement value designation range RQ1T, and has a start limit time HR1ET1 and an end limit time HR1ET2 relative to the start limit time HR1ET1. The measurement value designation range RQ1T has a designation range limit value pair DQ1T, and is represented by a measurement value designation range code EL1T. For example, the measurement value specifying range RQ1T is a measurement time value target range. The measurement value designation range code EL1T is a time value target range code. The specified range limit value pair DQ1T is a target range limit value pair.

該控制訊號SC81起到指示該時鐘時間指定區間HR1ET的作用。該處理單元331響應該控制訊號SC81來控制該定時器342以使該定時器342根據該開始界限時間HR1ET1來測量該時鐘時間TH1A。例如,該處理單元331基於該控制訊號SC81來使該可變物理參數QU1A在該時鐘時間指定區間HR1ET之內處於該物理參數應用狀態JE1T。 The control signal SC81 functions to indicate the clock time designation interval HR1ET. The processing unit 331 controls the timer 342 in response to the control signal SC81 so that the timer 342 measures the clock time TH1A according to the start limit time HR1ET1. For example, the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter application state JE1T within the specified clock time interval HR1ET based on the control signal SC81.

在一些實施例中,該物理參數應用狀態JE1T由一物理參數應用狀態碼EW1T所代表。該控制訊號SC81藉由輸送該物理參數應用狀態碼EW1T和該測量值目標範圍碼EM1T的其中之一來起到指示該物理參數應用狀態JE1T的作用,並藉由輸送該指定範圍界限值對DQ1T來起到指示該時鐘時間指定區間HR1ET和該測量值指定範圍RQ1T的至少其中之一的作用。該處理單元331從該控制訊號SC81獲得該物理參數應用狀態碼EW1T和該指定範圍界限值對DQ1T,並基於所獲得的該物理參數應用狀態碼EW1T來使該可變物理參數QU1A在該時鐘時間指定區間HR1ET之內處於該物理參數應用狀態JE1T。 In some embodiments, the physical parameter application status JE1T is represented by a physical parameter application status code EW1T. The control signal SC81 plays the role of indicating the physical parameter application state JE1T by sending one of the physical parameter application state code EW1T and the measured value target range code EM1T, and by sending the specified range limit value to DQ1T to play the role of indicating at least one of the clock time designation interval HR1ET and the measurement value designation range RQ1T. The processing unit 331 obtains the physical parameter application status code EW1T and the specified range limit value pair DQ1T from the control signal SC81, and makes the variable physical parameter QU1A at the clock time based on the obtained physical parameter application status code EW1T The physical parameter application state JE1T is within the specified interval HR1ET.

該功能裝置130包含該觸發應用單元387。在該接收單元337從該控制裝置212接收該控制訊號SC81之後,該觸發事件JQ81發生。例如,該觸發事件JQ81響應該控制訊號SC81而發生。在該觸發事件JQ81發生的條件下,該處理單元331響應該觸發事件JQ81來執行使用所獲得的該指定範圍界限值對DQ1T的一科學計算ME81以獲得該應用範圍界限值對DQ1U,並藉由比較該測量值NY81和所獲得的該應用範圍界限值對DQ1U來檢查該數學關係KQ81。 The functional device 130 includes the trigger application unit 387 . The trigger event JQ81 occurs after the receiving unit 337 receives the control signal SC81 from the control device 212 . For example, the trigger event JQ81 occurs in response to the control signal SC81. Under the condition that the trigger event JQ81 occurs, the processing unit 331 responds to the trigger event JQ81 to perform a scientific calculation ME81 using the obtained pair of specified range limit values DQ1T to obtain the pair of application range limit values DQ1U, and by The mathematical relationship KQ81 is checked by comparing the measured value NY81 with the obtained application range limit value pair DQ1U.

例如,該觸發事件JQ81相關於該觸發應用單元387,並是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件和一整數溢位事件的其中之一。該觸發應用單元387響應該觸發事件JQ81來產生該操作請求訊號SJ81,提供該操作請求訊號SJ81到該處理單元 331,並藉此使該處理單元331接收該操作請求訊號SJ81。該處理單元331響應該操作請求訊號SJ81來執行該科學計算ME81以獲得該應用範圍界限值對DQ1U以便檢查檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的該物理參數關係KD9U。 For example, the trigger event JQ81 is related to the trigger application unit 387 and is one of a trigger action event, a user input event, a signal input event, a state change event and an integer overflow event. The trigger application unit 387 generates the operation request signal SJ81 in response to the trigger event JQ81, and provides the operation request signal SJ81 to the processing unit 331, and thereby enable the processing unit 331 to receive the operation request signal SJ81. The processing unit 331 performs the scientific calculation ME81 in response to the operation request signal SJ81 to obtain the application range limit value pair DQ1U for checking the physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U.

在一些實施例中,該可變物理參數QU1A基於複數不同物理參數參考狀態JE11、JE12、…而被特徵化。該複數不同物理參數參考狀態JE11、JE12、…包含該物理參數應用狀態JE1T和該物理參數目標狀態JE1U,並分別由複數不同物理參數參考狀態碼EW11、EW12、…所代表。例如,該物理參數目標狀態JE1U相同或不同於該物理參數應用狀態JE1T。該物理參數目標狀態JE1T根據一物理參數目標範圍RD1ET而被預先確定。該物理參數目標狀態JE1U根據一物理參數目標範圍RD1EU而被預先確定。該複數不同物理參數參考狀態JE11、JE12、…分別根據複數不同物理參數參考範圍RD1E1、RD1E2、…而被預先確定。例如,該物理參數目標範圍RD1EU是一物理參數候選範圍。 In some embodiments, the variable physical parameter QU1A is characterized based on a plurality of different physical parameter reference states JE11, JE12, . . . The complex different physical parameter reference states JE11, JE12, . . . include the physical parameter application state JE1T and the physical parameter target state JE1U, and are represented by the complex different physical parameter reference state codes EW11, EW12, . . . For example, the physical parameter target state JE1U is the same as or different from the physical parameter application state JE1T. The physical parameter target state JE1T is predetermined according to a physical parameter target range RD1ET. The physical parameter target state JE1U is predetermined according to a physical parameter target range RD1EU. The complex different physical parameter reference states JE11, JE12, . . . are predetermined according to the complex different physical parameter reference ranges RD1E1, RD1E2, . . . respectively. For example, the physical parameter target range RD1EU is a physical parameter candidate range.

該可變物理參數QU1A基於該複數不同物理參數參考範圍RD1E1、RD1E2、…而被特徵化。該複數不同物理參數參考範圍RD1E1、RD1E2、…分別由複數不同測量值參考範圍RN11、RN12、…所代表,並包含該物理參數目標範圍RD1ET和該物理參數目標範圍RD1EU。該物理參數目標範圍RD1ET和該物理參數目標範圍RD1EU分別由一測量值目標範圍RN1T和一測量值目標範圍RN1U 所代表。該複數不同測量值參考範圍RN11、RN12、…分別由複數不同測量值參考範圍碼EM11、EM12、…所代表,並包含該測量值目標範圍RN1T和該測量值目標範圍RN1U。 The variable physical parameter QU1A is characterized based on the complex different physical parameter reference ranges RD1E1, RD1E2, . . . The complex different physical parameter reference ranges RD1E1, RD1E2, ... are respectively represented by the complex different measurement value reference ranges RN11, RN12, ..., and include the physical parameter target range RD1ET and the physical parameter target range RD1EU. The physical parameter target range RD1ET and the physical parameter target range RD1EU are respectively composed of a measurement value target range RN1T and a measurement value target range RN1U represented. The complex different measurement value reference ranges RN11, RN12, ... are respectively represented by the complex different measurement value reference range codes EM11, EM12, ..., and include the measurement value target range RN1T and the measurement value target range RN1U.

該複數不同測量值參考範圍碼EM11、EM12、…包含一測量值目標範圍碼EM1T和一測量值目標範圍碼EM1U,並分別相同於該複數不同物理參數參考狀態碼EW11、EW12、…。例如,該複數不同物理參數參考狀態碼EW11、EW12、…包含該物理參數應用狀態碼EW1T和該物理參數目標狀態碼EW1U,並被預設。該測量值目標範圍碼EM1T和該測量值目標範圍碼EM1U分別相同於該物理參數應用狀態碼EW1T和該物理參數目標狀態碼EW1U。 The complex different measurement value reference range codes EM11, EM12, . . . include a measurement value target range code EM1T and a measurement value target range code EM1U, which are respectively the same as the complex different physical parameter reference state codes EW11, EW12, . . . For example, the plurality of different physical parameter reference status codes EW11, EW12, . . . include the physical parameter application status code EW1T and the physical parameter target status code EW1U, and are preset. The measured value target range code EM1T and the measured value target range code EM1U are respectively the same as the physical parameter application state code EW1T and the physical parameter target state code EW1U.

在一些實施例中,該時鐘時間指定區間HR1ET和該時鐘時間應用區間HR1EU分別具有一指定時間長度LH8T和相同於該指定時間長度LH8T的一應用時間長度LH8U。該指定時間長度LH8T和該應用時間長度LH8U分別由一測量時間長度值VH8T和一測量時間長度值VH8U所代表。例如,該測量時間長度值VH8U相同於該測量時間長度值VH8T。該測量時間長度值VH8T和該測量時間長度值VH8U皆基於該定時器規格FT21來用該指定測量值格式HH95而被預設。 In some embodiments, the clock time designation interval HR1ET and the clock time application interval HR1EU respectively have a designated time length LH8T and an application time length LH8U which is the same as the designated time length LH8T. The designated time length LH8T and the application time length LH8U are represented by a measurement time length value VH8T and a measurement time length value VH8U, respectively. For example, the measurement duration value VH8U is the same as the measurement duration value VH8T. The measurement duration value VH8T and the measurement duration value VH8U are both preset based on the timer specification FT21 using the specified measurement value format HH95.

該時鐘時間應用區間HR1EU具有相對於該時鐘時間指定區間HR1ET的一相對區間位置LE81。該相對區間位置LE81由一相對值VL81所代表。例如,在該時 鐘時間應用區間HR1EU相鄰於該時鐘時間指定區間HR1ET的條件下,該相對值VL81等於1。該處理單元331響應該操作請求訊號SJ81來獲得該相對值VL81。該科學計算ME81對於所獲得的該指定範圍界限值對DQ1T執行一減法運算ZF81以獲得該測量時間長度值VH8U,並使用所獲得的該相對值VL81、所獲得的該測量時間長度值VH8U和所獲得的該指定範圍界限值對DQ1T來獲得該應用範圍界限值對DQ1U。 The clock time application interval HR1EU has a relative interval position LE81 with respect to the clock time designation interval HR1ET. The relative interval position LE81 is represented by a relative value VL81. For example, at the time Under the condition that the clock time application interval HR1EU is adjacent to the clock time designation interval HR1ET, the relative value VL81 is equal to 1. The processing unit 331 obtains the relative value VL81 in response to the operation request signal SJ81. The scientific computing ME81 performs a subtraction operation ZF81 on DQ1T for the obtained specified range limit value to obtain the measurement time length value VH8U, and uses the obtained relative value VL81, the obtained measurement time length value VH8U and the obtained measurement time length value VH8U. The specified range limit value pair DQ1T is obtained to obtain the application range limit value pair DQ1U.

例如,該儲存單元332儲存基於所預設的該測量值指定範圍碼EL1T而被儲存的該物理參數應用狀態碼EW1T。該處理單元331藉由執行使用所獲得的該指定範圍界限值對DQ1T的一科學計算MH81來獲得該測量值指定範圍碼EL1T,並基於所獲得的該測量值指定範圍碼EL1T來從該儲存單元332獲得所儲存的該物理參數應用狀態碼EW1T。 For example, the storage unit 332 stores the physical parameter application status code EW1T stored based on the preset measurement value designation range code EL1T. The processing unit 331 obtains the measurement value designation range code EL1T by performing a scientific calculation MH81 for DQ1T using the obtained designated range limit value, and extracts the measurement value designation range code EL1T from the storage unit based on the obtained measurement value designation range code EL1T 332 Obtain the stored application status code EW1T of the physical parameter.

請參閱圖9、圖10、圖11和圖12。圖9為繪示於第1圖中的該控制系統901的一實施結構9018的示意圖。圖10為繪示於圖1中的該控制系統901的一實施結構9019的示意圖。圖11為繪示於圖1中的該控制系統901的一實施結構9020的示意圖。圖12為繪示於圖1中的該控制系統901的一實施結構9021的示意圖。如圖9、圖10、圖11和圖12所示,該實施結構9018、該實施結構9019、該實施結構9020和該實施結構9021的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含該處理單元331、該定時器342、該物理參數應用單元335和該儲 存單元332。該定時器342、該物理參數應用單元335和該儲存單元332皆受該處理單元331控制。 See Figure 9, Figure 10, Figure 11 and Figure 12. FIG. 9 is a schematic diagram of an implementation structure 9018 of the control system 901 shown in FIG. 1 . FIG. 10 is a schematic diagram illustrating an implementation structure 9019 of the control system 901 shown in FIG. 1 . FIG. 11 is a schematic diagram illustrating an implementation structure 9020 of the control system 901 shown in FIG. 1 . FIG. 12 is a schematic diagram illustrating an implementation structure 9021 of the control system 901 shown in FIG. 1 . As shown in FIGS. 9 , 10 , 11 and 12 , each of the implementation structure 9018 , the implementation structure 9019 , the implementation structure 9020 and the implementation structure 9021 includes the control device 212 and the functional device 130 . The functional device 130 includes the processing unit 331, the timer 342, the physical parameter application unit 335 and the storage unit 335. storage unit 332. The timer 342 , the physical parameter application unit 335 and the storage unit 332 are all controlled by the processing unit 331 .

在一些實施例中,該定時器342受該處理單元331控制,並用於測量該時鐘時間TH1A。該定時器342被配置以符合該定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於複數不同時鐘時間參考區間HR1E1、HR1E2、…而被特徵化。該複數不同時鐘時間參考區間HR1E1、HR1E2、…分別由複數不同測量值參考範圍RQ11、RQ12、…所代表,並基於一預設時間參考區間順序QB81而被排列。該複數不同測量值參考範圍RQ11、RQ12、…基於該預設時間參考區間順序QB81而被排列。例如,該複數不同測量值參考範圍RQ11、RQ12、…是複數時間值參考範圍。 In some embodiments, the timer 342 is controlled by the processing unit 331 and is used to measure the clock time TH1A. The timer 342 is configured to conform to the timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a plurality of different clock time reference intervals HR1E1, HR1E2, . . . The plurality of different clock time reference intervals HR1E1 , HR1E2 , . . . are respectively represented by the plurality of different measurement value reference ranges RQ11 , RQ12 , . . , and are arranged based on a predetermined time reference interval sequence QB81 . The plurality of different measurement value reference ranges RQ11 , RQ12 , . . . are arranged based on the predetermined time reference interval sequence QB81 . For example, the complex different measurement value reference ranges RQ11, RQ12, . . . are complex time value reference ranges.

該複數不同測量值參考範圍RQ11、RQ12、…皆基於該定時器規格FT21來用一指定測量值格式HH95而被預設,並分別由複數不同測量值參考範圍碼EL11、EL12、…所代表。例如,該指定測量值格式HH95是一指定計數值格式。該複數不同測量值參考範圍碼EL11、EL12、…分別是複數測量時間值參考範圍碼。該儲存單元332具有複數不同記憶體位置YS81、YS82、…,並在該複數不同記憶體位置YS81、YS82、…分別儲存複數物理參數指定範圍碼UQ11、UQ12、…。例如,該複數物理參數指定範圍碼UQ11、UQ12、…分別等於複數物理參數指定狀態碼。該複數物理參數指定狀態碼分別代表與該可變物理參數QU1A相關的複數物理參數指定狀態。 The plurality of different measurement value reference ranges RQ11, RQ12, . . . are all preset with a specified measurement value format HH95 based on the timer specification FT21, and are respectively represented by the plurality of different measurement value reference range codes EL11, EL12, . . . For example, the specified measurement value format HH95 is a specified count value format. The complex different measurement value reference range codes EL11, EL12, . . . are respectively complex measurement time value reference range codes. The storage unit 332 has a plurality of different memory locations YS81, YS82, . . . and stores a plurality of physical parameter specifying range codes UQ11, UQ12, . For example, the complex physical parameter specifying range codes UQ11, UQ12, ... are respectively equal to the complex physical parameter specifying status codes. The complex-numbered physical parameter designation status codes respectively represent complex-numbered physical parameter designation states related to the variable physical parameter QU1A.

該複數不同時鐘時間參考區間HR1E1、HR1E2、…分別由複數時鐘時間參考區間碼所代表。例如,該複數時鐘時間參考區間碼被配置以分別等於該複數不同測量值參考範圍碼EL11、EL12、…。因此,該複數不同測量值參考範圍碼EL11、EL12、…被配置以分別指示該複數不同時鐘時間參考區間HR1E1、HR1E2、…。例如,該指定測量值格式HH95基於該指定位元數目UY95而被特徵化。 The complex clock time reference intervals HR1E1, HR1E2, ... are respectively represented by the complex clock time reference interval codes. For example, the complex clock time reference interval codes are configured to be equal to the complex different measurement value reference range codes EL11, EL12, . . . , respectively. Therefore, the complex number of different measurement value reference range codes EL11, EL12, . . . are configured to indicate the complex number of different clock time reference intervals HR1E1, HR1E2, . . . respectively. For example, the specified measurement value format HH95 is characterized based on the specified number of bits UY95.

該複數不同測量值參考範圍碼EL11、EL12、…包含一測量值指定範圍碼EL1T和一測量值應用範圍碼EL1U。該複數不同時鐘時間參考區間HR1E1、HR1E2、…包含一時鐘時間指定區間HR1ET和一時鐘時間應用區間HR1EU。該測量值指定範圍碼EL1T和該測量值應用範圍碼EL1U被配置以分別指示該時鐘時間指定區間HR1ET和該時鐘時間應用區間HR1EU。該複數不同測量值參考範圍RQ11、RQ12、…包含一測量值指定範圍RQ1T和一測量值應用範圍RQ1U。該時鐘時間指定區間HR1ET和該時鐘時間應用區間HR1EU分別由該測量值指定範圍RQ1T和該測量值應用範圍RQ1U所代表。 The plurality of different measurement value reference range codes EL11, EL12, . . . include a measurement value designation range code EL1T and a measurement value application range code EL1U. The plurality of different clock time reference intervals HR1E1, HR1E2, . . . include a clock time designation interval HR1ET and a clock time application interval HR1EU. The measurement value designation range code EL1T and the measurement value application range code EL1U are configured to indicate the clock time designation interval HR1ET and the clock time application interval HR1EU, respectively. The plurality of different measurement value reference ranges RQ11, RQ12, . . . include a measurement value designation range RQ1T and a measurement value application range RQ1U. The clock time designation interval HR1ET and the clock time application interval HR1EU are respectively represented by the measurement value designation range RQ1T and the measurement value application range RQ1U.

在一些實施例中,該複數不同記憶體位置YS81、YS82、…分別基於該複數不同測量值參考範圍碼EL11、EL12、…而被識別。例如,該複數不同記憶體位置YS81、YS82、…分別基於複數記憶體位址AS81、AS82、…而被識別,或分別由該複數記憶體位址AS81、AS82、…所識別。該複數記憶體位址AS81、AS82、…分別基於該複數 不同測量值參考範圍碼EL11、EL12、…而被預設。 In some embodiments, the plurality of different memory locations YS81, YS82, . . . are identified based on the plurality of different measurement value reference range codes EL11, EL12, . . . respectively. For example, the plurality of different memory locations YS81, YS82, . . . are respectively identified based on the plurality of memory addresses AS81, AS82, . . . or are respectively identified by the plurality of memory addresses AS81, AS82, . The complex memory addresses AS81, AS82, ... are based on the complex Different measurement values are preset with reference to the range codes EL11, EL12, . . .

例如,該時鐘時間TH1A進一步基於一額定時鐘時間區間HR1E而被特徵化。該額定時鐘時間區間HR1E包含該複數不同時鐘時間參考區間HR1E1、HR1E2、…,並由一額定測量值範圍HR1N所代表。該額定測量值範圍HR1N包含該複數不同測量值參考範圍RQ11、RQ12、…,並基於該額定時鐘時間區間HR1E和該定時器規格FT21來用該指定測量值格式HH95而被預設。例如,該額定時鐘時間區間HR1E等於24小時。該額定測量值範圍HR1N是一額定時間值範圍。 For example, the clock time TH1A is further characterized based on a nominal clock time interval HR1E. The rated clock time interval HR1E includes the plurality of different clock time reference intervals HR1E1, HR1E2, . . . and is represented by a rated measurement value range HR1N. The nominal measurement value range HR1N includes the plurality of different measurement value reference ranges RQ11, RQ12, . . . and is preset with the specified measurement value format HH95 based on the nominal clock time interval HR1E and the timer specification FT21. For example, the nominal clock time interval HR1E is equal to 24 hours. The nominal measured value range HR1N is a nominal time value range.

例如,該測量應用功能規格GAL8包含一額定時鐘時間區間表示GA8HE和一時鐘時間參考區間表示GA8HR。該額定時鐘時間區間表示GA8HE用於表示該額定時鐘時間區間HR1E。該時鐘時間參考區間表示GA8HR用於表示該複數不同時鐘時間參考區間HR1E1、HR1E2、…。該額定測量值範圍HR1N等於該全測量值範圍QK8E的至少一第二部分,並基於該定時器規格FT21、該測量應用功能規格GAL8和該第一資料編碼規則WX8HE的其中之一來用該指定測量值格式HH95而被預設。該第一資料編碼規則WX8HE用於轉換該額定時鐘時間區間表示GA8HE,並基於該定時器規格FT21而被制定。例如,該額定測量值範圍HR1N藉由執行使用該第一資料編碼規則WX8HE的一資料編碼操作ZX8HE而被預設。 For example, the measurement application functional specification GAL8 includes a nominal clock time interval denoted GA8HE and a clock time reference interval denoted GA8HR. The nominal clock time interval representation GA8HE is used to represent the nominal clock time interval HR1E. The clock time reference interval representation GA8HR is used to represent the complex number of different clock time reference intervals HR1E1, HR1E2, . . . The rated measurement value range HR1N is equal to at least a second part of the full measurement value range QK8E, and is used for the designation based on one of the timer specification FT21, the measurement application function specification GAL8 and the first data encoding rule WX8HE The measured value format HH95 is preset. The first data encoding rule WX8HE is used to convert the rated clock time interval to GA8HE, and is formulated based on the timer specification FT21. For example, the nominal measurement value range HR1N is preset by performing a data encoding operation ZX8HE using the first data encoding rule WX8HE.

該複數不同測量值參考範圍RQ11、RQ12、…基於該定時器規格FT21、該測量應用功能規格 GAL8和一資料編碼規則WX8HR的其中之一來用該指定測量值格式HH95而被預設。該資料編碼規則WX8HR用於轉換該時鐘時間參考區間表示GA8HR,並基於該定時器規格FT21而被制定。例如,該複數不同測量值參考範圍RQ11、RQ12、…藉由執行使用該資料編碼規則WX8HR的一資料編碼操作ZX8HR而被預設。 The complex different measurement value reference ranges RQ11, RQ12, ... are based on the timer specification FT21, the measurement application function specification One of GAL8 and a data encoding rule WX8HR is preset with the specified measurement format HH95. The data encoding rule WX8HR is used to convert the clock time reference interval to represent GA8HR, and is formulated based on the timer specification FT21. For example, the plurality of different measurement value reference ranges RQ11, RQ12, . . . are preset by performing a data encoding operation ZX8HR using the data encoding rule WX8HR.

在一些實施例中,該複數物理參數指定範圍碼UQ11、UQ12、…被配置以分別基於該複數不同測量值參考範圍碼EL11、EL12、…而被儲存,並包含一物理參數目標範圍碼UQ1T和一物理參數目標範圍碼UQ1U。該複數物理參數指定範圍碼UQ11、UQ12、…皆選擇自該複數不同物理參數參考狀態碼EW11、EW12、…。例如,物理參數目標範圍碼UQ1U是一物理參數候選範圍碼。 In some embodiments, the complex physical parameter specifying range codes UQ11, UQ12, ... are configured to be stored based on the complex different measurement value reference range codes EL11, EL12, ..., respectively, and include a physical parameter target range code UQ1T and A physical parameter target range code UQ1U. The complex physical parameter specifying range codes UQ11, UQ12, . . . are all selected from the complex different physical parameter reference state codes EW11, EW12, . . . For example, the physical parameter target range code UQ1U is a physical parameter candidate range code.

該物理參數目標範圍碼UQ1T代表該可變物理參數QU1A被期望在該時鐘時間指定區間HR1ET內處於的一物理參數目標範圍RD1ET,並被配置以基於該測量值指定範圍碼EL1T而被儲存在一記憶體位置YS8T。該記憶體位置YS8T基於一記憶體位址AS8T而被識別。該複數不同測量值參考範圍碼EL11、EL12、…皆基於該測量應用功能規格GAL8而被預設。例如,該物理參數目標範圍碼UQ1T等於所預設的該物理參數應用狀態碼EW1T。該物理參數目標範圍碼UQ1U相同於該物理參數應用狀態碼EW1U。 The physical parameter target range code UQ1T represents a physical parameter target range RD1ET in which the variable physical parameter QU1A is expected to be within the clock time specified interval HR1ET, and is configured to be stored in a specified range code EL1T based on the measured value Memory location YS8T. The memory location YS8T is identified based on a memory address AS8T. The plurality of different measurement value reference range codes EL11, EL12, . . . are all preset based on the measurement application functional specification GAL8. For example, the physical parameter target range code UQ1T is equal to the preset physical parameter application status code EW1T. The physical parameter target range code UQ1U is the same as the physical parameter application status code EW1U.

該物理參數目標範圍碼UQ1U代表該可變物理參數QU1A被期望在該時鐘時間應用區間HR1EU內處 於的一物理參數目標範圍RD1EU,並被配置以基於該測量值應用範圍碼EL1U而被儲存在一記憶體位置YS8U。該記憶體位置YS8U基於一記憶體位址AS8U而被識別。該物理參數目標範圍RD1ET和該物理參數目標範圍RD1EU皆選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。例如,該時鐘時間應用區間HR1EU相鄰於該時鐘時間指定區間HR1ET。該物理參數目標範圍碼UQ1U相同於該物理參數目標狀態碼EW1U。該物理參數目標範圍RD1EU具有一預設物理參數目標範圍界限ZD1U1和相對於該預設物理參數目標範圍界限ZD1U1的一預設物理參數目標範圍界限ZD1U2。 The physical parameter target range code UQ1U represents that the variable physical parameter QU1A is expected to be located within the clock time application interval HR1EU A physical parameter target range RD1EU at is configured to be stored in a memory location YS8U using range code EL1U based on the measured value. The memory location YS8U is identified based on a memory address AS8U. Both the physical parameter target range RD1ET and the physical parameter target range RD1EU are selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . For example, the clock time application section HR1EU is adjacent to the clock time designation section HR1ET. The physical parameter target range code UQ1U is the same as the physical parameter target status code EW1U. The physical parameter target range RD1EU has a predetermined physical parameter target range limit ZD1U1 and a predetermined physical parameter target range limit ZD1U2 relative to the predetermined physical parameter target range limit ZD1U1.

在一些實施例中,當該接收單元337接收該控制訊號SC81時,該物理參數目標範圍碼UQ1T等於所預設的該物理參數應用狀態碼EW1T。該控制訊號SC81輸送所預設的該測量值指定範圍碼EL1T。該處理單元331從該控制訊號SC81獲得所輸送的該測量值指定範圍碼EL1T,基於所獲得的該測量值指定範圍碼EL1T來獲得該記憶體位址AS8T,並基於所獲得的該記憶體位址AS8T來存取被儲存在該記憶體位置YS8T的該物理參數目標範圍碼UQ1T以獲得該物理參數目標範圍碼UQ1T和所預設的該物理參數應用狀態碼EW1T的其中之一。例如,該時鐘時間指定區間HR1ET和該時鐘時間應用區間HR1EU之間具有一預設時間間隔。 In some embodiments, when the receiving unit 337 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset physical parameter application status code EW1T. The control signal SC81 transmits the preset measurement value specified range code EL1T. The processing unit 331 obtains the transmitted measurement value designation range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value designation range code EL1T, and obtains the memory address AS8T based on the obtained measurement value designation range code EL1T to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain one of the physical parameter target range code UQ1T and the preset physical parameter application status code EW1T. For example, there is a preset time interval between the clock time designation interval HR1ET and the clock time application interval HR1EU.

例如,在該物理參數目標範圍碼UQ1T等於所預設的該物理參數應用狀態碼EW1T的條件下,該控制 訊號SC81藉由輸送所預設的該測量值指定範圍碼EL1T來間接起到指示該物理參數應用狀態JE1T的作用。當該接收單元337接收該控制訊號SC81時,該可變物理參數QU1A處於一物理參數應用狀態JE1L。該處理單元331基於所獲得的該物理參數應用狀態碼EW1T來執行用於檢查該可變物理參數QU1A和該物理參數應用狀態JE1T之間的一物理參數關係KD9T的一物理參數關係檢查控制GX8T。例如,該控制訊號SC81藉由輸送所預設的該測量值指定範圍碼EL1T來起到指示該時鐘時間指定區間HR1ET和該測量值指定範圍RQ1T的至少其中之一的作用,並藉由起到指示該時鐘時間指定區間HR1ET的作用來起到指示該物理參數應用狀態JE1T的作用。 For example, under the condition that the physical parameter target range code UQ1T is equal to the preset physical parameter application status code EW1T, the control The signal SC81 indirectly plays the role of indicating the physical parameter application state JE1T by sending the preset measurement value designation range code EL1T. When the receiving unit 337 receives the control signal SC81, the variable physical parameter QU1A is in a physical parameter application state JE1L. The processing unit 331 executes a physical parameter relationship check control GX8T for checking a physical parameter relationship KD9T between the variable physical parameter QU1A and the physical parameter application state JE1T based on the obtained physical parameter application status code EW1T. For example, the control signal SC81 plays the role of indicating at least one of the clock time designation interval HR1ET and the measurement value designation range RQ1T by transmitting the preset measurement value designation range code EL1T, and by serving The role of indicating the clock time designation interval HR1ET plays the role of indicating the physical parameter application state JE1T.

在一些實施例中,在該物理參數應用狀態JE1L不同於該物理參數應用狀態JE1T且該處理單元331藉由執行該物理參數關係檢查控制GX8T而確定該物理參數應用狀態JE1T和該物理參數應用狀態JE1L之間的一物理參數狀態差異DT8T的條件下,該處理單元331基於所獲得的該物理參數應用狀態碼EW1T來執行一訊號產生控制GY81以產生一操作訊號SG81,並向該物理參數應用單元335傳輸該操作訊號SG81。該物理參數應用單元335響應該操作訊號SG81來使該可變物理參數QU1A從該物理參數應用狀態JE1L進入該物理參數應用狀態JE1T。例如,該可變物理參數QU1A藉由進入該物理參數目標範圍RD1ET來進入該物理參數應用狀態JE1T。 In some embodiments, the physical parameter application state JE1L is different from the physical parameter application state JE1T and the processing unit 331 determines the physical parameter application state JE1T and the physical parameter application state by executing the physical parameter relationship check control GX8T Under the condition of a physical parameter state difference DT8T between JE1Ls, the processing unit 331 executes a signal generation control GY81 based on the obtained physical parameter application state code EW1T to generate an operation signal SG81, and sends an operation signal SG81 to the physical parameter application unit 335 transmits the operation signal SG81. The physical parameter applying unit 335 causes the variable physical parameter QU1A to enter the physical parameter applying state JE1T from the physical parameter applying state JE1L in response to the operation signal SG81. For example, the variable physical parameter QU1A enters the physical parameter application state JE1T by entering the physical parameter target range RD1ET.

該處理單元331基於所獲得的該測量值指 定範圍碼EL1T來執行一資料儲存控制操作GM8T,該資料儲存控制操作GM8T用於導致代表該時鐘時間指定區間HR1ET的一時鐘時間應用區間碼UF8T被儲存。例如,該時鐘時間應用區間碼UF8T相同於所獲得的該測量值指定範圍碼EL1T。該資料儲存控制操作GM8T藉由使用該儲存單元332來將該時鐘時間應用區間碼UF8T指定到該可變時鐘時間區間碼UF8A。 The processing unit 331 refers to the obtained measurement value based on The range code EL1T is used to execute a data storage control operation GM8T for causing a clock time application interval code UF8T representing the clock time specified interval HR1ET to be stored. For example, the clock time application interval code UF8T is the same as the obtained measurement value designation range code EL1T. The data storage control operation GM8T uses the storage unit 332 to assign the clock time application interval code UF8T to the variable clock time interval code UF8A.

例如,該儲存單元332儲存一可變物理參數範圍碼UN8A。在該物理參數應用狀態JE1L不同於該物理參數應用狀態JE1T且該處理單元331藉由執行該物理參數關係檢查控制GX8T而確定該物理參數狀態差異DT8T的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該物理參數目標範圍碼UQ1T和所獲得的該物理參數應用狀態碼EW1T的其中之一指定到該可變物理參數範圍碼UN8A。 For example, the storage unit 332 stores a variable physical parameter range code UN8A. Under the condition that the physical parameter application state JE1L is different from the physical parameter application state JE1T and the processing unit 331 determines the physical parameter state difference DT8T by performing the physical parameter relationship check control GX8T, the processing unit 331 determines the physical parameter state difference DT8T by using the The storage unit 332 assigns one of the obtained physical parameter target range code UQ1T and the obtained physical parameter application status code EW1T to the variable physical parameter range code UN8A.

在一些實施例中,該定時器342被配置以藉由使用該測量值指定範圍RQ1T來代表該時鐘時間指定區間HR1ET,並被配置以藉由使用該測量值應用範圍RQ1U來代表該時鐘時間應用區間HR1EU。該控制訊號SC81進一步輸送代表該指定時間長度LH8T的該測量時間長度值VH8T和代表一時鐘參考時間TR81的一時鐘參考時間值NR81。例如,該時鐘參考時間TR81接近一目前時間。例如,該時鐘參考時間TR81與該目前時間的一時間差異在一預設時間長度內。該時鐘參考時間值NR81基於該時鐘參考時間TR81和該定時器規格FT21來以該指定測量值格式 HH95而被預設。 In some embodiments, the timer 342 is configured to represent the clock time designation interval HR1ET by using the measurement designation range RQ1T, and is configured to represent the clock time application by using the measurement application range RQ1U Interval HR1EU. The control signal SC81 further delivers the measured time length value VH8T representing the designated time length LH8T and a clock reference time value NR81 representing a clock reference time TR81. For example, the clock reference time TR81 is close to a current time. For example, a time difference between the clock reference time TR81 and the current time is within a predetermined time length. The clock reference time value NR81 is in the specified measurement value format based on the clock reference time TR81 and the timer specification FT21 HH95 is preset.

該測量值指定範圍RQ1T具有該指定範圍界限值對DQ1T。該指定範圍界限值對DQ1T包含一指定範圍界限值DQ13和相對於該指定範圍界限值DQ13的一指定範圍界限值DQ14。例如,該指定範圍界限值DQ13和該指定範圍界限值DQ14分別是一開始範圍界限值和一結束範圍界限值。該指定範圍界限值DQ13等於該時鐘參考時間值NR81。 The measurement value specified range RQ1T has the specified range limit value pair DQ1T. The designated range limit value pair DQ1T includes a designated range limit value DQ13 and a designated range limit value DQ14 relative to the designated range limit value DQ13. For example, the designated range limit value DQ13 and the designated range limit value DQ14 are a start range limit value and an end range limit value, respectively. The specified range limit value DQ13 is equal to the clock reference time value NR81.

該控制訊號SC81輸送一控制訊息CG81。該控制訊息CG81包含該測量值指定範圍碼EL1T、該時鐘參考時間值NR81和該測量時間長度值VH8T。例如,該測量應用功能規格GAL8包含一時鐘時間表示GA8TR。該時鐘時間表示GA8TR用於表示該時鐘參考時間TR81。該時鐘參考時間值NR81基於該時鐘時間表示GA8TR、該定時器規格FT21和用於轉換該時鐘時間表示GA8TR的一資料編碼操作ZX8TR來以該指定測量值格式HH95而被預設。 The control signal SC81 transmits a control message CG81. The control message CG81 includes the measurement value specifying range code EL1T, the clock reference time value NR81 and the measurement time length value VH8T. For example, the measurement application functional specification GAL8 includes a clock time representation GA8TR. The clock time representation GA8TR is used to represent the clock reference time TR81. The clock reference time value NR81 is preset in the specified measurement value format HH95 based on the clock time representation GA8TR, the timer specification FT21 and a data encoding operation ZX8TR for converting the clock time representation GA8TR.

該控制裝置212包含一操作單元297。該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該測量值指定範圍碼EL1T、該時鐘參考時間值NR81和該時鐘參考時間值NR81。例如,該操作單元297被配置以獲得所預設的該測量值指定範圍碼EL1T、所預設的該時鐘參考時間值NR81和所預設的該測量時間長度值VH8T,並基於所獲得的該時鐘參考時間值NR81、所獲得的該測量值指定範圍碼EL1T和所獲得的該測量時間長度值VH8T來輸出輸送該控制訊息CG81的該控制訊號SC81。 The control device 212 includes an operation unit 297 . The processing unit 331 responds to the control signal SC81 to obtain the measurement value specifying range code EL1T, the clock reference time value NR81 and the clock reference time value NR81 from the control signal SC81. For example, the operation unit 297 is configured to obtain the preset measurement value specifying range code EL1T, the preset clock reference time value NR81 and the preset measurement time length value VH8T, and based on the obtained The clock refers to the time value NR81, the obtained measurement value designation range code EL1T, and the obtained measurement time length value VH8T to output the control signal SC81 conveying the control message CG81.

在一些實施例中,該處理單元331基於所獲得的該時鐘參考時間值NR81來導致該定時器342在一啟動時間TT82之內啟動,並藉此導致該定時器342在該啟動時間TT82之內藉由感測該時鐘時間TH1A來產生一感測訊號SY80。例如,該感測訊號SY80是一時鐘時間訊號。該感測訊號SY80是一初始時間訊號,並以該指定測量值格式HH95輸送一測量值NY80。例如,該測量值NY80是一初始計數值。例如,該測量值NY80等於該時鐘參考時間值NR81。 In some embodiments, the processing unit 331 causes the timer 342 to start within a start time TT82 based on the obtained clock reference time value NR81, and thereby causes the timer 342 to start within the start time TT82 A sensing signal SY80 is generated by sensing the clock time TH1A. For example, the sensing signal SY80 is a clock time signal. The sensing signal SY80 is an initial time signal, and sends a measurement value NY80 in the specified measurement value format HH95. For example, the measurement value NY80 is an initial count value. For example, the measurement value NY80 is equal to the clock reference time value NR81.

例如,該定時器342被配置以具有一可變計數值NY8A。在該接收單元337從該控制裝置212接收輸送該時鐘參考時間值NR81的該控制訊號SC81的條件下,該處理單元331基於所獲得的該時鐘參考時間值NR81來啟動該定時器342以執行用於該測量應用功能FA81的一計數操作BD81以改變該可變計數值NY8A。該可變計數值NY8A在該啟動時間TT82之內被配置以等於該測量值NY80,並以該指定測量值格式HH95而被提供。例如,該測量值NY80被配置以相同於所獲得的該時鐘參考時間值NR81。 For example, the timer 342 is configured to have a variable count value NY8A. Under the condition that the receiving unit 337 receives the control signal SC81 conveying the clock reference time value NR81 from the control device 212, the processing unit 331 starts the timer 342 based on the obtained clock reference time value NR81 to execute the timer 342. A count operation BD81 of the measurement application function FA81 changes the variable count value NY8A. The variable count value NY8A is configured to be equal to the measurement value NY80 within the start-up time TT82 and is provided in the specified measurement value format HH95. For example, the measured value NY80 is configured to be the same as the obtained clock reference time value NR81.

在該可變物理參數QU1A基於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,該處理單元331基於該計數操作BD81來到達一操作時間TY81。在該操作時間TY81之內,該定時器342感測該時鐘時間TH1A以導致該可變計數值NY8A等於一測量值NY81,並藉此產生輸送該測量值NY81的一感測訊號SY81。例如,該操作時間TY81是一指定時間。 Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 reaches an operation time TY81 based on the counting operation BD81. During the operation time TY81, the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to a measurement value NY81, and thereby generates a sense signal SY81 conveying the measurement value NY81. For example, the operation time TY81 is a designated time.

例如,該觸發應用單元387響應該觸發事件JQ81來產生該操作請求訊號SJ81,提供該操作請求訊號SJ81到該處理單元331,並藉此使該處理單元331接收該操作請求訊號SJ81。該處理單元331響應該操作請求訊號SJ81來在該操作時間TY81之內從該感測訊號SY81以該指定測量值格式HH95獲得該測量值NY81,並在該操作時間TY81之內藉由執行使用所獲得的該測量值指定範圍碼EL1T的一科學計算MH85來獲得或確定該測量值應用範圍碼EL1U以便檢查檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的該物理參數關係KD9U。 For example, the trigger application unit 387 generates the operation request signal SJ81 in response to the trigger event JQ81, provides the operation request signal SJ81 to the processing unit 331, and thereby causes the processing unit 331 to receive the operation request signal SJ81. The processing unit 331 responds to the operation request signal SJ81 to obtain the measurement value NY81 from the sensing signal SY81 in the specified measurement value format HH95 within the operation time TY81, and uses the The obtained measurement value specifies a scientific calculation MH85 of the range code EL1T to obtain or determine the measurement value. Apply the range code EL1U to check the physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U.

在一些實施例中,該測量值指定範圍RQ1T具有該指定範圍界限值對DQ1T。該指定範圍界限值對DQ1T包含該指定範圍界限值DQ13和相對於該指定範圍界限值DQ13的該指定範圍界限值DQ14。該測量值指定範圍RQ1T和該指定範圍界限值對DQ1T皆基於該時鐘時間指定區間HR1ET和該定時器規格FT21來用該指定測量值格式HH95而被預設。該測量值應用範圍RQ1U具有該應用範圍界限值對DQ1U。該應用範圍界限值對DQ1U包含該第一應用範圍界限值DQ15和相對於該第一應用範圍界限值DQ15的該第二應用範圍界限值DQ16。該測量值應用範圍RQ1U和該應用範圍界限值對DQ1U皆基於該時鐘時間應用區間HR1EU和該定時器規格FT21來用該指定測量值格式HH95而被預設。 In some embodiments, the measurement value specified range RQ1T has the specified range limit value pair DQ1T. The designated range limit value pair DQ1T includes the designated range limit value DQ13 and the designated range limit value DQ14 relative to the designated range limit value DQ13. The measurement value specified range RQ1T and the specified range limit value pair DQ1T are both preset in the specified measurement value format HH95 based on the clock time specified interval HR1ET and the timer specification FT21. The measured value application range RQ1U has the application range limit value pair DQ1U. The application range limit value pair DQ1U includes the first application range limit value DQ15 and the second application range limit value DQ16 relative to the first application range limit value DQ15. The measurement value application range RQ1U and the application range limit value pair DQ1U are both preset based on the clock time application interval HR1EU and the timer specification FT21 to use the specified measurement value format HH95.

例如,該測量應用功能規格GAL8包含一時鐘時間指定區間表示GA8HT和一時鐘時間應用區間表示 GA8HU。該時鐘時間指定區間表示GA8HT用於表示該時鐘時間指定區間HR1ET。該時鐘時間應用區間表示GA8HU用於表示該時鐘時間應用區間HR1EU。該測量值指定範圍RQ1T和該指定範圍界限值對DQ1T皆基於該時鐘時間指定區間表示GA8HT、該定時器規格FT21和用於轉換該時鐘時間指定區間表示GA8HT的一資料編碼操作ZX8HT來用該指定測量值格式HH95而被預設。該測量值應用範圍RQ1U和該應用範圍界限值對DQ1U皆基於該時鐘時間應用區間表示GA8HU、該定時器規格FT21和用於轉換該時鐘時間應用區間表示GA8HU的一資料編碼操作ZX8HU來用該指定測量值格式HH95而被預設。 For example, the measurement application functional specification GAL8 contains a clock time specified interval representation GA8HT and a clock time application interval representation GA8HU. The clock time designation interval indicates that GA8HT is used to indicate the clock time designation interval HR1ET. The clock time application interval indicates that GA8HU is used to indicate the clock time application interval HR1EU. The measurement value designation range RQ1T and the designation range limit value pair DQ1T are based on the clock time designation range representation GA8HT, the timer specification FT21 and a data encoding operation ZX8HT for converting the clock time designation range representation GA8HT to use the designation The measured value format HH95 is preset. The measurement value application range RQ1U and the application range limit value pair DQ1U are based on the clock time application range representation GA8HU, the timer specification FT21 and a data encoding operation ZX8HU for converting the clock time application range representation GA8HU to use the designation The measured value format HH95 is preset.

在一些實施例中,該處理單元331基於該控制訊號SC81來在該操作時間TY81之內確定該測量值應用範圍碼EL1U以便檢查檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的該物理參數關係KD9U。例如,該處理單元331響應該操作請求訊號SJ81來基於該控制訊號SC81而在該操作時間TY81之內確定該測量值應用範圍碼EL1U。該處理單元331在該操作時間TY81之內確定該相對值VL81,並藉由執行使用所確定的該相對值VL81、所獲得的該測量時間長度值VH8T和所獲得的該時鐘參考時間值NR81的一科學計算ME85來獲得該應用範圍界限值對DQ1U。 In some embodiments, the processing unit 331 determines the measured value application range code EL1U within the operation time TY81 based on the control signal SC81 to check the difference between the variable physical parameter QU1A and the physical parameter target state JE1U This physical parameter is related to KD9U. For example, the processing unit 331 determines the measurement value application range code EL1U within the operation time TY81 based on the control signal SC81 in response to the operation request signal SJ81. The processing unit 331 determines the relative value VL81 within the operation time TY81, and by performing a process using the determined relative value VL81, the obtained measurement time length value VH8T and the obtained clock reference time value NR81 A scientific calculation ME85 to obtain the application range limit value pair DQ1U.

例如,該處理單元331響應響應該操作請求訊號SJ81來在該操作時間TY81之內確定該相對值VL81,並基於所確定的該相對值VL81和所獲得的該測量值指定 範圍碼EL1T來確定該測量值應用範圍碼EL1U。該處理單元331基於所獲得的該測量值NY81和所獲得的該應用範圍界限值對DQ1U之間的該資料比較CF81來檢查該數學關係KQ81以做出該測量值NY81是否為於所選擇的該測量值應用範圍RQ1U之內的該邏輯決定PQ81。在該邏輯決定PQ81是肯定的條件下,該處理單元331確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU。 For example, the processing unit 331 determines the relative value VL81 within the operation time TY81 in response to the operation request signal SJ81, and specifies the relative value VL81 based on the determined relative value VL81 and the obtained measurement value The range code EL1T is used to determine the measurement value using the range code EL1U. The processing unit 331 checks the mathematical relationship KQ81 based on the data comparison CF81 between the obtained measurement value NY81 and the obtained application range limit value pair DQ1U to determine whether the measurement value NY81 is for the selected This logic within the measured value application range RQ1U determines PQ81. Under the condition that the logic decision PQ81 is affirmative, the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently located.

在所獲得的該測量值指定範圍碼EL1T不同於所確定的該測量值應用範圍碼EL1U且該處理單元331藉由做出該邏輯決定PQ81而確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於等於該測量值指定範圍碼EL1T的該可變時鐘時間區間碼UF8A和所確定的該測量值應用範圍碼EL1U之間的一碼差異DG83來執行該資料儲存控制操作GM8U。該資料儲存控制操作GM8U使用該儲存單元332以將所確定的該測量值應用範圍碼EL1U指定到該可變時鐘時間區間碼UF8A。 After the obtained measurement specified range code EL1T is different from the determined measurement application range code EL1U and the processing unit 331 determines the clock time application that the clock time TH1A is currently in by making the logic decision PQ81 Under the condition of interval HR1EU, the processing unit 331 executes the data based on the variable clock time interval code UF8A equal to the measurement value specified range code EL1T and the determined measurement value applying a code difference DG83 between the range code EL1U Storage Control Operates GM8U. The data storage control operation GM8U uses the storage unit 332 to assign the determined measurement value application range code EL1U to the variable clock time interval code UF8A.

在一些實施例中,當該觸發事件JQ81發生時,該物理參數目標範圍碼UQ1U等於所預設的該物理參數目標狀態碼EW1U。在該觸發事件JQ81發生的條件下,該處理單元331響應該操作請求訊號SJ81來基於該控制訊號SC81而確定該測量值應用範圍碼EL1U。在該處理單元331藉由做出該邏輯決定PQ81而確定該時鐘時間TH1A目前所處於的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於所確定的該測量值應用範圍碼EL1U來獲得該 記憶體位址AS8U,並基於所獲得的該記憶體位址AS8U來存取被儲存在該記憶體位置YS8U的該物理參數目標範圍碼UQ1U以獲得該物理參數目標範圍碼UQ1U和所預設的該物理參數目標狀態碼EW1U的其中之一。 In some embodiments, when the trigger event JQ81 occurs, the physical parameter target range code UQ1U is equal to the preset physical parameter target state code EW1U. When the trigger event JQ81 occurs, the processing unit 331 determines the measurement value application range code EL1U based on the control signal SC81 in response to the operation request signal SJ81. Under the condition that the processing unit 331 determines the clock time application interval HR1EU in which the clock time TH1A is currently in by making the logical decision PQ81, the processing unit 331 applies a range code EL1U based on the determined measurement value to obtain Should memory address AS8U, and access the physical parameter target range code UQ1U stored in the memory location YS8U based on the obtained memory address AS8U to obtain the physical parameter target range code UQ1U and the preset physical parameter One of the parameter target status codes EW1U.

例如,當該處理單元331檢查該數學關係KQ81時,該可變物理參數QU1A處於該物理參數應用狀態JE1T。該處理單元331基於所獲得的該物理參數目標狀態碼EW1U來執行用於檢查該可變物理參數QU1A和該物理參數目標狀態JE1U之間的該物理參數關係KD9U的該物理參數關係檢查控制GX8U。在該物理參數應用狀態JE1T不同於該物理參數目標狀態JE1U且該處理單元331藉由執行該物理參數關係檢查控制GX8U而確定該物理參數目標狀態JE1U和該物理參數應用狀態JE1T之間的該物理參數狀態差異DT81的條件下,該處理單元331基於所獲得的該物理參數目標狀態碼EW1U來執行該訊號產生控制GY85以產生該操作訊號SG85,並向該物理參數應用單元335傳輸該操作訊號SG85。 For example, when the processing unit 331 checks the mathematical relationship KQ81, the variable physical parameter QU1A is in the physical parameter application state JE1T. The processing unit 331 executes the physical parameter relationship checking control GX8U for checking the physical parameter relationship KD9U between the variable physical parameter QU1A and the physical parameter target state JE1U based on the obtained physical parameter target state code EW1U. When the physical parameter application state JE1T is different from the physical parameter target state JE1U and the processing unit 331 determines the physical parameter between the physical parameter target state JE1U and the physical parameter application state JE1T by executing the physical parameter relationship check control GX8U Under the condition of the parameter state difference DT81, the processing unit 331 executes the signal generation control GY85 based on the obtained physical parameter target state code EW1U to generate the operation signal SG85, and transmits the operation signal SG85 to the physical parameter application unit 335 .

該物理參數應用單元335響應該操作訊號SG85來使該可變物理參數QU1A從該物理參數應用狀態JE1T進入該物理參數目標狀態JE1U。例如,該可變物理參數QU1A藉由進入該物理參數目標範圍RD1EU來進入該物理參數目標狀態JE1U。例如,在該物理參數應用狀態JE1T不同於該物理參數目標狀態JE1U且該處理單元331藉由執行該物理參數關係檢查控制GX8U而確定物理參數狀態差異DT81的條件下,該處理單元331藉由使用該儲存單元 332來將所獲得的該物理參數目標範圍碼UQ1U和所獲得的該物理參數目標狀態碼EW1U的其中之一指定到該可變物理參數範圍碼UN8A。 The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the physical parameter target state JE1U from the physical parameter application state JE1T in response to the operation signal SG85. For example, the variable physical parameter QU1A enters the physical parameter target state JE1U by entering the physical parameter target range RD1EU. For example, under the condition that the physical parameter application state JE1T is different from the physical parameter target state JE1U and the processing unit 331 determines the physical parameter state difference DT81 by performing the physical parameter relationship check control GX8U, the processing unit 331 determines the physical parameter state difference DT81 by using the storage unit 332 to assign one of the obtained physical parameter target range code UQ1U and the obtained physical parameter target status code EW1U to the variable physical parameter range code UN8A.

在一些實施例中,該控制裝置212包含該操作單元297和耦合於該操作單元297的一狀態改變偵測器475。該複數物理參數指定範圍碼UQ11、UQ12、…屬於一物理參數指定範圍碼類型TS81。該物理參數指定範圍碼類型TS81由一物理參數指定範圍碼類型識別符HS81所識別。該物理參數指定範圍碼類型識別符HS81被預設。該記憶體位址AS8T基於所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該測量值指定範圍碼EL1T而被預設。該記憶體位址AS8U基於所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該測量值應用範圍碼EL1U而被預設。例如,該狀態改變偵測器475用於導致該操作單元297向該接收單元337傳輸該控制訊號SC81。 In some embodiments, the control device 212 includes the operating unit 297 and a state change detector 475 coupled to the operating unit 297 . The complex physical parameter specifying range codes UQ11, UQ12, ... belong to a physical parameter specifying range code type TS81. The physical parameter specifying range code type TS81 is identified by a physical parameter specifying range code type identifier HS81. The physical parameter specifies that the range code type identifier HS81 is preset. The memory address AS8T is preset based on the preset physical parameter specifying range code type identifier HS81 and the preset measurement value specifying range code EL1T. The memory address AS8U is preset based on the preset physical parameter specified range code type identifier HS81 and the preset measurement value application range code EL1U. For example, the state change detector 475 is used to cause the operating unit 297 to transmit the control signal SC81 to the receiving unit 337 .

在該接收單元337接收該控制訊號SC81之前,該操作單元297被配置以取得所預設的該物理參數目標範圍碼UQ1T、所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該測量值指定範圍碼EL1T,並預先基於所取得的該物理參數指定範圍碼類型識別符HS81和所取得的該測量值指定範圍碼EL1T來取得該記憶體位址AS8T。該操作單元297基於所取得的該物理參數目標範圍碼UQ1T和所取得的該記憶體位址AS8T來提供一寫入請求訊息WS8T到該接收單元337。該寫入請求訊息WS8T包含所取得的該物理參數目標範圍碼UQ1T和所取得的該記憶 體位址AS8T。 Before the receiving unit 337 receives the control signal SC81, the operation unit 297 is configured to obtain the preset physical parameter target range code UQ1T, the preset physical parameter specified range code type identifier HS81 and the preset physical parameter target range code UQ1T. The measured value designation range code EL1T of , and the memory address AS8T is obtained in advance based on the obtained physical parameter designation range code type identifier HS81 and the obtained measurement value designation range code EL1T. The operation unit 297 provides a write request message WS8T to the receiving unit 337 based on the obtained physical parameter target range code UQ1T and the obtained memory address AS8T. The write request message WS8T includes the obtained physical parameter target range code UQ1T and the obtained memory Body address AS8T.

例如,在該接收單元337接收該控制訊號SC81之前,該接收單元337從該操作單元297接收該寫入請求訊息WS8T。該處理單元331從所接收的該寫入請求訊息WS8T獲得所包含的該物理參數目標範圍碼UQ1T和所包含的該記憶體位址AS8T,並基於所獲得的該物理參數目標範圍碼UQ1T和所獲得的該記憶體位址AS8T來使用該儲存單元332以在該記憶體位置YS8T儲存所獲得的該物理參數目標範圍碼UQ1T。 For example, before the receiving unit 337 receives the control signal SC81 , the receiving unit 337 receives the writing request message WS8T from the operating unit 297 . The processing unit 331 obtains the included physical parameter target range code UQ1T and the included memory address AS8T from the received write request message WS8T, and based on the obtained physical parameter target range code UQ1T and the obtained The storage unit 332 is used to store the obtained physical parameter target range code UQ1T in the memory location YS8T.

在該接收單元337接收該控制訊號SC81之前,該操作單元297被配置以取得該物理參數目標範圍碼UQ1U和所預設的該測量值應用範圍碼EL1U,並預先基於所取得的該物理參數指定範圍碼類型識別符HS81和所取得的該測量值應用範圍碼EL1U來取得該記憶體位址AS8U。該處理單元331基於所取得的該物理參數目標範圍碼UQ1U和所取得的該記憶體位址AS8U來來提供一寫入請求訊息WS8U到該接收單元337。該寫入請求訊息WS8U包含所取得的該物理參數目標範圍碼UQ1U和所取得的該記憶體位址AS8U。 Before the receiving unit 337 receives the control signal SC81, the operating unit 297 is configured to obtain the physical parameter target range code UQ1U and the preset measurement value application range code EL1U, and pre-specify based on the obtained physical parameter The range code type identifier HS81 and the measured value obtained apply the range code EL1U to obtain the memory address AS8U. The processing unit 331 provides a write request message WS8U to the receiving unit 337 based on the obtained physical parameter target range code UQ1U and the obtained memory address AS8U. The write request message WS8U includes the obtained physical parameter target range code UQ1U and the obtained memory address AS8U.

例如,在該接收單元337接收該控制訊號SC81之前,該接收單元337從該操作單元29接收該寫入請求訊息WS8U。該處理單元331從所接收的該寫入請求訊息WS8U獲得所包含的該物理參數目標範圍碼UQ1U和所包含的該記憶體位址AS8U,並基於所獲得的該物理參數目標範圍碼UQ1U和所獲得的該記憶體位址AS8U來使用該儲 存單元332以在該記憶體位置YS8U儲存所獲得的該物理參數目標範圍碼UQ1U。 For example, before the receiving unit 337 receives the control signal SC81 , the receiving unit 337 receives the writing request message WS8U from the operating unit 29 . The processing unit 331 obtains the included physical parameter target range code UQ1U and the included memory address AS8U from the received write request message WS8U, and based on the obtained physical parameter target range code UQ1U and the obtained the memory address AS8U to use the memory The storage unit 332 stores the obtained physical parameter target range code UQ1U in the memory location YS8U.

請參閱圖13和圖14。圖13為繪示於圖1中的該控制系統901的一實施結構9022的示意圖。圖14為繪示於圖1中的該控制系統901的一實施結構9023的示意圖。如圖13和圖14所示,該實施結構9022和該實施結構9023的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含一操作單元397、該物理參數應用單元335、該儲存單元332和耦合於該處理單元331的一感測單元334。該操作單元397包含該處理單元331、該接收單元337和該定時器342。該接收單元337、該定時器342、該物理參數應用單元335、該儲存單元332和該感測單元334皆受該處理單元331控制。 See Figure 13 and Figure 14. FIG. 13 is a schematic diagram illustrating an implementation structure 9022 of the control system 901 shown in FIG. 1 . FIG. 14 is a schematic diagram illustrating an implementation structure 9023 of the control system 901 shown in FIG. 1 . As shown in FIGS. 13 and 14 , each structure of the implementation structure 9022 and the implementation structure 9023 includes the control device 212 and the functional device 130 . The functional device 130 includes an operation unit 397 , the physical parameter application unit 335 , the storage unit 332 , and a sensing unit 334 coupled to the processing unit 331 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 and the timer 342 . The receiving unit 337 , the timer 342 , the physical parameter application unit 335 , the storage unit 332 and the sensing unit 334 are all controlled by the processing unit 331 .

在一些實施例中,該可變物理參數QU1A進一步基於一物理參數目標範圍RD1ET和不同於該物理參數目標範圍RD1ET的一物理參數應用範圍RD1EL而被特徵化。該物理參數應用範圍RD1EL由一測量值應用範圍RN1L所代表。該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN81。在該接收單元337接收起到指示該物理參數目標範圍RD1ET的作用的該控制訊號SC81的條件下,該處理單元331響應該感測訊號SN81來獲得一測量值VN81。例如,該測量值VN81是一物理參數測量值。當該接收單元337接收該控制訊號SC81時,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN81。 In some embodiments, the variable physical parameter QU1A is further characterized based on a physical parameter target range RD1ET and a physical parameter application range RD1EL different from the physical parameter target range RD1ET. The physical parameter application range RD1EL is represented by a measured value application range RN1L. The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81. Under the condition that the receiving unit 337 receives the control signal SC81 that functions to indicate the physical parameter target range RD1ET, the processing unit 331 obtains a measurement value VN81 in response to the sensing signal SN81. For example, the measurement VN81 is a physical parameter measurement. When the receiving unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81.

在該處理單元331藉由檢查該測量值VN81 和該測量值應用範圍RN1L之間的一數學關係KV81而確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331基於該控制訊號SC81而導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。例如,在該處理單元331確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331基於該控制訊號SC81而向該物理參數應用單元335傳輸一操作訊號SG81。該操作訊號SG81用於導致該可變物理參數QU1A從該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL進入該物理參數目標範圍RD1ET。 In the processing unit 331 by checking the measured value VN81 A mathematical relationship KV81 between the measured value application range RN1L determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, and the processing unit 331 causes the variable physical parameter QU1A to cause the variable physical parameter based on the control signal SC81. The physical parameter QU1A enters the physical parameter target range RD1ET. For example, under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 transmits an operation signal SG81 to the physical parameter application unit 335 based on the control signal SC81 . The operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

在一些實施例中,該時鐘時間指定區間HR1ET相關於該物理參數目標範圍RD1ET。該控制訊號SC81藉由起到指示該時鐘時間指定區間HR1ET的作用來起到指示該物理參數目標範圍RD1ET的作用。例如,該控制訊號SC81藉由輸送該測量值指定範圍碼EL1T來使該處理單元331獲得該物理參數應用狀態碼EW1T以起到指示該物理參數目標範圍RD1ET的作用。在該處理單元331確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331基於該控制訊號SC81而確定該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL之間的一範圍差異DB81以向該物理參數應用單元335傳輸該操作訊號SG81。 In some embodiments, the clock time designation interval HR1ET is relative to the physical parameter target range RD1ET. The control signal SC81 serves to indicate the physical parameter target range RD1ET by serving to indicate the clock time designation interval HR1ET. For example, the control signal SC81 enables the processing unit 331 to obtain the physical parameter application status code EW1T by sending the measurement value specifying range code EL1T to indicate the physical parameter target range RD1ET. Under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 determines the physical parameter target range RD1ET and the physical parameter application range RD1EL based on the control signal SC81 A range difference DB81 therebetween to transmit the operation signal SG81 to the physical parameter application unit 335 .

該物理參數應用狀態JE1T根據該物理參數目標範圍RD1ET而被預先確定。該操作訊號SG81用於導 致該可變物理參數QU1A進入該物理參數應用狀態JE1T。該時鐘時間指定區間HR1ET相鄰於該時鐘時間應用區間HR1EU。在該時鐘時間TH1A處於該時鐘時間指定區間HR1ET的條件下,該可變物理參數QU1A處於該物理參數目標範圍RD1ET和該物理參數應用狀態JE1T的其中之一。該處理單元331響應該控制訊號SC81來啟動該定時器342以使該定時器342在該時鐘時間指定區間HR1ET之內感測該時鐘時間TH1A,並在該時鐘時間應用區間HR1EU之內感測該時鐘時間TH1A。 The physical parameter application state JE1T is predetermined according to the physical parameter target range RD1ET. The operation signal SG81 is used to guide Cause the variable physical parameter QU1A to enter the physical parameter application state JE1T. The clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU. Under the condition that the clock time TH1A is in the clock time designation interval HR1ET, the variable physical parameter QU1A is in one of the physical parameter target range RD1ET and the physical parameter application state JE1T. The processing unit 331 starts the timer 342 in response to the control signal SC81 so that the timer 342 senses the clock time TH1A within the clock time specified interval HR1ET, and senses the clock time within the clock time application interval HR1EU Clock time TH1A.

在一些實施例中,該物理參數目標範圍RD1ET由一測量值目標範圍RN1T所代表。該控制訊號SC81藉由起到指示該測量值目標範圍RN1T的作用來起到指示該物理參數目標範圍RD1ET的作用。例如,該處理單元331基於該控制訊號SC81而確定該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍差異DS81以確定該範圍差異DB81。例如,該處理單元331藉由執行該物理參數關係檢查控制GX8T來確定該範圍差異DB81。該物理參數關係檢查控制GX8T包含用於檢查該測量值VN81和該測量值應用範圍RN1L之間的該數學關係KV81的一檢查操作BV81。 In some embodiments, the physical parameter target range RD1ET is represented by a measurement value target range RN1T. The control signal SC81 serves to indicate the physical parameter target range RD1ET by serving to indicate the measurement value target range RN1T. For example, the processing unit 331 determines a range difference DS81 between the measurement value target range RN1T and the measurement value application range RN1L based on the control signal SC81 to determine the range difference DB81. For example, the processing unit 331 determines the range difference DB81 by executing the physical parameter relationship check control GX8T. The physical parameter relationship check control GX8T includes a check operation BV81 for checking the mathematical relationship KV81 between the measured value VN81 and the measured value application range RN1L.

例如,耦合於該操作單元397的該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN81。在該操作單元397接收該控制訊號SC81的條件下,該操作單元397響應該感測訊號SN81來獲得該測量值VN81。在該操作單元397藉由檢查該數學關係KV81而確定該可變物 理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該操作單元397基於該控制訊號SC81而導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 For example, the sensing unit 334 coupled to the operating unit 397 senses the variable physical parameter QU1A to generate the sensing signal SN81. Under the condition that the operation unit 397 receives the control signal SC81, the operation unit 397 obtains the measurement value VN81 in response to the sensing signal SN81. The variable is determined at the operating unit 397 by checking the mathematical relationship KV81 Under the condition of the physical parameter application range RD1EL in which the physical parameter QU1A is currently located, the operation unit 397 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET based on the control signal SC81.

在一些實施例中,該物理參數目標範圍RD1EU由一測量值目標範圍RN1U所代表。該控制訊號SC81用於使該功能裝置130執行該物理參數關係檢查控制GX8U。在該觸發事件JQ81發生或該處理單元331獲得該測量值NY81的條件下,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN85。該處理單元331響應該感測訊號SN85來獲得一測量值VN85。在該處理單元331基於該控制訊號SC81而確定或獲得該物理參數目標範圍碼UQ1U的條件下,該處理單元331基於所確定的該物理參數目標範圍碼UQ1U來執行用於檢查該測量值VN85和一測量值指示範圍RN1G之間的一數學關係KV86的一檢查操作BV86。例如,該測量值指示範圍RN1G等於該測量值目標範圍RN1T和該測量值目標範圍RN1U的其中之一。 In some embodiments, the physical parameter target range RD1EU is represented by a measurement value target range RN1U. The control signal SC81 is used to make the functional device 130 execute the physical parameter relationship check control GX8U. When the trigger event JQ81 occurs or the processing unit 331 obtains the measurement value NY81, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN85. The processing unit 331 obtains a measurement value VN85 in response to the sensing signal SN85. Under the condition that the processing unit 331 determines or obtains the physical parameter target range code UQ1U based on the control signal SC81 , the processing unit 331 executes a method for checking the measured value VN85 and the measurement value based on the determined physical parameter target range code UQ1U. A measurement value indicates a check operation BV86 of a mathematical relationship KV86 between the ranges RN1G. For example, the measurement value indication range RN1G is equal to one of the measurement value target range RN1T and the measurement value target range RN1U.

在該處理單元331基於該檢查操作BV86而確定該物理參數目標範圍RD1ET和該物理參數目標範圍RD1EU之間的一範圍差異DB86的條件下,該處理單元331基於所確定的該物理參數目標範圍碼UQ1U來執行該訊號產生控制GY85以產生該操作訊號SG85。該操作訊號SG85用於控制該物理參數應用單元335以使該可變物理參數QU1A在該時鐘時間應用區間HR1EU之內從該物理參數應用狀態JE1T進入該物理參數目標狀態JE1U。 On the condition that the processing unit 331 determines a range difference DB86 between the physical parameter target range RD1ET and the physical parameter target range RD1EU based on the checking operation BV86, the processing unit 331 determines the physical parameter target range code based on the determined physical parameter target range code UQ1U executes the signal generation control GY85 to generate the operation signal SG85. The operation signal SG85 is used to control the physical parameter application unit 335 so that the variable physical parameter QU1A enters the physical parameter target state JE1U from the physical parameter application state JE1T within the clock time application interval HR1EU.

例如,該處理單元331藉由執行該物理參數 關係檢查控制GX8U來確定該範圍差異DB86。該物理參數關係檢查控制GX8U包含用於檢查該測量值VN85和該測量值指示範圍RN1G之間的該數學關係KV86的該檢查操作BV86。該處理單元331藉由檢查該數學關係KV86來檢查該可變物理參數QU1A和該物理參數目標範圍RD1EU之間的一物理參數關係KD8U。 For example, the processing unit 331 executes the physical parameter by The relationship check controls the GX8U to determine the range difference DB86. The physical parameter relationship check control GX8U includes the check operation BV86 for checking the mathematical relationship KV86 between the measurement value VN85 and the measurement value indicating range RN1G. The processing unit 331 checks a physical parameter relationship KD8U between the variable physical parameter QU1A and the physical parameter target range RD1EU by checking the mathematical relationship KV86.

請參閱圖15和圖16。圖15為繪示於圖1中的該控制系統901的一實施結構9024的示意圖。圖16為繪示於圖1中的該控制系統901的一實施結構9025的示意圖。請額外參閱圖13。如圖15和圖16所示,該實施結構9024和該實施結構9025的每一結構包含該控制裝置212和該功能裝置130。在一些實施例中,該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器測量範圍RB8E的一感測器測量範圍表示GW8R、和用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。該測量值VN81以一指定測量值格式HH81而被該處理單元331獲得。 See Figure 15 and Figure 16. FIG. 15 is a schematic diagram illustrating an implementation structure 9024 of the control system 901 shown in FIG. 1 . FIG. 16 is a schematic diagram illustrating an implementation structure 9025 of the control system 901 shown in FIG. 1 . See additionally Figure 13. As shown in FIGS. 15 and 16 , each structure of the implementation structure 9024 and the implementation structure 9025 includes the control device 212 and the functional device 130 . In some embodiments, the sensing unit 334 is configured to conform to a sensor specification FU11 associated with the measurement application range RN1L. For example, the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generation HF81 performed by the sensing unit 334 . The measurement value VN81 is obtained by the processing unit 331 in a specified measurement value format HH81.

該測量值目標範圍RN1T和該測量值應用範圍RN1L皆基於該感測器測量範圍表示GW8R和該感測器規格FU11的其中之一來用該指定測量值格式HH81而被預設。例如,該測量值目標範圍RN1T和該測量值應用範圍RN1L皆基於該感測器測量範圍表示GW8R和該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預 設。該測量值目標範圍RN1T和該測量值應用範圍RN1L分別具有一目標範圍界限值對DN1T和一應用範圍界限值對DN1L。該控制訊號SC81輸送該目標範圍界限值對DN1T、該應用範圍界限值對DN1L和一控制碼CC1T。例如,該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T而被預設。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T和該物理參數目標範圍RD1ET的至少其中之一的作用。 Both the measurement target range RN1T and the measurement application range RN1L are preset with the specified measurement format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11. For example, the measurement target range RN1T and the measurement application range RN1L are both predicted using the specified measurement format HH81 based on the sensor measurement range representation GW8R and the sensor sensitivity representation GW81 Assume. The measurement value target range RN1T and the measurement value application range RN1L respectively have a target range limit value pair DN1T and an application range limit value pair DN1L. The control signal SC81 transmits the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T. For example, the control code CC1T is preset based on a specified physical parameter QD1T within the physical parameter target range RD1ET. The control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by sending the target range limit pair DN1T.

在一些實施例中,該功能裝置130進一步包含耦合於該處理單元331的一傳輸單元384。該傳輸單元384受該處理單元331控制。該處理單元331從該控制訊號SC81獲得該應用範圍界限值對DN1L,並藉由比較該測量值VN81和所獲得的該應用範圍界限值對DN1L來檢查該數學關係KV81以做出該測量值VN81是否為於該測量值應用範圍RN1L之內的一邏輯決定PB81。在該邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the functional device 130 further includes a transmission unit 384 coupled to the processing unit 331 . The transmission unit 384 is controlled by the processing unit 331 . The processing unit 331 obtains the application range limit value pair DN1L from the control signal SC81, and checks the mathematical relationship KV81 by comparing the measurement value VN81 with the obtained application range limit value pair DN1L to make the measurement value VN81 PB81 is a logical decision within the range RN1L of the measured value application. Under the condition that the logical decision PB81 is positive, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

該處理單元331從該控制訊號SC81獲得該目標範圍界限值對DN1T。在該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該目標範圍界限值對 DN1T和所獲得的該應用範圍界限值對DN1L是否相等的一邏輯決定PY81。 The processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81. Under the condition that the processing unit 331 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in, the processing unit 331 compares the obtained target range limit value pair DN1T with the obtained application range limit value pair DN1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the target range limit value pair obtained PY81 is determined by a logic whether DN1T and the obtained application range limit are equal to DN1L.

在該邏輯決定PY81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81。該處理單元331從該控制訊號SC81獲得該控制碼CC1T。在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該控制碼CC1T來執行一訊號產生控制GY81以產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一操作訊號SG81。例如,該操作訊號SG81是一功能訊號和一控制訊號的其中之一。 Under the condition that the logical decision PY81 is negative, the processing unit 331 identifies the range relationship KE8A as a range dissimilarity relationship to determine the range difference DS81. The processing unit 331 obtains the control code CC1T from the control signal SC81. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 executes a signal generation control GY81 based on the obtained control code CC1T to generate a signal for causing the variable physical parameter QU1A to enter the physical parameter target range An operation signal SG81 of RD1ET. For example, the operation signal SG81 is one of a function signal and a control signal.

在一些實施例中,在該處理單元331於一操作時間TF81之內執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN82。該處理單元331於該操作時間TF81之後的一指定時間TG82之內響應該感測訊號SN82來以該指定測量值格式HH81獲得一測量值VN82。在該處理單元331於該指定時間TG82之內藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於該測量值VN82來使該傳輸單元384向該控制裝置212傳輸回應該控制訊號SC81的一控制回應訊號SE81,並執行一資料儲存控制操作GU81。 In some embodiments, after the processing unit 331 executes the signal generation control GY81 within an operation time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN82. The processing unit 331 responds to the sensing signal SN82 within a specified time TG82 after the operation time TF81 to obtain a measurement value VN82 in the specified measurement value format HH81. Within the specified time TG82, the processing unit 331 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in by comparing the measured value VN82 with the obtained target range limit value pair DN1T , the processing unit 331 makes the transmission unit 384 transmit a control response signal SE81 to the control device 212 in response to the control signal SC81 based on the measured value VN82, and executes a data storage control operation GU81.

該控制回應訊號SE81輸送該測量值VN82。該資料儲存控制操作GU81用於導致代表所確定的 該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN8T被記錄。例如,該資料儲存控制操作GU81是一確保操作。該處理單元331藉由執行該資料儲存控制操作GU81來將該物理參數目標範圍碼UN8T指定到在該儲存空間SU11中的該可變物理參數範圍碼UN8A。 The control response signal SE81 delivers the measured value VN82. The data storage control operation GU81 is used to cause the representative determined A physical parameter target range code UN8T of the physical parameter target range RD1ET is recorded. For example, the data storage control operation GU81 is a guarantee operation. The processing unit 331 assigns the physical parameter target range code UN8T to the variable physical parameter range code UN8A in the storage space SU11 by executing the data storage control operation GU81.

該定時器342在一定時操作模式WU21中用於測量該時鐘時間TH1A。該可變物理參數QU1A相關於一可變時間長度LF8A。例如,該定時器342在與該定時操作模式WU21不同的一定時操作模式WU11中用於測量該可變時間長度LF8A。該可變時間長度LF8A基於一參考時間長度LJ8V而被特徵化。該參考時間長度LJ8V由一測量時間長度值CL8V所代表。例如,該測量時間長度值CL8V基於該定時器規格FT21而被預設。 The timer 342 is used to measure the clock time TH1A in the timed operation mode WU21. The variable physical parameter QU1A is associated with a variable time length LF8A. For example, the timer 342 is used to measure the variable time length LF8A in a timed operation mode WU11 different from the timed operation mode WU21. The variable time length LF8A is characterized based on a reference time length LJ8V. The reference time length LJ8V is represented by a measurement time length value CL8V. For example, the measurement time length value CL8V is preset based on the timer specification FT21.

在一些實施例中,該可變物理參數QU1A基於一物理參數目標狀態JE1V和不同於該物理參數目標狀態JE1V的一物理參數目標狀態JE1W而被特徵化。該物理參數目標狀態JE1V相同或不同於該物理參數目標狀態JE1U。該物理參數目標狀態JE1V由一物理參數目標狀態碼EW1V所代表。在該可變物理參數QU1A於該時鐘時間應用區間HR1EU之內處於該物理參數目標狀態JE1U的條件下,該接收單元337從該控制裝置212接收一控制訊號SC88。該控制訊號SC88輸送該測量時間長度值CL8V和該物理參數目標狀態碼EW1V。該複數不同物理參數參考狀態JE11、JE12、…包含該物理參數目標狀態JE1V和該物理參數目標狀態JE1W。 In some embodiments, the variable physical parameter QU1A is characterized based on a physical parameter target state JE1V and a physical parameter target state JE1W different from the physical parameter target state JE1V. The physical parameter target state JE1V is the same as or different from the physical parameter target state JE1U. The physical parameter target state JE1V is represented by a physical parameter target state code EW1V. Under the condition that the variable physical parameter QU1A is in the physical parameter target state JE1U within the clock time application interval HR1EU, the receiving unit 337 receives a control signal SC88 from the control device 212 . The control signal SC88 delivers the measurement time length value CL8V and the physical parameter target status code EW1V. The plurality of different physical parameter reference states JE11, JE12, . . . include the physical parameter target state JE1V and the physical parameter target state JE1W.

該處理單元331從該控制訊號SC88獲得該測量時間長度值CL8V和該物理參數目標狀態碼EW1V,響應該控制訊號SC88來停止該定時器342,基於所獲得的該測量時間長度值CL8V來重新啟動該定時器342,並藉由重新啟動該定時器342來使該定時器342操作於該定時操作模式WU11中。該定時器342被重新啟動以開始與該參考時間長度LJ8V匹配的一應用時間長度LT8V,並於該定時操作模式WU11中藉由執行用於該應用時間長度LT8V的一計數操作BC8V來經歷該應用時間長度LT8V以到達一特定時間TJ8T。 The processing unit 331 obtains the measurement duration value CL8V and the physical parameter target status code EW1V from the control signal SC88, stops the timer 342 in response to the control signal SC88, and restarts based on the obtained measurement duration value CL8V The timer 342 is operated in the timing operation mode WU11 by restarting the timer 342 . The timer 342 is restarted to start an application time length LT8V that matches the reference time length LJ8V, and goes through the application in the timed operation mode WU11 by performing a count operation BC8V for the application time length LT8V Time length LT8V to reach a specific time TJ8T.

該處理單元331基於所獲得的該物理參數目標狀態碼EW1V來使該可變物理參數QU1A於該應用時間長度LT8V之內處於該物理參數目標狀態JE1V。在該處理單元331到達該特定時間TJ8T的條件下,該處理單元331在該特定時間TJ8T之內執行用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1V以進入該物理參數目標狀態JE1W的一訊號產生操作BY89。 The processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1V within the application time length LT8V based on the obtained physical parameter target state code EW1V. On the condition that the processing unit 331 reaches the specific time TJ8T, the processing unit 331 executes the process for causing the variable physical parameter QU1A to leave the physical parameter target state JE1V to enter the physical parameter target state JE1W within the specific time TJ8T A signal generation operation of BY89.

例如,該複數不同物理參數參考範圍RD1E1、RD1E2、…包含一物理參數目標範圍RD1EV和不同於該物理參數目標範圍RD1EV的一物理參數目標範圍RD1EW。該物理參數目標狀態JE1V和該物理參數目標狀態JE1W分別根據該物理參數目標範圍RD1EV和該物理參數目標範圍RD1EW而被預先確定。例如,該處理單元331藉由執行該訊號產生操作BY89來產生用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1V以進入該物理 參數目標狀態JE1W的一操作訊號SG89,並向該物理參數應用單元335傳輸該操作訊號SG89。 For example, the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . include a physical parameter target range RD1EV and a physical parameter target range RD1EW different from the physical parameter target range RD1EV. The physical parameter target state JE1V and the physical parameter target state JE1W are predetermined according to the physical parameter target range RD1EV and the physical parameter target range RD1EW, respectively. For example, the processing unit 331 generates a signal for causing the variable physical parameter QU1A to leave the physical parameter target state JE1V by executing the signal generation operation BY89 to enter the physical An operation signal SG89 of the parameter target state JE1W is transmitted to the physical parameter application unit 335 .

在一些實施例中,在該可變物理參數QU1A藉由檢查該數學關係KQ81而於該時鐘時間應用區間HR1EU之內處於該物理參數目標狀態JE1U的條件下,該接收單元337從該控制裝置212接收一控制訊號SC8H。當該接收單元337接收該控制訊號SC8H時,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN8H。當該接收單元337接收該控制訊號SC8A時,該定時器342感測該時鐘時間TH1A以產生一感測訊號SY8H。 In some embodiments, under the condition that the variable physical parameter QU1A is in the physical parameter target state JE1U within the clock time application interval HR1EU by checking the mathematical relationship KQ81, the receiving unit 337 receives the data from the control device 212 Receive a control signal SC8H. When the receiving unit 337 receives the control signal SC8H, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN8H. When the receiving unit 337 receives the control signal SC8A, the timer 342 senses the clock time TH1A to generate a sensing signal SY8H.

該處理單元331響應該感測訊號SN8H來以該指定測量值格式HH81獲得一測量值VN8H,並響應該感測訊號SY8H來以該指定測量值格式HH95獲得一測量值NY8H。該處理單元331響應該控制訊號SC8H來使用該測量值VN8H和該測量值NY8H以使該傳輸單元384向該控制裝置212傳輸回應該控制訊號SC8H的一控制回應訊號SE8H。該控制回應訊號SE8H輸送該測量值VN8H和該測量值NY8H,並被該控制裝置212使用以執行與該可變物理參數QU1A和該時鐘時間TH1A的至少其中之一相關的一特定實際操作。例如,該控制裝置212接收該控制回應訊號SE8H,從所接收的該控制回應訊號SE8H獲得該測量值VN8A和該測量值NY8H,基於所獲得的該測量值VN8H來顯示與該可變物理參數QU1A相關的一測量資訊LZ8H,並基於所獲得的該測量值NY8H來顯示與該時鐘時間TH1A相關的一測量資訊LX8H。 The processing unit 331 obtains a measurement value VN8H in the specified measurement value format HH81 in response to the sensing signal SN8H, and obtains a measurement value NY8H in the specified measurement value format HH95 in response to the sensing signal SY8H. The processing unit 331 uses the measured value VN8H and the measured value NY8H in response to the control signal SC8H to enable the transmission unit 384 to transmit a control response signal SE8H to the control device 212 in response to the control signal SC8H. The control response signal SE8H delivers the measured value VN8H and the measured value NY8H and is used by the control device 212 to perform a specific practical operation related to at least one of the variable physical parameter QU1A and the clock time TH1A. For example, the control device 212 receives the control response signal SE8H, obtains the measurement value VN8A and the measurement value NY8H from the received control response signal SE8H, and displays the variable physical parameter QU1A based on the obtained measurement value VN8H A related measurement information LZ8H, and based on the obtained measurement value NY8H, a measurement information LX8H related to the clock time TH1A is displayed.

請參閱圖17、圖18、圖19、圖20和圖21。圖17為繪示於圖1中的該控制系統901的一實施結構9026的示意圖。圖18為繪示於圖1中的該控制系統901的一實施結構9027的示意圖。圖19為繪示於圖1中的該控制系統901的一實施結構9028的示意圖。圖20為繪示於圖1中的該控制系統901的一實施結構9029的示意圖。圖21為繪示於圖1中的該控制系統901的一實施結構9030的示意圖。如圖17、圖18、圖19、圖20和圖21所示,該實施結構9026、該實施結構9027、該實施結構9028、該實施結構9029和該實施結構9030的每一結構包含該控制裝置212和該功能裝置130。 Please refer to Figure 17, Figure 18, Figure 19, Figure 20 and Figure 21. FIG. 17 is a schematic diagram illustrating an implementation structure 9026 of the control system 901 shown in FIG. 1 . FIG. 18 is a schematic diagram illustrating an implementation structure 9027 of the control system 901 shown in FIG. 1 . FIG. 19 is a schematic diagram illustrating an implementation structure 9028 of the control system 901 shown in FIG. 1 . FIG. 20 is a schematic diagram illustrating an implementation structure 9029 of the control system 901 shown in FIG. 1 . FIG. 21 is a schematic diagram illustrating an implementation structure 9030 of the control system 901 shown in FIG. 1 . As shown in FIGS. 17 , 18 , 19 , 20 and 21 , each of the implementation structure 9026 , the implementation structure 9027 , the implementation structure 9028 , the implementation structure 9029 and the implementation structure 9030 includes the control device 212 and the functional device 130.

請額外參閱圖13。在一些實施例中,該功能裝置130包含該操作單元397、該物理參數應用單元335、該儲存單元332和耦合於該處理單元331的該感測單元334。該操作單元397包含該處理單元331、該定時器342、該接收單元337、耦合於該處理單元331的一輸入單元380、耦合於該處理單元331的一顯示單元382、和耦合於該處理單元331的一傳輸單元384。該物理參數應用單元335、該儲存單元332、該感測單元334、該定時器342、該接收單元337、該輸入單元380、該顯示單元382和該傳輸單元384皆受該處理單元331控制。例如,該物理參數應用單元335設置於該功能裝置130的內部,或設置於該功能裝置130的外部。 See additionally Figure 13. In some embodiments, the functional device 130 includes the operation unit 397 , the physical parameter application unit 335 , the storage unit 332 , and the sensing unit 334 coupled to the processing unit 331 . The operation unit 397 includes the processing unit 331, the timer 342, the receiving unit 337, an input unit 380 coupled to the processing unit 331, a display unit 382 coupled to the processing unit 331, and a display unit 382 coupled to the processing unit A transmission unit 384 of 331. The physical parameter application unit 335 , the storage unit 332 , the sensing unit 334 , the timer 342 , the receiving unit 337 , the input unit 380 , the display unit 382 and the transmission unit 384 are all controlled by the processing unit 331 . For example, the physical parameter application unit 335 is disposed inside the functional device 130 , or disposed outside the functional device 130 .

該處理單元331被配置以執行與該物理參數應用範圍RD1EL相關的一測量應用功能FA81,並包含 耦合於該物理參數應用單元335的一輸出組件338。該測量應用功能FA81被配置以符合與該物理參數應用範圍RD1EL相關的一測量應用功能規格GAL8。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器測量範圍RB8E的一感測器測量範圍表示GW8R、和用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。 The processing unit 331 is configured to execute a measurement application function FA81 associated with the physical parameter application range RD1EL, and includes An output component 338 is coupled to the physical parameter application unit 335 . The measurement application function FA81 is configured to conform to a measurement application function specification GAL8 associated with the physical parameter application range RD1EL. The sensing unit 334 is configured to comply with a sensor specification FU11 associated with the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor measurement range representation GW8R for representing a sensor measurement range RB8E, and a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generation HF81 performed by the sensing unit 334 .

在該接收單元337從一控制裝置212接收該控制訊號SC81的條件下,該處理單元331響應該感測訊號SN81來以一指定測量值格式HH81獲得該測量值VN81。例如,該指定測量值格式HH81基於一指定位元數目UY81而被特徵化。例如,當該接收單元337接收該控制訊號SC81時,該感測單元334感測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的該感測訊號產生HF81,該感測訊號產生HF81用於產生該感測訊號SN81。在該處理單元331基於該控制訊號SC81而確定該範圍差異DS81的條件下,該處理單元331使用該輸出組件338以輸出用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該操作訊號SG81。 Under the condition that the receiving unit 337 receives the control signal SC81 from a control device 212, the processing unit 331 obtains the measurement value VN81 in a specified measurement value format HH81 in response to the sensing signal SN81. For example, the specified measurement value format HH81 is characterized based on a specified number of bits UY81. For example, when the receiving unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to perform the sensing signal generation HF81 depending on the sensor sensitivity YW81, and the sensing signal generates HF81 is used to generate the sensing signal SN81. Under the condition that the processing unit 331 determines the range difference DS81 based on the control signal SC81, the processing unit 331 uses the output element 338 to output the operation for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET Signal SG81.

該可變物理參數QU1A進一步基於一額定物理參數範圍RD1E而被特徵化。例如,該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複 數不同物理參數參考範圍RD1E1、RD1E2、…。該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。該測量應用功能規格GAL8包含該感測器規格FU11、用於表示該額定物理參數範圍RD1E的一額定物理參數範圍表示GA8E、和用於表示該物理參數應用範圍RD1EL的一物理參數應用範圍表示GA8L。 The variable physical parameter QU1A is further characterized based on a nominal physical parameter range RD1E. For example, the nominal physical parameter range RD1E is represented by a nominal measurement value range RD1N, and includes a complex number of different measurement value reference ranges RN11, RN12, . The reference range of different physical parameters is RD1E1, RD1E2, …. Both the physical parameter target range RD1ET and the physical parameter application range RD1EL are included in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . The measurement application function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E for representing the rated physical parameter range RD1E, and a physical parameter application range representation GA8L for representing the physical parameter application range RD1EL .

該額定測量值範圍RD1N基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R和用於轉換該額定物理參數範圍表示GA8E的一資料編碼操作ZX81來用該指定測量值格式HH81而被預設,具有一額定範圍界限值對DD1A,並包含由複數不同測量值參考範圍碼EM11、EM12、…所分別代表的該複數不同測量值參考範圍RN11、RN12、…。例如,該額定範圍界限值對DD1A用該指定測量值格式HH81而被預設。該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和該測量值應用範圍RN1L。該額定測量值範圍RD1N和該額定範圍界限值對DD1A皆基於該感測器測量範圍表示GW8R和該感測器規格FU11的其中之一來用該指定測量值格式HH81而被預設。 The nominal measured value range RD1N is determined using the specified measured value format HH81 based on the nominal physical parameter range representation GA8E, the sensor measurement range representation GW8R, and a data encoding operation ZX81 for converting the nominal physical parameter range representation GA8E By default, there is a pair of rated range limit values DD1A, and includes the plurality of different measurement value reference ranges RN11, RN12, . . . respectively represented by the plurality of different measurement value reference range codes EM11, EM12, . For example, the nominal range limit value is preset for DD1A with the specified measurement value format HH81. The plurality of different measurement value reference ranges RN11, RN12, . . . include the measurement value target range RN1T and the measurement value application range RN1L. The nominal measurement range RD1N and the nominal range limit pair DD1A are both preset with the specified measurement format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11.

在一些實施例中,該測量值目標範圍RN1T由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值目標範圍碼EM1T所代表;藉此該測量值目標範圍碼EM1T被配置以指示該物理參數目標範圍RD1ET。例如,該複數不同測量值參考範圍碼EM11、 EM12、…皆基於該測量應用功能規格GAL8而被預設。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T和該物理參數目標範圍RD1ET的至少其中之一的作用。例如,該測量值目標範圍碼EM1T等於該物理參數應用狀態碼EW1T。 In some embodiments, the measurement target range RN1T is represented by a measurement target range code EM1T contained in the plurality of different measurement reference range codes EM11, EM12, . . . ; whereby the measurement target range code EM1T is Configured to indicate the physical parameter target range RD1ET. For example, the complex number of different measurement values refer to the range codes EM11, EM12, ... are all preset based on the measurement application function specification GAL8. The control signal SC81 serves to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET by sending the measurement value target range code EM1T. For example, the measured value target range code EM1T is equal to the physical parameter application status code EW1T.

該測量值應用範圍RN1L由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值應用範圍碼EM1L所代表,並具有一應用範圍界限值對DN1L;藉此該測量值應用範圍碼EM1L被配置以指示該物理參數應用範圍RD1EL。例如,該應用範圍界限值對DN1L基於該物理參數應用範圍表示GA8L、該感測器測量範圍表示GW8R和用於轉換該物理參數應用範圍表示GA8L的一資料編碼操作ZX82來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L基於該物理參數應用範圍表示GA8L、該感測器測量範圍表示GW8R和該資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The measurement value application range RN1L is represented by a measurement value application range code EM1L included in the plurality of different measurement value reference range codes EM11, EM12, . . . and has an application range limit value pair DN1L; whereby the measurement value applies The range code EM1L is configured to indicate the physical parameter application range RD1EL. For example, the application range limit value for DN1L is based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R and a data encoding operation ZX82 for converting the physical parameter application range representation GA8L to use the specified measurement value format HH81 is preset. The measurement value application range RN1L is preset with the specified measurement value format HH81 based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R and the data encoding operation ZX82.

在一些實施例中,該儲存單元332儲存所預設的該額定範圍界限值對DD1A和一可變物理參數範圍碼UN8A。該控制訊號SC81進一步輸送該額定範圍界限值對DD1A。當該接收單元337接收該控制訊號SC81時,該可變物理參數範圍碼UN8A等於選擇自該複數不同測量值參考範圍碼EM11、EM12、…的一特定測量值範圍碼EM14。 In some embodiments, the storage unit 332 stores the preset nominal range limit value pair DD1A and a variable physical parameter range code UN8A. The control signal SC81 further feeds the nominal range limit pair DD1A. When the receiving unit 337 receives the control signal SC81, the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the plurality of different measurement value reference range codes EM11, EM12, . . .

例如,該特定測量值範圍碼EM14指示基於一感測操作ZS81而被該處理單元331先前確定的一特定物理參數範圍RD1E4。該特定物理參數範圍RD1E4選擇自該 複數不同物理參數參考範圍RD1E1、RD1E2、…。由該感測單元334所執行的該感測操作ZS81用於感測該可變物理參數QU1A。在該接收單元337接收該控制訊號SC81之前,該特定測量值範圍碼EM14被指定到該可變物理參數範圍碼UN8A。 For example, the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81. The specific physical parameter range RD1E4 is selected from the The reference range of complex different physical parameters is RD1E1, RD1E2, …. The sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A. Before the receiving unit 337 receives the control signal SC81, the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.

例如,在該接收單元337接收該控制訊號SC81之前,該處理單元331獲得該特定測量值範圍碼EM14。在該處理單元331於該接收單元337接收該控制訊號SC81之前基於該感測操作ZS81而確定該特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該特定測量值範圍碼EM14指定到該可變物理參數範圍碼UN8A。該特定測量值範圍碼EM14代表被配置以代表該特定物理參數範圍RD1E4的一特定測量值範圍。該特定測量值範圍基於該感測器測量範圍表示GW8R和該感測器規格FU11的其中之一來用該指定測量值格式HH81而被預設。例如,該感測單元334藉由執行該感測操作ZS81來執行相依於該感測器靈敏度YW81的一感測訊號產生以產生一感測訊號。 For example, before the receiving unit 337 receives the control signal SC81, the processing unit 331 obtains the specific measurement value range code EM14. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 based on the sensing operation ZS81 before the receiving unit 337 receives the control signal SC81, the processing unit 331 uses the storage unit 332 to store the obtained The specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A. The specific measurement value range code EM14 represents a specific measurement value range configured to represent the specific physical parameter range RD1E4. The specific measurement value range is preset with the specified measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11. For example, the sensing unit 334 performs a sensing signal generation depending on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.

在該接收單元337接收該控制訊號SC81之前,該處理單元331接收該感測訊號,響應該感測訊號來以該指定測量值格式HH81獲得一特定測量值,並執行用於檢查該特定測量值和該特定測量值範圍之間的一數學關係的一特定檢查操作。在該處理單元331基於該特定檢查操作而確定該可變物理參數QU1A處於的該特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單 元332來將所獲得的該特定測量值範圍碼EM14指定到該可變物理參數範圍碼UN8A。該處理單元331響應用於感測該可變物理參數QU1A的一特定感測操作來決定該處理單元331是否要使用該儲存單元332以改變該可變物理參數範圍碼UN8A。例如,該特定感測操作由該感測單元334所執行。 Before the receiving unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, obtains a specific measurement value in the specified measurement value format HH81 in response to the sensing signal, and executes the process for checking the specific measurement value A specific check operation for a mathematical relationship between the specific measurement value range. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E4 in which the variable physical parameter QU1A is located based on the specific checking operation, the processing unit 331 uses the storage list Element 332 to assign the specific measurement range code EM14 obtained to the variable physical parameter range code UN8A. The processing unit 331 determines whether the processing unit 331 uses the storage unit 332 to change the variable physical parameter range code UN8A in response to a specific sensing operation for sensing the variable physical parameter QU1A. For example, the specific sensing operation is performed by the sensing unit 334 .

在一些實施例中,在該接收單元337接收該控制訊號SC81的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81和該儲存單元332的其中之一獲得一操作參考資料碼XU81,並藉由運行一資料確定程序NA8A來執行使用該操作參考資料碼XU81的一資料確定AA8A以確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值應用範圍碼EM1L以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值應用範圍RN1L。 In some embodiments, under the condition that the receiving unit 337 receives the control signal SC81, the processing unit 331 obtains an operation reference data code from one of the control signal SC81 and the storage unit 332 in response to the control signal SC81 XU81, and perform a data determination AA8A using the operation reference data code XU81 by running a data determination program NA8A to determine the measurement value application range code EM1L selected from the plurality of different measurement value reference range codes EM11, EM12, ... In order to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12, . . .

該操作參考資料碼XU81相同於基於該測量應用功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NA8A基於該測量應用功能規格GAL8而被建構。該資料確定AA8A是一資料確定操作AA81和一資料確定操作AA82的其中之一。在該操作參考資料碼XU81藉由存取被儲存在該儲存單元332中的該可變物理參數範圍碼UN8A而被獲得以相同於該特定測量值範圍碼EM14的條件下,是該資料確定操作AA81的該資料確定AA8A基於所獲得的該特定測量值範圍碼EM14來確定該測量值應用範圍碼EM1L。例如,所確定的該測量值應用範圍碼 EM1L相同或不同於所獲得的該特定測量值範圍碼EM14。 The operation reference data code XU81 is the same as an allowable reference data code preset based on the measurement application functional specification GAL8. The data determination program NA8A is constructed based on the measurement application functional specification GAL8. The data determination AA8A is one of a data determination operation AA81 and a data determination operation AA82. Under the condition that the operation reference data code XU81 is obtained by accessing the variable physical parameter range code UN8A stored in the storage unit 332 to be the same as the specific measurement value range code EM14, it is the data determination operation The profile of AA81 determines that AA8A determines the measurement application range code EM1L based on the obtained specific measurement range code EM14. For example, the determined measurement value applies a range code EM1L is the same or different from the range code EM14 obtained for this particular measurement value.

在該操作參考資料碼XU81從該控制訊號SC81和該儲存單元332的其中之一而被獲得以相同於所預設的該額定範圍界限值對DD1A的條件下,是該資料確定操作AA82的該資料確定AA8A藉由執行使用該測量值VN81和所獲得的該額定範圍界限值對DD1A的一科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該科學計算MR81基於一特定經驗公式XR81而被執行。該特定經驗公式XR81基於所預設的該額定範圍界限值對DD1A和該複數不同測量值參考範圍碼EM11、EM12、…而被預先制定。例如,該特定經驗公式XR81基於該測量應用功能規格GAL8而被預先制定。 Under the condition that the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage unit 332 to be the same as the preset rated range limit value pair DD1A, it is the data that determines the operation of the operation AA82. Data Determination AA8A selects the measured value application range code from the plurality of different measured value reference range codes EM11, EM12, ... by performing a scientific calculation MR81 for DD1A using the measured value VN81 and the obtained nominal range limit value EM1L applies the range code EM1L to determine this measurement. For example, the scientific calculation MR81 is performed based on a specific empirical formula XR81. The specific empirical formula XR81 is predetermined based on the preset nominal range limit value pair DD1A and the complex number of different measured value reference range codes EM11, EM12, . . . For example, the specific empirical formula XR81 is predetermined based on the measurement application functional specification GAL8.

在一些實施例中,該處理單元331基於所確定的該測量值應用範圍碼EM1L來獲得該應用範圍界限值對DN1L,並基於該測量值VN81和所獲得的該應用範圍界限值對DN1L之間的一資料比較CD81來檢查該數學關係KV81以做出該測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的一邏輯決定PB81。在該邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the processing unit 331 applies a range code EM1L based on the determined measurement value to obtain the application range limit value pair DN1L, and based on the measurement value VN81 and the obtained application range limit value pair DN1L A data comparison of CD81 checks the mathematical relationship KV81 to make a logical decision PB81 whether the measurement VN81 is within the selected application range RN1L of the measurement. Under the condition that the logical decision PB81 is positive, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

該處理單元331從該控制訊號SC81獲得該測量值目標範圍碼EM1T。在該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範 圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的一邏輯決定PZ81。在該邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81。 The processing unit 331 obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 compares the obtained measurement value target range Enclosing code EM1T and the determined measurement value application range code EM1L to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained measurement value target range code EM1T and The determined measured value applies a logical decision PZ81 whether the range codes EM1L are equal. Under the condition that the logic decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as a range dissimilarity relationship to determine the range difference DS81.

例如,在該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL之間的一範圍關係KE9A以做出該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是否相等的一邏輯決定PZ91。在該邏輯決定PZ91為否定的條件下,該處理單元331辨識該範圍關係KE9A為一範圍相異關係以確定該範圍差異DB81。在該邏輯決定PZ81為否定的條件下,該邏輯決定PZ91為否定的。 For example, under the condition that the processing unit 331 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in, the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement Value application range code EM1L to check a range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make a logical decision PZ91 whether the physical parameter target range RD1ET and the physical parameter application range RD1EL are equal . Under the condition that the logical decision PZ91 is negative, the processing unit 331 identifies the range relationship KE9A as a range difference relationship to determine the range difference DB81. On the condition that the logic determines that PZ81 is negative, the logic determines that PZ91 is negative.

在一些實施例中,該應用範圍界限值對DN1L包含該測量值應用範圍RN1L的一應用範圍界限值DN15和相對於該應用範圍界限值DN15的一應用範圍界限值DN16。該功能裝置130進一步包含耦合於該輸出組件338的一物理參數應用單元335。該物理參數應用單元335具有該可變物理參數QU1A。例如,該感測單元334耦合於該物理參數應用單元335。該處理單元331藉由使用該輸出組件 338來使該物理參數應用單元335執行與該可變物理參數QU1A相關的一特定功能操作ZH81。例如,該特定功能操作ZH81用於導致一觸發事件EQ81發生,並是一空間運動操作。該控制裝置212響應該觸發事件EQ81來輸出該控制訊號SC81。 In some embodiments, the pair of application range limit values DN1L includes an application range limit value DN15 of the measurement value application range RN1L and an application range limit value DN16 relative to the application range limit value DN15. The functional device 130 further includes a physical parameter application unit 335 coupled to the output element 338 . The physical parameter application unit 335 has the variable physical parameter QU1A. For example, the sensing unit 334 is coupled to the physical parameter applying unit 335 . The processing unit 331 uses the output element by 338 to cause the physical parameter application unit 335 to perform a specific function operation ZH81 related to the variable physical parameter QU1A. For example, the specific function operation ZH81 is used to cause a trigger event EQ81 to occur, and is a spatial motion operation. The control device 212 outputs the control signal SC81 in response to the trigger event EQ81.

例如,在該應用範圍界限值DN15不同於該應用範圍界限值DN16且該測量值VN81是於該應用範圍界限值DN15和該應用範圍界限值DN16之間的條件下,該處理單元331藉由比較該測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該邏輯決定PB81以成為肯定的。在該應用範圍界限值DN15、該應用範圍界限值DN16和該測量值VN81是相等的條件下,該處理單元331藉由比較該測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該邏輯決定PB81以成為肯定的。 For example, under the condition that the application range limit value DN15 is different from the application range limit value DN16 and the measurement value VN81 is between the application range limit value DN15 and the application range limit value DN16, the processing unit 331 compares the The measured value VN81 and the obtained application range limit value pair DN1L to make the logical decision PB81 to be affirmative. Under the condition that the application range limit value DN15, the application range limit value DN16 and the measurement value VN81 are equal, the processing unit 331 makes a decision by comparing the measurement value VN81 with the obtained application range limit value pair DN1L This logic determines PB81 to be positive.

該測量應用功能規格GAL8進一步包含一物理參數表示GA8T1。該物理參數表示GA8T1用於表示在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T。該儲存單元332具有一記憶體位置YM8L和不同於該記憶體位置YM8L的一記憶體位置YX8T,在該記憶體位置YM8L儲存該應用範圍界限值對DN1L,並在該記憶體位置YX8T儲存一控制碼CC1T。 The measurement application functional specification GAL8 further includes a physical parameter representation GA8T1. The physical parameter representation GA8T1 is used to represent a specified physical parameter QD1T within the physical parameter target range RD1ET. The storage unit 332 has a memory location YM8L and a memory location YX8T different from the memory location YM8L, the application range limit pair DN1L is stored in the memory location YM8L, and a control is stored in the memory location YX8T Code CC1T.

例如,該記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。該記憶體位置YX8T基於所預設的該測量值目標範圍碼EM1T而被識別。該控制碼CC1T基於該物理參數表示GA8T1和用於轉換該物理 參數表示GA8T1的一資料編碼操作ZX91而被預設。例如,該應用範圍界限值對DN1L和該控制碼CC1T分別基於所預設的該測量值應用範圍碼EM1L和所預設的該測量值目標範圍碼EM1T而被該儲存單元332儲存。 For example, the memory location YM8L is identified based on the preset measurement value using the range code EM1L. The memory location YX8T is identified based on the preset measurement value target range code EM1T. The control code CC1T represents GA8T1 based on the physical parameter and is used to convert the physical The parameter indicates that a data encoding operation of the GA8T1 is preset by the ZX91. For example, the application range limit value pair DN1L and the control code CC1T are stored by the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T, respectively.

在一些實施例中,該處理單元331藉由運行一資料獲取程序ND8A來執行使用所確定的該測量值應用範圍碼EM1L的一資料獲取AD8A以獲得該應用範圍界限值對DN1L。例如,該資料獲取AD8A是一資料獲取操作AD81和一資料獲取操作AD82的其中之一。該資料獲取程序ND8A基於該測量應用功能規格GAL8而被建構。該資料獲取操作AD81基於所確定的該測量值應用範圍碼EM1L來使用該儲存單元332以存取被儲存在該記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。 In some embodiments, the processing unit 331 executes a data acquisition AD8A using the determined measured value application range code EM1L to obtain the application range limit pair DN1L by running a data acquisition program ND8A. For example, the data acquisition AD8A is one of a data acquisition operation AD81 and a data acquisition operation AD82. The data acquisition program ND8A is constructed based on the measurement application functional specification GAL8. The data acquisition operation AD81 uses the storage unit 332 based on the determined measurement value application range code EM1L to access the application range limit value pair DN1L stored in the memory location YM8L to obtain the application range limit value pair DN1L .

該資料獲取操作AD82依靠該控制訊號SC81和該儲存單元332的其中之一來取得該額定範圍界限值對DD1A,並藉由執行使用所確定的該測量值應用範圍碼EM1L和所取得的該額定範圍界限值對DD1A的一科學計算MZ81來獲得該應用範圍界限值對DN1L。例如,該額定範圍界限值對DD1A包含該額定測量值範圍RD1N的一額定範圍界限值DD11和相對於該額定範圍界限值DD11的一額定範圍界限值DD12,並基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R和該資料編碼操作ZX81來用該指定測量值格式HH81而被預設。 The data acquisition operation AD82 relies on one of the control signal SC81 and the storage unit 332 to acquire the nominal range limit value pair DD1A, and applies the range code EM1L and the acquired nominal range by executing the measured value determined using the range code EM1L. A scientific calculation MZ81 of the range limit value pair DD1A to obtain the application range limit value pair DN1L. For example, the pair of rated range limit values DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and based on the rated physical parameter range, GA8E, The sensor measurement range representation GW8R and the data encoding operation ZX81 are preset with the specified measurement value format HH81.

在該處理單元331確定該範圍差異DS81的 條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該記憶體位置YX8T的該控制碼CC1T,並基於所存取的該控制碼CC1T來執行用於該測量應用功能FA81的一訊號產生控制GY81以控制該輸出組件338。該輸出組件338響應該訊號產生控制GY81來執行用於該測量應用功能FA81的一訊號產生操作BY81以產生一操作訊號SG81,該操作訊號SG81用於控制該物理參數應用單元335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 In the processing unit 331 the range difference DS81 is determined condition, the processing unit 331 uses the storage unit 332 to access the control code CC1T stored in the memory location YX8T based on the obtained measurement value target range code EM1T, and based on the accessed control code CC1T performs a signal generation control GY81 for the measurement application function FA81 to control the output element 338 . The output element 338 responds to the signal generation control GY81 to execute a signal generation operation BY81 for the measurement application function FA81 to generate an operation signal SG81 for controlling the physical parameter application unit 335 to cause the variable The physical parameter QU1A enters the physical parameter target range RD1ET.

例如,該操作單元397包含該處理單元331、該接收單元337、該定時器342、和耦合於該處理單元331的該輸出組件338。該輸出組件338位於該處理單元331的外部,並受該處理單元331控制。該處理單元331執行用於控制該輸出組件338的該訊號產生控制GY81以提供一控制訊號SF81到該輸出組件338。該輸出組件338響應該控制訊號SF81來執行用於該測量應用功能FA81的該訊號產生操作BY81以產生該操作訊號SG81,並向該物理參數應用單元335傳輸該操作訊號SG81。 For example, the operation unit 397 includes the processing unit 331 , the receiving unit 337 , the timer 342 , and the output component 338 coupled to the processing unit 331 . The output component 338 is located outside the processing unit 331 and is controlled by the processing unit 331 . The processing unit 331 executes the signal generation control GY81 for controlling the output element 338 to provide a control signal SF81 to the output element 338 . The output element 338 performs the signal generating operation BY81 for the measurement application function FA81 in response to the control signal SF81 to generate the operation signal SG81 , and transmits the operation signal SG81 to the physical parameter application unit 335 .

在一些實施例中,該控制裝置212是一外部裝置。該複數不同測量值參考範圍RN11、RN12、…具有一總參考範圍數目NT81。該總參考範圍數目NT81基於該測量應用功能規格GAL8而被預設。該處理單元331響應該控制訊號SC81來獲得該總參考範圍數目NT81。該科學計算MR81進一步使用所獲得的該總參考範圍數目NT81。該科學計算MZ81進一步使用所獲得的該總參考範圍數目 NT81。例如,該總參考範圍數目大於或等於2。例如,該總參考範圍數目NT11≧3;該總參考範圍數目NT11≧4;該總參考範圍數目NT11≧5;該總參考範圍數目NT11≧6;且該總參考範圍數目NT11≦255。 In some embodiments, the control device 212 is an external device. The plurality of different measurement value reference ranges RN11, RN12, . . . have a total reference range number NT81. The total reference range number NT81 is preset based on the measurement application functional specification GAL8. The processing unit 331 obtains the total reference range number NT81 in response to the control signal SC81. The scientific computing MR81 further uses the obtained total reference range number NT81. The scientific computing MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to two. For example, the total number of reference ranges NT11≧3; the total number of reference ranges NT11≧4; the total number of reference ranges NT11≧5; the total number of reference ranges NT11≧6; and the total number of reference ranges NT11≦255.

該物理參數應用單元335響應該操作訊號SG81來將該可變物理參數QU1A從一特定物理參數QU17改變成一特定物理參數QU18。例如,該特定物理參數QU17是於該物理參數應用範圍RD1EL之內;且該特定物理參數QU18是於該物理參數目標範圍RD1ET之內。該測量應用功能規格GAL8進一步包含用於表示該物理參數目標範圍RD1ET的一物理參數候選範圍表示GA8T。 The physical parameter applying unit 335 changes the variable physical parameter QU1A from a specific physical parameter QU17 to a specific physical parameter QU18 in response to the operation signal SG81. For example, the specific physical parameter QU17 is within the physical parameter application range RD1EL; and the specific physical parameter QU18 is within the physical parameter target range RD1ET. The measurement application functional specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.

該測量值目標範圍RN1T是該額定測量值範圍RD1N的一第一部分,並具有一目標範圍界限值對DN1T。例如,該目標範圍界限值對DN1T基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GW8R和用於轉換該物理參數候選範圍表示GA8T的一資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GW8R和該資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L是該額定測量值範圍RD1N的一第二部分。 The measurement value target range RN1T is a first part of the nominal measurement value range RD1N and has a target range limit value pair DN1T. For example, the target range limit value pair DN1T uses the specified measurement value format based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representation GA8T HH81 is preset. The measurement target range RN1T is preset with the specified measurement format HH81 based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R and the data encoding operation ZX83. The measured value application range RN1L is a second part of the nominal measured value range RD1N.

該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的或相鄰的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的條件下,該測量值目標範圍RN1T和該測量值應用範圍RN1L 是分開的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是相鄰的條件下,該測量值目標範圍RN1T和該測量值應用範圍RN1L是相鄰的。 The physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measurement value target range RN1T and the measurement value application range RN1L are separate. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measurement value target range RN1T and the measurement value application range RN1L are adjacent.

例如,該測量值應用範圍碼EM1L被配置以等於一整數。該額定範圍界限值DD12大於該額定範圍界限值DD11。該額定範圍界限值DD12和該額定範圍界限值DD11之間具有相對於該額定範圍界限值DD11的一相對值VA11。該相對值VA11等於該額定範圍界限值DD12減去該額定範圍界限值DD11的一計算結果。例如,該應用範圍界限值對DN1L基於該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、和該相對值VA11對於該總參考範圍數目NT81的一比率而被預設。該科學計算MZ81使用該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、該比率和其任意組合的其中之一。 For example, the measured value is configured to be equal to an integer using the range code EM1L. The rated range limit value DD12 is greater than the rated range limit value DD11. There is a relative value VA11 between the rated range limit value DD12 and the rated range limit value DD11 with respect to the rated range limit value DD11. The relative value VA11 is equal to a calculation result of the nominal range limit value DD12 minus the nominal range limit value DD11. For example, the application range limit value pair DN1L is preset based on the nominal range limit value DD11, the nominal range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. The scientific calculation MZ81 uses one of the nominal range limit value DD11, the nominal range limit value DD12, the integer, the ratio, and any combination thereof.

在一些實施例中,該儲存單元332進一步具有不同於該記憶體位置YX8T的一記憶體位置YM8T,並在該記憶體位置YM8T儲存該目標範圍界限值對DN1T。例如,該記憶體位置YM8T基於所預設的該測量值目標範圍碼EM1T而被識別。在該處理單元331於一操作時間TF81之內執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN82。例如,在該處理單元331執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的一感測訊號產生HF82,該感測訊號產生HF82用於產生該感測訊號SN82。 In some embodiments, the storage unit 332 further has a memory location YM8T different from the memory location YX8T, and stores the target range limit pair DN1T in the memory location YM8T. For example, the memory location YM8T is identified based on the preset measurement value target range code EM1T. After the processing unit 331 executes the signal generation control GY81 within an operation time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN82. For example, after the processing unit 331 executes the signal generation control GY81, the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal depending on the sensor sensitivity YW81 to generate HF82, the sensing signal HF82 is generated for generating the sensing signal SN82.

該處理單元331於該操作時間TF81之後的一指定時間TG82之內響應該感測訊號SN82來以該指定測量值格式HH81獲得一測量值VN82。該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該記憶體位置YM8T的該目標範圍界限值對DN1T,並藉由比較該測量值VN82和所存取的該目標範圍界限值對DN1T來檢查該測量值VN82和該測量值目標範圍RN1T之間的一數學關係KV91以做出該測量值VN82是否為於該測量值目標範圍RN1T之內的一邏輯決定PB91。 The processing unit 331 responds to the sensing signal SN82 within a specified time TG82 after the operation time TF81 to obtain a measurement value VN82 in the specified measurement value format HH81. The processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the memory location YM8T based on the obtained measurement value target range code EM1T, and by comparing the measurement value VN82 with The accessed target range limit value pair DN1T checks a mathematical relationship KV91 between the measurement value VN82 and the measurement value target range RN1T to determine whether the measurement value VN82 is within the measurement value target range RN1T A logic determines PB91.

在該邏輯決定PB91是肯定的條件下,該處理單元331於該指定時間TG82之內確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,產生一肯定操作報告RL81,並導致該傳輸單元384輸出輸送該肯定操作報告RL81的一控制回應訊號SE81,藉此該控制回應訊號SE81用於導致該控制裝置212獲得該肯定操作報告RL81。例如,該肯定操作報告RL81表示該可變物理參數QU1A成功地進入該物理參數目標範圍RD1ET的一操作情況EP81。該處理單元331藉由導致該傳輸單元384產生該控制回應訊號SE81來回應該控制訊號SC81。例如,該處理單元331基於所獲得的該測量值VN82來使該控制回應訊號SE81進一步輸送所獲得的該測量值VN82。該操作單元397藉由產生該控制回應訊號SE81來響應該控制信號SC81。 Under the condition that the logical decision PB91 is positive, the processing unit 331 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in within the specified time TG82, generates a positive operation report RL81, and causes the transmission The unit 384 outputs a control response signal SE81 conveying the positive operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81. For example, the positive operation report RL81 indicates an operation situation EP81 in which the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET. The processing unit 331 responds to the control signal SC81 by causing the transmission unit 384 to generate the control response signal SE81. For example, the processing unit 331 causes the control response signal SE81 to further transmit the obtained measurement value VN82 based on the obtained measurement value VN82. The operation unit 397 responds to the control signal SC81 by generating the control response signal SE81.

在一些實施例中,在該特定測量值範圍碼 EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由做出該邏輯決定PB91而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的一碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, at that particular measurement range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines by making the logical decision PB91 the condition of the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in, the processing unit 331 331 uses the storage unit 332 to store the obtained measurement based on a code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement range code EM14 and the obtained measurement target range code EM1T The value target range code EM1T is assigned to the variable physical parameter range code UN8A.

當該接收單元337接收該控制訊號SC81時,該顯示單元382顯示一狀態指示LB81。例如,該狀態指示LB81用於指示該可變物理參數QU1A被配置於該特定物理參數範圍RD1E4之內的一特定狀態XJ81。在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由做出該邏輯決定PB91而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331進一步基於該碼差異DF81來導致該顯示單元382將該狀態指示LB81改變成一狀態指示LB82。例如,該狀態指示LB82用於指示該可變物理參數QU1A被配置於該物理參數目標範圍RD1ET之內的一特定狀態XJ82。 When the receiving unit 337 receives the control signal SC81, the display unit 382 displays a status indication LB81. For example, the state indication LB81 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ81 within the specific physical parameter range RD1E4. After the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located by making the logical decision PB91 Under the condition of , the processing unit 331 further causes the display unit 382 to change the status indication LB81 to a status indication LB82 based on the code difference DF81. For example, the state indication LB82 is used to indicate that the variable physical parameter QU1A is configured in a specific state XJ82 within the physical parameter target range RD1ET.

該控制訊號SC81是一電訊號SP81和一光訊號SQ81的其中之一。該接收單元337包含一接收組件3371和一接收組件3372。該接收組件3371耦合於該處理單元331。在該控制訊號SC81是該電訊號SP81的條件下,該接收組件3371藉由接收輸送一控制訊息CG81的該電訊 號SP81來導致該處理單元331獲得該控制訊息CG81。例如,該控制訊息CG81包含該測量值指定範圍碼EL1T。該處理單元331基於該控制訊息CG81的該測量值指定範圍碼EL1T來獲得所預設的該測量值目標範圍碼EM1T。例如,該控制訊息CG81進一步包含該測量值目標範圍碼EM1T。例如,該接收組件3371和該接收組件3372分別是二輸入組件。 The control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81. The receiving unit 337 includes a receiving component 3371 and a receiving component 3372 . The receiving component 3371 is coupled to the processing unit 331 . Under the condition that the control signal SC81 is the electrical signal SP81, the receiving element 3371 transmits a control message CG81 by receiving the electrical signal Number SP81 to cause the processing unit 331 to obtain the control message CG81. For example, the control message CG81 includes the measurement value designation range code EL1T. The processing unit 331 obtains the preset measurement value target range code EM1T based on the measurement value designation range code EL1T of the control message CG81. For example, the control message CG81 further includes the measurement value target range code EM1T. For example, the receiving component 3371 and the receiving component 3372 are respectively two input components.

該接收組件3372耦合於該處理單元331。在該控制訊號SC81是該光訊號SQ81的條件下,該接收組件3372接收輸送一編碼影像FY81的該光訊號SQ81。例如,該編碼影像FY81代表該控制訊息CG81。該輸入單元380耦合於該處理單元331,並包含耦合於該處理單元331的一按鈕3801。在該可變物理參數QU1A基於該控制訊號SC81而被配置於該物理參數目標範圍RD1ET之內的條件下,該輸入單元380接收使用該按鈕3801的一使用者輸入操作BQ81,並響應該使用者輸入操作BQ81來使該處理單元331接收一操作請求訊號SJ91。該處理單元331響應該操作請求訊號SJ91來確定一特定輸入碼UW81。例如,該輸入單元380響應使用該按鈕3801的該使用者輸入操作BQ81來產生該操作請求訊號SJ91,提供該操作請求訊號SJ91到該處理單元331,並藉此使該處理單元331接收該操作請求訊號SJ91。該特定輸入碼UW81選擇自該複數不同測量值參考範圍碼EM11、EM12、…。 The receiving component 3372 is coupled to the processing unit 331 . Under the condition that the control signal SC81 is the optical signal SQ81, the receiving element 3372 receives the optical signal SQ81 that transmits an encoded image FY81. For example, the encoded image FY81 represents the control message CG81. The input unit 380 is coupled to the processing unit 331 and includes a button 3801 coupled to the processing unit 331 . Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input unit 380 receives a user input operation BQ81 using the button 3801, and responds to the user Input operation BQ81 causes the processing unit 331 to receive an operation request signal SJ91. The processing unit 331 determines a specific input code UW81 in response to the operation request signal SJ91. For example, the input unit 380 generates the operation request signal SJ91 in response to the user's input operation BQ81 using the button 3801, provides the operation request signal SJ91 to the processing unit 331, and thereby causes the processing unit 331 to receive the operation request Signal SJ91. The specific input code UW81 is selected from the plurality of different measurement value reference range codes EM11, EM12, . . .

在一些實施例中,在該控制訊號SC81是該光訊號SQ81的條件下,該接收組件3372感測該編碼影像 FY81以確定一編碼資料DY81,並解碼該編碼資料DY81以提供該控制訊息CG81到該處理單元331。例如,當該輸入單元380接收該使用者輸入操作BQ81時,該可變物理參數範圍碼UN8A等於所預設的該測量值目標範圍碼EM1T。該處理單元331響應該操作請求訊號SJ91來從該可變物理參數範圍碼UN8A獲得該測量值目標範圍碼EM1T。在該特定輸入碼UW81不同於所預設的該測量值目標範圍碼EM1T的條件下,該處理單元331基於等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A和該特定輸入碼UW81之間的一碼差異DX81來使用該輸出組件338而導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD1E5。 In some embodiments, the receiving element 3372 senses the encoded image under the condition that the control signal SC81 is the optical signal SQ81 FY81 determines an encoded data DY81, and decodes the encoded data DY81 to provide the control message CG81 to the processing unit 331. For example, when the input unit 380 receives the user input operation BQ81, the variable physical parameter range code UN8A is equal to the preset measurement value target range code EM1T. The processing unit 331 obtains the measured value target range code EM1T from the variable physical parameter range code UN8A in response to the operation request signal SJ91. Under the condition that the specific input code UW81 is different from the preset measurement value target range code EM1T, the processing unit 331 based on the variable physical parameter range code UN8A equal to the obtained measurement value target range code EM1T and the A code difference DX81 between a particular input code UW81 to use the output element 338 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . A specific physical parameter range RD1E5.

例如,該按鈕3801接收該使用者輸入操作BQ81。該特定物理參數範圍RD1E5由一特定物理參數範圍碼UN85所代表。在該特定輸入碼UW81等於該特定物理參數範圍碼UN85的條件下,該處理單元331基於該碼差異DX81來使該輸出組件338向該物理參數應用單元335傳輸一操作訊號SG82。該操作訊號SG82用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。 For example, the button 3801 receives the user input operation BQ81. The specific physical parameter range RD1E5 is represented by a specific physical parameter range code UN85. Under the condition that the specific input code UW81 is equal to the specific physical parameter range code UN85, the processing unit 331 causes the output element 338 to transmit an operation signal SG82 to the physical parameter application unit 335 based on the code difference DX81. The operation signal SG82 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.

在該可變物理參數QU1A基於該功能訊號SG82而被配置以處於該特定物理參數範圍RD1E5的條件下,該輸入單元380接收使用該按鈕3801的一使用者輸入操作BQ8A,並響應該使用者輸入操作BQ8A來產生一操作 請求訊號SJ9A,提供該操作請求訊號SJ9A到該處理單元331。例如,在該可變物理參數QU1A處於該特定物理參數範圍RD1E5的條件下,該按鈕3801接收該使用者輸入操作BQ8A以使該輸入單元380接收該使用者輸入操作BQ8A。該處理單元331響應該操作請求訊號SJ9A來使該輸出組件338向該物理參數應用單元335傳輸一操作訊號SG8A。該操作訊號SG8A用於導致該可變物理參數QU1A離開該特定物理參數範圍RD1E5以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD1EA。例如,該特定物理參數範圍RD1EA相同於該物理參數目標範圍RD1ET。 Under the condition that the variable physical parameter QU1A is configured to be in the specific physical parameter range RD1E5 based on the function signal SG82, the input unit 380 receives a user input operation BQ8A using the button 3801, and responds to the user input operate the BQ8A to generate an operation The request signal SJ9A provides the operation request signal SJ9A to the processing unit 331 . For example, under the condition that the variable physical parameter QU1A is in the specific physical parameter range RD1E5, the button 3801 receives the user input operation BQ8A so that the input unit 380 receives the user input operation BQ8A. The processing unit 331 makes the output element 338 transmit an operation signal SG8A to the physical parameter application unit 335 in response to the operation request signal SJ9A. The operation signal SG8A is used to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E5 to enter a specific physical parameter range RD1EA included in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . For example, the specific physical parameter range RD1EA is the same as the physical parameter target range RD1ET.

該感測單元334感測處於一拘束條件ER81的該可變物理參數QU1A以提供該感測訊號SN81到該處理單元331。例如,該拘束條件FR81是該可變物理參數QU1A等於包含於該額定物理參數範圍RD1E中的一特定物理參數QU15。該處理單元331基於該感測訊號SN81來估計該特定物理參數QU15以獲得該測量值VN81。由於處於該拘束條件FR81的該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內,該處理單元331辨識該測量值VN81為於該測量值應用範圍RN1L之內的一可允許值,藉此辨識該測量值VN81和該測量值應用範圍RN1L之間的該數學關係KV81為一數值交集關係,並藉此確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 The sensing unit 334 senses the variable physical parameter QU1A under a constraint condition ER81 to provide the sensing signal SN81 to the processing unit 331 . For example, the constraint FR81 is that the variable physical parameter QU1A is equal to a specific physical parameter QU15 included in the rated physical parameter range RD1E. The processing unit 331 estimates the specific physical parameter QU15 based on the sensing signal SN81 to obtain the measurement value VN81. Since the variable physical parameter QU1A under the constraint condition FR81 is within the physical parameter application range RD1EL, the processing unit 331 recognizes the measurement value VN81 as an allowable value within the measurement value application range RN1L, by This identifies the mathematical relationship KV81 between the measured value VN81 and the measured value application range RN1L as a numerical intersection relationship, and thereby determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

在一些實施例中,該感測單元334基於與該感測訊號產生HF81相關的該感測器靈敏度YW81而被特徵 化,並被配置以符合該感測器規格FU11。該感測器規格FU11包含用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81、和用於表示該感測器測量範圍RB8E的該感測器測量範圍表示GW8R。例如,該額定物理參數範圍RD1E被配置以相同於該感測器測量範圍RB8E,或被配置以是該感測器測量範圍RB8E的一部分。該感測器測量範圍RB8E相關於由該感測單元334所執行的一物理參數感測。該感測器測量範圍表示GW8R基於一第一預設測量單位而被提供。例如,該第一預設測量單位是一公制測量單位和一英制測量單位的其中之一。 In some embodiments, the sensing unit 334 is characterized based on the sensor sensitivity YW81 associated with the sensing signal generation HF81 , and is configured to meet the sensor specification FU11. The sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81, and the sensor measurement range representation GW8R for representing the sensor measurement range RB8E. For example, the nominal physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or is configured to be part of the sensor measurement range RB8E. The sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334 . The sensor measurement range indicates that the GW8R is provided based on a first predetermined measurement unit. For example, the first preset measurement unit is one of a metric measurement unit and an imperial measurement unit.

該額定測量值範圍RD1N、該額定範圍界限值對DD1A、該測量值應用範圍RN1L、該應用範圍界限值對DN1L、該測量值目標範圍RN1T、該目標範圍界限值對DN1T、該測量值目標範圍RN1U和該複數不同測量值參考範圍RN11、RN12、…皆基於該感測器測量範圍表示GW8R和該感測器規格FU11的其中之一來用該指定測量值格式HH81而被預設。例如,該額定測量值範圍RD1N和該額定範圍界限值對DD1A皆基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該資料編碼操作ZX81來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L和該應用範圍界限值對DN1L皆基於該物理參數應用範圍表示GA8L、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The rated measurement value range RD1N, the rated range limit value pair DD1A, the measurement value application range RN1L, the application range limit value pair DN1L, the measurement value target range RN1T, the target range limit value pair DN1T, the measurement value target range RN1U and the plurality of different measurement value reference ranges RN11, RN12, . . . are all preset with the specified measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11. For example, the rated measurement value range RD1N and the rated range limit value pair DD1A are both used based on the rated physical parameter range representation GA8E, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81 and the data encoding operation ZX81 The specified measurement value format HH81 is preset. The measurement value application range RN1L and the application range limit value pair DN1L are both based on the physical parameter application range representation GA8L, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81 and the data encoding operation ZX82 to use for the designation The measured value format HH81 is preset.

該測量值目標範圍RN1T和該目標範圍界限值對DN1T皆基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數表示GA8T1和該物理參數候選範圍表示GA8T皆基於一第二預設測量單位而被提供。例如,該第二預設測量單位是一公制測量單位和一英制測量單位的其中之一,並相同或不同於該第一預設測量單位。 The measured value target range RN1T and the target range limit pair DN1T are both based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81 and the data encoding operation ZX83 to use the designation The measured value format HH81 is preset. The nominal physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter represents GA8T1, and the physical parameter candidate range represents GA8T are all provided based on a second predetermined unit of measurement. For example, the second predetermined measurement unit is one of a metric measurement unit and an imperial measurement unit, and is the same as or different from the first predetermined measurement unit.

該可變物理參數QU1A進一步基於該感測器測量範圍RB8E而被特徵化。例如,該感測器測量範圍表示GW8R、該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數候選範圍表示GA8T和該物理參數表示GA8T1皆屬於十進制資料類型。該測量值VN81、該測量值VN82、該額定範圍界限值對DD1A、該應用範圍界限值對DN1L、該目標範圍界限值對DN1T和該控制碼CC1T皆屬於該二進制資料類型,並皆適用於電腦處理。該感測器規格FU11和該測量應用功能規格GAL8皆被預設。 The variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E. For example, the sensor measurement range represents GW8R, the rated physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter candidate range represents GA8T and the physical parameter represents GA8T1 are all of the decimal data type. The measured value VN81, the measured value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T and the control code CC1T all belong to the binary data type and are suitable for computer deal with. Both the sensor specification FU11 and the measurement application function specification GAL8 are preset.

在一些實施例中,在該接收單元337接收該控制訊號SC81之前,該接收單元337接收包含所預設的該應用範圍界限值對DN1L和一記憶體位址AM8L的一寫入請求訊息WN8L。例如,該記憶體位置YM8L基於該記憶體位址AM8L而被識別;且該記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L而被預設。該處理單元331 響應該寫入請求訊息WN8L來使用該儲存單元332以將該寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該記憶體位置YM8L。 In some embodiments, before the receiving unit 337 receives the control signal SC81, the receiving unit 337 receives a write request message WN8L including the preset application range limit value pair DN1L and a memory address AM8L. For example, the memory location YM8L is identified based on the memory address AM8L; and the memory address AM8L is preset based on the preset measurement value application range code EM1L. The processing unit 331 In response to the write request message WN8L, the storage unit 332 is used to store the application range limit pair DN1L of the write request message WN8L to the memory location YM8L.

在該接收單元337接收該控制訊號SC81之前,該接收單元337接收包含所預設的該控制碼CC1T和一記憶體位址AX8T的一寫入請求訊息WC8T。例如,該記憶體位置YX8T基於該記憶體位址AX8T而被識別;且該記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T而被預設。該處理單元331響應該寫入請求訊息WC8T來使用該儲存單元332以將該寫入請求訊息WC8T的該控制碼CC1T儲存到該記憶體位置YX8T。 Before the receiving unit 337 receives the control signal SC81, the receiving unit 337 receives a write request message WC8T including the preset control code CC1T and a memory address AX8T. For example, the memory location YX8T is identified based on the memory address AX8T; and the memory address AX8T is preset based on the preset measurement value target range code EM1T. The processing unit 331 uses the storage unit 332 to store the control code CC1T of the write request message WC8T in the memory location YX8T in response to the write request message WC8T.

在一些實施例中,該功能裝置130用於藉由產生一操作訊號SG81而控制該可變物理參數QU1A。該可變物理參數QU1A基於由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET和由該測量值應用範圍RN1L所代表的該物理參數應用範圍RD1EL而被特徵化。該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN81。在該接收單元337接收起到指示該測量值目標範圍RN1T的作用的一控制訊號SC81的條件下,該處理單元331響應該感測訊號SN81來獲得一測量值VN81。 In some embodiments, the functional device 130 is used to control the variable physical parameter QU1A by generating an operation signal SG81. The variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measurement value target range RN1T and the physical parameter application range RD1EL represented by the measurement value application range RN1L. The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81. The processing unit 331 obtains a measurement value VN81 in response to the sensing signal SN81 under the condition that the receiving unit 337 receives a control signal SC81 to indicate the target range of the measurement value RN1T.

在該處理單元331藉由檢查該測量值VN81和該測量值應用範圍RN1L之間的一數學關係KV81而確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331基於該控制訊號SC81而確定該測量值目標範圍RN1T和該測量值應用範圍RN1L 之間的一範圍關係KE8A以做出用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該操作訊號SG81是否要被該輸出組件338產生的一合理決定PW81。 Under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking a mathematical relationship KV81 between the measurement value VN81 and the measurement value application range RN1L, the processing The unit 331 determines the measurement value target range RN1T and the measurement value application range RN1L based on the control signal SC81 A range relationship KE8A between to make a reasonable decision PW81 for whether the operation signal SG81 that causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET is to be generated by the output element 338 .

例如,在該處理單元331藉由檢查該數學關係KV81而確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331基於該控制訊號SC81而確定該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL之間的一範圍關係KE9A以做出該合理決定PW81。 For example, under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking the mathematical relationship KV81, the processing unit 331 determines the physical parameter based on the control signal SC81 A range relationship KE9A between the target range RD1ET and the physical parameter application range RD1EL is used to make the rational decision PW81.

在一些實施例中,在該處理單元331確定該可變物理參數QU1A目前所處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的一邏輯決定PY81。 In some embodiments, under the condition that the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 compares the obtained target range limit value to DN1T and DN1T The obtained application range limit pair DN1L checks the range relationship KE8A to make a logical decision PY81 whether the obtained target range limit pair DN1T and the obtained application range limit pair DN1L are equal.

在該邏輯決定PY81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以做出該合理決定PW81以成為肯定的。在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該控制碼CC1T來執行一訊號產生控制GY81以導致該輸出組件338產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一操作訊號SG81。 Under the condition that the logical decision PY81 is negative, the processing unit 331 identifies the range relationship KE8A as a range dissimilarity relationship to make the rational decision PW81 to be positive. Under the condition that the reasonable decision PW81 is positive, the processing unit 331 executes a signal generation control GY81 based on the obtained control code CC1T to cause the output element 338 to generate a signal for causing the variable physical parameter QU1A to enter the physical parameter An operation signal SG81 of the target range RD1ET.

在一些實施例中,在該處理單元331確定該可變物理參數QU1A目前所處於的該物理參數應用範圍 RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該範圍關係KE8A以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的一邏輯決定PZ81。在該邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以做出該合理決定PW81以成為肯定的。 In some embodiments, the processing unit 331 determines the application range of the physical parameter in which the variable physical parameter QU1A is currently located Under the condition of RD1EL, the processing unit 331 checks the range relationship KE8A by comparing the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L to make the obtained measurement value target range A logic that determines whether the code EM1T and the determined measured value application range code EM1L are equal determines PZ81. Under the condition that the logical decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as a range dissimilarity relationship to make the rational decision PW81 to be positive.

例如,在該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL之間的該範圍關係KE9A以做出所該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是否相等的該邏輯決定PZ91。在該邏輯決定PZ91為否定的條件下,該處理單元331藉由辨識該範圍關係KE9A為一範圍相異關係來確定該範圍差異DB81以做出該合理決定PW81以成為肯定的。在該邏輯決定PZ81為否定的條件下,該邏輯決定PZ91為否定的。 For example, under the condition that the processing unit 331 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in, the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement Value application range code EM1L to check the range relationship KE9A between the physical parameter target range RD1ET and the physical parameter application range RD1EL to make the logical decision whether the physical parameter target range RD1ET and the physical parameter application range RD1EL are equal PZ91. Under the condition that the logical decision PZ91 is negative, the processing unit 331 determines the range difference DB81 by identifying the range relationship KE9A as a range dissimilarity relationship to make the reasonable decision PW81 to be positive. On the condition that the logic determines that PZ81 is negative, the logic determines that PZ91 is negative.

在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該記憶體位置YX8T的該控制碼CC1T。該處理單元331基於所存取的該控制碼CC1T,執行用於該測量應用功能FA81的一訊號產生控制GY81。該輸出組件338響應該訊號產生控制GY81來執行 用於該測量應用功能FA81的一訊號產生操作BY81以產生一操作訊號SG81。該操作訊號SG81用於控制該物理參數應用單元335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 Under the condition that the rational decision PW81 is positive, the processing unit 331 uses the storage unit 332 to access the control code CC1T stored in the memory location YX8T based on the obtained measurement value target range code EM1T. The processing unit 331 executes a signal generation control GY81 for the measurement application function FA81 based on the accessed control code CC1T. The output element 338 generates and controls the GY81 to execute in response to the signal A signal generation operation BY81 for the measurement application function FA81 generates an operation signal SG81. The operation signal SG81 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該複數不同物理參數參考狀態JE11、JE12、…包含該特定物理參數狀態JE16。該特定物理參數狀態JE16由一特定物理參數狀態碼EW16所代表。該複數不同物理參數參考狀態碼EW11、EW12、…包含該特定物理參數狀態碼EW16。在該處理單元331藉由檢查該第一數學關係KQ81而導致該可變物理參數QU1A處於該物理參數目標狀態JE1U的條件下,該輸入單元380接收使用該按鈕3801的該使用者輸入操作BQ82,並響應該使用者輸入操作BQ82來使該處理單元331接收一操作請求訊號SJ92。例如,該複數不同物理參數參考範圍RD1E1、RD1E2、…包含不同於該物理參數目標範圍RD1EU的一特定物理參數範圍RD1E6。該特定物理參數狀態JE16根據該特定物理參數範圍RD1E6而被預先確定。 In some embodiments, the plurality of different physical parameter reference states JE11, JE12, . . . comprise the specific physical parameter state JE16. The specific physical parameter state JE16 is represented by a specific physical parameter state code EW16. The complex number of different physical parameter reference status codes EW11, EW12, . . . include the specific physical parameter status code EW16. Under the condition that the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1U by checking the first mathematical relationship KQ81, the input unit 380 receives the user input operation BQ82 using the button 3801, In response to the user's input operation BQ82, the processing unit 331 receives an operation request signal SJ92. For example, the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . include a specific physical parameter range RD1E6 that is different from the physical parameter target range RD1EU. The specific physical parameter state JE16 is predetermined according to the specific physical parameter range RD1E6.

例如,該輸入單元380響應使用該按鈕3801的該使用者輸入操作BQ82來產生該操作請求訊號SJ92,提供該操作請求訊號SJ92到該處理單元331,並藉此使該處理單元331接收該操作請求訊號SJ92。該處理單元331響應該操作請求訊號SJ92來確定一特定輸入碼UW82。例如,該特定輸入碼UW82選擇自該複數不同物理參數參考狀態碼EW11、EW12、…。例如,該特定輸入碼UW82選擇自該複數不同測量值參考範圍碼EM11、EM12、…。當 該輸入單元380接收該使用者輸入操作BQ82時,該可變物理參數範圍碼UN8A等於所預設的該物理參數目標狀態碼EW1U。該處理單元331響應該操作請求訊號SJ92來從該可變物理參數範圍碼UN8A獲得該物理參數目標狀態碼EW1U。 For example, the input unit 380 generates the operation request signal SJ92 in response to the user's input operation BQ82 using the button 3801, provides the operation request signal SJ92 to the processing unit 331, and thereby causes the processing unit 331 to receive the operation request Signal SJ92. The processing unit 331 determines a specific input code UW82 in response to the operation request signal SJ92. For example, the specific input code UW82 is selected from the plurality of different physical parameter reference status codes EW11, EW12, . . . For example, the specific input code UW82 is selected from the complex number of different measurement value reference range codes EM11, EM12, . . . when When the input unit 380 receives the user input operation BQ82, the variable physical parameter range code UN8A is equal to the preset physical parameter target state code EW1U. The processing unit 331 obtains the physical parameter target status code EW1U from the variable physical parameter range code UN8A in response to the operation request signal SJ92.

在一些實施例中,該特定物理參數範圍RD1E6由一特定物理參數範圍碼UN86所代表。在該特定輸入碼UW82等於該特定物理參數範圍碼UN86並不同於所預設的該物理參數目標狀態碼EW1U的條件下,該處理單元331基於等於所獲得的該測量值目標範圍碼EM1U的該可變物理參數範圍碼UN8A和該特定輸入碼UW82之間的一碼差異DX82來使用該輸出組件338以使該輸出組件338產生該操作訊號SG87。該操作訊號SG87用於導致該可變物理參數QU1A離開該物理參數目標狀態JE1U以進入該特定物理參數狀態JE16。該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG87。該物理參數應用單元335響應該操作訊號SG87來導致該可變物理參數QU1A離開該物理參數目標狀態JE1U以進入該特定物理參數狀態JE16。 In some embodiments, the specific physical parameter range RD1E6 is represented by a specific physical parameter range code UN86. Under the condition that the specific input code UW82 is equal to the specific physical parameter range code UN86 and is different from the preset physical parameter target state code EW1U, the processing unit 331 based on the obtained measurement value target range code EM1U A code difference DX82 between the variable physical parameter range code UN8A and the specific input code UW82 is used by the output element 338 to cause the output element 338 to generate the operation signal SG87. The operation signal SG87 is used to cause the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16. The output element 338 transmits the operation signal SG87 to the physical parameter application unit 335 . The physical parameter applying unit 335 causes the variable physical parameter QU1A to leave the physical parameter target state JE1U to enter the specific physical parameter state JE16 in response to the operation signal SG87.

例如,在該可變物理參數QU1A基於該功能訊號SG87而被配置以處於該特定物理參數範圍RD1E6(或該特定物理參數狀態JE16)的條件下,該輸入單元380接收使用該按鈕3801的一使用者輸入操作BQ8B,響應該使用者輸入操作BQ8B來產生一操作請求訊號SJ9B,並提供該操作請求訊號SJ9B到該處理單元331。例如,在該可變物理參數QU1A處於該特定物理參數範圍RD1E6的條件 下,該按鈕3801接收該使用者輸入操作BQ8B以使該輸入單元380接收該使用者輸入操作BQ8B。 For example, under the condition that the variable physical parameter QU1A is configured to be in the specific physical parameter range RD1E6 (or the specific physical parameter state JE16) based on the function signal SG87, the input unit 380 receives a use using the button 3801 The user inputs operation BQ8B, generates an operation request signal SJ9B in response to the user input operation BQ8B, and provides the operation request signal SJ9B to the processing unit 331 . For example, under the condition that the variable physical parameter QU1A is in the specific physical parameter range RD1E6 Next, the button 3801 receives the user input operation BQ8B so that the input unit 380 receives the user input operation BQ8B.

該處理單元331響應該操作請求訊號SJ9B來使該輸出組件338向該物理參數應用單元335傳輸一操作訊號SG8B。該操作訊號SG8B用於導致該可變物理參數QU1A離開該特定物理參數範圍RD1E6(或該特定物理參數狀態JE16)以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD1EB(或一特定物理參數狀態JE1B)。例如,該特定物理參數範圍RD1EB相同於該物理參數目標範圍RD1EU。該特定物理參數狀態JE1B根據該特定物理參數範圍RD1EB而被預先確定。 The processing unit 331 makes the output element 338 transmit an operation signal SG8B to the physical parameter application unit 335 in response to the operation request signal SJ9B. The operation signal SG8B is used to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E6 (or the specific physical parameter state JE16) to enter a specific physical parameter included in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . Parameter range RD1EB (or a specific physical parameter state JE1B). For example, the specific physical parameter range RD1EB is the same as the physical parameter target range RD1EU. The specific physical parameter state JE1B is predetermined according to the specific physical parameter range RD1EB.

請參閱圖22和圖23。圖22為繪示於圖1中的該控制系統901的一實施結構9031的示意圖。圖23為繪示於圖1中的該控制系統901的一實施結構9032的示意圖。如圖22和圖23所示,該實施結構9031和該實施結構9032的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337、該輸入單元380和該傳輸單元384。該接收單元337包含該接收組件3371和該接收組件3372。該傳輸單元384包含一傳輸組件3842和一傳輸組件3843。該感測單元334、該物理參數應用單元335、該儲存單元332、該接收組件3371、該接收組件3372、該輸入單元380、該傳輸組件3842和該傳輸組件3843 皆耦合於該處理單元331,並皆受該處理單元331控制。該處理單元331包含該輸出組件338。 See Figure 22 and Figure 23. FIG. 22 is a schematic diagram illustrating an implementation structure 9031 of the control system 901 shown in FIG. 1 . FIG. 23 is a schematic diagram illustrating an implementation structure 9032 of the control system 901 shown in FIG. 1 . As shown in FIGS. 22 and 23 , each of the implementation structure 9031 and the implementation structure 9032 includes the control device 212 and the functional device 130 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 , the input unit 380 and the transmission unit 384 . The receiving unit 337 includes the receiving component 3371 and the receiving component 3372 . The transmission unit 384 includes a transmission element 3842 and a transmission element 3843 . The sensing unit 334 , the physical parameter application unit 335 , the storage unit 332 , the receiving component 3371 , the receiving component 3372 , the input unit 380 , the transmitting component 3842 and the transmitting component 3843 Both are coupled to the processing unit 331 and are controlled by the processing unit 331 . The processing unit 331 includes the output component 338 .

在一些實施例中,該輸出組件338耦合於該物理參數應用單元335。該處理單元331於該操作時間TF81之內基於所獲得的該控制碼CC1T來執行該訊號產生控制GY81。該輸出組件338響應該訊號產生控制GY81來執行用於該測量應用功能FA81的該訊號產生操作BY81以於該操作時間TF81之內產生該操作訊號SG81。例如,該操作訊號SG81是一控制訊號。該輸出組件338將該操作訊號SG81傳輸到該物理參數應用單元335。該物理參數應用單元335響應該操作訊號SG81來導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。例如,該操作訊號SG81是一脈衝寬度調變訊號、一電位準訊號、一驅動訊號和一指令訊號的其中之一。 In some embodiments, the output component 338 is coupled to the physical parameter application unit 335 . The processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T within the operation time TF81. In response to the signal generation control GY81, the output element 338 executes the signal generation operation BY81 for the measurement application function FA81 to generate the operation signal SG81 within the operation time TF81. For example, the operation signal SG81 is a control signal. The output element 338 transmits the operation signal SG81 to the physical parameter application unit 335 . The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET in response to the operation signal SG81. For example, the operation signal SG81 is one of a pulse width modulation signal, a potential level signal, a driving signal and a command signal.

在該處理單元331檢查該數學關係KV91以確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331確定該肯定操作報告RL81,並導致該傳輸單元384產生輸送該肯定操作報告RL81和該測量值VN82的該控制回應訊號SE81。該控制回應訊號SE81是一電訊號LP81和一光訊號LQ81的其中之一。該傳輸組件3842是一傳輸器。該傳輸組件3843是一光發射組件。例如,該傳輸組件3842和該傳輸組件3843分別是二輸出組件。 Under the condition that the processing unit 331 checks the mathematical relationship KV91 to determine the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, the processing unit 331 determines the positive operation report RL81 and causes the transmission unit 384 to generate a delivery The positive operation reports RL81 and the control response signal SE81 of the measured value VN82. The control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81. The transport assembly 3842 is a transmitter. The transmission element 3843 is a light emitting element. For example, the transmission assembly 3842 and the transmission assembly 3843 are respectively two output assemblies.

例如,該處理單元331藉由檢查該數學關係KV91來確定該可變物理參數QU1A目前於該物理參數目標 範圍RD1ET之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該物理參數目標範圍RD1ET之間的一物理參數關係KD8T為該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數交集關係。例如,該處理單元331藉由檢查該數學關係KV91來檢查該物理參數關係KD8T和該物理參數關係KD9T的其中之一。 For example, the processing unit 331 determines that the variable physical parameter QU1A is currently at the physical parameter target by checking the mathematical relationship KV91 A physical parameter situation within the range RD1ET, and thereby identifying a physical parameter relationship KD8T between the variable physical parameter QU1A and the physical parameter target range RD1ET is that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET A physical parameter intersection relationship within. For example, the processing unit 331 checks one of the physical parameter relationship KD8T and the physical parameter relationship KD9T by checking the mathematical relationship KV91.

在一些實施例中,在該傳輸組件3842被配置以產生該控制回應訊號SE81的條件下,該處理單元331基於所確定的該肯定操作報告RL81來導致該傳輸組件3842向該控制裝置212傳輸輸送該肯定操作報告RL81的該電訊號LP81。在該傳輸組件3843被配置以產生該控制回應訊號SE81的條件下,該處理單元331基於所確定的該肯定操作報告RL81來導致該傳輸組件3843產生輸送該肯定操作報告RL81的該光訊號LQ81,藉此該控制裝置212從該傳輸組件3843接收所產生的該光訊號LQ81。例如,該光發射組件是一顯示組件。該光訊號LQ81輸送代表該肯定操作報告RL81的一編碼影像FZ81。例如,該編碼影像FZ81是一條碼影像。例如,該電訊號LP81是一無線電訊號。該光訊號LQ81是一紅外線訊號。 In some embodiments, under the condition that the transmission element 3842 is configured to generate the control response signal SE81, the processing unit 331 causes the transmission element 3842 to transmit a transmission to the control device 212 based on the determined positive operation report RL81 The positive operation reports the electrical signal LP81 of RL81. Under the condition that the transmission element 3843 is configured to generate the control response signal SE81, the processing unit 331 causes the transmission element 3843 to generate the optical signal LQ81 transmitting the positive operation report RL81 based on the determined positive operation report RL81, Thereby, the control device 212 receives the generated optical signal LQ81 from the transmission element 3843 . For example, the light emitting element is a display element. The optical signal LQ81 conveys an encoded image FZ81 representing the positive operation report RL81. For example, the encoded image FZ81 is a barcode image. For example, the electrical signal LP81 is a radio signal. The optical signal LQ81 is an infrared signal.

例如,該控制裝置212由一控制裝置識別符HA0T所識別。該控制訊號SC81進一步輸送該控制裝置識別符HA0T。該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該控制裝置識別符HA0T,並基於所獲得的該控制裝置識別符HA0T和所確定的該肯定操作報告RL81來導致該傳輸組件3842向該控制裝置212傳輸輸送該 肯定操作報告RL81的該電訊號LP81。 For example, the control device 212 is identified by a control device identifier HAOT. The control signal SC81 further conveys the control device identifier HA0T. The processing unit 331 obtains the control device identifier HA0T from the control signal SC81 in response to the control signal SC81, and causes the transmission component 3842 to send the The control device 212 transmits the A positive operation reports the electrical signal LP81 of the RL81.

在一些實施例中,該控制裝置212的該操作單元297被配置以與該操作單元397有線地或無線地通訊;因此,該操作單元297被配置以向該操作單元397有線地或無線地傳輸該控制訊號SC81。例如,該接收單元337有線地或無線地從該控制裝置212接收該控制訊號SC81。該控制訊號SC81是該電訊號SP81和該光訊號SQ81的其中之一。該接收組件3371是一接收器,並在該控制訊號SC81是該電訊號SP81的條件下從該控制裝置212接收該電訊號SP81。該接收組件3372是一讀取器,並在該控制訊號SC81是該光訊號SQ81的條件下從該控制裝置212接收輸送該編碼影像FY81的該光訊號SQ81。例如,該編碼影像FY81是一條碼影像。例如,該電訊號SP81是一無線電訊號。該光訊號SQ81是一紅外線訊號。 In some embodiments, the operating unit 297 of the control device 212 is configured to communicate with the operating unit 397 wired or wirelessly; thus, the operating unit 297 is configured to transmit wired or wirelessly to the operating unit 397 The control signal SC81. For example, the receiving unit 337 receives the control signal SC81 from the control device 212 by wire or wirelessly. The control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81. The receiving component 3371 is a receiver, and receives the electrical signal SP81 from the control device 212 under the condition that the control signal SC81 is the electrical signal SP81. The receiving element 3372 is a reader, and receives the optical signal SQ81 for transmitting the encoded image FY81 from the control device 212 under the condition that the control signal SC81 is the optical signal SQ81. For example, the encoded image FY81 is a barcode image. For example, the electrical signal SP81 is a radio signal. The optical signal SQ81 is an infrared signal.

該物理參數應用單元335具有該可變物理參數QU1A。該接收單元337進一步包含一接收組件3374。該接收組件3374耦合於該處理單元331,受該處理單元331控制,並在該可變物理參數QU1A要依靠該控制裝置212而被提供的條件下從該控制裝置212接收一物理參數訊號SB81。該物理參數應用單元335從該接收組件3374接收該物理參數訊號SB81。該處理單元331藉由使用該輸出組件338來導致該物理參數應用單元335使用該物理參數訊號SB81以形成取決於該物理參數訊號SB81的該可變物理參數QU1A。例如,該接收組件3374是一接收組件。該控制裝置212有線地或無線地傳輸該物理參數訊號SB81到該接 收組件3374。例如,該接收組件3371、該接收組件3372和該接收組件3374分別是三輸入組件。 The physical parameter application unit 335 has the variable physical parameter QU1A. The receiving unit 337 further includes a receiving component 3374 . The receiving component 3374 is coupled to the processing unit 331 , is controlled by the processing unit 331 , and receives a physical parameter signal SB81 from the control device 212 under the condition that the variable physical parameter QU1A is to be provided by the control device 212 . The physical parameter applying unit 335 receives the physical parameter signal SB81 from the receiving element 3374 . The processing unit 331 causes the physical parameter application unit 335 to use the physical parameter signal SB81 by using the output element 338 to form the variable physical parameter QU1A depending on the physical parameter signal SB81. For example, the receiving component 3374 is a receiving component. The control device 212 transmits the physical parameter signal SB81 wired or wirelessly to the connection Receive assembly 3374. For example, the receiving component 3371, the receiving component 3372, and the receiving component 3374 are three-input components, respectively.

該物理參數目標範圍RD1ET具有一預設物理參數目標範圍界限ZD1T1和相對於該預設物理參數目標範圍界限ZD1T1的一預設物理參數目標範圍界限ZD1T2。該目標範圍界限值對DN1T包含該測量值目標範圍RN1T的一目標範圍界限值DN17和相對於該目標範圍界限值DN17的一目標範圍界限值DN18。該預設物理參數目標範圍界限ZD1T1由該目標範圍界限值DN17所代表。該預設物理參數目標範圍界限ZD1T2由該目標範圍界限值DN18所代表。 The physical parameter target range RD1ET has a predetermined physical parameter target range limit ZD1T1 and a predetermined physical parameter target range limit ZD1T2 relative to the predetermined physical parameter target range limit ZD1T1. The target range limit value pair DN1T includes a target range limit value DN17 of the measurement value target range RN1T and a target range limit value DN18 relative to the target range limit value DN17. The preset physical parameter target range limit ZD1T1 is represented by the target range limit value DN17. The preset physical parameter target range limit ZD1T2 is represented by the target range limit value DN18.

該物理參數應用範圍RD1EL具有一預設物理參數應用範圍界限ZD1L1和相對於該預設物理參數應用範圍界限ZD1L1的一預設物理參數應用範圍界限ZD1L2。該預設物理參數應用範圍界限ZD1L1由該應用範圍界限值DN15所代表。該預設物理參數應用範圍界限ZD1L2由該應用範圍界限值DN16所代表。 The physical parameter application range RD1EL has a predetermined physical parameter application range limit ZD1L1 and a predetermined physical parameter application range limit ZD1L2 relative to the predetermined physical parameter application range limit ZD1L1. The preset physical parameter application range limit ZD1L1 is represented by the application range limit value DN15. The preset physical parameter application range limit ZD1L2 is represented by the application range limit value DN16.

在一些實施例中,該觸發事件EQ81是一狀態改變事件。該控制裝置212包含一操作單元297和耦合於該操作單元297的一狀態改變偵測器475。例如,該狀態改變偵測器475是一極限偵測器和一邊緣偵測器的其中之一。該極限偵測器是一極限開關485。該狀態改變偵測器475被配置以偵測與一預設特徵物理參數UL81相關的一特徵物理參數到達ZL82。例如,該預設特徵物理參數UL81是一預設極限位置。該特徵物理參數到達ZL82是一極限位 置到達。 In some embodiments, the trigger event EQ81 is a state change event. The control device 212 includes an operating unit 297 and a state change detector 475 coupled to the operating unit 297 . For example, the state change detector 475 is one of a limit detector and an edge detector. The limit detector is a limit switch 485 . The state change detector 475 is configured to detect the arrival of a characteristic physical parameter associated with a predetermined characteristic physical parameter UL81 to ZL82. For example, the predetermined characteristic physical parameter UL81 is a predetermined limit position. The characteristic physical parameter reaches ZL82 is a limit set to arrive.

該物理參數應用單元335包含一物理參數應用區AJ11。該物理參數應用區AJ11具有一可變物理參數QG1A。該可變物理參數QG1A相依於該可變物理參數QU1A,並基於該預設特徵物理參數UL81而被特徵化。例如,該物理參數應用區AJ11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。該預設特徵物理參數UL81相關於該可變物理參數QU1A。 The physical parameter application unit 335 includes a physical parameter application area AJ11. The physical parameter application area AJ11 has a variable physical parameter QG1A. The variable physical parameter QG1A is dependent on the variable physical parameter QU1A and is characterized based on the predetermined characteristic physical parameter UL81. For example, the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area and an environment area. The preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.

在該接收單元337接收該控制訊號SC81之前,該接收單元337從該操作單元297接收一控制訊號SC80。該處理單元331響應所接收的該控制訊號SC80來執行用於控制該輸出組件338的一訊號產生控制GY80。該輸出組件338響應該訊號產生控制GY80來產生用於控制該可變物理參數QU1A的一操作訊號SG80。該物理參數應用單元335從該輸出組件338接收該操作訊號SG80,並響應所接收的該操作訊號SG80來執行與該可變物理參數QU1A相關的該特定功能操作ZH81。該特定功能操作ZH81用於控制該可變物理參數QG1A,並藉由改變該可變物理參數QG1A來導致該觸發事件EQ81發生。該可變物理參數QG1A被配置以處於一可變物理狀態XA8A。例如,該操作單元397受該控制裝置212控制以使該物理參數應用單元335執行該特定功能操作ZH81。該狀態改變偵測器475響應該特定功能操作ZH81來產生一觸發訊號SX8A。 Before the receiving unit 337 receives the control signal SC81 , the receiving unit 337 receives a control signal SC80 from the operating unit 297 . The processing unit 331 executes a signal generation control GY80 for controlling the output element 338 in response to the received control signal SC80. The output element 338 generates a control GY80 in response to the signal to generate an operation signal SG80 for controlling the variable physical parameter QU1A. The physical parameter application unit 335 receives the operation signal SG80 from the output element 338, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received operation signal SG80. The specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A. The variable physical parameter QG1A is configured to be in a variable physical state XA8A. For example, the operation unit 397 is controlled by the control device 212 to make the physical parameter application unit 335 perform the specific function operation ZH81. The state change detector 475 operates the ZH81 to generate a trigger signal SX8A in response to the specific function.

在該可變物理參數QU1A於該特定物理參數範圍RD1E4之內的條件下,該特定功能操作ZH81導致 該可變物理參數QG1A到達該預設特徵物理參數UL81以形成該特徵物理參數到達ZL82,並藉由形成該特徵物理參數到達ZL82來將該可變物理狀態XA8A從一非特徵物理參數到達狀態XA81改變成一實際特徵物理參數到達狀態XA82。該狀態改變偵測器475響應該特徵物理參數到達ZL82來產生該觸發訊號SX8A。例如,該實際特徵物理參數到達狀態XA82基於該預設特徵物理參數UL81而被特徵化。該狀態改變偵測器475響應該可變物理參數QG1A被從該非特徵物理參數到達狀態XA81改變成該實際特徵物理參數到達狀態XA82的一狀態改變事件來產生該觸發訊號SX8A。 Under the condition that the variable physical parameter QU1A is within the specific physical parameter range RD1E4, the specific function operation ZH81 results in The variable physical parameter QG1A reaches the default characteristic physical parameter UL81 to form the characteristic physical parameter to ZL82, and by forming the characteristic physical parameter to ZL82, the variable physical state XA8A is changed from a non-characteristic physical parameter to state XA81 A change to an actual characteristic physical parameter arrives at state XA82. The state change detector 475 generates the trigger signal SX8A in response to the characteristic physical parameter reaching ZL82. For example, the actual characteristic physical parameter arrival state XA82 is characterized based on the preset characteristic physical parameter UL81. The state change detector 475 generates the trigger signal SX8A in response to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter arrival state XA81 to the actual characteristic physical parameter arrival state XA82.

例如,該狀態改變偵測器475是一觸發應用單元。該觸發事件EQ81是該可變物理參數QG1A進入該實際特徵物理參數到達狀態XA82的該狀態改變事件。該操作單元297接收該觸發訊號SX8A,並響應所接收的該觸發訊號SX8A來產生該控制訊號SC81。例如,在該狀態改變偵測器475是該極限開關485的條件下,該特徵物理參數到達ZL82是等於一可變空間位置的該可變物理參數QG1A到達等於一預設極限位置的該預設特徵物理參數UL81的一極限位置到達。該觸發訊號SX8A是一操作請求訊號。 For example, the state change detector 475 is a trigger application unit. The trigger event EQ81 is the state change event of the variable physical parameter QG1A entering the actual characteristic physical parameter reaching state XA82. The operation unit 297 receives the trigger signal SX8A, and generates the control signal SC81 in response to the received trigger signal SX8A. For example, under the condition that the state change detector 475 is the limit switch 485, the characteristic physical parameter reaching ZL82 is equal to the variable physical parameter QG1A of a variable spatial position reaching the preset equal to a predetermined limit position A limit position of the characteristic physical parameter UL81 is reached. The trigger signal SX8A is an operation request signal.

例如,該操作單元297響應所接收的該觸發訊號SX8A來獲得包含該目標範圍界限值對DN1T和該測量值目標範圍碼EM1T的至少其中之一的一控制應用碼UA8T,並基於該控制應用碼UA8T來產生輸送該目標範圍界限值對DN1T和該測量值目標範圍碼EM1T的至少其中 之一的該控制訊號SC81。例如,該物理參數應用單元335藉由執行基於該可變物理參數QU1A而被引起的該特定功能操作ZH81來在該物理參數應用區AJ11中形成該可變物理參數QG1A。在該物理參數應用區AJ11耦合於該狀態改變偵測器475的條件下,該狀態改變偵測器475偵測該特徵物理參數到達ZL82。 For example, the operation unit 297 obtains a control application code UA8T including at least one of the target range limit value pair DN1T and the measured value target range code EM1T in response to the received trigger signal SX8A, and based on the control application code UA8T to generate at least one of the target range limit value pair DN1T and the measured value target range code EM1T One of the control signals SC81. For example, the physical parameter application unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific function operation ZH81 caused based on the variable physical parameter QU1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches ZL82.

在一些實施例中,該可變物理參數QU1A是一第一可變電性參數、一第一可變力學參數、一第一可變光學參數、一第一可變溫度、一第一可變電壓、一第一可變電流、一第一可變電功率、一第一可變電阻、一第一可變電容、一第一可變電感、一第一可變頻率、一第一時鐘時間、一第一可變時間長度、一第一可變亮度、一第一可變光強度、一第一可變音量、一第一可變資料流量、一第一可變振幅、一第一可變空間位置、一第一可變位移、一第一可變順序位置、一第一可變角度、一第一可變空間長度、一第一可變距離、一第一可變平移速度、一第一可變角速度、一第一可變加速度、一第一可變力、一第一可變壓力和一第一可變機械功率的其中之一。 In some embodiments, the variable physical parameter QU1A is a first variable electrical parameter, a first variable mechanical parameter, a first variable optical parameter, a first variable temperature, a first variable voltage, a first variable current, a first variable electrical power, a first variable resistor, a first variable capacitor, a first variable inductor, a first variable frequency, a first clock time, a first variable time length, a first variable brightness, a first variable light intensity, a first variable volume, a first variable data flow, a first variable amplitude, a first variable Variable space position, a first variable displacement, a first variable sequence position, a first variable angle, a first variable space length, a first variable distance, a first variable translation speed, One of a first variable angular velocity, a first variable acceleration, a first variable force, a first variable pressure, and a first variable mechanical power.

該操作單元397被配置以依靠該控制訊號SC81而執行與該可變物理參數QU1A相關的該測量應用功能FA81。該功能裝置130是複數應用裝置的其中之一。該測量應用功能FA81是複數特定控制功能的其中之一,該複數特定控制功能包含一光控制功能、一力控制功能、一電控制功能、一磁控制功能和其任意組合。該複數應用裝置包含一控制目標裝置、一繼電器、一控制開關裝置、一電 動機、一照明裝置、一門、一販賣機、一能量轉換器、一負載裝置、一定時裝置、一玩具、一電器、一列印裝置、一顯示裝置、一移動裝置、一揚聲器和其任意組合。 The operating unit 397 is configured to execute the measurement application function FA81 associated with the variable physical parameter QU1A by means of the control signal SC81. The functional device 130 is one of a plurality of application devices. The measurement application function FA81 is one of a plurality of specific control functions including a light control function, a force control function, an electrical control function, a magnetic control function and any combination thereof. The plurality of application devices include a control target device, a relay, a control switch device, an electrical Motive, a lighting device, a door, a vending machine, an energy converter, a load device, a timing device, a toy, an electrical appliance, a printing device, a display device, a mobile device, a speaker, and any combination thereof.

該物理參數應用單元335是複數應用目標的其中之一,並被配置以執行一特定應用功能。該特定應用功能是複數物理參數應用功能的其中之一,該複數物理參數應用功能包含一光使用功能、一力使用功能、一電使用功能、一磁使用功能和其任意組合。該複數應用目標包含一電子組件、一致動器、一電阻器、一電容器、一電感器、一繼電器、一控制開關、一電晶體、一電動機、一照明單元、一能量轉換單元、一負載單元、一定時單元、一列印單元、一顯示目標、一揚聲器和其任意組合。例如,該物理參數應用單元335是一物理可實現功能單元。 The physical parameter application unit 335 is one of a plurality of application objects and is configured to perform a specific application function. The specific application function is one of the complex physical parameter application functions, and the complex physical parameter application function includes a light use function, a force use function, an electricity use function, a magnetism use function and any combination thereof. The multiple application targets include an electronic component, an actuator, a resistor, a capacitor, an inductor, a relay, a control switch, a transistor, a motor, a lighting unit, an energy conversion unit, and a load unit , a timing unit, a printing unit, a display target, a speaker, and any combination thereof. For example, the physical parameter application unit 335 is a physically realizable functional unit.

例如,該可變物理參數QU1A和該可變物理參數QG1A分別屬於一物理參數類型TU11和一物理參數類型TU1G。該物理參數類型TU11相同或不同於該物理參數類型TU1G。該預設特徵物理參數UL81屬於該物理參數類型TU1G。該物理參數應用單元335進一步包含具有該可變物理參數QU1A的一物理參數形成區AU11。該物理參數應用區AJ11耦合於該物理參數形成區AU11。例如,該特定功能操作ZH81用於驅動該物理參數應用區AJ11以形成該特徵物理參數到達ZL82。例如,該物理參數形成區AU11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。例如,該物理參數類型TU11不同於一時間類型。 For example, the variable physical parameter QU1A and the variable physical parameter QG1A belong to a physical parameter type TU11 and a physical parameter type TU1G, respectively. The physical parameter type TU11 is the same as or different from the physical parameter type TU1G. The preset characteristic physical parameter UL81 belongs to the physical parameter type TU1G. The physical parameter applying unit 335 further includes a physical parameter forming area AU11 having the variable physical parameter QU1A. The physical parameter application area AJ11 is coupled to the physical parameter forming area AU11. For example, the specific function operation ZH81 is used to drive the physical parameter application area AJ11 to form the characteristic physical parameter reaching ZL82. For example, the physical parameter forming area AU11 is one of a load area, a display area, a sensing area, a power supply area and an environment area. For example, the physical parameter type TU11 is different from a time type.

該可變物理參數QG1A是一可變電性參數、一可變力學參數、一可變光學參數、一可變溫度、一可變電壓、一可變電流、一可變電功率、一可變電阻、一可變電容、一可變電感、一可變頻率、一時鐘時間、一可變時間長度、一可變亮度、一可變光強度、一可變音量、一可變資料流量、一可變振幅、一可變空間位置、一可變位移、一可變順序位置、一可變角度、一可變空間長度、一可變距離、一可變平移速度、一可變角速度、一可變加速度、一可變力、一可變壓力和一可變機械功率的其中之一。例如,該可變物理參數QU1A相同或不同於該可變物理參數QG1A。 The variable physical parameter QG1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable current, a variable electrical power, a variable Resistor, a variable capacitor, a variable inductor, a variable frequency, a clock time, a variable time length, a variable brightness, a variable light intensity, a variable volume, a variable data flow, a variable amplitude, a variable spatial position, a variable displacement, a variable sequential position, a variable angle, a variable spatial length, a variable distance, a variable translation velocity, a variable angular velocity, a variable One of variable acceleration, a variable force, a variable pressure, and a variable mechanical power. For example, the variable physical parameter QU1A is the same as or different from the variable physical parameter QG1A.

請參閱圖24、圖25和圖26。圖24為繪示於圖1中的該控制系統901的一實施結構9033的示意圖。圖25為繪示於圖1中的該控制系統901的一實施結構9034的示意圖。圖26為繪示於圖1中的該控制系統901的一實施結構9035的示意圖。如圖24、圖25和圖26所示,該實施結構9033、該實施結構9034和該實施結構9035的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337、該顯示單元382和該傳輸單元384。該接收單元337、該顯示單元382、該傳輸單元384、該感測單元334、該物理參數應用單元335和該儲存單元332該皆受該處理單元331控制。 See Figure 24, Figure 25 and Figure 26. FIG. 24 is a schematic diagram illustrating an implementation structure 9033 of the control system 901 shown in FIG. 1 . FIG. 25 is a schematic diagram illustrating an implementation structure 9034 of the control system 901 shown in FIG. 1 . FIG. 26 is a schematic diagram illustrating an implementation structure 9035 of the control system 901 shown in FIG. 1 . As shown in FIGS. 24 , 25 and 26 , each of the implementation structure 9033 , the implementation structure 9034 and the implementation structure 9035 includes the control device 212 and the functional device 130 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 , the display unit 382 and the transmission unit 384 . The receiving unit 337 , the display unit 382 , the transmission unit 384 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 are all controlled by the processing unit 331 .

在一些實施例中,該感測單元334感測該可 變物理參數QU1A以產生該感測訊號SN81。例如,在該接收單元337接收該控制訊號SC81的條件下,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN81。在該處理單元331藉由執行該訊號產生控制GY81來使用該輸出組件338以於該操作時間TF81之內產生該操作訊號SG81之後,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN82。例如,該感測單元334是一時間感測單元、一電性參數感測單元、一力學參數感測單元、一光學參數感測單元、一溫度感測單元、一濕度感測單元、一運動感測單元和一磁性參數感測單元的其中之一。 In some embodiments, the sensing unit 334 senses the The physical parameter QU1A is changed to generate the sensing signal SN81. For example, under the condition that the receiving unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81. After the processing unit 331 uses the output element 338 to generate the operation signal SG81 within the operation time TF81 by executing the signal generation control GY81, the sensing unit 334 senses the variable physical parameter QU1A to generate the Sensing signal SN82. For example, the sensing unit 334 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, a motion sensing unit One of the sensing unit and a magnetic parameter sensing unit.

該感測單元334包含耦合於該處理單元331的一感測組件3341,並使用該感測組件3341以產生該感測訊號SN81和該感測訊號SN82。該感測組件3341屬於一感測器類型7341,並是第一複數應用感測器的其中之一。該第一複數應用感測器包含一第一電壓感測器、一第一電流感測器、一第一電阻感測器、一第一電容感測器、一第一電感感測器、一第一加速度計、一第一陀螺儀、一第一壓力轉能器、一第一應變規、一第一定時器、一第一光偵測器、一第一溫度感測器和一第一濕度感測器。例如,該感測組件3341產生一感測訊號分量SN811。該感測訊號SN81包含該感測訊號分量SN811。 The sensing unit 334 includes a sensing element 3341 coupled to the processing unit 331, and uses the sensing element 3341 to generate the sensing signal SN81 and the sensing signal SN82. The sensing element 3341 is of a sensor type 7341 and is one of the first plurality of application sensors. The first complex application sensor includes a first voltage sensor, a first current sensor, a first resistance sensor, a first capacitance sensor, a first inductance sensor, a first a first accelerometer, a first gyroscope, a first pressure transducer, a first strain gauge, a first timer, a first light detector, a first temperature sensor, and a first Humidity sensor. For example, the sensing element 3341 generates a sensing signal component SN811. The sensing signal SN81 includes the sensing signal component SN811.

該感測單元334進一步包含耦合於該處理單元331的一感測組件3342,並使用該感測組件3342以產生該感測訊號SN81和該感測訊號SN82。該感測組件3342屬於一感測器類型7342,並是第二複數應用感測器的其中 之一。該感測器類型7342不同於或獨立於該感測器類型7341。該第二複數應用感測器包含一第二電壓感測器、一第二電流感測器、一第二電阻感測器、一第二電容感測器、一第二電感感測器、一第二加速度計、一第二陀螺儀、一第二壓力轉能器、一第二應變規、一第二定時器、一第二光偵測器、一第二溫度感測器和一第二濕度感測器。 The sensing unit 334 further includes a sensing element 3342 coupled to the processing unit 331, and uses the sensing element 3342 to generate the sensing signal SN81 and the sensing signal SN82. The sensing element 3342 is of a sensor type 7342 and is one of the second plurality of application sensors one. The sensor type 7342 is different from or independent of the sensor type 7341. The second complex application sensor includes a second voltage sensor, a second current sensor, a second resistance sensor, a second capacitance sensor, a second inductance sensor, a second a second accelerometer, a second gyroscope, a second pressure transducer, a second strain gauge, a second timer, a second photodetector, a second temperature sensor, and a second Humidity sensor.

例如,該感測組件3342產生一感測訊號分量SN812。該感測訊號SN81進一步包含該感測訊號分量SN812。例如,該感測單元334屬於一感測器類型734。該感測器類型734相關於該感測器類型7341和該感測器類型7342。例如,該感測單元334、該感測組件3341和該感測組件3342分別是一電功率感測單元、一電壓感測器和一電流感測器。例如,該感測單元334、該感測組件3341和該感測組件3342分別是一慣性測量單元、一加速度計和一陀螺儀。 For example, the sensing element 3342 generates a sensing signal component SN812. The sensing signal SN81 further includes the sensing signal component SN812. For example, the sensing unit 334 is of a sensor type 734 . The sensor type 734 is related to the sensor type 7341 and the sensor type 7342. For example, the sensing unit 334, the sensing element 3341 and the sensing element 3342 are an electric power sensing unit, a voltage sensor and a current sensor, respectively. For example, the sensing unit 334, the sensing element 3341 and the sensing element 3342 are an inertial measurement unit, an accelerometer and a gyroscope, respectively.

在一些實施例中,該可變物理參數QU1A相依於一可變物理參數JA1A和不同於該可變物理參數JA1A的一可變物理參數JB1A。例如,該可變物理參數QU1A、該可變物理參數JA1A和該可變物理參數JB1A分別是一可變電功率、一可變電壓和一可變電流,並分別屬於一第一物理參數類型、一第二物理參數類型和一第三物理參數類型。該第二物理參數類型和該第三物理參數類型是不同的或獨立的。該第一物理參數類型相依於該第二物理參數類型和該第三物理參數類型。該感測組件3341感測該可變物理參數JA1A以產生該感測訊號分量SN811。該感測組件 3342感測該可變物理參數JB1A以產生該感測訊號分量SN812。 In some embodiments, the variable physical parameter QU1A is dependent on a variable physical parameter JA1A and a variable physical parameter JB1A different from the variable physical parameter JA1A. For example, the variable physical parameter QU1A, the variable physical parameter JA1A and the variable physical parameter JB1A are respectively a variable electric power, a variable voltage and a variable current, and belong to a first physical parameter type, A second physical parameter type and a third physical parameter type. The second physical parameter type and the third physical parameter type are different or independent. The first physical parameter type depends on the second physical parameter type and the third physical parameter type. The sensing element 3341 senses the variable physical parameter JA1A to generate the sensing signal component SN811. The sensing component 3342 senses the variable physical parameter JB1A to generate the sensed signal component SN812.

該處理單元331接收該感測訊號分量SN811和該感測訊號分量SN812。在該接收單元337接收該控制訊號SC81的條件下,該處理單元331響應該感測訊號分量SN811和該感測訊號分量SN812來獲得該測量值VN81。例如,該處理單元331響應該感測訊號分量SN811來獲得一測量值VN811,響應該感測訊號分量SN812來獲得一測量值VN812,並藉由執行使用該測量值VN811和該測量值VN812的一科學計算MY81來獲得該測量值VN81。該科學計算MY81基於該第一物理參數類型、該第二物理參數類型和該第三物理參數類型而被預先制定。 The processing unit 331 receives the sensing signal component SN811 and the sensing signal component SN812. Under the condition that the receiving unit 337 receives the control signal SC81, the processing unit 331 obtains the measured value VN81 in response to the sensing signal component SN811 and the sensing signal component SN812. For example, the processing unit 331 obtains a measured value VN811 in response to the sensing signal component SN811, obtains a measured value VN812 in response to the sensing signal component SN812, and executes a method using the measured value VN811 and the measured value VN812 by executing a Scientific computing MY81 to obtain this measurement VN81. The scientific calculation MY81 is predetermined based on the first physical parameter type, the second physical parameter type and the third physical parameter type.

該可變物理參數JA1A和該可變物理參數JB1A的每一物理參數是一可變電性參數、一可變力學參數、一可變光學參數、一可變溫度、一可變電壓、一可變電流、一可變電功率、一可變電阻、一可變電容、一可變電感、一可變頻率、一時鐘時間、一可變時間長度、一可變亮度、一可變光強度、一可變音量、一可變資料流量、一可變振幅、一可變空間位置、一可變位移、一可變順序位置、一可變角度、一可變空間長度、一可變距離、一可變平移速度、一可變角速度、一可變加速度、一可變力、一可變壓力和一可變機械功率的其中之一。 Each physical parameter of the variable physical parameter JA1A and the variable physical parameter JB1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable Variable current, a variable electric power, a variable resistor, a variable capacitor, a variable inductance, a variable frequency, a clock time, a variable time length, a variable brightness, a variable light intensity , a variable volume, a variable data flow, a variable amplitude, a variable spatial position, a variable displacement, a variable sequential position, a variable angle, a variable spatial length, a variable distance, One of a variable translation velocity, a variable angular velocity, a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.

在一些實施例中,該感測單元334被配置以符合該感測器規格FU11。該感測單元334藉由執行相依於該感測器靈敏度YW81的該感測訊號產生HF81來產生該感 測訊號SN81。該物理參數應用單元335包含具有該可變物理參數QU1A的該物理參數形成區AU11。在該接收單元337接收該控制訊號SC81且該可變物理參數QU1A存在於該物理參數形成區AU11中的條件下,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN81。例如,該感測單元334耦合於該物理參數形成區AU11,或位於該物理參數形成區AU11中。該處理單元331接收該感測訊號SN81,並藉由處理所接收的該感測訊號SN81來以該指定測量值格式HH11獲得該測量值VN81。 In some embodiments, the sensing unit 334 is configured to conform to the sensor specification FU11. The sensing unit 334 generates the sensing by performing the sensing signal generation HF81 dependent on the sensor sensitivity YW81 Test signal SN81. The physical parameter applying unit 335 includes the physical parameter forming area AU11 having the variable physical parameter QU1A. Under the condition that the receiving unit 337 receives the control signal SC81 and the variable physical parameter QU1A exists in the physical parameter forming area AU11, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81 . For example, the sensing unit 334 is coupled to the physical parameter forming area AU11, or is located in the physical parameter forming area AU11. The processing unit 331 receives the sensing signal SN81, and obtains the measurement value VN81 in the specified measurement value format HH11 by processing the received sensing signal SN81.

該處理單元331藉由比較該測量值VN81和所獲得的該應用範圍界限值對DN1L來執行用於檢查該測量值VN81和該測量值應用範圍RN1L之間的該數學關係KV81的一檢查操作BV81,並基於該檢查操作BV81來做出該邏輯決定PB81。在一些實施例中,該處理單元331處理所接收的該感測訊號SN81以獲得包含該測量值VN81的一測量值序列JN81。該處理單元331藉由比較該測量值序列JN81和所獲得的該應用範圍界限值對DN1L來執行用於檢查該測量值序列JN81和該測量值應用範圍RN1L之間的一數學關係KV85的一檢查操作BV85。該處理單元331基於該檢查操作BV85來做出該邏輯決定PB81。例如,該檢查操作BV85包含該檢查操作BV81。 The processing unit 331 performs a check operation BV81 for checking the mathematical relationship KV81 between the measurement value VN81 and the measurement value application range RN1L by comparing the measurement value VN81 with the obtained application range limit value pair DN1L , and make the logical decision PB81 based on the check operation BV81. In some embodiments, the processing unit 331 processes the received sensing signal SN81 to obtain a measurement value sequence JN81 including the measurement value VN81. The processing unit 331 performs a check for checking a mathematical relationship KV85 between the measured value sequence JN81 and the measured value application range RN1L by comparing the measured value sequence JN81 with the obtained application range limit value pair DN1L Operate BV85. The processing unit 331 makes the logical decision PB81 based on the checking operation BV85. For example, the check operation BV85 includes the check operation BV81.

例如,在處理單元331基於該資料比較CD81而辨識該測量值VN81為於該測量值應用範圍RN1L之內的一可允許值VG81的條件下,該處理單元331做出該邏輯決定PB81以成為肯定的。或者,在該處理單元331辨識該數 學關係KV81為一數值交集關係KW81的條件下,該處理單元331做出該邏輯決定PB81以成為肯定的。 For example, under the condition that the processing unit 331 identifies the measurement value VN81 as an allowable value VG81 within the measurement value application range RN1L based on the data comparison CD81, the processing unit 331 makes the logical decision PB81 to be affirmative of. Alternatively, the processing unit 331 identifies the number Under the condition that the learning relation KV81 is a numerical intersection relation KW81, the processing unit 331 makes the logical decision PB81 to be affirmative.

在一些實施例中,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該測量值目標範圍碼EM1T。該處理單元331於該操作時間TF81之後的該指定時間TG82之內執行與該可變物理參數QU1A相關的一驗證操作ZU81。在該處理單元331基於該驗證操作ZU81而確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。例如,該驗證操作ZU81於該操作時間TF81之後的該指定時間TG82之內響應該感測訊號SN82來以該指定測量值格式HH81獲得該測量值VN82。 In some embodiments, the processing unit 331 obtains the measured value target range code EM1T from the control signal SC81 in response to the control signal SC81. The processing unit 331 executes a verification operation ZU81 related to the variable physical parameter QU1A within the specified time TG82 after the operation time TF81. Under the condition that the processing unit 331 determines the physical parameter target range RD1ET into which the variable physical parameter QU1A enters based on the verification operation ZU81, the processing unit 331 uses the storage unit 332 to code the obtained measurement value target range EM1T is assigned to this variable physical parameter range code UN8A. For example, the verification operation ZU81 obtains the measurement value VN82 in the specified measurement value format HH81 in response to the sensing signal SN82 within the specified time TG82 after the operation time TF81.

該驗證操作ZU81基於所獲得的該測量值目標範圍碼EM1T來獲得該目標範圍界限值對DN1T,並藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來檢查該測量值VN82和該測量值目標範圍RN1T之間的該數學關係KV91以做出該測量值VN82是否為於該測量值目標範圍RN1T之內的該邏輯決定PB91。在該邏輯決定PB91是肯定的條件下,該驗證操作ZU81確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,或確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET。 The verification operation ZU81 obtains the target range limit value pair DN1T based on the obtained measurement value target range code EM1T, and checks the measurement value VN82 by comparing the measurement value VN82 with the obtained target range limit value pair DN1T The mathematical relationship KV91 with the measurement value target range RN1T to make the logical decision PB91 whether the measurement value VN82 is within the measurement value target range RN1T. Under the condition that the logical decision PB91 is affirmative, the verification operation ZU81 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in, or determines the physical parameter target range RD1ET that the variable physical parameter QU1A enters.

例如,該操作單元397包含耦合於該處理單元331的該傳輸單元384。該處理單元331基於該驗證操作ZU81來產生一特定操作報告RL8A,並基於該特定操作報 告RL8A來使該傳輸單元384向該操作單元297傳輸輸送該特定操作報告RL8A的該控制回應訊號SE81。該操作單元297從該控制回應訊號SE81獲得該特定操作報告RL8A,並基於所獲得的該特定操作報告RL8A來執行與該可變物理參數QU1A相關的該特定實際操作BJ81。例如,該特定操作報告RL8A包含該肯定操作報告RL81。 For example, the operation unit 397 includes the transmission unit 384 coupled to the processing unit 331 . The processing unit 331 generates a specific operation report RL8A based on the verification operation ZU81, and based on the specific operation report The transmission unit 384 transmits the control response signal SE81 that conveys the specific operation report RL8A to the operation unit 297 by reporting the RL8A. The operation unit 297 obtains the specific operation report RL8A from the control response signal SE81, and executes the specific actual operation BJ81 related to the variable physical parameter QU1A based on the obtained specific operation report RL8A. For example, the specific operation report RL8A contains the positive operation report RL81.

在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 Under the condition that the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located based on the verification operation ZU81 , the processing unit 331 uses the storage unit 332 based on the code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T to store the The obtained measurement value target range code EM1T is assigned to the variable physical parameter range code UN8A.

在一些實施例中,在該處理單元331於該指定時間TG82之內基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331執行等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的一資料比較CE8T。在該處理單元331基於該資料比較CE8T而確定等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該碼差異DF81的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, under the condition that the processing unit 331 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in based on the verification operation ZU81 within the specified time TG82, the processing unit 331 performs an operation equal to A data comparison CE8T between the variable physical parameter range code UN8A of the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. On the condition that the processing unit 331 determines the code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T , the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

例如,在該處理單元331基於該資料比較CE8T而確定該碼差異DF81的條件下,該處理單元331執行該資料儲存控制操作GU81,該資料儲存控制操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的該物理參數目標範圍碼UN8T被該儲存單元332記錄。例如,該物理參數目標範圍碼UN8T等於所獲得的該測量值目標範圍碼EM1T。該資料儲存控制操作GU81使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 For example, under the condition that the processing unit 331 determines the code difference DF81 based on the data comparison CE8T, the processing unit 331 executes the data storage control operation GU81 for causing the representation of the determined physical parameter The physical parameter target range code UN8T of the target range RD1ET is recorded by the storage unit 332 . For example, the physical parameter target range code UN8T is equal to the obtained measurement value target range code EM1T. The data storage control operation GU81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

當該接收單元337接收該控制訊號SC81時,該顯示單元382顯示該狀態指示LB81。例如,該狀態指示LB81用於指示該可變物理參數QU1A被配置於該特定物理參數範圍RD1E4之內的該特定狀態XJ81。在該接收單元337接收該控制訊號SC81之前,該處理單元331被配置以獲得該特定測量值範圍碼EM14,並基於所獲得的該特定測量值範圍碼EM14來導致該顯示單元382顯示該狀態指示LB81。 When the receiving unit 337 receives the control signal SC81, the display unit 382 displays the status indication LB81. For example, the state indication LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific state XJ81 within the specific physical parameter range RD1E4. Before the receiving unit 337 receives the control signal SC81, the processing unit 331 is configured to obtain the specific measurement value range code EM14, and cause the display unit 382 to display the status indication based on the obtained specific measurement value range code EM14 LB81.

在該處理單元331基於該資料比較CE8T而確定該碼差異DF81的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來導致該顯示單元382將該狀態指示LB81改變成該狀態指示LB82。例如,該狀態指示LB82用於指示該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的該特定狀態XJ82。 Under the condition that the processing unit 331 determines the code difference DF81 based on the data comparison CE8T, the processing unit 331 causes the display unit 382 to change the state indication LB81 to this state based on the obtained measurement value target range code EM1T Indicates LB82. For example, the status indication LB82 is used to indicate the specific status XJ82 that the variable physical parameter QU1A is currently within the physical parameter target range RD1ET.

在一些實施例中,該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同 物理參數參考範圍RD1E1、RD1E2、…中。該物理參數目標範圍RD1ET相同或不同於該物理參數應用範圍RD1EL。該可變物理參數QU1A進一步基於一物理參數候選範圍RD1E2而被特徵化。該物理參數候選範圍RD1E2不同於該物理參數應用範圍RD1EL,並相同或不同於該物理參數目標範圍RD1ET。例如,該物理參數應用範圍RD1EL是一物理參數候選範圍。 In some embodiments, both the physical parameter target range RD1ET and the physical parameter application range RD1EL are included in the complex number of different The physical parameters are in the reference range RD1E1, RD1E2, …. The physical parameter target range RD1ET is the same as or different from the physical parameter application range RD1EL. The variable physical parameter QU1A is further characterized based on a physical parameter candidate range RD1E2. The physical parameter candidate range RD1E2 is different from the physical parameter application range RD1EL, and the same or different from the physical parameter target range RD1ET. For example, the physical parameter application range RD1EL is a physical parameter candidate range.

該物理參數目標範圍RD1ET被配置以對應於一對應物理參數範圍RY1ET。該額定物理參數範圍RD1E等於該物理參數目標範圍RD1ET和該對應物理參數範圍RY1ET的一範圍組合,並包含該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2。該測量值目標範圍RN1T被配置以對應於一對應測量值範圍RX1T。該額定測量值範圍RD1N等於該測量值目標範圍RN1T和該對應測量值範圍RX1T的一範圍組合。該對應物理參數範圍RY1ET由該對應測量值範圍RX1T所代表。例如,該對應測量值範圍RX1T基於該感測器測量範圍表示GW8R和該感測器規格FU11的其中之一來用該指定測量值格式HH81而被預設。 The physical parameter target range RD1ET is configured to correspond to a corresponding physical parameter range RY1ET. The rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET, and includes the physical parameter application range RD1EL and the physical parameter candidate range RD1E2. The measurement value target range RN1T is configured to correspond to a corresponding measurement value range RX1T. The rated measurement value range RD1N is equal to a range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T. The corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T. For example, the corresponding measurement value range RX1T is preset with the specified measurement value format HH81 based on one of the sensor measurement range representation GW8R and the sensor specification FU11.

該測量值目標範圍RN1T和該測量值應用範圍RN1L皆包含於該複數不同測量值參考範圍RN11、RN12、…中。該測量值目標範圍RN1T相同或不同於該測量值應用範圍RN1L。該物理參數候選範圍RD1E2由一測量值候選範圍RN12所代表。該測量值候選範圍RN12不同於該測量值應用範圍RN1L,並相同或不同於該測量值目標範圍RN1T。該額定測量值範圍RD1N包含該測量值應用範 圍RN1L和該測量值候選範圍RN12。例如,該測量值候選範圍RN12基於該物理參數候選範圍RD1E2和該額定測量值範圍RD1N而被預設。該測量值應用範圍RN1L是一測量值候選範圍。該額定測量值範圍RD1N基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R和該額定物理參數範圍表示GA8E來用該指定測量值格式HH81而被預設。 Both the measurement value target range RN1T and the measurement value application range RN1L are included in the plurality of different measurement value reference ranges RN11 , RN12 , . . . The measurement value target range RN1T is the same as or different from the measurement value application range RN1L. The physical parameter candidate range RD1E2 is represented by a measurement value candidate range RN12. The measurement value candidate range RN12 is different from the measurement value application range RN1L, and is the same as or different from the measurement value target range RN1T. The rated measured value range RD1N covers the application range of the measured value range RN1L and the measurement candidate range RN12. For example, the measurement value candidate range RN12 is preset based on the physical parameter candidate range RD1E2 and the rated measurement value range RD1N. The measurement value application range RN1L is a measurement value candidate range. The nominal measurement range RD1N is preset with the specified measurement format HH81 based on the nominal physical parameter range representation GA8E, the sensor measurement range representation GW8R, and the nominal physical parameter range representation GA8E.

在一些實施例中,該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是分開的或相鄰的。在該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是分開的條件下,該測量值應用範圍RN1L和該測量值候選範圍RN12是分開的。在該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是相鄰的條件下,該測量值應用範圍RN1L和該測量值候選範圍RN12是相鄰的。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數候選範圍RD1E2,分別由該複數不同測量值參考範圍RN11、RN12、…所代表,並分別由複數物理參數參考範圍碼所代表。 In some embodiments, the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separate or adjacent. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separate, the measurement value application range RN1L and the measurement value candidate range RN12 are separate. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are adjacent, the measurement value application range RN1L and the measurement value candidate range RN12 are adjacent. The complex different physical parameter reference ranges RD1E1, RD1E2, ... include the physical parameter candidate range RD1E2, which are respectively represented by the complex different measurement value reference ranges RN11, RN12, ..., and are respectively represented by the complex physical parameter reference range codes.

該測量值候選範圍RN12由一測量值候選範圍碼EM12所代表,並具有一候選範圍界限值對DN1B,藉此該測量值候選範圍碼EM12被配置以指示該物理參數候選範圍RD1E2。例如,該候選範圍界限值對DN1B包含一候選範圍界限值DN13和相對於該候選範圍界限值DN13的一候選範圍界限值DN14。該測量值候選範圍碼EM12和該候選範圍界限值對DN1B皆被預設。該複數不同測量值參 考範圍碼EM11、EM12、…包含所預設的該測量值候選範圍碼EM12。該複數不同測量值參考範圍RN11、RN12、…包含該測量值候選範圍RN12,並分別由該複數不同測量值參考範圍碼EM11、EM12、…所代表。例如,該複數物理參數參考範圍碼被配置以分別等於該複數不同測量值參考範圍碼EM11、EM12、…。 The measurement candidate range RN12 is represented by a measurement candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2. For example, the candidate range limit value pair DN1B includes a candidate range limit value DN13 and a candidate range limit value DN14 relative to the candidate range limit value DN13. The measured value candidate range code EM12 and the candidate range limit value pair DN1B are both preset. The complex number of different measured value parameters The test range codes EM11, EM12, . . . include the preset candidate range codes EM12 of the measurement value. The plurality of different measurement value reference ranges RN11, RN12, . . . include the measurement value candidate range RN12, and are respectively represented by the plurality of different measurement value reference range codes EM11, EM12, . . . For example, the complex physical parameter reference range codes are configured to be equal to the complex different measurement value reference range codes EM11, EM12, . . . respectively.

例如,該觸發應用功能規格GAL8進一步包含用於表示該物理參數候選範圍RD1E2的一物理參數候選範圍表示GA82。該測量值候選範圍RN12和該候選範圍界限值對DN1B皆基於該感測器規格FU11來用該指定測量值格式HH81而被預設。例如,該測量值候選範圍RN12和該候選範圍界限值對DN1B皆基於該物理參數候選範圍表示GA82、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81、和用於轉換該物理參數候選範圍表示GA82的的一資料編碼操作ZX84來用該指定測量值格式HH81而被預設。 For example, the trigger application function specification GAL8 further includes a physical parameter candidate range representation GA82 for representing the physical parameter candidate range RD1E2. The measurement value candidate range RN12 and the candidate range limit value pair DN1B are both preset based on the sensor specification FU11 using the specified measurement value format HH81. For example, the measurement value candidate range RN12 and the candidate range limit value pair DN1B are both based on the physical parameter candidate range representation GA82, the sensor measurement range representation GW8R, the sensor sensitivity representation GW81, and used to convert the physical parameter The candidate range represents a data encoding operation ZX84 of GA82 to be preset with the specified measurement format HH81.

在一些實施例中,該測量應用功能規格GAL8用於表示該額定物理參數範圍RD1E和該複數不同物理參數參考範圍RD1E1、RD1E2、…。該額定測量值範圍RD1N、該額定範圍界限值對DD1A、該複數不同測量值參考範圍RN11、RN12、…、及該複數不同測量值參考範圍碼EM11、EM12、…皆基於該測量應用功能規格GAL8而被預設。該測量應用功能FA81選擇自複數不同物理參數控制作用功能。該儲存單元332儲存該測量應用功能規格GAL8。 In some embodiments, the measurement application functional specification GAL8 is used to represent the nominal physical parameter range RD1E and the complex different physical parameter reference ranges RD1E1, RD1E2, . . . The rated measurement value range RD1N, the rated range limit value pair DD1A, the multiple different measurement value reference ranges RN11, RN12, …, and the multiple different measurement value reference range codes EM11, EM12, … are all based on the measurement application functional specification GAL8 is preset. The measurement application function FA81 is selected from the control function function of complex different physical parameters. The storage unit 332 stores the measurement application function specification GAL8.

該處理單元331根據該測量應用功能規格 GAL8來預先設定該額定範圍界限值對DD1A、該應用範圍界限值對DN1L、該目標範圍界限值對DN1T、該候選範圍界限值對DN1B、…。該感測訊號SN81包含感測資料。例如,該感測資料屬於該二進制資料類型。該處理單元331基於該感測資料來以該指定測量值格式HH81獲得該測量值VN81。 The processing unit 331 applies the functional specification according to the measurement GAL8 pre-sets the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, the candidate range limit value pair DN1B, . . . The sensing signal SN81 includes sensing data. For example, the sensing data is of the binary data type. The processing unit 331 obtains the measurement value VN81 in the specified measurement value format HH81 based on the sensing data.

在一些實施例中,該操作單元397被配置以依靠該控制訊號SC81來執行該測量應用功能FA81。該處理單元331基於用於該測量應用功能FA81的該檢查操作BV81來做出該測量值VN81是否為於該測量值應用範圍RN1L之內的該邏輯決定PB81。在該邏輯決定PB81是肯定的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該範圍關係KE8A以做出該合理決定PW81。 In some embodiments, the operating unit 397 is configured to execute the measurement application function FA81 in dependence on the control signal SC81. The processing unit 331 makes the logical decision PB81 of whether the measurement value VN81 is within the measurement value application range RN1L based on the checking operation BV81 for the measurement application function FA81. Under the condition that the logical decision PB81 is positive, the processing unit 331 checks the range relationship KE8A by comparing the obtained target range limit value pair DN1T with the obtained application range limit value pair DN1L to make the reasonable Decided on PW81.

例如,在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該控制碼CC1T來執行該訊號產生控制GY81以導致該輸出組件338產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該操作訊號SG81。在該邏輯決定PB81是否定的條件下,該處理單元331藉由執行使用所確定的該測量值應用範圍碼EM1L的一科學計算MR82來確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值候選範圍碼EM12以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值候選範圍RN12。 For example, under the condition that the reasonable decision PW81 is positive, the processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T to cause the output element 338 to generate a signal for causing the variable physical parameter QU1A to enter the The operation signal SG81 of the physical parameter target range RD1ET. Under the condition that the logic decision PB81 is negative, the processing unit 331 determines the selection from the complex number of different measurement value reference range codes EM11, EM12, The measurement value candidate range code EM12 of ... is used to select the measurement value candidate range RN12 from the plurality of different measurement value reference ranges RN11, RN12, . . .

該處理單元331基於所確定的該測量值候 選範圍碼EM12來獲得該候選範圍界限值對DN1B,並基於該測量值VN81和所獲得的該候選範圍界限值對DN1B之間的一資料比較CD82來檢查該測量值VN81和所選擇的該測量值候選範圍RN12之間的一數學關係KV82以做出該測量值VN81是否為於所選擇的該測量值候選範圍RN12之內的一邏輯決定PB82。在該邏輯決定PB82是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數候選範圍RD1E2。 The processing unit 331 is based on the determined measurement value candidate Select range code EM12 to obtain the candidate range limit value pair DN1B, and check the measurement value VN81 against the selected measurement based on a data comparison CD82 between the measurement value VN81 and the obtained candidate range limit value pair DN1B A mathematical relationship KV82 between value candidate ranges RN12 to make a logical decision PB82 whether the measurement value VN81 is within the selected measurement value candidate range RN12. Under the condition that the logical decision PB82 is positive, the processing unit 331 determines the physical parameter candidate range RD1E2 in which the variable physical parameter QU1A is currently located.

在該邏輯決定PB82是肯定的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值候選範圍碼EM12來檢查該測量值目標範圍RN1T和所選擇的該測量值候選範圍RN12之間的一範圍關係KE8B以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值候選範圍碼EM12是否相等的一邏輯決定PZ82。在該邏輯決定PZ82是否定的條件下,該處理單元331使用該輸出組件338以產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該操作訊號SG81。 Under the condition that the logical decision PB82 is positive, the processing unit 331 checks the measurement target range RN1T and the selected measurement target range RN1T by comparing the obtained measurement target range code EM1T with the determined measurement candidate range code EM12 A range relationship KE8B between the measured value candidate range RN12 to make a logical decision PZ82 whether the obtained measured value target range code EM1T and the determined measured value candidate range code EM12 are equal. Under the condition that the logic decision PZ82 is negative, the processing unit 331 uses the output element 338 to generate the operation signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

例如,在該邏輯決定PB82是肯定的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值候選範圍碼EM12來檢查該物理參數目標範圍RD1ET和所選擇的該物理參數候選範圍RD1E2之間的一範圍關係KE9B以做出該物理參數目標範圍RD1ET和所選擇的該物理參數候選範圍RD1E2是否相等的一邏輯決定PZ92。在該邏輯決定PZ92為否定的條件下, 該處理單元331藉由辨識該範圍關係KE9B為一範圍相異關係來使用該輸出組件338以產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該操作訊號SG81。在該邏輯決定PZ82為否定的條件下,該邏輯決定PZ92為否定的。 For example, under the condition that the logical decision PB82 is positive, the processing unit 331 checks the physical parameter target range RD1ET and A range relationship KE9B between the selected physical parameter candidate range RD1E2 is used to make a logical decision PZ92 of whether the physical parameter target range RD1ET and the selected physical parameter candidate range RD1E2 are equal. Under the condition that the logic determines that PZ92 is negative, The processing unit 331 uses the output element 338 to generate the operation signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET by recognizing the range relation KE9B as a range dissimilar relation. On the condition that the logic determines that PZ82 is negative, the logic determines that PZ92 is negative.

在一些實施例中,在該可變物理參數QU1A基於該控制訊號SC81而被配置於該物理參數目標範圍RD1ET之內的條件下,該輸入單元380接收該使用者輸入操作BQ81,並響應該使用者輸入操作BQ81來提供一輸入資料DH81到該處理單元331。該處理單元331對於該輸入資料DH81執行一資料編碼操作EA81以確定該特定輸入碼UW81。該處理單元331響應於確定該特定輸入碼UW81來執行用於該測量應用功能FA81的一檢查操作ZP81以決定所確定的該特定輸入碼UW81是否等於該可變物理參數範圍碼UN8A。 In some embodiments, under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC81, the input unit 380 receives the user input operation BQ81 and responds to the use The user inputs operation BQ81 to provide an input data DH81 to the processing unit 331 . The processing unit 331 performs a data encoding operation EA81 on the input data DH81 to determine the specific input code UW81. The processing unit 331 performs a check operation ZP81 for the measurement application function FA81 in response to determining the specific input code UW81 to determine whether the determined specific input code UW81 is equal to the variable physical parameter range code UN8A.

例如,在該處理單元331確定該特定輸入碼UW81的條件下,該處理單元331藉由使用該儲存單元332來讀取等於該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A,並執行用於檢查所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T之間的一算術關係KP81的該檢查操作ZP81。該檢查操作ZP81被配置以藉由執行用於該測量應用功能FA81的一資料比較CE81來比較所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T以決定所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T是否不同。 For example, under the condition that the processing unit 331 determines the specific input code UW81, the processing unit 331 reads the variable physical parameter range code UN8A equal to the measured value target range code EM1T by using the storage unit 332, and The checking operation ZP81 for checking an arithmetic relationship KP81 between the determined specific input code UW81 and the read measurement value target range code EM1T is performed. The checking operation ZP81 is configured to compare the determined specific input code UW81 with the read measurement value target range code EM1T by performing a data comparison CE81 for the measurement application function FA81 to determine the determined Whether the specific input code UW81 and the read target range code EM1T of the measured value are different.

在該處理單元331藉由執行該資料比較CE81來確定所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間的該碼差異DX81的條件下,該處理單元331導致該輸出組件338執行用於該測量應用功能FA81的一訊號產生操作BY82以產生一操作訊號SG82。例如,該操作訊號SG82是一功能訊號和一控制訊號的其中之一。該輸出組件338將該操作訊號SG82傳輸到該物理參數應用單元335。 The processing unit 331 determines the code difference DX81 between the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measurement target range code EM1T by performing the data comparison CE81 Under the condition of , the processing unit 331 causes the output element 338 to perform a signal generation operation BY82 for the measurement application function FA81 to generate an operation signal SG82. For example, the operation signal SG82 is one of a function signal and a control signal. The output element 338 transmits the operation signal SG82 to the physical parameter application unit 335 .

該物理參數應用單元335響應該操作訊號SG82來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入該對應物理參數範圍RY1ET。例如,該操作訊號SG82是一脈衝寬度調變訊號、一電位準訊號、一驅動訊號和一指令訊號的其中之一。例如,該物理參數應用單元335響應該操作訊號SG82來導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的該特定物理參數範圍RD1E5。 The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET in response to the operation signal SG82. For example, the operation signal SG82 is one of a pulse width modulation signal, a potential level signal, a driving signal and a command signal. For example, the physical parameter application unit 335 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET in response to the operation signal SG82 to enter the specific physical parameter contained in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . Range RD1E5.

例如,該複數不同測量值參考範圍碼EM11、EM12、…包含不同於該測量值目標範圍碼EM1T的一特定測量值範圍碼EM15。該特定測量值範圍碼EM15被配置以指示該特定物理參數範圍RD1E5。在所確定的該特定輸入碼UW81等於該特定測量值範圍碼EM15以導致所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間具有該碼差異DX81的條件下,該處理單元331藉由執行該資料比 較CE81來確定該碼差異DX81,並響應於確定該碼差異DX81來使用該輸出組件338以產生該操作訊號SG82。該物理參數應用單元335響應該操作訊號SG82來導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該對應物理參數範圍RY1ET中的該特定物理參數範圍RD1E5。 For example, the plurality of different measurement value reference range codes EM11, EM12, . . . include a specific measurement value range code EM15 different from the measurement value target range code EM1T. The specific measurement value range code EM15 is configured to indicate the specific physical parameter range RD1E5. Between the determined specific input code UW81 equal to the specific measurement range code EM15 resulting in the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measurement target range code EM1T With the code difference DX81, the processing unit 331 performs the data comparison by The code difference DX81 is determined compared to CE81, and the output element 338 is used to generate the operation signal SG82 in response to determining the code difference DX81. The physical parameter applying unit 335 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET in response to the operation signal SG82.

例如,在該處理單元331導致該輸出組件338執行該訊號產生操作BY82之後,該處理單元331於一指定時間之內執行與該可變物理參數QU1A相關的一驗證操作。在該處理單元331基於該驗證操作而確定該可變物理參數QU1A進入的該特定物理參數範圍RD1E5的條件下,該處理單元331將等於該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81指定到該可變物理參數範圍碼UN8A。例如,該特定物理參數範圍RD1E5等於該物理參數應用範圍RD1EL和該物理參數目標範圍RD1EU的其中之一。 For example, after the processing unit 331 causes the output element 338 to perform the signal generating operation BY82, the processing unit 331 performs a verification operation related to the variable physical parameter QU1A within a specified time. Under the condition that the processing unit 331 determines the specific physical parameter range RD1E5 that the variable physical parameter QU1A enters based on the verification operation, the processing unit 331 will equal the determined specific input code of the specific measurement value range code EM15 UW81 is assigned to the variable physical parameter range code UN8A. For example, the specific physical parameter range RD1E5 is equal to one of the physical parameter application range RD1EL and the physical parameter target range RD1EU.

在一些實施例中,在該處理單元331藉由檢查該第一數學關係KQ81而導致該可變物理參數QU1A處於該物理參數目標狀態JE1U的條件下,該輸入單元380接收該使用者輸入操作BQ82,並響應該使用者輸入操作BQ82來提供一輸入資料DH82到該處理單元331。該處理單元331對於該輸入資料DH82執行一資料編碼操作EA82以確定該特定輸入碼UW82。 In some embodiments, the input unit 380 receives the user input operation BQ82 under the condition that the processing unit 331 causes the variable physical parameter QU1A to be in the physical parameter target state JE1U by checking the first mathematical relationship KQ81 , and responding to the user input operation BQ82 to provide an input data DH82 to the processing unit 331 . The processing unit 331 performs a data encoding operation EA82 on the input data DH82 to determine the specific input code UW82.

請參閱圖27、圖28和圖29。圖27為繪示於圖1中的該控制系統901的一實施結構9036的示意圖。 圖28為繪示於圖1中的該控制系統901的一實施結構9037的示意圖。圖29為繪示於圖1中的該控制系統901的一實施結構9038的示意圖。如圖27、圖28和圖29所示,該實施結構9036、該實施結構9037和該實施結構9038的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337和該傳輸單元384。 See Figure 27, Figure 28 and Figure 29. FIG. 27 is a schematic diagram illustrating an implementation structure 9036 of the control system 901 shown in FIG. 1 . FIG. 28 is a schematic diagram illustrating an implementation structure 9037 of the control system 901 shown in FIG. 1 . FIG. 29 is a schematic diagram illustrating an implementation structure 9038 of the control system 901 shown in FIG. 1 . As shown in FIGS. 27 , 28 and 29 , each of the implementation structure 9036 , the implementation structure 9037 , and the implementation structure 9038 includes the control device 212 and the functional device 130 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 and the transmitting unit 384 .

在一些實施例中,該儲存單元332具有該記憶體位置YM8L,並在該記憶體位置YM8L儲存該應用範圍界限值對DN1L。該記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。例如,該記憶體位置YM8L基於該記憶體位址AM8L而被識別,或由該記憶體位址AM8L所識別。 In some embodiments, the storage unit 332 has the memory location YM8L, and stores the application range limit pair DN1L in the memory location YM8L. The memory location YM8L is identified based on the preset measurement value application range code EM1L. For example, the memory location YM8L is identified based on the memory address AM8L, or is identified by the memory address AM8L.

該儲存單元332具有該記憶體位置YM8T和不同於該記憶體位置YM8T的該記憶體位置YX8T,在該記憶體位置YM8T儲存該目標範圍界限值對DN1T,並在該記憶體位置YX8T儲存該控制碼CC1T。例如,該記憶體位置YM8T和該記憶體位置YX8T皆基於所預設的該測量值目標範圍碼EM1T而被識別。該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的該指定物理參數QD1T而被預設。該記憶體位置YM8T基於一記憶體位址AM8T而被識別,或由該記憶體位址AM8T所識別。該記憶體位置YX8T基於該記憶體位址AX8T而被識別,或由該記憶體位址AX8T所識別。該記憶體位置YM8L不同於該記憶體位置 YX8T。 The storage unit 332 has the memory location YM8T and the memory location YX8T different from the memory location YM8T, the target range limit pair DN1T is stored in the memory location YM8T, and the control is stored in the memory location YX8T Code CC1T. For example, the memory location YM8T and the memory location YX8T are both identified based on the preset measurement value target range code EM1T. The control code CC1T is preset based on the specified physical parameter QD1T within the physical parameter target range RD1ET. The memory location YM8T is identified based on, or identified by, a memory address AM8T. The memory location YX8T is identified based on the memory address AX8T or identified by the memory address AX8T. The memory location YM8L is different from the memory location YX8T.

該儲存單元332進一步具有一記憶體位置YM82和不同於該記憶體位置YM82的一記憶體位置YX82,在該記憶體位置YM82儲存該候選範圍界限值對DN1B,並在該記憶體位置YX82儲存一控制碼CC12。例如,該記憶體位置YM82和該記憶體位置YX82皆基於所預設的該測量值候選範圍碼EM12而被識別。該控制碼CC12基於在該物理參數候選範圍RD1E2之內的一指定物理參數QD12而被預設。 The storage unit 332 further has a memory location YM82 and a memory location YX82 different from the memory location YM82, the memory location YM82 stores the candidate range limit value pair DN1B, and the memory location YX82 stores a Control code CC12. For example, the memory location YM82 and the memory location YX82 are both identified based on the preset measurement value candidate range code EM12. The control code CC12 is preset based on a specified physical parameter QD12 within the physical parameter candidate range RD1E2.

例如,該測量應用功能規格GAL8包含一物理參數表示GA812,該物理參數表示GA812用於表示在該物理參數目標範圍RD1E2之內的該指定物理參數QD12。該控制碼CC12基於該物理參數表示GA812和用於轉換該物理參數表示GA812的一資料編碼操作ZX92而被預設。該記憶體位置YM82基於該記憶體位址AM82而被識別,或由該記憶體位址AM82所識別。該記憶體位置YX82基於該記憶體位址AX82而被識別,或由該記憶體位址AX82所識別。 For example, the measurement application functional specification GAL8 includes a physical parameter representation GA812 for representing the specified physical parameter QD12 within the physical parameter target range RD1E2. The control code CC12 is preset based on the physical parameter representation GA812 and a data encoding operation ZX92 for converting the physical parameter representation GA812. The memory location YM82 is identified based on the memory address AM82 or identified by the memory address AM82. The memory location YX82 is identified based on the memory address AX82 or identified by the memory address AX82.

例如,該儲存單元332進一步具有一記憶體位置YX8L,並在該記憶體位置YX8L儲存一控制碼CC1L。該記憶體位置YX8L基於一記憶體位址AX8L而被識別,或由該記憶體位址AX8L所識別。該控制碼CC1L基於在該物理參數應用範圍RD1EL之內的一指定物理參數QD1L而被預設。 For example, the storage unit 332 further has a memory location YX8L, and stores a control code CC1L in the memory location YX8L. The memory location YX8L is identified based on a memory address AX8L, or is identified by the memory address AX8L. The control code CC1L is preset based on a specified physical parameter QD1L within the physical parameter application range RD1EL.

在一些實施例中,該應用範圍界限值對 DN1L、該目標範圍界限值對DN1T和該候選範圍界限值對DN1B皆屬於一測量範圍界限資料碼類型TN81。該測量範圍界限資料碼類型TN81由一測量範圍界限資料碼類型識別符HN81所識別。該控制碼CC1T和該控制碼CC12皆屬於一控制碼類型TC81。該控制碼類型TC81由一控制碼類型識別符HC81所識別。該測量範圍界限資料碼類型識別符HN81和該控制碼類型識別符HC81皆被預設。 In some embodiments, the application range limit value pair DN1L, the target range limit pair DN1T and the candidate range limit pair DN1B all belong to a measurement range limit data code type TN81. The measurement range limit data code type TN81 is identified by a measurement range limit data code type identifier HN81. Both the control code CC1T and the control code CC12 belong to a control code type TC81. The control code type TC81 is identified by a control code type identifier HC81. Both the measurement range limit data code type identifier HN81 and the control code type identifier HC81 are preset.

該記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位址AX8L基於所預設的該測量值應用範圍碼EM1L和所預設的該控制碼類型識別符HC81而被預設。該記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T和所預設的該控制碼類型識別符HC81而被預設。該第三記憶體位址AM8T基於所預設的該測量值目標範圍碼EM1T和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位址AM82基於所預設的該測量值候選範圍碼EM12和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位址AX82基於所預設的該測量值候選範圍碼EM12和所預設的該控制碼類型識別符HC81而被預設。 The memory address AM8L is preset based on the preset measurement value application range code EM1L and the preset measurement range limit data code type identifier HN81. The memory address AX8L is preset based on the preset measurement value application range code EM1L and the preset control code type identifier HC81. The memory address AX8T is preset based on the preset measurement value target range code EM1T and the preset control code type identifier HC81. The third memory address AM8T is preset based on the preset measurement value target range code EM1T and the preset measurement range limit data code type identifier HN81. The memory address AM82 is preset based on the preset measurement value candidate range code EM12 and the preset measurement range limit data code type identifier HN81. The memory address AX82 is preset based on the preset measurement value candidate range code EM12 and the preset control code type identifier HC81.

在一些實施例中,該處理單元331響應該控制訊號SC81來確定該測量值應用範圍碼EM1L,響應該控制訊號SC81來獲得所預設的該測量範圍界限資料碼類型識別符HN81,基於所確定的該測量值應用範圍碼EM1L和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得 該記憶體位址AM8L,並基於所獲得的該記憶體位址AM8L來使用該儲存單元332以存取被儲存在該記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。 In some embodiments, the processing unit 331 determines the measurement value application range code EM1L in response to the control signal SC81, and obtains the preset measurement range limit data code type identifier HN81 in response to the control signal SC81, based on the determined The measured value is obtained using the range code EM1L and the obtained data code type identifier HN81 of the measuring range limit The memory address AM8L, and based on the obtained memory address AM8L, the storage unit 332 is used to access the application range limit value pair DN1L stored in the memory location YM8L to obtain the application range limit value pair DN1L .

該處理單元331基於該測量值VN81和所獲得的該應用範圍界限值對DN1L之間的該資料比較CD81來檢查該數學關係KV81以做出該測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的該邏輯決定PB81,並在該邏輯決定PB81是肯定的條件下確定該可變物理參數QU1A目前於的該物理參數應用範圍RD1EL。例如,在該邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前於該物理參數應用範圍RD1EL之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該物理參數應用範圍RD1EL之間的一物理參數關係KD8L為該可變物理參數QU1A目前於該物理參數應用範圍RD1EL之內的一物理參數交集關係。該處理單元331藉由檢查該數學關係KV81來檢查該物理參數關係KD8L。 The processing unit 331 checks the mathematical relationship KV81 based on the data comparison CD81 between the measured value VN81 and the obtained pair of application range limit values DN1L to determine whether the measured value VN81 is for the selected measured value application The logic within the range RN1L determines PB81, and if the logic decision PB81 is positive, determines the physical parameter application range RD1EL in which the variable physical parameter QU1A currently resides. For example, under the condition that the logical decision PB81 is affirmative, the processing unit 331 determines a physical parameter condition of the variable physical parameter QU1A currently within the physical parameter application range RD1EL, and thereby identifies the variable physical parameter QU1A A physical parameter relationship KD8L with the physical parameter application range RD1EL is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter application range RD1EL. The processing unit 331 checks the physical parameter relationship KD8L by checking the mathematical relationship KV81.

該處理單元331響應該控制訊號SC81來獲得所預設的該控制碼類型識別符HC81,並從該控制訊號SC81獲得該測量值目標範圍碼EM1T。在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T和所獲得的該控制碼類型識別符HC81來獲得該記憶體位址AX8T,並基於所獲得的該記憶體位址AX8T來使用該儲存單元332以存取被儲存在該記憶體位置YX8T的該控制碼CC1T。該處理單元331 基於所存取的該控制碼CC1T來導致該輸出組件338執行用於該測量應用功能FA81的該訊號產生操作BY81以產生該操作訊號SG81,該操作訊號SG81用於控制該物理參數應用單元335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The processing unit 331 obtains the preset control code type identifier HC81 in response to the control signal SC81, and obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 obtains the memory address AX8T based on the obtained measurement value target range code EM1T and the obtained control code type identifier HC81, and based on The obtained memory address AX8T is used to use the storage unit 332 to access the control code CC1T stored in the memory location YX8T. The processing unit 331 Based on the accessed control code CC1T, the output element 338 is caused to perform the signal generation operation BY81 for the measurement application function FA81 to generate the operation signal SG81, which is used to control the physical parameter application unit 335 to Causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

該處理單元331基於所獲得的該測量值目標範圍碼EM1T和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該第三記憶體位址AM8T,並基於所獲得的該第三記憶體位址AM8T來使用該儲存單元332以存取被儲存在該記憶體位置YM8T的該目標範圍界限值對DN1T以獲得該目標範圍界限值對DN1T。該處理單元331藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來檢查該測量值VN82和該測量值目標範圍RN1T之間的該數學關係KV91以做出該測量值VN82是否為於該測量值目標範圍RN1T之內的該邏輯決定PB91。 The processing unit 331 obtains the third memory address AM8T based on the obtained measurement value target range code EM1T and the obtained measurement range limit data code type identifier HN81, and based on the obtained third memory address AM8T uses the storage unit 332 to access the target range limit pair DN1T stored in the memory location YM8T to obtain the target range limit pair DN1T. The processing unit 331 checks the mathematical relationship KV91 between the measured value VN82 and the measured value target range RN1T by comparing the measured value VN82 with the obtained target range limit value pair DN1T to determine whether the measured value VN82 is PB91 is determined for the logic within the measurement target range RN1T.

在一些實施例中,在該接收單元337接收該控制訊號SC81之前,該接收組件3371和該接收組件3372的其中之一接收包含所預設的該應用範圍界限值對DN1L和所預設的該記憶體位址AM8L的該寫入請求訊息WN8L。例如,該接收組件3371和該接收組件3372的其中之一預先從該控制裝置212接收該寫入請求訊息WN8L。該處理單元331響應該寫入請求訊息WN8L來使用該儲存單元332以將該寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該記憶體位置YM8L。 In some embodiments, before the receiving unit 337 receives the control signal SC81, one of the receiving component 3371 and the receiving component 3372 receives a pair DN1L including the preset application range limit value and the preset The write request message WN8L of the memory address AM8L. For example, one of the receiving component 3371 and the receiving component 3372 receives the write request message WN8L from the control device 212 in advance. The processing unit 331 uses the storage unit 332 in response to the write request message WN8L to store the pair DN1L of the application range limit value of the write request message WN8L to the memory location YM8L.

在該接收單元337接收該控制訊號SC81之 前,該接收組件3371和該接收組件3372的其中之一接收包含所預設的該控制碼CC1T和所預設的該記憶體位址AX8T的該寫入請求訊息WC8T。例如,該接收組件3371和該接收組件3372的其中之一預先從該控制裝置212接收該寫入請求訊息WC8T。該處理單元331響應該寫入請求訊息WC8T來使用該儲存單元332以將該寫入請求訊息WC8T的該控制碼CC1T儲存到該記憶體位置YX8T。 After the receiving unit 337 receives the control signal SC81 Before, one of the receiving component 3371 and the receiving component 3372 receives the write request message WC8T including the preset control code CC1T and the preset memory address AX8T. For example, one of the receiving component 3371 and the receiving component 3372 receives the write request message WC8T from the control device 212 in advance. The processing unit 331 uses the storage unit 332 to store the control code CC1T of the write request message WC8T in the memory location YX8T in response to the write request message WC8T.

在該接收單元337接收該控制訊號SC81之前,該接收組件3371和該接收組件3372的其中之一接收包含所預設的該應用目標界限值對DN1T和所預設的該第三記憶體位址AM8T的一寫入請求訊息WN8T。例如,該接收組件3371和該接收組件3372的其中之一預先從該控制裝置212接收該寫入請求訊息WN8T。該處理單元331響應該寫入請求訊息WN8T來使用該儲存單元332以將該寫入請求訊息WN8T的該應用目標界限值對DN1T儲存到該記憶體位置YM8T。 Before the receiving unit 337 receives the control signal SC81, one of the receiving component 3371 and the receiving component 3372 receives the predetermined pair of the application target limit value DN1T and the predetermined third memory address AM8T A write request message WN8T. For example, one of the receiving component 3371 and the receiving component 3372 receives the write request message WN8T from the control device 212 in advance. The processing unit 331 uses the storage unit 332 in response to the write request message WN8T to store the application target limit pair DN1T of the write request message WN8T to the memory location YM8T.

該儲存單元332進一步具有一記憶體位置YN81,並在該記憶體位置YN81儲存該額定範圍界限值對DD1A。該記憶體位置YN81基於一記憶體位址AN81而被識別,或由該記憶體位址AN81所識別。例如,該記憶體位址AN81被預設。在該接收單元337接收該控制訊號SC81之前,該接收組件3371和該接收組件3372的其中之一接收包含所預設的該額定範圍界限值對DD1A和所預設的該記憶體位址AN81的一寫入請求訊息WD81。例如,該接收組件3371和該接收組件3372的其中之一預先從該控制裝 置212接收該寫入請求訊息WD81。該處理單元331響應該寫入請求訊息WD81來使用該儲存單元332以將該寫入請求訊息WD81的該額定範圍界限值對DD1A儲存到該記憶體位置YN81。 The storage unit 332 further has a memory location YN81, and stores the rated range limit value pair DD1A in the memory location YN81. The memory location YN81 is identified based on a memory address AN81 or identified by the memory address AN81. For example, the memory address AN81 is preset. Before the receiving unit 337 receives the control signal SC81, one of the receiving element 3371 and the receiving element 3372 receives a predetermined pair of the rated range limit value DD1A and the predetermined memory address AN81 Write request message WD81. For example, one of the receiving component 3371 and the receiving component 3372 is pre-received from the control device Set 212 to receive the write request message WD81. The processing unit 331 uses the storage unit 332 in response to the write request message WD81 to store the pair DD1A of the rated range limit value of the write request message WD81 to the memory location YN81.

在一些實施例中,該處理單元331基於所確定的該測量值候選範圍碼EM12和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該記憶體位址AM82,並基於所獲得的該記憶體位址AM82來使用該儲存單元332以存取被儲存在該記憶體位置YM82的該候選範圍界限值對DN1B以獲得該候選範圍界限值對DN1B。 In some embodiments, the processing unit 331 obtains the memory address AM82 based on the determined measurement value candidate range code EM12 and the obtained measurement range limit data code type identifier HN81, and based on the obtained memory Body address AM82 uses the storage unit 332 to access the candidate range limit pair DN1B stored in the memory location YM82 to obtain the candidate range limit pair DN1B.

在一些實施例中,該特定物理參數範圍RD1E5由一特定測量值範圍RN15所代表。該特定測量值範圍RN15具有一特定範圍界限值對DN1E。該儲存單元332進一步具有一記憶體位置YM85和不同於該記憶體位置YM85的一記憶體位置YX85。該記憶體位置YM85基於一記憶體位址AM85而被識別,並基於該特定測量值範圍碼EM15和該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位置YX85基於一記憶體位址AX85而被識別,並基於該特定測量值範圍碼EM15和該控制碼類型識別符HC81而被預設。 In some embodiments, the specific physical parameter range RD1E5 is represented by a specific measurement value range RN15. The specific measurement value range RN15 has a specific range limit value pair DN1E. The storage unit 332 further has a memory location YM85 and a memory location YX85 different from the memory location YM85. The memory location YM85 is identified based on a memory address AM85 and is preset based on the specific measurement value range code EM15 and the measurement range limit data code type identifier HN81. The memory location YX85 is identified based on a memory address AX85 and is preset based on the specific measurement value range code EM15 and the control code type identifier HC81.

該儲存單元332在該記憶體位置YM85儲存該特定範圍界限值對DN1E,並在該記憶體位置YX85儲存一控制碼CC15。該特定範圍界限值對DN1E被配置以代表該特定物理參數範圍RD1E5,並屬於該測量範圍界限資料碼類型TN81。該控制碼CC15屬於該控制碼類型TC81,並 基於在該特定物理參數範圍RD1E5之內的一指定物理參數QD5T而被預設。所獲得的該測量值目標範圍碼EM1T The storage unit 332 stores the specific range limit value pair DN1E in the memory location YM85, and stores a control code CC15 in the memory location YX85. The specific range limit value pair DN1E is configured to represent the specific physical parameter range RD1E5 and belongs to the measurement range limit data code type TN81. The control code CC15 belongs to the control code type TC81, and It is preset based on a specified physical parameter QD5T within the specific physical parameter range RD1E5. The obtained target range code EM1T for the measured value

在所確定的該特定輸入碼UW81等於所預設的該特定測量值範圍碼EM15以導致所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間具有該碼差異DX81的條件下,該處理單元331藉由執行該資料比較CE11來確定該碼差異DX81。在該處理單元331確定該碼差異DX81的條件下,該處理單元331基於等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81和所獲得的該控制碼類型識別符HC81來獲得該記憶體位址AX85。 After the determined specific input code UW81 is equal to the preset specific measurement value range code EM15 to result in the determined specific input code UW81 and the variable physical parameter range equal to the obtained measurement value target range code EM1T Under the condition that the codes UN8A have the code difference DX81, the processing unit 331 determines the code difference DX81 by executing the data comparison CE11. Under the condition that the processing unit 331 determines the code difference DX81, the processing unit 331 determines the specific input code UW81 equal to the preset specific measurement value range code EM15 and the obtained control code type identifier HC81 to get the memory address AX85.

該處理單元331基於所獲得的該記憶體位址AX85來使用該儲存單元332以存取被儲存在該記憶體位置YX85的該控制碼CC15,並基於所存取的該控制碼CC15來導致該輸出組件338執行用於該測量應用功能FA81的該訊號產生操作BY82以產生該操作訊號SG82,該操作訊號SG82用於控制該物理參數應用單元335以導致該可變物理參數QU1A進入包含於該對應物理參數範圍RY1ET中的該特定物理參數範圍RD1E5。 The processing unit 331 uses the storage unit 332 to access the control code CC15 stored in the memory location YX85 based on the obtained memory address AX85, and causes the output based on the accessed control code CC15 Component 338 executes the signal generation operation BY82 for the measurement application function FA81 to generate the operation signal SG82, which is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the corresponding physical parameter QU1A. This particular physical parameter range RD1E5 in parameter range RY1ET.

在一些實施例中,在該處理單元331於一操作時間TF82之內導致該輸出組件338執行該訊號產生操作BY82以產生該操作訊號SG82之後,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN83。該處理單元331於該操作時間TF82之後的一指定時間TG83響應該感測訊號SN83來獲得一測量值VN83。該處理單元331被 配置以基於等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該記憶體位址AM85,並基於所獲得的該記憶體位址AM85來使用該儲存單元332以存取被儲存在該記憶體位置YM85的該特定範圍界限值對DN1E。 In some embodiments, the sensing unit 334 senses the variable physical parameter QU1A after the processing unit 331 causes the output element 338 to perform the signal generation operation BY82 to generate the operation signal SG82 within an operation time TF82 to generate a sensing signal SN83. The processing unit 331 obtains a measurement value VN83 in response to the sensing signal SN83 at a specified time TG83 after the operation time TF82. The processing unit 331 is is configured to obtain the memory address AM85 based on the determined specific input code UW81 equal to the preset specific measurement value range code EM15 and the obtained measurement range limit data code type identifier HN81, and based on the obtained The memory location AM85 of the memory location is used to use the storage unit 332 to access the specific range limit pair DN1E stored in the memory location YM85.

在該處理單元331藉由比較該測量值VN83和所獲得的該特定範圍界限值對DN1E來檢查該測量值VN83和該特定測量值範圍RN15之間的一數學關係KV83以確定該可變物理參數QU1A目前處於的該特定物理參數範圍RD1E5的條件下,該處理單元331基於該可變物理參數範圍碼UN8A和等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81之間的一碼差異來使用該儲存單元332以將所確定的該特定輸入碼UW81指定到該可變物理參數範圍碼UN8A。 The processing unit 331 checks a mathematical relationship KV83 between the measured value VN83 and the specific measured value range RN15 by comparing the measured value VN83 with the obtained specific range limit value pair DN1E to determine the variable physical parameter Under the condition of the specific physical parameter range RD1E5 that QU1A is currently in, the processing unit 331 determines the specific input code UW81 based on the variable physical parameter range code UN8A and the specific input code UW81 equal to the preset specific measurement value range code EM15 The storage unit 332 is used to assign the determined specific input code UW81 to the variable physical parameter range code UN8A.

例如,該處理單元331藉由檢查該數學關係KV83來確定該可變物理參數QU1A目前於該特定物理參數範圍RD1E5之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該特定物理參數範圍RD1E5之間的一物理參數關係KD85為該可變物理參數QU1A目前於該特定物理參數範圍RD1E5之內的一物理參數交集關係。該處理單元331藉由檢查該數學關係KV83來檢查該物理參數關係KD85。 For example, the processing unit 331 determines a physical parameter condition of the variable physical parameter QU1A currently within the specific physical parameter range RD1E5 by checking the mathematical relationship KV83, and thereby identifies the variable physical parameter QU1A and the specific physical parameter A physical parameter relationship KD85 between physical parameter ranges RD1E5 is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the specific physical parameter range RD1E5. The processing unit 331 checks the physical parameter relationship KD85 by checking the mathematical relationship KV83.

請參閱圖30、圖31和圖32。圖30為繪示於圖1中的該控制系統901的一實施結構9039的示意圖。 圖31為繪示於圖1中的該控制系統901的一實施結構9040的示意圖。圖32為繪示於圖1中的該控制系統901的一實施結構9041的示意圖。如圖30、圖31和圖32所示,該實施結構9039、該實施結構9040和該實施結構9041的每一結構包含該控制裝置212和該功能裝置130。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該定時器342、該接收單元337和該傳輸單元384。 See Figure 30, Figure 31, and Figure 32. FIG. 30 is a schematic diagram illustrating an implementation structure 9039 of the control system 901 shown in FIG. 1 . FIG. 31 is a schematic diagram illustrating an implementation structure 9040 of the control system 901 shown in FIG. 1 . FIG. 32 is a schematic diagram illustrating an implementation structure 9041 of the control system 901 shown in FIG. 1 . As shown in FIGS. 30 , 31 and 32 , each of the implementation structure 9039 , the implementation structure 9040 , and the implementation structure 9041 includes the control device 212 and the functional device 130 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the timer 342 , the receiving unit 337 and the transmitting unit 384 .

在一些實施例中,由該接收單元337所接收的該控制訊號SC81輸送該控制訊息CG81,該控制訊息CG81包含一定時操作模式碼CP21、該測量值指定範圍碼EL1T、該指定範圍界限值對DQ1T、該測量時間長度值VH8T、該目標範圍界限值對DN1T、該額定範圍界限值對DD1A、該控制碼CC1T和該測量值目標範圍碼EM1T。該定時操作模式碼CP21代表該定時器342所操作於的一定時操作模式WU21。 In some embodiments, the control signal SC81 received by the receiving unit 337 transmits the control message CG81, and the control message CG81 includes a timed operation mode code CP21, the measurement value specified range code EL1T, the specified range limit value pair DQ1T, the measurement time length value VH8T, the target range limit value pair DN1T, the rated range limit value pair DD1A, the control code CC1T, and the measurement value target range code EM1T. The timing operation mode code CP21 represents the timing operation mode WU21 in which the timer 342 operates.

該處理單元331從該控制訊號SC81獲得該控制訊息CG81,並基於所獲得的該定時操作模式碼CP21來啟動該定時器342以使該定時器342操作於該定時操作模式WU21中。該定時器342於該定時操作模式WU21中感測該時鐘時間TH1A。該定時操作模式WU21基於該複數不同時鐘時間參考區間HR1E1、HR1E2、…而被特徵化。在該處理單元331基於該控制訊號SC81而確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該控制碼CC1T來導致該輸出組件338執行該訊號產生操作BY81, 該訊號產生操作BY81用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The processing unit 331 obtains the control signal CG81 from the control signal SC81, and starts the timer 342 based on the obtained timing operation mode code CP21 to make the timer 342 operate in the timing operation mode WU21. The timer 342 senses the clock time TH1A in the timing operation mode WU21. The timing operation mode WU21 is characterized based on the plurality of different clock time reference intervals HR1E1, HR1E2, . . . Under the condition that the processing unit 331 determines the range difference DS81 based on the control signal SC81, the processing unit 331 causes the output element 338 to perform the signal generating operation BY81 based on the obtained control code CC1T, The signal generating operation BY81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該處理單元331從所接收的該控制訊號SC81獲得該測量值目標範圍碼EM1T和該目標範圍界限值對DN1T。在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, the processing unit 331 obtains the measured value target range code EM1T and the target range limit value pair DN1T from the received control signal SC81. The specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the variable physical parameter by comparing the measurement value VN82 with the obtained target range limit value pair DN1T Under the condition of the physical parameter target range RD1ET that QU1A is currently in, the processing unit 331 based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T between the variable physical parameter range code EM1T The code difference DF81 is used to use the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

例如,該處理單元331藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該物理參數目標範圍RD1ET之間的一物理參數關係KD8T為該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數交集關係。該處理單元331藉由比較該測量值VN82和所獲得的該目標範圍界限值對DN1T來檢查該物理參數關係KD8T。 For example, the processing unit 331 determines a physical parameter condition of the variable physical parameter QU1A currently within the physical parameter target range RD1ET by comparing the measured value VN82 with the obtained target range limit value pair DN1T, and uses This identification of a physical parameter relationship KD8T between the variable physical parameter QU1A and the physical parameter target range RD1ET is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter target range RD1ET. The processing unit 331 checks the physical parameter relationship KD8T by comparing the measured value VN82 with the obtained target range limit value pair DN1T.

在一些實施例中,該處理單元331響應該控制訊號SC81來執行用於檢查該測量值VN81和該測量值目標範圍RN1T之間的一數學關係KV51的一檢查操作 BV51。在該處理單元331基於該檢查操作BV51而確定該可變物理參數QU1A目前所處於的該對應物理參數範圍RY1ET的條件下,該處理單元331基於該控制訊號SC81來於該操作時間TF81之內執行該訊號產生控制GY81以向該物理參數應用單元335傳輸該操作訊號SG81。該操作訊號SG81用於導致該可變物理參數QU1A從該可變物理參數QU1A目前處於的該對應物理參數範圍RY1ET進入該物理參數目標範圍RD1ET。 In some embodiments, the processing unit 331 performs a check operation for checking a mathematical relationship KV51 between the measurement value VN81 and the measurement value target range RN1T in response to the control signal SC81 BV51. Under the condition that the processing unit 331 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located based on the checking operation BV51, the processing unit 331 executes the operation within the operation time TF81 based on the control signal SC81 The signal generation control GY81 transmits the operation signal SG81 to the physical parameter application unit 335 . The operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.

該控制訊號SC81輸送該目標範圍界限值對DN1T、該額定範圍界限值對DD1A和該控制碼CC1T。該處理單元331從該控制訊號SC81獲得該目標範圍界限值對DN1T,並藉由比較該測量值VN81和所獲得的該目標範圍界限值對DN1T來執行該檢查操作BV51以做出該測量值VN81是否為於該對應測量值範圍RX1T之內的一邏輯決定PB51。在該邏輯決定PB51是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該對應物理參數範圍RY1ET。 The control signal SC81 conveys the target range limit pair DN1T, the rated range limit pair DD1A and the control code CC1T. The processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81, and performs the checking operation BV51 by comparing the measurement value VN81 with the obtained target range limit value pair DN1T to make the measurement value VN81 Whether it is within the corresponding measurement value range RX1T is a logical decision PB51. Under the condition that the logical decision PB51 is positive, the processing unit 331 determines the corresponding physical parameter range RY1ET in which the variable physical parameter QU1A is currently located.

該處理單元331從該控制訊號SC81獲得該控制碼CC1T,並基於所獲得的該控制碼CC1T來執行該訊號產生控制GY81。該輸出組件338響應該訊號產生控制GY81來產生該操作訊號SG81。例如,該控制訊號SC81輸送該測量值目標範圍碼EM1T,從該控制訊號SC81獲得該測量值目標範圍碼EM1T,並基於所獲得的該測量值目標範圍碼EM1T來從該儲存單元332獲得所儲存的該控制碼CC1T。 The processing unit 331 obtains the control code CC1T from the control signal SC81, and executes the signal generation control GY81 based on the obtained control code CC1T. The output element 338 generates the operation signal SG81 in response to the signal generation control GY81. For example, the control signal SC81 sends the measurement target range code EM1T, obtains the measurement value target range code EM1T from the control signal SC81, and obtains the stored measurement value target range code EM1T from the storage unit 332 based on the obtained measurement value target range code EM1T of the control code CC1T.

在一些實施例中,該處理單元331從該控制訊號SC81獲得該額定範圍界限值對DD1A,並藉由比較該測量值VN81和所獲得的該額定範圍界限值對DD1A來執行用於檢查該測量值VN81和該額定測量值範圍RD1N之間的一數學關係KM51的一檢查操作BM51。例如,該處理單元331基於該檢查操作BV51和該檢查操作BM51來做出該邏輯決定PB51。例如,該物理參數關係檢查控制GX8T包含該檢查操作BV51和該檢查操作BM51。 In some embodiments, the processing unit 331 obtains the nominal range limit value pair DD1A from the control signal SC81 and performs checking of the measurement by comparing the measurement value VN81 with the obtained nominal range limit value pair DD1A A check operation BM51 of a mathematical relationship KM51 between the value VN81 and the nominal measured value range RD1N. For example, the processing unit 331 makes the logical decision PB51 based on the checking operation BV51 and the checking operation BM51. For example, the physical parameter relationship check control GX8T includes the check operation BV51 and the check operation BM51.

該處理單元331於該操作時間TF81之後的該指定時間TG82之內響應該感測訊號SN82來以該指定測量值格式HH81獲得該測量值VN82。該處理單元331藉由比較該測量值VN82和從該控制訊號SC81所獲得的該目標範圍界限值對DN1T來檢查該測量值VN82和該測量值目標範圍RN1T之間的該數學關係KV91以做出該測量值VN82是否為於該測量值目標範圍RN1T之內的該邏輯決定PB91。在該邏輯決定PB91是肯定的條件下,該處理單元331於該指定時間TG82之內確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,並導致該傳輸單元384向該操作單元297傳輸輸送所獲得的該測量值VN82的該控制回應訊號SE81。 The processing unit 331 responds to the sensing signal SN82 within the specified time TG82 after the operation time TF81 to obtain the measurement value VN82 in the specified measurement value format HH81. The processing unit 331 checks the mathematical relationship KV91 between the measured value VN82 and the measured value target range RN1T by comparing the measured value VN82 with the target range limit pair DN1T obtained from the control signal SC81 to make The logic determines whether the measured value VN82 is within the measured value target range RN1T or not PB91. Under the condition that the logical decision PB91 is positive, the processing unit 331 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in within the specified time TG82, and causes the transmission unit 384 to send the operation unit 297 The control response signal SE81 of the obtained measurement value VN82 is transmitted.

在一些實施例中,該可變物理參數QU1A基於該物理參數目標範圍RD1ET和不同於該物理參數目標範圍RD1ET的一物理參數應用範圍RD1EJ而被特徵化,且該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EJ的其中之一由一測量值指示範圍RN1H所代表。在該處理 單元331藉由檢查該測量值VN81和該測量值指示範圍RN1H之間的一數學關係KH81而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EJ的條件下,該處理單元331導致該可變物理參數QU1A從該物理參數應用範圍RD1EJ進入該物理參數目標範圍RD1ET。例如,該物理參數應用範圍RD1EJ等於該對應物理參數範圍RY1ET和該物理參數應用範圍RC1EL的其中之一。 In some embodiments, the variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET and a physical parameter application range RD1EJ different from the physical parameter target range RD1ET, and the physical parameter target range RD1ET and the physical parameter One of the parameter application ranges RD1EJ is represented by a measurement value indicating range RN1H. in this process The unit 331 determines the condition of the physical parameter application range RD1EJ that the variable physical parameter QU1A is currently in by examining a mathematical relationship KH81 between the measurement value VN81 and the measurement value indicating range RN1H, the processing unit 331 causes the The variable physical parameter QU1A enters the physical parameter target range RD1ET from the physical parameter application range RD1EJ. For example, the physical parameter application range RD1EJ is equal to one of the corresponding physical parameter range RY1ET and the physical parameter application range RC1EL.

在一第一情況中:該物理參數應用範圍RD1EJ由該測量值指示範圍RN1H所代表;該測量值指示範圍RN1H等於測量值應用範圍RN1L;且該數學關係KH81等於該數學關係KV81。在與該第一情況不同的一第二情況中:該物理參數應用範圍RD1EJ對應於該物理參數目標範圍RD1ET,並等於該對應物理參數範圍RY1ET;該對應物理參數範圍RY1ET由該對應測量值範圍RX1T所代表;該物理參數目標範圍RD1ET由該測量值指示範圍RN1H所代表;該測量值指示範圍RN1H等於該測量值目標範圍RN1T;且該數學關係KH81等於該數學關係KV51。 In a first case: the physical parameter application range RD1EJ is represented by the measurement value indication range RN1H; the measurement value indication range RN1H is equal to the measurement value application range RN1L; and the mathematical relationship KH81 is equal to the mathematical relationship KV81. In a second case different from the first case: the physical parameter application range RD1EJ corresponds to the physical parameter target range RD1ET and is equal to the corresponding physical parameter range RY1ET; the corresponding physical parameter range RY1ET is determined by the corresponding measurement value range Represented by RX1T; the physical parameter target range RD1ET is represented by the measurement value indication range RN1H; the measurement value indication range RN1H is equal to the measurement value target range RN1T; and the mathematical relationship KH81 is equal to the mathematical relationship KV51.

在一些實施例中,該可變物理參數QU1A相關於一可變時間長度LF8A,並基於一物理參數目標範圍RD1EV而被特徵化。該物理參數目標範圍RD1EV由一物理參數目標範圍碼UN1V所指示。該定時器342用於在與該定時操作模式WU21不同的一定時操作模式WU11中感測或測量該可變時間長度LF8A。該定時操作模式WU11由與該定時操作模式碼CP21不同的一定時操作模式碼CP11所代表。該可變時間長度LF8A基於一參考時間長度LJ8V而 被特徵化。 In some embodiments, the variable physical parameter QU1A is associated with a variable time length LF8A and is characterized based on a physical parameter target range RD1EV. The physical parameter target range RD1EV is indicated by a physical parameter target range code UN1V. The timer 342 is used to sense or measure the variable time length LF8A in a timed operation mode WU11 different from the timed operation mode WU21. The timing operation mode WU11 is represented by a timing operation mode code CP11 different from the timing operation mode code CP21. The variable time length LF8A is based on a reference time length LJ8V be characterized.

該參考時間長度LJ8V由一測量時間長度值CL8V所代表。該測量時間長度值CL8V基於基於該參考時間長度LJ8V和該定時器規格FT21來以一指定測量值格式HH91而被預設。例如,該指定測量值格式HH91基於一指定位元數目UY91而被特徵化。在該可變物理參數QU1A於該時鐘時間應用區間HR1EU之內處於該物理參數目標範圍RD1EU的條件下,該接收單元337從該控制裝置212接收一控制訊號SC88。例如,該指定測量值格式HH91是一指定計數值格式。 The reference time length LJ8V is represented by a measurement time length value CL8V. The measurement time length value CL8V is preset based on a specified measurement value format HH91 based on the reference time length LJ8V and the timer specification FT21. For example, the specified measurement value format HH91 is characterized based on a specified number of bits UY91. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1EU within the clock time application interval HR1EU, the receiving unit 337 receives a control signal SC88 from the control device 212 . For example, the specified measurement value format HH91 is a specified count value format.

該控制訊號SC88輸送該定時操作模式碼CP11、該物理參數目標範圍碼UN1V、該測量時間長度值CL8V和一控制碼CC1V。例如,該控制碼CC1V基於在該物理參數目標範圍RD1EV之內的一指定物理參數QD1V而被預設。該控制訊號SC88藉由輸送該物理參數目標範圍碼UN1V來起到指示該物理參數目標範圍RD1EV和該物理參數目標狀態JE1V的至少其中之一的作用。 The control signal SC88 transmits the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V and a control code CC1V. For example, the control code CC1V is preset based on a specified physical parameter QD1V within the physical parameter target range RD1EV. The control signal SC88 serves to indicate at least one of the physical parameter target range RD1EV and the physical parameter target state JE1V by sending the physical parameter target range code UN1V.

在一些實施例中,該處理單元331被配置以從該控制訊號SC88獲得該定時操作模式碼CP11、該物理參數目標範圍碼UN1V、該測量時間長度值CL8V和該控制碼CC1V。該處理單元331基於所獲得的該定時操作模式碼CP11來停止該定時器342,基於所獲得的該測量時間長度值CL8V來重新啟動該定時器342,並藉由重新啟動該定時器342來使該定時器342操作於該定時操作模式WU11中。該定時器342被重新啟動以開始與該參考時間長度LJ8V匹 配的一應用時間長度LT8V。該定時器342於該定時操作模式WU11中藉由執行用於該應用時間長度LT8V的一計數操作BC8V來感測該可變時間長度LF8A以經歷該應用時間長度LT8V。該定時操作模式WU11基於該參考時間長度LJ8V而被特徵化。 In some embodiments, the processing unit 331 is configured to obtain the timing operation mode code CP11 , the physical parameter target range code UN1V, the measurement time length value CL8V and the control code CC1V from the control signal SC88 . The processing unit 331 stops the timer 342 based on the obtained timing operation mode code CP11, restarts the timer 342 based on the obtained measured time length value CL8V, and enables the timer 342 by restarting The timer 342 operates in the timing operation mode WU11. The timer 342 is restarted to begin matching the reference time length LJ8V An application time length of LT8V is matched. The timer 342 senses the variable time length LF8A to experience the application time length LT8V by performing a count operation BC8V for the application time length LT8V in the timing operation mode WU11. The timed operating mode WU11 is characterized based on the reference time length LJ8V.

該處理單元331基於該計數操作BC8V來經歷該應用時間長度LT8V以到達一特定時間TJ8V。該應用時間長度LT8V具有一結束時間TZ8V。該特定時間TJ8V相鄰於該結束時間TZ8V。例如,該控制訊號SC88輸送一控制訊息CG88。該控制訊息CG88包含該定時操作模式碼CP11、該物理參數目標範圍碼UN1V、該測量時間長度值CL8V和該控制碼CC1V。該處理單元331被配置以從該控制訊號SC88獲得該控制訊息CG88。該處理單元331響應所獲得的該控制訊息CG88來使該可變物理參數QU1A於該應用時間長度LT8V內處於該物理參數目標範圍RD1EV。 The processing unit 331 goes through the application time length LT8V to reach a specific time TJ8V based on the counting operation BC8V. The application time length LT8V has an end time TZ8V. The specific time TJ8V is adjacent to the end time TZ8V. For example, the control signal SC88 transmits a control message CG88. The control message CG88 includes the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and the control code CC1V. The processing unit 331 is configured to obtain the control message CG88 from the control signal SC88. The processing unit 331 causes the variable physical parameter QU1A to be within the physical parameter target range RD1EV within the application time length LT8V in response to the obtained control message CG88.

該測量應用功能規格GAL8包含一時間長度表示GA8KV。該時間長度表示GA8KV用於表示該參考時間長度LJ8V。例如,該時間長度值CL8V基於該時間長度表示GA8KV、該定時器規格FT21和用於轉換該時間長度表示GA8KV的一資料編碼操作ZX8KV來以該指定測量值格式HH91而被預設。該物理參數目標範圍RD1EV被配置以對應於一對應物理參數範圍RY1EV。該額定物理參數範圍RD1E等於該物理參數目標範圍RD1EV和該對應物理參數範圍RY1EV的一範圍組合。 The measurement application functional specification GAL8 contains a time length representation GA8KV. This time length indicates that GA8KV is used to indicate the reference time length LJ8V. For example, the time length value CL8V is preset in the specified measurement value format HH91 based on the time length representation GA8KV, the timer specification FT21 and a data encoding operation ZX8KV for converting the time length representation GA8KV. The physical parameter target range RD1EV is configured to correspond to a corresponding physical parameter range RY1EV. The rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1EV and the corresponding physical parameter range RY1EV.

在一些實施例中,該處理單元331基於所獲 得的定時操作模式碼CP11來使該定時器342操作於該定時操作模式WU11。該處理單元331基於所獲得的該測量時間長度值CL8V而導致該定時器342於該定時操作模式WU11中執行該計數操作BC8V。在該可變物理參數QU1A基於該控制訊號SC81而被配置以於該物理參數目標範圍RD1EV之內的條件下,該處理單元331基於該計數操作BC8V來到達該特定時間TJ8V,並在該特定時間TJ8V之內導致該輸出組件338執行該訊號產生操作BY89,該訊號產生操作BY89用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1EV以進入該對應物理參數範圍RY1EV。 In some embodiments, the processing unit 331 is based on the obtained The obtained timing operation mode code CP11 is used to make the timer 342 operate in the timing operation mode WU11. The processing unit 331 causes the timer 342 to perform the counting operation BC8V in the timing operation mode WU11 based on the obtained measurement time length value CL8V. Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1EV based on the control signal SC81, the processing unit 331 reaches the specific time TJ8V based on the counting operation BC8V, and at the specific time TJ8V causes the output element 338 to execute the signal generation operation BY89 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1EV to enter the corresponding physical parameter range RY1EV.

例如,在該可變物理參數QU1A基於該控制訊號SC88而被配置以於該物理參數目標範圍RD1EV內的條件下,該處理單元331基於該計數操作BC8V來經歷該應用時間長度LT8V以到達該特定時間TJ8V。該處理單元331於該特定時間TJ8V之內藉由執行使用所獲得的該物理參數目標範圍碼UN1V的一科學計算MK81來取得不同於所獲得的該物理參數目標範圍碼UN1V的一物理參數目標範圍碼UN1W。該物理參數目標範圍RD1EW由該物理參數目標範圍碼UN1W所代表。例如,該物理參數目標範圍碼UN1W指示該物理參數目標狀態JE1W。 For example, under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1EV based on the control signal SC88, the processing unit 331 undergoes the application time length LT8V based on the counting operation BC8V to reach the specific time TJ8V. The processing unit 331 obtains a physical parameter target range different from the obtained physical parameter target range code UN1V by executing a scientific calculation MK81 using the obtained physical parameter target range code UN1V within the specific time TJ8V Code UN1W. The physical parameter target range RD1EW is represented by the physical parameter target range code UN1W. For example, the physical parameter target range code UN1W indicates the physical parameter target state JE1W.

例如,該控制裝置212基於該參考時間長度LJ8V和該定時器規格FT21來確定該測量時間長度值CL8V,並基於所確定的該測量時間長度值CL8V來輸出該控制訊號SC88。該控制訊息CG88進一步包含該測量時間長度值CL8V。該控制訊號SC88用於導致該可變物理參數 QU1A於該物理參數目標範圍RD1EV之內足有與該參考時間長度LJ8V匹配的該應用時間長度LT8V。例如,該物理參數目標範圍碼UN1W相同於該測量值候選範圍碼EM12。 For example, the control device 212 determines the measurement duration value CL8V based on the reference duration LJ8V and the timer specification FT21, and outputs the control signal SC88 based on the determined measurement duration value CL8V. The control message CG88 further includes the measurement duration value CL8V. The control signal SC88 is used to cause the variable physical parameter The QU1A has the application time length LT8V that matches the reference time length LJ8V within the physical parameter target range RD1EV. For example, the physical parameter target range code UN1W is the same as the measured value candidate range code EM12.

例如,當該接收單元337接收該控制訊號SC88時,該可變物理參數範圍碼UN8A等於該物理參數目標狀態碼EW1U。在該控制訊號SC88的該物理參數目標範圍碼UN1V不同於該可變物理參數範圍碼UN8A的該物理參數目標狀態碼EW1U的條件下,該處理單元331基於該控制訊號SC88的該物理參數目標範圍碼UN1V和該可變物理參數範圍碼UN8A的該物理參數目標狀態碼EW1U之間的一碼差異DX88來產生一操作訊號SG88,並向該物理參數應用單元335傳輸該操作訊號SG88。該操作訊號SG88用於使該可變物理參數QU1A處於該物理參數目標範圍RD1EV。 For example, when the receiving unit 337 receives the control signal SC88, the variable physical parameter range code UN8A is equal to the physical parameter target state code EW1U. Under the condition that the physical parameter target range code UN1V of the control signal SC88 is different from the physical parameter target state code EW1U of the variable physical parameter range code UN8A, the processing unit 331 is based on the physical parameter target range of the control signal SC88 A code difference DX88 between the physical parameter target state code EW1U of the code UN1V and the variable physical parameter range code UN8A generates an operation signal SG88 and transmits the operation signal SG88 to the physical parameter application unit 335 . The operation signal SG88 is used to keep the variable physical parameter QU1A within the physical parameter target range RD1EV.

在一些實施例中,該處理單元331基於所取得的該測量值候選範圍碼EM12(或所取得的該物理參數目標範圍碼UN1W)和所獲得的該控制碼類型識別符HC81來取得該記憶體位址AX82。該處理單元331基於所取得的該記憶體位址AX82來使用該儲存單元332以讀取被儲存在該記憶體位置YX82的該控制碼CC12,並基於所讀取的該控制碼CC12來執行用於控制該輸出組件338的一訊號產生控制GY89。 In some embodiments, the processing unit 331 obtains the memory bit based on the obtained measured value candidate range code EM12 (or the obtained physical parameter target range code UN1W) and the obtained control code type identifier HC81 address AX82. The processing unit 331 uses the storage unit 332 to read the control code CC12 stored in the memory location YX82 based on the acquired memory address AX82, and executes the control code CC12 based on the read control code CC12 A signal that controls the output element 338 is generated to control the GY89.

該輸出組件338響應該訊號產生控制GY89來執行用於該測量應用功能FA81的該訊號產生操作BY89以產生該操作訊號SG89,該操作訊號SG89用於控制該物 理參數應用單元335以導致該可變物理參數QU1A進入包含於該對應物理參數範圍RY1EV中的該物理參數目標範圍RD1EW。例如,該操作訊號SG89是一功能訊號和一控制訊號的其中之一。該物理參數目標範圍RD1EW是該物理參數應用範圍RD1ET、該物理參數目標範圍RD1EU和該物理參數候選範圍RD1E2的其中之一,並不同於該物理參數目標範圍RD1EV。 The output element 338 responds to the signal generation control GY89 to execute the signal generation operation BY89 for the measurement application function FA81 to generate the operation signal SG89, which is used to control the object physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1EW contained in the corresponding physical parameter range RY1EV. For example, the operation signal SG89 is one of a function signal and a control signal. The physical parameter target range RD1EW is one of the physical parameter application range RD1ET, the physical parameter target range RD1EU, and the physical parameter candidate range RD1E2, and is different from the physical parameter target range RD1EV.

例如,該處理單元331基於所獲得的該測量時間長度值CL8V來導致該定時器342執行該計數操作BC8V以到達該結束時間TZ8V。當該定時器342藉由執行該計數操作BC8V而到達該結束時間TZ8V時,該定時器342向該處理單元331傳輸一中斷請求訊號UH8V以到達該特定時間TJ8V。該處理單元331於該特定時間TJ8V之內響應該中斷請求訊號UH8V來執行使用所獲得的該物理參數目標範圍碼UN1V的該科學計算MK81以取得不同於所獲得的該物理參數目標範圍碼UN1V的該物理參數目標範圍碼UN1W。例如,該處理單元331藉由從該定時器342接收該中斷請求訊號UH8V來辨識該特定時間TJ8V,並藉此經歷該應用時間長度LT8V。該特定時間TJ8V相鄰於該結束時間TZ8V。 For example, the processing unit 331 causes the timer 342 to perform the counting operation BC8V to reach the end time TZ8V based on the obtained measurement time length value CL8V. When the timer 342 reaches the end time TZ8V by executing the counting operation BC8V, the timer 342 transmits an interrupt request signal UH8V to the processing unit 331 to reach the specific time TJ8V. The processing unit 331 performs the scientific calculation MK81 using the obtained physical parameter target range code UN1V in response to the interrupt request signal UH8V within the specific time TJ8V to obtain a different physical parameter target range code UN1V. The physical parameter target range code UN1W. For example, the processing unit 331 recognizes the specific time TJ8V by receiving the interrupt request signal UH8V from the timer 342, and thereby experiences the application time length LT8V. The specific time TJ8V is adjacent to the end time TZ8V.

在一些實施例中,該可變物理參數QU1A基於該額定物理參數範圍RD1E而被特徵化。該額定物理參數範圍RD1E包含該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2,並由該額定測量值範圍RD1N所代表。例如,該額定測量值範圍 RD1N包含該測量值目標範圍RN1T、該測量值應用範圍RN1L和該測量值候選範圍RN12。該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2分別由該測量值目標範圍RN1T、該測量值應用範圍RN1L和該測量值候選範圍RN12所代表。 In some embodiments, the variable physical parameter QU1A is characterized based on the nominal physical parameter range RD1E. The nominal physical parameter range RD1E includes the physical parameter target range RD1ET, the physical parameter application range RD1EL and the physical parameter candidate range RD1E2, and is represented by the nominal measurement value range RD1N. For example, this nominal measured value range RD1N includes the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12. The physical parameter target range RD1ET, the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are respectively represented by the measurement value target range RN1T, the measurement value application range RN1L and the measurement value candidate range RN12.

該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是不同的。該物理參數目標範圍RD1ET相同或不同於該物理參數應用範圍RD1EL。該物理參數目標範圍RD1ET相同或不同於該物理參數候選範圍RD1E2。該測量值應用範圍RN1L和該測量值候選範圍RN12是不同的。該測量值目標範圍RN1T相同或不同於該測量值應用範圍RN1L。該測量值目標範圍RN1T相同或不同於該測量值候選範圍RN12。 The physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are different. The physical parameter target range RD1ET is the same as or different from the physical parameter application range RD1EL. The physical parameter target range RD1ET is the same as or different from the physical parameter candidate range RD1E2. The measurement value application range RN1L and the measurement value candidate range RN12 are different. The measurement value target range RN1T is the same as or different from the measurement value application range RN1L. The measurement value target range RN1T is the same as or different from the measurement value candidate range RN12.

在一些實施例中,該可變物理參數QU1A的該額定物理參數範圍RD1E包含該複數不同物理參數參考範圍RD1E1、RD1E2、…。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2。該可變物理參數QU1A基於該複數不同物理參數參考範圍RD1E1、RD1E2、…而處於複數不同參考狀態的其中之一。該複數不同參考狀態包含一第一參考狀態、一第二參考狀態和一第三參考狀態,藉此該可變物理參數QU1A由一可變目前狀態所特徵化。該可變目前狀態是該複數不同參考狀態的其中之一。 In some embodiments, the rated physical parameter range RD1E of the variable physical parameter QU1A includes the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . The complex number of different physical parameter reference ranges RD1E1, RD1E2, ... include the physical parameter target range RD1ET, the physical parameter application range RD1EL and the physical parameter candidate range RD1E2. The variable physical parameter QU1A is in one of a plurality of different reference states based on the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . The plurality of different reference states include a first reference state, a second reference state and a third reference state, whereby the variable physical parameter QU1A is characterized by a variable current state. The variable current state is one of the plurality of different reference states.

例如,該第一參考狀態和該第二參考狀態是 互補的。在該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內的條件下,該可變物理參數QU1A處於該第一參考狀態。在該可變物理參數QU1A是於該物理參數候選範圍RD1E2之內的條件下,該可變物理參數QU1A處於該第二參考狀態。在該可變物理參數QU1A是於該物理參數目標範圍RD1ET之內的條件下,該可變物理參數QU1A處於該第三參考狀態。該第三參考狀態相同或不同於該第一參考狀態。該第三參考狀態相同或不同於該第二參考狀態。 For example, the first reference state and the second reference state are Complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the variable physical parameter QU1A is in the first reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the variable physical parameter QU1A is in the second reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the variable physical parameter QU1A is in the third reference state. The third reference state is the same as or different from the first reference state. The third reference state is the same as or different from the second reference state.

由該控制訊號SC81所輸送的該控制碼CC1T和由該儲存單元332所儲存的該控制碼CC1T皆基於在該物理參數目標範圍RD1ET之內的該指定物理參數QD1T而被預設。在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該控制碼CC1T來導致該輸出組件338執行用於該測量應用功能FA81的該訊號產生操作BY81以產生該操作訊號SG81。 The control code CC1T sent by the control signal SC81 and the control code CC1T stored by the storage unit 332 are both preset based on the specified physical parameter QD1T within the physical parameter target range RD1ET. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 causes the output element 338 to perform the signal generation operation BY81 for the measurement application function FA81 based on the obtained control code CC1T to generate the operation Signal SG81.

該物理參數應用單元335響應該操作訊號SG81來導致該可變物理參數QU1A從一目前狀態改變成該第三參考狀態,或響應該操作訊號SG81來導致該可變物理參數QU1A從一特定物理參數QU17改變成一特定物理參數QU18。例如,該目前狀態是該第一參考狀態和該第二參考狀態的其中之一。該特定物理參數QU17是於該物理參數應用範圍RD1EL之內,或於該物理參數候選範圍RD1E2之內。該特定物理參數QU18是於該物理參數目標範圍RD1ET之內。例如,該特定物理參數QU17是於該對應物 理參數範圍RY1ET之內。 The physical parameter applying unit 335 causes the variable physical parameter QU1A to change from a current state to the third reference state in response to the operation signal SG81, or causes the variable physical parameter QU1A to change from a specific physical parameter in response to the operation signal SG81 QU17 is changed to a specific physical parameter QU18. For example, the current state is one of the first reference state and the second reference state. The specific physical parameter QU17 is within the physical parameter application range RD1EL, or within the physical parameter candidate range RD1E2. The specific physical parameter QU18 is within the physical parameter target range RD1ET. For example, the specific physical parameter QU17 is the corresponding within the range of RY1ET for management parameters.

在一些實施例中,該複數不同參考狀態分別導致該物理參數應用單元335處於複數不同功能狀態。該複數不同功能狀態是不同的,並包含一第一功能狀態、一第二功能狀態和一第三功能狀態。例如,該第一功能狀態和該第二功能狀態是互補的。在該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內的條件下,該物理參數應用單元335處於該第一功能狀態。在該可變物理參數QU1A是於該物理參數候選範圍RD1E2之內的條件下,該物理參數應用單元335處於該第二功能狀態。在該可變物理參數QU1A是於該物理參數目標範圍RD1ET之內的條件下,該物理參數應用單元335處於該第三功能狀態。該第三功能狀態相同或不同於該第一功能狀態。該第三功能狀態相同或不同於該第二功能狀態。 In some embodiments, the plurality of different reference states respectively cause the physical parameter application unit 335 to be in a plurality of different functional states. The plurality of different functional states are different and include a first functional state, a second functional state and a third functional state. For example, the first functional state and the second functional state are complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the physical parameter application unit 335 is in the first functional state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the physical parameter applying unit 335 is in the second functional state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the physical parameter applying unit 335 is in the third functional state. The third functional state is the same as or different from the first functional state. The third functional state is the same as or different from the second functional state.

例如,該測量值目標範圍碼EM1T是一測量值參考範圍號碼。該測量值目標範圍RN1T基於該測量值目標範圍碼EM1T而被安排於該額定測量值範圍RD1N中。該測量值應用範圍碼EM1L是一測量值參考範圍號碼。該測量值應用範圍RN1L基於該測量值應用範圍碼EM1L而被安排於該額定測量值範圍RD1N中。該測量值候選範圍碼EM12是一測量值參考範圍號碼。該測量值候選範圍RN12基於該測量值候選範圍碼EM12而被安排於該額定測量值範圍RD1N中。 For example, the measurement value target range code EM1T is a measurement value reference range number. The measured value target range RN1T is arranged in the nominal measured value range RD1N based on the measured value target range code EM1T. The measurement value application range code EM1L is a measurement value reference range number. The measured value application range RN1L is arranged in the nominal measured value range RD1N based on the measured value application range code EM1L. The measurement value candidate range code EM12 is a measurement value reference range number. The measured value candidate range RN12 is arranged in the nominal measured value range RD1N based on the measured value candidate range code EM12.

在一些實施例中,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍 的其中之一;且該物理參數應用範圍RD1EL是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。在該可變物理參數QU1A是該第一可變電壓的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電壓範圍和一相對低電壓範圍。在該可變物理參數QU1A是該第一可變電流的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電流範圍和一相對低電流範圍。在該可變物理參數QU1A是該第一可變電阻的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電阻範圍和一相對低電阻範圍。 In some embodiments, the physical parameter target range RD1ET is a relatively high physical parameter range and a relatively low physical parameter range and the physical parameter application range RD1EL is the other of the relatively high physical parameter range and the relatively low physical parameter range. Under the condition that the variable physical parameter QU1A is the first variable voltage, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively. Under the condition that the variable physical parameter QU1A is the first variable current, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively. Under the condition that the variable physical parameter QU1A is the first variable resistor, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.

在該可變物理參數QU1A是該第一可變亮度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高亮度範圍和一相對低亮度範圍。在該可變物理參數QU1A是該第一可變光強度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高光強度範圍和一相對低光強度範圍。在該可變物理參數QU1A是該第一可變音量的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高音量範圍和一相對低音量範圍。在該可變物理參數QU1A是該第一可變角速度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高角速度範圍和一相對低角速度範圍。 Under the condition that the variable physical parameter QU1A is the first variable brightness, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high brightness range and a relatively low brightness range, respectively. Under the condition that the variable physical parameter QU1A is the first variable light intensity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high light intensity range and a relatively low light intensity range, respectively. Under the condition that the variable physical parameter QU1A is the first variable volume, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high volume range and a relatively low volume range, respectively. Under the condition that the variable physical parameter QU1A is the first variable angular velocity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.

例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RD1E2是該相對高物理參數範圍和 該相對低物理參數範圍的其中另一。例如,該物理參數應用範圍RD1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RD1E2是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RD1E4是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RD1E5是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。 For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is the relatively high physical parameter range and Another of this relatively low range of physical parameters. For example, the physical parameter application range RD1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E4 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RD1E5 is one of the relatively high physical parameter range and the relatively low physical parameter range another.

在一些實施例中,在該功能裝置130是一繼電器的條件下,該物理參數應用單元335是一控制開關。在該物理參數應用單元335是該控制開關的條件下,該控制開關具有一可變開關狀態,並基於該可變物理參數QU1A而處於一接通狀態和一關斷狀態的其中之一。例如,該可變開關狀態等於該接通狀態和該關斷狀態的其中之一,且該接通狀態和該關斷狀態是互補的。該接通狀態是該第一功能狀態和該第二功能狀態的其中之一,且該關斷狀態是該第一功能狀態和該第二功能狀態的其中另一。 In some embodiments, under the condition that the functional device 130 is a relay, the physical parameter application unit 335 is a control switch. Provided that the physical parameter application unit 335 is the control switch, the control switch has a variable switch state and is in one of an on state and an off state based on the variable physical parameter QU1A. For example, the variable switching state is equal to one of the on state and the off state, and the on state and the off state are complementary. The on state is one of the first functional state and the second functional state, and the off state is the other of the first functional state and the second functional state.

在該處理單元331確定該範圍差異DS81的條件下,該處理單元331辨識該可變目前狀態為不同於該第三參考狀態的一特定狀態,並藉此產生該操作訊號SG81。該物理參數應用單元335響應該操作訊號SG81來導致該可變物理參數QU1A進入該物理參數目標範圍 RD1ET,因此該可變目前狀態被改變成該第三參考狀態。在該處理單元331確定該碼差異DX81的條件下,該處理單元331使用該輸出組件338以產生該操作訊號SG82。該物理參數應用單元335響應該操作訊號SG82來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入包含於該對應物理參數範圍RY1ET中的該特定物理參數範圍RD1E5;因此,在該特定物理參數範圍RD1E5等於該物理參數候選範圍RD1E2的條件下,該可變目前狀態被改變成該第二參考狀態。 Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 recognizes that the variable current state is a specific state different from the third reference state, and thereby generates the operation signal SG81. The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the physical parameter target range in response to the operation signal SG81 RD1ET, so the variable current state is changed to the third reference state. Under the condition that the processing unit 331 determines the code difference DX81, the processing unit 331 uses the output element 338 to generate the operation signal SG82. The physical parameter applying unit 335 causes the variable physical parameter QU1A to enter the specific physical parameter range RD1E5 contained in the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET in response to the operation signal SG82; therefore, in the specific physical parameter The variable current state is changed to the second reference state under the condition that the parameter range RD1E5 is equal to the physical parameter candidate range RD1E2.

例如,該可變物理參數QU1A是該第一可變電流。該物理參數應用範圍RD1EL、該物理參數候選範圍RD1E2和該物理參數目標範圍RD1ET分別是一第一電流參考範圍、一第二電流參考範圍、一第三電流參考範圍和一第四電流參考範圍。該控制碼CC1L基於在該第一電流參考範圍之內的一第一指定電流而被預設。該控制碼CC12基於在該第二電流參考範圍之內的一第二指定電流而被預設。該控制碼CC1T基於在該第三電流參考範圍之內的一第三指定電流而被預設。該控制碼CC1V基於在該第四電流參考範圍之內的一第四指定電流而被預設。 For example, the variable physical parameter QU1A is the first variable current. The physical parameter application range RD1EL, the physical parameter candidate range RD1E2 and the physical parameter target range RD1ET are respectively a first current reference range, a second current reference range, a third current reference range and a fourth current reference range. The control code CC1L is preset based on a first specified current within the first current reference range. The control code CC12 is preset based on a second specified current within the second current reference range. The control code CC1T is preset based on a third specified current within the third current reference range. The control code CC1V is preset based on a fourth specified current within the fourth current reference range.

該測量時間長度值CL8V基於該時間長度表示GA8KV、該定時器規格FT21和該資料編碼操作ZX8KV來以該指定測量值格式HH91而被預設。該處理單元331從該控制訊號SC88獲得該測量時間長度值CL8V,並基於所獲得的該測量時間長度值CL8V來導致該定時器342執行該計數操作BC8V。在該第一可變電流基於該控制訊號 SC88而被配置以於該第四電流參考範圍之內的條件下,該處理單元331基於該計數操作BC8V來經歷該應用時間長度LT8V以到達該特定時間TJ8V,藉此該第一可變電流在相關於該計數操作BC8V的該應用時間長度LT8V之內維持成為於該第四電流參考範圍之內。 The measurement duration value CL8V is preset in the specified measurement value format HH91 based on the duration representation GA8KV, the timer specification FT21 and the data encoding operation ZX8KV. The processing unit 331 obtains the measurement time length value CL8V from the control signal SC88, and causes the timer 342 to perform the counting operation BC8V based on the obtained measurement time length value CL8V. at the first variable current based on the control signal SC88 is configured so that under the condition within the fourth current reference range, the processing unit 331 undergoes the application time length LT8V based on the counting operation BC8V to reach the specific time TJ8V, whereby the first variable current is at The application time length LT8V relative to the counting operation BC8V remains within the fourth current reference range.

例如,在該可變物理參數QU1A是一可變轉速的條件下,該物理參數應用範圍RD1EL、該物理參數候選範圍RD1E2和該物理參數目標範圍RD1ET分別是一第一轉速參考範圍、一第二轉速參考範圍和一第三轉速參考範圍。在該可變物理參數QU1A是一可變溫度的條件下,該物理參數應用範圍RD1EL、該物理參數候選範圍RD1E2和該物理參數目標範圍RD1ET分別是一第一溫度參考範圍、一第二溫度參考範圍和一第三溫度參考範圍。 For example, under the condition that the variable physical parameter QU1A is a variable rotational speed, the physical parameter application range RD1EL, the physical parameter candidate range RD1E2 and the physical parameter target range RD1ET are respectively a first rotational speed reference range and a second rotational speed reference range. a rotational speed reference range and a third rotational speed reference range. Under the condition that the variable physical parameter QU1A is a variable temperature, the physical parameter application range RD1EL, the physical parameter candidate range RD1E2 and the physical parameter target range RD1ET are respectively a first temperature reference range and a second temperature reference range range and a third temperature reference range.

請參閱圖33。圖33為繪示於圖1中的該控制系統901的一實施結構9042的示意圖。如圖33所示,該實施結構9042包含該控制裝置212、該功能裝置130和一伺服器280。該控制裝置212鏈接於該伺服器280。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337、該傳輸單元384和耦合於該處理單元331的一定時器340。該定時器340受該處理單元331控制。 See Figure 33. FIG. 33 is a schematic diagram illustrating an implementation structure 9042 of the control system 901 shown in FIG. 1 . As shown in FIG. 33 , the implementation structure 9042 includes the control device 212 , the function device 130 and a server 280 . The control device 212 is linked to the server 280 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 , the transmitting unit 384 , and a timer 340 coupled to the processing unit 331 . The timer 340 is controlled by the processing unit 331 .

在一些實施例中,包含於該接收單元337中的該接收組件3374耦合於該處理單元331,並在該可變物理參數QU1A要依靠該控制裝置212而被提供的條件下 從該控制裝置212接收該物理參數訊號SB81。該物理參數應用單元335從該接收組件3374接收該物理參數訊號SB81。該處理單元331導致該物理參數應用單元335使用該物理參數訊號SB81以形成取決於該物理參數訊號SB81的該可變物理參數QU1A。 In some embodiments, the receiving component 3374 included in the receiving unit 337 is coupled to the processing unit 331 under conditions that the variable physical parameter QU1A is to be provided by means of the control device 212 The physical parameter signal SB81 is received from the control device 212 . The physical parameter applying unit 335 receives the physical parameter signal SB81 from the receiving element 3374 . The processing unit 331 causes the physical parameter application unit 335 to use the physical parameter signal SB81 to form the variable physical parameter QU1A depending on the physical parameter signal SB81.

該控制裝置212包含該操作單元297、耦合於該操作單元297的一儲存單元250、和耦合於該操作單元297的一感測單元560。該操作單元297執行一讀取操作BR81和一感測操作BZ81的其中之一以輸出該物理參數訊號SB81。該讀取操作BR81讀取被儲存於該儲存單元250和該伺服器280的其中之一中的一物理參數資料記錄DU81。該感測單元560藉由執行該感測操作BZ81來感測一可變物理參數QL1A以導致該操作單元297輸出該物理參數訊號SB81。例如,該感測單元560受該操作單元297控制以感測該可變物理參數QL1A。 The control device 212 includes the operating unit 297 , a storage unit 250 coupled to the operating unit 297 , and a sensing unit 560 coupled to the operating unit 297 . The operation unit 297 performs one of a read operation BR81 and a sensing operation BZ81 to output the physical parameter signal SB81. The read operation BR81 reads a physical parameter data record DU81 stored in one of the storage unit 250 and the server 280 . The sensing unit 560 senses a variable physical parameter QL1A by performing the sensing operation BZ81 to cause the operating unit 297 to output the physical parameter signal SB81. For example, the sensing unit 560 is controlled by the operating unit 297 to sense the variable physical parameter QL1A.

例如,該可變物理參數QU1A屬於該物理參數類型TU11。該可變物理參數QL1A屬於一物理參數類型TL11。該物理參數類型TU11相同或不同於該物理參數類型TL11。該控制裝置212處於一應用環境EX81中。該控制裝置212和該應用環境EX81的其中之一具有該可變物理參數QL1A。該物理參數資料記錄DU81預先基於一可變物理參數QY1A而被提供。該可變物理參數QY1A屬於該物理參數類型TL11。例如,該物理參數類型TU11不同於一時間類型。 For example, the variable physical parameter QU1A belongs to the physical parameter type TU11. The variable physical parameter QL1A belongs to a physical parameter type TL11. The physical parameter type TU11 is the same as or different from the physical parameter type TL11. The control device 212 is in an application environment EX81. One of the control device 212 and the application environment EX81 has the variable physical parameter QL1A. The physical parameter data record DU81 is provided in advance based on a variable physical parameter QY1A. The variable physical parameter QY1A belongs to the physical parameter type TL11. For example, the physical parameter type TU11 is different from a time type.

在一些實施例中,該物理參數應用單元335 包含一驅動電路3355、和耦合於該驅動電路3355的一物理參數形成部分3351。該物理參數形成部分3351用於形成該可變物理參數QU1A,並包含該物理參數形成區AU11。該驅動電路3355耦合於該接收組件3374和該輸出組件338,並通過該輸出組件338而受該處理單元331控制。該驅動電路3355從該接收組件3374接收該物理參數訊號SB81,從該輸出組件338接收該操作訊號SG81,並響應該操作訊號SG81來處理該物理參數訊號SB81以輸出一驅動訊號SL81。 In some embodiments, the physical parameter application unit 335 A driving circuit 3355 is included, and a physical parameter forming part 3351 coupled to the driving circuit 3355 is included. The physical parameter forming part 3351 is used to form the variable physical parameter QU1A, and includes the physical parameter forming area AU11. The driving circuit 3355 is coupled to the receiving component 3374 and the outputting component 338 , and is controlled by the processing unit 331 through the outputting component 338 . The driving circuit 3355 receives the physical parameter signal SB81 from the receiving element 3374, receives the operating signal SG81 from the outputting element 338, and processes the physical parameter signal SB81 in response to the operating signal SG81 to output a driving signal SL81.

該物理參數形成部分3351接收該驅動訊號SL81,並響應該驅動訊號SL81來使該可變物理參數QU1A處於該物理參數目標範圍RD1ET之內。例如,在該合理決定PW81是肯定的條件下,該處理單元331導致該輸出組件338執行用於該測量應用功能FA81的該訊號產生操作BY81以提供該操作訊號SG81到該驅動電路3355。該驅動電路3355響應該操作訊號SG81來驅動該物理參數形成部分3351以使該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The physical parameter forming part 3351 receives the driving signal SL81, and responds to the driving signal SL81 to keep the variable physical parameter QU1A within the physical parameter target range RD1ET. For example, under the condition that the rational decision PW81 is positive, the processing unit 331 causes the output element 338 to perform the signal generation operation BY81 for the measurement application function FA81 to provide the operation signal SG81 to the driving circuit 3355. The driving circuit 3355 drives the physical parameter forming part 3351 in response to the operation signal SG81 to make the variable physical parameter QU1A enter the physical parameter target range RD1ET.

在一些實施例中,該額定測量值範圍RD1N被配置以具有複數不同測量值參考範圍RN11、RN12、…。例如,該複數不同測量值參考範圍RN11、RN12、…具有一總參考範圍數目NT81,並包含該測量值目標範圍RN1T。例如,該總參考範圍數目NT81被預設。該儲存單元332儲存該額定範圍界限值對DD1A。該處理單元331被配置以從該控制訊號SC81和該儲存單元332的其中之一獲得該總 參考範圍數目NT81,從該控制訊號SC81獲得該測量值目標範圍碼EM1T,並響應該控制訊號SC81來從該儲存單元332獲得該額定範圍界限值對DD1A。 In some embodiments, the nominal measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11 , RN12 , . . . For example, the plurality of different measurement value reference ranges RN11, RN12, . . . have a total reference range number NT81 and include the measurement value target range RN1T. For example, the total reference range number NT81 is preset. The storage unit 332 stores the rated range limit pair DD1A. The processing unit 331 is configured to obtain the total from one of the control signal SC81 and the storage unit 332 With reference to the range number NT81, the measured value target range code EM1T is obtained from the control signal SC81, and the rated range limit value pair DD1A is obtained from the storage unit 332 in response to the control signal SC81.

該處理單元331基於該測量值VN81、所獲得的該總參考範圍數目NT81和和所獲得的該額定範圍界限值對DD1A來執行該科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該科學計算MR81基於所預設的該總參考範圍數目NT81和所預設的該額定範圍界限值對DD1A而被預先建構。 The processing unit 331 performs the scientific calculation MR81 based on the measured value VN81, the obtained total reference range number NT81 and the obtained nominal range limit value pair DD1A to refer to the range codes EM11, EM12 from the complex number of different measured values , ... to select the range code EM1L for the measurement value to determine the range code EM1L for the measurement value. For example, the scientific calculation MR81 is pre-constructed based on the preset total reference range number NT81 and the preset nominal range limit value pair DD1A.

該處理單元331基於所確定的該測量值應用範圍碼EM1L、所獲得的該總參考範圍數目NT81和所取得的該額定範圍界限值對DD1A來執行該科學計算MZ81以獲得該應用範圍界限值對DN1L。例如,該科學計算MZ81基於所預設的該總參考範圍數目NT81和所預設的該額定範圍界限值對DD1A而被預先建構。 The processing unit 331 applies the range code EM1L based on the determined measurement value, the obtained total reference range number NT81 and the obtained rated range limit value pair DD1A to perform the scientific calculation MZ81 to obtain the applied range limit value pair DN1L. For example, the scientific calculation MZ81 is pre-constructed based on the preset total reference range number NT81 and the preset nominal range limit value pair DD1A.

在一些實施例中,該處理單元331響應於該操作時間TF81之內所執行的該訊號產生控制GY81來導致該定時器340執行一計數操作BE81。該處理單元331基於該計數操作BE81來到達該指定時間TG82,並在該指定時間TG82響應該感測訊號SN82來獲得該測量值VN82。 In some embodiments, the processing unit 331 generates a control GY81 in response to the signal executed within the operation time TF81 to cause the timer 340 to perform a counting operation BE81. The processing unit 331 arrives at the designated time TG82 based on the counting operation BE81, and obtains the measured value VN82 in response to the sensing signal SN82 at the designated time TG82.

該可變物理參數QL1A是一第二可變電性參數、一第二可變力學參數、一第二可變光學參數、一第二可變溫度、一第二可變電壓、一第二可變電流、一第二可變電功率、一第二可變電阻、一第二可變電容、一第二 可變電感、一第二可變頻率、一第二時鐘時間、一第二可變時間長度、一第二可變亮度、一第二可變光強度、一第二可變音量、一第二可變資料流量、一第二可變振幅、一第二可變空間位置、一第二可變位移、一第二可變順序位置、一第二可變角度、一第二可變空間長度、一第二可變距離、一第二可變平移速度、一第二可變角速度、一第二可變加速度、一第二可變力、一第二可變壓力和一第二可變機械功率的其中之一。 The variable physical parameter QL1A is a second variable electrical parameter, a second variable mechanical parameter, a second variable optical parameter, a second variable temperature, a second variable voltage, a second variable variable current, a second variable electric power, a second variable resistor, a second variable capacitor, a second variable Variable inductor, a second variable frequency, a second clock time, a second variable time length, a second variable brightness, a second variable light intensity, a second variable volume, a first variable Two variable data flow, a second variable amplitude, a second variable spatial position, a second variable displacement, a second variable sequence position, a second variable angle, a second variable spatial length , a second variable distance, a second variable translation velocity, a second variable angular velocity, a second variable acceleration, a second variable force, a second variable pressure and a second variable mechanical one of the power.

該可變物理參數QY1A是一第三可變電性參數、一第三可變力學參數、一第三可變光學參數、一第三可變溫度、一第三可變電壓、一第三可變電流、一第三可變電功率、一第三可變電阻、一第三可變電容、一第三可變電感、一第三可變頻率、一第三時鐘時間、一第三可變時間長度、一第三可變亮度、一第三可變光強度、一第三可變音量、一第三可變資料流量、一第三可變振幅、一第三可變空間位置、一第三可變位移、一第三可變順序位置、一第三可變角度、一第三可變空間長度、一第三可變距離、一第三可變平移速度、一第三可變角速度、一第三可變加速度、一第三可變力、一第三可變壓力和一第三可變機械功率的其中之一。 The variable physical parameter QY1A is a third variable electrical parameter, a third variable mechanical parameter, a third variable optical parameter, a third variable temperature, a third variable voltage, a third variable variable current, a third variable electric power, a third variable resistor, a third variable capacitor, a third variable inductor, a third variable frequency, a third clock time, a third variable Variable time length, a third variable brightness, a third variable light intensity, a third variable volume, a third variable data flow, a third variable amplitude, a third variable spatial position, a third variable A third variable displacement, a third variable sequence position, a third variable angle, a third variable space length, a third variable distance, a third variable translation velocity, a third variable angular velocity , one of a third variable acceleration, a third variable force, a third variable pressure, and a third variable mechanical power.

請參閱圖34、圖35和圖36。圖34為繪示於圖1中的該控制系統901的一實施結構9043的示意圖。圖35為繪示於圖1中的該控制系統901的一實施結構9044的示意圖。圖36為繪示於圖1中的該控制系統901的一實施結構9045的示意圖。如圖34、圖35和圖36所示,該實 施結構9043、該實施結構9044和該實施結構9045的每一結構包含該控制裝置212、該功能裝置130和該伺服器280。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337、該輸入單元380、該傳輸單元384、耦合於該處理單元331的該定時器342、和耦合於該處理單元331的一定時器343。 See Figure 34, Figure 35, and Figure 36. FIG. 34 is a schematic diagram illustrating an implementation structure 9043 of the control system 901 shown in FIG. 1 . FIG. 35 is a schematic diagram illustrating an implementation structure 9044 of the control system 901 shown in FIG. 1 . FIG. 36 is a schematic diagram illustrating an implementation structure 9045 of the control system 901 shown in FIG. 1 . As shown in Figure 34, Figure 35 and Figure 36, the actual Each of the implementation structure 9043 , the implementation structure 9044 and the implementation structure 9045 includes the control device 212 , the functional device 130 and the server 280 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 , the input unit 380 , the transmission unit 384 , the timer 342 coupled to the processing unit 331 , and a timer 343 coupled to the processing unit 331 .

在一些實施例中,該控制裝置212、該功能裝置130和該伺服器280皆耦合於一網路410。該控制裝置212通過該網路410而鏈接於該伺服器280。該功能裝置130包含該操作單元397、該感測單元334、該物理參數應用單元335和該儲存單元332。該操作單元397包含該處理單元331、該接收單元337和該傳輸單元384。該控制裝置212通過該網路410來向該功能裝置130傳輸該控制訊號SC81。該功能裝置130通過該網路410來向該控制裝置212傳輸該控制回應訊號SE81。 In some embodiments, the control device 212 , the functional device 130 and the server 280 are all coupled to a network 410 . The control device 212 is linked to the server 280 through the network 410 . The functional device 130 includes the operation unit 397 , the sensing unit 334 , the physical parameter application unit 335 and the storage unit 332 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 and the transmitting unit 384 . The control device 212 transmits the control signal SC81 to the functional device 130 through the network 410 . The functional device 130 transmits the control response signal SE81 to the control device 212 through the network 410 .

例如,該操作單元397包含耦合於該處理單元331的一通訊介面單元386。該處理單元331通過該通訊介面單元386而耦合於該網路410。例如,該通訊介面單元386受該處理單元230控制,並包含耦合於該處理單元331的該傳輸組件3842和耦合於該處理單元331的該接收組件3371。該處理單元331通過該通訊介面單元386和該網路410而耦合於該伺服器280。例如,該通訊介面單元386是一有線通訊介面單元和一無線通訊介面單元的其中之一。 For example, the operation unit 397 includes a communication interface unit 386 coupled to the processing unit 331 . The processing unit 331 is coupled to the network 410 through the communication interface unit 386 . For example, the communication interface unit 386 is controlled by the processing unit 230 and includes the transmitting component 3842 coupled to the processing unit 331 and the receiving component 3371 coupled to the processing unit 331 . The processing unit 331 is coupled to the server 280 through the communication interface unit 386 and the network 410 . For example, the communication interface unit 386 is one of a wired communication interface unit and a wireless communication interface unit.

該接收單元337、該傳輸單元384、該定時 器342、該定時器343、該感測單元334、該物理參數應用單元335、該儲存單元332和該通訊介面單元386皆受該處理單元331控制。在該觸發事件JQ81是該整數溢位事件的條件下,是該觸發應用單元387的該定時器343響應與該處理單元331相關的一時間控制GD81而導致該整數溢位事件發生。例如,該處理單元331響應該控制訊號SC81來執行用於控制該定時器343的該時間控制GD81。該定時器343響應該時間控制GD81來形成該整數溢位事件。 The receiving unit 337, the transmitting unit 384, the timing The controller 342 , the timer 343 , the sensing unit 334 , the physical parameter application unit 335 , the storage unit 332 and the communication interface unit 386 are all controlled by the processing unit 331 . Under the condition that the trigger event JQ81 is the integer overflow event, the timer 343 of the trigger application unit 387 controls the GD81 for a time related to the processing unit 331 to cause the integer overflow event to occur. For example, the processing unit 331 executes the time control GD81 for controlling the timer 343 in response to the control signal SC81. The timer 343 forms the integer overflow event in response to the time control GD81.

請額外參閱圖9、圖10、圖11和圖12。在一些實施例中,當該接收單元337接收該控制訊號SC81時,該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T。該控制訊號SC81輸送所預設的該測量值指定範圍碼EL1T。該處理單元331從該控制訊號SC81獲得所輸送的該測量值指定範圍碼EL1T,基於所獲得的該測量值指定範圍碼EL1T來獲得該記憶體位址AS8T,並基於所獲得的該記憶體位址AS8T來存取被儲存在該記憶體位置YS8T的該物理參數目標範圍碼UQ1T以獲得所預設的該測量值目標範圍碼EM1T。 Please see additionally Figure 9, Figure 10, Figure 11 and Figure 12. In some embodiments, when the receiving unit 337 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T. The control signal SC81 transmits the preset measurement value specified range code EL1T. The processing unit 331 obtains the transmitted measurement value designation range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value designation range code EL1T, and obtains the memory address AS8T based on the obtained measurement value designation range code EL1T to access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.

例如,在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該測量值指定範圍碼EL1T來起到指示該測量值目標範圍RN1T的作用。該處理單元331執行使用所獲得的該測量值目標範圍碼EM1T的該資料獲取AD8A以獲得該目標範圍界限值對DN1T。 For example, under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 transmits the preset measurement value specifying range code EL1T to instruct the measurement The role of the value target range RN1T. The processing unit 331 performs the data acquisition AD8A using the obtained measurement target range code EM1T to obtain the target range limit value pair DN1T.

在一些實施例中,在該處理單元331藉由比 較該測量值VN81和所獲得的該應用範圍界限值對DN1L而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的該範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的該邏輯決定PY81。 In some embodiments, at the processing unit 331 by comparing Comparing the measured value VN81 with the obtained application range limit value pair DN1L to determine the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located, the processing unit 331 compares the obtained target range Limit value pair DN1T and the obtained application range limit value pair DN1L to check the range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained target range limit value pair DN1T PY81 is determined by the logic of whether the obtained application range limit value is equal to DN1L.

在該邏輯決定PY81是否定的條件下,該處理單元331辨識該範圍關係KE8A為該範圍相異關係以確定該範圍差異DS81。例如,該處理單元331基於所確定的該測量值應用範圍碼EM1L來獲得所預定的該應用範圍界限值對DN1L。例如,該處理單元331藉由確定該範圍差異DS81來確定該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL之間的該範圍差異DB81。 Under the condition that the logic decision PY81 is negative, the processing unit 331 identifies the range relationship KE8A as the range dissimilar relationship to determine the range difference DS81. For example, the processing unit 331 applies a range code EM1L based on the determined measurement value to obtain the predetermined pair of application range limit values DN1L. For example, the processing unit 331 determines the range difference DB81 between the physical parameter target range RD1ET and the physical parameter application range RD1EL by determining the range difference DS81.

在一些實施例中,在該處理單元331藉由比較該測量值VN81和所獲得的該應用範圍界限值對DN1L而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的該邏輯決定PZ81。在該邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為該範圍相異關係以確定該範圍差異DS81。 In some embodiments, under the condition that the processing unit 331 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by comparing the measured value VN81 with the obtained application range limit value pair DN1L, The processing unit 331 makes the obtained measurement value target range code EM1T and the determined measurement value application range by comparing the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L This logic of whether code EM1L is equal or not determines PZ81. Under the condition that the logic decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as the range dissimilar relationship to determine the range difference DS81.

在該處理單元331確定該範圍差異DS81和該範圍差異DB81的至少其中之一的條件下,該處理單元331於該操作時間TF81之內執行用於產生該操作訊號SG81的該訊號產生控制GY81。該操作訊號SG81用於導致該可變物理參數QU1A進入相同於該物理參數目標範圍RD1ET的該物理參數目標範圍RD1ET。該處理單元331於該操作時間TF81之後的該指定時間TG82之內執行與該可變物理參數QU1A相關的該驗證操作ZU81。在該處理單元331於該指定時間TG82之內基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331執行等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該資料比較CE8T。 Under the condition that the processing unit 331 determines at least one of the range difference DS81 and the range difference DB81, the processing unit 331 executes the signal generation control GY81 for generating the operation signal SG81 within the operation time TF81. The operation signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET which is the same as the physical parameter target range RD1ET. The processing unit 331 performs the verification operation ZU81 related to the variable physical parameter QU1A within the specified time TG82 after the operation time TF81. Under the condition that the processing unit 331 determines the physical parameter target range RD1ET that the variable physical parameter QU1A is currently in based on the verification operation ZU81 within the specified time TG82, the processing unit 331 executes a code equal to the specific measurement value range The data comparison CE8T between the variable physical parameter range code UN8A for EM14 and the obtained measurement target range code EM1T.

在該處理單元331基於該資料比較CE8T而確定等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該碼差異DF81的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 On the condition that the processing unit 331 determines the code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T based on the data comparison CE8T , the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

在一些實施例中,在該可變物理參數QU1A基於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,該處理單元331基於該計數操作BD81來到達該操作時間TY81。在該操作時間TY81之內,該定時器342感測該時鐘時間TH1A以導致該可變計數值NY8A等於該測量值NY81,並藉此產生輸送該測量值NY81 的該感測訊號SY81。 In some embodiments, under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC81, the processing unit 331 operates the counting operation BD81 to reach the operation time TY81 . Within the operating time TY81, the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to the measurement value NY81, and thereby generate and deliver the measurement value NY81 of the sensing signal SY81.

例如,該觸發應用單元387響應該觸發事件JQ81來產生該操作請求訊號SJ81,提供該操作請求訊號SJ81到該處理單元331,並藉此使該處理單元331接收該操作請求訊號SJ81。該處理單元331響應該操作請求訊號SJ81來在該操作時間TY81之內從該感測訊號SY81以該指定測量值格式HH95獲得該測量值NY81,並在該操作時間TY81之內藉由執行使用所獲得的該測量值指定範圍碼EL1T的該科學計算MH85來獲得或確定該測量值應用範圍碼EL1U以便檢查所獲得的該測量值NY81和該測量值應用範圍RQ1U之間的該數學關係KQ81。例如,該觸發應用單元387是該接收單元337、該輸入單元380、該顯示單元382、該感測單元334和該定時器343的其中之一。 For example, the trigger application unit 387 generates the operation request signal SJ81 in response to the trigger event JQ81, provides the operation request signal SJ81 to the processing unit 331, and thereby causes the processing unit 331 to receive the operation request signal SJ81. The processing unit 331 responds to the operation request signal SJ81 to obtain the measurement value NY81 from the sensing signal SY81 in the specified measurement value format HH95 within the operation time TY81, and uses the The obtained measurement value specifies the scientific calculation MH85 of the range code EL1T to obtain or determine the measurement value application range code EL1U in order to check the mathematical relationship KQ81 between the obtained measurement value NY81 and the measurement value application range RQ1U. For example, the trigger application unit 387 is one of the receiving unit 337 , the input unit 380 , the display unit 382 , the sensing unit 334 and the timer 343 .

在一些實施例中,該測量值指定範圍RQ1T具有該指定範圍界限值對DQ1T。該指定範圍界限值對DQ1T包含該指定範圍界限值DQ13和相對於該指定範圍界限值DQ13的該指定範圍界限值DQ14。該測量值指定範圍RQ1T和該指定範圍界限值對DQ1T皆基於該時鐘時間指定區間HR1ET和該定時器規格FT21來用該指定測量值格式HH95而被預設。該測量值應用範圍RQ1U具有該應用範圍界限值對DQ1U。該應用範圍界限值對DQ1U包含該第一應用範圍界限值DQ15和相對於該第一應用範圍界限值DQ15的該第二應用範圍界限值DQ16。該測量值應用範圍RQ1U和該應用範圍界限值對DQ1U皆基於該時鐘時間應用區間HR1EU和該定時器規格FT21來用該指定測量值格式HH95 而被預設。 In some embodiments, the measurement value specified range RQ1T has the specified range limit value pair DQ1T. The designated range limit value pair DQ1T includes the designated range limit value DQ13 and the designated range limit value DQ14 relative to the designated range limit value DQ13. The measurement value specified range RQ1T and the specified range limit value pair DQ1T are both preset in the specified measurement value format HH95 based on the clock time specified interval HR1ET and the timer specification FT21. The measured value application range RQ1U has the application range limit value pair DQ1U. The application range limit value pair DQ1U includes the first application range limit value DQ15 and the second application range limit value DQ16 relative to the first application range limit value DQ15. The measurement value application range RQ1U and the application range limit value pair DQ1U are both based on the clock time application range HR1EU and the timer specification FT21 to use the specified measurement value format HH95 is preset.

例如,在該操作時間TY81之內,該物理參數目標範圍碼UQ1U等於所預設的該測量值目標範圍碼EM1U和所預設的該物理參數目標狀態碼EW1U的其中之一。該儲存單元332儲存該指定範圍界限值對DQ1T和該應用範圍界限值對DQ1U。該指定範圍界限值對DQ1T和該應用範圍界限值對DQ1U分別基於該測量值指定範圍碼EL1T和該測量值應用範圍碼EL1U而被儲存在該儲存單元332中。例如,所預設的該物理參數目標狀態碼EW1U等於所預設的該測量值目標範圍碼EM1U。 For example, within the operation time TY81, the physical parameter target range code UQ1U is equal to one of the preset measurement value target range code EM1U and the preset physical parameter target state code EW1U. The storage unit 332 stores the specified range limit value pair DQ1T and the application range limit value pair DQ1U. The specified range limit value pair DQ1T and the application range limit value pair DQ1U are stored in the storage unit 332 based on the measurement value specified range code EL1T and the measurement value application range code EL1U, respectively. For example, the preset physical parameter target state code EW1U is equal to the preset measurement value target range code EM1U.

該處理單元331被配置以在該操作時間TY81之內基於所獲得的該測量值應用範圍碼EL1U來從該儲存單元332獲得該應用範圍界限值對DQ1U,並藉由比較所獲得的該測量值NY81和所獲得的該應用範圍界限值對DQ1U來執行用於檢查該測量值NY81和該測量值應用範圍RQ1U之間的該數學關係KQ81的一檢查操作ZQ81。在該處理單元331於該操作時間TY81之內基於該檢查操作ZQ81而確定該時鐘時間TH1A目前處於的該時鐘時間應用區間HR1EU的條件下,該處理單元331基於所獲得的該測量值應用範圍碼EL1U來獲得該記憶體位址AS8U,並於該操作時間TY81之內基於所獲得的該記憶體位址AS8U來存取被儲存在該記憶體位置YS8U的該物理參數目標範圍碼UQ1U以獲得該物理參數目標範圍碼UQ1U。 The processing unit 331 is configured to apply the range code EL1U based on the obtained measurement value within the operation time TY81 to obtain the application range limit value pair DQ1U from the storage unit 332, and to compare the obtained measurement value NY81 and the obtained application range limit value perform a check operation ZQ81 on DQ1U for checking the mathematical relationship KQ81 between the measurement value NY81 and the measurement value application range RQ1U. Under the condition that the processing unit 331 determines the clock time application interval HR1EU that the clock time TH1A is currently in based on the checking operation ZQ81 within the operation time TY81, the processing unit 331 applies a range code based on the obtained measurement value EL1U obtains the memory address AS8U, and accesses the physical parameter target range code UQ1U stored in the memory location YS8U based on the obtained memory address AS8U within the operation time TY81 to obtain the physical parameter Target range code UQ1U.

例如,該處理單元331基於該檢查操作ZQ81來確定該時鐘時間TH1A目前於該時鐘時間應用區間 HR1EU之內的一時間情況,並藉此辨識該時鐘時間TH1A和該時鐘時間應用區間HR1EU之間的一時間關係為該時鐘時間TH1A目前於該時鐘時間應用區間HR1EU之內的一時間交集關係。在該處理單元331從該記憶體位置YS8U獲得該物理參數目標範圍碼UQ1U的條件下,該處理單元331於該操作時間TY81之內執行用於該測量應用功能FA81的一檢查操作ZP85以決定所獲得的該物理參數目標範圍碼UQ1U是否等於該可變物理參數範圍碼UN8A。 For example, the processing unit 331 determines that the clock time TH1A is currently in the clock time application interval based on the checking operation ZQ81 A time condition within HR1EU, thereby identifying a time relationship between the clock time TH1A and the clock time application interval HR1EU is a time intersection relationship of the clock time TH1A currently within the clock time application interval HR1EU. Under the condition that the processing unit 331 obtains the physical parameter target range code UQ1U from the memory location YS8U, the processing unit 331 performs a check operation ZP85 for the measurement application function FA81 within the operation time TY81 to determine the Whether the obtained physical parameter target range code UQ1U is equal to the variable physical parameter range code UN8A.

在一些實施例中,在該處理單元331從該記憶體位置YS8U獲得該物理參數目標範圍碼UQ1U的條件下,該處理單元331藉由使用該儲存單元332來讀取等於該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A,並執行用於檢查所獲得的該物理參數目標範圍碼UQ1U和所讀取的該測量值目標範圍碼EM1T之間的一算術關係KP85的該檢查操作ZP85。該檢查操作ZP85被配置以藉由執行用於該測量應用功能FA81的一資料比較CE85來比較所獲得的該物理參數目標範圍碼UQ1U和所讀取的該測量值目標範圍碼EM1T以決定所獲得的該物理參數目標範圍碼UQ1U和所讀取的該測量值目標範圍碼EM1T是否不同。 In some embodiments, under the condition that the processing unit 331 obtains the physical parameter target range code UQ1U from the memory location YS8U, the processing unit 331 reads the measurement value target range code equal to the measured value by using the storage unit 332 the variable physical parameter range code UN8A of EM1T, and perform the check operation ZP85 for checking an arithmetic relationship KP85 between the obtained physical parameter target range code UQ1U and the read measurement value target range code EM1T . The checking operation ZP85 is configured to compare the obtained physical parameter target range code UQ1U with the read measured value target range code EM1T to determine the obtained by performing a data comparison CE85 for the measurement application function FA81 Whether the physical parameter target range code UQ1U is different from the read target range code EM1T of the measured value.

在該處理單元331藉由執行該資料比較CE85來確定所獲得的該物理參數目標範圍碼UQ1U和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間的一碼差異DX85的條件下,該處理單元331於該操作時間TY81之內導致該輸出組件338執行用於 該測量應用功能FA81的一訊號產生操作BY85以產生一操作訊號SG85。例如,該操作訊號SG85是一控制訊號。該輸出組件338將該操作訊號SG85傳輸到該物理參數應用單元335。該物理參數應用單元335響應該操作訊號SG85來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入該對應物理參數範圍RY1ET。例如,在該處理單元331從該記憶體位置YS12獲得等於所預設的該測量值候選範圍碼EM12的該物理參數目標範圍碼UQ1U的條件下,該物理參數應用單元335響應該操作訊號SG85來導致該可變物理參數QU1A進入相同於該物理參數候選範圍RD1E2的該物理參數目標範圍RD1EU。 The processing unit 331 determines a code between the obtained physical parameter target range code UQ1U and the variable physical parameter range code UN8A equal to the obtained measurement value target range code EM1T by performing the data comparison CE85 Under the condition of the difference DX85, the processing unit 331 causes the output element 338 to execute for the operation time TY81. A signal generation operation BY85 of the measurement application function FA81 generates an operation signal SG85. For example, the operation signal SG85 is a control signal. The output element 338 transmits the operation signal SG85 to the physical parameter application unit 335 . The physical parameter application unit 335 causes the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET in response to the operation signal SG85. For example, under the condition that the processing unit 331 obtains the physical parameter target range code UQ1U equal to the preset measurement value candidate range code EM12 from the memory location YS12, the physical parameter application unit 335 responds to the operation signal SG85 to The variable physical parameter QU1A is caused to enter the physical parameter target range RD1EU which is the same as the physical parameter candidate range RD1E2.

例如,該儲存單元332具有不同於該記憶體位置YX8T的一記憶體位置YX8U,並在該記憶體位置YX8U儲存一控制碼CC1U。該記憶體位置YX8U基於一記憶體位址AX8U而被識別。該記憶體位址AX8U根據所預設的該物理參數目標狀態碼EW1U而被預設。該控制碼CC1U基於在該物理參數目標範圍RD1EU之內的一指定物理參數QD1U而被預設。在該處理單元331確定該碼差異DX85的條件下,該處理單元331基於等於所預設的該物理參數目標狀態碼EW1U的所獲得的該物理參數目標範圍碼UQ1U來獲得該記憶體位址AX8U。 For example, the storage unit 332 has a memory location YX8U different from the memory location YX8T, and stores a control code CC1U in the memory location YX8U. The memory location YX8U is identified based on a memory address AX8U. The memory address AX8U is preset according to the preset physical parameter target state code EW1U. The control code CC1U is preset based on a specified physical parameter QD1U within the physical parameter target range RD1EU. Under the condition that the processing unit 331 determines the code difference DX85, the processing unit 331 obtains the memory address AX8U based on the obtained physical parameter target range code UQ1U equal to the preset physical parameter target state code EW1U.

該處理單元331基於所獲得的該記憶體位址AX8U來使用該儲存單元332以存取被儲存在該記憶體位置YX8U的該控制碼CC1U以獲得該控制碼CC1U,並於該操作時間TY81之內基於所存取的該控制碼CC1U來導致 該輸出組件338執行用於該測量應用功能FA81的該訊號產生操作BY85以產生該操作訊號SG85。該操作訊號SG85用於導致該可變物理參數QU1A從從該物理參數目標範圍RD1ET進入該物理參數目標範圍RD1EU。 The processing unit 331 uses the storage unit 332 to access the control code CC1U stored in the memory location YX8U based on the obtained memory address AX8U to obtain the control code CC1U within the operation time TY81 caused based on the access control code CC1U The output element 338 performs the signal generation operation BY85 for the measurement application function FA81 to generate the operation signal SG85. The operation signal SG85 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1EU from the physical parameter target range RD1ET.

在一些實施例中,該輸入單元380包含該按鈕3801和耦合於該處理單元331的一按鈕3802。該按鈕3801位於一空間位置LD91。該按鈕3801位於不同於該空間位置LD91的一空間位置LD92。在該可變物理參數QU1A基於該操作訊號SG81而被配置以處於該物理參數目標範圍RD1ET的條件下:該按鈕3801相關於該預設物理參數目標範圍界限ZD1T1;該按鈕3802相關於該預設物理參數目標範圍界限ZD1T2;且該輸入單元380接收一使用者輸入操作BQ81。該使用者輸入操作BQ81使用該按鈕3801和該按鈕3802的其中之一。 In some embodiments, the input unit 380 includes the button 3801 and a button 3802 coupled to the processing unit 331 . The button 3801 is located at a spatial position LD91. The button 3801 is located at a spatial position LD92 different from the spatial position LD91. Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the operation signal SG81: the button 3801 is related to the preset physical parameter target range limit ZD1T1; the button 3802 is related to the preset The physical parameter target range limit ZD1T2; and the input unit 380 receives a user input operation BQ81. The user input operation BQ81 uses one of the button 3801 and the button 3802.

在該使用者輸入操作BQ81使用該按鈕3801的條件下,該輸入單元380響應使用該按鈕3801的該使用者輸入操作BQ81來提供該操作請求訊號SJ91到該處理單元331。該處理單元331響應該操作請求訊號SJ91來使該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG82。該操作訊號SG82用於導致該可變物理參數QU1A通過該預設物理參數目標範圍界限ZD1T1以進入該特定物理參數範圍RD1E5。 Under the condition that the user input operation BQ81 uses the button 3801 , the input unit 380 provides the operation request signal SJ91 to the processing unit 331 in response to the user input operation BQ81 using the button 3801 . The processing unit 331 makes the output element 338 transmit the operation signal SG82 to the physical parameter application unit 335 in response to the operation request signal SJ91 . The operation signal SG82 is used to cause the variable physical parameter QU1A to pass through the predetermined physical parameter target range limit ZD1T1 to enter the specific physical parameter range RD1E5.

在該使用者輸入操作BQ81使用該按鈕3802的條件下,該輸入單元380響應使用該按鈕3802的該使用者輸入操作BQ81來產生一操作請求訊號SJ71,並提供該 操作請求訊號SJ71到該處理單元331。該處理單元331響應該操作請求訊號SJ71來使該輸出組件338向該物理參數應用單元335傳輸一操作訊號SG72。該操作訊號SG72用於導致該可變物理參數QU1A通過該預設物理參數目標範圍界限ZD1T2以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD2E5。該特定物理參數範圍RD2E5不同於該物理參數目標範圍RD1ET和該特定物理參數範圍RD1E5的每一範圍。 Under the condition that the user input operation BQ81 uses the button 3802, the input unit 380 generates an operation request signal SJ71 in response to the user input operation BQ81 using the button 3802, and provides the The operation request signal SJ71 is sent to the processing unit 331 . The processing unit 331 makes the output element 338 transmit an operation signal SG72 to the physical parameter application unit 335 in response to the operation request signal SJ71 . The operation signal SG72 is used to cause the variable physical parameter QU1A to pass through the predetermined physical parameter target range limit ZD1T2 to enter a specific physical parameter range RD2E5 included in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . The specific physical parameter range RD2E5 is different from each of the physical parameter target range RD1ET and the specific physical parameter range RD1E5.

在一些實施例中,在該可變物理參數QU1A基於該操作訊號SG85而被配置以處於該物理參數目標範圍RD1EU的條件下:該按鈕3801相關於該預設物理參數目標範圍界限ZD1U1;該按鈕3802相關於該預設物理參數目標範圍界限ZD1U2;且該輸入單元380接收一使用者輸入操作BQ82。該使用者輸入操作BQ82使用該按鈕3801和該按鈕3802的其中之一。 In some embodiments, under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1EU based on the operation signal SG85: the button 3801 is related to the preset physical parameter target range limit ZD1U1; the button 3802 is related to the preset physical parameter target range limit ZD1U2; and the input unit 380 receives a user input operation BQ82. The user input operation BQ82 uses one of the button 3801 and the button 3802.

在該使用者輸入操作BQ82使用該按鈕3801的條件下,該輸入單元380響應使用該按鈕3801的該使用者輸入操作BQ82來提供該操作請求訊號SJ92到該處理單元331。該處理單元331響應該操作請求訊號SJ92來使該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG87。該操作訊號SG87用於導致該可變物理參數QU1A通過該預設物理參數目標範圍界限ZD1U1以進入該特定物理參數範圍RD1E6。 Under the condition that the user input operation BQ82 uses the button 3801 , the input unit 380 provides the operation request signal SJ92 to the processing unit 331 in response to the user input operation BQ82 using the button 3801 . The processing unit 331 makes the output element 338 transmit the operation signal SG87 to the physical parameter application unit 335 in response to the operation request signal SJ92 . The operation signal SG87 is used to cause the variable physical parameter QU1A to pass the predetermined physical parameter target range limit ZD1U1 to enter the specific physical parameter range RD1E6.

在該使用者輸入操作BQ82使用該按鈕3802的條件下,該輸入單元380響應使用該按鈕3802的該使用 者輸入操作BQ82來產生一操作請求訊號SJ72,提供該操作請求訊號SJ72到該處理單元331。該處理單元331響應該操作請求訊號SJ72來使該輸出組件338向該物理參數應用單元335傳輸一操作訊號SG77。該操作訊號SG77用於導致該可變物理參數QU1A通過該預設物理參數目標範圍界限ZD1U2以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD2E6。該特定物理參數範圍RD2E6不同於該物理參數目標範圍RD1EU和該特定物理參數範圍RD1E6的每一範圍。 Under the condition that the user input operation BQ82 uses the button 3802, the input unit 380 responds to the use of the button 3802 The user inputs the operation BQ82 to generate an operation request signal SJ72 , and provides the operation request signal SJ72 to the processing unit 331 . The processing unit 331 makes the output element 338 transmit an operation signal SG77 to the physical parameter application unit 335 in response to the operation request signal SJ72 . The operation signal SG77 is used to cause the variable physical parameter QU1A to pass through the predetermined physical parameter target range limit ZD1U2 to enter a specific physical parameter range RD2E6 included in the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . The specific physical parameter range RD2E6 is different from each of the physical parameter target range RD1EU and the specific physical parameter range RD1E6.

請參閱圖37、圖38、圖39和圖40。圖37為繪示於圖1中的該控制系統901的一實施結構9046的示意圖。圖38為繪示於圖1中的該控制系統901的一實施結構9047的示意圖。圖39為繪示於圖1中的該控制系統901的一實施結構9048的示意圖。圖40為繪示於圖1中的該控制系統901的一實施結構9049的示意圖。如圖37、圖38、圖39和圖40所示,該實施結構9046、該實施結構9047、該實施結構9048和該實施結構9049的每一結構包含該控制裝置212和該功能裝置130。該控制裝置212包含該操作單元297和該狀態改變偵測器475。 See Figure 37, Figure 38, Figure 39, and Figure 40. FIG. 37 is a schematic diagram illustrating an implementation structure 9046 of the control system 901 shown in FIG. 1 . FIG. 38 is a schematic diagram illustrating an implementation structure 9047 of the control system 901 shown in FIG. 1 . FIG. 39 is a schematic diagram illustrating an implementation structure 9048 of the control system 901 shown in FIG. 1 . FIG. 40 is a schematic diagram illustrating an implementation structure 9049 of the control system 901 shown in FIG. 1 . As shown in FIGS. 37 , 38 , 39 and 40 , each of the implementation structure 9046 , the implementation structure 9047 , the implementation structure 9048 , and the implementation structure 9049 includes the control device 212 and the functional device 130 . The control device 212 includes the operating unit 297 and the state change detector 475 .

該功能裝置130包含該操作單元397、該儲存單元332、該感測單元334和該物理參數應用單元335和一物理參數應用單元735。該操作單元397包含該處理單元331、該接收單元337、該傳輸單元384和耦合於該處理單元331的該輸出組件338。該輸出組件338位於該處理單元331的外部,並受該處理單元331控制。例如,該物理參數 應用單元735是一功能目標。該狀態改變偵測器475是一觸發應用單元,並響應該觸發事件EQ81來提供該觸發訊號SX8A到該操作單元297。例如,該觸發訊號SX8A是一操作請求訊號。 The functional device 130 includes the operation unit 397 , the storage unit 332 , the sensing unit 334 , the physical parameter application unit 335 and a physical parameter application unit 735 . The operation unit 397 includes the processing unit 331 , the receiving unit 337 , the transmitting unit 384 , and the output component 338 coupled to the processing unit 331 . The output component 338 is located outside the processing unit 331 and is controlled by the processing unit 331 . For example, the physical parameter Application unit 735 is a functional object. The state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the operation unit 297 in response to the trigger event EQ81. For example, the trigger signal SX8A is an operation request signal.

在一些實施例中,該功能裝置130進一步包含耦合於該操作單元397的一物理參數應用單元735和耦合於該操作單元397的一多工器363。該物理參數應用單元735耦合於該輸出組件338,並包含一物理參數形成區AU21。該物理參數形成區AU21具有一可變物理參數QU2A。該多工器363具有一輸入端3631、一輸入端3632、一控制端363C和一輸出端363P。該控制端363C耦合於該處理單元331。例如,該物理參數應用單元735是一物理可實現功能單元,並具有相似於該物理參數應用單元335的一功能結構。例如,該物理參數應用單元735設置於該功能裝置130的內部和該功能裝置130的外部的其中之一。 In some embodiments, the functional device 130 further includes a physical parameter applying unit 735 coupled to the operating unit 397 and a multiplexer 363 coupled to the operating unit 397 . The physical parameter applying unit 735 is coupled to the output element 338 and includes a physical parameter forming area AU21. The physical parameter forming area AU21 has a variable physical parameter QU2A. The multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C and an output terminal 363P. The control terminal 363C is coupled to the processing unit 331 . For example, the physical parameter application unit 735 is a physically realizable functional unit and has a functional structure similar to the physical parameter application unit 335 . For example, the physical parameter application unit 735 is disposed in one of the inside of the functional device 130 and the outside of the functional device 130 .

該輸入端3631耦合於該物理參數形成區AU11。該輸入端3632耦合於該物理參數形成區AU21。該輸出端363P耦合於該感測單元334。例如,該可變物理參數QU1A和該可變物理參數QU2A分別是一第四可變電性參數和一第五可變電性參數。例如,該第四可變電性參數和該第五可變電性參數分別是一第四可變電壓和一第五可變電壓。該輸入端3631和該輸出端363P之間具有一第一功能關係。該第一功能關係等於一第一導通關係和一第一關斷關係的其中之一。 The input terminal 3631 is coupled to the physical parameter forming area AU11. The input terminal 3632 is coupled to the physical parameter forming area AU21. The output terminal 363P is coupled to the sensing unit 334 . For example, the variable physical parameter QU1A and the variable physical parameter QU2A are a fourth variable electrical parameter and a fifth variable electrical parameter, respectively. For example, the fourth variable electrical parameter and the fifth variable electrical parameter are a fourth variable voltage and a fifth variable voltage, respectively. There is a first functional relationship between the input end 3631 and the output end 363P. The first functional relationship is equal to one of a first on relationship and a first off relationship.

該輸入端3632和該輸出端363P之間具有一 第二功能關係。該第二功能關係等於一第二導通關係和一第二關斷關係的其中之一。在該第一功能關係等於該第一導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3631來感測該可變物理參數QU1A,並通過該輸出端363P和該輸入端3631而耦合於該物理參數形成區AU11。 Between the input end 3632 and the output end 363P there is a Second functional relationship. The second functional relationship is equal to one of a second on relationship and a second off relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 is configured to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, and use the output terminal 363P and the input terminal 3631 to sense the variable physical parameter QU1A. The input terminal 3631 is coupled to the physical parameter forming area AU11.

在該第二功能關係等於該第二導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3632來感測該可變物理參數QU2A,並通過該輸出端363P和該輸入端3632而耦合於該物理參數形成區AU21。例如,該多工器363受該處理單元331控制,並是一類比多工器。例如,該感測單元334在一操作時間TX81通過該多工器363來感測該可變物理參數QU1A,並在與該操作時間TX81不同的一操作時間TX82通過該多工器363來感測該可變物理參數QU2A。 Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, and use the output terminal 363P and the input terminal 3632 to sense the variable physical parameter QU2A. The input terminal 3632 is coupled to the physical parameter forming area AU21. For example, the multiplexer 363 is controlled by the processing unit 331 and is a one-to-one multiplexer. For example, the sensing unit 334 senses the variable physical parameter QU1A through the multiplexer 363 at an operation time TX81, and senses the variable physical parameter QU1A through the multiplexer 363 at an operation time TX82 different from the operation time TX81 The variable physical parameter QU2A.

例如,該儲存單元332、該感測單元334、該多工器363、該物理參數應用單元335和該物理參數應用單元735皆耦合於該操作單元397,並皆受該處理單元331控制。該控制裝置212和該功能裝置130是分開的或接觸的。該操作單元397和該物理參數應用單元335是分開的或接觸的。該操作單元397和該物理參數應用單元735是分開的或接觸的。該操作單元397和該感測單元334是分開的或接觸的。該控制裝置212用於控制該可變物理參數QU2A。 For example, the storage unit 332 , the sensing unit 334 , the multiplexer 363 , the physical parameter application unit 335 and the physical parameter application unit 735 are all coupled to the operation unit 397 and controlled by the processing unit 331 . The control device 212 and the functional device 130 are separate or in contact. The operation unit 397 and the physical parameter application unit 335 are separate or contacted. The operation unit 397 and the physical parameter application unit 735 are separate or in contact. The operating unit 397 and the sensing unit 334 are separate or in contact. The control device 212 is used to control the variable physical parameter QU2A.

在一些實施例中,該物理參數應用單元335 由一應用單元識別符HA2T所識別。該物理參數應用單元735由一應用單元識別符HA22所識別。該物理參數應用單元335和該物理參數應用單元735分別位於不同空間位置,並皆藉由耦合於該輸出組件338而耦合於該處理單元331。該應用單元識別符HA2T和該應用單元識別符HA22皆基於該測量應用功能規格GAL8而被預設。該控制訊號SC81進一步輸送該應用單元識別符HA2T和該應用單元識別符HA22的至少其中之一。 In some embodiments, the physical parameter application unit 335 Identified by an application unit identifier HA2T. The physical parameter application unit 735 is identified by an application unit identifier HA22. The physical parameter application unit 335 and the physical parameter application unit 735 are located at different spatial positions, and are both coupled to the processing unit 331 by being coupled to the output element 338 . Both the application unit identifier HA2T and the application unit identifier HA22 are preset based on the measurement application function specification GAL8. The control signal SC81 further conveys at least one of the application unit identifier HA2T and the application unit identifier HA22.

該接收單元337從該操作單元297接收該控制訊號SC81。在該控制訊號SC81輸送該應用單元識別符HA2T的條件下,該處理單元331響應該控制訊號SC81來選擇該物理參數應用單元335以進行控制。在該控制訊號SC81輸送該應用單元識別符HA22的條件下,該處理單元331響應該控制訊號SC81來選擇該物理參數應用單元735以進行控制。例如,該應用單元識別符HA2T是一第一功能單元號碼。該應用單元識別符HA22是一第二功能單元號碼。 The receiving unit 337 receives the control signal SC81 from the operating unit 297 . Under the condition that the control signal SC81 transmits the application unit identifier HA2T, the processing unit 331 selects the physical parameter application unit 335 for control in response to the control signal SC81. Under the condition that the control signal SC81 transmits the application unit identifier HA22, the processing unit 331 selects the physical parameter application unit 735 for control in response to the control signal SC81. For example, the application unit identifier HA2T is a first functional unit number. The application unit identifier HA22 is a second functional unit number.

例如,該物理參數應用單元335和該物理參數應用單元735是分開的,或由設置於該物理參數應用單元335和該物理參數應用單元735之間的一材料層70U所隔開。該物理參數應用單元335、該材料層70U和該物理參數應用單元735皆耦合於一支撐媒介70M。該功能裝置130包含該材料層70U,或該材料層70U設置於該功能裝置130之外。該功能裝置130包含該支撐媒介70M,或該支撐媒介70M設置於該功能裝置130之外。例如,該支撐媒介 70M耦合於該操作單元397。 For example, the physical parameter application unit 335 and the physical parameter application unit 735 are separated, or separated by a material layer 70U disposed between the physical parameter application unit 335 and the physical parameter application unit 735 . The physical parameter application unit 335, the material layer 70U and the physical parameter application unit 735 are all coupled to a support medium 70M. The functional device 130 includes the material layer 70U, or the material layer 70U is disposed outside the functional device 130 . The functional device 130 includes the supporting medium 70M, or the supporting medium 70M is disposed outside the functional device 130 . For example, the supporting medium 70M is coupled to the operation unit 397 .

在一些實施例中,在該控制訊號SC81輸送該應用單元識別符HA2T的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該應用單元識別符HA2T,並基於所獲得的該應用單元識別符HA2T來導致該感測單元334感測該可變物理參數QU1A,並藉此從該感測單元334接收該感測訊號SN81。該處理單元331基於所接收的該感測訊號SN81來以該指定測量值格式HH81獲得該測量值VN81,並基於所獲得的該應用單元識別符HA2T來使該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG81、該操作訊號SG82、該操作訊號SG85、該操作訊號SG87、該操作訊號SG88和該操作訊號SG89的至少其中之一。 In some embodiments, under the condition that the control signal SC81 conveys the application unit identifier HA2T, the processing unit 331 obtains the application unit identifier HA2T from the control signal SC81 in response to the control signal SC81, and based on the obtained The application unit identifier HA2T causes the sensing unit 334 to sense the variable physical parameter QU1A and thereby receive the sensing signal SN81 from the sensing unit 334 . The processing unit 331 obtains the measurement value VN81 in the specified measurement value format HH81 based on the received sensing signal SN81, and causes the output element 338 to apply a unit to the physical parameter based on the obtained application unit identifier HA2T 335 transmits at least one of the operation signal SG81, the operation signal SG82, the operation signal SG85, the operation signal SG87, the operation signal SG88 and the operation signal SG89.

例如,該處理單元331響應該控制訊號SC81來基於所獲得的該應用單元識別符HA2T而提供一控制訊號SD81到該控制端363C。例如,該控制訊號SD81是一選擇控制訊號,並起到指示該輸入端3631的作用。該多工器363響應該控制訊號SD81來導致該輸入端3631和該輸出端363P之間的該第一功能關係等於該第一導通關係。在該第一功能關係等於該第一導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN81,因此該處理單元331從該感測單元334接收該感測訊號SN81。在該第一功能關係等於該第一導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN85,因此該處理單元331從該感測單元334接收該感測 訊號SN85。 For example, the processing unit 331 provides a control signal SD81 to the control terminal 363C based on the obtained application unit identifier HA2T in response to the control signal SC81. For example, the control signal SD81 is a selection control signal, and plays a role of instructing the input terminal 3631 . The multiplexer 363 causes the first functional relationship between the input end 3631 and the output end 363P to be equal to the first conduction relationship in response to the control signal SD81. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN81 , so the processing unit 331 receives the sensing signal SN81 from the sensing unit 334 Sensing signal SN81. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN85, so the processing unit 331 receives the sensing signal SN85 from the sensing unit 334 Sensing Signal SN85.

該儲存單元332具有該儲存空間SU11。該儲存單元332進一步基於所預設的該應用單元識別符HA2T來在該儲存空間SU11中儲存該額定範圍界限值對DD1A、該可變物理參數範圍碼UN8A、該目標範圍界限值對DN1T、該控制碼CC1T、該候選範圍界限值對DN1B和該控制碼CC12。該處理單元331進一步基於所獲得的該應用單元識別符HA2T來使用該儲存單元332以存取該額定範圍界限值對DD1A、該可變物理參數範圍碼UN8A、該目標範圍界限值對DN1T、該控制碼CC1T、該候選範圍界限值對DN1B和該控制碼CC12的其中任一。 The storage unit 332 has the storage space SU11. The storage unit 332 further stores the rated range limit value pair DD1A, the variable physical parameter range code UN8A, the target range limit value pair DN1T, the target range limit value pair in the storage space SU11 based on the preset application unit identifier HA2T Control code CC1T, the candidate range limit value pair DN1B, and the control code CC12. The processing unit 331 further uses the storage unit 332 based on the obtained application unit identifier HA2T to access the rated range limit value pair DD1A, the variable physical parameter range code UN8A, the target range limit value pair DN1T, the Any one of the control code CC1T, the candidate range limit value pair DN1B, and the control code CC12.

在一些實施例中,該第一記憶體位址AM8T基於所預設的該應用單元識別符HA2T、所預設的該測量值目標範圍碼EM1T和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該處理單元331響應該控制訊號SC81來使用所獲得的該應用單元識別符HA2T、所獲得的該測量值目標範圍碼EM1T和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該第一記憶體位址AM8T,並基於所獲得的該第一記憶體位址AM8T來使用該儲存單元332以存取被儲存在該第一記憶體位置YM8T的該目標範圍界限值對DN1T以獲得該目標範圍界限值對DN1T。 In some embodiments, the first memory address AM8T is based on the preset application unit identifier HA2T, the preset measurement value target range code EM1T and the preset measurement range limit data code type identifier HN81 is preset. The processing unit 331 uses the obtained application unit identifier HA2T, the obtained measurement value target range code EM1T and the obtained measurement range limit data code type identifier HN81 in response to the control signal SC81 to obtain the first memory address AM8T, and using the storage unit 332 based on the obtained first memory address AM8T to access the target range limit value pair DN1T stored in the first memory location YM8T to obtain the target range limit Value pair DN1T.

例如,該記憶體位址AX8T基於所預設的該應用單元識別符HA2T、所預設的該測量值目標範圍碼EM1T和所預設的該控制碼類型識別符HC81而被預設。在該處理單元331確定該可變物理參數QU1A目前處於的該 對應物理參數範圍RY1ET的條件下,該處理單元331基於所獲得的該應用單元識別符HA2T、所獲得的該測量值目標範圍碼EM1T和所獲得的該控制碼類型識別符HC81來獲得該記憶體位址AX8T,並基於所獲得的該記憶體位址AX8T來使用該儲存單元332以存取被儲存在該記憶體位置YX8T的該控制碼CC1T以獲得該控制碼CC1T。例如,該儲存單元332進一步儲存該測量時間長度值CL8V、該時鐘參考時間值NR81和該測量時間長度值VH8T以使該儲存空間SU11進一步具有該測量時間長度值CL8V、該時鐘參考時間值NR81和該測量時間長度值VH8T。 For example, the memory address AX8T is preset based on the preset application unit identifier HA2T, the preset measurement value target range code EM1T, and the preset control code type identifier HC81. In the processing unit 331, it is determined that the variable physical parameter QU1A is currently in the Under the condition corresponding to the physical parameter range RY1ET, the processing unit 331 obtains the memory bit based on the obtained application unit identifier HA2T, the obtained measurement value target range code EM1T and the obtained control code type identifier HC81 address AX8T, and based on the obtained memory address AX8T, the storage unit 332 is used to access the control code CC1T stored in the memory location YX8T to obtain the control code CC1T. For example, the storage unit 332 further stores the measurement duration value CL8V, the clock reference duration value NR81 and the measurement duration value VH8T so that the storage space SU11 further has the measurement duration value CL8V, the clock reference duration value NR81 and The measurement time length value is VH8T.

該處理單元331響應該控制訊號SC88來從該儲存空間SU11獲得該測量時間長度值CL8V。該處理單元331基於所預設的該測量值指定範圍碼EL1T來使該儲存單元332儲存該時鐘參考時間值NR81和該測量時間長度值VH8T。該控制訊號SC81輸送該測量值指定範圍碼EL1T。該處理單元331從該控制訊號SC81獲得該測量值指定範圍碼EL1T,並基於所獲得的該測量值指定範圍碼EL1T來存取被儲存在該儲存空間SU11中的該時鐘參考時間值NR81和該測量時間長度值VH8T以獲得該時鐘參考時間值NR81和該測量時間長度值VH8T。該處理單元331基於所獲得的該測量時間長度值VH8T和所獲得的該時鐘參考時間值NR81來執行該科學計算ME85以獲得該應用範圍界限值對DQ1U。 The processing unit 331 obtains the measured time length value CL8V from the storage space SU11 in response to the control signal SC88. The processing unit 331 causes the storage unit 332 to store the clock reference time value NR81 and the measurement time length value VH8T based on the preset measurement value designation range code EL1T. The control signal SC81 transmits the measurement value designation range code EL1T. The processing unit 331 obtains the measurement value designation range code EL1T from the control signal SC81, and accesses the clock reference time value NR81 and the clock reference time value NR81 stored in the storage space SU11 based on the obtained measurement value designation range code EL1T The time length value VH8T is measured to obtain the clock reference time value NR81 and the measured time length value VH8T. The processing unit 331 performs the scientific calculation ME85 based on the obtained measurement time length value VH8T and the obtained clock reference time value NR81 to obtain the application range limit value pair DQ1U.

在一些實施例中,在該處理單元331確定該可變物理參數QU1A目前處於的該對應物理參數範圍 RY1ET的條件下,該處理單元331基於所獲得的該應用單元識別符HA2T和所獲得的該控制碼CC1T來執行用於控制該輸出組件338的該訊號產生控制GY81。該輸出組件338響應該訊號產生控制GY81來執行用於該測量應用功能FA81的該訊號產生操作BY81以產生該操作訊號SG81,並導致該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG81。該操作訊號SG81用於控制該物理參數應用單元335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 In some embodiments, the processing unit 331 determines the corresponding physical parameter range in which the variable physical parameter QU1A is currently located Under the condition of RY1ET, the processing unit 331 executes the signal generation control GY81 for controlling the output element 338 based on the obtained application unit identifier HA2T and the obtained control code CC1T. The output element 338 responds to the signal generation control GY81 to execute the signal generation operation BY81 for the measurement application function FA81 to generate the operation signal SG81 and causes the output element 338 to transmit the operation signal SG81 to the physical parameter application unit 335 . The operation signal SG81 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

例如,該處理單元331藉由執行該訊號產生控制GY81來提供一控制訊號SF81到該輸出組件338。該輸出組件338響應該控制訊號SF81來執行該訊號產生操作BY81以產生該操作訊號SG81。在該處理單元331基於該物理參數關係檢查控制GX8T而確定該可變物理參數QU1A目前所處於的該物理參數應用狀態JE1L的條件下,該處理單元331於該操作時間TF81之內基於所獲得的該應用單元識別符HA2T和所獲得的該控制碼CC1T來執行用於控制該輸出組件338的該訊號產生控制GY81。該物理參數應用狀態JE1L基於該物理參數應用範圍RD1EL而被預先確定。 For example, the processing unit 331 provides a control signal SF81 to the output element 338 by executing the signal generation control GY81. The output element 338 performs the signal generating operation BY81 in response to the control signal SF81 to generate the operation signal SG81. Under the condition that the processing unit 331 checks the control GX8T based on the physical parameter relationship to determine the physical parameter application state JE1L that the variable physical parameter QU1A is currently in, the processing unit 331 is based on the obtained operation time TF81 The application unit identifier HA2T and the obtained control code CC1T are used to execute the signal generation control GY81 for controlling the output element 338 . The physical parameter application state JE1L is predetermined based on the physical parameter application range RD1EL.

例如,該輸出組件338包含一輸出端338P和一輸出端338Q。該輸出端338P耦合於該物理參數應用單元335。該輸出端338P耦合於該物理參數應用單元735。該輸出端338P和該輸出端338Q分別位於不同空間位置。所預設的該應用單元識別符HA2T被配置以指示該輸出端338P。所預設的該應用單元識別符HA22被配置以指示該 輸出端338Q。例如,該控制訊號SC81藉由輸送被配置以指示該輸出端338P的該應用單元識別符HA2T來使該處理單元331選擇該物理參數應用單元335以進行控制。該訊號產生控制GY81起到指示該輸出端338P的作用,並用於導致該輸出組件338接收該控制訊號SF81。該控制訊號SF81起到指示該輸出端338P的作用。該輸出組件338響應該訊號產生控制GY81和該控制訊號SF81的其中之一來執行使用該輸出端338P的該訊號產生操作BY81以向該物理參數應用單元335傳輸該操作訊號SG81。 For example, the output element 338 includes an output terminal 338P and an output terminal 338Q. The output terminal 338P is coupled to the physical parameter application unit 335 . The output terminal 338P is coupled to the physical parameter application unit 735 . The output end 338P and the output end 338Q are located at different spatial positions, respectively. The preset application unit identifier HA2T is configured to indicate the output terminal 338P. The preset application unit identifier HA22 is configured to indicate the Output 338Q. For example, the control signal SC81 causes the processing unit 331 to select the physical parameter application unit 335 for control by delivering the application unit identifier HA2T configured to indicate the output 338P. The signal generation control GY81 functions to instruct the output terminal 338P, and is used to cause the output element 338 to receive the control signal SF81. The control signal SF81 functions to instruct the output terminal 338P. The output element 338 performs the signal generation operation BY81 using the output terminal 338P in response to one of the signal generation control GY81 and the control signal SF81 to transmit the operation signal SG81 to the physical parameter application unit 335 .

在一些實施例中,在該處理單元331基於該物理參數關係檢查控制GX8U而確定該可變物理參數QU1A目前所處於的該物理參數應用狀態JE1T的條件下,該處理單元331於該操作時間TY81之內基於所獲得的該應用單元識別符HA2T和所獲得的該控制碼CC1U來執行用於控制該輸出組件338的該訊號產生控制GY85。該輸出組件338響應該訊號產生控制GY85來執行用於該測量應用功能FA81的該訊號產生操作BY85以產生該操作訊號SG85,並導致該輸出組件338向該物理參數應用單元335傳輸該操作訊號SG85。例如,該處理單元331藉由執行該訊號產生控制GY85來提供一控制訊號SF85到該輸出組件338。該輸出組件338響應該控制訊號SF85來執行該訊號產生操作BY85以產生該操作訊號SG85。 In some embodiments, under the condition that the processing unit 331 checks the control GX8U based on the physical parameter relationship to determine the physical parameter application state JE1T that the variable physical parameter QU1A is currently in, the processing unit 331 executes the operation time TY81 The signal generation control GY85 for controlling the output element 338 is performed based on the obtained application unit identifier HA2T and the obtained control code CC1U. The output element 338 performs the signal generation operation BY85 for the measurement application function FA81 in response to the signal generation control GY85 to generate the operation signal SG85 and causes the output element 338 to transmit the operation signal SG85 to the physical parameter application unit 335 . For example, the processing unit 331 provides a control signal SF85 to the output element 338 by executing the signal generation control GY85. The output element 338 performs the signal generating operation BY85 in response to the control signal SF85 to generate the operation signal SG85.

該操作訊號SG85用於控制該物理參數應用單元335以導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入該物理參數目標範圍RD1EU。例如,該訊 號產生控制GY85起到指示該輸出端338P的作用,並用於導致該輸出組件338接收該控制訊號SF85。該控制訊號SF85起到指示該輸出端338P的作用。該輸出組件338響應該訊號產生控制GY85和該控制訊號SF85的其中之一來執行使用該輸出端338P的該訊號產生操作BY85以向該物理參數應用單元335傳輸該操作訊號SG85。 The operation signal SG85 is used to control the physical parameter application unit 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1EU from the physical parameter target range RD1ET. For example, the news The signal generation control GY85 functions to instruct the output terminal 338P, and is used to cause the output element 338 to receive the control signal SF85. The control signal SF85 functions to indicate the output terminal 338P. The output element 338 performs the signal generation operation BY85 using the output terminal 338P in response to one of the signal generation control GY85 and the control signal SF85 to transmit the operation signal SG85 to the physical parameter application unit 335 .

在一些實施例中,該接收單元337從該控制裝置212接收一控制訊號SC97。該控制訊號SC97輸送該應用單元識別符HA22。在該控制訊號SC97輸送該應用單元識別符HA22的條件下,該處理單元331響應該控制訊號SC97來從該控制訊號SC97獲得該應用單元識別符HA22,並基於所獲得的該應用單元識別符HA22來提供一控制訊號SD82到該控制端363C。例如,該控制訊號SD82是一選擇控制訊號,起到指示該輸入端3632的作用,並不同於該控制訊號SD81。例如,該控制訊號SC97是該控制訊號SC81。在該控制訊號SC81輸送該應用單元識別符HA22的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該應用單元識別符HA22。 In some embodiments, the receiving unit 337 receives a control signal SC97 from the control device 212 . The control signal SC97 conveys the application unit identifier HA22. Under the condition that the control signal SC97 transmits the application unit identifier HA22, the processing unit 331 obtains the application unit identifier HA22 from the control signal SC97 in response to the control signal SC97, and based on the obtained application unit identifier HA22 to provide a control signal SD82 to the control terminal 363C. For example, the control signal SD82 is a selection control signal, which plays the role of indicating the input terminal 3632, and is different from the control signal SD81. For example, the control signal SC97 is the control signal SC81. Under the condition that the control signal SC81 transmits the application unit identifier HA22, the processing unit 331 obtains the application unit identifier HA22 from the control signal SC81 in response to the control signal SC81.

該多工器363響應該控制訊號SD82來導致該輸入端3632和該輸出端363P之間的該第二功能關係等於該第二導通關係。在該第二功能關係等於該第二導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN91。該處理單元331從該感測單元334接收該感測訊號SN91,並基於所接收的該感測訊號SN91來以該指定測量值格式HH81獲得一測量值VN91。例如, 該控制訊號SC97藉由輸送被配置以指示該輸出端338Q的該應用單元識別符HA22來使該處理單元331選擇該物理參數應用單元735以進行控制。 The multiplexer 363 causes the second functional relationship between the input end 3632 and the output end 363P to be equal to the second conduction relationship in response to the control signal SD82. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN91. The processing unit 331 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 in the specified measurement value format HH81 based on the received sensing signal SN91. E.g, The control signal SC97 causes the processing unit 331 to select the physical parameter application unit 735 for control by delivering the application unit identifier HA22 configured to indicate the output 338Q.

在一特定情況中,該處理單元331基於所獲得的該測量值VN91和所獲得的該應用單元識別符HA22來執行用於控制該輸出組件338的一訊號產生控制GY97。該訊號產生控制GY97起到指示該輸出端338Q的作用,並用於導致該輸出組件338接收一控制訊號SF97。該控制訊號SF97起到指示該輸出端338Q的作用。該輸出組件338響應該訊號產生控制GY97和該控制訊號SF97的其中之一來執行使用該輸出端338Q的一訊號產生操作BY97以向該物理參數應用單元735傳輸一操作訊號SG97。該操作訊號SG97用於控制該可變物理參數QU2A,並是一功能訊號和一控制訊號的其中之一。例如,該處理單元331藉由執行該訊號產生控制GY97來提供該控制訊號SF97到該輸出組件338。該輸出組件338響應該控制訊號SF97來執行該訊號產生操作BY97以產生該操作訊號SG97。 In a specific case, the processing unit 331 executes a signal generation control GY97 for controlling the output element 338 based on the obtained measurement value VN91 and the obtained application unit identifier HA22. The signal generation control GY97 functions to instruct the output terminal 338Q and is used to cause the output element 338 to receive a control signal SF97. The control signal SF97 functions to instruct the output terminal 338Q. The output element 338 performs a signal generation operation BY97 using the output terminal 338Q in response to one of the signal generation control GY97 and the control signal SF97 to transmit an operation signal SG97 to the physical parameter application unit 735 . The operation signal SG97 is used to control the variable physical parameter QU2A, and is one of a function signal and a control signal. For example, the processing unit 331 provides the control signal SF97 to the output element 338 by executing the signal generation control GY97. The output element 338 performs the signal generating operation BY97 in response to the control signal SF97 to generate the operation signal SG97.

例如,該處理單元331響應該控制訊號SC81來提供用於控制該多工器363的該控制訊號SD81到該多工器363。該多工器363響應該控制訊號SD81來使該感測單元334在該操作時間TX81之內通過該多工器363執行用於感測該可變物理參數QU1A的一感測操作ZW81。該感測單元334藉由執行該感測操作ZW81來提供該感測訊號SN81到該處理單元331。 For example, the processing unit 331 provides the control signal SD81 for controlling the multiplexer 363 to the multiplexer 363 in response to the control signal SC81 . The multiplexer 363 responds to the control signal SD81 to cause the sensing unit 334 to perform a sensing operation ZW81 for sensing the variable physical parameter QU1A through the multiplexer 363 within the operation time TX81. The sensing unit 334 provides the sensing signal SN81 to the processing unit 331 by performing the sensing operation ZW81.

該處理單元331響應該控制訊號SC81來提 供用於控制該多工器363的該控制訊號SD82到該多工器363。該多工器363響應該控制訊號SD82來使該感測單元334在該操作時間TX82之內通過該多工器363執行用於感測該可變物理參數QU2A的一感測操作ZW82。該感測單元334藉由執行該感測操作ZW82來提供該感測訊號SN91到該操作單元397。該操作時間TX82不同於該操作時間TX81。該操作單元397在一特定情況YA82中基於該感測訊號SN91來向該物理參數應用單元735傳輸用於控制該可變物理參數QU2A的該操作訊號SG97。 The processing unit 331 responds to the control signal SC81 to provide The control signal SD82 for controlling the multiplexer 363 is supplied to the multiplexer 363 . The multiplexer 363 responds to the control signal SD82 to cause the sensing unit 334 to perform a sensing operation ZW82 for sensing the variable physical parameter QU2A through the multiplexer 363 within the operation time TX82. The sensing unit 334 provides the sensing signal SN91 to the operating unit 397 by performing the sensing operation ZW82. The operation time TX82 is different from the operation time TX81. The operation unit 397 transmits the operation signal SG97 for controlling the variable physical parameter QU2A to the physical parameter application unit 735 based on the sensing signal SN91 in a specific case YA82.

請參閱圖41,其為繪示於圖1中的該控制系統901的一實施結構9050的示意圖。如圖41所示,該實施結構9050包含該功能裝置130和用於控制該功能裝置130的該控制裝置212。在一些實施例中,該功能裝置130具有相關於該時鐘時間TH1A的該可變物理參數QU1A。該可變物理參數QU1A基於該物理參數目標範圍RD1ET而被特徵化。該時鐘時間TH1A基於該時鐘時間指定區間HR1ET而被特徵化。該時鐘時間指定區間HR1ET相關於該物理參數目標範圍RD1ET。用於控制該可變物理參數QU1A的該控制裝置212包含一感測單元260和該操作單元297。 Please refer to FIG. 41 , which is a schematic diagram of an implementation structure 9050 of the control system 901 shown in FIG. 1 . As shown in FIG. 41 , the implementation structure 9050 includes the functional device 130 and the control device 212 for controlling the functional device 130 . In some embodiments, the functional device 130 has the variable physical parameter QU1A relative to the clock time TH1A. The variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET. The clock time TH1A is characterized based on the clock time designation interval HR1ET. The clock time designation interval HR1ET is related to the physical parameter target range RD1ET. The control device 212 for controlling the variable physical parameter QU1A includes a sensing unit 260 and the operating unit 297 .

該感測單元260感測一可變物理參數QP1A以產生一感測訊號SM81。例如,該可變物理參數QP1A基於由一測量值應用範圍RM1L所代表的一物理參數應用範圍RC1EL而被特徵化。該操作單元297耦合於該感測單元260。在該觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SM81來獲得一測量值VM81。在該操作單 元297藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的一數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該操作單元297產生起到指示該時鐘時間指定區間HR1ET的作用的該控制訊號SC81。例如,該測量值VM81是一物理參數測量值。 The sensing unit 260 senses a variable physical parameter QP1A to generate a sensing signal SM81. For example, the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L. The operation unit 297 is coupled to the sensing unit 260 . Under the condition that the trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VM81 in response to the sensing signal SM81. in this action sheet The unit 297 determines the condition of the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in by checking a mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, and the operation unit 297 generates a to the control signal SC81 indicating the action of the clock time designation interval HR1ET. For example, the measurement VM81 is a physical parameter measurement.

該控制訊號SC81用於控制該功能裝置130以導致該可變物理參數QU1A在該時鐘時間指定區間HR1ET之內處於該物理參數目標範圍RD1ET。該時鐘時間TH1A進一步基於相鄰於該時鐘時間指定區間HR1ET的該時鐘時間應用區間HR1EU而被特徵化。該可變物理參數QU1A基於該物理參數目標範圍RD1EU而被特徵化。該時鐘時間應用區間HR1EU相關於該物理參數目標範圍RD1EU。該控制訊號SC81用於控制該功能裝置130以導致該可變物理參數QU1A在該時鐘時間應用區間HR1EU之內處於該物理參數目標範圍RD1EU。 The control signal SC81 is used to control the functional device 130 to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET within the clock time specified interval HR1ET. The clock time TH1A is further characterized based on the clock time application interval HR1EU adjacent to the clock time designation interval HR1ET. The variable physical parameter QU1A is characterized based on the physical parameter target range RD1EU. The clock time application interval HR1EU is related to the physical parameter target range RD1EU. The control signal SC81 is used to control the functional device 130 to cause the variable physical parameter QU1A to be within the physical parameter target range RD1EU within the clock time application interval HR1EU.

請參閱圖42和圖43。圖42為繪示於圖1中的該控制系統901的一實施結構9051的示意圖。圖43為繪示於圖1中的該控制系統901的一實施結構9052的示意圖。如圖42和圖43所示,該實施結構9051和該實施結構9052的每一結構包含該功能裝置130和該控制裝置212。請額外參閱圖40。在一些實施例中,該感測單元260被配置以符合與該測量值應用範圍RM1L相關的一感測器規格FQ11。例如,該感測器規格FQ11包含用於表示一感測器測量範圍RA8E的一感測器測量範圍表示GQ8R、和用 於表示一感測器靈敏度YQ81的一感測器靈敏度表示GQ81。該感測器靈敏度YQ81相關於由該感測單元260所執行的一感測訊號產生HE81。 See Figure 42 and Figure 43. FIG. 42 is a schematic diagram illustrating an implementation structure 9051 of the control system 901 shown in FIG. 1 . FIG. 43 is a schematic diagram illustrating an implementation structure 9052 of the control system 901 shown in FIG. 1 . As shown in FIGS. 42 and 43 , each of the implementation structure 9051 and the implementation structure 9052 includes the functional device 130 and the control device 212 . See additionally Figure 40. In some embodiments, the sensing unit 260 is configured to comply with a sensor specification FQ11 associated with the measured value application range RM1L. For example, the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and A sensor sensitivity representing a sensor sensitivity YQ81 represents GQ81. The sensor sensitivity YQ81 is related to a sensing signal generation HE81 performed by the sensing unit 260 .

該可變物理參數QU1A依靠該定時器342而被控制,並基於該物理參數目標範圍RD1ET而被特徵化。該定時器342感測該時鐘時間TH1A,並符合與該時鐘時間指定區間HR1ET相關的該定時器規格FT21。例如,該時鐘時間指定區間HR1ET由該測量值指定範圍RQ1T所代表。該定時器規格FT21包含用於表示該全測量值範圍QK8E的該全測量值範圍表示FK8E。例如,該測量值指定範圍RQ1T等於該全測量值範圍QK8E的一部分。 The variable physical parameter QU1A is controlled by means of the timer 342 and characterized based on the physical parameter target range RD1ET. The timer 342 senses the clock time TH1A and conforms to the timer specification FT21 related to the clock time designation interval HR1ET. For example, the clock time designation interval HR1ET is represented by the measurement value designation range RQ1T. The timer specification FT21 includes the full measurement value range representation FK8E for representing the full measurement value range QK8E. For example, the measurement value specification range RQ1T is equal to a portion of the full measurement value range QK8E.

該可變物理參數QU1A進一步依靠該感測單元334而被控制。該感測單元334感測該可變物理參數QU1A,並符合與該物理參數目標範圍RD1ET相關的該感測器規格FU11。該物理參數目標範圍RD1ET由該測量值目標範圍RN1T所代表。例如,該感測器規格FU11包含用於表示該感測器測量範圍RB8E的該感測器測量範圍表示GW8R、和用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81。該感測器靈敏度YW81相同或不同於該感測器靈敏度YQ81。該測量值目標範圍RN1T基於該感測器測量範圍表示GW8R而被預設,並具有該目標範圍界限值對DN1T。 The variable physical parameter QU1A is further controlled by means of the sensing unit 334 . The sensing unit 334 senses the variable physical parameter QU1A and conforms to the sensor specification FU11 related to the physical parameter target range RD1ET. The physical parameter target range RD1ET is represented by the measured value target range RN1T. For example, the sensor specification FU11 includes the sensor measurement range representation GW8R for representing the sensor measurement range RB8E, and the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81. The sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81. The measurement value target range RN1T is preset based on the sensor measurement range representation GW8R and has the target range limit pair DN1T.

該測量值VM81以一指定測量值格式HQ81而被該操作單元297獲得。該可變物理參數QP1A進一步基於不同於該物理參數應用範圍RC1EL的一物理參數候選 範圍RC1E2而被特徵化。該測量值應用範圍RM1L和代表該物理參數候選範圍RC1E2的一測量值候選範圍RM12皆基於該感測器測量範圍表示GQ8R和該感測器規格FQ11的其中之一來用該指定測量值格式HQ81而被預設。例如,該測量值應用範圍RM1L和該測量值候選範圍RM12皆基於該感測器測量範圍表示GQ8R和該感測器靈敏度表示GQ81來用該指定測量值格式HQ81而被預設。該測量值指定範圍RQ1T基於該定時器規格FT21而被預設,具有該指定範圍界限值對DQ1T,並由一測量值指定範圍碼EL1T所代表。 The measurement value VM81 is obtained by the operation unit 297 in a specified measurement value format HQ81. The variable physical parameter QP1A is further based on a physical parameter candidate different from the physical parameter application range RC1EL The range RC1E2 is characterized. The measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are both based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11 for the specified measurement value format HQ81 is preset. For example, the measurement value application range RM1L and the measurement value candidate range RM12 are both preset with the specified measurement value format HQ81 based on the sensor measurement range representation GQ8R and the sensor sensitivity representation GQ81. The measurement value designation range RQ1T is preset based on the timer specification FT21, has the designation range limit value pair DQ1T, and is represented by a measurement value designation range code EL1T.

在一些實施例中,該控制訊號SC81輸送該測量值指定範圍碼EL1T、該指定範圍界限值對DQ1T、該物理參數應用狀態碼EW1T和該控制碼CC1T,並用於導致該可變物理參數QU1A於該時鐘時間指定區間HR1ET之內處於該物理參數目標範圍RD1ET。例如,該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T而被預先設定。該控制訊號SC81藉由輸送該指定範圍界限值對DQ1T來起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用。該控制訊號SC81藉由輸送該測量值指定範圍碼EL1T來起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用。 In some embodiments, the control signal SC81 conveys the measurement value specified range code EL1T, the specified range limit value pair DQ1T, the physical parameter application status code EW1T and the control code CC1T, and is used to cause the variable physical parameter QU1A to be The clock time designation interval HR1ET is within the physical parameter target range RD1ET. For example, the control code CC1T is preset based on a specified physical parameter QD1T within the physical parameter target range RD1ET. The control signal SC81 serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET by sending the designation range limit value pair DQ1T. The control signal SC81 serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET by sending the measurement value designation range code EL1T.

該測量值應用範圍RM1L具有一應用範圍界限值對DM1L。例如,該應用範圍界限值對DM1L被預設。該操作單元297響應該觸發事件EQ81來獲得該應用範 圍界限值對DM1L,並藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來檢查該數學關係KA81。該測量值候選範圍RM12具有一候選範圍界限值對DM1B。例如,該候選範圍界限值對DM1B被預設。該操作單元297響應該觸發事件EQ81來獲得所預設的該候選範圍界限值對DM1B。 The measured value application range RM1L has an application range limit value pair DM1L. For example, the application range limit value is preset for DM1L. The operation unit 297 obtains the application scope in response to the trigger event EQ81 range limit value pair DM1L, and check the mathematical relationship KA81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L. The measurement value candidate range RM12 has a candidate range limit value pair DM1B. For example, the candidate range limit value is preset for DM1B. The operation unit 297 obtains the preset candidate range limit value pair DM1B in response to the trigger event EQ81.

例如,該操作單元297包含一觸發應用單元281。該觸發事件EQ81相關於該觸發應用單元281。該觸發應用單元281響應該觸發事件EQ81來產生一操作請求訊號SX81。該操作單元297響應該操作請求訊號SX81來基於該感測訊號SM81而獲得該測量值VM81,並響應該操作請求訊號SX81來獲得該應用範圍界限值對DM1L。 For example, the operation unit 297 includes a trigger application unit 281 . The trigger event EQ81 is related to the trigger application unit 281 . The trigger application unit 281 generates an operation request signal SX81 in response to the trigger event EQ81. The operation unit 297 obtains the measurement value VM81 based on the sensing signal SM81 in response to the operation request signal SX81, and obtains the application range limit value pair DM1L in response to the operation request signal SX81.

在一些實施例中,該物理參數應用範圍RC1EL被配置以對應於在該物理參數應用範圍RC1EL之外的一對應物理參數範圍RW1EL。在該操作單元297藉由檢查該數學關係KA81而確定該可變物理參數QP1A目前處於的該對應物理參數範圍RW1EL的條件下,該操作單元297執行該測量值VM81和所獲得的該參考範圍界限值對DM1B之間的一資料比較CA91。在該操作單元297基於該資料比較CA91而確定該可變物理參數QP1A目前處於的該物理參數候選範圍RC1E2的條件下,該操作單元297產生用於控制該可變物理參數QU1A的一控制訊號SC82,該控制訊號SC82不同於該控制訊號SC81。 In some embodiments, the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL. Under the condition that the operation unit 297 determines the corresponding physical parameter range RW1EL in which the variable physical parameter QP1A is currently located by checking the mathematical relationship KA81, the operation unit 297 executes the measured value VM81 and the obtained reference range limit A data comparison of values between DM1B and CA91. Under the condition that the operation unit 297 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located based on the data comparison CA91, the operation unit 297 generates a control signal SC82 for controlling the variable physical parameter QU1A , the control signal SC82 is different from the control signal SC81.

在該操作單元297藉由檢查該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數 應用範圍RC1EL的條件下,該操作單元297被配置以獲得包含該測量值指定範圍碼EL1T、該指定範圍界限值對DQ1T、該物理參數應用狀態碼EW1T和該控制碼CC1T的一控制資料碼CK8T,基於該控制資料碼CK8T來執行用於產生該控制訊號SC81的一訊號產生控制GS81,並執行一資料儲存控制操作GT81,該資料儲存控制操作GT81用於導致代表所確定的該物理參數應用範圍RC1EL的一物理參數應用範圍碼UM8L被記錄。該可變物理參數QU1A和該可變物理參數QP1A分別屬於該物理參數類型TU11和一物理參數類型TP11。例如,該物理參數類型TU11相同或不同於該物理參數類型TP11。例如,該資料儲存控制操作GT81是一確保操作。 The physical parameter that the variable physical parameter QP1A is currently in is determined at the operating unit 297 by checking the mathematical relationship KA81 Under the condition of the application range RC1EL, the operation unit 297 is configured to obtain a control data code CK8T including the measurement value specified range code EL1T, the specified range limit value pair DQ1T, the physical parameter application status code EW1T and the control code CC1T , based on the control data code CK8T, a signal generation control GS81 for generating the control signal SC81 is executed, and a data storage control operation GT81 is executed, and the data storage control operation GT81 is used to cause the application range representing the determined physical parameter A physical parameter application range code UM8L of RC1EL is recorded. The variable physical parameter QU1A and the variable physical parameter QP1A belong to the physical parameter type TU11 and a physical parameter type TP11, respectively. For example, the physical parameter type TU11 is the same as or different from the physical parameter type TP11. For example, the data storage control operation GT81 is a securing operation.

在一些實施例中,該時鐘時間指定區間HR1ET具有該指定時間長度LH8T。該指定時間長度LH8T由該測量時間長度值VH8T所代表。該控制訊號SC81進一步輸送該測量時間長度值VH8T。所輸送的該指定範圍界限值對DQ1T和所輸送的該測量時間長度值VH8T用於使該功能裝置130獲得該應用範圍界限值對DQ1U;因此,該控制訊號SC81用於使該功能裝置130檢查該時鐘時間TH1A和該時鐘時間應用區間HR1EU之間的該時間關係KT81,並用於控制該功能裝置130以導致該可變物理參數QU1A在該時鐘時間應用區間HR1EU之內處於該物理參數目標範圍RD1EU。 In some embodiments, the clock time designation interval HR1ET has the designated time length LH8T. The specified time length LH8T is represented by the measured time length value VH8T. The control signal SC81 further delivers the measurement time length value VH8T. The delivered pair of specified range limit values DQ1T and the delivered value of the measurement time length VH8T are used to enable the functional device 130 to obtain the pair of application range threshold values DQ1U; therefore, the control signal SC81 is used to cause the functional device 130 to check The time relationship KT81 between the clock time TH1A and the clock time application interval HR1EU is used to control the functional device 130 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1EU within the clock time application interval HR1EU .

例如,該控制訊號SC81進一步輸送該目標範圍界限值對DN1T。該控制訊號SC81藉由輸送該目標範 圍界限值對DN1T來起到指示該測量值目標範圍RN1T和該物理參數目標範圍RD1ET的至少其中之一的作用。該控制資料碼CK8T進一步包含該測量時間長度值VH8T和該目標範圍界限值對DN1T。 For example, the control signal SC81 further conveys the target range limit pair DN1T. The control signal SC81 transmits the target range by The range limit value acts to DN1T to indicate at least one of the measurement value target range RN1T and the physical parameter target range RD1ET. The control data code CK8T further includes the measurement time length value VH8T and the target range limit value pair DN1T.

請參閱圖44、圖45、圖46、圖47、圖48、圖49和圖50。圖44為繪示於圖1中的該控制系統901的一實施結構9053的示意圖。圖45為繪示於圖1中的該控制系統901的一實施結構9054的示意圖。圖46為繪示於圖1中的該控制系統901的一實施結構9055的示意圖。圖47為繪示於圖1中的該控制系統901的一實施結構9056的示意圖。圖48為繪示於圖1中的該控制系統901的一實施結構9057的示意圖。圖49為繪示於圖1中的該控制系統901的一實施結構9058的示意圖。圖50為繪示於圖1中的該控制系統901的一實施結構9059的示意圖。如圖44、圖45、圖46、圖47、圖48、圖49和圖50所示,該實施結構9052、該實施結構9053、該實施結構9054、該實施結構9055、該實施結構9056、該實施結構9057、該實施結構9058和該實施結構9059的每一結構包含該控制裝置212和該功能裝置130。 Please refer to Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49 and Figure 50. FIG. 44 is a schematic diagram illustrating an implementation structure 9053 of the control system 901 shown in FIG. 1 . FIG. 45 is a schematic diagram illustrating an implementation structure 9054 of the control system 901 shown in FIG. 1 . FIG. 46 is a schematic diagram illustrating an implementation structure 9055 of the control system 901 shown in FIG. 1 . FIG. 47 is a schematic diagram illustrating an implementation structure 9056 of the control system 901 shown in FIG. 1 . FIG. 48 is a schematic diagram illustrating an implementation structure 9057 of the control system 901 shown in FIG. 1 . FIG. 49 is a schematic diagram illustrating an implementation structure 9058 of the control system 901 shown in FIG. 1 . FIG. 50 is a schematic diagram illustrating an implementation structure 9059 of the control system 901 shown in FIG. 1 . As shown in Figure 44, Figure 45, Figure 46, Figure 47, Figure 48, Figure 49 and Figure 50, the implementation structure 9052, the implementation structure 9053, the implementation structure 9054, the implementation structure 9055, the implementation structure 9056, the implementation structure Each of the implementation structure 9057 , the implementation structure 9058 , and the implementation structure 9059 includes the control device 212 and the functional device 130 .

請額外參閱圖41。在一些實施例中,該可變物理參數QU1A和該可變物理參數QP1A分別被形成於一實際位置LD81和不同於該實際位置LD81的一實際位置LC81。該操作單元297被配置以執行與該物理參數應用範圍RC1EL相關的一測量應用功能FB81,並包含耦合於該感測單元260的一處理單元230、耦合於該處理單元230的一 傳輸單元240、和耦合於該處理單元230的一顯示單元460。該測量應用功能FB81被配置以符合與該物理參數應用範圍RC1EL相關的一測量應用功能規格GBL8。例如,該測量應用功能FB81是一觸發應用功能。該測量應用功能規格GBL8是一觸發應用功能規格。該傳輸單元240是一輸出單元。 See additionally Figure 41. In some embodiments, the variable physical parameter QU1A and the variable physical parameter QP1A are formed at an actual location LD81 and an actual location LC81 different from the actual location LD81, respectively. The operation unit 297 is configured to execute a measurement application function FB81 related to the physical parameter application range RC1EL, and includes a processing unit 230 coupled to the sensing unit 260 , a processing unit 230 coupled to the processing unit 230 The transmission unit 240 , and a display unit 460 coupled to the processing unit 230 . The measurement application function FB81 is configured to comply with a measurement application function specification GBL8 associated with the physical parameter application range RC1EL. For example, the measurement application function FB81 is a trigger application function. The measurement application function specification GBL8 is a trigger application function specification. The transmission unit 240 is an output unit.

該感測單元260被配置以符合與該測量值應用範圍RM1L相關的一感測器規格FQ11。例如,該感測器規格FQ11包含用於表示一感測器測量範圍RA8E的一感測器測量範圍表示GQ8R、和用於表示一感測器靈敏度YQ81的一感測器靈敏度表示GQ81。該感測器靈敏度YQ81相關於由該感測單元260所執行的一感測訊號產生HE81。例如,當該觸發事件EQ81發生時,該感測單元260感測該可變物理參數QP1A以執行相依於該感測器靈敏度YQ81的該感測訊號產生HE81,該感測訊號產生HE81用於產生該感測訊號SM81。 The sensing unit 260 is configured to comply with a sensor specification FQ11 associated with the measurement value application range RM1L. For example, the sensor specification FQ11 includes a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E, and a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81. The sensor sensitivity YQ81 is related to a sensing signal generation HE81 performed by the sensing unit 260 . For example, when the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to execute the sensing signal generation HE81 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE81 is used to generate The sensing signal SM81.

該可變物理參數QU1A依靠該定時器342而被控制。該定時器342符合與該時鐘時間指定區間HR1ET相關的該定時器規格FT21。例如,該時鐘時間指定區間HR1ET由該測量值指定範圍RQ1T所代表。該定時器規格FT21包含用於表示該全測量值範圍QK8E的該全測量值範圍表示FK8E。例如,該測量值指定範圍RQ1T等於該全測量值範圍QK8E的一部分。 The variable physical parameter QU1A is controlled by means of the timer 342 . The timer 342 conforms to the timer specification FT21 related to the clock time designation interval HR1ET. For example, the clock time designation interval HR1ET is represented by the measurement value designation range RQ1T. The timer specification FT21 includes the full measurement value range representation FK8E for representing the full measurement value range QK8E. For example, the measurement value specification range RQ1T is equal to a portion of the full measurement value range QK8E.

該可變物理參數QU1A依靠該感測單元334而被控制。該感測單元334被配置以符合與該測量值目標 範圍RN1T相關的該感測器規格FU11。例如,該感測器規格FU11包含用於表示該感測器測量範圍RB8E的該感測器測量範圍表示GW8R、和用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81。該感測器靈敏度YW81相同或不同於該感測器靈敏度YQ81。 The variable physical parameter QU1A is controlled by means of the sensing unit 334 . The sensing unit 334 is configured to comply with the measurement target The range RN1T is related to this sensor specification FU11. For example, the sensor specification FU11 includes the sensor measurement range representation GW8R for representing the sensor measurement range RB8E, and the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81. The sensor sensitivity YW81 is the same as or different from the sensor sensitivity YQ81.

在一些實施例中,在該觸發事件EQ81發生的條件下,該處理單元230響應該感測訊號SM81來以一指定測量值格式HQ81獲得該測量值VM81。例如,該指定測量值格式HQ81基於一指定位元數目UX81而被特徵化。在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230導致該傳輸單元240產生該控制訊號SC81。該可變物理參數QP1A進一步基於一額定物理參數範圍RC1E而被特徵化。例如,該額定物理參數範圍RC1E由一額定測量值範圍RC1N所代表,並包含由複數不同測量值參考範圍RM11、RM12、…所分別代表的複數不同物理參數參考範圍RC1E1、RC1E2、…。 In some embodiments, under the condition that the trigger event EQ81 occurs, the processing unit 230 obtains the measurement value VM81 in a specified measurement value format HQ81 in response to the sensing signal SM81. For example, the specified measurement value format HQ81 is characterized based on a specified number of bits UX81. Under the condition that the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located, the processing unit 230 causes the transmission unit 240 to generate the control signal SC81. The variable physical parameter QP1A is further characterized based on a nominal physical parameter range RC1E. For example, the nominal physical parameter range RC1E is represented by a nominal measurement value range RC1N, and includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, . . . respectively represented by a plurality of different measurement value reference ranges RM11, RM12, .

該複數不同物理參數參考範圍RC1E1、RC1E2、…包含該物理參數應用範圍RC1EL。該測量應用功能規格GBL8包含該定時器規格FT21、該感測器規格FQ11、用於表示該額定物理參數範圍RC1E的一額定物理參數範圍表示GB8E、和用於表示該物理參數應用範圍RC1EL的一物理參數應用範圍表示GB8L。該物理參數目標範圍RD1ET由一物理參數候選範圍表示GA8T所表示。例如,該物理參數候選範圍表示GA8T被預設。 The complex different physical parameter reference ranges RC1E1, RC1E2, ... include the physical parameter application range RC1EL. The measurement application functional specification GBL8 includes the timer specification FT21, the sensor specification FQ11, a rated physical parameter range representation GB8E for representing the rated physical parameter range RC1E, and a physical parameter application range RC1EL for representing the physical parameter. The physical parameter application range indicates GB8L. The physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T. For example, the physical parameter candidate range indicates that the GA8T is preset.

該額定測量值範圍RC1N基於該額定物理參數範圍表示GB8E、該感測器測量範圍表示GQ8R和用於轉換該額定物理參數範圍表示GB1E的一資料編碼操作ZR81來用該指定測量值格式HQ81而被預設,具有一額定範圍界限值對DC1A,並包含由複數不同測量值參考範圍碼EH11、EH12、…所分別代表的該複數不同測量值參考範圍RM11、RM12、…。例如,該額定範圍界限值對DC1A用該指定測量值格式HQ81而被預設。該額定測量值範圍RC1N和該額定範圍界限值對DC1A皆基於該感測器測量範圍表示GQ8R和該感測器規格FQ11的其中之一來用該指定測量值格式HQ81而被預設。 The nominal measured value range RC1N is determined using the specified measured value format HQ81 based on the nominal physical parameter range representation GB8E, the sensor measurement range representation GQ8R, and a data encoding operation ZR81 for converting the nominal physical parameter range representation GB1E By default, there is a pair of rated range limit values DC1A, and includes the plurality of different measurement value reference ranges RM11, RM12, . For example, the nominal range limit value is preset for DC1A with the specified measurement value format HQ81. Both the rated measurement range RC1N and the rated range limit pair DC1A are preset with the specified measurement format HQ81 based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11.

在一些實施例中,該複數不同測量值參考範圍RM11、RM12、…包含該測量值應用範圍RM1L。該測量值應用範圍RM1L由包含於該複數不同測量值參考範圍碼EH11、EH12、…中的一測量值應用範圍碼EH1L所代表,並具有一應用範圍界限值對DM1L;藉此該測量值應用範圍碼EH1L被配置以指示該物理參數應用範圍RC1EL。例如,該複數不同測量值參考範圍碼EH11、EH12、…皆基於該測量應用功能規格GBL8而被預設。 In some embodiments, the plurality of different measurement value reference ranges RM11, RM12, . . . comprise the measurement value application range RM1L. The measurement value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, . . . and has an application range limit value pair DM1L; whereby the measurement value applies The range code EH1L is configured to indicate the physical parameter application range RC1EL. For example, the plurality of different measurement value reference range codes EH11, EH12, . . . are all preset based on the measurement application functional specification GBL8.

該應用範圍界限值對DM1L包含該測量值應用範圍RM1L的一應用範圍界限值DM15和相對於該應用範圍界限值DM15的一應用範圍界限值DM16,並基於該物理參數應用範圍表示GB8L、該感測器測量範圍表示GQ8R和用於轉換該物理參數應用範圍表示GB8L的一資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。該 測量值應用範圍RM1L基於該物理參數應用範圍表示GB8L、該感測器測量範圍表示GQ8R和該資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。 The application range limit value pair DM1L includes an application range limit value DM15 of the measurement value application range RM1L and an application range limit value DM16 relative to the application range limit value DM15, and based on the physical parameter, the application range represents GB8L, the sensor The instrument measurement range representation GQ8R and a data encoding operation ZR82 for converting the physical parameter application range representation GB8L are preset with the specified measurement value format HQ81. Should The measurement value application range RM1L is preset with the specified measurement value format HQ81 based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R and the data encoding operation ZR82.

該測量值目標範圍RN1T基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GQ8R和用於轉換該物理參數候選範圍表示GA8T的一資料編碼操作ZX83而被預設,並由該測量值目標範圍碼EM1T所代表。該控制裝置212進一步包含耦合於該處理單元230的一儲存單元250,並包含耦合於該處理單元230的一觸發應用單元281。該儲存單元250儲存所預設的該額定範圍界限值對DC1A和一可變物理參數範圍碼UM8A。例如,該測量值目標範圍RN1T具有一目標範圍界限值對DN1T。 The measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor measurement range representation GQ8R, and a data encoding operation ZX83 for converting the physical parameter candidate range representation GA8T, and is determined by the measurement value Represented by the target range code EM1T. The control device 212 further includes a storage unit 250 coupled to the processing unit 230 , and includes a trigger application unit 281 coupled to the processing unit 230 . The storage unit 250 stores the preset rated range limit value pair DC1A and a variable physical parameter range code UM8A. For example, the measured value target range RN1T has a target range limit value pair DN1T.

在一些實施例中,當與該觸發應用單元281相關的該觸發事件EQ81發生時,該可變物理參數範圍碼UM8A等於選擇自該複數不同測量值參考範圍碼EH11、EH12、…的一特定測量值範圍碼EH14。例如,該特定測量值範圍碼EH14指示基於基於一感測操作ZM81而被該處理單元230先前確定的一特定物理參數範圍RC1E4。該特定物理參數範圍RC1E4選擇自該複數不同物理參數參考範圍RC1E1、RC1E2、…。由該感測單元260所執行的該感測操作ZM81用於感測該可變物理參數QP1A。在該觸發事件EQ81發生之前,該特定測量值範圍碼EH14被指定到該可變物理參數範圍碼UM8A。 In some embodiments, when the trigger event EQ81 associated with the trigger application unit 281 occurs, the variable physical parameter range code UM8A is equal to a particular measurement selected from the plurality of different measurement value reference range codes EH11, EH12, . . . Value range code EH14. For example, the specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 that was previously determined by the processing unit 230 based on a sensing operation ZM81. The specific physical parameter range RC1E4 is selected from the plurality of different physical parameter reference ranges RC1E1, RC1E2, . . . The sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A. Before the triggering event EQ81 occurs, the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.

例如,在該觸發事件EQ81發生之前,該處理單元230獲得該特定測量值範圍碼EH14。在該處理單元 230於該觸發事件EQ81發生之前基於該感測操作ZM81而確定該特定物理參數範圍RC1E4的條件下,該處理單元230藉由使用該儲存單元250來將所獲得的該特定測量值範圍碼EH14指定到該可變物理參數範圍碼UM8A。該特定測量值範圍碼EH14代表被配置以代表該特定物理參數範圍RC1E4的一特定測量值範圍。該特定測量值範圍基於該感測器測量範圍表示GQ8R來用該指定測量值格式HQ81而被預設。例如,該感測單元260藉由執行該感測操作ZM81來執行相依於該感測器靈敏度YQ81的一感測訊號產生以產生一感測訊號。 For example, before the trigger event EQ81 occurs, the processing unit 230 obtains the specific measurement value range code EH14. in the processing unit 230 Under the condition that the specific physical parameter range RC1E4 is determined based on the sensing operation ZM81 before the trigger event EQ81 occurs, the processing unit 230 specifies the obtained specific measurement value range code EH14 by using the storage unit 250 to the variable physical parameter range code UM8A. The specific measurement range code EH14 represents a specific measurement range configured to represent the specific physical parameter range RC1E4. The specific measurement value range is preset with the specified measurement value format HQ81 based on the sensor measurement range representation GQ8R. For example, the sensing unit 260 performs a sensing signal generation depending on the sensor sensitivity YQ81 by performing the sensing operation ZM81 to generate a sensing signal.

在該觸發事件EQ81發生之前,該處理單元230接收該感測訊號,響應該感測訊號來以該指定測量值格式HQ81獲得一特定測量值,並執行用於檢查該特定測量值和該特定測量值範圍之間的一數學關係的一特定檢查操作。在該處理單元230基於該特定檢查操作而確定該可變物理參數QP1A處於的該特定物理參數範圍RC1E4的條件下,該處理單元230藉由使用該儲存單元250來將所獲得的該特定測量值範圍碼EH14指定到該可變物理參數範圍碼UM8A。該處理單元230響應用於感測該可變物理參數QP1A的一特定感測操作來決定該處理單元230是否要使用該儲存單元250以改變該可變物理參數範圍碼UM8A。例如,該特定感測操作由該感測單元260所執行。 Before the trigger event EQ81 occurs, the processing unit 230 receives the sensing signal, obtains a specific measurement value in the specified measurement value format HQ81 in response to the sensing signal, and executes a method for checking the specific measurement value and the specific measurement A specific check operation for a mathematical relationship between ranges of values. Under the condition that the processing unit 230 determines the specific physical parameter range RC1E4 in which the variable physical parameter QP1A is located based on the specific checking operation, the processing unit 230 uses the storage unit 250 to convert the obtained specific measurement value Range code EH14 is assigned to the variable physical parameter range code UM8A. The processing unit 230 determines whether the processing unit 230 is to use the storage unit 250 to change the variable physical parameter range code UM8A in response to a specific sensing operation for sensing the variable physical parameter QP1A. For example, the specific sensing operation is performed by the sensing unit 260 .

在一些實施例中,該觸發應用單元281響應該觸發事件EQ81來產生一操作請求訊號SX81,提供該操作請求訊號SX81到該處理單元230,並藉此使該處理單元 230接收該操作請求訊號SX81。在該觸發事件EQ81發生的條件下,該處理單元230響應該操作請求訊號SX81來從該儲存單元250獲得一操作參考資料碼XK81,並藉由運行一資料確定程序NE8A來執行使用該操作參考資料碼XK81的一資料確定AE8A以確定選擇自該複數不同測量值參考範圍碼EH11、EH12、…的該測量值應用範圍碼EH1L以便從該複數不同測量值參考範圍RM11、RM12、…中選擇該測量值應用範圍RM1L。 In some embodiments, the trigger application unit 281 generates an operation request signal SX81 in response to the trigger event EQ81, provides the operation request signal SX81 to the processing unit 230, and thereby causes the processing unit to 230 receives the operation request signal SX81. Under the condition that the trigger event EQ81 occurs, the processing unit 230 obtains an operation reference data code XK81 from the storage unit 250 in response to the operation request signal SX81, and executes and uses the operation reference data by running a data determination program NE8A A profile of code XK81 determines AE8A to determine the measurement selected from the complex different measurement value reference range codes EH11, EH12, ... Apply range code EH1L to select the measurement from the complex different measurement value reference range RM11, RM12, ... Value application range RM1L.

該操作參考資料碼XK81相同於基於該測量應用功能規格GBL8而被預設的一可允許參考資料碼。該資料確定程序NE8A基於該測量應用功能規格GBL8而被建構。該資料確定AE8A是一資料確定操作AE81和一資料確定操作AE82的其中之一。在該操作參考資料碼XK81藉由存取被儲存在該儲存單元250中的該可變物理參數範圍碼UM8A而被獲得以相同於該特定測量值範圍碼EH14的條件下,是該資料確定操作AE81的該資料確定AE8A基於所獲得的該特定測量值範圍碼EH14來確定該測量值應用範圍碼EH1L。例如,所確定的該測量值應用範圍碼EH1L相同或不同於所獲得的該特定測量值範圍碼EH14。 The operation reference data code XK81 is the same as a permissible reference data code preset based on the measurement application functional specification GBL8. The data determination program NE8A is constructed based on the measurement application functional specification GBL8. The profile determination AE8A is one of a profile determination operation AE81 and a profile determination operation AE82. Under the condition that the operation reference data code XK81 is obtained by accessing the variable physical parameter range code UM8A stored in the storage unit 250 to be the same as the specific measurement value range code EH14, it is the data determination operation The profile of AE81 determines that AE8A determines the measurement application range code EH1L based on the obtained specific measurement range code EH14. For example, the determined measured value application range code EH1L is the same as or different from the obtained specific measured value range code EH14.

在該操作參考資料碼XK81藉由存取被儲存在該儲存單元250中的該額定範圍界限值對DC1A而被獲得以相同於所預設的該額定範圍界限值對DC1A的條件下,是該資料確定操作AE82的該資料確定AE8A藉由執行使用該測量值VM81和所獲得的該額定範圍界限值對DC1A的一科學計算MF81來從該複數不同測量值參考範圍碼 EH11、EH12、…中選擇該測量值應用範圍碼EH1L以確定該測量值應用範圍碼EH1L。例如,該科學計算MF81基於一特定經驗公式XP81而被執行。該特定經驗公式XP81基於所預設的該額定範圍界限值對DC1A和該複數不同測量值參考範圍碼EH11、EH12、…而被預先制定。例如,該特定經驗公式XP81基於該測量應用功能規格GBL8而被預先制定。 Under the condition that the operation reference data code XK81 is obtained by accessing the rated range limit value pair DC1A stored in the storage unit 250 to be the same as the preset rated range limit value pair DC1A, is the The data determination AE8A of the data determination operation AE82 references the range code from the complex number of different measurements by performing a scientific calculation MF81 for DC1A using the measurement value VM81 and the obtained nominal range limit value EH11, EH12, . For example, the scientific calculation MF81 is performed based on a specific empirical formula XP81. The specific empirical formula XP81 is pre-established based on the preset nominal range limit value pair DC1A and the plurality of different measurement value reference range codes EH11, EH12, . . . For example, the specific empirical formula XP81 is predetermined based on the measurement application functional specification GBL8.

該處理單元230基於所確定的該測量值應用範圍碼EH1L來獲得該應用範圍界限值對DM1L,並基於該測量值VM81和所獲得的該應用範圍界限值對DM1L之間的一資料比較CA81來檢查該數學關係KA81以做出該測量值VM81是否為於所選擇的該測量值應用範圍RM1L之內的一邏輯決定PH81。在該邏輯決定PH81是肯定的條件下,該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL。 The processing unit 230 applies the range code EH1L based on the determined measurement value to obtain the application range limit value pair DM1L, and obtains the application range limit value pair DM1L based on a data comparison CA81 between the measurement value VM81 and the obtained application range limit value pair DM1L The mathematical relationship KA81 is checked to make a logical decision PH81 whether the measurement VM81 is within the selected application range RM1L of the measurement. Under the condition that the logical decision PH81 is positive, the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.

例如,在該應用範圍界限值DM15不同於該應用範圍界限值DM16且該測量值VM81是於該應用範圍界限值DM15和該應用範圍界限值DM16之間的條件下,該處理單元230藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來做出該邏輯決定PH81以成為肯定的。在該應用範圍界限值DM15、該應用範圍界限值DM16和該測量值VM81是相等的條件下,該處理單元230藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來做出該邏輯決定PH81以成為肯定的。 For example, under the condition that the application range limit value DM15 is different from the application range limit value DM16 and the measurement value VM81 is between the application range limit value DM15 and the application range limit value DM16, the processing unit 230 compares the The measured value VM81 and the obtained application range limit value pair DM1L to make the logical decision PH81 to be affirmative. Under the condition that the application range limit value DM15, the application range limit value DM16 and the measurement value VM81 are equal, the processing unit 230 makes a comparison between the measurement value VM81 and the obtained application range limit value pair DM1L This logic determines PH81 to be positive.

在一些實施例中,該控制裝置212具有該可 變物理參數QP1A。該可變物理參數QU1A存在於該功能裝置130中。該觸發事件EQ81是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件、一識別媒介出現事件和一整數溢位事件的其中之一,並被應用到該測量應用功能FB81。在是該觸發作用事件的該觸發事件EQ81發生之前,該接收單元337從該傳輸單元240接收一控制訊號SC80。該處理單元331響應所接收的該控制訊號SC80來執行用於控制該輸出組件338的一訊號產生控制GY80。該輸出組件338響應該訊號產生控制GY80來產生用於控制該可變物理參數QU1A的一操作訊號SG80。該物理參數應用單元335從該輸出組件338接收該操作訊號SG80,並響應所接收的該操作訊號SG80來執行與該可變物理參數QU1A相關的該特定功能操作ZH81。在是該觸發作用事件的該觸發事件EQ81要發生的條件下,該功能裝置130被配置以執行與該可變物理參數QU1A相關的該特定功能操作ZH81。例如,該特定功能操作ZH81用於導致該觸發作用事件發生。 In some embodiments, the control device 212 has the Variable physical parameter QP1A. The variable physical parameter QU1A exists in the functional device 130 . The trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event and an integer overflow event, and is applied to the measurement application function FB81. Before the triggering event EQ81 which is the triggering event occurs, the receiving unit 337 receives a control signal SC80 from the transmitting unit 240 . The processing unit 331 executes a signal generation control GY80 for controlling the output element 338 in response to the received control signal SC80. The output element 338 generates a control GY80 in response to the signal to generate an operation signal SG80 for controlling the variable physical parameter QU1A. The physical parameter application unit 335 receives the operation signal SG80 from the output element 338, and executes the specific function operation ZH81 related to the variable physical parameter QU1A in response to the received operation signal SG80. Under the condition that the triggering event EQ81, which is the triggering event, is to occur, the functional device 130 is configured to perform the specific functional operation ZH81 related to the variable physical parameter QU1A. For example, the specific function operation ZH81 is used to cause the triggering event to occur.

該測量應用功能FB81相關於一記憶體單元25Y1。該測量值指定範圍RQ1T由該測量值指定範圍碼EL1T所代表;藉此該測量值指定範圍碼EL1T被配置以指示該時鐘時間指定區間HR1ET。例如,該測量值指定範圍碼EL1T基於該測量應用功能規格GBL8而被預設。所預設的該測量值應用範圍碼EH1L和所預設的該測量值指定範圍碼EL1T之間具有一數學關係KY81。 The measurement application function FB81 is associated with a memory unit 25Y1. The measurement value designation range RQ1T is represented by the measurement value designation range code EL1T; whereby the measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET. For example, the measurement value designation range code EL1T is preset based on the measurement application functional specification GBL8. There is a mathematical relationship KY81 between the preset measurement value application range code EH1L and the preset measurement value specified range code EL1T.

該記憶體單元25Y1具有一記憶體位置 PM8L和不同於該記憶體位置PM8L的一記憶體位置PV8L,在該記憶體位置PM8L儲存該應用範圍界限值對DM1L,並在該記憶體位置PV8L儲存一控制資料碼CK8T。例如,該記憶體位置PM8L和該記憶體位置PV8L皆基於所預設的該測量值應用範圍碼EH1L而被識別。該控制資料碼CK8T包含該測量值指定範圍碼EL1T。例如,該應用範圍界限值對DM1L和該控制資料碼CK8T皆基於所預設的該測量值應用範圍碼EH1L而被該記憶體單元25Y1儲存。該控制資料碼CK8T進一步包含該測量值目標範圍碼EM1T。 The memory cell 25Y1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L, the application range limit value pair DM1L is stored in the memory location PM8L, and a control data code CK8T is stored in the memory location PV8L. For example, the memory location PM8L and the memory location PV8L are both identified based on the preset measurement value application range code EH1L. The control data code CK8T includes the measurement value designation range code EL1T. For example, both the application range limit value pair DM1L and the control data code CK8T are stored in the memory unit 25Y1 based on the preset measurement value application range code EH1L. The control data code CK8T further includes the measured value target range code EM1T.

在一些實施例中,該處理單元230藉由運行一資料獲取程序NF8A來執行使用所確定的該測量值應用範圍碼EH1L的一資料獲取AF8A以獲得該應用範圍界限值對DM1L。例如,該資料獲取AF8A是一資料獲取操作AF81和一資料獲取操作AF82的其中之一。該資料獲取程序NF8A基於該測量應用功能規格GBL8而被建構。該資料獲取操作AF81基於所確定的該測量值應用範圍碼EH1L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PM8L的該應用範圍界限值對DM1L以獲得該應用範圍界限值對DM1L。 In some embodiments, the processing unit 230 performs a data acquisition AF8A using the determined measurement value application range code EH1L to obtain the application range limit pair DM1L by running a data acquisition program NF8A. For example, the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82. The data acquisition program NF8A is constructed based on the measurement application functional specification GBL8. The data acquisition operation AF81 uses the memory cell 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application range limit value pair DM1L.

該資料獲取操作AF82藉由讀取被儲存在該儲存單元250中的該額定範圍界限值對DC1A來取得所預設的該額定範圍界限值對DC1A,並藉由執行使用所確定的該測量值應用範圍碼EH1L和所取得的該額定範圍界限值對DC1A的一科學計算MG81來獲得該應用範圍界限值對 DM1L。例如,該額定範圍界限值對DC1A包含該額定測量值範圍RC1N的一額定範圍界限值DC11和相對於該額定範圍界限值DC11的一額定範圍界限值DC12,並基於該額定物理參數範圍表示GB8E、該感測器測量範圍表示GQ8R和該資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。 The data acquisition operation AF82 acquires the preset rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage unit 250, and uses the determined measurement value by executing Apply a scientific calculation MG81 of the range code EH1L and the obtained rated range limit value pair DC1A to obtain the application range limit value pair DM1L. For example, the rated range limit value pair DC1A includes a rated range limit value DC11 of the rated measurement value range RC1N and a rated range limit value DC12 relative to the rated range limit value DC11, and based on the rated physical parameter range, GB8E, The sensor measurement range representation GQ8R and the data encoding operation ZR81 are preset with the specified measurement value format HQ81.

在一些實施例中,在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的一資料獲取AG8A以獲得一控制應用碼UA8T。例如,該資料獲取AG8A是一資料獲取操作AG81和一資料獲取操作AG82的其中之一。 In some embodiments, under the condition that the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently in, the processing unit 230 executes a data using the determined measurement value application range code EH1L Get AG8A to get a control application code UA8T. For example, the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.

該資料獲取操作AG81基於所確定的該測量值應用範圍碼EH1L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PV8L的該控制資料碼CK8T以獲得等於該控制資料碼CK8T的該控制應用碼UA8T。該資料獲取操作AG82藉由執行使用所確定的該測量值應用範圍碼EH1L和該數學關係KY81的一科學計算MQ81來獲得等於所預設的該測量值指定範圍碼EL1T的該控制應用碼UA8T。 The data acquisition operation AG81 applies range code EH1L based on the determined measurement value to use the memory cell 25Y1 to access the control data code CK8T stored in the memory location PV8L to obtain the control data code CK8T equal to the control data code CK8T Control application code UA8T. The data acquisition operation AG82 obtains the control application code UA8T equal to the preset measurement value designation range code EL1T by performing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81.

該處理單元230基於所獲得的該控制應用碼UA8T來在一操作時間TD81之內執行用於該測量應用功能FB81的一訊號產生控制GS81以控制該傳輸單元240。該傳輸單元240響應該訊號產生控制GS81來執行用於該測量應用功能FB81的一訊號產生操作BS81以產生該控制訊號SC81。例如,該控制訊號SC81藉由輸送該測量值指定 範圍碼EL1T來起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用,並用於導致該可變物理參數QU1A於該時鐘時間指定區間HR1ET之內處於該物理參數目標範圍RD1ET。例如,該控制訊號SC81輸送該控制訊息CG81。該處理單元230基於所獲得的該控制應用碼UA8T來導致該傳輸單元240產生該控制訊息CG81。 The processing unit 230 executes a signal generation control GS81 for the measurement application function FB81 within an operation time TD81 to control the transmission unit 240 based on the obtained control application code UA8T. The transmission unit 240 performs a signal generation operation BS81 for the measurement application function FB81 to generate the control signal SC81 in response to the signal generation control GS81. For example, the control signal SC81 is specified by delivering the measured value The range code EL1T serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET, and is used to cause the variable physical parameter QU1A to be within the clock time designation interval HR1ET within the physical parameter Target range RD1ET. For example, the control signal SC81 transmits the control message CG81. The processing unit 230 causes the transmission unit 240 to generate the control message CG81 based on the obtained control application code UA8T.

在一些實施例中,該複數不同物理參數參考範圍RC1E1、RC1E2、…進一步包含不同於該物理參數應用範圍RC1EL的一物理參數候選範圍RC1E2。該複數不同測量值參考範圍RM11、RM12、…具有一總參考範圍數目NS81,並進一步包含代表該物理參數候選範圍RC1E2的一測量值候選範圍RM12。該測量應用功能規格GBL8進一步包含用於表示該物理參數候選範圍RC1E2的一物理參數候選範圍表示GB82。 In some embodiments, the complex different physical parameter reference ranges RC1E1, RC1E2, . . . further include a physical parameter candidate range RC1E2 different from the physical parameter application range RC1EL. The plurality of different measurement value reference ranges RM11, RM12, . . . have a total reference range number NS81, and further include a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2. The measurement application functional specification GBL8 further includes a physical parameter candidate range representation GB82 for representing the physical parameter candidate range RC1E2.

該測量值候選範圍RM12由不同於該測量值應用範圍碼EH1L的一測量值候選範圍碼EH12所代表,具有一候選範圍界限值對DM1B,並被配置以代表該物理參數候選範圍RC1E2;藉此該測量值候選範圍碼EH12被配置以指示該物理參數候選範圍RC1E2。例如,該候選範圍界限值對DM1B基於該物理參數候選範圍表示GB82、該感測器測量範圍表示GQ8R和用於轉換該物理參數候選範圍表示GB82的一資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。 The measurement candidate range RM12 is represented by a measurement candidate range code EH12 different from the measurement application range code EH1L, has a candidate range limit value pair DM1B, and is configured to represent the physical parameter candidate range RC1E2; thereby The measured value candidate range code EH12 is configured to indicate the physical parameter candidate range RC1E2. For example, the candidate range limit value pair DM1B uses the specified measurement value format based on the physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, and a data encoding operation ZR83 for converting the physical parameter candidate range representation GB82 HQ81 is preset.

該測量值候選範圍RM12基於該物理參數 候選範圍表示GB82、該感測器測量範圍表示GQ8R和該資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。該總參考範圍數目NS81基於該測量應用功能規格GBL8而被預設。該處理單元230響應該觸發事件EQ81來獲得該總參考範圍數目NS81。該科學計算MF81進一步使用所獲得的該總參考範圍數目NS81。該科學計算MG81進一步使用所獲得的該總參考範圍數目NS81。例如,該總參考範圍數目NS81大於或等於2。例如,該總參考範圍數目NS81≧3;該總參考範圍數目NS81≧4;該總參考範圍數目NS81≧5;該總參考範圍數目NS81≧6;且該總參考範圍數目NS81≦255。 The measured value candidate range RM12 is based on the physical parameter The candidate range representation GB82, the sensor measurement range representation GQ8R and the data encoding operation ZR83 are preset with the specified measurement value format HQ81. The total reference range number NS81 is preset based on the measurement application functional specification GBL8. The processing unit 230 obtains the total reference range number NS81 in response to the trigger event EQ81. The scientific computing MF81 further uses the obtained total reference range number NS81. The scientific computing MG81 further uses the obtained total reference range number NS81. For example, the total reference range number NS81 is greater than or equal to two. For example, the total reference range number NS81≧3; the total reference range number NS81≧4; the total reference range number NS81≧5; the total reference range number NS81≧6; and the total reference range number NS81≦255.

在一些實施例中,該時鐘時間指定區間HR1ET相鄰於該時鐘時間應用區間HR1EU,並具有該開始界限時間HR1ET1和相對於該開始界限時間HR1ET1的該結束界限時間HR1ET2。該功能裝置130接收該控制訊號SC81,從所接收的該控制訊號SC81獲得該測量值指定範圍碼EL1T和該測量值目標範圍碼EM1T,基於所獲得的該測量值指定範圍碼EL1T來啟動該定時器342,並藉此使該定時器342根據該開始界限時間HR1ET1來測量該時鐘時間TH1A。 In some embodiments, the clock time designation interval HR1ET is adjacent to the clock time application interval HR1EU and has the start limit time HR1ET1 and the end limit time HR1ET2 relative to the start limit time HR1ET1. The function device 130 receives the control signal SC81, obtains the measurement value designation range code EL1T and the measurement value target range code EM1T from the received control signal SC81, and starts the timing based on the obtained measurement value designation range code EL1T the timer 342, and thereby causes the timer 342 to measure the clock time TH1A according to the start limit time HR1ET1.

該功能裝置130基於所獲得的該測量值目標範圍碼EM1T來導致該可變物理參數QU1A於該時鐘時間指定區間HR1ET之內處於該物理參數目標範圍RD1ET。例如,該控制訊號SC81輸送基於該控制應用碼UA8T而被確定的一控制訊息CG81。該控制訊息CG81包含該測量值 指定範圍碼EL1T和該測量值目標範圍碼EM1T。例如,該控制訊息CG81包含該指定範圍界限值對DQ1T、該目標範圍界限值對DN1T和該控制碼CC1T。 The functional device 130 causes the variable physical parameter QU1A to be in the physical parameter target range RD1ET within the clock time specified interval HR1ET based on the obtained measurement value target range code EM1T. For example, the control signal SC81 conveys a control message CG81 determined based on the control application code UA8T. The control message CG81 contains the measured value Specify the range code EL1T and the target range code EM1T for this measurement. For example, the control message CG81 includes the designated range limit value pair DQ1T, the target range limit value pair DN1T and the control code CC1T.

該測量值應用範圍RM1L是該額定測量值範圍RC1N的一第一部分。該測量值候選範圍RM12是該額定測量值範圍RC1N的一第二部分。該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是分開的或相鄰的。在該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是分開的條件下,該測量值應用範圍RM1L和該測量值候選範圍RM12是分開的。在該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是相鄰的條件下,該測量值應用範圍RM1L和該測量值候選範圍RM12是相鄰的。 The measured value application range RM1L is a first part of the nominal measured value range RC1N. The measurement value candidate range RM12 is a second part of the nominal measurement value range RC1N. The physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separate or adjacent. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separated, the measurement value application range RM1L and the measurement value candidate range RM12 are separated. On the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are adjacent, the measurement value application range RM1L and the measurement value candidate range RM12 are adjacent.

例如,該測量值應用範圍碼EH1L被配置以等於一整數。該額定範圍界限值DC12大於該額定範圍界限值DC11。該額定範圍界限值DC12和該額定範圍界限值DC11之間具有相對於該額定範圍界限值DC11的一相對值VC11。該相對值VC11等於該額定範圍界限值DC12減去該額定範圍界限值DC11的一計算結果。例如,該應用範圍界限值對DM1L基於該額定範圍界限值DC11、該額定範圍界限值DC12、該整數、和該相對值VC11對於該總參考範圍數目NS11的一比率而被預設。該科學計算MG81使用該額定範圍界限值DC11、該額定範圍界限值DC12、該整數、該比率和其任意組合的其中之一。 For example, the measured value is configured to be equal to an integer using the range code EH1L. The rated range limit value DC12 is greater than the rated range limit value DC11. There is a relative value VC11 between the rated range limit value DC12 and the rated range limit value DC11 with respect to the rated range limit value DC11. The relative value VC11 is equal to a calculation result of the rated range limit value DC12 minus the rated range limit value DC11. For example, the application range limit value pair DM1L is preset based on the nominal range limit value DC11, the nominal range limit value DC12, the integer, and a ratio of the relative value VC11 to the total reference range number NS11. The scientific calculation MG81 uses one of the nominal range limit value DC11, the nominal range limit value DC12, the integer, the ratio, and any combination thereof.

在一些實施例中,在該邏輯決定PH81是否 定的條件下,該處理單元230藉由執行使用所確定的該測量值應用範圍碼EH1L的一第四科學計算MF12來確定選擇自該複數不同測量值參考範圍碼EH11、EH12、…的該測量值候選範圍碼EH12以便從該複數不同測量值參考範圍RM11、RM12、…中選擇該測量值候選範圍RM12。 In some embodiments, this logic determines whether the PH81 Under certain conditions, the processing unit 230 determines the measurement selected from the plurality of different measurement value reference range codes EH11, EH12, . . . by performing a fourth scientific calculation MF12 using the determined measurement value application range code EH1L Value candidate range code EH12 in order to select the measurement value candidate range RM12 from the plurality of different measurement value reference ranges RM11, RM12, . . .

該處理單元230基於所確定的該測量值候選範圍碼EH12來獲得該候選範圍界限值對DM1B,並基於該測量值VM81和所獲得的該候選範圍界限值對DM1B之間的一資料比較CA91來檢查該測量值VM81和所選擇的該測量值候選範圍RM12之間的一數學關係KA91以做出該測量值VM81是否為於所選擇的該測量值候選範圍RM12之內的一邏輯決定PH91。在該邏輯決定PH91是肯定的條件下,該處理單元230確定該可變物理參數QP1A目前處於的該物理參數候選範圍RC1E2。 The processing unit 230 obtains the candidate range limit value pair DM1B based on the determined measurement value candidate range code EH12, and obtains the candidate range limit value pair DM1B based on a data comparison CA91 between the measurement value VM81 and the obtained candidate range limit value pair DM1B A mathematical relationship KA91 between the measurement value VM81 and the selected measurement value candidate range RM12 is checked to make a logical decision PH91 whether the measurement value VM81 is within the selected measurement value candidate range RM12. Under the condition that the logical decision PH91 is positive, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located.

在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數候選範圍RC1E2的條件下,該處理單元230導致該傳輸單元240執行用於該測量應用功能FB81的一訊號產生操作BS91以產生用於控制該可變物理參數QU1A的一控制訊號SC82。該控制訊號SC82不同於該控制訊號SC81,並起到指示該時鐘時間參考區間HR1E2的作用。 Under the condition that the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located, the processing unit 230 causes the transmission unit 240 to perform a signal generation operation BS91 for the measurement application function FB81 to generate A control signal SC82 for controlling the variable physical parameter QU1A. The control signal SC82 is different from the control signal SC81 and serves to indicate the clock time reference interval HR1E2.

在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理單元230藉由做出該邏輯決定PH81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於 等於該特定測量值範圍碼EH14的該可變物理參數範圍碼UM8A和所確定的該測量值應用範圍碼EH1L之間的一碼差異DA81來使用該儲存單元250以將所確定的該測量值應用範圍碼EH1L指定到該可變物理參數範圍碼UM8A。在該觸發事件EQ81是該可變物理參數QP1A從該特定物理參數範圍RC1E4進入該物理參數應用範圍RC1EL的該狀態改變事件的條件下,該處理單元230基於該碼差異DA81來確定是該狀態改變事件的該觸發事件EQ81。 After the specific measurement range code EH14 is different from the determined measurement value application range code EH1L and the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently in, by making the logical decision PH81 condition, the processing unit 230 is based on A code difference DA81 between the variable physical parameter range code UM8A equal to the specific measurement range code EH14 and the determined measurement application range code EH1L to use the storage unit 250 to apply the determined measurement Range code EH1L is assigned to the variable physical parameter range code UM8A. Under the condition that the trigger event EQ81 is the state change event in which the variable physical parameter QP1A enters the physical parameter application range RC1EL from the specific physical parameter range RC1E4, the processing unit 230 determines the state change based on the code difference DA81 This triggers event EQ81 of the event.

在一些實施例中,該操作單元297進一步包含一響應區域AC1、一讀取器220和一接收單元270。該響應區域AC1用於執行該測量應用功能FB81。該讀取器220耦合於該響應區域AC1。該接收單元270耦合於該處理單元230,並受該處理單元230控制。在該觸發事件EQ81是該識別媒介出現事件且該處理單元230通過該讀取器220而辨識了出現於該響應區域AC1的一識別媒介310的條件下,該處理單元230基於該感測訊號SM81來獲得該測量值VM81。例如,該觸發事件EQ81是與該識別媒介310和該讀取器220相關的該識別媒介出現事件。例如,該操作單元297依靠該識別媒介310來控制該可變物理參數QU1A。 In some embodiments, the operation unit 297 further includes a response area AC1 , a reader 220 and a receiving unit 270 . The response area AC1 is used to execute the measurement application function FB81. The reader 220 is coupled to the response area AC1. The receiving unit 270 is coupled to the processing unit 230 and controlled by the processing unit 230 . Under the condition that the trigger event EQ81 is the identification medium occurrence event and the processing unit 230 recognizes an identification medium 310 present in the response area AC1 through the reader 220 , the processing unit 230 is based on the sensing signal SM81 to obtain the measured value VM81. For example, the trigger event EQ81 is the identification medium occurrence event related to the identification medium 310 and the reader 220 . For example, the operation unit 297 relies on the identification medium 310 to control the variable physical parameter QU1A.

當該觸發事件EQ81發生時,該顯示單元460顯示一狀態指示LA81。例如,該狀態指示LA81用於指示該可變物理參數QP1A被配置於該特定物理參數範圍RC1E4之內的一特定狀態XH81。在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理單元230藉由做出該邏輯決定PH81而確定該可變物理參數 QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230進一步基於該碼差異DA81來導致該顯示單元460將該狀態指示LA81改變成一狀態指示LA82。例如,該狀態指示LA82用於指示該可變物理參數QP1A被配置於該物理參數應用範圍RC1EL之內的一特定狀態XH82。 When the trigger event EQ81 occurs, the display unit 460 displays a status indication LA81. For example, the state indication LA81 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH81 within the specific physical parameter range RC1E4. After the specific measurement range code EH14 is different from the determined measurement value application range code EH1L and the processing unit 230 determines the variable physical parameter by making the logical decision PH81 Under the condition of the physical parameter application range RC1EL that QP1A is currently in, the processing unit 230 further causes the display unit 460 to change the status indication LA81 to a status indication LA82 based on the code difference DA81. For example, the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.

在一些實施例中,在該接收單元270於該操作時間TD81之後的一指定時間TW81之內從該功能裝置130接收響應該控制訊號SC81而被產生的一控制回應訊號SE81的條件下,該處理單元230響應該控制回應訊號SE81來執行與該可變物理參數QU1A相關的一特定實際操作BJ81。例如,該處理單元230從該控制回應訊號SE81獲得所輸送的該測量值VN82,並基於所獲得的該測量值VN82來使該顯示單元460顯示與所獲得的該測量值VN82相關的一測量資訊LZ82。例如,該特定實際操作BJ81是使用所獲得的該測量值VN82的一顯示控制操作。該處理單元230藉由執行該顯示控制操作來使該顯示單元460顯示該測量資訊LZ82。 In some embodiments, the processing is performed under the condition that the receiving unit 270 receives a control response signal SE81 generated in response to the control signal SC81 from the functional device 130 within a specified time TW81 after the operation time TD81. The unit 230 performs a specific actual operation BJ81 related to the variable physical parameter QU1A in response to the control response signal SE81. For example, the processing unit 230 obtains the transmitted measurement value VN82 from the control response signal SE81, and causes the display unit 460 to display a measurement information related to the obtained measurement value VN82 based on the obtained measurement value VN82 LZ82. For example, the specific actual operation BJ81 is a display control operation using the obtained measurement value VN82. The processing unit 230 causes the display unit 460 to display the measurement information LZ82 by performing the display control operation.

例如,該控制回應訊號SE81輸送該測量值VN82和該肯定操作報告RL81。該處理單元230從該控制回應訊號SE81獲得所輸送的該測量值VN82和所輸送的該肯定操作報告RL81。該特定實際操作BJ81使用所獲得的該測量值VN82和所獲得的該肯定操作報告RL81的至少其中之一以使該顯示單元460顯示與所獲得的該測量值VN82和所獲得的該肯定操作報告RL81的至少其中之一相關的一操作資訊。 For example, the control response signal SE81 delivers the measured value VN82 and the positive operation report RL81. The processing unit 230 obtains the delivered measured value VN82 and the delivered positive operation report RL81 from the control response signal SE81. The specific actual operation BJ81 uses at least one of the obtained measurement value VN82 and the obtained positive operation report RL81 to cause the display unit 460 to display the obtained measurement value VN82 and the obtained positive operation report An operation information related to at least one of the RL81s.

在該操作單元297於該指定時間TW81之內接收該控制回應訊號SE81的條件下,該操作單元297響應該控制回應訊號SE81來執行該特定實際操作BJ81。例如,在該處理單元230於該指定時間TW81之內從該控制回應訊號SE81獲得該肯定操作報告RL81的條件下,該處理單元230基於所獲得的該特定操作報告RL8A和所獲得的該肯定操作報告RL81的其中之一來執行與該可變物理參數QU1A相關的該特定實際操作BJ81。 Under the condition that the operation unit 297 receives the control response signal SE81 within the specified time TW81, the operation unit 297 performs the specific actual operation BJ81 in response to the control response signal SE81. For example, under the condition that the processing unit 230 obtains the positive operation report RL81 from the control response signal SE81 within the specified time TW81, the processing unit 230 is based on the obtained specific operation report RL8A and the obtained positive operation One of the RL81 is reported to perform the specific actual operation BJ81 related to the variable physical parameter QU1A.

在該操作時間TD81之後,該感測單元260感測該可變物理參數QP1A以產生一感測訊號SM82。例如,在該操作時間TD81之後,該感測單元260感測該可變物理參數QP1A以執行相依於該感測器靈敏度YQ81的一感測訊號產生HE82,該感測訊號產生HE82用於產生該感測訊號SM82。 After the operation time TD81, the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM82. For example, after the operation time TD81, the sensing unit 260 senses the variable physical parameter QP1A to perform a sensing signal generation HE82 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE82 is used to generate the Sensing signal SM82.

在一些實施例中,該處理單元230於該操作時間TD81之後的一指定時間TE82之內響應該感測訊號SM82來以該指定測量值格式HQ81獲得一測量值VM82。該處理單元230於該指定時間TE82之內藉由執行使用所確定的該測量值應用範圍碼EH1L的一科學計算MF83來獲得包含於該複數不同測量值參考範圍碼EH11、EH12、…中的一特定測量值範圍碼EH17。例如,該特定測量值範圍碼EH17不同於所確定的該測量值應用範圍碼EH1L,並代表包含於該複數不同測量值參考範圍RM11、RM12、…中的一特定測量值範圍RM17。 In some embodiments, the processing unit 230 responds to the sensing signal SM82 within a specified time TE82 after the operation time TD81 to obtain a measurement value VM82 in the specified measurement value format HQ81. The processing unit 230 obtains one of the plurality of different measurement value reference range codes EH11, EH12, . . . included in the complex different measurement value reference range codes EH11, EH12, . . Specific measurement value range code EH17. For example, the specific measurement value range code EH17 is different from the determined measurement value application range code EH1L, and represents a specific measurement value range RM17 included in the plurality of different measurement value reference ranges RM11, RM12, . . .

該特定測量值範圍RM17代表包含於該複 數不同物理參數參考範圍RC1E1、RC1E2、…中的一特定物理參數範圍RC1E7。該處理單元230基於該特定測量值範圍碼EH17來執行用於檢查該測量值VM82和該特定測量值範圍RM17之間的一數學關係KA83的一檢查操作BA83。 The specific measured value range RM17 represents that included in the complex A specific physical parameter range RC1E7 in the different physical parameter reference ranges RC1E1, RC1E2, . . . The processing unit 230 performs a check operation BA83 for checking a mathematical relationship KA83 between the measurement value VM82 and the specific measurement value range RM17 based on the specific measurement value range code EH17.

在一些實施例中,在該處理單元230於該指定時間TE82之內基於該檢查操作BA83而確定該可變物理參數QP1A目前處於的該特定物理參數範圍RC1E7的條件下,該處理單元230導致該傳輸單元240產生用於控制該可變物理參數QU1A的一控制訊號SC83,並使用該儲存單元250以將該特定測量值範圍碼EH17指定到該可變物理參數範圍碼UM8A。例如,該控制訊號SC83不同於該控制訊號SC81,並起到指示一特定時鐘時間區間HR1E7的作用。該複數不同時鐘時間參考區間HR1E1、HR1E2、…包含該特定時鐘時間區間HR1E7。 In some embodiments, the processing unit 230 causes the processing unit 230 to cause the processing unit 230 to determine the specific physical parameter range RC1E7 that the variable physical parameter QP1A is currently in based on the checking operation BA83 within the specified time TE82. The transmission unit 240 generates a control signal SC83 for controlling the variable physical parameter QU1A, and uses the storage unit 250 to assign the specific measurement value range code EH17 to the variable physical parameter range code UM8A. For example, the control signal SC83 is different from the control signal SC81 and serves to indicate a specific clock time interval HR1E7. The plurality of different clock time reference intervals HR1E1, HR1E2, . . . include the specific clock time interval HR1E7.

在該觸發事件EQ81發生的條件下,該感測單元260感測處於一拘束條件FP81的該可變物理參數QP1A以提供該感測訊號SM81到該處理單元230。例如,該拘束條件FP81是該可變物理參數QP1A等於包含於該額定物理參數範圍RC1E中的一特定物理參數QP15。該處理單元230基於該感測訊號SM81來估計該特定物理參數QP15以獲得該測量值VM81。由於處於該拘束條件FP81的該可變物理參數QP1A是於該物理參數應用範圍RC1EL之內,該處理單元230辨識該測量值VM81為於該測量值應用範圍RM1L之內的一可允許值,藉此辨識該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81為一 數值交集關係,並藉此確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL。 Under the condition that the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A under a constraint condition FP81 to provide the sensing signal SM81 to the processing unit 230 . For example, the constraint condition FP81 is that the variable physical parameter QP1A is equal to a specific physical parameter QP15 included in the rated physical parameter range RC1E. The processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measurement value VM81. Since the variable physical parameter QP1A under the constraint condition FP81 is within the physical parameter application range RC1EL, the processing unit 230 recognizes that the measurement value VM81 is an allowable value within the measurement value application range RM1L, by This identifies the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L as a The value intersection relationship is determined, thereby determining the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.

在一些實施例中,該處理單元230響應一觸發事件EQ8H來使該傳輸單元240向該接收單元337傳輸該控制訊號SC8H。例如,該觸發事件EQ8H相關於該控制裝置212。該控制訊號SC8H輸送一控制訊息CJ8H。在該可變物理參數QU1A藉由檢查該數學關係KQ81而於該時鐘時間應用區間HR1EU之內處於該物理參數目標狀態JE1U的條件下,該接收單元337從該傳輸單元240接收該控制訊號SC8H。該處理單元331從該控制訊號SC8H獲得該控制訊息CJ8H。該處理單元331響應該控制訊息CJ8H來使用該感測訊號SN8H以用該指定測量值格式HH81獲得該測量值VN8H,並響應該控制訊息CJ8H來使用該感測訊號SY8H以用該指定測量值格式HH95獲得該測量值NY8H。 In some embodiments, the processing unit 230 causes the transmitting unit 240 to transmit the control signal SC8H to the receiving unit 337 in response to a trigger event EQ8H. For example, the trigger event EQ8H is related to the control device 212 . The control signal SC8H transmits a control message CJ8H. The receiving unit 337 receives the control signal SC8H from the transmitting unit 240 under the condition that the variable physical parameter QU1A is in the physical parameter target state JE1U within the clock time application interval HR1EU by checking the mathematical relationship KQ81. The processing unit 331 obtains the control message CJ8H from the control signal SC8H. The processing unit 331 responds to the control message CJ8H to use the sensing signal SN8H to obtain the measurement value VN8H in the specified measurement value format HH81, and uses the sensing signal SY8H to use the specified measurement value format in response to the control message CJ8H HH95 obtains this measurement NY8H.

該處理單元331基於所獲得的該測量值VN8H和所獲得的該測量值NY8H來使該傳輸單元384向該接收單元270傳輸該控制回應訊號SE8H。該接收單元270從該傳輸單元384接收該控制回應訊號SE8H。該控制回應訊號SE8H輸送該測量值VN8H和該測量值NY8H,並被該控制裝置212使用以執行與該可變物理參數QU1A和該時鐘時間TH1A的至少其中之一相關的一特定實際操作。例如,該處理單元230從所接收的該控制回應訊號SE8H獲得該測量值VN8A和該測量值NY8H,基於所獲得的該測量值VN8H來使該顯示單元460顯示與該可變物理參數QU1A相關的該測量資訊LZ8H,並基於所獲得的該測量值NY8H來 使該顯示單元460顯示與該時鐘時間TH1A相關的該測量資訊LX8H。例如,該處理單元230執行使用所獲得的該測量值VN8H和所獲得的該測量值NY8H的該特定實際操作以使該顯示單元460執行一顯示操作。該顯示操作顯示該測量資訊LZ8H和該測量資訊LX8H。 The processing unit 331 enables the transmitting unit 384 to transmit the control response signal SE8H to the receiving unit 270 based on the obtained measurement value VN8H and the obtained measurement value NY8H. The receiving unit 270 receives the control response signal SE8H from the transmitting unit 384 . The control response signal SE8H delivers the measured value VN8H and the measured value NY8H and is used by the control device 212 to perform a specific practical operation related to at least one of the variable physical parameter QU1A and the clock time TH1A. For example, the processing unit 230 obtains the measurement value VN8A and the measurement value NY8H from the received control response signal SE8H, and causes the display unit 460 to display the variable physical parameter QU1A based on the obtained measurement value VN8H. The measurement information LZ8H, and based on the obtained measurement value NY8H The display unit 460 is caused to display the measurement information LX8H related to the clock time TH1A. For example, the processing unit 230 performs the specific actual operation using the obtained measurement value VN8H and the obtained measurement value NY8H to cause the display unit 460 to perform a display operation. The display operation displays the measurement information LZ8H and the measurement information LX8H.

例如,該操作單元297包含耦合於該處理單元230的一觸發應用單元28H。該觸發事件EQ8H相關於該觸發應用單元28H,並是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件和一識別媒介出現事件的其中之一。該觸發應用單元28H響應該觸發事件EQ8H來產生一操作請求訊號SX8H,提供該操作請求訊號SX8H到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX8H。該處理單元230響應該操作請求訊號SX8H來獲得該控制訊息CJ8H,並基於所獲得的該控制訊息CJ8H來使該傳輸單元240向該功能裝置130傳輸輸送該控制訊息CJ8H的該控制訊號SC8H。例如,該觸發應用單元28H是該讀取器220和該感測單元260的其中之一。 For example, the operation unit 297 includes a trigger application unit 28H coupled to the processing unit 230 . The trigger event EQ8H is related to the trigger application unit 28H, and is one of a trigger action event, a user input event, a signal input event, a state change event and an identification medium occurrence event. The trigger application unit 28H generates an operation request signal SX8H in response to the trigger event EQ8H, provides the operation request signal SX8H to the processing unit 230, and thereby enables the processing unit 230 to receive the operation request signal SX8H. The processing unit 230 obtains the control message CJ8H in response to the operation request signal SX8H, and enables the transmission unit 240 to transmit the control signal SC8H for conveying the control message CJ8H to the functional device 130 based on the obtained control message CJ8H. For example, the trigger application unit 28H is one of the reader 220 and the sensing unit 260 .

在一些實施例中,該感測單元260基於與該感測訊號產生HE81相關的該感測器靈敏度YQ81而被特徵化,並被配置以符合該感測器規格FQ11。該感測器規格FQ11包含用於表示該感測器靈敏度YQ81的該感測器靈敏度表示GQ81、和用於表示該感測器測量範圍RA8E的該感測器測量範圍表示GQ8R。例如,該額定物理參數範圍RC1E被配置以相同於該感測器測量範圍RA8E,或被配置以是該感測器測量範圍RA8E的一部分。該感測器測量範圍RA8E 相關於由該第一感測單元260所執行的一物理參數感測。該感測器測量範圍表示GQ8R基於一第一預設測量單位而被提供。例如,該第一預設測量單位是一公制測量單位和一英制測量單位的其中之一。 In some embodiments, the sensing unit 260 is characterized based on the sensor sensitivity YQ81 associated with the sensing signal generation HE81 and is configured to comply with the sensor specification FQ11. The sensor specification FQ11 includes the sensor sensitivity representation GQ81 for representing the sensor sensitivity YQ81, and the sensor measurement range representation GQ8R for representing the sensor measurement range RA8E. For example, the nominal physical parameter range RC1E is configured to be the same as the sensor measurement range RA8E, or is configured to be part of the sensor measurement range RA8E. The sensor measuring range RA8E Related to a physical parameter sensing performed by the first sensing unit 260 . The sensor measurement range indicates that the GQ8R is provided based on a first predetermined measurement unit. For example, the first preset measurement unit is one of a metric measurement unit and an imperial measurement unit.

該額定測量值範圍RC1N、該額定範圍界限值對DC1A、該測量值應用範圍RM1L、該應用範圍界限值對DM1L、該測量值候選範圍RM12、該候選範圍界限值對DM1B和該複數不同測量值參考範圍RM11、RM12、…皆基於該感測器測量範圍表示GQ8R和該感測器規格FQ11的其中之一來用該指定測量值格式HQ81而被預設。例如,該額定測量值範圍RC1N和該額定範圍界限值對DC1A皆基於該額定物理參數範圍表示GB8E、該感測器測量範圍表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。該測量值應用範圍RM1L和該應用範圍界限值對DM1L皆基於該物理參數應用範圍表示GB8L、該感測器測量範圍表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。 The rated measurement value range RC1N, the rated range limit value pair DC1A, the measurement value application range RM1L, the application range limit value pair DM1L, the measurement value candidate range RM12, the candidate range limit value pair DM1B and the complex number of different measurement values The reference ranges RM11, RM12, . . . are all preset with the specified measurement value format HQ81 based on one of the sensor measurement range representation GQ8R and the sensor specification FQ11. For example, the rated measurement value range RC1N and the rated range limit value pair DC1A are based on the rated physical parameter range representation GB8E, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81 and the data encoding operation ZR81 to use The specified measurement value format HQ81 is preset. The measurement value application range RM1L and the application range limit value pair DM1L are based on the physical parameter application range representation GB8L, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81 and the data encoding operation ZR82 to use the designation The measured value format HQ81 is preset.

該測量值候選範圍RM12和該候選範圍界限值對DM1B皆基於該物理參數候選範圍表示GB82、該感測器測量範圍表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。該額定物理參數範圍表示GB8E、該物理參數應用範圍表示GB8L、該物理參數候選範圍表示GA8T和該物理參數候選範圍表示GB82皆基於一第二預設測量單位而被提 供。例如,該第二預設測量單位是一公制測量單位和一英制測量單位的其中之一,並相同或不同於該第一預設測量單位。例如,該物理參數目標範圍RD1ET被配置以是該感測器測量範圍RB8E的一部分。 The measurement value candidate range RM12 and the candidate range limit pair DM1B are both based on the physical parameter candidate range representation GB82, the sensor measurement range representation GQ8R, the sensor sensitivity representation GQ81 and the data encoding operation ZR83 for the designation The measured value format HQ81 is preset. The rated physical parameter range represents GB8E, the physical parameter application range represents GB8L, the physical parameter candidate range represents GA8T, and the physical parameter candidate range represents GB82 are all proposed based on a second preset measurement unit for. For example, the second predetermined measurement unit is one of a metric measurement unit and an imperial measurement unit, and is the same as or different from the first predetermined measurement unit. For example, the physical parameter target range RD1ET is configured to be part of the sensor measurement range RB8E.

該可變物理參數QP1A進一步基於該感測器測量範圍RA8E而被特徵化。例如,該感測器測量範圍表示GQ8R、該額定物理參數範圍表示GB8E、該物理參數應用範圍表示GB8L、該物理參數候選範圍表示GA8T、該物理參數候選範圍表示GB82和該感測器測量範圍表示GW8R皆屬於十進制資料類型。該測量值VM81、該測量值VM82、該額定範圍界限值對DC1A、該應用範圍界限值對DM1L、該目標範圍界限值對DN1T和該候選範圍界限值對DM1B皆屬於該二進制資料類型,並皆適用於電腦處理。該感測器規格FQ11、該感測器規格FU11和該測量應用功能規格GBL8皆被預設。 The variable physical parameter QP1A is further characterized based on the sensor measurement range RA8E. For example, the sensor measurement range represents GQ8R, the rated physical parameter range represents GB8E, the physical parameter application range represents GB8L, the physical parameter candidate range represents GA8T, the physical parameter candidate range represents GB82, and the sensor measurement range represents GW8R are all of the decimal data type. The measured value VM81, the measured value VM82, the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value pair DM1B all belong to the binary data type, and all Suitable for computer processing. The sensor specification FQ11, the sensor specification FU11 and the measurement application function specification GBL8 are all preset.

在一些實施例中,該記憶體位置PM8L基於一記憶體位址FM8L而被識別。該記憶體位址FM8L基於所預設的該測量值應用範圍碼EH1L而被預設。該記憶體位置PV8L基於一記憶體位址FV8L而被識別。該記憶體位址FV8L基於所預設的該測量值應用範圍碼EH1L而被預設。 In some embodiments, the memory location PM8L is identified based on a memory address FM8L. The memory address FM8L is preset based on the preset measurement value application range code EH1L. The memory location PV8L is identified based on a memory location FV8L. The memory address FV8L is preset based on the preset measurement value application range code EH1L.

在該觸發事件EQ81發生之前,該處理單元230被配置以取得所預設的該測量值應用範圍碼EH1L、所預設的該應用範圍界限值對DM1L和所預設的該控制資料碼CK8T,基於所取得的該測量值應用範圍碼EH1L來獲得 該記憶體位址FM8L,並基於所取得的該應用範圍界限值對DM1L和所獲得的該記憶體位址FM8L來導致該操作單元297提供包含所取得的該應用範圍界限值對DM1L和所獲得的該記憶體位址FM8L的一寫入請求訊息WB8L。例如,該寫入請求訊息WB8L用於導致該記憶體單元25Y1在該記憶體位置PM8L儲存所輸送的該應用範圍界限值對DM1L。 Before the trigger event EQ81 occurs, the processing unit 230 is configured to obtain the preset measurement value application range code EH1L, the preset application range limit value pair DM1L and the preset control data code CK8T, Apply the range code EH1L based on this measurement taken to obtain The memory address FM8L, and based on the obtained pair of application range limit values DM1L and the obtained memory address FM8L, cause the operating unit 297 to provide the operation unit 297 including the obtained pair of application range limit values DM1L and the obtained A write request message WB8L for memory address FM8L. For example, the write request message WB8L is used to cause the memory cell 25Y1 to store the delivered pair of application range limit values DM1L at the memory location PM8L.

在該觸發事件EQ81發生之前,該處理單元230基於所取得的該測量值應用範圍碼EH1L來獲得該記憶體位址FV8L,並基於所取得的該控制資料碼CK8T和所獲得的該記憶體位址FV8L來導致該操作單元297提供包含所取得的該控制資料碼CK8T和所獲得的該記憶體位址FV8L的一寫入請求訊息WA8L。例如,該寫入請求訊息WA8L用於導致該記憶體單元25Y1在該記憶體位置PV8L儲存所輸送的該控制資料碼CK8T。 Before the trigger event EQ81 occurs, the processing unit 230 applies the range code EH1L to obtain the memory address FV8L based on the obtained measurement value, and obtains the memory address FV8L based on the obtained control data code CK8T and the obtained memory address FV8L This causes the operation unit 297 to provide a write request message WA8L including the obtained control data code CK8T and the obtained memory address FV8L. For example, the write request message WA8L is used to cause the memory unit 25Y1 to store the delivered control data code CK8T at the memory location PV8L.

該控制裝置212耦合於一伺服器280。該識別媒介310是一電子標籤350、一條碼媒介360和一生物識別作用媒介370的其中之一。該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。例如,該儲存單元250具有一儲存空間SS11。該儲存空間SS11具有該可變物理參數範圍碼UM8A、該額定範圍界限值對DC1A和該總參考範圍數目NS81。 The control device 212 is coupled to a server 280 . The identification medium 310 is one of an electronic label 350 , a barcode medium 360 and a biometric identification medium 370 . One of the electronic tag 350 , the storage unit 250 and the server 280 includes the memory unit 25Y1 . For example, the storage unit 250 has a storage space SS11. The storage space SS11 has the variable physical parameter range code UM8A, the rated range limit value pair DC1A and the total reference range number NS81.

在一些實施例中,該額定物理參數範圍RC1E包含一特定物理參數QP15,並由該額定測量值範圍RC1N所代表。該感測單元260感測處於該拘束條件FP81的該可變物理參數QP1A以提供該感測訊號SM81到該處理 單元230。例如,該拘束條件FP81是該可變物理參數QP1A等於該特定物理參數QP15。在該觸發事件EQ81發生的條件下,該處理單元230基於該感測訊號SM81來估計該特定物理參數QP15以獲得該測量值VM81。 In some embodiments, the nominal physical parameter range RC1E includes a specific physical parameter QP15 and is represented by the nominal measured value range RC1N. The sensing unit 260 senses the variable physical parameter QP1A under the constraint condition FP81 to provide the sensing signal SM81 to the process unit 230. For example, the constraint condition FP81 is that the variable physical parameter QP1A is equal to the specific physical parameter QP15. Under the condition that the trigger event EQ81 occurs, the processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measurement value VM81.

例如,該識別媒介310由一識別媒介識別符HU11所識別,並記錄該識別媒介識別符HU11、該應用範圍界限值對DM1L和該控制資料碼CK8T。例如,該讀取器220是該觸發應用單元281,響應與該識別媒介310相關的該觸發事件EQ81來產生該操作請求訊號SX81,提供該操作請求訊號SX81到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX81。該處理單元230響應該操作請求訊號SX81來使該讀取器220讀取所記錄的該識別媒介識別符HU11、所記錄的該應用範圍界限值對DM1L和所記錄的該控制資料碼CK8T,並藉此通過該讀取器220來從該識別媒介310獲得所記錄的該識別媒介識別符HU11、所記錄的該應用範圍界限值對DM1L和所記錄的該控制資料碼CK8T。 For example, the identification medium 310 is identified by an identification medium identifier HU11, and the identification medium identifier HU11, the application range limit value pair DM1L and the control data code CK8T are recorded. For example, the reader 220 is the trigger application unit 281, which generates the operation request signal SX81 in response to the trigger event EQ81 related to the identification medium 310, provides the operation request signal SX81 to the processing unit 230, and thereby enables the The processing unit 230 receives the operation request signal SX81. The processing unit 230 responds to the operation request signal SX81 to cause the reader 220 to read the recorded identification medium identifier HU11, the recorded application range limit value pair DM1L and the recorded control data code CK8T, and Thereby, the recorded identification medium identifier HU11 , the recorded application range limit value pair DM1L and the recorded control data code CK8T are obtained from the identification medium 310 through the reader 220 .

請參閱圖51。圖51為繪示於圖1中的該控制系統901的一實施結構9060的示意圖。如圖51所示,該實施結構9060含該控制裝置212、該功能裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該功能裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該接收單元270和該傳輸單元240。該處理單元230耦合於 該伺服器280。 See Figure 51. FIG. 51 is a schematic diagram illustrating an implementation structure 9060 of the control system 901 shown in FIG. 1 . As shown in FIG. 51 , the implementation structure 9060 includes the control device 212 , the function device 130 and the server 280 . The control device 212 is linked to the server 280 . The control device 212 is used for controlling the variable physical parameter QU1A existing in the functional device 130 by means of the trigger event EQ81 , and includes the operation unit 297 and the sensing unit 260 . The operation unit 297 includes the processing unit 230 , the receiving unit 270 and the transmitting unit 240 . The processing unit 230 is coupled to The server 280.

該控制裝置212設置於該應用環境EX81中。該可變物理參數QP1A存在於一物理參數形成區AT11中。該控制裝置212和該應用環境EX81的其中之一具有該可變物理參數QP1A。例如,該感測單元260耦合於具有該可變物理參數QP1A的該物理參數形成區AT11。該可變物理參數QU1A存在於該物理參數形成區AU11中。例如,在該物理參數形成區AT11位於該應用環境EX81中的條件下,該物理參數形成區AT11鄰接於該控制裝置212。例如,該感測單元260包含該物理參數形成區AT11。 The control device 212 is installed in the application environment EX81. The variable physical parameter QP1A exists in a physical parameter forming area AT11. One of the control device 212 and the application environment EX81 has the variable physical parameter QP1A. For example, the sensing unit 260 is coupled to the physical parameter forming area AT11 having the variable physical parameter QP1A. The variable physical parameter QU1A exists in the physical parameter forming area AU11. For example, under the condition that the physical parameter forming area AT11 is located in the application environment EX81 , the physical parameter forming area AT11 is adjacent to the control device 212 . For example, the sensing unit 260 includes the physical parameter forming area AT11.

例如,該物理參數形成區AU11和該物理參數形成區AT11是分開的,並分別被形成於該實際位置LD81和該實際位置LC81;藉此,該可變物理參數QU1A和該可變物理參數QP1A分別被形成於該實際位置LD81和不同於該實際位置LD81的該實際位置LC81。例如,該物理參數形成區AT11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。例如,該物理參數形成區AU11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。 For example, the physical parameter forming area AU11 and the physical parameter forming area AT11 are separate, and are formed at the actual position LD81 and the actual position LC81, respectively; thereby, the variable physical parameter QU1A and the variable physical parameter QP1A are formed at the actual position LD81 and the actual position LC81 different from the actual position LD81, respectively. For example, the physical parameter forming area AT11 is one of a load area, a display area, a sensing area, a power supply area and an environment area. For example, the physical parameter forming area AU11 is one of a load area, a display area, a sensing area, a power supply area and an environment area.

例如,該處理單元230響應該觸發事件EQ81來導致該可變物理參數QP1A在該物理參數形成區AT11中形成。在該可變物理參數QP1A存在於該物理參數形成區AT11中的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。例如,該物理參數形成區AT11是一使用者介面區。 For example, the processing unit 230 causes the variable physical parameter QP1A to be formed in the physical parameter forming area AT11 in response to the trigger event EQ81. Under the condition that the variable physical parameter QP1A exists in the physical parameter forming area AT11, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. For example, the physical parameter forming area AT11 is a user interface area.

在一些實施例中,該功能裝置130包含該操作單元397、耦合於該操作單元397的該感測單元334、和耦合於該操作單元397的一物理參數應用單元335。該物理參數應用單元335受該操作單元397控制,並包含具有該可變物理參數QU1A的該物理參數形成區AU11。該可變物理參數QU1A進一步基於包含該物理參數目標範圍RD1ET的一額定物理參數範圍RD1E而被特徵化。該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複數不同物理參數參考範圍RD1E1、RD1E2、…。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數目標範圍RD1ET和一物理參數候選範圍RD1E2。 In some embodiments, the functional device 130 includes the operating unit 397 , the sensing unit 334 coupled to the operating unit 397 , and a physical parameter applying unit 335 coupled to the operating unit 397 . The physical parameter applying unit 335 is controlled by the operating unit 397 and includes the physical parameter forming area AU11 having the variable physical parameter QU1A. The variable physical parameter QU1A is further characterized based on a nominal physical parameter range RD1E that includes the physical parameter target range RD1ET. The rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, . . . respectively represented by a plurality of different measurement value reference ranges RN11, RN12, . The plurality of different physical parameter reference ranges RD1E1, RD1E2, ... include the physical parameter target range RD1ET and a physical parameter candidate range RD1E2.

該額定測量值範圍RD1N包含該複數不同測量值參考範圍RN11、RN12、…,並基於該額定物理參數範圍表示GB8E、該感測器測量範圍表示GQ8R和用於轉換該額定物理參數範圍表示GB8E的該資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和代表該物理參數候選範圍RD1E2的一測量值候選範圍RN12。該測量值候選範圍RN12由一測量值候選範圍碼EM12所代表,並具有一候選範圍界限值對DN1B,藉此該測量值候選範圍碼EM12被配置以指示該物理參數候選範圍RD1E2。在該觸發事件EQ81發生之前,該可變物理參數QU1A被配置以於一特定物理參數範圍RD1E4之內。該特定物理參數範圍RD1E4包含於該複數不同物理參數參考 範圍RD1E1、RD1E2、…中。 The rated measurement value range RD1N includes the plurality of different measurement value reference ranges RN11, RN12, . The data encoding operation ZR81 is preset with the specified measurement value format HQ81. The plurality of different measurement value reference ranges RN11, RN12, . . . include the measurement value target range RN1T and a measurement value candidate range RN12 representing the physical parameter candidate range RD1E2. The measurement candidate range RN12 is represented by a measurement candidate range code EM12 and has a candidate range limit value pair DN1B, whereby the measurement candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2. Before the trigger event EQ81 occurs, the variable physical parameter QU1A is configured to be within a specific physical parameter range RD1E4. The specific physical parameter range RD1E4 is included in the plurality of different physical parameter references In the range RD1E1, RD1E2, ….

在一些實施例中,由該功能裝置130所引起的該觸發作用事件是一狀態改變事件。該控制裝置212進一步包含耦合於該處理單元230的一狀態改變偵測器475。例如,該狀態改變偵測器475是一極限偵測器和一邊緣偵測器的其中之一。該極限偵測器是一極限開關485。該狀態改變偵測器475被配置以偵測與一預設特徵物理參數UL81相關的一特徵物理參數到達ZL82。該物理參數應用單元335包含一物理參數應用區AJ11。該物理參數應用區AJ11具有一可變物理參數QG1A。該可變物理參數QG1A相依於該可變物理參數QU1A,並基於該預設特徵物理參數UL81而被特徵化。例如,該物理參數應用區AJ11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。該預設特徵物理參數UL81相關於該可變物理參數QU1A。 In some embodiments, the triggering event caused by the functional device 130 is a state change event. The control device 212 further includes a state change detector 475 coupled to the processing unit 230 . For example, the state change detector 475 is one of a limit detector and an edge detector. The limit detector is a limit switch 485 . The state change detector 475 is configured to detect the arrival of a characteristic physical parameter associated with a predetermined characteristic physical parameter UL81 to ZL82. The physical parameter application unit 335 includes a physical parameter application area AJ11. The physical parameter application area AJ11 has a variable physical parameter QG1A. The variable physical parameter QG1A is dependent on the variable physical parameter QU1A and is characterized based on the predetermined characteristic physical parameter UL81. For example, the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area and an environment area. The preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.

在該觸發事件EQ81發生之前,該操作單元397使該物理參數應用單元335執行與該可變物理參數QU1A相關的該特定功能操作ZH81。該特定功能操作ZH81用於控制該可變物理參數QG1A,並藉由改變該可變物理參數QG1A來導致該觸發事件EQ81發生。該可變物理參數QG1A被配置以處於一可變物理狀態XA8A。例如,該操作單元397受該控制裝置212控制以使該物理參數應用單元335執行該特定功能操作ZH81。例如,該額定測量值範圍RD1N具有一額定範圍界限值對DD1A。 Before the trigger event EQ81 occurs, the operation unit 397 causes the physical parameter application unit 335 to perform the specific function operation ZH81 related to the variable physical parameter QU1A. The specific function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A. The variable physical parameter QG1A is configured to be in a variable physical state XA8A. For example, the operation unit 397 is controlled by the control device 212 to make the physical parameter application unit 335 perform the specific function operation ZH81. For example, the nominal measured value range RD1N has a nominal range limit value pair DD1A.

在該可變物理參數QU1A於該觸發事件 EQ81之前被配置以於該特定物理參數範圍RD1E4之內的條件下,該特定功能操作ZH81導致該可變物理參數QG1A到達該預設特徵物理參數UL81以形成該特徵物理參數到達ZL82,並藉由形成該特徵物理參數到達ZL82來將該可變物理狀態XA8A從一非特徵物理參數到達狀態XA81改變成一實際特徵物理參數到達狀態XA82。該狀態改變偵測器475響應該特徵物理參數到達ZL82來產生一觸發訊號SX8A。例如,該實際特徵物理參數到達狀態XA82基於該預設特徵物理參數UL81而被特徵化。該狀態改變偵測器475響應該可變物理參數QG1A被從該非特徵物理參數到達狀態XA81改變成該實際特徵物理參數到達狀態XA82的一狀態改變事件來產生該觸發訊號SX8A。 At the trigger event of the variable physical parameter QU1A EQ81 was previously configured so that under conditions within the specific physical parameter range RD1E4, the specific function operation ZH81 causes the variable physical parameter QG1A to reach the preset characteristic physical parameter UL81 to form the characteristic physical parameter to ZL82, and by The characteristic physical parameter arrival ZL82 is formed to change the variable physical state XA8A from a non-characteristic physical parameter arrival state XA81 to an actual characteristic physical parameter arrival state XA82. The state change detector 475 generates a trigger signal SX8A in response to the characteristic physical parameter reaching ZL82. For example, the actual characteristic physical parameter arrival state XA82 is characterized based on the preset characteristic physical parameter UL81. The state change detector 475 generates the trigger signal SX8A in response to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter arrival state XA81 to the actual characteristic physical parameter arrival state XA82.

在一些實施例中,該接收單元270耦合於該狀態改變偵測器475。該觸發事件EQ81是該可變物理參數QG1A進入該實際特徵物理參數到達狀態XA82的該狀態改變事件。該接收單元270和該處理單元230的其中之一接收該觸發訊號SX8A。該處理單元230響應所接收的該觸發訊號SX8A來獲得該控制應用碼UA8T,並基於所獲得的該控制應用碼UA8T來在該操作時間TD81之內執行用於該測量應用功能FB81的該訊號產生控制GS81以導致該傳輸單元240產生該控制訊號SC81。例如,該狀態改變偵測器475是一觸發應用單元,並響應該特徵物理參數到達ZL82來提供該觸發訊號SX8A到該處理單元230。該觸發訊號SX8A是一操作請求訊號。 In some embodiments, the receiving unit 270 is coupled to the state change detector 475 . The trigger event EQ81 is the state change event of the variable physical parameter QG1A entering the actual characteristic physical parameter reaching state XA82. One of the receiving unit 270 and the processing unit 230 receives the trigger signal SX8A. The processing unit 230 obtains the control application code UA8T in response to the received trigger signal SX8A, and executes the signal generation for the measurement application function FB81 within the operation time TD81 based on the obtained control application code UA8T The GS81 is controlled to cause the transmission unit 240 to generate the control signal SC81. For example, the state change detector 475 is a trigger application unit, and provides the trigger signal SX8A to the processing unit 230 in response to the characteristic physical parameter reaching ZL82. The trigger signal SX8A is an operation request signal.

例如,在該狀態改變偵測器475是該極限開 關的條件下,該特徵物理參數到達ZL82是等於一可變空間位置的該可變物理參數QG1A到達等於一預設極限位置的該預設特徵物理參數UL81的一極限位置到達。例如,該物理參數應用單元335藉由執行基於該可變物理參數QU1A而被引起的該特定功能操作ZH81來在該物理參數應用區AJ11中形成該可變物理參數QG1A。在該物理參數應用區AJ11耦合於該狀態改變偵測器475的條件下,該狀態改變偵測器475偵測該特徵物理參數到達ZL82。 For example, when the state change detector 475 is the limit open Under the closed condition, the characteristic physical parameter reaching ZL82 is the arrival of the variable physical parameter QG1A equal to a variable spatial position reaching a limit position equal to the preset characteristic physical parameter UL81 of a predetermined limit position. For example, the physical parameter application unit 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the specific function operation ZH81 caused based on the variable physical parameter QU1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches ZL82.

例如,該處理單元230響應所接收的該觸發訊號SX8A來使用該感測訊號SM81以獲得該測量值VM81。在該處理單元230藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的該資料獲取AG8A以獲得該控制應用碼UA8T,並基於所獲得的該控制應用碼UA8T來導致該傳輸單元240產生或傳輸該控制訊號SC81。該控制訊號SC81起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用。 For example, the processing unit 230 uses the sensing signal SM81 to obtain the measurement value VM81 in response to the received trigger signal SX8A. Under the condition that the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in by examining the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the processing unit 230 executes the data acquisition AG8A using the determined measurement value application range code EH1L to obtain the control application code UA8T, and causes the transmission unit 240 to generate or transmit the control signal SC81 based on the obtained control application code UA8T. The control signal SC81 serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET.

在一些實施例中,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。例如,在該觸發事件EQ81發生的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。在該處理單元230藉由執行該訊號產生控制GS81來導致該傳輸單元240於該操作時間TD81之內產生該控制訊號SC81之後,該感測單 元260感測該可變物理參數QP1A以產生該感測訊號SM82。例如,該感測單元260是一時間感測單元、一電性參數感測單元、一力學參數感測單元、一光學參數感測單元、一溫度感測單元、一濕度感測單元、一運動感測單元和一磁性參數感測單元的其中之一。 In some embodiments, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. For example, when the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. After the processing unit 230 causes the transmission unit 240 to generate the control signal SC81 within the operation time TD81 by executing the signal generation control GS81, the sensing unit The element 260 senses the variable physical parameter QP1A to generate the sensing signal SM82. For example, the sensing unit 260 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, a motion sensing unit One of the sensing unit and a magnetic parameter sensing unit.

例如,該感測單元260包含耦合於該處理單元230的一感測組件261,並使用該感測組件261以產生該感測訊號SM81和該感測訊號SM82。該感測組件261是複數應用感測器的其中之一。該複數應用感測器包含一電壓感測器、一電流感測器、一電阻感測器、一電容感測器、一電感感測器、一加速度計、一陀螺儀、一壓力轉能器、一應變規、一定時器、一光偵測器、一溫度感測器和一濕度感測器。例如,該感測組件261產生一感測訊號分量。該第一感測訊號SM81包含該感測訊號分量。 For example, the sensing unit 260 includes a sensing element 261 coupled to the processing unit 230, and uses the sensing element 261 to generate the sensing signal SM81 and the sensing signal SM82. The sensing component 261 is one of a plurality of application sensors. The complex application sensor includes a voltage sensor, a current sensor, a resistance sensor, a capacitance sensor, an inductance sensor, an accelerometer, a gyroscope, and a pressure transducer , a strain gauge, a timer, a light detector, a temperature sensor and a humidity sensor. For example, the sensing element 261 generates a sensing signal component. The first sensing signal SM81 includes the sensing signal component.

請參閱圖52,其為繪示於圖1中的該控制系統901的一實施結構9061的示意圖。如圖52所示,該實施結構9061包含該控制裝置212、該功能裝置130和該伺服器280。該控制裝置212是一計算裝置、一通訊裝置、一使用者裝置、一移動裝置、一遙控器、一電子裝置、一可攜式裝置、一桌上型裝置、一相對固定裝置、一固定裝置、一智慧電話和其任意組合的其中之一。該電子標籤350是一被動式電子標籤、一主動式電子標籤、一半主動式電子標籤、一無線電子標籤和一有線電子標籤的其中之一。例如,該控制裝置212通過在該傳輸單元240和該操作單元397之間的一實際鏈接LK8A而向該功能裝置130傳輸該 控制訊號SC81。該實際鏈接LK8A是一有線鏈接和一無線鏈接LK81的其中之一。 Please refer to FIG. 52 , which is a schematic diagram of an implementation structure 9061 of the control system 901 shown in FIG. 1 . As shown in FIG. 52 , the implementation structure 9061 includes the control device 212 , the function device 130 and the server 280 . The control device 212 is a computing device, a communication device, a user device, a mobile device, a remote control, an electronic device, a portable device, a desktop device, a relatively fixed device, a fixed device , one of a smart phone, and any combination thereof. The electronic tag 350 is one of a passive electronic tag, an active electronic tag, a semi-active electronic tag, a wireless electronic tag and a wired electronic tag. For example, the control device 212 transmits the function device 130 via an actual link LK8A between the transmission unit 240 and the operating unit 397 Control signal SC81. The actual link LK8A is one of a wired link and a wireless link LK81.

在一些實施例中,該控制訊號SC81是該電訊號SP81和該光訊號SQ81的其中之一。該傳輸單元240包含一傳輸組件450、一傳輸組件452和一傳輸組件455。該傳輸組件450耦合於該處理單元230,並在該控制訊號SC81是該電訊號SP81的條件下,用於輸出該電訊號SP81。當該觸發事件EQ81發生時,該顯示單元460顯示該狀態指示LA81。在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理單元230藉由做出該邏輯決定PH81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於該碼差異DA81來導致該顯示單元460將該狀態指示LA81改變成該狀態指示LA82。例如,該傳輸組件450、該傳輸組件452和該傳輸組件455分別是三輸出組件。 In some embodiments, the control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81. The transmission unit 240 includes a transmission component 450 , a transmission component 452 and a transmission component 455 . The transmission element 450 is coupled to the processing unit 230 and is used for outputting the electrical signal SP81 under the condition that the control signal SC81 is the electrical signal SP81. When the trigger event EQ81 occurs, the display unit 460 displays the status indication LA81. After the specific measurement range code EH14 is different from the determined measurement value application range code EH1L and the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently in, by making the logical decision PH81 Under the condition of , the processing unit 230 causes the display unit 460 to change the state indication LA81 to the state indication LA82 based on the code difference DA81. For example, the transfer assembly 450, the transfer assembly 452, and the transfer assembly 455 are three output assemblies, respectively.

該顯示單元460耦合於該處理單元230,並用於顯示與該測量值VM81相關的一測量資訊LY81。該處理單元230從該控制回應訊號SE81獲得所輸送的該測量值VN82,並根據所獲得的該測量值VN82來使該顯示單元460顯示與所獲得的該測量值VN82相關的該測量資訊LZ82。在該控制訊號SC81是該光訊號SQ81的條件下,該傳輸組件452用於輸出該光訊號SQ81。該傳輸組件455耦合於該處理單元230。例如,該處理單元230被配置以導致該傳輸組件455向該功能裝置130傳輸一物理參數訊號SB81。該可變物理參數QU1A基於該物理參數訊號SB81而被形成。 例如,該電訊號SP81是一無線電訊號。該光訊號SQ81是一紅外線訊號。 The display unit 460 is coupled to the processing unit 230 and used to display a measurement information LY81 related to the measurement value VM81. The processing unit 230 obtains the transmitted measurement value VN82 from the control response signal SE81, and causes the display unit 460 to display the measurement information LZ82 related to the obtained measurement value VN82 according to the obtained measurement value VN82. Under the condition that the control signal SC81 is the optical signal SQ81, the transmission element 452 is used to output the optical signal SQ81. The transmission component 455 is coupled to the processing unit 230 . For example, the processing unit 230 is configured to cause the transmission element 455 to transmit a physical parameter signal SB81 to the functional device 130 . The variable physical parameter QU1A is formed based on the physical parameter signal SB81. For example, the electrical signal SP81 is a radio signal. The optical signal SQ81 is an infrared signal.

在一些實施例中,該控制裝置212耦合於該伺服器280,並進一步包含耦合於該感測單元260的一物理參數形成單元290。例如,在該可變物理參數QP1A要由該物理參數形成單元290產生的條件下,該物理參數形成單元290產生該可變物理參數QP1A。該操作單元297進一步包含一輸入單元440。該輸入單元440耦合於該處理單元230,並受該處理單元230控制。例如,該輸入單元440和該顯示單元460的其中之一包含一使用者介面區AP11。 In some embodiments, the control device 212 is coupled to the server 280 and further includes a physical parameter forming unit 290 coupled to the sensing unit 260 . For example, under the condition that the variable physical parameter QP1A is to be generated by the physical parameter forming unit 290, the physical parameter forming unit 290 generates the variable physical parameter QP1A. The operation unit 297 further includes an input unit 440 . The input unit 440 is coupled to the processing unit 230 and controlled by the processing unit 230 . For example, one of the input unit 440 and the display unit 460 includes a user interface area AP11.

該接收單元270耦合於該處理單元230,用於接收該控制回應訊號SE81,並包含一接收組件2701和一接收組件2702。該接收組件2701和該接收組件2702皆耦合於該處理單元230。該控制回應訊號SE81是一電訊號LP81和一光訊號LQ81的其中之一。在該控制回應訊號SE81是該電訊號LP81的條件下,該接收組件2701用於接收該電訊號LP81。例如,該接收組件2702是一讀取器。在該控制回應訊號SE81是該光訊號LQ81的條件下,該接收組件2702用於接收該光訊號LQ81。 The receiving unit 270 is coupled to the processing unit 230 for receiving the control response signal SE81 , and includes a receiving element 2701 and a receiving element 2702 . Both the receiving component 2701 and the receiving component 2702 are coupled to the processing unit 230 . The control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81. Under the condition that the control response signal SE81 is the electrical signal LP81, the receiving element 2701 is used for receiving the electrical signal LP81. For example, the receiving component 2702 is a reader. Under the condition that the control response signal SE81 is the optical signal LQ81, the receiving element 2702 is used for receiving the optical signal LQ81.

例如,該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。例如,該電訊號LP81是一無線電訊號。該光訊號LQ81是一紅外線訊號。該接收組件2701和該接收組件2702分別是二輸入組件。例如,在該控制裝置212是該遙控器的條件下,該控制訊號SC81是該光訊號SQ81。在該控制裝置212 是該遙控器的條件下,該控制回應訊號SE81是該光訊號LQ81。例如,該觸發事件EQ81是該感測單元260接收一使用者輸入操作BU83的一使用者輸入事件。該感測單元260響應該使用者輸入操作BU83來使該處理單元230接收該感測訊號SM81。該處理單元230響應該感測訊號SM81來獲得該測量值VM81。 For example, one of the electronic tag 350 , the storage unit 250 and the server 280 includes the memory unit 25Y1 . For example, the electrical signal LP81 is a radio signal. The optical signal LQ81 is an infrared signal. The receiving component 2701 and the receiving component 2702 are two input components respectively. For example, under the condition that the control device 212 is the remote controller, the control signal SC81 is the optical signal SQ81. in the control device 212 Under the condition of the remote controller, the control response signal SE81 is the optical signal LQ81. For example, the trigger event EQ81 is a user input event in which the sensing unit 260 receives a user input operation BU83. The sensing unit 260 operates the BU83 in response to the user input to enable the processing unit 230 to receive the sensing signal SM81. The processing unit 230 obtains the measurement value VM81 in response to the sensing signal SM81.

該應用環境EX81、該感測單元260、該輸入單元440、該顯示單元460和該物理參數形成單元290的其中之一具有該物理參數形成區AT11。該處理單元230藉由執行用於該測量應用功能FB81的一特定功能操作BH82來導致該物理參數形成區AT11具有該可變物理參數QP1A,並藉此導致該感測單元260感測處於該拘束條件FP81的該可變物理參數QP1A。該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。該感測單元260、該儲存單元250、該輸入單元440、該傳輸組件450、該傳輸組件455、該顯示單元460、該接收組件2701、該接收組件2702和該物理參數形成單元290皆受該處理單元230控制。例如,該感測單元260、該輸入單元440和該顯示單元460的其中之一包含該物理參數形成區AT11。 One of the application environment EX81, the sensing unit 260, the input unit 440, the display unit 460 and the physical parameter forming unit 290 has the physical parameter forming area AT11. The processing unit 230 causes the physical parameter forming area AT11 to have the variable physical parameter QP1A by executing a specific function operation BH82 for the measurement application function FB81, thereby causing the sensing unit 260 to sense the constraint The variable physical parameter QP1A of the condition FP81. One of the electronic tag 350 , the storage unit 250 and the server 280 includes the memory unit 25Y1 . The sensing unit 260 , the storage unit 250 , the input unit 440 , the transmission component 450 , the transmission component 455 , the display unit 460 , the receiving component 2701 , the receiving component 2702 and the physical parameter forming unit 290 are all affected by the The processing unit 230 controls. For example, one of the sensing unit 260, the input unit 440 and the display unit 460 includes the physical parameter forming area AT11.

該可變物理參數QP1A是一第四可變電性參數、一第四可變力學參數、一第四可變光學參數、一第四可變溫度、一第四可變電壓、一第四可變電流、一第四可變電功率、一第四可變電阻、一第四可變電容、一第四可變電感、一第四可變頻率、一第四時鐘時間、一第四可 變時間長度、一第四可變亮度、一第四可變光強度、一第四可變音量、一第四可變資料流量、一第四可變振幅、一第四可變空間位置、一第四可變位移、一第四可變順序位置、一第四可變角度、一第四可變空間長度、一第四可變距離、一第四可變平移速度、一第四可變角速度、一第四可變加速度、一第四可變力、一第四可變壓力和一第四可變機械功率的其中之一。 The variable physical parameter QP1A is a fourth variable electrical parameter, a fourth variable mechanical parameter, a fourth variable optical parameter, a fourth variable temperature, a fourth variable voltage, a fourth variable variable current, a fourth variable electric power, a fourth variable resistor, a fourth variable capacitor, a fourth variable inductor, a fourth variable frequency, a fourth clock time, a fourth variable Variable time length, a fourth variable brightness, a fourth variable light intensity, a fourth variable volume, a fourth variable data flow, a fourth variable amplitude, a fourth variable spatial position, a fourth variable A fourth variable displacement, a fourth variable sequence position, a fourth variable angle, a fourth variable space length, a fourth variable distance, a fourth variable translation velocity, a fourth variable angular velocity , one of a fourth variable acceleration, a fourth variable force, a fourth variable pressure, and a fourth variable mechanical power.

在一些實施例中,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RC1E4是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。在該可變物理參數QP1A是該第四可變電壓的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電壓範圍和一相對低電壓範圍。在該可變物理參數QP1A是該第二可變電流的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電流範圍和一相對低電流範圍。在該可變物理參數QP1A是該第四可變電阻的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電阻範圍和一相對低電阻範圍。 In some embodiments, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E4 is the relatively high physical parameter range and the relatively low physical parameter range Another of the parameter ranges. Under the condition that the variable physical parameter QP1A is the fourth variable voltage, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively. Under the condition that the variable physical parameter QP1A is the second variable current, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable resistor, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.

在該可變物理參數QP1A是該第四可變空間位置的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高位置範圍和一相對低位置範圍。在該可變物理參數QP1A是該第四可變壓力的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高壓力範圍和一相對低壓力範圍。在該可變物理參數 QP1A是該第四可變長度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高長度範圍和一相對低長度範圍。在該可變物理參數QP1A是該第四可變角速度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高角速度範圍和一相對低角速度範圍。 Under the condition that the variable physical parameter QP1A is the fourth variable spatial position, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high position range and a relatively low position range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable pressure, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high pressure range and a relatively low pressure range, respectively. in this variable physical parameter Under the condition that QP1A is the fourth variable length, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high length range and a relatively low length range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable angular velocity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.

例如,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RC1E2是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RC1E7是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數候選範圍RC1E2是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RC1E3是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。 For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E2 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E7 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter candidate range RC1E2 is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E3 is one of the relatively high physical parameter range and the relatively low physical parameter range another.

在一些實施例中,在該可變物理參數QP1A是於該物理參數應用範圍RC1EL之內的條件下,該可變物理參數QP1A處於一第一參考狀態。在該可變物理參數QP1A是於該特定物理參數範圍RC1E4之內的條件下,該可變物理參數QP1A處於一第二參考狀態。在該可變物理參數QP1A是於該物理參數候選範圍RC1E2之內的條件下,該可變物理參數QP1A處於一第三參考狀態。在該可變物理參數QP1A是於該特定物理參數範圍RC1E7之內的 條件下,該可變物理參數QP1A處於一第四參考狀態。該第一參考狀態相同或不同於該第二參考狀態。該第二參考狀態不同於該第三參考狀態。該第一參考狀態不同於該第四參考狀態。 In some embodiments, the variable physical parameter QP1A is in a first reference state under the condition that the variable physical parameter QP1A is within the physical parameter application range RC1EL. Under the condition that the variable physical parameter QP1A is within the specific physical parameter range RC1E4, the variable physical parameter QP1A is in a second reference state. Under the condition that the variable physical parameter QP1A is within the physical parameter candidate range RC1E2, the variable physical parameter QP1A is in a third reference state. the variable physical parameter QP1A is within the specific physical parameter range RC1E7 condition, the variable physical parameter QP1A is in a fourth reference state. The first reference state is the same as or different from the second reference state. The second reference state is different from the third reference state. The first reference state is different from the fourth reference state.

例如,該測量值應用範圍碼EH1L是一測量值參考範圍號碼。該測量值應用範圍RM1L基於該測量值應用範圍碼EH1L而被安排於該額定測量值範圍RC1N中。該測量值候選範圍碼EH12是一測量值參考範圍號碼。該測量值候選範圍RM12基於該測量值候選範圍碼EH12而被安排於該額定測量值範圍RC1N中。該測量值指定範圍碼EL1T是一測量值參考範圍號碼。該測量值指定範圍RQ1T基於該測量值指定範圍碼EL1T而被安排於該額定測量值範圍HR1N中。該測量值目標範圍碼EM1T是一測量值參考範圍號碼。該測量值目標範圍RN1T基於該測量值目標範圍碼EM1T而被安排於該額定測量值範圍RD1N中。 For example, the measurement value application range code EH1L is a measurement value reference range number. The measured value application range RM1L is arranged in the nominal measured value range RC1N based on the measured value application range code EH1L. The measurement value candidate range code EH12 is a measurement value reference range number. The measured value candidate range RM12 is arranged in the nominal measured value range RC1N based on the measured value candidate range code EH12. The measurement value specifying range code EL1T is a measurement value reference range number. The measured value designation range RQ1T is arranged in the nominal measured value range HR1N based on the measured value designation range code EL1T. The measurement value target range code EM1T is a measurement value reference range number. The measured value target range RN1T is arranged in the nominal measured value range RD1N based on the measured value target range code EM1T.

例如,該可變物理參數QP1A是該第二可變電壓。該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和該物理參數候選範圍RD1E2分別是一第一電壓參考範圍、一第二電壓參考範圍和一第三電壓參考範圍。例如,在該可變物理參數QP1A是該第二可變位移的條件下,該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和該物理參數候選範圍RD1E2分別是一第一位移參考範圍、一第二位移參考範圍和一第三位移參考範圍。例如,在該可變物理參數QP1A是該第二時鐘時間的條件下,該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和 該物理參數候選範圍RD1E2分別是一第一時鐘時間參考範圍、一第二時鐘時間參考範圍和一第三時鐘時間參考範圍。 For example, the variable physical parameter QP1A is the second variable voltage. The physical parameter application range RC1EL, the specific physical parameter range RC1E4 and the physical parameter candidate range RD1E2 are a first voltage reference range, a second voltage reference range and a third voltage reference range, respectively. For example, under the condition that the variable physical parameter QP1A is the second variable displacement, the physical parameter application range RC1EL, the specific physical parameter range RC1E4 and the physical parameter candidate range RD1E2 are respectively a first displacement reference range, a A second displacement reference range and a third displacement reference range. For example, under the condition that the variable physical parameter QP1A is the second clock time, the physical parameter application range RC1EL, the specific physical parameter range RC1E4 and The physical parameter candidate ranges RD1E2 are respectively a first clock time reference range, a second clock time reference range and a third clock time reference range.

例如,該操作單元297包含耦合於該處理單元230的一通訊介面單元246。該處理單元230通過該通訊介面單元246而耦合於該網路410。例如,該通訊介面單元246受該處理單元230控制,並包含耦合於該處理單元230的該傳輸組件450和耦合於該處理單元230的該接收組件2701。該處理單元230通過該通訊介面單元246和該網路410而耦合於該伺服器280,並使該通訊介面單元246通過該網路410而向該通訊介面單元386有線地或無線地傳輸該控制訊號SC81、該控制訊號SC82、該控制訊號SC83、該控制訊號SC88和該控制訊號SC97的任一訊號。例如,該網路410是一有線網路和一無線網路的其中之一。該通訊介面單元246通過該實際鏈接LK8A而被鏈接到該通訊介面單元386。 For example, the operation unit 297 includes a communication interface unit 246 coupled to the processing unit 230 . The processing unit 230 is coupled to the network 410 through the communication interface unit 246 . For example, the communication interface unit 246 is controlled by the processing unit 230 and includes the transmitting component 450 coupled to the processing unit 230 and the receiving component 2701 coupled to the processing unit 230 . The processing unit 230 is coupled to the server 280 through the communication interface unit 246 and the network 410 , and enables the communication interface unit 246 to transmit the control to the communication interface unit 386 via the network 410 by wire or wirelessly Any one of the signal SC81, the control signal SC82, the control signal SC83, the control signal SC88 and the control signal SC97. For example, the network 410 is one of a wired network and a wireless network. The communication interface unit 246 is linked to the communication interface unit 386 through the actual link LK8A.

請參閱圖53、圖54和圖55。圖53為繪示於圖1中的該控制系統901的一實施結構9062的示意圖。圖54為繪示於圖1中的該控制系統901的一實施結構9063的示意圖。圖55為繪示於圖1中的該控制系統901的一實施結構9064的示意圖。如圖53、圖54和圖55所示,該實施結構9062、該實施結構9063和該實施結構9064的每一結構包含該控制裝置212、該功能裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於控制存在於該功能裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作 單元297包含該處理單元230、耦合於該處理單元230的該接收單元270、耦合於該處理單元230的該輸入單元440和該傳輸單元240,並耦合於該伺服器280。 See Figure 53, Figure 54, and Figure 55. FIG. 53 is a schematic diagram illustrating an implementation structure 9062 of the control system 901 shown in FIG. 1 . FIG. 54 is a schematic diagram illustrating an implementation structure 9063 of the control system 901 shown in FIG. 1 . FIG. 55 is a schematic diagram illustrating an implementation structure 9064 of the control system 901 shown in FIG. 1 . As shown in FIGS. 53 , 54 and 55 , each structure of the implementation structure 9062 , the implementation structure 9063 and the implementation structure 9064 includes the control device 212 , the functional device 130 and the server 280 . The control device 212 is linked to the server 280 . The control device 212 is used to control the variable physical parameter QU1A existing in the functional device 130 , and includes the operation unit 297 and the sensing unit 260 . the operation The unit 297 includes the processing unit 230 , the receiving unit 270 coupled to the processing unit 230 , the input unit 440 coupled to the processing unit 230 and the transmitting unit 240 , and is coupled to the server 280 .

在一些實施例中,該測量應用功能FB81相關於該記憶體單元25Y1。該記憶體單元25Y1儲存該控制資料碼CK8T。該控制資料碼CK8T是一控制資訊碼CM82、一控制資訊碼CM83、一控制資訊碼CM84和一控制資訊碼CM85的其中之一。該控制訊息CG81是一控制資料訊息CN82、一控制資料訊息CN83、一控制資料訊息CN84和一控制資料訊息CN85的其中之一。 In some embodiments, the measurement application function FB81 is associated with the memory cell 25Y1. The memory unit 25Y1 stores the control data code CK8T. The control data code CK8T is one of a control information code CM82, a control information code CM83, a control information code CM84 and a control information code CM85. The control message CG81 is one of a control data message CN82, a control data message CN83, a control data message CN84 and a control data message CN85.

在該控制資料碼CK8T是該控制資訊碼CM82的條件下,該控制訊號SC81是輸送該控制資料訊息CN82的一指令訊號SW82。該控制資訊碼CM82和該控制資料訊息CN82皆包含該測量值目標範圍碼EM1T。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 Under the condition that the control data code CK8T is the control information code CM82, the control signal SC81 is a command signal SW82 that transmits the control data message CN82. Both the control information code CM82 and the control data message CN82 include the measured value target range code EM1T. The control signal SC81 serves to indicate the measured value target range RN1T by delivering the measured value target range code EM1T, and is used to cause the variable physical parameter QU1A to enter the physical parameter represented by the measured value target range RN1T Target range RD1ET.

在該控制資料碼CK8T是該控制資訊碼CM83的條件下,該控制訊號SC81是輸送該控制資料訊息CN83的一指令訊號SW83。該控制資訊碼CM83和該控制資料訊息CN83皆包含該目標範圍界限值對DN1T、該額定範圍界限值對DD1A和該控制碼CC1T。例如,該控制資訊碼CM83和該控制資料訊息CN83皆進一步包含該測量值目標範圍碼EM1T。該控制訊號SC81藉由輸送該目標範圍界 限值對DN1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 Under the condition that the control data code CK8T is the control information code CM83, the control signal SC81 is a command signal SW83 that transmits the control data message CN83. Both the control information code CM83 and the control data message CN83 include the target range limit value pair DN1T, the rated range limit value pair DD1A and the control code CC1T. For example, both the control information code CM83 and the control data message CN83 further include the measurement value target range code EM1T. The control signal SC81 transmits the target range boundary by Limits serve to indicate to DN1T the target range of measurements RN1T, and are used to cause the variable physical parameter QU1A to enter the target range of physical parameters RD1ET represented by the target range of measurements RN1T.

在一些實施例中,在該控制資料碼CK8T是該控制資訊碼CM84的條件下,該控制訊號SC81是輸送該控制資料訊息CN84的一指令訊號SW84。該控制資訊碼CM84和該控制資料訊息CN84皆包含該指定範圍界限值對DQ1T。該控制訊號SC81藉由輸送該指定範圍界限值對DQ1T來起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用。 In some embodiments, under the condition that the control data code CK8T is the control information code CM84, the control signal SC81 is a command signal SW84 that transmits the control data message CN84. Both the control information code CM84 and the control data message CN84 contain the specified range limit value pair DQ1T. The control signal SC81 serves to indicate at least one of the measurement value designation range RQ1T and the clock time designation interval HR1ET by sending the designation range limit value pair DQ1T.

該功能裝置130儲存該物理參數目標範圍碼UQ1T。在該控制資料碼CK8T是該控制資訊碼CM85的條件下,該控制訊號SC81是輸送該控制資料訊息CN85的一指令訊號SW85。該控制資訊碼CM85和該控制資料訊息CN85皆包含該測量值指定範圍碼EL1T、該時鐘參考時間值NR81和該測量時間長度值VH8T。該指定範圍界限值對DQ1T包含該時鐘參考時間值NR81。該測量值指定範圍碼EL1T被預設。該控制訊號SC81藉由輸送該測量時間長度值VH8T來使能計算該指定範圍界限值對DQ1T,並用於導致該可變物理參數QP1A在該時鐘時間應用區間HR1EU之內處於該物理參數目標範圍RD1EU。 The functional device 130 stores the physical parameter target range code UQ1T. Under the condition that the control data code CK8T is the control information code CM85, the control signal SC81 is a command signal SW85 that transmits the control data message CN85. Both the control information code CM85 and the control data message CN85 include the measurement value specifying range code EL1T, the clock reference time value NR81 and the measurement time length value VH8T. The specified range limit value pair DQ1T contains the clock reference time value NR81. The measurement value designation range code EL1T is preset. The control signal SC81 enables the calculation of the specified range limit value pair DQ1T by delivering the measurement time length value VH8T and is used to cause the variable physical parameter QP1A to be within the physical parameter target range RD1EU within the clock time application interval HR1EU .

在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該測量值指定範圍碼EL1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變 物理參數QU1A在該時鐘時間指定區間HR1ET之內處於由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 Under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 serves to indicate the measurement value target by sending the preset measurement value specifying range code EL1T scope of the role of RN1T and used to cause this variable The physical parameter QU1A is in the physical parameter target range RD1ET represented by the measurement value target range RN1T within the clock time designation interval HR1ET.

在一些實施例中,該操作單元397包含該定時器342。該定時器342用於測量該時鐘時間TH1A,並被配置以符合該定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於一時鐘參考時間TR81而被特徵化。例如,該時鐘參考時間TR81等於該開始界限時間HR1ET1。該觸發事件EQ81在一觸發時間TT81發生。該觸發時間TT81是一目前時間。該時鐘參考時間值NR81基於該時鐘參考時間TR81和該定時器規格FT21來以該指定測量值格式HH95而被預設。該時鐘參考時間TR81與該觸發時間TT81的一時間差異在一預設時間長度內。該定時器規格FT81和該定時器規格FT21皆被預設。例如,該指定測量值格式HH95基於該指定位元數目UY95而被特徵化。 In some embodiments, the operation unit 397 includes the timer 342 . The timer 342 is used to measure the clock time TH1A and is configured to comply with the timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a clock reference time TR81. For example, the clock reference time TR81 is equal to the start limit time HR1ET1. The trigger event EQ81 occurs at a trigger time TT81. The trigger time TT81 is a current time. The clock reference time value NR81 is preset in the specified measurement value format HH95 based on the clock reference time TR81 and the timer specification FT21. A time difference between the clock reference time TR81 and the trigger time TT81 is within a predetermined time length. Both the timer specification FT81 and the timer specification FT21 are preset. For example, the specified measurement value format HH95 is characterized based on the specified number of bits UY95.

該時鐘時間TH1A基於該時鐘時間指定區間HR1ET而被特徵化。該時鐘時間指定區間HR1ET包含該時鐘參考時間TR81,並由該測量值指定範圍RQ1T所代表。該測量值指定範圍RQ1T基於該定時器規格FT21來用該指定測量值格式HH95而被預設。該測量值指定範圍碼EL1T被配置以指示該時鐘時間指定區間HR1ET,並基於該測量應用功能規格GBL8而被預設。該物理參數目標範圍碼UQ1T代表該可變物理參數QU1A被期望在該時鐘時間指定區間HR1ET內處於的該物理參數目標範圍RD1ET。該 物理參數目標範圍RD1ET選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。 The clock time TH1A is characterized based on the clock time designation interval HR1ET. The clock time designation interval HR1ET includes the clock reference time TR81 and is represented by the measurement value designation range RQ1T. The measurement value specification range RQ1T is preset with the specified measurement value format HH95 based on the timer specification FT21. The measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET, and is preset based on the measurement application functional specification GBL8. The physical parameter target range code UQ1T represents the physical parameter target range RD1ET in which the variable physical parameter QU1A is expected to be within the clock time specified interval HR1ET. Should The physical parameter target range RD1ET is selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . .

在一些實施例中,在該可變物理參數QP1A相同於該時鐘時間TH1A的條件下,該感測單元260感測該時鐘時間TH1A以產生該感測訊號SM81,並作為一定時器。例如,在該可變物理參數QP1A相同於該時鐘時間TH1A的條件下,該測量值應用範圍碼EH1L相同於該測量值指定範圍碼EL1T。該處理單元230響應該觸發事件EQ81來執行該資料確定AE8A以確定相同於該測量值指定範圍碼EL1T的該測量值應用範圍碼EH1L。 In some embodiments, under the condition that the variable physical parameter QP1A is the same as the clock time TH1A, the sensing unit 260 senses the clock time TH1A to generate the sensing signal SM81 and acts as a timer. For example, under the condition that the variable physical parameter QP1A is the same as the clock time TH1A, the measurement value application range code EH1L is the same as the measurement value designation range code EL1T. The processing unit 230 performs the profile determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the measurement value designation range code EL1T.

例如,在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的該資料獲取AG8A以獲得相同於該控制資料碼CK8T的該控制應用碼UA8T。在所獲得的該控制資料碼CK8T包含所預設的該時鐘參考時間值NR81、所預設的該測量時間長度值VH8T和所預設的該測量值指定範圍碼EL1T的條件下,該處理單元230基於所獲得的該控制資料碼CK8T來導致該傳輸單元240執行該訊號產生操作BS81以產生輸送所獲得的該時鐘參考時間值NR81、所獲得的該測量時間長度值VH8T和所獲得的該測量值指定範圍碼EL1T的該控制訊號SC81。 For example, under the condition that the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in, the processing unit 230 executes the data acquisition AG8A using the determined measurement value application range code EH1L to obtain The control application code UA8T is the same as the control data code CK8T. Under the condition that the obtained control data code CK8T includes the preset clock reference time value NR81, the preset measurement time length value VH8T and the preset measurement value specified range code EL1T, the processing unit 230 causes the transmission unit 240 to perform the signal generation operation BS81 based on the obtained control data code CK8T to generate the transmission of the obtained clock reference time value NR81, the obtained measurement time length value VH8T and the obtained measurement The value specifies the control signal SC81 of the range code EL1T.

例如,該物理參數控制功能規格GBL8包含一時鐘時間表示GB8TR。該時鐘時間表示GB8TR用於表示該時鐘參考時間TR81。該時鐘參考時間值NR81基於該時 鐘時間表示GB8TR、該定時器規格FT21和用於轉換該時鐘時間表示GB8TR的一資料編碼操作ZR8TR來用該指定測量值格式HH95而被預設。例如,該時鐘時間表示GB8TR相同於該時鐘時間表示GA8TR。 For example, the physical parameter control function specification GBL8 includes a clock time representation GB8TR. The clock time representation GB8TR is used to represent the clock reference time TR81. The clock reference time value NR81 is based on the time The clock time representation GB8TR, the timer specification FT21 and a data encoding operation ZR8TR for converting the clock time representation GB8TR are preset with the specified measurement value format HH95. For example, the clock time for GB8TR is the same as the clock time for GA8TR.

在一些實施例中,該記憶體單元25Y1儲存一控制資料碼CK8V。該控制資料碼CK8V包含該定時操作模式碼CP11、該物理參數目標範圍碼UN1V、該測量時間長度值CL8V和該控制碼CC1V。在該可變物理參數QU1A基於該控制訊號SC81而於該時鐘時間應用區間HR1EU之內處於該物理參數目標範圍RD1EU的條件下,該處理單元230響應一觸發事件EQ88來存取該控制資料碼CK8V以獲得該控制資料碼CK8V,並基於所存取的該控制資料碼CK8V來使該傳輸單元240向該接收單元337傳輸該控制訊號SC88。該控制訊號SC88輸送該控制訊息CG88。 In some embodiments, the memory cell 25Y1 stores a control data code CK8V. The control data code CK8V includes the timing operation mode code CP11, the physical parameter target range code UN1V, the measurement time length value CL8V, and the control code CC1V. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1EU within the clock time application interval HR1EU based on the control signal SC81, the processing unit 230 responds to a trigger event EQ88 to access the control data code CK8V In order to obtain the control data code CK8V, and based on the accessed control data code CK8V, the transmitting unit 240 transmits the control signal SC88 to the receiving unit 337 . The control signal SC88 transmits the control message CG88.

例如,該操作單元297包含耦合於該處理單元230的一觸發應用單元288。該觸發事件EQ88相關於該觸發應用單元288,並是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件和一識別媒介出現事件的其中之一。該觸發應用單元288響應該觸發事件EQ88來產生一操作請求訊號SX88,提供該操作請求訊號SX88到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX88。該處理單元230響應該操作請求訊號SX88來存取該控制資料碼CK8V以獲得該控制資料碼CK8V。例如,該觸發應用單元288是該讀取器220、該接收單元270、該輸入單元440、該顯示單元460和該感測單 元260的其中之一。例如,與該觸發事件EQ8H相關的該觸發應用單元28H是該讀取器220、該接收單元270、該輸入單元440、該顯示單元460和該感測單元260的其中之一。 For example, the operation unit 297 includes a trigger application unit 288 coupled to the processing unit 230 . The trigger event EQ88 is related to the trigger application unit 288 and is one of a trigger action event, a user input event, a signal input event, a state change event and an identification medium occurrence event. The trigger application unit 288 generates an operation request signal SX88 in response to the trigger event EQ88, provides the operation request signal SX88 to the processing unit 230, and thereby enables the processing unit 230 to receive the operation request signal SX88. The processing unit 230 accesses the control data code CK8V in response to the operation request signal SX88 to obtain the control data code CK8V. For example, the trigger application unit 288 is the reader 220, the receiving unit 270, the input unit 440, the display unit 460 and the sensing unit One of 260 yuan. For example, the trigger application unit 28H related to the trigger event EQ8H is one of the reader 220 , the receiving unit 270 , the input unit 440 , the display unit 460 and the sensing unit 260 .

例如,該觸發應用單元288包含具有該電應用目標WJ11的該使用者介面區AP11,接收使用該電應用目標WJ11的一第一使用者輸入操作來導致該觸發事件EQ88發生,並響應該第一使用者輸入操作(或該觸發事件EQ88)來提供該操作請求訊號SX88到該處理單元230。例如,該觸發應用單元28H包含具有該電應用目標WJ11的該使用者介面區AP11,接收使用該電應用目標WJ11的一第二使用者輸入操作來導致該觸發事件EQ8H發生,並響應該第二使用者輸入操作(或該觸發事件EQ8H)來提供該操作請求訊號SX8H到該處理單元230。 For example, the trigger application unit 288 includes the user interface area AP11 having the electrical application target WJ11, receives a first user input operation using the electrical application target WJ11 to cause the trigger event EQ88 to occur, and responds to the first user input operation The user inputs an operation (or the trigger event EQ88 ) to provide the operation request signal SX88 to the processing unit 230 . For example, the trigger application unit 28H includes the user interface area AP11 having the electrical application target WJ11, receives a second user input operation using the electrical application target WJ11 to cause the trigger event EQ8H to occur, and responds to the second user input operation The user inputs an operation (or the trigger event EQ8H) to provide the operation request signal SX8H to the processing unit 230 .

例如,該操作單元397包含該定時器342。該定時器342用於測量該可變時間長度LF8A,並被配置以符合該定時器規格FT21。該控制資料碼CK8V和該控制訊息CG88皆包含該測量時間長度值CL8V。該處理單元230基於該參考時間長度LJ8V和該定時器規格FT21來以一指定測量值格式HH91設定該時間長度值CL8V,並基於所獲得的該控制資料碼CK8V來導致該傳輸單元240執行一訊號產生操作BS88以產生輸送該測量時間長度值CL8V的該控制訊號SC88。例如,該指定測量值格式HH91基於一指定位元數目UY91而被特徵化。 For example, the operation unit 397 includes the timer 342 . The timer 342 is used to measure the variable time length LF8A and is configured to comply with the timer specification FT21. Both the control data code CK8V and the control message CG88 include the measurement time length value CL8V. The processing unit 230 sets the time length value CL8V in a specified measurement value format HH91 based on the reference time length LJ8V and the timer specification FT21, and causes the transmission unit 240 to execute a signal based on the obtained control data code CK8V Generate operation BS88 to generate the control signal SC88 delivering the measured time length value CL8V. For example, the specified measurement value format HH91 is characterized based on a specified number of bits UY91.

該測量應用功能規格GBL8包含一時間長度表示GB8KV。該時間長度表示GB8KV用於表示該參考 時間長度LJ8V。例如,該測量時間長度值CL8V基於該時間長度表示GB8KV、該定時器規格FT21和用於轉換該時間長度表示GB8KV的一資料編碼操作ZR8KV來用該指定測量值格式HH91而被預設。該儲存單元250儲存包含該時間長度值CL8V的該控制資料碼CK8V。該處理單元230被配置以從該儲存單元250獲得該控制資料碼CK8V。例如,該時間長度表示GB8KV相同於該時間長度表示GA8KV。 The measurement application functional specification GBL8 contains a time length representation GB8KV. The length of time that GB8KV is used to represent this reference Time length LJ8V. For example, the measurement duration value CL8V is preset with the specified measurement value format HH91 based on the duration representation GB8KV, the timer specification FT21 and a data encoding operation ZR8KV for converting the duration representation GB8KV. The storage unit 250 stores the control data code CK8V including the time length value CL8V. The processing unit 230 is configured to obtain the control data code CK8V from the storage unit 250 . For example, the length of time representing GB8KV is the same as the length of time representing GA8KV.

在一些實施例中,該功能裝置130包含耦合於該操作單元397的該儲存單元332。該儲存單元332具有一記憶體位置YM8T和不同於該記憶體位置YM8T的一記憶體位置YX8T。例如,該記憶體位置YM8T基於一記憶體位址AM8T而被識別。該記憶體位置YX8T基於一記憶體位址AX8T而被識別。該記憶體位址AM8T和該記憶體位址AX8T皆基於所預設的該測量值目標範圍碼EM1T而被預設。 In some embodiments, the functional device 130 includes the storage unit 332 coupled to the operating unit 397 . The storage unit 332 has a memory location YM8T and a memory location YX8T different from the memory location YM8T. For example, the memory location YM8T is identified based on a memory address AM8T. The memory location YX8T is identified based on a memory address AX8T. Both the memory address AM8T and the memory address AX8T are preset based on the preset measurement value target range code EM1T.

在該觸發事件EQ81發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元440獲得一輸入資料DJ81,對於該輸入資料DJ81執行一資料編碼操作EJ81以確定所預設的該目標範圍界限值對DN1T,被配置以獲得所預設的該測量值目標範圍碼EM1T,並基於所獲得的該測量值目標範圍碼EM1T來取得該記憶體位址AM8T。例如,在該觸發事件EQ81發生之前,該輸入單元440接收用於操作該使用者介面區AP11的一使用者輸入操作JV81,並響應該使用者輸入操作JV81來提供該輸入資料DJ81到該處理單元230。 Before the trigger event EQ81 occurs, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ81 from the input unit 440, and performs a data encoding operation EJ81 on the input data DJ81 to determine the preset target The range limit value pair DN1T is configured to obtain the preset measurement value target range code EM1T, and to obtain the memory address AM8T based on the obtained measurement value target range code EM1T. For example, before the trigger event EQ81 occurs, the input unit 440 receives a user input operation JV81 for operating the user interface area AP11, and provides the input data DJ81 to the processing unit in response to the user input operation JV81 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該目標範圍界限值對DN1T和所取得的該記憶體位址AM8T來導致該傳輸單元240提供一寫入請求訊息WN8T到該操作單元397。該寫入請求訊息WN8T包含所確定的該目標範圍界限值對DN1T和所取得的該記憶體位址AM8T。該操作單元397響應該寫入請求訊息WN8T來導致該儲存單元332在該記憶體位置YM8T儲存該目標範圍界限值對DN1T。 Before the trigger event EQ81 occurs, the processing unit 230 causes the transmission unit 240 to provide a write request message WN8T to the operation unit 397 based on the determined target range limit pair DN1T and the acquired memory address AM8T . The write request message WN8T includes the determined target range limit value pair DN1T and the acquired memory address AM8T. The operation unit 397 causes the storage unit 332 to store the target range limit pair DN1T in the memory location YM8T in response to the write request message WN8T.

在一些實施例中,在該觸發事件EQ81發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元440獲得一輸入資料DJ82,對於該輸入資料DJ82執行一資料編碼操作EJ82以確定所預設的該控制碼CC1T,並基於所獲得的該測量值目標範圍碼EM1T來取得該記憶體位址AX8T。例如,在該觸發事件EQ81發生之前,該輸入單元440接收用於操作該使用者介面區AP11的一使用者輸入操作JV82,並響應該使用者輸入操作JV82來提供該輸入資料DJ82到該處理單元230。 In some embodiments, before the trigger event EQ81 occurs, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ82 from the input unit 440, and performs a data encoding operation EJ82 on the input data DJ82 to determine The preset control code CC1T is used to obtain the memory address AX8T based on the obtained measurement value target range code EM1T. For example, before the trigger event EQ81 occurs, the input unit 440 receives a user input operation JV82 for operating the user interface area AP11, and provides the input data DJ82 to the processing unit in response to the user input operation JV82 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該控制碼CC1T和所取得的該記憶體位址AX8T來導致該傳輸單元240提供該寫入請求訊息WC8T到該操作單元397。該寫入請求訊息WC8T包含所確定的該控制碼CC1T和所取得的該記憶體位址AX8T。該操作單元397響應該寫入請求訊息WC8T來導致該儲存單元332在該記憶體位置YX8T儲存該控制碼CC1T。 Before the trigger event EQ81 occurs, the processing unit 230 causes the transmission unit 240 to provide the write request message WC8T to the operation unit 397 based on the determined control code CC1T and the acquired memory address AX8T. The write request message WC8T includes the determined control code CC1T and the acquired memory address AX8T. The operation unit 397 causes the storage unit 332 to store the control code CC1T in the memory location YX8T in response to the write request message WC8T.

該儲存單元332進一步具有一記憶體位置 YN81。例如,該記憶體位置YN81基於一記憶體位址AN81而被識別。該記憶體位址AN81被預設。在該觸發事件EQ81發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元440獲得一輸入資料DJ83,對於該輸入資料DJ83執行一資料編碼操作EJ83以確定所預設的該額定範圍界限值對DD1A,並被配置以取得所預設的該記憶體位址AN81。例如,在該觸發事件EQ81發生之前,該輸入單元440接收用於操作該使用者介面區AP11的一使用者輸入操作JV83,並響應該使用者輸入操作JV83來提供該輸入資料DJ83到該處理單元230。 The storage unit 332 further has a memory location YN81. For example, the memory location YN81 is identified based on a memory address AN81. The memory address AN81 is preset. Before the trigger event EQ81 occurs, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ83 from the input unit 440, and performs a data encoding operation EJ83 on the input data DJ83 to determine the preset rating The range limit value is paired with DD1A, and is configured to obtain the preset memory address AN81. For example, before the trigger event EQ81 occurs, the input unit 440 receives a user input operation JV83 for operating the user interface area AP11, and provides the input data DJ83 to the processing unit in response to the user input operation JV83 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該額定範圍界限值對DD1A和所取得的該記憶體位址AN81來導致該傳輸單元240提供該寫入請求訊息WD81到該操作單元397。該寫入請求訊息WD81包含所確定的該額定範圍界限值對DD1A和所取得的該記憶體位址AN81。該操作單元397響應該寫入請求訊息WD81來導致該儲存單元332在該記憶體位置YN81儲存該額定範圍界限值對DD1A。 Before the trigger event EQ81 occurs, the processing unit 230 causes the transmission unit 240 to provide the write request message WD81 to the operation unit 397 based on the determined pair of rated range limit values DD1A and the acquired memory address AN81 . The write request message WD81 includes the determined nominal range limit value pair DD1A and the acquired memory address AN81. The operation unit 397 causes the storage unit 332 to store the nominal range limit pair DD1A in the memory location YN81 in response to the write request message WD81.

在一些實施例中,在該控制裝置212是該移動裝置的條件下,該控制訊號SC81和該控制回應訊號SE81分別是二無線電訊號。在該控制裝置212是該遙控器的條件下,該控制訊號SC81和該控制回應訊號SE81分別是二光訊號。該通訊介面單元246被配置以與該通訊介面單元386有線地或無線地通訊。該處理單元331通過該通訊介面單元386和該網路410而耦合於該伺服器280,並使該通訊 介面單元386通過該網路410而向該通訊介面單元246有線地或無線地傳輸該控制回應訊號SE81。 In some embodiments, under the condition that the control device 212 is the mobile device, the control signal SC81 and the control response signal SE81 are respectively two radio signals. Under the condition that the control device 212 is the remote controller, the control signal SC81 and the control response signal SE81 are two optical signals respectively. The communication interface unit 246 is configured to communicate with the communication interface unit 386 by wire or wirelessly. The processing unit 331 is coupled to the server 280 through the communication interface unit 386 and the network 410, and enables the communication The interface unit 386 transmits the control response signal SE81 to the communication interface unit 246 by wire or wirelessly through the network 410 .

例如,該實際鏈接LK8A是一有線鏈接和一無線鏈接的其中之一。該通訊介面單元246是一有線通訊介面單元和一無線通訊介面單元的其中之一。該通訊介面單元386從該通訊介面單元246通過該實際鏈接LK8A而有線地或無線地接收該控制訊號SC81、該控制訊號SC82、該控制訊號SC83、該控制訊號SC88和該控制訊號SC97的任一訊號。該通訊介面單元246和該通訊介面單元386之間具有一實際鏈接LK9A。該通訊介面單元246從該通訊介面單元386通過該實際鏈接LK9A而有線地或無線地接收該控制回應訊號SE81;例如,該實際鏈接LK9A是一有線鏈接和一無線鏈接LK91的其中之一。例如,該處理單元331使該通訊介面單元386通過該實際鏈接LK9A而向該通訊介面單元246傳輸該控制回應訊號SE81。 For example, the actual link LK8A is one of a wired link and a wireless link. The communication interface unit 246 is one of a wired communication interface unit and a wireless communication interface unit. The communication interface unit 386 receives any one of the control signal SC81 , the control signal SC82 , the control signal SC83 , the control signal SC88 and the control signal SC97 by wire or wirelessly from the communication interface unit 246 through the actual link LK8A signal. There is an actual link LK9A between the communication interface unit 246 and the communication interface unit 386 . The communication interface unit 246 receives the control response signal SE81 wired or wirelessly from the communication interface unit 386 through the actual link LK9A; for example, the actual link LK9A is one of a wired link and a wireless link LK91. For example, the processing unit 331 enables the communication interface unit 386 to transmit the control response signal SE81 to the communication interface unit 246 through the actual link LK9A.

在該通訊介面單元246和該通訊介面單元386分別是二無線通訊介面單元的條件下,該通訊介面單元246被配置以無線地與該通訊介面單元386通訊。例如,該網路410是一無線網路。該處理單元230使該通訊介面單元246通過該無線網路而向該通訊介面單元386傳輸該控制訊號SC81、該控制訊號SC82、該控制訊號SC83、該控制訊號SC88和該控制訊號SC97的任一訊號。該處理單元331使該通訊介面單元386通過該無線網路而向該通訊介面單元246傳輸該控制回應訊號SE81。 Under the condition that the communication interface unit 246 and the communication interface unit 386 are respectively two wireless communication interface units, the communication interface unit 246 is configured to communicate with the communication interface unit 386 wirelessly. For example, the network 410 is a wireless network. The processing unit 230 enables the communication interface unit 246 to transmit any one of the control signal SC81 , the control signal SC82 , the control signal SC83 , the control signal SC88 and the control signal SC97 to the communication interface unit 386 through the wireless network signal. The processing unit 331 enables the communication interface unit 386 to transmit the control response signal SE81 to the communication interface unit 246 through the wireless network.

請參閱圖56、圖57、圖58和圖59。圖56 為繪示於圖1中的該控制系統901的一實施結構9065的示意圖。圖57為繪示於圖1中的該控制系統901的一實施結構9066的示意圖。圖58為繪示於圖1中的該控制系統901的一實施結構9067的示意圖。圖59為繪示於圖1中的該控制系統901的一實施結構9068的示意圖。如圖56、圖57、圖58和圖59所示,該實施結構9065、該實施結構9066、該實施結構9067和該實施結構9068的每一結構包含該控制裝置212、該功能裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該功能裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該接收單元270、該輸入單元440和該傳輸單元240。該處理單元230耦合於該伺服器280。 See Figure 56, Figure 57, Figure 58, and Figure 59. Figure 56 It is a schematic diagram of an implementation structure 9065 of the control system 901 shown in FIG. 1 . FIG. 57 is a schematic diagram illustrating an implementation structure 9066 of the control system 901 shown in FIG. 1 . FIG. 58 is a schematic diagram illustrating an implementation structure 9067 of the control system 901 shown in FIG. 1 . FIG. 59 is a schematic diagram illustrating an implementation structure 9068 of the control system 901 shown in FIG. 1 . As shown in FIGS. 56 , 57 , 58 and 59 , each of the implementation structure 9065 , the implementation structure 9066 , the implementation structure 9067 and the implementation structure 9068 includes the control device 212 , the functional device 130 and the implementation structure 9068 . Server 280. The control device 212 is linked to the server 280 . The control device 212 is used for controlling the variable physical parameter QU1A existing in the functional device 130 by means of the trigger event EQ81 , and includes the operation unit 297 and the sensing unit 260 . The operation unit 297 includes the processing unit 230 , the receiving unit 270 , the input unit 440 and the transmission unit 240 . The processing unit 230 is coupled to the server 280 .

在一些實施例中,該功能裝置130包含該操作單元397、該物理參數應用單元335、該感測單元334、一物理參數應用單元735和一多工器363。該操作單元397具有一輸出端338P和一輸出端338Q。該輸出端338P和該輸出端338Q分別位於不同空間位置。該物理參數應用單元335、該感測單元334、該物理參數應用單元735和該多工器363皆耦合於該操作單元397。該輸出端338P耦合於該物理參數應用單元335。該物理參數應用單元735包含一物理參數形成區AU21,並耦合於該輸出端338Q。該物理參數形成區AU21具有一可變物理參數QU2A。例如,該物理參數應用單元735是一物理可實現功能單元,並具有相似 於該物理參數應用單元335的一功能結構。 In some embodiments, the functional device 130 includes the operation unit 397 , the physical parameter application unit 335 , the sensing unit 334 , a physical parameter application unit 735 and a multiplexer 363 . The operation unit 397 has an output terminal 338P and an output terminal 338Q. The output end 338P and the output end 338Q are located at different spatial positions, respectively. The physical parameter applying unit 335 , the sensing unit 334 , the physical parameter applying unit 735 and the multiplexer 363 are all coupled to the operating unit 397 . The output terminal 338P is coupled to the physical parameter application unit 335 . The physical parameter applying unit 735 includes a physical parameter forming area AU21 and is coupled to the output terminal 338Q. The physical parameter forming area AU21 has a variable physical parameter QU2A. For example, the physical parameter application unit 735 is a physically realizable functional unit, and has similar A functional structure of the physical parameter application unit 335 .

該感測單元334用於通過該多工器363而感測複數實際物理參數的其中之一。該複數實際物理參數包含該可變物理參數QU1A和該可變物理參數QU2A。該控制裝置212用於控制該可變物理參數QU2A。該多工器363具有一輸入端3631、一輸入端3632、一控制端363C和一輸出端363P。 The sensing unit 334 is used for sensing one of the complex actual physical parameters through the multiplexer 363 . The complex actual physical parameter includes the variable physical parameter QU1A and the variable physical parameter QU2A. The control device 212 is used to control the variable physical parameter QU2A. The multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C and an output terminal 363P.

該控制端363C耦合於該操作單元397。該輸入端3631耦合於該物理參數形成區AU11。該輸入端3632耦合於該物理參數形成區AU21。該輸出端363P耦合於該感測單元334。例如,該可變物理參數QU1A和該可變物理參數QU2A分別是一第五可變電性參數和一第六可變電性參數。例如,該第五可變電性參數和該第六可變電性參數分別是一第五可變電壓和一第六可變電壓。該輸入端3631和該輸出端363P之間具有一第一功能關係。該第一功能關係等於一第一導通關係和一第一關斷關係的其中之一。 The control terminal 363C is coupled to the operation unit 397 . The input terminal 3631 is coupled to the physical parameter forming area AU11. The input terminal 3632 is coupled to the physical parameter forming area AU21. The output terminal 363P is coupled to the sensing unit 334 . For example, the variable physical parameter QU1A and the variable physical parameter QU2A are a fifth variable electrical parameter and a sixth variable electrical parameter, respectively. For example, the fifth variable electrical parameter and the sixth variable electrical parameter are a fifth variable voltage and a sixth variable voltage, respectively. There is a first functional relationship between the input end 3631 and the output end 363P. The first functional relationship is equal to one of a first on relationship and a first off relationship.

該輸入端3632和該輸出端363P之間具有一第二功能關係。該第二功能關係等於一第二導通關係和一第二關斷關係的其中之一。在該第一功能關係等於該第一導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3631來感測該可變物理參數QU1A,並通過該輸出端363P和該輸入端3631而耦合於該物理參數形成區AU11。在該第二功能關係等於該第二導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3632來感測該可變物理參數QU2A,並通過該輸出端363P 和該輸入端3632而耦合於該物理參數形成區AU21。例如,該多工器363受該操作單元397控制,並是一類比多工器。 There is a second functional relationship between the input end 3632 and the output end 363P. The second functional relationship is equal to one of a second on relationship and a second off relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 is configured to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, and use the output terminal 363P and the input terminal 3631 to sense the variable physical parameter QU1A. The input terminal 3631 is coupled to the physical parameter forming area AU11. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, and use the output terminal 363P to sense the variable physical parameter QU2A. and the input terminal 3632 are coupled to the physical parameter forming area AU21. For example, the multiplexer 363 is controlled by the operation unit 397 and is a one-to-one multiplexer.

在一些實施例中,該控制裝置212和該應用環境EX81的其中之一具有一物理參數形成區AT21。該物理參數形成區AT21具有一可變物理參數QP2A。該控制裝置212進一步包含耦合於該處理單元230的一多工器263。該多工器263具有一輸入端2631、一輸入端2632、一控制端263C和一輸出端263P。該控制端263C耦合於該處理單元230。 In some embodiments, one of the control device 212 and the application environment EX81 has a physical parameter forming area AT21. The physical parameter forming area AT21 has a variable physical parameter QP2A. The control device 212 further includes a multiplexer 263 coupled to the processing unit 230 . The multiplexer 263 has an input terminal 2631, an input terminal 2632, a control terminal 263C and an output terminal 263P. The control terminal 263C is coupled to the processing unit 230 .

該輸入端2631耦合於該物理參數形成區AT11。該輸入端2632耦合於該物理參數形成區AT21。該輸出端263P耦合於該感測單元260。例如,該可變物理參數QP1A和該可變物理參數QP2A分別是一第七可變電性參數和一第八可變電性參數。例如,該第七可變電性參數和該第八可變電性參數分別是一第七可變電壓和一第八可變電壓。該輸入端2631和該輸出端263P之間具有一第三功能關係。該第三功能關係等於一第三導通關係和一第三關斷關係的其中之一。 The input terminal 2631 is coupled to the physical parameter forming area AT11. The input terminal 2632 is coupled to the physical parameter forming area AT21. The output terminal 263P is coupled to the sensing unit 260 . For example, the variable physical parameter QP1A and the variable physical parameter QP2A are a seventh variable electrical parameter and an eighth variable electrical parameter, respectively. For example, the seventh variable electrical parameter and the eighth variable electrical parameter are a seventh variable voltage and an eighth variable voltage, respectively. There is a third functional relationship between the input terminal 2631 and the output terminal 263P. The third functional relationship is equal to one of a third on relationship and a third off relationship.

該輸入端2632和該輸出端263P之間具有一第四功能關係。該第四功能關係等於一第四導通關係和一第四關斷關係的其中之一。在該第三功能關係等於該第三導通關係的條件下,該感測單元260用於通過該輸出端263P和該輸入端2631來感測該可變物理參數QP1A,並通過該輸出端263P和該輸入端2631而耦合於該物理參數形成區AT11。 There is a fourth functional relationship between the input end 2632 and the output end 263P. The fourth functional relationship is equal to one of a fourth on relationship and a fourth off relationship. Under the condition that the third functional relationship is equal to the third conduction relationship, the sensing unit 260 is configured to sense the variable physical parameter QP1A through the output terminal 263P and the input terminal 2631, and use the output terminal 263P and the input terminal 2631 to sense the variable physical parameter QP1A. The input terminal 2631 is coupled to the physical parameter forming area AT11.

在該第四功能關係等於該第四導通關係的條件下,該感測單元260用於通過該輸出端263P和該輸入端2632來感測該可變物理參數QP2A,並通過該輸出端263P和該輸入端2632而耦合於該物理參數形成區AT21。例如,該多工器263受該處理單元230控制,並是一類比多工器。例如,該感測單元260在一操作時間TB81通過該多工器263來感測該可變物理參數QP1A,並在與該操作時間TB81不同的一操作時間TB82通過該多工器263來感測該可變物理參數QP2A。 Under the condition that the fourth functional relationship is equal to the fourth conduction relationship, the sensing unit 260 is configured to sense the variable physical parameter QP2A through the output terminal 263P and the input terminal 2632, and use the output terminal 263P and the input terminal 2632 to sense the variable physical parameter QP2A. The input terminal 2632 is coupled to the physical parameter forming area AT21. For example, the multiplexer 263 is controlled by the processing unit 230 and is a one-to-one multiplexer. For example, the sensing unit 260 senses the variable physical parameter QP1A through the multiplexer 263 at an operation time TB81, and senses the variable physical parameter QP1A through the multiplexer 263 at an operation time TB82 different from the operation time TB81 The variable physical parameter QP2A.

在一些實施例中,該物理參數應用單元335由一應用單元識別符HA2T所識別。該物理參數應用單元735由一應用單元識別符HA22所識別。該物理參數應用單元335和該物理參數應用單元735分別位於不同空間位置,並皆耦合於該操作單元397。該應用單元識別符HA2T和該應用單元識別符HA22皆基於該測量應用功能規格GBL8而被預設。為了控制該物理參數應用單元335,該控制訊號SC81進一步輸送該應用單元識別符HA2T。該操作單元397從該控制裝置212接收該控制訊號SC81。該操作單元397響應該控制訊號SC81來選擇該物理參數應用單元335以進行控制。例如,該應用單元識別符HA2T被配置以指示該輸出端338P,並是一第一功能單元號碼。該應用單元識別符HA22被配置以指示該輸出端338Q,並是一第二功能單元號碼。 In some embodiments, the physical parameter application unit 335 is identified by an application unit identifier HA2T. The physical parameter application unit 735 is identified by an application unit identifier HA22. The physical parameter application unit 335 and the physical parameter application unit 735 are located at different spatial positions, and are both coupled to the operation unit 397 . Both the application unit identifier HA2T and the application unit identifier HA22 are preset based on the measurement application function specification GBL8. In order to control the physical parameter application unit 335, the control signal SC81 further conveys the application unit identifier HA2T. The operating unit 397 receives the control signal SC81 from the control device 212 . The operation unit 397 selects the physical parameter application unit 335 for control in response to the control signal SC81. For example, the application unit identifier HA2T is configured to indicate the output 338P and is a first functional unit number. The application unit identifier HA22 is configured to indicate the output 338Q and is a second functional unit number.

該控制裝置212進一步包含耦合於該處理單元230的一電使用目標285、和耦合於該處理單元230的 一電使用目標286。該電使用目標285由一電使用目標識別符HZ2T所識別,並是一電使用單元。該電使用目標286由一電使用目標識別符HZ22所識別,並是一電使用單元。該電使用目標識別符HZ2T和該電使用目標識別符HZ22皆基於該測量應用功能規格GBL8而被預設。在該觸發事件EQ81依靠該電使用目標285而發生的條件下,該處理單元230響應該觸發事件EQ81來選擇該物理參數應用單元335以進行控制。在該觸發事件EQ81依靠該電使用目標286而發生的條件下,該處理單元230響應該觸發事件EQ81來選擇該物理參數應用單元735以進行控制。 The control device 212 further includes an electrical usage target 285 coupled to the processing unit 230 , and an electrical usage target 285 coupled to the processing unit 230 A power usage target 286. The electricity usage target 285 is identified by an electricity usage target identifier HZ2T, and is an electricity usage unit. The electricity usage target 286 is identified by an electricity usage target identifier HZ22 and is an electricity usage unit. The electrical usage target identifier HZ2T and the electrical usage target identifier HZ22 are both preset based on the measurement application functional specification GBL8. Under the condition that the trigger event EQ81 occurs depending on the electrical usage target 285, the processing unit 230 selects the physical parameter application unit 335 for control in response to the trigger event EQ81. Under the condition that the trigger event EQ81 occurs depending on the electrical usage target 286, the processing unit 230 selects the physical parameter application unit 735 for control in response to the trigger event EQ81.

在一些實施例中,該儲存單元250具有一記憶體位置XC9T和一記憶體位置XC92,在該記憶體位置XC9T儲存該應用單元識別符HA2T,並在該記憶體位置XC92儲存該應用單元識別符HA22。該記憶體位置XC9T由一記憶體位址EC9T所識別,或基於該記憶體位址EC9T而被識別。該記憶體位址EC9T基於該電使用目標識別符HZ2T而被預設;藉此,該電使用目標285相關於該應用單元識別符HA2T。例如,該電使用目標識別符HZ2T和該應用單元識別符HA2T之間具有一數學關係KK91;藉此,該電使用目標285相關於該應用單元識別符HA2T。 In some embodiments, the storage unit 250 has a memory location XC9T and a memory location XC92, the application unit identifier HA2T is stored in the memory location XC9T, and the application unit identifier is stored in the memory location XC92 HA22. The memory location XC9T is identified by or based on a memory address EC9T. The memory address EC9T is preset based on the electrical usage target identifier HZ2T; thereby, the electrical usage target 285 is associated with the application unit identifier HA2T. For example, there is a mathematical relationship KK91 between the electrical usage target identifier HZ2T and the application unit identifier HA2T; thereby, the electrical usage target 285 is related to the application unit identifier HA2T.

該記憶體位置XC92由一記憶體位址EC92所識別,或基於該記憶體位址EC92而被識別。該記憶體位址EC92基於該電使用目標識別符HZ22而被預設;藉此,該電使用目標286相關於該應用單元識別符HA22。例如,該電使用目標識別符HZ22和該應用單元識別符HA22之間 具有一數學關係KK92;藉此,該電使用目標286相關於該應用單元識別符HA22。 The memory location XC92 is identified by or based on a memory address EC92. The memory address EC92 is preset based on the electrical usage target identifier HZ22; thereby, the electrical usage target 286 is associated with the application unit identifier HA22. For example, the electrical use target identifier HZ22 and the application unit identifier HA22 There is a mathematical relationship KK92; whereby the electrical usage target 286 is related to the application unit identifier HA22.

在一些實施例中,該觸發事件EQ81依靠該電使用目標285而發生,並導致該處理單元230接收一操作請求訊號SZ91。在該觸發事件EQ81依靠該電使用目標285而發生的條件下,該處理單元230響應該操作請求訊號SZ91來獲得該測量值VM81和該電使用目標識別符HZ2T,並基於所獲得的該電使用目標識別符HZ2T來獲得該應用單元識別符HA2T。該處理單元230基於所獲得的該應用單元識別符HA2T來導致該傳輸單元240向該操作單元397傳輸該控制訊號SC81、該控制訊號SC82和該控制訊號SC83的至少其中之一。 In some embodiments, the trigger event EQ81 occurs depending on the power usage target 285 and causes the processing unit 230 to receive an operation request signal SZ91. Under the condition that the trigger event EQ81 occurs depending on the electricity usage target 285, the processing unit 230 responds to the operation request signal SZ91 to obtain the measurement value VM81 and the electricity usage target identifier HZ2T, and based on the obtained electricity usage The target identifier HZ2T is used to obtain the application unit identifier HA2T. The processing unit 230 causes the transmission unit 240 to transmit at least one of the control signal SC81 , the control signal SC82 and the control signal SC83 to the operation unit 397 based on the obtained application unit identifier HA2T.

例如,該觸發事件EQ81是該輸入單元440接收一使用者輸入操作JU91的一使用者輸入事件。該輸入單元440響應是該使用者輸入事件的該觸發事件EQ81來產生該操作請求訊號SZ91,提供該操作請求訊號SZ91到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SZ91。在該觸發事件EQ81依靠該電使用目標285而發生的條件下,該輸入單元440依靠該電使用目標285來提供該操作請求訊號SZ91到該處理單元230。該處理單元230響應該操作請求訊號SZ91來提供一控制訊號SV81到該控制端263C。例如,該控制訊號SV81是一選擇控制訊號,並起到指示該輸入端2631的作用。該多工器263響應該控制訊號SV81來導致該輸入端2631和該輸出端263P之間的該第三功能關係等於該第三導通關係。 For example, the trigger event EQ81 is a user input event in which the input unit 440 receives a user input operation JU91. The input unit 440 generates the operation request signal SZ91 in response to the trigger event EQ81 which is the user input event, provides the operation request signal SZ91 to the processing unit 230, and thereby causes the processing unit 230 to receive the operation request signal SZ91 . Under the condition that the trigger event EQ81 occurs by means of the electricity usage target 285 , the input unit 440 supplies the operation request signal SZ91 to the processing unit 230 by means of the electricity usage target 285 . The processing unit 230 provides a control signal SV81 to the control terminal 263C in response to the operation request signal SZ91. For example, the control signal SV81 is a selection control signal, and plays the role of instructing the input terminal 2631 . The multiplexer 263 causes the third functional relationship between the input terminal 2631 and the output terminal 263P to be equal to the third conduction relationship in response to the control signal SV81.

在該第三功能關係等於該第三導通關係的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。該處理單元230從該感測單元260接收該感測訊號SM81,並基於所接收的該感測訊號SM81來以該指定測量值格式HQ81獲得該測量值VM81。例如,該電使用目標285和該電使用目標286被配置以分別對應於該物理參數應用單元335和該物理參數應用單元735,皆耦合於該處理單元230,並分別位於不同空間位置。 Under the condition that the third functional relationship is equal to the third conduction relationship, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. The processing unit 230 receives the sensing signal SM81 from the sensing unit 260, and obtains the measurement value VM81 in the specified measurement value format HQ81 based on the received sensing signal SM81. For example, the electricity usage target 285 and the electricity usage target 286 are configured to correspond to the physical parameter application unit 335 and the physical parameter application unit 735 , both coupled to the processing unit 230 and located at different spatial positions, respectively.

在一些實施例中,該輸入單元440接收用於選擇該電使用目標285的該使用者輸入操作JU91以導致該觸發事件EQ81發生。該輸入單元440響應該使用者輸入操作JU91來產生該操作請求訊號SZ91。該處理單元230接收該操作請求訊號SZ91,響應該操作請求訊號SZ91來使用該感測訊號SM81以獲得該測量值VM81,並響應該操作請求訊號SZ91來執行一資料獲取AF9C以獲得該電使用目標識別符HZ2T。例如,該儲存單元250包含該儲存空間SS11。該儲存空間SS11具有所預設的該額定範圍界限值對DC1A、該可變物理參數範圍碼UM8A、該電使用目標識別符HZ2T、該電使用目標識別符HZ22和該應用單元識別符HA2T。 In some embodiments, the input unit 440 receives the user input operation JU91 for selecting the electricity usage target 285 to cause the trigger event EQ81 to occur. The input unit 440 generates the operation request signal SZ91 in response to the user inputting the operation JU91. The processing unit 230 receives the operation request signal SZ91, uses the sensing signal SM81 to obtain the measurement value VM81 in response to the operation request signal SZ91, and executes a data acquisition AF9C in response to the operation request signal SZ91 to obtain the electricity usage target Identifier HZ2T. For example, the storage unit 250 includes the storage space SS11. The storage space SS11 has the preset rated range limit value pair DC1A, the variable physical parameter range code UM8A, the electrical usage target identifier HZ2T, the electrical usage target identifier HZ22 and the application unit identifier HA2T.

在一些實施例中,該處理單元230被配置以基於所獲得的該電使用目標識別符HZ2T來獲得該記憶體位址EC9T,並基於所獲得的該記憶體位址EC9T來存取被儲存在該記憶體位置XC9T的該應用單元識別符HA2T以獲得該應用單元識別符HA2T。在該處理單元230藉由檢查該 測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所獲得的該應用單元識別符HA2T和所存取的該控制資料碼CK8T來執行該訊號產生控制GS81以導致該傳輸單元240產生該控制訊號SC81,並導致該傳輸單元240向該操作單元397傳輸該控制訊號SC81。 In some embodiments, the processing unit 230 is configured to obtain the memory address EC9T based on the obtained electrical usage target identifier HZ2T, and to access the memory address stored in the memory based on the obtained memory address EC9T The application unit identifier HA2T of the body location XC9T to obtain the application unit identifier HA2T. In the processing unit 230 by checking the The mathematical relationship KA81 between the measured value VM81 and the measured value application range RM1L determines the condition of the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in, the processing unit 230 identifies based on the obtained application unit The symbol HA2T and the accessed control data code CK8T are used to execute the signal generation control GS81 to cause the transmission unit 240 to generate the control signal SC81 and cause the transmission unit 240 to transmit the control signal SC81 to the operation unit 397 .

例如,該控制訊號SC81輸送該應用單元識別符HA2T。例如,該控制訊號SC81輸送該應用單元識別符HA2T和該測量值目標範圍碼EM1T。該操作單元397響應該控制訊號SC81來從該控制訊號SC81獲得該測量值目標範圍碼EM1T和該應用單元識別符HA2T。在一第三特定情況中,該操作單元397基於所獲得的該測量值目標範圍碼EM1T和所獲得的該應用單元識別符HA2T來執行使用該輸出端338P的該訊號產生操作BY81以向該物理參數應用單元335傳輸一操作訊號SG81。該物理參數應用單元335響應該操作訊號SG81來導致該可變物理參數QU1A處於該物理參數目標範圍RD1ET。 For example, the control signal SC81 conveys the application unit identifier HA2T. For example, the control signal SC81 conveys the application unit identifier HA2T and the measurement value target range code EM1T. The operation unit 397 responds to the control signal SC81 to obtain the measured value target range code EM1T and the application unit identifier HA2T from the control signal SC81. In a third specific case, the operation unit 397 performs the signal generation operation BY81 using the output 338P based on the obtained measurement value target range code EM1T and the obtained application unit identifier HA2T to report to the physical The parameter application unit 335 transmits an operation signal SG81. The physical parameter application unit 335 causes the variable physical parameter QU1A to be in the physical parameter target range RD1ET in response to the operation signal SG81.

在一些實施例中,在該控制訊號SC81輸送該應用單元識別符HA2T和該測量值目標範圍碼EM1T的條件下,該操作單元397響應該控制訊號SC81來從該控制訊號SC81獲得該應用單元識別符HA2T和該測量值目標範圍碼EM1T,並基於所獲得的該應用單元識別符HA2T來提供一控制訊號SD81到該控制端363C。例如,該控制訊號SD81是一選擇控制訊號,並起到指示該輸入端3631的作 用。該多工器363響應該控制訊號SD81來導致該輸入端3631和該輸出端363P之間的該第一功能關係等於該第一導通關係。在該第一功能關係等於該第一導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN81。 In some embodiments, under the condition that the control signal SC81 conveys the application unit identifier HA2T and the measurement target range code EM1T, the operation unit 397 obtains the application unit identifier from the control signal SC81 in response to the control signal SC81 symbol HA2T and the measured value target range code EM1T, and based on the obtained application unit identifier HA2T, a control signal SD81 is provided to the control terminal 363C. For example, the control signal SD81 is a selection control signal, and plays the role of instructing the input terminal 3631 use. The multiplexer 363 causes the first functional relationship between the input end 3631 and the output end 363P to be equal to the first conduction relationship in response to the control signal SD81. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81.

該操作單元397從該感測單元334接收該感測訊號SN81,並基於所接收的該感測訊號SN81來獲得一測量值VN81。在該第三特定情況中,該操作單元397基於所獲得的該測量值VN81、所獲得的該測量值目標範圍碼EM1T和所獲得的該應用單元識別符HA2T來執行使用該輸出端338P的該訊號產生操作BY81以向該物理參數應用單元335傳輸該操作訊號SG81。 The operating unit 397 receives the sensing signal SN81 from the sensing unit 334, and obtains a measurement value VN81 based on the received sensing signal SN81. In the third specific case, the operation unit 397 performs the operation using the output 338P based on the obtained measurement value VN81, the obtained measurement value target range code EM1T and the obtained application unit identifier HA2T The signal generation operation BY81 is used to transmit the operation signal SG81 to the physical parameter application unit 335 .

在一些實施例中,該儲存空間SS11進一步具有一記憶體位置PF9T。該儲存單元250在該記憶體位置PF9T儲存所預設的該電使用目標識別符HZ2T。該記憶體位置PF9T由一記憶體位址FF9T所識別,或基於該記憶體位址FF9T而被識別。該記憶體位址FF9T被預設。該電使用目標285通過該處理單元230而耦合於該記憶體位置PF9T。例如,該操作請求訊號SZ91輸送一輸入資料DJ91。 In some embodiments, the storage space SS11 further has a memory location PF9T. The storage unit 250 stores the preset electrical usage target identifier HZ2T in the memory location PF9T. The memory location PF9T is identified by or based on a memory address FF9T. The memory address FF9T is preset. The electrical usage target 285 is coupled to the memory location PF9T through the processing unit 230 . For example, the operation request signal SZ91 sends an input data DJ91.

該資料獲取AF9C是一資料獲取操作AF95和一資料獲取操作AF96的其中之一。該資料獲取操作AF95藉由使用所預設的該記憶體位址PF2T來存取被儲存在該記憶體位置PF9T的該電使用目標識別符HZ2T以獲得所預設的該電使用目標識別符HZ2T。該資料獲取操作AF96基於一預設資料導出規則YU91來處理該輸入資料DJ91以獲 得所預設的該電使用目標識別符HZ2T。 The data acquisition AF9C is one of a data acquisition operation AF95 and a data acquisition operation AF96. The data acquisition operation AF95 uses the preset memory address PF2T to access the power usage target identifier HZ2T stored in the memory location PF9T to obtain the preset power usage target identifier HZ2T. The data acquisition operation AF96 processes the input data DJ91 based on a preset data export rule YU91 to obtain The preset target identifier HZ2T for the electricity is obtained.

在一些實施例中,在該輸入單元440接收用於選擇該電使用目標286的一使用者輸入操作JU92的一觸發事件發生的條件下,該輸入單元440導致該處理單元230接收一操作請求訊號SZ92。該處理單元230響應該操作請求訊號SZ92來獲得一測量值VM91和該電使用目標識別符HZ22,並基於所獲得的該電使用目標識別符HZ22來獲得該應用單元識別符HA22。該處理單元230基於所獲得的該測量值VM91和所獲得的該應用單元識別符HA22來導致該傳輸單元240向該操作單元397傳輸一控制訊號SC97。該控制訊號SC97用於控制該可變物理參數QU2A,並輸送該應用單元識別符HA22。 In some embodiments, the input unit 440 causes the processing unit 230 to receive an operation request signal under the condition that a trigger event occurs when the input unit 440 receives a user input operation JU92 for selecting the electricity usage target 286 SZ92. The processing unit 230 obtains a measurement value VM91 and the electrical usage target identifier HZ22 in response to the operation request signal SZ92, and obtains the application unit identifier HA22 based on the obtained electrical usage target identifier HZ22. The processing unit 230 causes the transmission unit 240 to transmit a control signal SC97 to the operation unit 397 based on the obtained measurement value VM91 and the obtained application unit identifier HA22. The control signal SC97 is used to control the variable physical parameter QU2A and transmit the application unit identifier HA22.

例如,該輸入單元440響應用於選擇該電使用目標286的該使用者輸入操作JU92來產生該操作請求訊號SZ92,提供該操作請求訊號SZ92到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SZ92。該處理單元230響應該操作請求訊號SZ92來提供一控制訊號SV82到該控制端263C。例如,該控制訊號SV82是一選擇控制訊號,起到指示該輸入端2632的作用,並不同於該控制訊號SV81。該多工器263響應該控制訊號SV82來導致該輸入端2632和該輸出端263P之間的該第四功能關係等於該第四導通關係。在該第四功能關係等於該第四導通關係的條件下,該感測單元260感測該可變物理參數QP2A以產生一感測訊號SM91。該處理單元230從該感測單元260接收該感測訊號SM91,並基於所接收的該感測訊號SM91 來獲得該測量值VM91。 For example, the input unit 440 generates the operation request signal SZ92 in response to the user input operation JU92 for selecting the electricity usage target 286, provides the operation request signal SZ92 to the processing unit 230, and thereby causes the processing unit 230 The operation request signal SZ92 is received. The processing unit 230 provides a control signal SV82 to the control terminal 263C in response to the operation request signal SZ92. For example, the control signal SV82 is a selection control signal, which plays the role of instructing the input terminal 2632, and is different from the control signal SV81. The multiplexer 263 causes the fourth functional relationship between the input terminal 2632 and the output terminal 263P to be equal to the fourth conduction relationship in response to the control signal SV82. Under the condition that the fourth functional relationship is equal to the fourth conduction relationship, the sensing unit 260 senses the variable physical parameter QP2A to generate a sensing signal SM91. The processing unit 230 receives the sensing signal SM91 from the sensing unit 260 and is based on the received sensing signal SM91 to obtain the measured value VM91.

在一些實施例中,該操作單元397響應該控制訊號SC97來從該控制訊號SC97獲得該應用單元識別符HA22,並基於所獲得的該應用單元識別符HA22來提供一控制訊號SD82到該控制端363C。例如,該控制訊號SD82是一選擇控制訊號,並起到指示該輸入端3632的作用。該多工器363響應該控制訊號SD82來導致該輸入端3632和該輸出端363P之間的該第二功能關係等於該第二導通關係。在該第二功能關係等於該第二導通關係的條件下,該感測單元334感測該可變物理參數QU2A以產生一感測訊號SN91。 In some embodiments, the operation unit 397 obtains the application unit identifier HA22 from the control signal SC97 in response to the control signal SC97, and provides a control signal SD82 to the control terminal based on the obtained application unit identifier HA22 363C. For example, the control signal SD82 is a selection control signal, and plays the role of instructing the input terminal 3632 . The multiplexer 363 causes the second functional relationship between the input end 3632 and the output end 363P to be equal to the second conduction relationship in response to the control signal SD82. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 senses the variable physical parameter QU2A to generate a sensing signal SN91.

該操作單元397從該感測單元334接收該感測訊號SN91,並基於所接收的該感測訊號SN91來獲得一測量值VN91。該操作單元397基於所獲得的該測量值VN91和所獲得的該應用單元識別符HA22來執行使用該輸出端338Q的一訊號產生操作BY97以向該物理參數應用單元735傳輸一操作訊號SG97。該操作訊號SG97用於控制該可變物理參數QU2A。 The operating unit 397 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 based on the received sensing signal SN91. The operation unit 397 performs a signal generation operation BY97 using the output terminal 338Q based on the obtained measurement value VN91 and the obtained application unit identifier HA22 to transmit an operation signal SG97 to the physical parameter application unit 735 . The operation signal SG97 is used to control the variable physical parameter QU2A.

例如,該使用者輸入操作JU81是該使用者輸入操作JU91和該使用者輸入操作JU92的其中之一。該觸發事件EQ81是該輸入單元440接收用於選擇該電使用目標286的該使用者輸入操作JU92的一使用者輸入事件。在該輸入單元440接收使用該電使用目標285的該使用者輸入操作JU91的條件下,該處理單元230響應該使用者輸入操作JU91來使該傳輸單元240向該操作單元397傳輸該控 制訊號SC81。在該輸入單元440接收使用該電使用目標286的該使用者輸入操作JU92的條件下,該處理單元230響應該使用者輸入操作JU92來使該傳輸單元240向該操作單元397傳輸該控制訊號SC97。 For example, the user input operation JU81 is one of the user input operation JU91 and the user input operation JU92. The trigger event EQ81 is a user input event for the input unit 440 to receive the user input operation JU92 for selecting the electricity usage target 286 . Under the condition that the input unit 440 receives the user input operation JU91 using the electricity usage target 285 , the processing unit 230 causes the transmission unit 240 to transmit the control to the operation unit 397 in response to the user input operation JU91 Control signal SC81. Under the condition that the input unit 440 receives the user input operation JU92 using the electricity usage target 286 , the processing unit 230 causes the transmission unit 240 to transmit the control signal SC97 to the operation unit 397 in response to the user input operation JU92 .

在一些實施例中,該使用者介面區AP11具有該電使用目標285和該電使用目標286。該使用者輸入操作JU91由該使用者295所執行。該電使用目標285是一第三感測目標和一第三顯示目標的其中之一。在該電使用目標285是該第三感測目標的條件下,該輸入單元440包含該電使用目標285。在該電使用目標285是該第三顯示目標的條件下,該顯示單元460包含該電使用目標285。例如,該第三感測目標是一第三按鈕目標。該第三顯示目標是一第三圖符目標。 In some embodiments, the user interface area AP11 has the electricity usage target 285 and the electricity usage target 286 . The user input operation JU91 is performed by the user 295 . The electrical usage target 285 is one of a third sensing target and a third display target. Under the condition that the electricity usage target 285 is the third sensing target, the input unit 440 includes the electricity usage target 285 . Under the condition that the electricity usage target 285 is the third display target, the display unit 460 includes the electricity usage target 285 . For example, the third sensing target is a third button target. The third display object is a third icon object.

該電使用目標286是一第四感測目標和一第四顯示目標的其中之一。在該電使用目標286是該第四感測目標的條件下,該輸入單元440包含該電使用目標286。在該電使用目標286是該第四顯示目標的條件下,該顯示單元460包含該電使用目標286。例如,該第四感測目標是一第四按鈕目標。該第三顯示目標是一第四圖符目標。該操作單元297進一步包含一指向裝置441。例如,該輸入單元440包含該指向裝置441。例如,該輸入單元440是該指向裝置441。 The electrical usage target 286 is one of a fourth sensing target and a fourth display target. Under the condition that the electricity usage target 286 is the fourth sensing target, the input unit 440 includes the electricity usage target 286 . Under the condition that the electricity usage target 286 is the fourth display target, the display unit 460 includes the electricity usage target 286 . For example, the fourth sensing target is a fourth button target. The third display object is a fourth icon object. The operating unit 297 further includes a pointing device 441 . For example, the input unit 440 includes the pointing device 441 . For example, the input unit 440 is the pointing device 441 .

例如,在該電使用目標285被配置以存在於該輸入單元440的條件下,該電使用目標285接收該使用者輸入操作JU91來導致該輸入單元440提供該操作請求訊 號SZ91到該處理單元230。在該電使用目標285被配置以存在於該顯示單元460的條件下,該指向裝置441接收用於選擇該電使用目標285的該使用者輸入操作JU91來導致該指向裝置441提供該操作請求訊號SZ91到該處理單元230。例如,該使用者輸入操作JU91被配置以依靠該指向裝置441和該選擇工具YJ81來選擇該電使用目標285。例如,該選擇工具YJ81是一游標。 For example, under the condition that the electricity usage target 285 is configured to exist in the input unit 440, the electricity usage target 285 receives the user input operation JU91 to cause the input unit 440 to provide the operation request message number SZ91 to the processing unit 230. Under the condition that the electricity usage target 285 is configured to exist on the display unit 460, the pointing device 441 receives the user input operation JU91 for selecting the electricity usage target 285 to cause the pointing device 441 to provide the operation request signal SZ91 to the processing unit 230. For example, the user input operation JU91 is configured to select the electricity usage target 285 by means of the pointing device 441 and the selection tool YJ81. For example, the selection tool YJ81 is a cursor.

在一些實施例中,所預設的該額定範圍界限值對DC1A和該可變物理參數範圍碼UM8A皆進一步基於所預設的該應用單元識別符HA2T而被儲存在該儲存空間SS11中。該處理單元230進一步基於該應用單元識別符HA2T來使用該儲存單元250以存取所預設的該額定範圍界限值對DC1A和該可變物理參數範圍碼UM8A的其中任一。 In some embodiments, the preset rated range limit value pair DC1A and the variable physical parameter range code UM8A are further stored in the storage space SS11 based on the preset application unit identifier HA2T. The processing unit 230 further uses the storage unit 250 to access any one of the preset nominal range limit pair DC1A and the variable physical parameter range code UM8A based on the application unit identifier HA2T.

所預設的該應用範圍界限值對DM1L、所預設的該控制資料碼CK8T和所預設的該候選範圍界限值對DM1B皆進一步基於所預設的該應用單元識別符HA2T而被儲存在該儲存空間SS11中。該處理單元230進一步基於該應用單元識別符HA2T來使用該記憶體單元25Y1以存取所預設的該應用範圍界限值對DM1L、所預設的該控制資料碼CK8T和所預設的該候選範圍界限值對DM1B的其中任一。 The preset application range threshold pair DM1L, the preset control data code CK8T, and the preset candidate range threshold pair DM1B are further stored in the application unit identifier HA2T based on the preset application unit identifier HA2T. in the storage space SS11. The processing unit 230 further uses the memory unit 25Y1 to access the preset application range limit value pair DM1L, the preset control data code CK8T and the preset candidate based on the application unit identifier HA2T Range limit value to any of DM1B.

所預設的該應用範圍界限值對DM1L和所預設的該候選範圍界限值對DM1B皆被配置以屬於一測量範圍界限資料碼類型TM81。該測量範圍界限資料碼類型TM81由一測量範圍界限資料碼類型識別符HM81所識別。 該測量範圍界限資料碼類型識別符HM81被預設。所預設的該控制資料碼CK8T被配置以屬於一控制資料碼類型TK81。該控制資料碼類型TK81由一控制資料碼類型識別符HK81所識別。該控制資料碼類型識別符HK81被預設。 The preset application range limit value pair DM1L and the preset candidate range limit value pair DM1B are both configured to belong to a measurement range limit data code type TM81. The measurement range limit data code type TM81 is identified by a measurement range limit data code type identifier HM81. The measurement range limit data code type identifier HM81 is preset. The preset control data code CK8T is configured to belong to a control data code type TK81. The control data code type TK81 is identified by a control data code type identifier HK81. The control data code type identifier HK81 is preset.

例如,該記憶體位址FM8L基於所預設的該應用單元識別符HA2T、所預設的該測量值應用範圍碼EH1L和所預設的該測量範圍界限資料碼類型識別符HM81而被預設。該處理單元230響應該觸發事件EQ81來獲得該應用單元識別符HA2T。該資料獲取操作AF81基於所獲得的該應用單元識別符HA2T、所確定的該測量值應用範圍碼EH1L和所獲得的該測量範圍界限資料碼類型識別符HM81來獲得該記憶體位址FM8L,並基於所獲得的該記憶體位址FM8L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PM8L的所預設的該應用範圍界限值對DM1L。 For example, the memory address FM8L is preset based on the preset application unit identifier HA2T, the preset measurement value application range code EH1L, and the preset measurement range limit data code type identifier HM81. The processing unit 230 obtains the application unit identifier HA2T in response to the trigger event EQ81. The data acquisition operation AF81 obtains the memory address FM8L based on the obtained application unit identifier HA2T, the determined measurement value application range code EH1L, and the obtained measurement range limit data code type identifier HM81, and based on The obtained memory address FM8L is used to use the memory cell 25Y1 to access the preset pair of application range limit values DM1L stored in the memory location PM8L.

例如,該記憶體位址FV8L基於所預設的該應用單元識別符HA2T、所預設的該測量值應用範圍碼EH1L和所預設的該控制資料碼類型識別符HK81而被預設。在該處理單元230確定該可變物理參數QP1A目前於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所獲得的該應用單元識別符HA2T、所確定的該測量值應用範圍碼EH1L和所獲得的該控制資料碼類型識別符HK81來獲得該記憶體位址FV8L,並基於所獲得的該記憶體位址FV8L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PV8L的該控制資料碼CK8T。 For example, the memory address FV8L is preset based on the preset application unit identifier HA2T, the preset measurement value application range code EH1L, and the preset control data code type identifier HK81. Under the condition that the processing unit 230 determines the physical parameter application range RC1EL to which the variable physical parameter QP1A is currently, the processing unit 230 applies the range code EH1L based on the obtained application unit identifier HA2T and the determined measurement value. and the obtained control data code type identifier HK81 to obtain the memory address FV8L, and based on the obtained memory address FV8L to use the memory cell 25Y1 to access the memory stored in the memory location PV8L Control data code CK8T.

請參閱圖60。圖60為繪示於圖1中的該控 制系統901的一實施結構9069的示意圖。如圖60所示,該實施結構9069包含該控制裝置212、該功能裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該功能裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該接收單元270、該輸入單元440和該傳輸單元240。該處理單元230耦合於該伺服器280。 See Figure 60. FIG. 60 is the control shown in FIG. 1 A schematic diagram of an implementation structure 9069 of the control system 901. As shown in FIG. 60 , the implementation structure 9069 includes the control device 212 , the function device 130 and the server 280 . The control device 212 is linked to the server 280 . The control device 212 is used for controlling the variable physical parameter QU1A existing in the functional device 130 by means of the trigger event EQ81 , and includes the operation unit 297 and the sensing unit 260 . The operation unit 297 includes the processing unit 230 , the receiving unit 270 , the input unit 440 and the transmission unit 240 . The processing unit 230 is coupled to the server 280 .

在一些實施例中,該操作單元297包含耦合於該處理單元230的一定時器545、耦合於該處理單元230的一電應用目標WJ11、和耦合於該處理單元230的一定時器546。該定時器545用於測量該時鐘時間TH1A,並被配置以符合一定時器規格FW22。該定時器545受該處理單元230控制而感測該時鐘時間TH1A以產生一感測訊號SK91。例如,該感測訊號SK91是一時鐘時間訊號。例如,該使用者介面區AP11具有該電應用目標WJ11。該電應用目標WJ11是一第五按鈕目標和一第五圖符目標的其中之一。該電應用目標WJ11是一電應用單元。 In some embodiments, the operation unit 297 includes a timer 545 coupled to the processing unit 230 , an electrical application target WJ11 coupled to the processing unit 230 , and a timer 546 coupled to the processing unit 230 . The timer 545 is used to measure the clock time TH1A and is configured to comply with a timer specification FW22. The timer 545 is controlled by the processing unit 230 to sense the clock time TH1A to generate a sensing signal SK91. For example, the sensing signal SK91 is a clock time signal. For example, the user interface area AP11 has the electrical application target WJ11. The electrical application object WJ11 is one of a fifth button object and a fifth icon object. The electrical application target WJ11 is an electrical application unit.

在該感測單元260被配置以相同於該定時器545的條件下,該感測訊號SM81被配置以相同於該感測訊號SK91,該感測器規格FQ11被配置以相同於該定時器規格FW22,且該可變物理參數QP1A被配置以相同於該時鐘時間TH1A。該記憶體單元25Y1儲存相同於該控制資訊碼CM85的該控制資料碼CK8T。例如,在該可變物理參數QP1A被配置以相同於該時鐘時間TH1A的條件下,該測量 值應用範圍碼EH1L相同於該測量值指定範圍碼EL1T。該定時器規格FW22被預設。 Under the condition that the sensing unit 260 is configured to be the same as the timer 545, the sensing signal SM81 is configured to be the same as the sensing signal SK91, and the sensor specification FQ11 is configured to be the same as the timer specification FW22, and the variable physical parameter QP1A is configured to be the same as the clock time TH1A. The memory unit 25Y1 stores the control data code CK8T which is the same as the control information code CM85. For example, under the condition that the variable physical parameter QP1A is configured to be the same as the clock time TH1A, the measurement The value application range code EH1L is the same as the measurement value designation range code EL1T. The timer specification FW22 is preset.

該觸發事件EQ81是該輸入單元440接收該使用者輸入操作JU81的該使用者輸入事件。該使用者輸入操作JU81用於選擇該電應用目標WJ11。該輸入單元440響應該觸發事件EQ81來產生該操作請求訊號SZ81,提供該操作請求訊號SZ81到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SZ81。在該使用者輸入事件發生的條件下,該處理單元230響應該操作請求訊號SZ81來使用該感測訊號SK91以獲得該測量值VM81。例如,是該時鐘時間訊號的該感測訊號SK91以一指定測量值格式HQ92輸送一測量值NP91。例如,該測量值NP91是一特定計數值。該指定測量值格式HQ92基於一指定位元數目UX92而被特徵化,並是一指定計數值格式。 The trigger event EQ81 is the user input event in which the input unit 440 receives the user input operation JU81. The user input operation JU81 is used to select the electrical application target WJ11. The input unit 440 generates the operation request signal SZ81 in response to the trigger event EQ81, provides the operation request signal SZ81 to the processing unit 230, and thereby enables the processing unit 230 to receive the operation request signal SZ81. Under the condition that the user input event occurs, the processing unit 230 uses the sensing signal SK91 to obtain the measurement value VM81 in response to the operation request signal SZ81. For example, the sensing signal SK91, which is the clock time signal, delivers a measurement value NP91 in a specified measurement value format HQ92. For example, the measurement value NP91 is a specific count value. The specified measurement value format HQ92 is characterized based on a specified number of bits UX92 and is a specified count value format.

在一些實施例中,該觸發應用單元281響應該觸發事件EQ81來產生該操作請求訊號SX81,提供該操作請求訊號SX81到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX81。該處理單元230響應該操作請求訊號SX81來獲得該控制應用碼UA8T,並基於所獲得的該控制應用碼UA8T來使該傳輸單元240向該功能裝置130傳輸輸送該控制訊息CG81的該控制訊號SC81。例如,該控制應用碼UA8T包含或是該控制資料碼CK8T。 In some embodiments, the trigger application unit 281 generates the operation request signal SX81 in response to the trigger event EQ81, provides the operation request signal SX81 to the processing unit 230, and thereby causes the processing unit 230 to receive the operation request signal SX81 . The processing unit 230 obtains the control application code UA8T in response to the operation request signal SX81, and based on the obtained control application code UA8T, enables the transmission unit 240 to transmit the control signal SC81 for conveying the control message CG81 to the functional device 130 . For example, the control application code UA8T contains or the control data code CK8T.

該觸發應用單元281是該狀態改變偵測器475、該讀取器220、該接收單元270、該輸入單元440、該顯示單元460、該感測單元260和該定時器546的其中之 一。該觸發事件EQ81是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件、一識別媒介出現事件和一整數溢位事件的其中之一。在該觸發事件EQ81是該整數溢位事件的條件下,是該觸發應用單元281的該定時器546響應與該處理單元230相關的一時間控制GE81而導致該整數溢位事件發生。例如,該處理單元230被配置以執行用於控制該定時器546的該時間控制GE81。該定時器546響應該時間控制GE81來形成該整數溢位事件。 The trigger application unit 281 is one of the state change detector 475 , the reader 220 , the receiving unit 270 , the input unit 440 , the display unit 460 , the sensing unit 260 and the timer 546 one. The trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, an identification medium occurrence event and an integer overflow event. Under the condition that the trigger event EQ81 is the integer overflow event, the timer 546 of the trigger application unit 281 causes the integer overflow event to occur in response to a time control GE81 related to the processing unit 230 . For example, the processing unit 230 is configured to execute the time control GE81 for controlling the timer 546 . The timer 546 forms the integer overflow event in response to the time control GE81.

該處理單元230使用該感測訊號SK91以獲得等於該測量值NP91的該測量值VM81。該處理單元230響應該觸發事件EQ81來執行該資料確定AE8A以確定相同於該測量值指定範圍碼EL1T的該測量值應用範圍碼EH1L。在該處理單元230藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所確定的該測量值應用範圍碼EH1L來從該記憶體單元25Y1獲得相同於該控制資訊碼CM85的該控制應用碼UA8T。例如,在該感測單元260被配置以相同於該定時器545的條件下,該指定測量值格式HQ81被配置以相同於該指定測量值格式HQ92。 The processing unit 230 uses the sensing signal SK91 to obtain the measurement value VM81 equal to the measurement value NP91. The processing unit 230 performs the profile determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the measurement value designation range code EL1T. Under the condition that the processing unit 230 determines the physical parameter application range RC1EL that the variable physical parameter QP1A is currently in by examining the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the processing unit 230 applies range code EH1L to obtain the control application code UA8T from the memory unit 25Y1, which is identical to the control information code CM85, based on the determined measurement value. For example, under the condition that the sensing unit 260 is configured to be the same as the timer 545, the specified measurement value format HQ81 is configured to be the same as the specified measurement value format HQ92.

例如,該控制資訊碼CM85包含所預設的該測量值指定範圍碼EL1T、所預設的該時鐘參考時間值NR81和所預設的該測量時間長度值VH8T。該處理單元230基於所獲得的該控制應用碼UA8T來在該操作時間TD81之內執行用於該測量應用功能FB81的該訊號產生控制GS81以導 致該傳輸單元240產生輸送該控制資料訊息CN85的該控制訊號SC81。例如,該控制資料訊息CN85包含所預設的該測量值指定範圍碼EL1T、所預設的該時鐘參考時間值NR81和所預設的該測量時間長度值VH8T。在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該測量值指定範圍碼EL1T來起到指示該測量值指定範圍RQ1T和該時鐘時間指定區間HR1ET的至少其中之一的作用。 For example, the control information code CM85 includes the preset measurement value specifying range code EL1T, the preset clock reference time value NR81 and the preset measurement time length value VH8T. The processing unit 230 executes the signal generation control GS81 for the measurement application function FB81 within the operation time TD81 based on the obtained control application code UA8T to induce The transmission unit 240 is caused to generate the control signal SC81 that transmits the control data message CN85. For example, the control data message CN85 includes the preset measurement value specifying range code EL1T, the preset clock reference time value NR81 and the preset measurement time length value VH8T. Under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 transmits the preset measurement value designation range code EL1T to indicate the measurement value designation The role of at least one of the range RQ1T and this clock time designates the interval HR1ET.

在一些實施例中,該輸入單元440包含該使用者介面區AP11和設置於該使用者介面區AP11中的該電應用目標WJ11(或該第五按鈕目標)。例如,該顯示單元460包含該使用者介面區AP11和設置於該使用者介面區AP11中的該電應用目標WJ11(或該第五圖符目標)。例如,該輸入單元440包含一觸控螢幕4401。該觸控螢幕4401包含該使用者介面區AP11和設置於該使用者介面區AP11中的該電應用目標WJ11(或該第五按鈕目標),並接收該使用者輸入操作JU81。 In some embodiments, the input unit 440 includes the user interface area AP11 and the electrical application object WJ11 (or the fifth button object) disposed in the user interface area AP11. For example, the display unit 460 includes the user interface area AP11 and the electrical application object WJ11 (or the fifth icon object) disposed in the user interface area AP11. For example, the input unit 440 includes a touch screen 4401 . The touch screen 4401 includes the user interface area AP11 and the electrical application object WJ11 (or the fifth button object) disposed in the user interface area AP11, and receives the user input operation JU81.

例如,該觸控螢幕4401的該電應用目標WJ11接收該使用者輸入操作JU81。該觸控螢幕4401是該觸發應用單元281、該觸發應用單元288和該觸發應用單元28H的任一單元。在該觸控螢幕4401是該觸發應用單元281的條件下,該觸控螢幕4401響應該使用者輸入操作JU81(或該觸發事件EQ81)來產生該操作請求訊號SX81,並提供該操作請求訊號SX81到該處理單元230。 For example, the electrical application target WJ11 of the touch screen 4401 receives the user input operation JU81. The touch screen 4401 is any one of the trigger application unit 281 , the trigger application unit 288 and the trigger application unit 28H. Under the condition that the touch screen 4401 is the trigger application unit 281, the touch screen 4401 generates the operation request signal SX81 in response to the user input operation JU81 (or the trigger event EQ81), and provides the operation request signal SX81 to the processing unit 230.

在一些實施例中,該功能裝置130包含該操 作單元397、該功能單元335和該儲存單元332。包含於該操作單元397中的該定時器342用於測量該時鐘時間TH1A,並被配置以符合該定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於一時鐘時間指定區間HR1ET而被特徵化。該時鐘時間指定區間HR1ET由一測量值指定範圍RQ1T所代表。該測量值指定範圍碼EL1T被配置以指示該時鐘時間指定區間HR1ET。 In some embodiments, the functional device 130 includes the operation The operating unit 397 , the functional unit 335 and the storage unit 332 . The timer 342 included in the operation unit 397 is used to measure the clock time TH1A and is configured to comply with the timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a clock time designation interval HR1ET. The clock time designation interval HR1ET is represented by a measurement value designation range RQ1T. The measurement value designation range code EL1T is configured to indicate the clock time designation interval HR1ET.

該儲存單元332具有一記憶體位置YS8T,並在該記憶體位置YS8T儲存該物理參數目標範圍碼UQ1T。該物理參數目標範圍碼UQ1T代表該可變物理參數QU1A被期望在該時鐘時間指定區間HR1ET內處於的一物理參數目標範圍RD1ET,並被配置以基於該測量值指定範圍碼EL1T而被儲存在該記憶體位置YS8T。該記憶體位置YS8T基於一記憶體位址AS8T而被識別。該記憶體位址AS8T基於該測量值指定範圍碼EL1T而被預設。該物理參數目標範圍RD1ET選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。 The storage unit 332 has a memory location YS8T, and stores the physical parameter target range code UQ1T in the memory location YS8T. The physical parameter target range code UQ1T represents a physical parameter target range RD1ET in which the variable physical parameter QU1A is expected to be within the clock time designation interval HR1ET, and is configured to be stored in the measured value designation range code EL1T based on the measured value. Memory location YS8T. The memory location YS8T is identified based on a memory address AS8T. The memory address AS8T is preset based on the measurement value designation range code EL1T. The physical parameter target range RD1ET is selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2, . . .

在一些實施例中,當該操作單元397接收該控制訊號SC81時,該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T。該控制訊號SC81輸送所預設的該測量值指定範圍碼EL1T。該操作單元397從該控制訊號SC81獲得所輸送的該測量值指定範圍碼EL1T,基於所獲得的該測量值指定範圍碼EL1T來獲得該記憶體位址AS8T,並基於所獲得的該記憶體位址AS8T來存取被儲 存在該記憶體位置YS8T的該物理參數目標範圍碼UQ1T以獲得所預設的該測量值目標範圍碼EM1T。 In some embodiments, when the operating unit 397 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T. The control signal SC81 transmits the preset measurement value specified range code EL1T. The operation unit 397 obtains the transmitted measurement value designation range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained measurement value designation range code EL1T, and obtains the memory address AS8T based on the obtained measurement value designation range code EL1T to access the stored The physical parameter target range code UQ1T exists in the memory location YS8T to obtain the preset measurement value target range code EM1T.

該操作單元397基於所獲得的該測量值目標範圍碼EM1T來執行用於該測量應用功能FA81的該訊號產生操作BY81以向該物理參數應用單元335傳輸該操作訊號SG81。該物理參數應用單元335響應該操作訊號SG81來導致該可變物理參數QU1A處於該物理參數目標範圍RD1ET。該操作單元397從該控制訊號SC81獲得所輸送的該時鐘參考時間值NR81,基於所獲得的該時鐘參考時間值NR81來導致該定時器342在一啟動時間TT82之內啟動,並藉此導致該定時器342在該啟動時間TT82之內產生一感測訊號SY80。該感測訊號SY80是一初始時間訊號,並以該指定測量值格式HH95輸送一測量值NY80。例如,該測量值NY80被配置以相同於該時鐘參考時間值NR81。 The operation unit 397 performs the signal generation operation BY81 for the measurement application function FA81 based on the obtained measurement value target range code EM1T to transmit the operation signal SG81 to the physical parameter application unit 335 . The physical parameter application unit 335 causes the variable physical parameter QU1A to be in the physical parameter target range RD1ET in response to the operation signal SG81. The operation unit 397 obtains the supplied clock reference time value NR81 from the control signal SC81, causes the timer 342 to start within a start time TT82 based on the obtained clock reference time value NR81, and thereby causes the The timer 342 generates a sensing signal SY80 within the activation time TT82. The sensing signal SY80 is an initial time signal, and sends a measurement value NY80 in the specified measurement value format HH95. For example, the measurement value NY80 is configured to be the same as the clock reference time value NR81.

請參閱圖61,其為在本揭露各式各樣實施例中一控制系統801的示意圖。該控制系統801包含一控制目標裝置330和用於控制該控制目標裝置330的一控制裝置210。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 Please refer to FIG. 61 , which is a schematic diagram of a control system 801 in various embodiments of the present disclosure. The control system 801 includes a control target device 330 and a control device 210 for controlling the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單 元334,在一觸發事件EQ81發生的條件下響應該感測訊號SN11來獲得一測量值VN11,並在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下輸出用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一控制訊號SC11。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit The element 334 obtains a measurement value VN11 in response to the sensing signal SN11 under the condition that a trigger event EQ81 occurs, and the operation unit 297 checks a mathematical value between the measurement value VN11 and the measurement value application range RN1L Output a control signal SC11 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET under the condition of the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located in relation to KV11.

請參閱圖62。圖62為示出於圖61中的該控制系統801的一實施結構8011的示意圖。如圖62所示,該實施結構8011包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 62. FIG. 62 is a schematic diagram of an implementation structure 8011 of the control system 801 shown in FIG. 61 . As shown in FIG. 62 , the implementation structure 8011 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334,並包含一觸控螢幕4401。例如,該觸控螢幕4401包含一按鈕目標WP11。在一觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11;例如,該觸發事件EQ81是該操作單元297接收使用該按鈕目標WP11的一使用者輸入操作JU81。例如,該控制目標裝置330相同或不同於該功能裝置130。該控制裝置210相同或不同於該控制裝置212。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 and includes a touch screen 4401 . For example, the touch screen 4401 includes a button object WP11. When a trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11; for example, the trigger event EQ81 is when the operation unit 297 receives a user input operation using the button target WP11 JU81. For example, the control target device 330 is the same as or different from the functional device 130 . The control device 210 is the same as or different from the control device 212 .

在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一控制訊號SC11。例如,該操作單元297響應該使用者輸入操作JU81來產生一操作請求訊號SX81,並響應該操作請求訊號SX81來使用該感測訊號SN11以獲得該測量值VN11。 Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits to the control target device 330 a control signal SC11 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET. For example, the operation unit 297 generates an operation request signal SX81 in response to the user's input operation JU81, and uses the sensing signal SN11 to obtain the measurement value VN11 in response to the operation request signal SX81.

在一些實施例中,該操作單元297包含一處理單元230、一傳輸組件450和該觸控螢幕4401。該觸控螢幕4401和該傳輸組件450皆耦合於該處理單元230。該觸控螢幕4401接收該使用者輸入操作JU81,並響應該使用者輸入操作JU81來提供該操作請求訊號SX81到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX81。 In some embodiments, the operation unit 297 includes a processing unit 230 , a transmission element 450 and the touch screen 4401 . Both the touch screen 4401 and the transmission element 450 are coupled to the processing unit 230 . The touch screen 4401 receives the user input operation JU81, and responds to the user input operation JU81 to provide the operation request signal SX81 to the processing unit 230, thereby enabling the processing unit 230 to receive the operation request signal SX81.

例如,該電應用目標WJ11是耦合於該處理單元230的該按鈕目標WP11。該測量值應用範圍RN1L具有一應用範圍界限值對DN1L。該處理單元230響應該操作請求訊號SX81來使用該感測訊號SN11以獲得該測量值VN11。該處理單元230響應該操作請求訊號SX81來獲得該應用範圍界限值對DN1L,並藉由比較該測量值VN11和所獲得的該應用範圍界限值對DN1L來檢查該數學關係KV11。 For example, the electrical application object WJ11 is the button object WP11 coupled to the processing unit 230 . The measured value application range RN1L has an application range limit value pair DN1L. The processing unit 230 uses the sensing signal SN11 to obtain the measurement value VN11 in response to the operation request signal SX81. The processing unit 230 obtains the application range limit value pair DN1L in response to the operation request signal SX81, and checks the mathematical relationship KV11 by comparing the measured value VN11 with the obtained application range limit value pair DN1L.

在該處理單元230藉由檢查該數學關係 KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元230使該傳輸組件450向該控制目標裝置330傳輸該控制訊號SC11。該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A從該物理參數應用範圍RD1EL進入該物理參數目標範圍RD1ET。 At the processing unit 230 by checking the mathematical relationship The processing unit 230 enables the transmission element 450 to transmit the control signal SC11 to the control target device 330 under the condition that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL determined by the KV11 . The control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EL.

請參閱圖63。圖63為示出於圖61中的該控制系統801的一實施結構8012的示意圖。如圖63所示,該實施結構8012包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210是一移動裝置和一遙控器的其中之一,並包含一處理單元230和一通訊介面單元246。該通訊介面單元246耦合於該處理單元230。 See Figure 63. FIG. 63 is a schematic diagram of an implementation structure 8012 of the control system 801 shown in FIG. 61 . As shown in FIG. 63 , the implementation structure 8012 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A is one of a mobile device and a remote controller, and includes a processing unit 230 and a communication interface unit 246 . The communication interface unit 246 is coupled to the processing unit 230 .

該處理單元230被配置以使該通訊介面單元246向該控制目標裝置330傳輸一操作請求訊號SJ11。例如,在該控制目標裝置330接收該操作請求訊號SJ11的條件下,該控制目標裝置330感測該可變物理參數QU1A以產生一感測訊號SN11。該通訊介面單元246從該控制目標裝置330接收包含該感測訊號SN11的一操作回應訊號SE21。 The processing unit 230 is configured to enable the communication interface unit 246 to transmit an operation request signal SJ11 to the control target device 330 . For example, under the condition that the control target device 330 receives the operation request signal SJ11, the control target device 330 senses the variable physical parameter QU1A to generate a sensing signal SN11. The communication interface unit 246 receives an operation response signal SE21 including the sensing signal SN11 from the control target device 330 .

該處理單元230響應所接收的該感測訊號 SN11來獲得一測量值VN11。在該處理單元230藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元230使該通訊介面單元246向該控制目標裝置330傳輸一控制訊號SC11。該控制訊號SC11用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The processing unit 230 responds to the received sensing signal SN11 to obtain a measurement value VN11. Under the condition that the processing unit 230 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the processing unit 230 causes the communication interface unit 246 to transmit a control signal SC11 to the control target device 330 . The control signal SC11 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該處理單元230被配置以控制該通訊介面單元246。該控制目標裝置330包含一處理單元331、一感測單元334、一通訊介面單元386、和具有該可變物理參數QU1A的一物理參數應用單元335。該感測單元334、該通訊介面單元386和該物理參數應用單元335皆耦合於該處理單元331。該處理單元230響應一觸發事件EQ81來導致該通訊介面單元246向該通訊介面單元386傳輸該操作請求訊號SJ11。 In some embodiments, the processing unit 230 is configured to control the communication interface unit 246 . The control target device 330 includes a processing unit 331, a sensing unit 334, a communication interface unit 386, and a physical parameter application unit 335 having the variable physical parameter QU1A. The sensing unit 334 , the communication interface unit 386 and the physical parameter application unit 335 are all coupled to the processing unit 331 . The processing unit 230 causes the communication interface unit 246 to transmit the operation request signal SJ11 to the communication interface unit 386 in response to a trigger event EQ81 .

當該控制目標裝置330接收該操作請求訊號SJ11時,該感測單元334感測該可變物理參數QU1A以產生該感測訊號SN11。在該通訊介面單元386接收該操作請求訊號SJ11的條件下,該處理單元331在一操作時間TX21之內從該感測單元334接收該感測訊號SN11。該處理單元331在該操作時間TX21之內響應該操作請求訊號SJ11來基於所接收的該感測訊號SN11而使該通訊介面單元386向該通訊介面單元246傳輸包含該感測訊號SN11的該操作回應訊號SE21。 When the control target device 330 receives the operation request signal SJ11, the sensing unit 334 senses the variable physical parameter QU1A to generate the sensing signal SN11. Under the condition that the communication interface unit 386 receives the operation request signal SJ11, the processing unit 331 receives the sensing signal SN11 from the sensing unit 334 within an operation time TX21. The processing unit 331 responds to the operation request signal SJ11 within the operation time TX21 to cause the communication interface unit 386 to transmit the operation including the sensing signal SN11 to the communication interface unit 246 based on the received sensing signal SN11 Response signal SE21.

該控制裝置210進一步包含耦合於該處理 單元230的一顯示組件460。該處理單元230基於所獲得的該測量值VN11來使該顯示組件460顯示與該可變物理參數QU1A相關的一測量資訊LY11。例如,該處理單元230用一指定測量值格式HH81來獲得該測量值VN11。該處理單元230基於該感測訊號SN11來於一操作時間TD11之內執行一訊號產生控制GS11以導致該通訊介面單元246向該通訊介面單元386傳輸該控制訊號SC11。該處理單元331響應該控制訊號SC11來控制該物理參數應用單元335以導致該可變物理參數QU1A從該物理參數應用範圍RD1EL進入該物理參數目標範圍RD1ET。 The control device 210 further includes coupled to the process A display element 460 of unit 230 . The processing unit 230 causes the display element 460 to display a measurement information LY11 related to the variable physical parameter QU1A based on the obtained measurement value VN11. For example, the processing unit 230 obtains the measurement value VN11 using a specified measurement value format HH81. The processing unit 230 executes a signal generation control GS11 within an operation time TD11 based on the sensing signal SN11 to cause the communication interface unit 246 to transmit the control signal SC11 to the communication interface unit 386 . The processing unit 331 controls the physical parameter application unit 335 in response to the control signal SC11 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EL.

在一些實施例中,該處理單元230響應該訊號產生控制GS11來使該通訊介面單元246向該通訊介面單元386傳輸一操作請求訊號SJ12。當該控制目標裝置330接收該操作請求訊號SJ12時,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN12。在該通訊介面單元386接收該操作請求訊號SJ12的條件下,該處理單元331在該操作時間TD11之後的一操作時間TX22之內從該感測單元334接收該感測訊號SN12。該處理單元331在該操作時間TX22之內響應該操作請求訊號SJ12來基於所接收的該感測訊號SN12而使該通訊介面單元386向該通訊介面單元246傳輸包含該感測訊號SN12的一操作回應訊號SE22。 In some embodiments, the processing unit 230 generates a control GS11 in response to the signal so that the communication interface unit 246 transmits an operation request signal SJ12 to the communication interface unit 386 . When the control target device 330 receives the operation request signal SJ12, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN12. Under the condition that the communication interface unit 386 receives the operation request signal SJ12, the processing unit 331 receives the sensing signal SN12 from the sensing unit 334 within an operation time TX22 after the operation time TD11. The processing unit 331 responds to the operation request signal SJ12 within the operation time TX22 to cause the communication interface unit 386 to transmit an operation including the sensing signal SN12 to the communication interface unit 246 based on the received sensing signal SN12 Response signal SE22.

在該通訊介面單元246於該操作時間TD11之後的一指定時間TG12之內從該控制裝置210接收該感測訊號SN12的條件下,該處理單元230響應該感測訊號SN12來以該指定測量值格式HH81獲得一測量值VN12。該處理 單元230基於所獲得的該測量值VN12來使該顯示組件460顯示與該可變物理參數QU1A相關的一測量資訊LY12。 Under the condition that the communication interface unit 246 receives the sensing signal SN12 from the control device 210 within a specified time TG12 after the operation time TD11, the processing unit 230 responds to the sensing signal SN12 to use the specified measurement value Format HH81 obtains a measurement value VN12. the processing The unit 230 causes the display element 460 to display a measurement information LY12 related to the variable physical parameter QU1A based on the obtained measurement value VN12.

在一些實施例中,該物理參數目標範圍RD1ET由一測量值目標範圍RN1T所代表。該處理單元230於該操作時間TD11之後的該指定時間TG12之內基於所獲得的該測量值VN12來執行與該可變物理參數QU1A相關的一驗證操作ZU11。該驗證操作ZU11包括用於檢查所獲得的該測量值VN12和該測量值目標範圍RN1T之間的一數學關係KV22的一檢查操作BV22。 In some embodiments, the physical parameter target range RD1ET is represented by a measurement value target range RN1T. The processing unit 230 performs a verification operation ZU11 related to the variable physical parameter QU1A based on the obtained measurement value VN12 within the specified time TG12 after the operation time TD11. The verification operation ZU11 includes a check operation BV22 for checking a mathematical relationship KV22 between the obtained measurement value VN12 and the measurement value target range RN1T.

該控制裝置210進一步包含耦合於該處理單元230的一儲存單元250。該處理單元230響應該感測訊號SN11和該操作回應訊號SE21的其中之一來確定代表該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN1T。該儲存單元250儲存一可變物理參數範圍碼UN1A。在該處理單元230基於該驗證操作ZU11而確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET的一特定情況的條件下,該處理單元230藉由執行一資料儲存控制操作GU11來使用該儲存單元250以將所確定的該物理參數目標範圍碼UN1T指定到該可變物理參數範圍碼UN1A。 The control device 210 further includes a storage unit 250 coupled to the processing unit 230 . The processing unit 230 determines a physical parameter target range code UN1T representing the physical parameter target range RD1ET in response to one of the sensing signal SN11 and the operation response signal SE21. The storage unit 250 stores a variable physical parameter range code UN1A. Under the condition that the processing unit 230 determines a specific case of the physical parameter target range RD1ET into which the variable physical parameter QU1A enters based on the verification operation ZU11, the processing unit 230 uses the data storage control operation GU11 by executing a data storage control operation GU11. The storage unit 250 assigns the determined physical parameter target range code UN1T to the variable physical parameter range code UN1A.

例如,在該控制裝置212是該移動裝置的條件下,該處理單元331使該通訊介面單元246通過一無線鏈接LK81而向該通訊介面單元386傳輸該操作請求訊號SJ11、該控制訊號SC81和該操作請求訊號SJ12的任一訊號。在該控制裝置212是該移動裝置的條件下,該處理單元331使該通訊介面單元386通過一無線鏈接LK91而向該 通訊介面單元246傳輸該操作回應訊號SE21和該操作回應訊號SE22的任一訊號。例如,在該控制裝置212是該遙控器的條件下,該操作請求訊號SJ11、該控制訊號SC81、該操作請求訊號SJ12、該操作回應訊號SE21和該操作回應訊號SE22分別是多個光訊號。 For example, under the condition that the control device 212 is the mobile device, the processing unit 331 enables the communication interface unit 246 to transmit the operation request signal SJ11, the control signal SC81 and the communication interface unit 386 through a wireless link LK81 to the communication interface unit 386 Any signal of operation request signal SJ12. Under the condition that the control device 212 is the mobile device, the processing unit 331 enables the communication interface unit 386 to communicate with the communication interface unit 386 through a wireless link LK91 The communication interface unit 246 transmits any one of the operation response signal SE21 and the operation response signal SE22. For example, under the condition that the control device 212 is the remote controller, the operation request signal SJ11, the control signal SC81, the operation request signal SJ12, the operation response signal SE21 and the operation response signal SE22 are respectively a plurality of optical signals.

請參閱圖64。圖64為示出於圖61中的該控制系統801的一實施結構8013的示意圖。如圖64所示,該實施結構8013包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL、不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET、和不同於該物理參數目標範圍RD1ET的一特定物理參數範圍RD2E2而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 64. FIG. 64 is a schematic diagram of an implementation structure 8013 of the control system 801 shown in FIG. 61 . As shown in FIG. 64 , the implementation structure 8013 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is based on a physical parameter application range RD1EL represented by a measured value application range RN1L, a physical parameter target range RD1ET different from the physical parameter application range RD1EL, and a physical parameter target range RD1ET different from the physical parameter target range RD1ET A specific physical parameter range RD2E2 is characterized. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334,並包含一定時器539。在一觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸一控制訊號SC11。該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A從該物理參數應 用範圍RD1EL進入該物理參數目標範圍RD1ET。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 and includes a timer 539 . When a trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11. Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits a control signal SC11 to the control target device 330 . The control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to change from the physical parameter Use the range RD1EL to enter the physical parameter target range RD1ET.

在一些實施例中,在該操作單元297藉由檢查該數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297使該定時器539執行一計數操作BC1T以到達一特定時間TJ1T,並在該特定時間TJ1T之內產生一控制訊號SC22。該控制訊號SC22被該控制目標裝置330使用以導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD2E2。 In some embodiments, the operation unit 297 causes the timer 539 to execute a The counting operation BC1T reaches a specific time TJ1T, and a control signal SC22 is generated within the specific time TJ1T. The control signal SC22 is used by the control target device 330 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD2E2.

該可變物理參數QU1A相關於一可變時間長度LF1A。該可變時間長度LF1A基於一參考時間長度LJ1T而被特徵化。該定時器539被配置以符合一定時器規格FW11。該參考時間長度LJ1T由一測量時間長度值CL1T所代表。該測量時間長度值CL1T基於該定時器規格FW11而被預設。 The variable physical parameter QU1A is associated with a variable time length LF1A. The variable time length LF1A is characterized based on a reference time length LJ1T. The timer 539 is configured to conform to a timer specification FW11. The reference time length LJ1T is represented by a measured time length value CL1T. The measurement time length value CL1T is preset based on the timer specification FW11.

在該操作單元297藉由檢查該數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297獲得該測量時間長度值CL1T,並基於所獲得的該測量時間長度值CL1T來使該定時器539執行該計數操作BC1T以到達該特定時間TJ1T。 Under the condition that the operation unit 297 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located by checking the mathematical relationship KV11, the operation unit 297 obtains the measured time length value CL1T, and based on the obtained The measurement time length value CL1T causes the timer 539 to perform the counting operation BC1T to reach the specific time TJ1T.

該操作單元297進一步包含一處理單元230和一傳輸組件450。該感測單元334、該定時器539和該傳輸組件450皆耦合於該處理單元230。該處理單元230使該定時器539執行該計數操作BC1T,並使該傳輸組件450向 該控制目標裝置330傳輸該控制訊號SC11和該控制訊號SC22的任一訊號。例如,該特定物理參數範圍RD2E2是該物理參數應用範圍RD1EL。 The operation unit 297 further includes a processing unit 230 and a transmission component 450 . The sensing unit 334 , the timer 539 and the transmission element 450 are all coupled to the processing unit 230 . The processing unit 230 causes the timer 539 to perform the counting operation BC1T, and causes the transmission component 450 to The control target device 330 transmits any one of the control signal SC11 and the control signal SC22. For example, the specific physical parameter range RD2E2 is the physical parameter application range RD1EL.

請參閱圖65。圖65為示出於圖61中的該控制系統801的一實施結構8014的示意圖。如圖65所示,該實施結構8014包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。用於依靠一識別媒介310而控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 65. FIG. 65 is a schematic diagram of an implementation structure 8014 of the control system 801 shown in FIG. 61 . As shown in FIG. 65 , the implementation structure 8014 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A by means of an identification medium 310 includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334,並包含一讀取器220,藉由使用該讀取器220而辨識該識別媒介310。在與該識別媒介310相關的一識別媒介出現事件EQ8P發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一控制訊號SC11。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 and includes a reader 220 for identifying the identification medium 310 by using the reader 220 . Under the condition that an identification medium occurrence event EQ8P related to the identification medium 310 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11. Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits to the control target device 330 a control signal SC11 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該控制目標裝置330設置於該控制裝置210的內部和該控制裝置210的外部的其中 之一。在該控制目標裝置330位於該控制裝置210的內部的條件下,該控制裝置210包含該控制目標裝置330。該識別媒介出現事件EQ8P是一觸發事件EQ81。該測量值應用範圍RN1L具有一應用範圍界限值對DN1L。例如,該操作單元297響應該識別媒介出現事件EQ8P來產生一操作請求訊號SX81,並響應該操作請求訊號SX81來使用該感測訊號SN11以獲得該測量值VN11。 In some embodiments, the control target device 330 is disposed inside the control device 210 and outside the control device 210 one. Under the condition that the control target device 330 is located inside the control device 210 , the control device 210 includes the control target device 330 . The identification medium occurrence event EQ8P is a trigger event EQ81. The measured value application range RN1L has an application range limit value pair DN1L. For example, the operation unit 297 generates an operation request signal SX81 in response to the identification medium occurrence event EQ8P, and uses the sensing signal SN11 to obtain the measurement value VN11 in response to the operation request signal SX81.

該識別媒介310記錄該應用範圍界限值對DN1L。該操作單元297響應該識別媒介出現事件EQ8P來從該識別媒介310讀取所記錄的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L,並藉由比較該測量值VN11和所讀取的該應用範圍界限值對DN1L來檢查該數學關係KV11。例如,該操作單元297進一步包含一處理單元230和一傳輸組件450。該感測單元334、該讀取器220和該傳輸組件450皆耦合於該處理單元230。該識別媒介310進一步記錄一控制資料碼CJ1T。該操作單元297響應該識別媒介出現事件EQ8P來從該識別媒介310讀取所記錄的該控制資料碼CJ1T以獲得該控制資料碼CJ1T,並基於所獲得的該控制資料碼CJ1T來產生該控制訊號SC11。 The identification medium 310 records the application range limit value pair DN1L. The operation unit 297 responds to the identification medium occurrence event EQ8P to read the recorded application range limit value pair DN1L from the identification medium 310 to obtain the application range limit value pair DN1L, and by comparing the measured value VN11 with the read The mathematical relationship KV11 is checked by taking the application range limit value pair DN1L. For example, the operation unit 297 further includes a processing unit 230 and a transmission component 450 . The sensing unit 334 , the reader 220 and the transmission element 450 are all coupled to the processing unit 230 . The identification medium 310 further records a control data code CJ1T. The operation unit 297 reads the recorded control data code CJ1T from the identification medium 310 in response to the identification medium occurrence event EQ8P to obtain the control data code CJ1T, and generates the control signal based on the obtained control data code CJ1T SC11.

該讀取器220響應該識別媒介出現事件EQ8P來向該處理單元230傳輸該操作請求訊號SX81。該處理單元230響應該操作請求訊號SX81來使用該感測訊號SN11以獲得該測量值VN11,響應該操作請求訊號SX81來通過該讀取器220而獲得所記錄的該應用範圍界限值對DN1L,並基於用於檢查該數學關係KV11的一檢查操作 BV11來使該傳輸組件450向該控制目標裝置330傳輸該控制訊號SC11。 The reader 220 transmits the operation request signal SX81 to the processing unit 230 in response to the identification medium occurrence event EQ8P. The processing unit 230 uses the sensing signal SN11 in response to the operation request signal SX81 to obtain the measured value VN11, and in response to the operation request signal SX81 to obtain the recorded pair of application range limit values DN1L through the reader 220, and based on a check operation for checking the mathematical relation KV11 BV11 to enable the transmission component 450 to transmit the control signal SC11 to the control target device 330 .

請參閱圖66。圖66為示出於圖61中的該控制系統801的一實施結構8015的示意圖。如圖65所示,該實施結構8015包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210包含一極限開關485、一感測單元334和一操作單元297。 See Figure 66. FIG. 66 is a schematic diagram of an implementation structure 8015 of the control system 801 shown in FIG. 61 . As shown in FIG. 65 , the implementation structure 8015 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A includes a limit switch 485 , a sensing unit 334 and an operating unit 297 .

該控制目標裝置330藉由執行與該可變物理參數QU1A相關的一特定功能操作ZH81來使該極限開關485產生一觸發訊號SX8A。該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334和該極限開關485,響應該觸發訊號SX81來使用該感測訊號SN11以獲得一測量值VN11。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一控制訊號SC11。 The control target device 330 causes the limit switch 485 to generate a trigger signal SX8A by executing a specific function operation ZH81 related to the variable physical parameter QU1A. The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 and the limit switch 485, and uses the sensing signal SN11 in response to the trigger signal SX81 to obtain a measurement value VN11. Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits to the control target device 330 a control signal SC11 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該測量值應用範圍RN1L具有一應用範圍界限值對DN1L。該特定功能操作ZH81是 一空間運動操作。該操作單元297接收該觸發訊號SX8A,響應該觸發訊號SX8A來獲得該應用範圍界限值對DN1L,並藉由比較該測量值VN11和所獲得的該應用範圍界限值對DN1L來檢查該數學關係KV11。例如,該可變物理參數QU1A是一可變電性參數。在該控制目標裝置330執行該特定功能操作ZH81之前,該控制目標裝置330從該控制裝置210接收一控制訊號SC10,並響應該控制訊號SC10來執行該特定功能操作ZH81。例如,該極限開關485耦合於該控制目標裝置330,並是一狀態改變偵測器475。 In some embodiments, the measurement value application range RN1L has an application range limit value pair DN1L. The specific function to operate the ZH81 is A space motion operation. The operation unit 297 receives the trigger signal SX8A, obtains the application range limit value pair DN1L in response to the trigger signal SX8A, and checks the mathematical relationship KV11 by comparing the measured value VN11 with the obtained application range limit value pair DN1L . For example, the variable physical parameter QU1A is a variable electrical parameter. Before the control target device 330 executes the specific function operation ZH81, the control target device 330 receives a control signal SC10 from the control device 210, and performs the specific function operation ZH81 in response to the control signal SC10. For example, the limit switch 485 is coupled to the control target device 330 and is a state change detector 475 .

例如,該操作單元297包含一處理單元230、一觸發應用單元281和一傳輸組件450。該感測單元334、該觸發應用單元281、該極限開關485和該傳輸組件450皆耦合於該處理單元230。該觸發應用單元281響應一觸發事件EQ80來產生一操作請求訊號SX80,提供該操作請求訊號SX80到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SX80。該處理單元230響應該操作請求訊號SX80來使該傳輸組件450向該控制目標裝置330傳輸該控制訊號SC10。 For example, the operation unit 297 includes a processing unit 230 , a trigger application unit 281 and a transmission component 450 . The sensing unit 334 , the trigger application unit 281 , the limit switch 485 and the transmission element 450 are all coupled to the processing unit 230 . The trigger application unit 281 generates an operation request signal SX80 in response to a trigger event EQ80, provides the operation request signal SX80 to the processing unit 230, and thereby enables the processing unit 230 to receive the operation request signal SX80. The processing unit 230 makes the transmission element 450 transmit the control signal SC10 to the control target device 330 in response to the operation request signal SX80 .

請參閱圖67。圖67為示出於圖61中的該控制系統801的一實施結構8016的示意圖。如圖67所示,該實施結構8016包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL和不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET而被特徵化。 用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 67. FIG. 67 is a schematic diagram of an implementation structure 8016 of the control system 801 shown in FIG. 61 . As shown in FIG. 67 , the implementation structure 8016 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L and a physical parameter target range RD1ET different from the physical parameter application range RD1EL. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334。在一觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸一控制訊號SC11。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 . When a trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11. Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits a control signal SC11 to the control target device 330 .

例如,該控制裝置210是一移動裝置和一遙控器的其中之一。在該控制裝置210是該移動裝置的條件下,該操作單元297通過一無線鏈接LK81而向該控制目標裝置330傳輸該控制訊號SC11,或該控制訊號SC11是一無線電訊號。在該控制裝置210是該遙控器的條件下,該控制訊號SC11是一光訊號SQ11。該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 For example, the control device 210 is one of a mobile device and a remote control. Under the condition that the control device 210 is the mobile device, the operation unit 297 transmits the control signal SC11 to the control target device 330 through a wireless link LK81, or the control signal SC11 is a radio signal. Under the condition that the control device 210 is the remote controller, the control signal SC11 is an optical signal SQ11. The control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該光訊號SQ11是一紅外線訊號。該移動裝置在一移動狀態中向該控制目標裝置330傳輸該控制訊號SC11。該可變物理參數QU1A進一步基於不同於該物理參數目標範圍RD1ET的一特定物理參數範圍RD1E5而被特徵化。該特定物理參數範圍RD1E5由一特定物理參數範圍碼UN15所代表。 In some embodiments, the optical signal SQ11 is an infrared signal. The mobile device transmits the control signal SC11 to the control target device 330 in a moving state. The variable physical parameter QU1A is further characterized based on a specific physical parameter range RD1E5 that differs from the physical parameter target range RD1ET. The specific physical parameter range RD1E5 is represented by a specific physical parameter range code UN15.

該操作單元297包含包含一處理單元230、 和耦合於該處理單元230的一通訊介面單元246。該通訊介面單元246包含耦合於該處理單元230的一接收組件446、和耦合於該處理單元230的一傳輸組件450。在該可變物理參數QU1A基於該控制訊號SC11而被配置於該物理參數目標範圍RD1ET之內的條件下,該接收組件446從一外部裝置610接收起到指示該特定物理參數範圍RD1E5的作用的一操作請求訊號SJ31。該操作請求訊號SJ31藉由輸送該特定物理參數範圍碼UN15來起到指示該特定物理參數範圍RD1E5的作用。 The operation unit 297 includes a processing unit 230, and a communication interface unit 246 coupled to the processing unit 230 . The communication interface unit 246 includes a receiving component 446 coupled to the processing unit 230 and a transmitting component 450 coupled to the processing unit 230 . Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET based on the control signal SC11, the receiving element 446 receives from an external device 610 the function of indicating the specific physical parameter range RD1E5 An operation request signal SJ31. The operation request signal SJ31 plays the role of indicating the specific physical parameter range RD1E5 by transmitting the specific physical parameter range code UN15.

該處理單元230從該操作請求訊號SJ31獲得所輸送的該特定物理參數範圍碼UN15,並基於所獲得的該特定物理參數範圍碼UN15來使該傳輸組件450向該控制目標裝置330傳輸一控制訊號SC15。該控制訊號SC15用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。該外部裝置610相同或不同於該控制目標裝置330。 The processing unit 230 obtains the transmitted specific physical parameter range code UN15 from the operation request signal SJ31 , and enables the transmission element 450 to transmit a control signal to the control target device 330 based on the obtained specific physical parameter range code UN15 SC15. The control signal SC15 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5. The external device 610 is the same as or different from the control target device 330 .

該控制目標裝置330包含一操作單元397和耦合於該操作單元397的一物理參數應用單元335。該操作單元397包含一處理單元331和一接收器3371。該接收器3371和該物理參數應用單元335皆耦合於該處理單元331。在該控制裝置210是該移動裝置的條件下,該處理單元230使該傳輸組件450通過該無線鏈接LK81而向該接收器3371傳輸該控制訊號SC11和該控制訊號SC15的任一訊號。該處理單元230響應該控制訊號SC15來產生一操作訊號SG15。該物理參數應用單元335接收該操作訊號SG15, 並響應該操作訊號SG15來導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。 The control target device 330 includes an operation unit 397 and a physical parameter application unit 335 coupled to the operation unit 397 . The operation unit 397 includes a processing unit 331 and a receiver 3371 . Both the receiver 3371 and the physical parameter application unit 335 are coupled to the processing unit 331 . Under the condition that the control device 210 is the mobile device, the processing unit 230 enables the transmission element 450 to transmit any one of the control signal SC11 and the control signal SC15 to the receiver 3371 through the wireless link LK81. The processing unit 230 generates an operation signal SG15 in response to the control signal SC15. The physical parameter application unit 335 receives the operation signal SG15, In response to the operation signal SG15, the variable physical parameter QU1A leaves the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.

請參閱圖68。圖68為示出於圖61中的該控制系統801的一實施結構8017的示意圖。如圖68所示,該實施結構8017包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL、不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET、和不同於該物理參數目標範圍RD1ET的一特定物理參數範圍RD1E5而被特徵化。用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 68. FIG. 68 is a schematic diagram of an implementation structure 8017 of the control system 801 shown in FIG. 61 . As shown in FIG. 68 , the implementation structure 8017 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. The variable physical parameter QU1A is based on a physical parameter application range RD1EL represented by a measured value application range RN1L, a physical parameter target range RD1ET different from the physical parameter application range RD1EL, and a physical parameter target range RD1ET different from the physical parameter target range RD1ET A specific physical parameter range RD1E5 is characterized. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334,並包含一電應用目標WJ11。在一觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11,該觸發事件EQ81是該操作單元297接收使用該電應用目標WJ11的一使用者輸入操作JU81。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸一控制訊號SC11。該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operating unit 297 is coupled to the sensing unit 334 and includes an electrical application target WJ11. Under the condition that a trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11. The trigger event EQ81 is when the operation unit 297 receives a user input operation JU81 using the electrical application target WJ11 . Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits a control signal SC11 to the control target device 330 . The control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在該可變物理參數QU1A基於該控制訊號SC11而被配置以處於該物理參數目標範圍RD1ET的條件下,該操作單元297接收一使用者輸入操作JU82。該操作單元297響應該使用者輸入操作JU82來產生一操作請求訊號SJ61,並響應該操作請求訊號SJ61來向該控制目標裝置330傳輸一控制訊號SC15。該控制訊號SC15被該控制目標裝置330使用以導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。例如,該特定物理參數範圍RD1E5等於該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2的其中之一。 Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET based on the control signal SC11, the operation unit 297 receives a user input operation JU82. The operation unit 297 generates an operation request signal SJ61 in response to the user input operation JU82, and transmits a control signal SC15 to the control target device 330 in response to the operation request signal SJ61. The control signal SC15 is used by the control target device 330 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5. For example, the specific physical parameter range RD1E5 is equal to one of the physical parameter application range RD1EL and the physical parameter candidate range RD1E2.

在一些實施例中,該特定物理參數範圍RD1E5由一特定物理參數範圍碼UN15所代表。該操作單元297包含一處理單元230、耦合於該處理單元230的該電應用目標WJ11、耦合於該處理單元230的一電應用目標WJ12、和耦合於該處理單元230的一通訊介面單元246。該電應用目標WJ12是一電應用單元,並相同或不同於該電應用目標WJ11。該操作單元297響應使用該電應用目標WJ11的該使用者輸入操作JU81來導致該處理單元230接收一操作請求訊號SX81,並響應該操作請求訊號SX81來檢查該數學關係KV11。 In some embodiments, the specific physical parameter range RD1E5 is represented by a specific physical parameter range code UN15. The operation unit 297 includes a processing unit 230 , the electrical application target WJ11 coupled to the processing unit 230 , an electrical application target WJ12 coupled to the processing unit 230 , and a communication interface unit 246 coupled to the processing unit 230 . The electrical application target WJ12 is an electrical application unit and is the same as or different from the electrical application target WJ11. The operation unit 297 causes the processing unit 230 to receive an operation request signal SX81 in response to the user input operation JU81 using the electrical application target WJ11, and to check the mathematical relationship KV11 in response to the operation request signal SX81.

在該操作單元297藉由檢查該數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元230使該通訊介面單元246向該通訊介面單元386傳輸該控制訊號SC11。該電應用目標WJ12是一按鈕目標和一圖符目標的其中之 一。該操作單元297包含耦合於該處理單元230的一輸入組件440、和耦合於該處理單元230的一顯示組件460。例如,該輸入組件440、該顯示組件460和該觸控螢幕4401的其中之一包含該電應用目標WJ11。該輸入組件440、該顯示組件460和該觸控螢幕4401的其中之一包含該電應用目標WJ12。該控制訊號SC15被該控制目標裝置330和該處理單元331的其中之一使用以使該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。 Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking the mathematical relationship KV11 , the processing unit 230 causes the communication interface unit 246 to transmit to the communication interface unit 386 The control signal SC11. The electrical application object WJ12 is one of a button object and an icon object one. The operation unit 297 includes an input element 440 coupled to the processing unit 230 and a display element 460 coupled to the processing unit 230 . For example, one of the input element 440, the display element 460 and the touch screen 4401 includes the electrical application target WJ11. One of the input element 440, the display element 460 and the touch screen 4401 includes the electrical application target WJ12. The control signal SC15 is used by one of the control target device 330 and the processing unit 331 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.

在一些實施例中,該使用者輸入操作JU82由一使用者295所執行。該輸入組件440響應使用該電應用目標WJ11的該使用者輸入操作JU81來提供該操作請求訊號SX81到該處理單元230。該輸入組件440接收發生於該使用者輸入操作JU81之後的該使用者輸入操作JU82,響應使用該電應用目標WJ12的該使用者輸入操作JU82來提供該操作請求訊號SJ61到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SJ61。例如,該輸入組件440、該顯示組件460和該觸控螢幕4401的其中之一包含該電應用目標WJ11和該電應用目標WJ12。例如,該電應用目標WJ12是該電應用目標WJ11。在該電應用目標WJ12不同於該電應用目標WJ11的條件下,該電應用目標WJ11和該電應用目標WJ12位於不同空間位置。 In some embodiments, the user input operation JU82 is performed by a user 295 . The input component 440 provides the operation request signal SX81 to the processing unit 230 in response to the user input operation JU81 using the electrical application target WJ11. The input component 440 receives the user input operation JU82 occurring after the user input operation JU81, provides the operation request signal SJ61 to the processing unit 230 in response to the user input operation JU82 using the electrical application target WJ12, and Thereby, the processing unit 230 receives the operation request signal SJ61. For example, one of the input element 440 , the display element 460 and the touch screen 4401 includes the electrical application target WJ11 and the electrical application target WJ12 . For example, the electrical application target WJ12 is the electrical application target WJ11. Under the condition that the electrical application target WJ12 is different from the electrical application target WJ11, the electrical application target WJ11 and the electrical application target WJ12 are located at different spatial positions.

該處理單元230響應該操作請求訊號SJ61來確定等於該特定物理參數範圍碼UN15的一特定輸入碼UW11,並基於該特定輸入碼UW11來使該通訊介面單元246 向該通訊介面單元386傳輸一控制訊號SC15。該控制訊號SC15被該控制目標裝置330使用以導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該特定物理參數範圍RD1E5。 The processing unit 230 determines a specific input code UW11 equal to the specific physical parameter range code UN15 in response to the operation request signal SJ61, and activates the communication interface unit 246 based on the specific input code UW11 A control signal SC15 is transmitted to the communication interface unit 386 . The control signal SC15 is used by the control target device 330 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the specific physical parameter range RD1E5.

在一些實施例中,在該可變物理參數QU1A基於該控制訊號SC15而被配置以處於該特定物理參數範圍RD1E5的條件下,該輸入組件440接收使用該電應用目標WJ12的一使用者輸入操作JU8A,響應該使用者輸入操作JU8A來產生一操作請求訊號SJ6A,並提供該操作請求訊號SJ6A到該處理單元230。例如,在該可變物理參數QU1A處於該特定物理參數範圍RD1E5的條件下,該電應用目標WJ12接收該使用者輸入操作JU8A以使該輸入組件440接收該使用者輸入操作JU8A。 In some embodiments, the input component 440 receives a user input operation using the electrical application target WJ12 under the condition that the variable physical parameter QU1A is configured to be within the specific physical parameter range RD1E5 based on the control signal SC15 The JU8A generates an operation request signal SJ6A in response to the user inputting the operation JU8A, and provides the operation request signal SJ6A to the processing unit 230 . For example, under the condition that the variable physical parameter QU1A is in the specific physical parameter range RD1E5, the electrical application target WJ12 receives the user input operation JU8A so that the input component 440 receives the user input operation JU8A.

該處理單元230響應該操作請求訊號SJ6A來使該通訊介面單元246向該通訊介面單元386傳輸一控制訊號SC1A。該控制訊號SC1A被該控制目標裝置330和該處理單元331的其中之一使用以導致該可變物理參數QU1A離開該特定物理參數範圍RD1E5以進入包含於該多個不同物理參數參考範圍RD1E1、RD1E2、…中的一特定物理參數範圍RD1EA。例如,該特定物理參數範圍RD1EA相同於該物理參數目標範圍RD1ET。 The processing unit 230 causes the communication interface unit 246 to transmit a control signal SC1A to the communication interface unit 386 in response to the operation request signal SJ6A. The control signal SC1A is used by one of the control target device 330 and the processing unit 331 to cause the variable physical parameter QU1A to leave the specific physical parameter range RD1E5 to enter the different physical parameter reference ranges RD1E1, RD1E2 included in the , within a specific physical parameter range RD1EA. For example, the specific physical parameter range RD1EA is the same as the physical parameter target range RD1ET.

請參閱圖69。圖69為示出於圖61中的該控制系統801的一實施結構8018的示意圖。如圖69所示,該實施結構8018包含該控制裝置210和該控制目標裝置330。該控制目標裝置330具有一可變物理參數QU1A。該 可變物理參數QU1A基於由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL、不同於該物理參數應用範圍RD1EL的一物理參數目標範圍RD1ET、和一物理參數目標範圍RD1EU而被特徵化。該物理參數應用範圍RD1EL、該物理參數目標範圍RD1ET和該物理參數目標範圍RD1EU是不同。該物理參數應用範圍RD1EL具有一預設物理參數應用範圍界限ZD1L1和相對於該預設物理參數應用範圍界限ZD1L1的一預設物理參數應用範圍界限ZD1L2。用於控制該可變物理參數QU1A的該控制裝置210包含一感測單元334和一操作單元297。 See Figure 69. FIG. 69 is a schematic diagram of an implementation structure 8018 of the control system 801 shown in FIG. 61 . As shown in FIG. 69 , the implementation structure 8018 includes the control device 210 and the control target device 330 . The control target device 330 has a variable physical parameter QU1A. Should The variable physical parameter QU1A is characterized based on a physical parameter application range RD1EL represented by a measured value application range RN1L, a physical parameter target range RD1ET different from the physical parameter application range RD1EL, and a physical parameter target range RD1EU . The physical parameter application range RD1EL, the physical parameter target range RD1ET and the physical parameter target range RD1EU are different. The physical parameter application range RD1EL has a predetermined physical parameter application range limit ZD1L1 and a predetermined physical parameter application range limit ZD1L2 relative to the predetermined physical parameter application range limit ZD1L1. The control device 210 for controlling the variable physical parameter QU1A includes a sensing unit 334 and an operating unit 297 .

該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN11。該操作單元297耦合於該感測單元334,並包含一電使用目標275和一電使用目標276。在一觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SN11來獲得一測量值VN11,該該觸發事件EQ81是該操作單元297接收使用該電使用目標275和該電使用目標276的其中之一的一使用者輸入操作JU81。在該操作單元297藉由檢查該測量值VN11和該測量值應用範圍RN1L之間的一數學關係KV11而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元297向該控制目標裝置330傳輸一控制訊號SC11。 The sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN11. The operation unit 297 is coupled to the sensing unit 334 and includes an electricity usage target 275 and an electricity usage target 276 . When a trigger event EQ81 occurs, the operation unit 297 obtains a measurement value VN11 in response to the sensing signal SN11. The trigger event EQ81 is when the operation unit 297 receives and uses the electricity usage target 275 and the electricity usage target 276. One of the user input operation JU81. Under the condition that the operation unit 297 determines the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by checking a mathematical relationship KV11 between the measurement value VN11 and the measurement value application range RN1L, the operation unit 297 transmits a control signal SC11 to the control target device 330 .

例如,該電使用目標275位於一空間位置LC21。該電使用目標276位於不同於該空間位置LC21的一空間位置LC22。在該使用者輸入操作JU81使用該電使用 目標275的條件下,該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A從該物理參數應用範圍RD1EL通過該預設物理參數應用範圍界限ZD1L1以進入該物理參數目標範圍RD1ET。例如,該物理參數目標範圍RD1ET相鄰於該預設物理參數應用範圍界限ZD1L1。 For example, the electrical usage target 275 is located at a spatial location LC21. The electrical use target 276 is located at a spatial location LC22 different from the spatial location LC21. In the user input operation JU81 use the electricity to use Under the condition of target 275, the control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET from the physical parameter application range RD1EL through the preset physical parameter application range limit ZD1L1 . For example, the physical parameter target range RD1ET is adjacent to the preset physical parameter application range limit ZD1L1.

在該使用者輸入操作JU81使用該電使用目標276的條件下,該控制訊號SC11被該控制目標裝置330使用以導致該可變物理參數QU1A從該物理參數應用範圍RD1EL通過該預設物理參數應用範圍界限ZD1L2以進入該物理參數目標範圍RD1EU。例如,該物理參數目標範圍RD1EU相鄰於該預設物理參數應用範圍界限ZD1L2。例如,該操作單元297響應該使用者輸入操作JU81來產生一操作請求訊號SX81,並響應該操作請求訊號SX81來使用該感測訊號SN11以獲得該測量值VN11。 Under the condition that the user input operation JU81 uses the electricity usage target 276, the control signal SC11 is used by the control target device 330 to cause the variable physical parameter QU1A to be applied from the physical parameter application range RD1EL through the default physical parameter Range limit ZD1L2 to enter the physical parameter target range RD1EU. For example, the physical parameter target range RD1EU is adjacent to the preset physical parameter application range limit ZD1L2. For example, the operation unit 297 generates an operation request signal SX81 in response to the user input operation JU81, and uses the sensing signal SN11 to obtain the measurement value VN11 in response to the operation request signal SX81.

在一些實施例中,該操作單元297包含一使用者介面區AP21。該使用者介面區AP21具有該電使用目標275和該電使用目標276。例如,該操作單元297包含一處理單元230、一輸入組件440、一顯示組件460和一傳輸組件450。該電使用目標275和該電使用目標276皆耦合於該處理單元230。該輸入組件440、該顯示組件460和該傳輸組件450皆耦合於該處理單元230。該輸入組件440和該顯示組件460的其中之一包含該使用者介面區AP21。該輸入組件440接收該使用者輸入操作JU81。該電使用目標275和該電使用目標276分別是二電使用單元。例如,該使用者介面區AP21是該使用者介面區AP11。 In some embodiments, the operation unit 297 includes a user interface area AP21. The user interface area AP21 has the electricity usage target 275 and the electricity usage target 276 . For example, the operation unit 297 includes a processing unit 230 , an input component 440 , a display component 460 and a transmission component 450 . Both the electricity usage target 275 and the electricity usage target 276 are coupled to the processing unit 230 . The input component 440 , the display component 460 and the transmission component 450 are all coupled to the processing unit 230 . One of the input component 440 and the display component 460 includes the user interface area AP21. The input component 440 receives the user input operation JU81. The electricity usage target 275 and the electricity usage target 276 are respectively two electricity usage units. For example, the user interface area AP21 is the user interface area AP11.

在該使用者輸入操作JU81使用該電使用目標275的條件下,該輸入組件440響應該使用者輸入操作JU81來產生一操作請求訊號SM27,提供該操作請求訊號SM27到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SM27。該處理單元230響應該操作請求訊號SM27來獲得與該物理參數目標範圍RD1ET相關的一控制資料碼CJ1T,並基於該控制資料碼CJ1T來使該傳輸組件450向該接收組件3371傳輸等於一控制訊號SC37的該控制訊號SC11。該物理參數目標範圍RD1ET具有一指定物理參數QD1T。該控制資料碼CJ1T基於該指定物理參數QD1T而被預設。 Under the condition that the user input operation JU81 uses the electricity usage target 275, the input element 440 generates an operation request signal SM27 in response to the user input operation JU81, provides the operation request signal SM27 to the processing unit 230, and uses This enables the processing unit 230 to receive the operation request signal SM27. The processing unit 230 obtains a control data code CJ1T related to the physical parameter target range RD1ET in response to the operation request signal SM27, and based on the control data code CJ1T enables the transmitting element 450 to transmit a control signal equal to a control signal to the receiving element 3371 The control signal SC11 of SC37. The physical parameter target range RD1ET has a specified physical parameter QD1T. The control data code CJ1T is preset based on the specified physical parameter QD1T.

在該使用者輸入操作JU81使用該電使用目標276的條件下,該輸入組件440響應該使用者輸入操作JU81來產生一操作請求訊號SM28,提供該操作請求訊號SM28到該處理單元230,並藉此使該處理單元230接收該操作請求訊號SM28。該處理單元230響應該操作請求訊號SM28來獲得與該物理參數目標範圍RD1EU相關的一控制資料碼CJ1U,並基於該控制資料碼CJ1U來使該傳輸組件450向該控制目標裝置330傳輸等於一控制訊號SC38的該控制訊號SC11。該物理參數目標範圍RD1EU具有一指定物理參數QD1U。該控制資料碼CJ1U基於該指定物理參數QD1U而被預設。例如,該操作請求訊號SX81等於該操作請求訊號SM27和該操作請求訊號SM28的其中之一。 Under the condition that the user input operation JU81 uses the power usage target 276, the input element 440 generates an operation request signal SM28 in response to the user input operation JU81, provides the operation request signal SM28 to the processing unit 230, and uses This enables the processing unit 230 to receive the operation request signal SM28. The processing unit 230 responds to the operation request signal SM28 to obtain a control data code CJ1U related to the physical parameter target range RD1EU, and based on the control data code CJ1U enables the transmission element 450 to transmit a control equal to a control to the control target device 330 The control signal SC11 of the signal SC38. The physical parameter target range RD1EU has a specified physical parameter QD1U. The control data code CJ1U is preset based on the specified physical parameter QD1U. For example, the operation request signal SX81 is equal to one of the operation request signal SM27 and the operation request signal SM28.

該控制訊號SC37被該控制目標裝置330和該處理單元331的其中之一使用以導致該可變物理參數 QU1A從該物理參數應用範圍RD1EL通過該預設物理參數應用範圍界限ZD1L1以進入該物理參數目標範圍RD1ET。該控制訊號SC38不同於該控制訊號SC37,並被該控制目標裝置330和該處理單元331的其中之一使用以導致該可變物理參數QU1A從該物理參數應用範圍RD1EL通過該預設物理參數應用範圍界限ZD1L2以進入該物理參數目標範圍RD1EU。 The control signal SC37 is used by one of the control target device 330 and the processing unit 331 to cause the variable physical parameter QU1A enters the physical parameter target range RD1ET from the physical parameter application range RD1EL through the preset physical parameter application range limit ZD1L1. The control signal SC38 is different from the control signal SC37 and is used by one of the control target device 330 and the processing unit 331 to cause the variable physical parameter QU1A to be applied from the physical parameter application range RD1EL through the default physical parameter Range limit ZD1L2 to enter the physical parameter target range RD1EU.

在一些實施例中,該控制裝置210進一步包含耦合於該處理單元230的一儲存單元250。該儲存單元250包含一儲存空間SS11,並在該儲存空間SS11中儲存該控制資料碼CJ1T和該控制資料碼CJ1U。該電使用目標275由一電使用目標識別符HZ11,並是一按鈕目標和一圖符目標的其中之一。該電使用目標276由一電使用目標識別符HZ12所識別,並是一按鈕目標和一圖符目標的其中之一。 In some embodiments, the control device 210 further includes a storage unit 250 coupled to the processing unit 230 . The storage unit 250 includes a storage space SS11, and stores the control data code CJ1T and the control data code CJ1U in the storage space SS11. The electricity usage object 275 is identified by an electricity usage object identifier HZ11, and is one of a button object and an icon object. The electrical usage target 276 is identified by an electrical usage target identifier HZ12 and is one of a button target and an icon target.

該處理單元230響應該操作請求訊號SM27來獲得該電使用目標識別符HZ11,並基於所獲得的該電使用目標識別符HZ11來接入所儲存的該控制資料碼CJ1T以從該儲存空間SS11獲得該控制資料碼CJ1T。該處理單元230響應該操作請求訊號SM28來獲得該電使用目標識別符HZ12,並基於所獲得的該電使用目標識別符HZ12來接入所儲存的該控制資料碼CJ1U以從該儲存空間SS11獲得該控制資料碼CJ1U。 The processing unit 230 obtains the electricity usage target identifier HZ11 in response to the operation request signal SM27, and accesses the stored control data code CJ1T based on the obtained electricity usage target identifier HZ11 to obtain from the storage space SS11 The control data code is CJ1T. The processing unit 230 obtains the electricity usage target identifier HZ12 in response to the operation request signal SM28, and accesses the stored control data code CJ1U based on the obtained electricity usage target identifier HZ12 to obtain from the storage space SS11 The control data code is CJ1U.

提出於此之本揭露多數變形例與其他實施例,將對於熟習本項技藝者理解到具有呈現於上述說明與相關圖式之教導的益處。因此,吾人應理解到本揭露並非 受限於所揭露之特定實施例,而變形例與其他實施例意圖是包含在以下的申請專利範圍之範疇之內。 Many modifications and other embodiments of the disclosure presented herein will be appreciated by those skilled in the art having the benefit of the teachings presented in the foregoing descriptions and associated drawings. Therefore, we should understand that this disclosure is not Not limited to the specific embodiments disclosed, modifications and other embodiments are intended to be included within the scope of the following claims.

130:功能裝置 130: Functional device

331:處理單元 331: Processing unit

342:定時器 342: Timer

901:控制系統 901: Control System

HR1EU:時鐘時間應用區間 HR1EU: Clock time application interval

JE1U:物理參數目標狀態 JE1U: Physical parameter target state

KQ81:數學關係 KQ81: Mathematical Relations

NY81:測量值 NY81: Measured value

QU1A:可變物理參數 QU1A: Variable physical parameters

RQ1U:測量值應用範圍 RQ1U: Measured value application range

SY81:感測訊號 SY81: Sensing signal

TH1A:時鐘時間 TH1A: Clock time

Claims (24)

一種用於控制一可變物理參數的功能裝置,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該功能裝置包含:一處理單元;一第一定時器,耦合於該處理單元,導致一整數溢位事件發生,並響應該整數溢位事件來使該處理單元接收一操作請求訊號;以及一第二定時器,耦合於該處理單元,並感測一時鐘時間以產生一感測訊號,其中:該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;以及該處理單元響應該操作請求訊號來從該感測訊號獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一第一數學關係而確定該時鐘時間進入該時鐘時間應用區間的一情況的條件下使該可變物理參數處於該物理參數目標狀態。 A functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the functional device comprising: a processing unit; a first timer coupled to the processing unit , causing an integer overflow event to occur, and in response to the integer overflow event, the processing unit receives an operation request signal; and a second timer, coupled to the processing unit, senses a clock time to generate a sense a measurement signal, wherein: the clock time is characterized based on a clock time application interval represented by a measurement value application range; and the processing unit obtains a measurement value from the sensor signal in response to the operation request signal, and The processing unit makes the variable physical parameter in the physical parameter under the condition that the clock time enters the clock time application range by checking a first mathematical relationship between the measurement value and the measurement value application range target state. 如請求項1所述的功能裝置,進一步包含耦合於該處理單元的一接收單元、和耦合於該處理單元的一物理參數應用單元,其中:該時鐘時間進一步基於不同於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化,其中該時鐘時間指定區間早於該時鐘時間應用區間;在該接收單元從一控制裝置接收一控制訊號之後,該處理單元由於該控制訊號來響應該感測訊號而獲得包含該 測量值的一測量值序列,其中該控制訊號起到指示該時鐘時間指定區間的作用;該控制裝置是一移動裝置和一遙控器的其中之一;在該控制裝置是該遙控器的條件下,該控制訊號是一光訊號;該處理單元藉由檢查該測量值序列和該測量值應用範圍之間的一第二數學關係而做出該時鐘時間是否從該時鐘時間指定區間進入該時鐘時間應用區間的一邏輯決定,並在該邏輯決定是肯定的條件下確定所進入的該時鐘時間應用區間;該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一部分;該測量值以一指定測量值格式而被獲得;該測量值應用範圍基於該定時器規格來用該指定測量值格式而被預設;該測量值應用範圍具有一應用範圍界限值對,並由一測量值應用範圍碼所代表,其中該應用範圍界限值對被預設;該處理單元響應該控制訊號來獲得該應用範圍界限值對和該測量值應用範圍碼,並藉由比較該測量值和所獲得的該應用範圍界限值對來檢查該第一數學關係;該物理參數目標狀態由一物理參數目標狀態碼所代 表;該物理參數應用單元具有該可變物理參數,其中當該處理單元檢查該第一數學關係時,該可變物理參數處於一物理參數應用狀態;在該處理單元藉由檢查該第一數學關係而確定所進入的該時鐘時間應用區間的條件下,該處理單元基於所獲得的該測量值應用範圍碼來獲得該物理參數目標狀態碼,並基於所獲得的該物理參數目標狀態碼來執行用於檢查該可變物理參數和該物理參數目標狀態之間的一物理參數關係的一物理參數關係檢查控制;在該物理參數應用狀態不同於該物理參數目標狀態且該處理單元藉由執行該物理參數關係檢查控制而確定該物理參數目標狀態和該物理參數應用狀態之間的一物理參數狀態差異的條件下,該處理單元基於所獲得的該物理參數目標狀態碼來執行一訊號產生控制以產生一操作訊號,並向該物理參數應用單元傳輸該操作訊號;該物理參數應用單元響應該操作訊號來使該可變物理參數從該物理參數應用狀態進入該物理參數目標狀態;在該處理單元藉由檢查該第一數學關係而確定所進入的該時鐘時間應用區間的條件下,該處理單元執行一資料儲存控制操作,該資料儲存控制操作用於導致代表所確定的該時鐘時間應用區間的一時鐘時間應用區間碼被儲存;以及該可變物理參數和該時鐘時間分別屬於一物理參數類型和一時鐘時間類型,其中該物理參數類型不同於該時鐘 時間類型。 The functional device according to claim 1, further comprising a receiving unit coupled to the processing unit, and a physical parameter applying unit coupled to the processing unit, wherein: the clock time is further based on a time interval different from the clock time application interval A clock time designation interval is characterized, wherein the clock time designation interval is earlier than the clock time application interval; after the receiving unit receives a control signal from a control device, the processing unit responds to the sensing due to the control signal signal to obtain the A sequence of measured values of measured values, wherein the control signal serves to indicate the specified interval of the clock time; the control device is one of a mobile device and a remote control; under the condition that the control device is the remote control , the control signal is an optical signal; the processing unit determines whether the clock time enters the clock time from the clock time specified interval by checking a second mathematical relationship between the measurement value sequence and the measurement value application range Applying a logical decision of the interval, and determining the entered clock time application interval under the condition that the logical decision is affirmative; the second timer conforms to a timer specification, wherein the measurement value application range is based on the timer specification. is preset; the timer specification includes a full measurement range representation for representing a full measurement range, wherein the measurement application range is equal to a portion of the full measurement range; the measurement is in a specified measurement format is obtained; the measurement value application range is preset with the specified measurement value format based on the timer specification; the measurement value application range has an application range limit value pair, and is represented by a measurement value application range code, wherein The application range limit value pair is preset; the processing unit obtains the application range limit value pair and the measured value application range code in response to the control signal, and compares the measured value with the obtained application range limit value pair to check the first mathematical relationship; the physical parameter target state is represented by a physical parameter target state code table; the physical parameter application unit has the variable physical parameter, wherein when the processing unit checks the first mathematical relationship, the variable physical parameter is in a physical parameter application state; in the processing unit by checking the first mathematical relationship Under the condition that the entered clock time application interval is determined based on the relationship, the processing unit applies the range code based on the obtained measurement value to obtain the physical parameter target status code, and executes the physical parameter target status code based on the obtained physical parameter target status code. A physical parameter relationship check control for checking a physical parameter relationship between the variable physical parameter and the physical parameter target state; in the physical parameter application state different from the physical parameter target state and the processing unit by executing the Under the condition that the physical parameter relationship checking control determines a physical parameter state difference between the physical parameter target state and the physical parameter application state, the processing unit executes a signal generation control based on the obtained physical parameter target state code to generating an operation signal and transmitting the operation signal to the physical parameter application unit; the physical parameter application unit responds to the operation signal to make the variable physical parameter enter the physical parameter target state from the physical parameter application state; in the processing unit Under the condition that the entered clock time application interval is determined by examining the first mathematical relationship, the processing unit performs a data storage control operation for causing a data storage control operation representing the determined clock time application interval. A clock time application interval code is stored; and the variable physical parameter and the clock time belong to a physical parameter type and a clock time type, respectively, wherein the physical parameter type is different from the clock time type. 如請求項1所述的功能裝置,進一步包含耦合於該處理單元的一輸入單元、和耦合於該處理單元的一物理參數應用單元,其中:該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一第一部分;該處理單元被配置以執行與該時鐘時間應用區間相關的一測量應用功能;該測量應用功能符合與該時鐘時間應用區間相關的一測量應用功能規格;該處理單元響應該感測訊號來以一指定測量值格式獲得該測量值,其中該指定測量值格式基於一指定位元數目而被特徵化;該時鐘時間進一步基於一額定時鐘時間區間而被特徵化,其中該額定時鐘時間區間由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同時鐘時間參考區間;該複數不同時鐘時間參考區間包含該時鐘時間應用區間;該測量應用功能規格包含該定時器規格、用於表示該額定時鐘時間區間的一額定時鐘時間區間表示、和用於表示該時鐘時間應用區間的一時鐘時間應用區間表示; 該額定測量值範圍等於該全測量值範圍的至少一第二部分,基於該定時器規格、該測量應用功能規格和一第一資料編碼規則的其中之一來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值應用範圍;該第一資料編碼規則用於轉換該額定時鐘時間區間表示,並基於該定時器規格而被制定;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,具有一應用範圍界限值對,並基於該定時器規格、該測量應用功能規格和一第二資料編碼規則的其中之一來用該指定測量值格式而被預設,其中該複數不同測量值參考範圍碼皆基於該測量應用功能規格而被預設;該第二資料編碼規則用於轉換該時鐘時間應用區間表示,並基於該定時器規格而被制定;該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該功能裝置進一步包含耦合於該處理單元的一儲存單元;該儲存單元儲存所預設的該額定範圍界限值對和一可變時鐘時間區間碼;當與該第一定時器相關的該整數溢位事件發生時,該可變時鐘時間區間碼等於選擇自該複數不同測量值參考範 圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一特定時鐘時間區間,該特定時鐘時間區間選擇自該複數不同時鐘時間參考區間,且由該第二定時器所執行的該感測操作用於感測該時鐘時間;在該整數溢位事件發生之前,該特定測量值範圍碼被指定到該可變時鐘時間區間碼;在該整數溢位事件發生的條件下,該處理單元響應該操作請求訊號來從該儲存單元獲得一操作參考資料碼,並藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定以確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該測量應用功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該測量應用功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存單元中的該可變時鐘時間區間碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中該第一資料確定操作是使用所獲得的該特定測量值範圍碼的一第一科學計算,且所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼; 在該操作參考資料碼藉由存取被儲存在該儲存單元中的該額定範圍界限值對而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該測量值和所獲得的該額定範圍界限值對的一第二科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第二科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該處理單元基於所確定的該測量值應用範圍碼來獲得該應用範圍界限值對,基於該測量值和所獲得的該應用範圍界限值對之間的一資料比較來檢查該第一數學關係以做出該測量值是否為於所選擇的該測量值應用範圍之內的一邏輯決定,並在該邏輯決定是肯定的條件下確定該情況;在該特定測量值範圍碼不同於所確定的該測量值應用範圍碼且該處理單元藉由做出該邏輯決定而確定所進入的該時鐘時間應用區間的條件下,該處理單元基於等於該特定測量值範圍碼的該可變時鐘時間區間碼和所確定的該測量值應用範圍碼之間的一碼差異來使用該儲存單元以將所確定的該測量值應用範圍碼指定到該可變時鐘時間區間碼;該輸入單元包含一按鈕;該物理參數應用單元具有該可變物理參數;該可變物理參數進一步基於不同於該物理參數目標狀態的一特定物理參數狀態而被特徵化; 在該處理單元藉由檢查該第一數學關係而導致該可變物理參數處於該物理參數目標狀態的條件下,該輸入單元接收使用該按鈕的一使用者輸入操作;以及該處理單元響應該使用者輸入操作來向該物理參數應用單元傳輸用於導致該可變物理參數離開該物理參數目標狀態以進入該特定物理參數狀態的一操作訊號。 The functional device of claim 1, further comprising an input unit coupled to the processing unit, and a physical parameter application unit coupled to the processing unit, wherein: the second timer conforms to a timer specification, wherein the The measurement value application range is preset based on the timer specification; the timer specification includes a full measurement value range representation for representing a full measurement value range, wherein the measurement value application range is equal to a first value of the full measurement value range. part; the processing unit is configured to execute a measurement application function associated with the clock time application interval; the measurement application function conforms to a measurement application function specification associated with the clock time application interval; the processing unit responds to the sensing signal to obtaining the measurement in a specified measurement format, wherein the specified measurement format is characterized based on a specified number of bits; the clock time is further characterized based on a nominal clock time interval, wherein the nominal clock time interval is characterized by A rated measurement value range is represented and includes a plurality of different clock time reference intervals respectively represented by a plurality of different measurement value reference ranges; the plurality of different clock time reference intervals include the clock time application interval; the measurement application functional specification includes the timing device specification, a nominal clock time interval representation for representing the rated clock time interval, and a clock time application interval representation for representing the clock time application interval; The nominal measurement value range is equal to at least a second portion of the full measurement value range, predicted using the specified measurement value format based on one of the timer specification, the measurement application function specification, and a first data encoding rule It is assumed that there is a pair of rated range limit values, and includes the plurality of different measurement value reference ranges respectively represented by a plurality of different measurement value reference range codes, wherein the rated range limit value pair is preset with the specified measurement value format, And the plurality of different measurement value reference ranges include the measurement value application range; the first data encoding rule is used to convert the rated clock time interval representation, and is formulated based on the timer specification; the measurement value application range is included in the A measurement value application range code in the plurality of different measurement value reference range codes, represented by a measurement value application range code, has an application range limit value pair, and is based on one of the timer specification, the measurement application function specification and a second data encoding rule. is preset with the specified measurement value format, wherein the plurality of different measurement value reference range codes are preset based on the measurement application function specification; the second data encoding rule is used to convert the clock time application interval representation, and is based on the timer specification is formulated; the pair of application range limit values includes a first application range limit value and a second application range limit value relative to the first application range limit value; the functional device further comprises a function coupled to the processing a storage unit of the unit; the storage unit stores the preset pair of rated range limit values and a variable clock time interval code; when the integer overflow event associated with the first timer occurs, the variable clock The time interval code is equal to the reference range selected from this complex number of different measurement values. a specific measurement value range code of the surrounding code, wherein the specific measurement value range code indicates a specific clock time interval previously determined based on a sensing operation, the specific clock time interval selected from the plurality of different clock time reference intervals, and The sensing operation performed by the second timer is used to sense the clock time; before the integer overflow event occurs, the specific measurement value range code is assigned to the variable clock time interval code; at the integer Under the condition that an overflow event occurs, the processing unit obtains an operation reference data code from the storage unit in response to the operation request signal, and executes a data determination using the operation reference data code by running a data determination program to determine The measurement value application range code is selected from the plurality of different measurement value reference range codes to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference data code is the same as that which is predicted based on the measurement application function specification. an allowable reference data code set; the data determination procedure is constructed based on the measurement application functional specification; the data determination is one of a first data determination operation and a second data determination operation; in the operation reference data A code is obtained by accessing the variable clock time interval code stored in the storage unit under the same conditions as the specific measurement value range code, the data determination of the first data determination operation is based on the obtained The specific measurement value range code obtained is used to determine the measurement value application range code, wherein the first data determination operation is a first scientific calculation using the obtained specific measurement value range code, and the determined measurement value application range The code is the same as or different from the obtained range code for this particular measurement value; Under the condition that the operation reference data code is obtained by accessing the pair of rated range limit values stored in the storage unit to be the same as the preset pair of rated range limit values, the second data is determined The data determination of the operation selects the measurement value from the plurality of different measurement value reference range codes by performing a second scientific calculation using the measurement value and the obtained nominal range limit value pair to apply the range code to determine the measurement a value application range code, wherein the second scientific calculation is performed based on a specific empirical formula, and the specific empirical formula is pre-established based on the preset pair of the rated range limit values and the plurality of different measurement value reference range codes; The processing unit applies a range code based on the determined measurement value to obtain the pair of application range limit values, checks the first mathematical relationship based on a data comparison between the measurement value and the obtained pair of application range limit values to making a logical determination of whether the measurement is within the selected range of application of the measurement, and determining this condition if the logical determination is positive; the particular measurement range code differs from the determined Condition that the measurement value applies a range code and the processing unit determines the clock time application interval entered by making the logical decision, the processing unit is based on the variable clock time interval code equal to the specific measurement value range code and The determined measurement value applies a code difference between the range codes to use the storage unit to assign the determined measurement value application range code to the variable clock time interval code; the input unit includes a button; the physical The parameter application unit has the variable physical parameter; the variable physical parameter is further characterized based on a specific physical parameter state different from the physical parameter target state; Under the condition that the processing unit causes the variable physical parameter to be in the physical parameter target state by checking the first mathematical relationship, the input unit receives a user input operation using the button; and the processing unit responds to the use The operator inputs an operation to transmit an operation signal to the physical parameter application unit for causing the variable physical parameter to leave the physical parameter target state to enter the specific physical parameter state. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;導致一整數溢位事件發生;響應該整數溢位事件,接收一操作請求訊號;響應該操作請求訊號,從該感測訊號獲得一測量值;以及在該時鐘時間進入該時鐘時間應用區間的一情況藉由檢查該測量值和該測量值應用範圍之間的一第一數學關係而被確定的條件下,使該可變物理參數處於該物理參數目標狀態。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the method comprising the steps of: sensing a clock time to generate a sensed signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; causes an integer overflow event to occur; receives an operation request signal in response to the integer overflow event; responds to the operation request signal, from the Sensing the signal to obtain a measured value; and under the condition that a situation where the clock time enters the clock time application interval is determined by examining a first mathematical relationship between the measured value and the measured value application range, make The variable physical parameter is in the physical parameter target state. 如請求項4所述的方法,其中:該時鐘時間進一步基於不同於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化,其中該時鐘時間指定區間早於該時鐘時間應用區間;該方法進一步包含下列步驟: 提供一第一定時器,其中該整數溢位事件被該第一定時器導致以發生;提供一第二定時器,其中感測該時鐘時間的步驟藉由使用該第二定時器而被執行;以及從一控制裝置接收一控制訊號,其中該控制訊號起到指示該時鐘時間指定區間的作用;該控制裝置是一移動裝置和一遙控器的其中之一;在該控制裝置是該遙控器的條件下,該控制訊號是一光訊號;獲得該測量值的步驟包含一子步驟:在該控制訊號被接收之後,由於該控制訊號來響應該感測訊號而獲得包含該測量值的一測量值序列;該方法進一步包含下列步驟:藉由檢查該測量值序列和該測量值應用範圍之間的一第二數學關係,做出該時鐘時間是否從該時鐘時間指定區間進入該時鐘時間應用區間的一邏輯決定;以及在該邏輯決定是肯定的條件下,確定所進入的該時鐘時間應用區間;該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一部分;該測量值以一指定測量值格式而被獲得;該測量值應用範圍基於該定時器規格來用該指定測量 值格式而被預設;該測量值應用範圍具有一應用範圍界限值對,並由一測量值應用範圍碼所代表,其中該應用範圍界限值對被預設;該方法進一步包含下列步驟:響應該控制訊號,獲得該應用範圍界限值對和該測量值應用範圍碼;以及藉由比較該測量值和所獲得的該應用範圍界限值對,檢查該第一數學關係;該物理參數目標狀態由一物理參數目標狀態碼所代表;當該第一數學關係被檢查時,該可變物理參數處於一物理參數應用狀態;使該可變物理參數處於該物理參數目標狀態的步驟包含下列子步驟:在所進入的該時鐘時間應用區間藉由檢查該第一數學關係而被確定的條件下,基於所獲得的該測量值應用範圍碼來獲得該物理參數目標狀態碼;基於所獲得的該物理參數目標狀態碼,執行用於檢查該可變物理參數和該物理參數目標狀態之間的一物理參數關係的一物理參數關係檢查控制;在該物理參數應用狀態不同於該物理參數目標狀態且該物理參數目標狀態和該物理參數應用狀態之間的一物理參數狀態差異藉由執行該物理參數關係檢查控制而被確定的條件下,基於所獲得的該物理參數目標狀態碼來執 行一訊號產生控制以產生一操作訊號;以及響應該操作訊號,使該可變物理參數從該物理參數應用狀態進入該物理參數目標狀態;該方法進一步包含一步驟:在所進入的該時鐘時間應用區間藉由檢查該第一數學關係而被確定的條件下,執行一資料儲存控制操作,該資料儲存控制操作用於導致代表所確定的該時鐘時間應用區間的一時鐘時間應用區間碼被儲存;以及該可變物理參數和該時鐘時間分別屬於一物理參數類型和一時鐘時間類型,其中該物理參數類型不同於該時鐘時間類型。 The method of claim 4, wherein: the clock time is further characterized based on a clock time designation interval different from the clock time application interval, wherein the clock time designation interval is earlier than the clock time application interval; the method Further includes the following steps: providing a first timer, wherein the integer overflow event is caused by the first timer to occur; providing a second timer, wherein the step of sensing the clock time is performed by using the second timer; and receiving a control signal from a control device, wherein the control signal plays the role of indicating the specified time interval of the clock; the control device is one of a mobile device and a remote control; in the control device is the remote control Under the condition that the control signal is an optical signal; the step of obtaining the measurement value includes a sub-step: after the control signal is received, a measurement value including the measurement value is obtained due to the control signal responding to the sensing signal sequence; the method further comprises the steps of: by checking a second mathematical relationship between the sequence of measurements and the range of application of the measurement, making a determination of whether the clock time enters the clock time application interval from the clock time specified interval a logical decision; and if the logical decision is affirmative, determining the entered clock time application interval; the second timer complies with a timer specification, wherein the measurement value application range is predetermined based on the timer specification set; the timer specification includes a full measurement range representation for representing a full measurement range, wherein the measurement application range is equal to a portion of the full measurement range; the measurement is obtained in a specified measurement format ; the measurement value application range is based on the timer specification for the specified measurement The measurement value application range has an application range limit value pair, which is represented by a measurement value application range code, wherein the application range limit value pair is preset; the method further comprises the following steps: responding should control the signal to obtain the pair of application range limit values and the measured value application range code; and check the first mathematical relationship by comparing the measured value and the obtained pair of the application range limit values; the physical parameter target state is given by Represented by a physical parameter target state code; when the first mathematical relationship is checked, the variable physical parameter is in a physical parameter application state; the step of making the variable physical parameter in the physical parameter target state includes the following sub-steps: Under the condition that the entered clock time application interval is determined by checking the first mathematical relationship, a range code is applied based on the obtained measurement value to obtain the physical parameter target status code; based on the obtained physical parameter The target state code executes a physical parameter relationship check control for checking a physical parameter relationship between the variable physical parameter and the physical parameter target state; when the physical parameter application state is different from the physical parameter target state and the physical parameter A physical parameter state difference between the parameter target state and the physical parameter application state is determined by executing the physical parameter relationship check control, based on the obtained physical parameter target state code. performing a signal generation control to generate an operation signal; and in response to the operation signal, causing the variable physical parameter to enter the physical parameter target state from the physical parameter application state; the method further comprises the step of: at the entered clock time Under the condition that the application interval is determined by examining the first mathematical relationship, a data storage control operation is performed, the data storage control operation for causing a clock time application interval code representing the determined clock time application interval to be stored ; and the variable physical parameter and the clock time belong to a physical parameter type and a clock time type, respectively, wherein the physical parameter type is different from the clock time type. 如請求項4所述的方法,其中:該方法進一步包含下列步驟:提供一第一定時器,其中該整數溢位事件被該第一定時器導致以發生;提供一第二定時器,其中感測該時鐘時間的步驟藉由使用該第二定時器而被執行;以及執行與該時鐘時間應用區間相關的一測量應用功能;該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一第一部分;該測量應用功能符合與該時鐘時間應用區間相關的一 測量應用功能規格;該測量值以一指定測量值格式而被獲得,其中該指定測量值格式基於一指定位元數目而被特徵化;該時鐘時間進一步基於一額定時鐘時間區間而被特徵化,其中該額定時鐘時間區間由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同時鐘時間參考區間;該複數不同時鐘時間參考區間包含該時鐘時間應用區間;該測量應用功能規格包含該定時器規格、用於表示該額定時鐘時間區間的一額定時鐘時間區間表示、和用於表示該時鐘時間應用區間的一時鐘時間應用區間表示;該額定測量值範圍等於該全測量值範圍的至少一第二部分,基於該定時器規格、該測量應用功能規格和一第一資料編碼規則的其中之一來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值應用範圍;該第一資料編碼規則用於轉換該額定時鐘時間區間表示,並基於該定時器規格而被制定;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,具有一應用範圍界限值對,並基於該定時器規格、該測量應用功能規格和一第二資料編碼規則的其中之一來用該指定測量值格式而被 預設,其中該複數不同測量值參考範圍碼皆基於該測量應用功能規格而被預設;該第二資料編碼規則用於轉換該時鐘時間應用區間表示,並基於該定時器規格而被制定;該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該方法進一步包含下列步驟:提供一儲存空間;以及在該儲存空間中儲存所預設的該額定範圍界限值對和一可變時鐘時間區間碼;當該整數溢位事件發生時,該可變時鐘時間區間碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一特定時鐘時間區間,該特定時鐘時間區間選擇自該複數不同時鐘時間參考區間,且由該第二定時器所執行的該感測操作用於感測該時鐘時間;在該整數溢位事件發生之前,該特定測量值範圍碼被指定到該可變時鐘時間區間碼;該方法進一步包含下列步驟:在該整數溢位事件發生的條件下,響應該操作請求訊號來從該儲存空間獲得一操作參考資料碼;以及藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定,確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍; 該操作參考資料碼相同於基於該測量應用功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該測量應用功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該可變時鐘時間區間碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中該第一資料確定操作是使用所獲得的該特定測量值範圍碼的一第一科學計算,且所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該額定範圍界限值對而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該測量值和所獲得的該額定範圍界限值對的一第二科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第二科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該方法進一步包含下列步驟:基於所確定的該測量值應用範圍碼,獲得該應用範圍界限值對;基於該測量值和所獲得的該應用範圍界限值對之 間的一資料比較,檢查該第一數學關係以做出該測量值是否為於所選擇的該測量值應用範圍之內的一邏輯決定;以及在該邏輯決定是肯定的條件下,確定該情況;該方法進一步包含一步驟:在該特定測量值範圍碼不同於所確定的該測量值應用範圍碼且所進入的該時鐘時間應用區間藉由做出該邏輯決定而被確定的條件下,基於等於該特定測量值範圍碼的該可變時鐘時間區間碼和所確定的該測量值應用範圍碼之間的一碼差異來將所確定的該測量值應用範圍碼指定到該可變時鐘時間區間碼;該可變物理參數進一步基於不同於該物理參數目標狀態的一特定物理參數狀態而被特徵化;以及該方法進一步包含下列步驟:提供一按鈕;在該可變物理參數藉由檢查該第一數學關係而被導致處於該物理參數目標狀態的條件下,接收使用該按鈕的一使用者輸入操作;以及響應該使用者輸入操作,產生用於導致該可變物理參數離開該物理參數目標狀態以進入該特定物理參數狀態的一操作訊號。 The method of claim 4, wherein: the method further comprises the steps of: providing a first timer, wherein the integer overflow event is caused by the first timer to occur; providing a second timer, wherein the sense The steps of measuring the clock time are performed by using the second timer; and executing a measurement application function associated with the clock time application interval; the second timer conforms to a timer specification in which the measurement value applies is preset based on the timer specification; the timer specification includes a full measurement value range representation for representing a full measurement value range, wherein the measurement value application range is equal to a first part of the full measurement value range; the measurement The application function conforms to a a measurement application functional specification; the measurement is obtained in a specified measurement format, wherein the specified measurement format is characterized based on a specified number of bits; the clock time is further characterized based on a nominal clock time interval, wherein the rated clock time interval is represented by a rated measurement value range, and includes a plurality of different clock time reference intervals respectively represented by a plurality of different measurement value reference ranges; the plurality of different clock time reference intervals include the clock time application interval; the The measurement application functional specification includes the timer specification, a nominal clock time interval representation for representing the rated clock time interval, and a clock time application interval representation for representing the clock time application interval; the rated measurement value range is equal to the At least a second portion of the full measurement range, preset for the specified measurement format based on one of the timer specification, the measurement application function specification, and a first data encoding rule, has a nominal range limit value pair, and includes the plurality of different measurement value reference ranges respectively represented by the plurality of different measurement value reference range codes, wherein the rated range limit value pair is preset with the specified measurement value format, and the plurality of different measurement value reference ranges The range includes the measurement value application range; the first data encoding rule is used to convert the nominal clock time interval representation, and is formulated based on the timer specification; the measurement value application range is included in the complex number of different measurement value reference range codes Represented by a measurement value application range code in , having an application range limit value pair, and using the specified measurement value format based on one of the timer specification, the measurement application function specification and a second data encoding rule. quilt Presetting, wherein the plurality of different measurement value reference range codes are all preset based on the measurement application function specification; the second data encoding rule is used to convert the clock time application interval representation, and is formulated based on the timer specification; The pair of application range limit values includes a first application range limit value and a second application range limit value relative to the first application range limit value; the method further includes the steps of: providing a storage space; and storing in the storage space The preset pair of rated range limit values and a variable clock time interval code are stored in the a specific measurement value range code, wherein the specific measurement value range code indicates a specific clock time interval previously determined based on a sensing operation, the specific clock time interval is selected from the plurality of different clock time reference intervals, and is determined by the second The sensing operation performed by the timer is used to sense the clock time; before the integer overflow event occurs, the specific measurement value range code is assigned to the variable clock time interval code; the method further includes the following steps: Under the condition that the integer overflow event occurs, an operation reference data code is obtained from the storage space in response to the operation request signal; and a data determination using the operation reference data code is performed by running a data determination program, determining selecting the measurement value application range code from the plurality of different measurement value reference range codes to select the measurement value application range from the plurality of different measurement value reference ranges; The operation reference data code is the same as an allowable reference data code preset based on the measurement application functional specification; the data determination procedure is constructed based on the measurement application functional specification; the data determination is a first data determination operation and one of a second data determination operation in which the reference data code is obtained by accessing the variable clock time interval code stored in the storage space under the same conditions as the specific measurement range code Next, the data determination of the first data determination operation is based on the obtained specific measurement value range code to determine the measurement value application range code, wherein the first data determination operation is to use the obtained specific measurement value range code a first scientific calculation of , and the determined measurement value application range code is the same or different from the obtained specific measurement value range code; in the operation reference data code is stored in the storage space by accessing the The nominal range limit value pair is obtained with the same condition as the preset nominal range limit value pair, it is the data determination of the second data determination operation performed by using the measured value and the obtained nominal range a second scientific calculation of limit pairs to select the measurement application range code from the plurality of different measurement reference range codes to determine the measurement application range code, wherein the second scientific calculation is performed based on a specific empirical formula , and the specific empirical formula is pre-established based on the preset pair of rated range limit values and the reference range code for the complex number of different measurement values; the method further comprises the steps of: applying the range code based on the determined measurement value to obtain The application range limit value pair; based on the measured value and the obtained application range limit value pair a data comparison between, checking the first mathematical relationship to make a logical determination of whether the measurement is within the selected range of application of the measurement; and, if the logical determination is affirmative, determining the situation ; The method further comprises a step: under the condition that the specific measurement value range code is different from the determined measurement value application range code and the entered clock time application interval is determined by making the logical decision, based on A code difference between the variable clock time interval code equal to the specific measurement range code and the determined measurement application range code to assign the determined measurement application range code to the variable clock time interval code; the variable physical parameter is further characterized based on a specific physical parameter state that is different from the physical parameter target state; and the method further comprises the steps of: providing a button; at the variable physical parameter by checking the first receiving a user input operation using the button under the condition that a mathematical relationship is caused to be in the physical parameter target state; and in response to the user input operation, generating an operation for causing the variable physical parameter to leave the physical parameter target state An operation signal to enter the state of the specific physical parameter. 一種用於控制一可變物理參數的功能裝置,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該功能裝置包含:一處理單元;一第一定時器,耦合於該處理單元,導致一整數溢位 事件發生,並響應該整數溢位事件來使該處理單元接收一操作請求訊號;以及一第二定時器,耦合於該處理單元,並感測一時鐘時間以產生一感測訊號,其中:該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;以及該處理單元響應該操作請求訊號來從該感測訊號獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下使該可變物理參數處於該物理參數目標狀態。 A functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the functional device comprising: a processing unit; a first timer coupled to the processing unit , resulting in an integer overflow an event occurs, and in response to the integer overflow event, the processing unit receives an operation request signal; and a second timer is coupled to the processing unit and senses a clock time to generate a sensing signal, wherein: the clock time is characterized based on a clock time application interval represented by a measurement value application range; and the processing unit obtains a measurement value from the sensing signal in response to the operation request signal, and checks the processing unit by checking The variable physical parameter is in the physical parameter target state under the condition of determining the clock time application interval in which the clock time is currently located by a mathematical relationship between the measured value and the application range of the measured value. 如請求項7所述的功能裝置,進一步包含耦合於該處理單元的一接收單元、和耦合於該處理單元的一物理參數應用單元,其中:該時鐘時間進一步基於不同於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化,其中該時鐘時間指定區間早於該時鐘時間應用區間;在該接收單元從一控制裝置接收一控制訊號之後,該處理單元由於該控制訊號來響應該感測訊號而獲得該測量值,其中該控制訊號起到指示該時鐘時間指定區間的作用;該控制裝置是一移動裝置和一遙控器的其中之一;在該控制裝置是該遙控器的條件下,該控制訊號是一光訊號;該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設; 該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一部分;該測量值以一指定測量值格式而被獲得;該測量值應用範圍基於該定時器規格來用該指定測量值格式而被預設;該測量值應用範圍具有一應用範圍界限值對,並由一測量值應用範圍碼所代表,其中該應用範圍界限值對被預設;該處理單元響應該控制訊號來獲得該應用範圍界限值對和該測量值應用範圍碼,並藉由比較該測量值和所獲得的該應用範圍界限值對來檢查該數學關係;該物理參數目標狀態由一物理參數目標狀態碼所代表;該物理參數應用單元具有該可變物理參數,其中當該處理單元檢查該數學關係時,該可變物理參數處於一物理參數應用狀態;在該處理單元藉由檢查該數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下,該處理單元基於所獲得的該測量值應用範圍碼來獲得該物理參數目標狀態碼,並基於所獲得的該物理參數目標狀態碼來執行用於檢查該可變物理參數和該物理參數目標狀態之間的一物理參數關係的一物理參數關係檢查控制;在該物理參數應用狀態不同於該物理參數目標狀態且該處理單元藉由執行該物理參數關係檢查控制而確定該物 理參數目標狀態和該物理參數應用狀態之間的一物理參數狀態差異的條件下,該處理單元基於所獲得的該物理參數目標狀態碼來執行一訊號產生控制以產生一操作訊號,並向該物理參數應用單元傳輸該操作訊號;該物理參數應用單元響應該操作訊號來使該可變物理參數從該物理參數應用狀態進入該物理參數目標狀態;在該處理單元藉由檢查該數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下,該處理單元執行一資料儲存控制操作,該資料儲存控制操作用於導致代表所確定的該時鐘時間應用區間的一時鐘時間應用區間碼被儲存;以及該可變物理參數和該時鐘時間分別屬於一物理參數類型和一時鐘時間類型,其中該物理參數類型不同於該時鐘時間類型。 The functional device according to claim 7, further comprising a receiving unit coupled to the processing unit, and a physical parameter applying unit coupled to the processing unit, wherein: the clock time is further based on a time interval different from the clock time application interval A clock time designation interval is characterized, wherein the clock time designation interval is earlier than the clock time application interval; after the receiving unit receives a control signal from a control device, the processing unit responds to the sensing due to the control signal The measured value is obtained by using a signal, wherein the control signal serves to indicate the specified interval of the clock time; the control device is one of a mobile device and a remote control; under the condition that the control device is the remote control, the control signal is an optical signal; the second timer complies with a timer specification, wherein the measurement value application range is preset based on the timer specification; The timer specification includes a full measurement range representation for representing a full measurement range, wherein the measurement application range is equal to a portion of the full measurement range; the measurement is obtained in a specified measurement format; the The measurement value application range is preset with the specified measurement value format based on the timer specification; the measurement value application range has an application range limit value pair and is represented by a measurement value application range code, wherein the application range limit value The value pair is preset; the processing unit obtains the application range limit value pair and the measured value application range code in response to the control signal, and checks the mathematical value by comparing the measured value and the obtained application range limit value pair relationship; the physical parameter target state is represented by a physical parameter target state code; the physical parameter application unit has the variable physical parameter, wherein when the processing unit checks the mathematical relationship, the variable physical parameter is in a physical parameter application state; under the condition that the processing unit determines the clock time application interval that the clock time is currently in by checking the mathematical relationship, the processing unit applies a range code based on the obtained measurement value to obtain the physical parameter target state code, and based on the obtained physical parameter target state code to perform a physical parameter relationship check control for checking a physical parameter relationship between the variable physical parameter and the physical parameter target state; in the physical parameter application state is different from the physical parameter target state and the processing unit determines the object by executing the physical parameter relationship check control Under the condition of a physical parameter state difference between the physical parameter target state and the physical parameter application state, the processing unit performs a signal generation control based on the obtained physical parameter target state code to generate an operation signal, and sends it to the The physical parameter application unit transmits the operation signal; the physical parameter application unit causes the variable physical parameter to enter the physical parameter target state from the physical parameter application state in response to the operation signal; the processing unit determines by checking the mathematical relationship Under the condition of the clock time application interval in which the clock time is currently located, the processing unit executes a data storage control operation for causing a clock time application interval code representing the determined clock time application interval are stored; and the variable physical parameter and the clock time belong to a physical parameter type and a clock time type, respectively, wherein the physical parameter type is different from the clock time type. 如請求項7所述的功能裝置,其中:該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一第一部分;該處理單元被配置以執行與該時鐘時間應用區間相關的一測量應用功能;該測量應用功能符合與該時鐘時間應用區間相關的一測量應用功能規格;該處理單元響應該感測訊號來以一指定測量值格式獲 得該測量值,其中該指定測量值格式基於一指定位元數目而被特徵化;該時鐘時間進一步基於一額定時鐘時間區間而被特徵化,其中該額定時鐘時間區間由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同時鐘時間參考區間;該複數不同時鐘時間參考區間包含該時鐘時間應用區間;該測量應用功能規格包含該定時器規格、用於表示該額定時鐘時間區間的一額定時鐘時間區間表示、和用於表示該時鐘時間應用區間的一時鐘時間應用區間表示;該額定測量值範圍等於該全測量值範圍的至少一第二部分,基於該定時器規格、該測量應用功能規格和一第一資料編碼規則的其中之一來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值應用範圍;該第一資料編碼規則用於轉換該額定時鐘時間區間表示,並基於該定時器規格而被制定;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,具有一應用範圍界限值對,並基於該定時器規格、該測量應用功能規格和一第二資料編碼規則的其中之一來用該指定測量值格式而被預設,其中該複數不同測量值參考範圍碼皆基於該測量應 用功能規格而被預設;該第二資料編碼規則用於轉換該時鐘時間應用區間表示,並基於該定時器規格而被制定;該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該功能裝置進一步包含耦合於該處理單元的一儲存單元;該儲存單元儲存所預設的該額定範圍界限值對和一可變時鐘時間區間碼;當與該第一定時器相關的該整數溢位事件發生時,該可變時鐘時間區間碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一特定時鐘時間區間,該特定時鐘時間區間選擇自該複數不同時鐘時間參考區間,且由該第二定時器所執行的該感測操作用於感測該時鐘時間;在該觸發事件發生之前,該特定測量值範圍碼被指定到該可變時鐘時間區間碼;在該整數溢位事件發生的條件下,該處理單元響應該操作請求訊號來從該儲存單元獲得一操作參考資料碼,並藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定以確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該測量應用功能規格而 被預設的一可允許參考資料碼;該資料確定程序基於該測量應用功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存單元中的該可變時鐘時間區間碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中該第一資料確定操作是使用所獲得的該特定測量值範圍碼的一第一科學計算,且所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼;在該操作參考資料碼藉由存取被儲存在該儲存單元中的該額定範圍界限值對而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該測量值和所獲得的該額定範圍界限值對的一第二科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第二科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該處理單元基於所確定的該測量值應用範圍碼來獲得該應用範圍界限值對,基於該測量值和所獲得的該應用範圍界限值對之間的一資料比較來檢查該數學關係以做出該測量值是否為於所選擇的該測量值應用範圍之內的一邏輯決定,並在該邏輯決定是肯定的條件下確定該時鐘時間目 前所處於的該時鐘時間應用區間;在該特定測量值範圍碼不同於所確定的該測量值應用範圍碼且該處理單元藉由做出該邏輯決定而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下,該處理單元基於等於該特定測量值範圍碼的該可變時鐘時間區間碼和所確定的該測量值應用範圍碼之間的一碼差異來使用該儲存單元以將所確定的該測量值應用範圍碼指定到該可變時鐘時間區間碼;該輸入單元包含一按鈕;該物理參數應用單元具有該可變物理參數;該可變物理參數進一步基於不同於該物理參數目標狀態的一特定物理參數狀態而被特徵化;在該處理單元藉由檢查該第一數學關係而導致該可變物理參數處於該物理參數目標狀態的條件下,該輸入單元接收使用該按鈕的一使用者輸入操作;以及該處理單元響應該使用者輸入操作來向該物理參數應用單元傳輸用於導致該可變物理參數離開該物理參數目標狀態以進入該特定物理參數狀態的一操作訊號。 The functional device of claim 7, wherein: the second timer complies with a timer specification, wherein the measurement value application range is preset based on the timer specification; the timer specification includes means for indicating a full measurement a full measurement value range representation of a value range, wherein the measurement value application range is equal to a first portion of the full measurement value range; the processing unit is configured to perform a measurement application function associated with the clock time application interval; the measurement application The function conforms to a measurement application function specification related to the clock time application interval; the processing unit responds to the sensing signal to obtain a measurement value in a specified format. obtain the measurement value, wherein the specified measurement value format is characterized based on a specified number of bits; the clock time is further characterized based on a nominal clock time interval, wherein the nominal clock time interval is characterized by a nominal measurement value range represents and includes a plurality of different clock time reference intervals respectively represented by a plurality of different measurement value reference ranges; the complex different clock time reference intervals include the clock time application interval; the measurement application function specification includes the timer specification, which is used to indicate A nominal clock time interval representation of the nominal clock time interval, and a clock time application interval representation for representing the clock time application interval; the nominal measurement value range is equal to at least a second portion of the full measurement value range, based on the One of the timer specification, the measurement application function specification, and a first data encoding rule is preset with the specified measurement value format, has a pair of nominal range limit values, and includes a reference range code composed of a plurality of different measurement values the plurality of different measurement value reference ranges represented respectively, wherein the rated range limit value pair is preset with the specified measurement value format, and the plurality of different measurement value reference ranges include the measurement value application range; the first data code The rule is used to convert the nominal clock time interval representation and is formulated based on the timer specification; the measurement value application range is represented by a measurement value application range code included in the plurality of different measurement value reference range codes, with a An application range limit value pair is preset with the specified measurement value format based on one of the timer specification, the measurement application function specification and a second data encoding rule, wherein the plurality of different measurement values refer to a range code based on this measurement should is preset with a functional specification; the second data encoding rule is used to convert the clock time application interval representation, and is formulated based on the timer specification; the application range limit value pair includes a first application range limit value and a relative a second application range limit value at the first application range limit value; the functional device further includes a storage unit coupled to the processing unit; the storage unit stores the preset rated range limit value pair and a variable a clock time interval code; when the integer overflow event associated with the first timer occurs, the variable clock time interval code is equal to a specific measurement value range code selected from the plurality of different measurement value reference range codes, wherein the The specific measurement value range code indicates a specific clock time interval previously determined based on a sensing operation, the specific clock time interval selected from the plurality of different clock time reference intervals, and the sensing performed by the second timer operation for sensing the clock time; before the trigger event occurs, the specific measurement range code is assigned to the variable clock time interval code; under the condition that the integer overflow event occurs, the processing unit responds to the operation requesting a signal to obtain an operational reference data code from the storage unit, and to perform a data determination using the operational reference data code by running a data determination program to determine the measurement value selected from the plurality of different measurement value reference range codes Application range code to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference code is the same as the measurement application function specification based on the measurement application function specification A permissible reference data code is preset; the data determination procedure is constructed based on the measurement application functional specification; the data determination is one of a first data determination operation and a second data determination operation; in the operation The reference data code is obtained by accessing the variable clock time interval code stored in the storage unit under the same condition as the specific measurement value range code, the data determination of the first data determination operation is based on The obtained specific measurement value range code is used to determine the measurement value application range code, wherein the first data determination operation is a first scientific calculation using the obtained specific measurement value range code, and the determined measurement value The application range code is the same or different from the obtained specific measurement value range code; the operation reference data code is obtained by accessing the pair of rated range limit values stored in the storage unit to be the same as the preset value Under the condition of the rated range limit value pair, the data determination of the second data determination operation is performed by performing a second scientific calculation using the measured value and the obtained rated range limit value pair to differ from the complex number The measurement value application range code is selected from the measurement value reference range code to determine the measurement value application range code, wherein the second scientific calculation is performed based on a specific empirical formula, and the specific empirical formula is based on the preset rated range The pair of limit values and the plurality of different measurement values are pre-established with reference to a range code; the processing unit applies the range code based on the determined measurement value to obtain the pair of application range limit values, based on the measurement value and the obtained application range a data comparison between pairs of thresholds to check the mathematical relationship to make a logical determination of whether the measurement is within the selected range of application of the measurement, and to determine the logical determination if the logical determination is positive clock time the clock time application interval in which the clock time was currently in; when the specific measurement value range code is different from the determined measurement value application range code and the processing unit determines the clock in which the clock time is currently in by making the logical decision Under the condition of time application range, the processing unit uses the storage unit based on a code difference between the variable clock time range code equal to the specific measurement value range code and the determined measurement value application range code to store the The determined measurement value application range code is assigned to the variable clock time interval code; the input unit includes a button; the physical parameter application unit has the variable physical parameter; the variable physical parameter is further based on a target different from the physical parameter The state is characterized by a specific physical parameter state of the state; the input unit receives a use of the button under the condition that the processing unit causes the variable physical parameter to be in the physical parameter target state by checking the first mathematical relationship a user input operation; and the processing unit transmits an operation signal to the physical parameter application unit in response to the user input operation for causing the variable physical parameter to leave the physical parameter target state to enter the specific physical parameter state. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;導致一整數溢位事件發生; 響應該整數溢位事件,接收一操作請求訊號;響應該操作請求訊號,從該感測訊號獲得一測量值;以及在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,使該可變物理參數處於該物理參數目標狀態。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the method comprising the steps of: sensing a clock time to generate a sensed signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; causing an integer overflow event to occur; In response to the integer overflow event, receiving an operation request signal; in response to the operation request signal, obtaining a measurement value from the sensing signal; and in the clock time application interval in which the clock time is currently located by checking the measurement value and The variable physical parameter is brought into the physical parameter target state under the condition that the measured value is determined using a mathematical relationship between the ranges. 如請求項10所述的方法,其中:該時鐘時間進一步基於不同於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化,其中該時鐘時間指定區間早於該時鐘時間應用區間;該方法進一步包含下列步驟:提供一第一定時器,其中該整數溢位事件被該第一定時器導致以發生;提供一第二定時器,其中感測該時鐘時間的步驟藉由使用該第二定時器而被執行;以及從一控制裝置接收一控制訊號,其中該控制訊號起到指示該時鐘時間指定區間的作用;該控制裝置是一移動裝置和一遙控器的其中之一;在該控制裝置是該遙控器的條件下,該控制訊號是一光訊號;獲得該測量值的步驟包含一子步驟:在該控制訊號被接收之後,由於該控制訊號來響應該感測訊號而獲得該測量值;該第二定時器符合一定時器規格,其中該測量值應用 範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一部分;該測量值以一指定測量值格式而被獲得;該測量值應用範圍基於該定時器規格來用該指定測量值格式而被預設;該測量值應用範圍具有一應用範圍界限值對,並由一測量值應用範圍碼所代表,其中該應用範圍界限值對被預設;該方法進一步包含下列步驟:響應該控制訊號,獲得該應用範圍界限值對和該測量值應用範圍碼;以及藉由比較該測量值和所獲得的該應用範圍界限值對,檢查該數學關係;該物理參數目標狀態由一物理參數目標狀態碼所代表;當該數學關係被檢查時,該可變物理參數處於一物理參數應用狀態;使該可變物理參數處於該物理參數目標狀態的步驟包含下列子步驟:在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該數學關係而被確定的條件下,基於所獲得的該測量值應用範圍碼來獲得該物理參數目標狀態碼;基於所獲得的該物理參數目標狀態碼,執行用於 檢查該可變物理參數和該物理參數目標狀態之間的一物理參數關係的一物理參數關係檢查控制;在該物理參數應用狀態不同於該物理參數目標狀態且該物理參數目標狀態和該物理參數應用狀態之間的一物理參數狀態差異藉由執行該物理參數關係檢查控制而被確定的條件下,基於所獲得的該物理參數目標狀態碼來執行一訊號產生控制以產生一操作訊號;以及響應該操作訊號,使該可變物理參數從該物理參數應用狀態進入該物理參數目標狀態;該方法進一步包含一步驟:在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該數學關係而被確定的條件下,執行一資料儲存控制操作,該資料儲存控制操作用於導致代表所確定的該時鐘時間應用區間的一時鐘時間應用區間碼被儲存;以及該可變物理參數和該時鐘時間分別屬於一物理參數類型和一時鐘時間類型,其中該物理參數類型不同於該時鐘時間類型。 The method of claim 10, wherein: the clock time is further characterized based on a clock time designation interval different from the clock time application interval, wherein the clock time designation interval is earlier than the clock time application interval; the method Further comprising the steps of: providing a first timer, wherein the integer overflow event is caused by the first timer to occur; providing a second timer, wherein the step of sensing the clock time is by using the second timer and receive a control signal from a control device, wherein the control signal serves to indicate the specified interval of the clock time; the control device is one of a mobile device and a remote control; in the control device Under the condition of being the remote controller, the control signal is an optical signal; the step of obtaining the measured value includes a sub-step: after the control signal is received, the measured value is obtained because the control signal responds to the sensing signal ; the second timer complies with a timer specification in which the measured value applies the range is preset based on the timer specification; the timer specification includes a full measurement range representation for representing a full measurement range, wherein the measurement application range is equal to a portion of the full measurement range; the measurement obtained in a specified measurement value format; the measurement value application range is preset with the specified measurement value format based on the timer specification; the measurement value application range has an application range limit value pair, and is determined by a measurement value represented by an application range code, wherein the application range limit value pair is preset; the method further comprises the steps of: in response to the control signal, obtaining the application range limit value pair and the measurement value application range code; and by comparing the measurement value and the obtained application range limit value pair, check the mathematical relationship; the physical parameter target state is represented by a physical parameter target state code; when the mathematical relationship is checked, the variable physical parameter is in a physical parameter application state; the step of bringing the variable physical parameter into the physical parameter target state comprises the following sub-steps: under the condition that the clock time application interval in which the clock time is currently located is determined by examining the mathematical relationship, based on the obtained The measured value of the range code is used to obtain the physical parameter target state code; based on the obtained physical parameter target state code, execute the A physical parameter relationship check control that checks a physical parameter relationship between the variable physical parameter and the physical parameter target state; where the physical parameter application state is different from the physical parameter target state and the physical parameter target state and the physical parameter Under the condition that a physical parameter state difference between application states is determined by executing the physical parameter relationship check control, executing a signal generation control based on the obtained physical parameter target state code to generate an operation signal; and responding A signal should be manipulated to cause the variable physical parameter to enter the physical parameter target state from the physical parameter application state; the method further comprises the step of: by checking the mathematical relationship in the clock time application interval in which the clock time is currently located under the determined condition, performing a data storage control operation for causing a clock time application interval code representing the determined clock time application interval to be stored; and the variable physical parameter and the clock time respectively belong to a physical parameter type and a clock time type, wherein the physical parameter type is different from the clock time type. 如請求項10所述的方法,其中:該方法進一步包含下列步驟:提供一第一定時器,其中該整數溢位事件被該第一定時器導致以發生;提供一第二定時器,其中感測該時鐘時間的步驟藉由使用該第二定時器而被執行;以及執行與該時鐘時間應用區間相關的一測量應用功能; 該第二定時器符合一定時器規格,其中該測量值應用範圍基於該定時器規格而被預設;該定時器規格包含用於表示一全測量值範圍的一全測量值範圍表示,其中該測量值應用範圍等於該全測量值範圍的一第一部分;該測量應用功能符合與該時鐘時間應用區間相關的一測量應用功能規格;該測量值以一指定測量值格式而被獲得,其中該指定測量值格式基於一指定位元數目而被特徵化;該時鐘時間進一步基於一額定時鐘時間區間而被特徵化,其中該額定時鐘時間區間由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同時鐘時間參考區間;該複數不同時鐘時間參考區間包含該時鐘時間應用區間;該測量應用功能規格包含該定時器規格、用於表示該額定時鐘時間區間的一額定時鐘時間區間表示、和用於表示該時鐘時間應用區間的一時鐘時間應用區間表示;該額定測量值範圍等於該全測量值範圍的至少一第二部分,基於該定時器規格、該測量應用功能規格和一第一資料編碼規則的其中之一來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值應用範圍; 該第一資料編碼規則用於轉換該額定時鐘時間區間表示,並基於該定時器規格而被制定;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,具有一應用範圍界限值對,並基於該定時器規格、該測量應用功能規格和一第二資料編碼規則的其中之一來用該指定測量值格式而被預設,其中該複數不同測量值參考範圍碼皆基於該測量應用功能規格而被預設;該第二資料編碼規則用於轉換該時鐘時間應用區間表示,並基於該定時器規格而被制定;該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該方法進一步包含下列步驟:提供一儲存空間;以及在該儲存空間中儲存所預設的該額定範圍界限值對和一可變時鐘時間區間碼;當該整數溢位事件發生時,該可變時鐘時間區間碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一特定時鐘時間區間,該特定時鐘時間區間選擇自該複數不同時鐘時間參考區間,且由該第二定時器所執行的該感測操作用於感測該時鐘時間;在該整數溢位事件發生之前,該特定測量值範圍碼被指定到該可變時鐘時間區間碼;該方法進一步包含下列步驟: 在該整數溢位事件發生的條件下,響應該操作請求訊號來從該儲存空間獲得一操作參考資料碼;以及藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定,確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該測量應用功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該測量應用功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該可變時鐘時間區間碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中該第一資料確定操作是使用所獲得的該特定測量值範圍碼的一第一科學計算,且所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該額定範圍界限值對而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該測量值和所獲得的該額定範圍界限值對的一第二科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第二科學計算基於一特定經驗公式而被執行,且該特 定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該方法進一步包含下列步驟:基於所確定的該測量值應用範圍碼,獲得該應用範圍界限值對;基於該測量值和所獲得的該應用範圍界限值對之間的一資料比較,檢查該數學關係以做出該測量值是否為於所選擇的該測量值應用範圍之內的一邏輯決定;以及在該邏輯決定是肯定的條件下,確定該時鐘時間目前所處於的該時鐘時間應用區間;該方法進一步包含一步驟:在該特定測量值範圍碼不同於所確定的該測量值應用範圍碼且該時鐘時間目前所處於的該時鐘時間應用區間藉由做出該邏輯決定而被確定的條件下,基於等於該特定測量值範圍碼的該可變時鐘時間區間碼和所確定的該測量值應用範圍碼之間的一碼差異來將所確定的該測量值應用範圍碼指定到該可變時鐘時間區間碼;該可變物理參數進一步基於不同於該物理參數目標狀態的一特定物理參數狀態而被特徵化;以及該方法進一步包含下列步驟:提供一按鈕;在該可變物理參數藉由檢查該第一數學關係而被導致處於該物理參數目標狀態的條件下,接收使用該按鈕的一使用者輸入操作;以及響應該使用者輸入操作,產生用於導致該可變物 理參數離開該物理參數目標狀態以進入該特定物理參數狀態的一操作訊號。 The method of claim 10, wherein: the method further comprises the steps of: providing a first timer, wherein the integer overflow event is caused by the first timer to occur; providing a second timer, wherein the sense The steps of measuring the clock time are performed by using the second timer; and executing a measurement application function associated with the clock time application interval; The second timer complies with a timer specification, wherein the measurement value application range is preset based on the timer specification; the timer specification includes a full measurement value range representation for representing a full measurement value range, wherein the The measurement value application range is equal to a first part of the full measurement value range; the measurement application function conforms to a measurement application function specification related to the clock time application interval; the measurement value is obtained in a specified measurement value format, wherein the specified value The measurement format is characterized based on a specified number of bits; the clock time is further characterized based on a nominal clock time interval, wherein the nominal clock time interval is represented by a nominal measurement value range and includes a plurality of distinct measurements The complex number of different clock time reference intervals respectively represented by the value reference ranges; the complex number of different clock time reference intervals include the clock time application interval; the measurement application function specification includes the timer specification, a rated value used to represent the rated clock time interval clock time interval representation, and a clock time application interval representation for representing the clock time application interval; the rated measurement value range is equal to at least a second part of the full measurement value range, based on the timer specification, the measurement application function One of a specification and a first data encoding rule is preset with the specified measurement value format, has a pair of nominal range limit values, and includes the plurality of different measurements respectively represented by the plurality of different measurement value reference range codes a value reference range, wherein the nominal range limit value pair is preset with the specified measurement value format, and the plurality of different measurement value reference ranges include the measurement value application range; The first data encoding rule is used to convert the nominal clock time interval representation and is formulated based on the timer specification; the measurement value application range is determined by a measurement value application range code included in the plurality of different measurement value reference range codes represented, has an application range limit value pair, and is preset with the specified measurement value format based on one of the timer specification, the measurement application function specification and a second data encoding rule, wherein the plural numbers are different The measurement value reference range codes are all preset based on the measurement application function specification; the second data encoding rule is used to convert the clock time application interval representation, and is formulated based on the timer specification; the application range limit value pair includes a first application range limit value and a second application range limit value relative to the first application range limit value; the method further includes the steps of: providing a storage space; and storing the preset in the storage space A pair of rated range limit values and a variable clock time interval code; when the integer overflow event occurs, the variable clock time interval code is equal to a specific measurement value range code selected from the plurality of different measurement value reference range codes, wherein The specific measurement value range code indicates a specific clock time interval previously determined based on a sensing operation, the specific clock time interval is selected from the plurality of different clock time reference intervals, and the sensing performed by the second timer A measurement operation is used to sense the clock time; before the integer overflow event occurs, the specific measurement value range code is assigned to the variable clock time interval code; the method further comprises the steps of: Under the condition that the integer overflow event occurs, an operation reference data code is obtained from the storage space in response to the operation request signal; and a data determination using the operation reference data code is performed by running a data determination program, determining The measurement value application range code is selected from the plurality of different measurement value reference range codes to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference data code is the same as that which is predicted based on the measurement application function specification. an allowable reference data code set; the data determination procedure is constructed based on the measurement application functional specification; the data determination is one of a first data determination operation and a second data determination operation; in the operation reference data The code is obtained by accessing the variable clock time interval code stored in the storage space under the same conditions as the specific measurement value range code, the data determination of the first data determination operation is based on the obtained The specific measurement value range code obtained is used to determine the measurement value application range code, wherein the first data determination operation is a first scientific calculation using the obtained specific measurement value range code, and the determined measurement value application range The code is the same or different from the obtained specific measurement value range code; in the operation reference data code is obtained by accessing the nominal range limit value pair stored in the storage space to be the same as the preset Under the condition of the rated range limit value pair, the data determination of the second data determination operation is performed by performing a second scientific calculation using the measured value and the obtained rated range limit value pair to distinguish the measured value from the plurality of The measurement value application range code is selected from the reference range code to determine the measurement value application range code, wherein the second scientific calculation is performed based on a specific empirical formula, and the special A fixed empirical formula is pre-established based on the preset pair of rated range limit values and the reference range code of the complex number of different measurement values; the method further comprises the following steps: applying the range code based on the determined measurement value to obtain the application range Limit value pair; based on a data comparison between the measurement value and the obtained application range limit value pair, check the mathematical relationship to make whether the measurement value is within the selected application range of the measurement value. a logical decision; and under the condition that the logical decision is affirmative, determine the clock time application interval in which the clock time is currently located; the method further comprises the step of: when the specific measurement value range code is different from the determined measurement value Based on the variable clock time interval code equal to the specific measurement value range code and the determined clock time interval code equal to the specified measurement value range code The measured value applies a code difference between range codes to assign the determined measured value to the variable clock time interval code using a range code; the variable physical parameter is further based on a specific difference from the physical parameter target state The physical parameter state is characterized; and the method further comprises the steps of: providing a button; receiving the use of the variable physical parameter under the condition that the variable physical parameter is brought into the physical parameter target state by examining the first mathematical relationship a user input operation of the button; and in response to the user input operation, generating an operation for causing the variable An operating signal for a physical parameter to leave the physical parameter target state to enter the specific physical parameter state. 一種用於控制一物理參數應用單元的功能裝置,其中該物理參數應用單元的一可變物理參數基於一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該功能裝置包含:一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;以及一處理單元,耦合於該定時器,響應該感測訊號來獲得一測量值,在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下獲得該控制碼,並基於所獲得的該控制碼來向該物理參數應用單元傳輸一操作訊號,該操作訊號被該物理參數應用單元使用以導致該可變物理參數處於該物理參數目標範圍。 A functional device for controlling a physical parameter application unit, wherein a variable physical parameter of the physical parameter application unit is characterized based on a physical parameter target range, and a control code associated with the physical parameter target range is based on A specified physical parameter within the target range of the physical parameter is preset, and the functional device includes: a timer that senses a clock time to generate a sensing signal, wherein the clock time is based on a measured value application range a clock time application interval represented is characterized; and a processing unit, coupled to the timer, obtains a measurement value in response to the sensing signal, in the processing unit by checking the measurement value and the measurement value application range The control code is obtained under the condition of determining the clock time application interval in which the clock time is currently located by a mathematical relationship between them, and based on the obtained control code, an operation signal is transmitted to the physical parameter application unit, the operation signal Used by the physical parameter application unit to cause the variable physical parameter to be within the physical parameter target range. 一種用於控制一物理參數應用單元的方法,其中該物理參數應用單元的一可變物理參數基於一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化; 響應該感測訊號,獲得一測量值;在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,獲得該控制碼;以及基於所獲得的該控制碼,向該物理參數應用單元傳輸一操作訊號,該操作訊號被該物理參數應用單元使用以導致該可變物理參數處於該物理參數目標範圍。 A method for controlling a physical parameter application unit, wherein a variable physical parameter of the physical parameter application unit is characterized based on a physical parameter target range, and a control code associated with the physical parameter target range is based on the physical parameter target range. A specified physical parameter within a target range of physical parameters is preset, and the method includes the steps of: sensing a clock time to generate a sensing signal, wherein the clock time is based on a clock represented by a measured value application range time is characterized by applying the interval; In response to the sensing signal, a measurement value is obtained; under the condition that the clock time application interval in which the clock time is currently located is determined by checking a mathematical relationship between the measurement value and the measurement value application range, obtain the control code; and based on the obtained control code, transmitting an operation signal to the physical parameter application unit, the operation signal being used by the physical parameter application unit to cause the variable physical parameter to be within the physical parameter target range. 一種用於控制一可變物理參數的功能裝置,包含:一繼電器,其中該繼電器的該可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數目標狀態碼所代表;一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;以及一處理單元,耦合於該繼電器和該定時器,響應該感測訊號來獲得一測量值,在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下獲得該物理參數目標狀態碼,並基於所獲得的該物理參數目標狀態碼來向該繼電器傳輸一操作訊號,其中該繼電器響應該操作訊號來使該可變物理參數處於該物理參數目標狀態。 A functional device for controlling a variable physical parameter, comprising: a relay, wherein the variable physical parameter of the relay is characterized based on a physical parameter target state, and the physical parameter target state is determined by a physical parameter target state represented by code; a timer sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; and a processing unit coupled to In the relay and the timer, a measured value is obtained in response to the sensing signal, and the processing unit determines the current time of the clock by checking a mathematical relationship between the measured value and the application range of the measured value. Obtain the physical parameter target state code under the condition of the clock time application interval, and transmit an operation signal to the relay based on the obtained physical parameter target state code, wherein the relay responds to the operation signal to make the variable physical parameter in the The physical parameter target state. 一種用於控制一可變物理參數的方法,包含下列步驟:提供包含一繼電器的一功能裝置,其中該繼電器的該可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數目標狀態碼所代表; 藉由使用該功能裝置,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;藉由使用該功能裝置,響應該感測訊號來獲得一測量值;在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被該功能裝置確定的條件下,藉由使用該功能裝置來獲得該物理參數目標狀態碼;以及藉由使用該功能裝置,基於所獲得的該物理參數目標狀態碼來向該繼電器傳輸一操作訊號,其中該繼電器響應該操作訊號來使該可變物理參數處於該物理參數目標狀態。 A method for controlling a variable physical parameter, comprising the steps of: providing a functional device comprising a relay, wherein the variable physical parameter of the relay is characterized based on a physical parameter target state, and the physical parameter target The state is represented by a physical parameter target state code; By using the functional device, a clock time is sensed to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measured value application range; by using the functional device, Obtaining a measurement value in response to the sensing signal; a condition determined by the functional device by examining a mathematical relationship between the measurement value and the application range of the measurement value in the clock time application interval in which the clock time is currently located Next, by using the functional device to obtain the physical parameter target state code; and by using the functional device, transmit an operation signal to the relay based on the obtained physical parameter target state code, wherein the relay responds to the operation signal to bring the variable physical parameter to the physical parameter target state. 一種用於控制一可變物理參數的功能裝置,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該功能裝置包含:一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間和早於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化;一接收單元,在該時鐘時間應用區間之前接收一控制訊號,該控制訊號起到指示該時鐘時間指定區間的作用;以及一處理單元,耦合於該定時器和該接收單元,響應該控制訊號來啟動該定時器以使該定時器執行與該感測訊號 相關的一計數操作,在該計數操作被執行的條件下響應該感測訊號來獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下使該可變物理參數處於該物理參數目標狀態。 A functional device for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the functional device comprising: a timer that senses a clock time to generate a sensing signal , wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range and a clock time specified interval earlier than the clock time application interval; a receiving unit, before the clock time application interval Receive a control signal, the control signal plays the role of indicating the specified interval of the clock time; and a processing unit, coupled to the timer and the receiving unit, starts the timer in response to the control signal to make the timer execute and the sensing signal A related counting operation obtains a measurement value in response to the sensing signal under the condition that the counting operation is performed, and the processing unit obtains a measurement value by checking a mathematical relationship between the measurement value and the application range of the measurement value. The variable physical parameter is in the physical parameter target state under the condition of determining the clock time application interval in which the clock time is currently located. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於一物理參數目標狀態而被特徵化,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間和早於該時鐘時間應用區間的一時鐘時間指定區間而被特徵化;在該時鐘時間應用區間之前接收一控制訊號,該控制訊號起到指示該時鐘時間指定區間的作用;響應該控制訊號,啟動執行與該感測訊號相關的一計數操作;在該計數操作被執行的條件下,響應該感測訊號來獲得一測量值;以及在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,使該可變物理參數處於該物理參數目標狀態。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter target state, the method comprising the steps of: sensing a clock time to generate a sensed signal, wherein the clock Time is characterized based on a clock time application interval represented by a measurement value application interval and a clock time specified interval earlier than the clock time application interval; receiving a control signal before the clock time application interval, the control signal Play the role of indicating the specified interval of the clock time; in response to the control signal, start executing a counting operation related to the sensing signal; under the condition that the counting operation is executed, obtain a measurement value in response to the sensing signal; and under the condition that the clock time application interval in which the clock time is currently located is determined by examining a mathematical relationship between the measurement value and the measurement value application range, placing the variable physical parameter at the physical parameter target condition. 一種用於控制一物理參數應用單元的功能裝置,其中該物理參數應用單元的一可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數 目標狀態碼所代表,該功能裝置包含:一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化,且該測量值應用範圍由一測量值應用範圍碼所代表;以及一處理單元,耦合於該定時器,響應該感測訊號來獲得一測量值,藉由使用該測量值來確定該測量值應用範圍碼,在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間應用區間的條件下基於所確定的該測量值應用範圍碼來獲得該物理參數目標狀態碼,並基於所獲得的該物理參數目標狀態碼來向該物理參數應用單元傳輸一操作訊號,該操作訊號被該物理參數應用單元使用以導致該可變物理參數處於該物理參數目標狀態。 A functional device for controlling a physical parameter application unit, wherein a variable physical parameter of the physical parameter application unit is characterized based on a physical parameter target state, and the physical parameter target state is determined by a physical parameter Represented by the target status code, the functional device includes: a timer that senses a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measured value application range , and the measurement value application range is represented by a measurement value application range code; and a processing unit, coupled to the timer, obtains a measurement value in response to the sensing signal, and determines the measurement value by using the measurement value Application range code, based on the determined measurement value under the condition that the processing unit determines the clock time application interval in which the clock time is currently in by examining a mathematical relationship between the measurement value and the measurement value application range Applying a range code to obtain the physical parameter target state code, and based on the obtained physical parameter target state code to transmit an operation signal to the physical parameter application unit, the operation signal being used by the physical parameter application unit to cause the variable physical The parameter is in the target state for this physical parameter. 一種用於控制一物理參數應用單元的方法,其中該物理參數應用單元的一可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數目標狀態碼所代表,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間應用區間而被特徵化;響應該感測訊號,獲得一測量值;藉由使用該測量值,確定該測量值應用範圍碼;在該時鐘時間目前所處於的該時鐘時間應用區間藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被 確定的條件下,基於所確定的該測量值應用範圍碼來獲得該物理參數目標狀態碼;以及基於所獲得的該物理參數目標狀態碼來向該物理參數應用單元傳輸一操作訊號,該操作訊號被該物理參數應用單元使用以導致該可變物理參數處於該物理參數目標狀態。 A method for controlling a physical parameter application unit, wherein a variable physical parameter of the physical parameter application unit is characterized based on a physical parameter target state represented by a physical parameter target state code , the method includes the following steps: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time application interval represented by a measurement value application range; in response to the sensing signal, obtain a measurement value; by using the measurement value, determine the measurement value application range code; by examining a mathematical relationship between the measurement value and the measurement value application range in the clock time application interval in which the clock time is currently located while being Under certain conditions, applying a range code based on the determined measurement value to obtain the physical parameter target state code; and transmitting an operation signal to the physical parameter application unit based on the obtained physical parameter target state code, the operation signal being The physical parameter applying unit is used to cause the variable physical parameter to be in the physical parameter target state. 一種用於控制一功能裝置的控制裝置,其中該功能裝置的一可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數目標狀態碼所代表,該控制裝置包含:一傳輸單元;一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間參考範圍而被特徵化,且該測量值應用範圍由一測量值應用範圍碼所代表;以及一處理單元,耦合於該傳輸單元和該定時器,響應該感測訊號來獲得一測量值,藉由使用該測量值來確定該測量值應用範圍碼,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間參考範圍的條件下基於所確定的該測量值應用範圍碼來使該傳輸單元向該功能裝置傳輸一控制訊號,其中該控制訊號輸送該理參數目標狀態碼,並被該功能裝置使用以導致該可變物理參數處於該物理參數目標狀態。 A control device for controlling a functional device in which a variable physical parameter of the functional device is characterized based on a physical parameter target state represented by a physical parameter target state code, the control The device includes: a transmission unit; a timer that senses a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time reference range represented by a measurement value application range, and the measurement The value application range is represented by a measurement value application range code; and a processing unit, coupled to the transmission unit and the timer, obtains a measurement value in response to the sensing signal, and determines the measurement value by using the measurement value Applying a range code, and based on the determined measurement under the condition that the processing unit determines the clock time reference range in which the clock time is currently located by examining a mathematical relationship between the measurement and the measurement application range The value application range code causes the transmission unit to transmit a control signal to the functional device, wherein the control signal conveys the physical parameter target state code and is used by the functional device to cause the variable physical parameter to be in the physical parameter target state. 一種用於控制一功能裝置的方法,其中該功能裝置的 一可變物理參數基於一物理參數目標狀態而被特徵化,且該物理參數目標狀態由一物理參數目標狀態碼所代表,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間參考範圍而被特徵化,且該測量值應用範圍由一測量值應用範圍碼所代表;響應該感測訊號,獲得一測量值;藉由使用該測量值,確定該測量值應用範圍碼;以及在該時鐘時間目前所處於的該時鐘時間參考範圍藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,基於所確定的該測量值應用範圍碼來向該功能裝置傳輸一控制訊號,其中該控制訊號輸送該理參數目標狀態碼,並被該功能裝置使用以導致該可變物理參數處於該物理參數目標狀態。 A method for controlling a functional device, wherein the functional device A variable physical parameter is characterized based on a physical parameter target state, and the physical parameter target state is represented by a physical parameter target state code, the method includes the steps of: sensing a clock time to generate a sensing signal, wherein the clock time is characterized based on a clock time reference range represented by a measurement value application range represented by a measurement value application range code; a measurement value is obtained in response to the sensing signal ; by using the measurement, determine the measurement application range code; and the clock time reference range in which the clock time is currently in is determined by examining a mathematical relationship between the measurement and the measurement application range Under certain conditions, a range code is applied based on the determined measurement value to transmit a control signal to the functional device, wherein the control signal conveys the physical parameter target status code and is used by the functional device to cause the variable physical parameter to be in The physical parameter target state. 一種用於控制一功能裝置的控制裝置,其中該功能裝置的一可變物理參數基於一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該控制裝置包含:一傳輸單元;一定時器,感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間參考範圍而被特徵化;以及一處理單元,耦合於該傳輸單元和該定時器,響應該 感測訊號來獲得一測量值,並在該處理單元藉由檢查該測量值和該測量值應用範圍之間的一數學關係而確定該時鐘時間目前所處於的該時鐘時間參考範圍的條件下向該功能裝置傳輸一控制訊號,其中該控制訊號輸送該控制碼,並被該功能裝置使用以導致該可變物理參數處於該物理參數目標範圍。 A control device for controlling a functional device, wherein a variable physical parameter of the functional device is characterized based on a physical parameter target range, and a control code associated with the physical parameter target range is based on the physical parameter target range A specified physical parameter within a range is preset, and the control device includes: a transmission unit; a timer that senses a clock time to generate a sensing signal, wherein the clock time is based on a measurement value applied to the range is characterized by a clock time reference range represented; and a processing unit, coupled to the transmission unit and the timer, responsive to the Sensing the signal to obtain a measurement value, and under the condition that the processing unit determines the clock time reference range in which the clock time is currently located by examining a mathematical relationship between the measurement value and the application range of the measurement value. The functional device transmits a control signal, wherein the control signal conveys the control code and is used by the functional device to cause the variable physical parameter to be within the physical parameter target range. 一種用於控制一功能裝置的方法,其中該功能裝置的一可變物理參數基於一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該方法包含下列步驟:感測一時鐘時間以產生一感測訊號,其中該時鐘時間基於由一測量值應用範圍所代表的一時鐘時間參考範圍而被特徵化;響應該感測訊號,獲得一測量值;以及在該時鐘時間目前所處於的該時鐘時間參考範圍藉由檢查該測量值和該測量值應用範圍之間的一數學關係而被確定的條件下,向該功能裝置傳輸一控制訊號,其中該控制訊號輸送該控制碼,並被該功能裝置使用以導致該可變物理參數處於該物理參數目標範圍。 A method for controlling a functional device, wherein a variable physical parameter of the functional device is characterized based on a physical parameter target range, and a control code associated with the physical parameter target range is based on the physical parameter target range The method includes the steps of: sensing a clock time to generate a sensing signal, wherein the clock time is based on a clock time reference range represented by a measurement value application range is characterized; in response to the sensed signal, a measurement is obtained; and the clock time reference range in which the clock time is currently located is determined by examining a mathematical relationship between the measurement and the range of application of the measurement Under the condition, a control signal is transmitted to the functional device, wherein the control signal conveys the control code and is used by the functional device to cause the variable physical parameter to be within the physical parameter target range.
TW109146950A 2019-12-31 2020-12-30 Functional device and method for controlling variable physical parameter TWI755228B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418652.6A CN113126481A (en) 2019-12-31 2019-12-31 Control target device and method for controlling variable physical parameter
CN201911418652.6 2019-12-31

Publications (2)

Publication Number Publication Date
TW202127159A TW202127159A (en) 2021-07-16
TWI755228B true TWI755228B (en) 2022-02-11

Family

ID=76769359

Family Applications (3)

Application Number Title Priority Date Filing Date
TW112101253A TW202334764A (en) 2019-12-31 2020-12-30 Control device and system and method for controlling variable physical parameter
TW109146950A TWI755228B (en) 2019-12-31 2020-12-30 Functional device and method for controlling variable physical parameter
TW111108096A TWI791391B (en) 2019-12-31 2020-12-30 Control device and system and method for controlling variable physical parameter

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW112101253A TW202334764A (en) 2019-12-31 2020-12-30 Control device and system and method for controlling variable physical parameter

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW111108096A TWI791391B (en) 2019-12-31 2020-12-30 Control device and system and method for controlling variable physical parameter

Country Status (2)

Country Link
CN (2) CN113126481A (en)
TW (3) TW202334764A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105520717A (en) * 2014-10-20 2016-04-27 上海科斗电子科技有限公司 Wearable device capable of judging state of human body
TW201807607A (en) * 2016-08-05 2018-03-01 美商新思科技股份有限公司 Cell-aware defect characterization and waveform analysis using multiple strobe points
TW201815502A (en) * 2016-07-06 2018-05-01 義大利商阿迪傑股份有限公司 A method of laser processing of a metallic material with optical axis position control of the laser relative to an assist gas flow, and a machine and computer program for the implementation of said method
US20190227525A1 (en) * 2017-05-24 2019-07-25 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning
TWI671608B (en) * 2014-08-21 2019-09-11 瑞士商通用電器技術有限公司 Apparatus and method for controlling at least one operational parameter of a plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671608B (en) * 2014-08-21 2019-09-11 瑞士商通用電器技術有限公司 Apparatus and method for controlling at least one operational parameter of a plant
CN105520717A (en) * 2014-10-20 2016-04-27 上海科斗电子科技有限公司 Wearable device capable of judging state of human body
TW201815502A (en) * 2016-07-06 2018-05-01 義大利商阿迪傑股份有限公司 A method of laser processing of a metallic material with optical axis position control of the laser relative to an assist gas flow, and a machine and computer program for the implementation of said method
TW201807607A (en) * 2016-08-05 2018-03-01 美商新思科技股份有限公司 Cell-aware defect characterization and waveform analysis using multiple strobe points
US20190227525A1 (en) * 2017-05-24 2019-07-25 Relativity Space, Inc. Real-time adaptive control of additive manufacturing processes using machine learning

Also Published As

Publication number Publication date
TW202225869A (en) 2022-07-01
CN115398351A (en) 2022-11-25
TW202127159A (en) 2021-07-16
TWI791391B (en) 2023-02-01
CN113126481A (en) 2021-07-16
TW202334764A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
US10313340B2 (en) Method and system for tracking an electronic device at an electronic device docking station
EP3252644B1 (en) Method for activating function using fingerprint and electronic device including touch display supporting the same
US9824200B2 (en) Wakeup strategy using a biometric sensor
EP2932485B1 (en) Portable data collection system and method
EP2736233B1 (en) Method for controlling portable device by using humidity sensor and portable device thereof
CN109416676B (en) Method for determining role of electronic device and electronic device thereof
TWI755228B (en) Functional device and method for controlling variable physical parameter
CN112041796A (en) Interoperability mechanism for pen with pressure sensor design
CN105528153A (en) Screenshot method, screenshot device and electronic device
TWI741471B (en) Control target device and method for controlling variable physical parameter
TWI734334B (en) Control target device and method for controlling variable physical parameter
WO2021136253A1 (en) Functional apparatus and method for controlling variable physical parameters
TWI734335B (en) Control device and method for controlling variable physical parameter
TWI775592B (en) Control device and method for controlling illuminating device
TWI742502B (en) Control device and method for controlling variable physical parameter
TWI798812B (en) Control device and method for controlling illuminating device
WO2021136374A1 (en) Control target apparatus and method for controlling variable physical parameters
KR102263226B1 (en) Method and apparatus for managing schedule using near field communication sensor
WO2021136260A1 (en) Control apparatus and method for controlling variable physical parameters
TW202314412A (en) Control device and method for controlling variable physical parameter
CN111290578A (en) Touch keyboard and vibration feedback method thereof, computer equipment and readable storage medium
CN113126486B (en) Control device and method for controlling variable physical parameters
KR20240042720A (en) Electronic device with touch function and method for restoring touch sensitivity thereof
CN111767969A (en) Device and method for acquiring, collecting and analyzing reading behavior data of paper book
CN110428297A (en) Commercial product recommending system, method, electronic equipment, storage medium