TWI741471B - Control target device and method for controlling variable physical parameter - Google Patents

Control target device and method for controlling variable physical parameter Download PDF

Info

Publication number
TWI741471B
TWI741471B TW108148736A TW108148736A TWI741471B TW I741471 B TWI741471 B TW I741471B TW 108148736 A TW108148736 A TW 108148736A TW 108148736 A TW108148736 A TW 108148736A TW I741471 B TWI741471 B TW I741471B
Authority
TW
Taiwan
Prior art keywords
physical parameter
range
measurement value
code
target
Prior art date
Application number
TW108148736A
Other languages
Chinese (zh)
Other versions
TW202127157A (en
Inventor
鍾國誠
Original Assignee
鍾國誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鍾國誠 filed Critical 鍾國誠
Priority to TW108148736A priority Critical patent/TWI741471B/en
Priority to CN202011556362.0A priority patent/CN113126539A/en
Publication of TW202127157A publication Critical patent/TW202127157A/en
Application granted granted Critical
Publication of TWI741471B publication Critical patent/TWI741471B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Clocks (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A control target device includes a variable physical parameter, a sensing unit and an operation unit. The variable physical parameter is characterized based on a physical parameter target range represented by a measurement value target range and a physical parameter application range represented by a measurement value application range. The sensing unit senses the variable physical parameter to generate a sense signal. The operation unit obtains a measurement value in response to the sense signal on condition receiving a control signal serving to indicate the measurement value target range, and determines a range difference between the measurement value target range and the measurement value application range to cause the variable physical parameter to enter the physical parameter target range based on the control signal and a mathematical relation between the measurement value and the measurement value application range.

Description

控制目標裝置及用於控制可變物理參數的方法 Control target device and method for controlling variable physical parameters

本揭露是關於一控制目標裝置,並特別是關於用於控制一可變物理參數的控制目標裝置及方法。 This disclosure relates to a control target device, and more particularly to a control target device and method for controlling a variable physical parameter.

一控制裝置能夠產生一控制訊號以控制包含於一控制目標裝置中的一功能目標。該控制目標裝置使用該控制訊號以控制該功能目標。該功能目標能夠使用一機械能、一電能和一光能的至少其中之一,並能夠是用於一門禁管制的一電動機、用於一電力控制的一繼電器、和用於一能量轉換的一能量轉換器的其中之一。為了有效地控制該功能目標,該控制目標裝置能夠獲得基於一可變物理參數而被提供的一測量值。該控制目標裝置可能需要一改良的機制以有效地使用該測量值,並藉此有效地控制該功能目標。 A control device can generate a control signal to control a function target included in a control target device. The control target device uses the control signal to control the function target. The functional target can use at least one of a mechanical energy, an electrical energy, and a light energy, and can be an electric motor for an access control, a relay for an electric power control, and an energy conversion. One of the energy converters. In order to effectively control the functional target, the control target device can obtain a measurement value that is provided based on a variable physical parameter. The control target device may require an improved mechanism to effectively use the measured value and thereby effectively control the functional target.

美國第2015/0357887 A1號公開專利揭露一種製品規格設定裝置及具備其之風扇馬達。美國第7,411,505 B2號公告專利揭露一種開關狀態及射頻識別標籤。 US Patent No. 2015/0357887 A1 discloses a product specification setting device and a fan motor provided with the same. US Patent No. 7,411,505 B2 discloses a switch state and radio frequency identification tag.

本揭露的一目的在於提供一種依靠一控制訊號和基於一可變物理參數而被提供的一測量值而有效地控制該可變物理參數的控制目標裝置。 An object of the present disclosure is to provide a control target device that relies on a control signal and a measurement value provided based on a variable physical parameter to effectively control the variable physical parameter.

本揭露的一實施例在於提供一種控制目標裝置。該控制目標裝置包含一可變物理參數、一感測單元和一操作單元。該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化。該感測單元感測該可變物理參數以產生一第一感測訊號。該操作單元耦合於該感測單元,在該操作單元接收起到指示該測量值目標範圍的作用的一控制訊號的條件下響應該第一感測訊號來獲得一第一測量值,並在該操作單元藉由檢查該第一測量值和該測量值應用範圍之間的一第一數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下由於該控制訊號而確定該測量值目標範圍和該測量值應用範圍之間的一範圍差異以導致該可變物理參數進入該物理參數目標範圍。 An embodiment of the present disclosure is to provide a control target device. The control target device includes a variable physical parameter, a sensing unit and an operating unit. The variable physical parameter is characterized based on a physical parameter target range represented by a measured value target range and a physical parameter application range represented by a measured value application range. The sensing unit senses the variable physical parameter to generate a first sensing signal. The operating unit is coupled to the sensing unit, and responds to the first sensing signal to obtain a first measurement value under the condition that the operating unit receives a control signal that functions to indicate the target range of the measurement value. The operating unit determines the measurement due to the control signal under the condition that the variable physical parameter is currently in the physical parameter application range by checking a first mathematical relationship between the first measurement value and the measurement value application range A range difference between the value target range and the measured value application range causes the variable physical parameter to enter the physical parameter target range.

本揭露的另一實施例在於提供一種用於藉由產生一功能訊號而控制一可變物理參數的方法。該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化。該方法包含下列步驟:感測該可變物理參數以產生一第一感測訊號;在起到指示該測量值目標範圍的作用的一控制訊號被接收的條件下,響應該第一感測訊號來獲得一第一測量值;以及在該可變物理參數目前處於 的該物理參數應用範圍藉由檢查該第一測量值和該測量值應用範圍之間的一第一數學關係而被確定的條件下,由於該控制訊號而確定該測量值目標範圍和該測量值應用範圍之間的一範圍關係以做出用於導致該可變物理參數進入該物理參數目標範圍的該功能訊號是否要被產生的一合理決定。 Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter by generating a functional signal. The variable physical parameter is characterized based on a physical parameter target range represented by a measured value target range and a physical parameter application range represented by a measured value application range. The method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; responding to the first sensing signal under the condition that a control signal that functions to indicate the target range of the measurement value is received To obtain a first measured value; and when the variable physical parameter is currently in Under the condition that the application range of the physical parameter is determined by checking a first mathematical relationship between the first measurement value and the application range of the measurement value, the target range of the measurement value and the measurement value are determined due to the control signal A range relationship between application ranges is used to make a reasonable decision whether the function signal for causing the variable physical parameter to enter the target range of the physical parameter is to be generated.

本揭露的另一實施例在於提供一種用於控制一可變物理參數的方法。該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化。該方法包含下列步驟:感測該可變物理參數以產生一第一感測訊號;在起到指示該測量值目標範圍的作用的一控制訊號被接收的條件下,響應該第一感測訊號來獲得一第一測量值;以及在該可變物理參數目前處於的該物理參數應用範圍藉由檢查該第一測量值和該測量值應用範圍之間的一第一數學關係而被確定的條件下,由於該控制訊號而確定該測量值目標範圍和該測量值應用範圍之間的一範圍差異以導致該可變物理參數進入該物理參數目標範圍。 Another embodiment of the present disclosure is to provide a method for controlling a variable physical parameter. The variable physical parameter is characterized based on a physical parameter target range represented by a measured value target range and a physical parameter application range represented by a measured value application range. The method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; responding to the first sensing signal under the condition that a control signal that functions to indicate the target range of the measurement value is received To obtain a first measurement value; and a condition determined by checking a first mathematical relationship between the first measurement value and the measurement value application range in the physical parameter application range where the variable physical parameter is currently located Next, a range difference between the measurement value target range and the measurement value application range is determined due to the control signal to cause the variable physical parameter to enter the physical parameter target range.

130‧‧‧控制目標裝置 130‧‧‧Control the target device

212‧‧‧控制裝置 212‧‧‧Control device

220、4452‧‧‧讀取器 220、4452‧‧‧Reader

230、331‧‧‧處理單元 230, 331‧‧‧ processing unit

240、338‧‧‧輸出單元 240, 338‧‧‧output unit

246‧‧‧通訊介面單元 246‧‧‧Communication Interface Unit

250、332‧‧‧儲存單元 250、332‧‧‧Storage unit

25Y1‧‧‧記憶體單元 25Y1‧‧‧Memory Unit

260、334‧‧‧感測單元 260, 334‧‧‧sensing unit

261、3341、3342‧‧‧感測組件 261, 3341, 3342‧‧‧sensing components

263、363‧‧‧多工器 263、363‧‧‧Multiplexer

2631、2632、3631、3632‧‧‧輸入端 2631, 2632, 3631, 3632‧‧‧Input terminal

263C、363C‧‧‧控制端 263C, 363C‧‧‧Control terminal

263P、363P、338P、338Q‧‧‧輸出端 263P, 363P, 338P, 338Q‧‧‧output

270、337‧‧‧輸入單元 270, 337‧‧‧input unit

275、276、285、286‧‧‧電使用目標 275, 276, 285, 286‧‧‧Electricity use target

280‧‧‧伺服器 280‧‧‧Server

290‧‧‧物理參數形成單元 290‧‧‧Physical parameter formation unit

295‧‧‧使用者 295‧‧‧User

297、397‧‧‧操作單元 297, 397‧‧‧operation unit

310‧‧‧識別媒介 310‧‧‧Identification medium

335、735‧‧‧功能目標 335, 735‧‧‧Functional goals

3351‧‧‧物理參數形成部分 3351‧‧‧Physical parameters forming part

3355‧‧‧驅動電路 3355‧‧‧Drive circuit

3371‧‧‧第一輸入組件 3371‧‧‧First input component

3372‧‧‧第二輸入組件 3372‧‧‧Second input component

3373‧‧‧第三輸入組件 3373‧‧‧Third input component

3374、440、445‧‧‧輸入組件 3374, 440, 445‧‧‧input components

3381、3382、3383、450、455‧‧‧輸出組件 3381, 3382, 3383, 450, 455‧‧‧Output module

339、340、342、545‧‧‧定時器 339, 340, 342, 545‧‧‧Timer

350‧‧‧電子標籤 350‧‧‧Electronic Label

360‧‧‧條碼媒介 360‧‧‧Barcode Media

370‧‧‧生物識別作用媒介 370‧‧‧Biometrics media

410‧‧‧網路 410‧‧‧Internet

441‧‧‧指向裝置 441‧‧‧Pointing device

4451‧‧‧接收組件 4451‧‧‧Receiving component

460‧‧‧顯示組件 460‧‧‧Display component

475‧‧‧狀態改變偵測器 475‧‧‧State Change Detector

70M‧‧‧支撐媒介 70M‧‧‧Supporting medium

70U‧‧‧材料層 70U‧‧‧Material layer

734、7341、7342‧‧‧感測器類型 734, 7341, 7342‧‧‧Sensor type

901‧‧‧控制系統 901‧‧‧Control System

9011、9012、9013、9014、9015、9016、9017、9018、9019、9020、9021、9022、9023、9024、9025、9026、9027、9028、9029、9030、9031、9032、9033、9034、9035、9036、9037、9038、9039、9040、9041、9042、9043、9044、9045、9046、9047、9048、9049、9050、9051、9052‧‧‧實施結構 9011, 9012, 9013, 9014, 9015, 9016, 9017, 9018, 9019, 9020, 9021, 9022, 9023, 9024, 9025, 9026, 9027, 9028, 9029, 9030, 9031, 9032, 9033, 9034, 9035, 9036, 9037, 9038, 9039, 9040, 9041, 9042, 9043, 9044, 9045, 9046, 9047, 9048, 9049, 9050, 9051, 9052‧‧‧Implementation structure

AA81‧‧‧第一資料確定操作 AA81‧‧‧First data confirmation operation

AA82‧‧‧第二資料確定操作 AA82‧‧‧Second data confirmation operation

AA8A、AE8A‧‧‧資料確定 AA8A, AE8A‧‧‧Data confirmed

AC1‧‧‧響應區域 AC1‧‧‧Response area

AD81‧‧‧第一資料獲取操作 AD81‧‧‧First data acquisition operation

AD82‧‧‧第二資料獲取操作 AD82‧‧‧Second data acquisition operation

AD8A、AF8A、AF9C、AG8A‧‧‧資料獲取 AD8A, AF8A, AF9C, AG8A‧‧‧Data acquisition

AE81、AE82‧‧‧資料確定操作 AE81, AE82‧‧‧Data Confirmation Operation

AF81、AF82、AF95、AF96、AG81、AG82‧‧‧資料獲取操作 AF81, AF82, AF95, AF96, AG81, AG82‧‧‧Data acquisition operation

AJ11‧‧‧物理參數應用區 AJ11‧‧‧Physical parameter application area

AM82、AM85、AM8T、AN81、AS81、AS82、AS8T、AX82、AX85、AX8L、EC92、EC9T、FF9T、FM8L、FV8L‧‧‧記憶體位址 AM82, AM85, AM8T, AN81, AS81, AS82, AS8T, AX82, AX85, AX8L, EC92, EC9T, FF9T, FM8L, FV8L‧‧‧Memory address

AM8L‧‧‧第一記憶體位址 AM8L‧‧‧First memory address

AP11、AP21‧‧‧使用者介面區 AP11, AP21‧‧‧User Interface Area

AT11、AT21、AU11、AU21‧‧‧物理參數形成區 AT11, AT21, AU11, AU21‧‧‧Physical parameter formation area

AX8T‧‧‧第二記憶體位址 AX8T‧‧‧Second memory address

BA83、BV81、BV85、ZP81、ZP85、ZQ81‧‧‧檢查操作 BA83, BV81, BV85, ZP81, ZP85, ZQ81‧‧‧Check operation

BC8T、BD81、BE81‧‧‧計數操作 BC8T, BD81, BE81‧‧‧Counting operation

BH82、ZH81‧‧‧指定功能操作 BH82, ZH81‧‧‧Designated function operation

BJ81‧‧‧指定實際操作 BJ81‧‧‧Specify actual operation

BQ81、JU81、JU91、JU92、JV81、JV82、JV83‧‧‧使用者輸入操作 BQ81, JU81, JU91, JU92, JV81, JV82, JV83‧‧‧User input operation

BS81、BS91、BY81、BY85、BY91、BY97‧‧‧訊號產生操作 BS81, BS91, BY81, BY85, BY91, BY97‧‧‧Signal generation operation

BR81‧‧‧讀取操作 BR81‧‧‧Read operation

BZ81、ZM81、ZS81‧‧‧感測操作 BZ81, ZM81, ZS81‧‧‧sensing operation

CA81、CA91、CD81、CD82、CE81、CE85、CE8T‧‧‧資料比較 CA81, CA91, CD81, CD82, CE81, CE85, CE8T‧‧‧Data comparison

CC12、CC15、CC1L、CC1T‧‧‧控制碼 CC12, CC15, CC1L, CC1T‧‧‧Control code

CG81‧‧‧控制訊息 CG81‧‧‧Control message

CK8T‧‧‧控制資料碼 CK8T‧‧‧Control data code

CM82、CM83、CM84、CM85‧‧‧控制資訊碼 CM82, CM83, CM84, CM85‧‧‧Control information code

CN82、CN83、CN84、CN85‧‧‧控制資料訊息 CN82, CN83, CN84, CN85‧‧‧Control data information

DA81、DX85‧‧‧碼差異 DA81, DX85‧‧‧ code difference

DC11、DC12、DD11、DD12‧‧‧額定範圍界限值 DC11, DC12, DD11, DD12‧‧‧Rated range limit value

DC1A、DD1A‧‧‧額定範圍界限值對 DC1A, DD1A‧‧‧Rated range limit value pair

DF81‧‧‧第一碼差異 DF81‧‧‧First code difference

DH81、DJ81、DJ82、DJ83、DJ91‧‧‧輸入資料 DH81, DJ81, DJ82, DJ83, DJ91‧‧‧Input data

DM15、DM16‧‧‧應用範圍界限值 DM15, DM16‧‧‧Application range limit value

DM1B、DN1B、DQ1B‧‧‧候選範圍界限值對 DM1B, DN1B, DQ1B‧‧‧Candidate range limit value pair

DM1L、DN1L‧‧‧應用範圍界限值對 DM1L, DN1L‧‧‧Application range limit value pair

DN15‧‧‧第一應用範圍界限值 DN15‧‧‧First application range limit value

DN16‧‧‧第二應用範圍界限值 DN16‧‧‧The second application range limit value

DN17、DN18、DQ17、DQ18‧‧‧目標範圍界限值 DN17, DN18, DQ17, DQ18‧‧‧Target range limit value

DN1E‧‧‧特定範圍界限值對 DN1E‧‧‧Specific range limit value pair

DN1T、DQ1T‧‧‧目標範圍界限值對 DN1T, DQ1T‧‧‧Target range limit value pair

DQ13、DQ14‧‧‧候選範圍界限值 DQ13, DQ14‧‧‧Candidate range limit value

DS81‧‧‧範圍差異 DS81‧‧‧Range difference

DU81‧‧‧物理參數資料記錄 DU81‧‧‧Physical parameter data record

DX81‧‧‧第二碼差異 DX81‧‧‧The second code difference

DY81‧‧‧編碼資料 DY81‧‧‧Encoding data

EA81、EJ81、EJ82、EJ83、ZR81、ZR82、ZR83、ZR8KJ、ZR8TR、ZX87、ZX8HE、ZX8HR、ZX8H2、ZX8HJ、ZX8HT、ZX8KJ、ZX8TR、ZX92‧‧‧資料編碼操作 EA81, EJ81, EJ82, EJ83, ZR81, ZR82, ZR83, ZR8KJ, ZR8TR, ZX87, ZX8HE, ZX8HR, ZX8H2, ZX8HJ, ZX8HT, ZX8KJ, ZX8TR, ZX92‧‧‧Data encoding operation

EB81、EH11、EM11‧‧‧測量值參考範圍碼 EB81, EH11, EM11‧‧‧Measurement value reference range code

EH12‧‧‧測量值參考範圍碼、測量值候選範圍碼 EH12‧‧‧Measurement value reference range code, measured value candidate range code

EH14、EH17、EM14、EM15‧‧‧特定測量值範圍碼 EH14, EH17, EM14, EM15‧‧‧Specific measurement value range code

EH1L、EM1L‧‧‧測量值應用範圍碼 EH1L, EM1L‧‧‧Measurement value application range code

EL11‧‧‧時間值參考範圍碼 EL11‧‧‧Time value reference range code

EL1T‧‧‧時間值目標範圍碼 EL1T‧‧‧Time value target range code

EL12‧‧‧時間值參考範圍碼、時間值候選範圍碼 EL12‧‧‧Time value reference range code, time value candidate range code

EM12‧‧‧測量值參考範圍碼、測量值候選範圍碼 EM12‧‧‧Measurement value reference range code, measured value candidate range code

EM13‧‧‧測量值候選範圍碼 EM13‧‧‧Measurement value candidate range code

EM1T‧‧‧測量值目標範圍碼 EM1T‧‧‧Measurement value target range code

EP81‧‧‧操作情況 EP81‧‧‧Operation

EQ81‧‧‧觸發事件 EQ81‧‧‧Trigger event

EX81‧‧‧應用環境 EX81‧‧‧Application environment

FA81‧‧‧物理參數控制功能 FA81‧‧‧Physical parameter control function

FB81‧‧‧觸發應用功能 FB81‧‧‧Trigger application function

FP81、FR81‧‧‧拘束條件 FP81, FR81‧‧‧binding conditions

FQ11、FU11‧‧‧感測器規格 FQ11, FU11‧‧‧Sensor specifications

FT11、FT21、FW22‧‧‧定時器規格 FT11, FT21, FW22‧‧‧Timer specifications

FY81、FZ81‧‧‧編碼影像 FY81, FZ81‧‧‧encoded image

GA812、GA8T1‧‧‧物理參數表示 GA812, GA8T1‧‧‧Physical parameter representation

GA83、GB82‧‧‧物理參數候選範圍表示 GA83, GB82‧‧‧Physical parameter candidate range representation

GA8E、GB8E‧‧‧額定物理參數範圍表示 GA8E, GB8E‧‧‧Rated physical parameter range indication

GA8L、GB8L‧‧‧物理參數應用範圍表示 GA8L, GB8L‧‧‧Physical parameter application range indication

GA8HE‧‧‧額定時間區間表示 GA8HE‧‧‧Rated time interval display

GA8HR‧‧‧時間參考區間表示 GA8HR‧‧‧Time reference interval display

GA8H2、GA8HT‧‧‧時間候選區間表示 GA8H2, GA8HT‧‧‧Time candidate interval display

GA8HJ‧‧‧時間長度參考範圍表示 GA8HJ‧‧‧Time length reference range indication

GA8KJ、GB8KJ‧‧‧時間長度表示 GA8KJ, GB8KJ‧‧‧Time length indication

GA8T‧‧‧物理參數候選範圍表示 GA8T‧‧‧Physical parameter candidate range representation

GA8TR、GB8TR‧‧‧時鐘時間表示 GA8TR, GB8TR‧‧‧clock time display

GAL8‧‧‧物理參數控制功能規格 GAL8‧‧‧Physical parameter control function specifications

GBL8‧‧‧觸發應用功能規格 GBL8‧‧‧Trigger application function specification

GJ81‧‧‧時間長度值參考範圍 GJ81‧‧‧Time length value reference range

GQ81、GW81‧‧‧感測器靈敏度表示 GQ81, GW81‧‧‧sensor sensitivity display

GQ8R、GW8R‧‧‧感測器測量範圍表示 GQ8R, GW8R‧‧‧Sensor measuring range display

GS81、GY81、GY91‧‧‧訊號產生控制 GS81, GY81, GY91‧‧‧signal generation control

GT81、GU81‧‧‧確保操作 GT81, GU81‧‧‧Ensure operation

HA0T‧‧‧控制裝置識別符 HA0T‧‧‧Control device identifier

HA22、HA2T‧‧‧功能目標識別符 HA22, HA2T‧‧‧Functional target identifier

HC81‧‧‧控制碼類型識別符 HC81‧‧‧Control code type identifier

HE81、HE82、HF81、HF82‧‧‧感測訊號產生 HE81, HE82, HF81, HF82‧‧‧Sensing signal generation

HH81、HQ81‧‧‧指定測量值格式 HH81, HQ81‧‧‧Specify the format of the measured value

HH91、HH95、HQ92‧‧‧指定計數值格式 HH91, HH95, HQ92‧‧‧Specified counting value format

HJ81‧‧‧時間長度參考範圍 HJ81‧‧‧Time length reference range

HK81‧‧‧控制資料碼類型識別符 HK81‧‧‧Control data code type identifier

HM81‧‧‧測量範圍界限資料碼類型識別符 HM81‧‧‧Measuring range limit data code type identifier

HR1E1‧‧‧時間參考區間 HR1E1‧‧‧Time reference interval

HR1ET‧‧‧時間目標區間 HR1ET‧‧‧Time target interval

HR1E2‧‧‧時間參考區間、時間候選區間 HR1E2‧‧‧Time reference interval, time candidate interval

HZ22、HZ2T‧‧‧電使用目標識別符 HZ22, HZ2T‧‧‧Electric use target identifier

JA1A、JB1A、QG1A、QL1A、QP1A、QP2A、QU1A、QY1A‧‧‧可變物理參數 JA1A, JB1A, QG1A, QL1A, QP1A, QP2A, QU1A, QY1A‧‧‧Variable physical parameters

JN81‧‧‧測量值序列 JN81‧‧‧Measurement value sequence

KA81、KA91、KQ81、KV83、KV85、KY81、KK91、KK92‧‧‧數學關係 KA81, KA91, KQ81, KV83, KV85, KY81, KK91, KK92‧‧‧Mathematical relationship

KE8A、KE8B‧‧‧範圍關係 KE8A, KE8B‧‧‧Scope relationship

KJ81‧‧‧數值關係 KJ81‧‧‧Numerical relationship

KP81、KP85‧‧‧算術關係 KP81, KP85‧‧‧arithmetic relationship

KV81‧‧‧第一數學關係 KV81‧‧‧The first mathematical relationship

KV91‧‧‧第二數學關係 KV91‧‧‧The second mathematical relationship

KW81‧‧‧數值交集關係 KW81‧‧‧The intersection of values

LA81、LA82‧‧‧狀態指示 LA81, LA82‧‧‧Status indication

LB81‧‧‧第一狀態指示 LB81‧‧‧First status indicator

LB82‧‧‧第二狀態指示 LB82‧‧‧The second state indicator

LC81、LD81‧‧‧實際位置 LC81, LD81‧‧‧Actual position

LF8A‧‧‧可變時間長度 LF8A‧‧‧variable time length

LJ8T‧‧‧參考時間長度 LJ8T‧‧‧Reference time length

LN8A‧‧‧時間長度範圍界限值對 LN8A‧‧‧Time length range limit value pair

LN81、LN82‧‧‧時間長度範圍界限值 LN81, LN82‧‧‧Time length range limit value

LP81、SP81‧‧‧電訊號 LP81, SP81‧‧‧Telecommunications signal

LQ81、SQ81‧‧‧光訊號 LQ81, SQ81‧‧‧Optical signal

LT8T‧‧‧應用時間長度 LT8T‧‧‧Application time length

LY81‧‧‧測量資訊 LY81‧‧‧Measurement Information

MF81、MF83、MG81、MQ81、MK81、MK85、MR82、MU81‧‧‧科學計算 MF81, MF83, MG81, MQ81, MK81, MK85, MR82, MU81‧‧‧Scientific computing

MR81‧‧‧第一科學計算 MR81‧‧‧First Scientific Computing

MZ81‧‧‧第二科學計算 MZ81‧‧‧Second Scientific Computing

NA8A、NE8A‧‧‧資料確定程序 NA8A, NE8A‧‧‧Data Confirmation Procedure

ND8A、NF8A‧‧‧資料獲取程序 ND8A, NF8A‧‧‧Data Acquisition Procedure

NP91‧‧‧特定計數值 NP91‧‧‧Specific count value

NR81‧‧‧時鐘參考時間值 NR81‧‧‧Clock reference time value

NS81‧‧‧總參考範圍數目 NS81‧‧‧Total number of reference ranges

NT81‧‧‧總參考範圍數目 NT81‧‧‧Total number of reference ranges

NY80‧‧‧初始計數值 NY80‧‧‧Initial count value

NY81‧‧‧特定計數值 NY81‧‧‧Specific count value

NY8A‧‧‧可變計數值 NY8A‧‧‧variable count value

PB81‧‧‧第一邏輯決定 PB81‧‧‧First logical decision

PB82、PH81、PH91、PZ82‧‧‧邏輯決定 PB82, PH81, PH91, PZ82‧‧‧Logical decision

PB91‧‧‧第三邏輯決定 PB91‧‧‧The third logical decision

PE81‧‧‧第三邏輯決定 PE81‧‧‧The third logical decision

PF9T、PM8L、PV8L、XC9T、XC92、YM82、YM85、YN81、YX82、YX85、YX8L‧‧‧記憶體位置 PF9T, PM8L, PV8L, XC9T, XC92, YM82, YM85, YN81, YX82, YX85, YX8L‧‧‧Memory location

PW81‧‧‧合理決定 PW81‧‧‧Reasonable decision

PY81‧‧‧第二邏輯決定 PY81‧‧‧Second logical decision

PZ81‧‧‧第二邏輯決定 PZ81‧‧‧Second logical decision

QB81‧‧‧預設時間參考區間順序 QB81‧‧‧Preset time reference interval sequence

QD12、QD1L、QD1T、QD5T‧‧‧指定物理參數 QD12, QD1L, QD1T, QD5T‧‧‧Specify physical parameters

QP15‧‧‧特定物理參數 QP15‧‧‧Specific physical parameters

QU17‧‧‧第一特定物理參數 QU17‧‧‧The first specific physical parameter

QU18‧‧‧第二特定物理參數 QU18‧‧‧Second specific physical parameter

QU15‧‧‧第三特定物理參數 QU15‧‧‧The third specific physical parameter

RA8E、RB8E‧‧‧感測器測量範圍 RA8E, RB8E‧‧‧Sensor measuring range

RC1E、RD1E‧‧‧額定物理參數範圍 RC1E, RD1E‧‧‧Rated physical parameter range

RC1E1、RD1E1‧‧‧物理參數參考範圍 RC1E1, RD1E1‧‧‧Physical parameter reference range

RC1E2‧‧‧物理參數參考範圍、物理參數候選範圍 RC1E2‧‧‧Physical parameter reference range, physical parameter candidate range

RC1E3、RD1E3、RD2E2、RK1E2‧‧‧物理參數候選範圍 RC1E3, RD1E3, RD2E2, RK1E2‧‧‧Physical parameter candidate range

RC1E4、RC1E7‧‧‧特定物理參數範圍 RC1E4, RC1E7‧‧‧Specific physical parameter range

RC1EL、RD1EL‧‧‧物理參數應用範圍 RC1EL, RD1EL‧‧‧Physical parameter application range

RC1N、RD1N‧‧‧額定測量值範圍 RC1N, RD1N‧‧‧Rated measurement value range

RD1E2‧‧‧物理參數參考範圍、物理參數候選範圍 RD1E2‧‧‧Physical parameter reference range, physical parameter candidate range

RD1E4‧‧‧第一特定物理參數範圍 RD1E4‧‧‧The first specific physical parameter range

RD1E5‧‧‧第二特定物理參數範圍 RD1E5‧‧‧The second specific physical parameter range

RD1ET、RK1ET‧‧‧物理參數目標範圍 RD1ET, RK1ET‧‧‧Target range of physical parameters

RL81‧‧‧肯定操作報告 RL81‧‧‧Affirmative operation report

RM11、RN11‧‧‧測量值參考範圍 RM11, RN11‧‧‧Reference range of measured value

RM12‧‧‧測量值參考範圍、測量值候選範圍 RM12‧‧‧Measurement value reference range, measured value candidate range

RM17、RN15、RN17‧‧‧特定測量值範圍 RM17, RN15, RN17‧‧‧Specific measurement value range

RM1L、RN1L‧‧‧測量值應用範圍 RM1L, RN1L‧‧‧Measurement value application range

RN12‧‧‧測量值參考範圍、測量值候選範圍 RN12‧‧‧Measurement value reference range, measured value candidate range

RN13‧‧‧測量值候選範圍 RN13‧‧‧Measurement value candidate range

RN1T‧‧‧測量值目標範圍 RN1T‧‧‧Measurement value target range

RQ11‧‧‧時間值參考範圍 RQ11‧‧‧Time value reference range

RQ1T‧‧‧時間值目標範圍 RQ1T‧‧‧Time value target range

RQ12‧‧‧時間值參考範圍、時間值候選範圍 RQ12‧‧‧Time value reference range, time value candidate range

RW1EL、RY1ET‧‧‧對應物理參數範圍 RW1EL, RY1ET‧‧‧Corresponding physical parameter range

RX1T‧‧‧對應測量值範圍 RX1T‧‧‧Corresponding measurement value range

SA1‧‧‧記憶體空間 SA1‧‧‧Memory space

SB81‧‧‧物理參數訊號 SB81‧‧‧Physical parameter signal

SC81、SC82、SC83、SC97、SD81、SD82、SF81、SF97、SV81、SV82‧‧‧控制訊號 SC81, SC82, SC83, SC97, SD81, SD82, SF81, SF97, SV81, SV82‧‧‧Control signal

SE81‧‧‧控制回應訊號 SE81‧‧‧Control response signal

SG81、SG82、SG85、SG91、SG97‧‧‧功能訊號 SG81, SG82, SG85, SG91, SG97‧‧‧Function signal

SK91、SY80、SY81‧‧‧時鐘時間訊號 SK91, SY80, SY81‧‧‧clock time signal

SL81‧‧‧驅動訊號 SL81‧‧‧Drive signal

SM81、SM82、SM91、SN83、SN91‧‧‧感測訊號 SM81, SM82, SM91, SN83, SN91‧‧‧Sensing signal

SN81‧‧‧第一感測訊號 SN81‧‧‧First sensing signal

SN82‧‧‧第二感測訊號 SN82‧‧‧Second sensing signal

SN811、SN812‧‧‧感測訊號分量 SN811, SN812‧‧‧Sensing signal component

SS11、SU11‧‧‧儲存空間 SS11、SU11‧‧‧Storage space

SW82、SW83、SW84、SW85‧‧‧指令訊號 SW82, SW83, SW84, SW85‧‧‧Command signal

SX81‧‧‧觸發訊號 SX81‧‧‧Trigger signal

SZ81、SZ91、SZ92‧‧‧操作請求訊號 SZ81, SZ91, SZ92‧‧‧Operation request signal

TD81、TF81、TF82‧‧‧操作時間 TD81, TF81, TF82‧‧‧operating time

TE82、TG82、TG83、TW81、TY81‧‧‧指定時間 TE82, TG82, TG83, TW81, TY81‧‧‧specified time

TH1A‧‧‧時鐘時間 TH1A‧‧‧Clock time

TJ8T‧‧‧特定時間 TJ8T‧‧‧specified time

TK81‧‧‧控制資料碼類型 TK81‧‧‧Control data code type

TL11、TP11、TU11、TU1G‧‧‧物理參數類型 TL11, TP11, TU11, TU1G‧‧‧Physical parameter type

TM81‧‧‧測量範圍界限資料碼類型 TM81‧‧‧Measuring range limit data code type

TR81‧‧‧時鐘參考時間 TR81‧‧‧Clock reference time

TT81‧‧‧觸發時間 TT81‧‧‧Trigger time

TT82‧‧‧啟動時間 TT82‧‧‧Starting time

TZ8T‧‧‧結束時間 TZ8T‧‧‧End time

UA8T‧‧‧控制應用碼 UA8T‧‧‧Control application code

UH8T‧‧‧中斷請求訊號 UH8T‧‧‧Interrupt request signal

UL81‧‧‧預設特徵物理參數 UL81‧‧‧Preset characteristic physical parameters

UM8A、UN8A‧‧‧可變物理參數範圍碼 UM8A, UN8A‧‧‧Variable physical parameter range code

UM8L‧‧‧物理參數應用範圍碼 UM8L‧‧‧Physical parameter application range code

UN8T、UQ1T‧‧‧物理參數目標範圍碼 UN8T, UQ1T‧‧‧Physical parameter target range code

UQ11‧‧‧物理參數指定範圍碼 UQ11‧‧‧Specification range code of physical parameters

UQ12‧‧‧物理參數指定範圍碼、物理參數候選範圍碼 UQ12‧‧‧Physical parameter specified range code, physical parameter candidate range code

UW81‧‧‧特定輸入碼 UW81‧‧‧Specific input code

UX81、UX92、UY81、UY91、UY95‧‧‧指定位元數目 UX81, UX92, UY81, UY91, UY95‧‧‧Specify the number of bits

VA11、VC11、VK81、VK82‧‧‧相對值 VA11, VC11, VK81, VK82‧‧‧Relative value

VG81‧‧‧可允許值 VG81‧‧‧Permissible value

VM81、VM82、VM91、VN83、VN91‧‧‧測量值 VM81, VM82, VM91, VN83, VN91‧‧‧Measured value

VN81‧‧‧第一測量值 VN81‧‧‧First measured value

VN82‧‧‧第二測量值 VN82‧‧‧Second measured value

WA8L、WB8L、WD81、WN8T、WS82、WS8T‧‧‧寫入請求訊息 WA8L, WB8L, WD81, WN8T, WS82, WS8T‧‧‧Write request message

WC8T‧‧‧第二寫入請求訊息 WC8T‧‧‧Second write request message

WJ11‧‧‧電應用目標 WJ11‧‧‧Electric application target

WN8L‧‧‧第一寫入請求訊息 WN8L‧‧‧First write request message

XA8A‧‧‧可變物理狀態 XA8A‧‧‧Variable physical state

XA81‧‧‧非特徵物理參數到達狀態 XA81‧‧‧Non-characteristic physical parameter arrival status

XA82‧‧‧實際特徵物理參數到達狀態 XA82‧‧‧Actual characteristic physical parameter arrival status

XH81、XH82‧‧‧特定狀態 XH81, XH82‧‧‧Specific status

XJ81:第一特定狀態 XJ81: The first specific state

XJ82:第二特定狀態 XJ82: Second specific state

XK81、XU81:操作參考資料碼 XK81, XU81: Operation reference code

XP81、XR81:特定經驗公式 XP81, XR81: specific empirical formula

YJ81:選擇工具 YJ81: Selection tool

YM8L:第一記憶體位置 YM8L: first memory location

YM8T:第三記憶體位置 YM8T: third memory location

YQ81、YW81:感測器靈敏度 YQ81, YW81: Sensor sensitivity

YS81、YS82、YS8T:記憶體位置 YS81, YS82, YS8T: memory location

YU91:預設資料導出規則 YU91: Preset data export rules

YX8T:第二記憶體位置 YX8T: second memory location

ZB81:相對參考範圍碼 ZB81: Relative reference range code

ZD1T1、ZD1T2:預設物理參數目標範圍界限 ZD1T1, ZD1T2: preset physical parameter target range limits

ZL82:特徵物理參數到達 ZL82: Arrival of characteristic physical parameters

ZU81:驗證操作 ZU81: Verify operation

ZX81:第一資料編碼操作 ZX81: First data encoding operation

ZX82:第二資料編碼操作 ZX82: Second data encoding operation

ZX83:資料編碼操作、第四資料編碼操作 ZX83: data encoding operation, fourth data encoding operation

ZX91:第三資料編碼操作 ZX91: Third data encoding operation

本揭露得藉由下列圖式之詳細說明,俾得更深入之瞭解: This disclosure can be further understood by the detailed description of the following diagrams:

第1圖:為在本揭露各式各樣實施例中一控制系統的示意圖。 Figure 1: A schematic diagram of a control system in various embodiments of the present disclosure.

第2圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 2: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第3圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 3: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第4圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 4: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第5圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 5: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第6圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 6 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第7圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 7 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第8圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 8 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第9圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 9 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第10圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 10: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第11圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 11: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第12圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 12: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第13圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 13: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第14圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 14: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第15圖:為繪示於第1圖中的該控制系統的一實施結 構的示意圖。 Figure 15: An implementation result of the control system shown in Figure 1 Schematic diagram of the structure.

第16圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 16 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第17圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 17: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第18圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 18: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第19圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 19: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第20圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 20: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第21圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 21: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第22圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 22: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第23圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 23: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第24圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 24: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第25圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 25: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第26圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 26: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第27圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 27: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第28圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 28: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第29圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 29: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第30圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 30: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第31圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 31: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第32圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 32: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第33圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 33: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第34圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 34: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第35圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 35: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第36圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 36: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

第37圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 37 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第38圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 38 is a schematic diagram showing an implementation structure of the control system shown in Fig. 1.

第39圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 39 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第40圖:為繪示於第1圖中的該控制系統的一實施結 構的示意圖。 Figure 40: An implementation result of the control system shown in Figure 1 Schematic diagram of the structure.

第41圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 41: A schematic diagram of an implementation structure of the control system shown in Figure 1.

第42圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Fig. 42 is a schematic diagram of an implementation structure of the control system shown in Fig. 1.

第43圖:為繪示於第1圖中的該控制系統的一實施結構的示意圖。 Figure 43: is a schematic diagram of an implementation structure of the control system shown in Figure 1.

請參閱第1圖,其為在本揭露各式各樣實施例中一控制系統901的示意圖。該控制系統901包含一控制目標裝置130和用於控制該控制目標裝置130的一控制裝置212。該控制目標裝置130包含一可變物理參數QU1A、一感測單元334和一操作單元397。該可變物理參數QU1A基於由一測量值目標範圍RN1T所代表的一物理參數目標範圍RD1ET和由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL而被特徵化。該感測單元334感測該可變物理參數QU1A以產生一第一感測訊號SN81。 Please refer to FIG. 1, which is a schematic diagram of a control system 901 in various embodiments of the present disclosure. The control system 901 includes a control target device 130 and a control device 212 for controlling the control target device 130. The control target device 130 includes a variable physical parameter QU1A, a sensing unit 334 and an operating unit 397. The variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L. The sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81.

該操作單元397耦合於該感測單元334。在該操作單元397接收起到指示該測量值目標範圍RN1T的作用的一控制訊號SC81的條件下,該操作單元397響應該第一感測訊號SN81來獲得一第一測量值VN81。在該操作單元397藉由檢查該第一測量值VN81和該測量值應用範圍RN1L之間的一第一數學關係KV81而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元397由於該控制訊號SC81而確定該測量值目標 範圍RN1T和該測量值應用範圍RN1L之間的一範圍差異DS81以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The operating unit 397 is coupled to the sensing unit 334. Under the condition that the operating unit 397 receives a control signal SC81 that functions to indicate the measurement value target range RN1T, the operating unit 397 responds to the first sensing signal SN81 to obtain a first measurement value VN81. The operating unit 397 determines that the variable physical parameter QU1A is currently under the condition of the physical parameter application range RD1EL by checking a first mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L , The operating unit 397 determines the measured value target due to the control signal SC81 A range difference DS81 between the range RN1T and the measurement value application range RN1L causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

請參閱第2圖,其為繪示於第1圖中的該控制系統901的一實施結構9011的示意圖。請額外參閱第1圖。在一些實施例中,該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。該第一測量值VN81以一指定測量值格式HH81而被該操作單元397獲得。 Please refer to FIG. 2, which is a schematic diagram of an implementation structure 9011 of the control system 901 shown in FIG. 1. Please refer to Figure 1 additionally. In some embodiments, the sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81. The first measurement value VN81 is obtained by the operating unit 397 in a designated measurement value format HH81.

該測量值目標範圍RN1T和該測量值應用範圍RN1L皆基於該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T和該測量值應用範圍RN1L分別具有一目標範圍界限值對DN1T和一應用範圍界限值對DN1L。該控制訊號SC81輸送該目標範圍界限值對DN1T、該應用範圍界限值對DN1L和一控制碼CC1T。例如,該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T而被預設。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T的作用。 The measurement value target range RN1T and the measurement value application range RN1L are both preset based on the sensor sensitivity indicator GW81 using the designated measurement value format HH81. The measurement value target range RN1T and the measurement value application range RN1L have a target range limit value pair DN1T and an application range limit value pair DN1L, respectively. The control signal SC81 transmits the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T. For example, the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T.

該操作單元397從該控制訊號SC81獲得該應用範圍界限值對DN1L,並藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來檢查該第一數學 關係KV81以做出該第一測量值VN81是否為於該測量值應用範圍RN1L之內的一第一邏輯決定PB81。在該第一邏輯決定PB81是肯定的條件下,該操作單元397確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 The operating unit 397 obtains the application range limit value pair DN1L from the control signal SC81, and checks the first mathematical value by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L The relationship KV81 is used to make a first logical decision PB81 whether the first measurement value VN81 is within the measurement value application range RN1L. Under the condition that the first logical decision PB81 is affirmative, the operating unit 397 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

該操作單元397從該控制訊號SC81獲得該目標範圍界限值對DN1T。在該操作單元397確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該操作單元397藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的一第二邏輯決定PY81。 The operating unit 397 obtains the target range limit value pair DN1T from the control signal SC81. Under the condition that the operating unit 397 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the operating unit 397 compares the obtained target range limit value to DN1T with the obtained application range limit Value pair DN1L to check a range relationship KE8A between the measured value target range RN1T and the measured value application range RN1L to determine whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L The equal one second logic determines PY81.

在該第二邏輯決定PY81是否定的條件下,該操作單元397辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81。該操作單元397從該控制訊號SC81獲得該控制碼CC1T。在該操作單元397確定該範圍差異DS81的條件下,該操作單元397基於所獲得的該控制碼CC1T來執行一訊號產生控制GY81以產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一功能訊號SG81。 Under the condition that the second logic decision PY81 is negative, the operating unit 397 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81. The operating unit 397 obtains the control code CC1T from the control signal SC81. Under the condition that the operating unit 397 determines the range difference DS81, the operating unit 397 executes a signal generation control GY81 based on the obtained control code CC1T to generate a signal for causing the variable physical parameter QU1A to enter the physical parameter target range A function signal of RD1ET is SG81.

在一些實施例中,在該操作單元397於一操作時間TF81之內執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以產生一第二感測訊號SN82。該操作單元397於該操作時間TF81之後的一指 定時間TG82之內響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82。在該操作單元397於該指定時間TG82之內藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該操作單元397執行一確保操作GU81,該確保操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN8T被記錄。 In some embodiments, after the operating unit 397 executes the signal generation control GY81 within an operating time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing signal SN82. A finger of the operating unit 397 after the operating time TF81 In response to the second sensing signal SN82 within a predetermined time TG82, a second measurement value VN82 is obtained in the designated measurement value format HH81. The operating unit 397 compares the second measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82 to determine the value of the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located. Under conditions, the operating unit 397 executes a guarantee operation GU81, which is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded.

該可變物理參數QU1A相關於一可變時間長度LF8A。例如,該操作單元397用於測量該可變時間長度LF8A。該可變時間長度LF8A基於一時間長度參考範圍HJ81和一參考時間長度LJ8T而被特徵化。該時間長度參考範圍HJ81由一時間長度值參考範圍GJ81所代表。該參考時間長度LJ8T由一時間長度值CL8T所代表。該控制訊號SC81進一步輸送該時間長度值CL8T。該操作單元397被配置以從該控制訊號SC81獲得該時間長度值CL8T,並檢查所獲得的該時間長度值CL8T和該時間長度值參考範圍GJ81之間的一數值關係KJ81以做出用於控制一特定時間TJ8T的一計數操作BC8T是否要被執行的一第三邏輯決定PE81。 The variable physical parameter QU1A is related to a variable time length LF8A. For example, the operating unit 397 is used to measure the variable time length LF8A. The variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T. The time length reference range HJ81 is represented by a time length value reference range GJ81. The reference time length LJ8T is represented by a time length value CL8T. The control signal SC81 further conveys the time length value CL8T. The operating unit 397 is configured to obtain the time length value CL8T from the control signal SC81, and to check a numerical relationship KJ81 between the obtained time length value CL8T and the time length value reference range GJ81 to make a control signal. A third logic determines PE81 whether a counting operation BC8T at a specific time TJ8T is to be executed.

在該第三邏輯決定PE81是肯定的條件下,該操作單元397基於所獲得的該時間長度值CL8T來執行該計數操作BC8T。在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,該操作單元397基於該計數操作BC8T來到達該特定 時間TJ8T,並在該特定時間TJ8T之內執行用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該物理參數應用範圍RD1EL的一訊號產生操作BY91。 Under the condition that the third logic decision PE81 is affirmative, the operation unit 397 executes the counting operation BC8T based on the obtained time length value CL8T. Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET due to the control signal SC81, the operating unit 397 reaches the specific physical parameter based on the counting operation BC8T Time TJ8T, and execute a signal generation operation BY91 for causing the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the physical parameter application range RD1EL within the specific time TJ8T.

請參閱第3圖、第4圖、第5圖、第6圖和第7圖。第3圖為繪示於第1圖中的該控制系統901的一實施結構9012的示意圖。第4圖為繪示於第1圖中的該控制系統901的一實施結構9013的示意圖。第5圖為繪示於第1圖中的該控制系統901的一實施結構9014的示意圖。第6圖為繪示於第1圖中的該控制系統901的一實施結構9015的示意圖。第7圖為繪示於第1圖中的該控制系統901的一實施結構9016的示意圖。如第3圖、第4圖、第5圖、第6圖和第7圖所示,該實施結構9012、該實施結構9013、該實施結構9014、該實施結構9015和該實施結構9016的每一結構包含該控制裝置212和該控制目標裝置130。 Please refer to Figure 3, Figure 4, Figure 5, Figure 6 and Figure 7. FIG. 3 is a schematic diagram of an implementation structure 9012 of the control system 901 shown in FIG. 1. FIG. 4 is a schematic diagram of an implementation structure 9013 of the control system 901 shown in FIG. 1. FIG. 5 is a schematic diagram of an implementation structure 9014 of the control system 901 shown in FIG. 1. FIG. 6 is a schematic diagram of an implementation structure 9015 of the control system 901 shown in FIG. 1. FIG. 7 is a schematic diagram of an implementation structure 9016 of the control system 901 shown in FIG. 1. As shown in Figures 3, 4, 5, 6 and 7, each of the implementation structure 9012, the implementation structure 9013, the implementation structure 9014, the implementation structure 9015, and the implementation structure 9016 The structure includes the control device 212 and the control target device 130.

請額外參閱第1圖。在一些實施例中,該操作單元397被配置以執行與該物理參數應用範圍RD1EL相關的一物理參數控制功能FA81,並包含耦合於該感測單元334的一處理單元331、耦合於該處理單元331的一輸入單元337、和耦合於該處理單元331的一輸出單元338。該物理參數控制功能FA81被配置以符合與該物理參數應用範圍RD1EL相關的一物理參數控制功能規格GAL8。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所 執行的一感測訊號產生HF81。 Please refer to Figure 1 additionally. In some embodiments, the operating unit 397 is configured to execute a physical parameter control function FA81 related to the physical parameter application range RD1EL, and includes a processing unit 331 coupled to the sensing unit 334 and coupled to the processing unit An input unit 337 of 331 and an output unit 338 coupled to the processing unit 331. The physical parameter control function FA81 is configured to comply with a physical parameter control function specification GAL8 related to the physical parameter application range RD1EL. The sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to the sensitivity of the sensor unit 334 A sensing signal executed generates HF81.

在該輸入單元337從一控制裝置212接收該控制訊號SC81的條件下,該處理單元331響應該第一感測訊號SN81來以一指定測量值格式HH81獲得該第一測量值VN81。例如,該指定測量值格式HH81基於一指定位元數目UY81而被特徵化。例如,當該輸入單元337接收該控制訊號SC81時,該感測單元334感測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的該感測訊號產生HF81,該感測訊號產生HF81用於產生該第一感測訊號SN81。在該處理單元331由於該控制訊號SC81而確定該範圍差異DS81的條件下,該處理單元331導致該輸出單元240輸出用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一功能訊號SG81。 Under the condition that the input unit 337 receives the control signal SC81 from a control device 212, the processing unit 331 responds to the first sensing signal SN81 to obtain the first measurement value VN81 in a designated measurement value format HH81. For example, the designated measurement value format HH81 is characterized based on a designated number of bits UY81. For example, when the input unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to perform the sensing signal generation HF81 dependent on the sensor sensitivity YW81, and the sensing signal generates HF81 is used to generate the first sensing signal SN81. Under the condition that the processing unit 331 determines the range difference DS81 due to the control signal SC81, the processing unit 331 causes the output unit 240 to output a function signal for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET SG81.

該可變物理參數QU1A進一步基於一額定物理參數範圍RD1E而被特徵化。例如,該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複數不同物理參數參考範圍RD1E1、RD1E2、…。該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。該物理參數控制功能規格GAL8包含該感測器規格FU11、用於表示該額定物理參數範圍RD1E的一額定物理參數範圍表示GA8E、和用於表示該物理參數應用範圍RD1EL的一物理參數應用範圍表示GA8L。 The variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E. For example, the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... respectively. The physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The physical parameter control function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter application range representation used to represent the physical parameter application range RD1EL GA8L.

該額定測量值範圍RD1N基於該額定物理 參數範圍表示GA8E、該感測器靈敏度表示GW81和用於轉換該額定物理參數範圍表示GA8E的一第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設,具有一額定範圍界限值對DD1A,並包含由複數不同測量值參考範圍碼EM11、EM12、…所分別代表的該複數不同測量值參考範圍RN11、RN12、…。例如,該額定範圍界限值對DD1A用該指定測量值格式HH81而被預設。該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和該測量值應用範圍RN1L。 The rated measurement value range RD1N is based on the rated physical The parameter range represents GA8E, the sensor sensitivity represents GW81, and a first data encoding operation ZX81 used to convert the rated physical parameter range represents GA8E is preset using the designated measurement value format HH81, and has a rated range limit value For DD1A, it also includes the plural different measurement value reference ranges RN11, RN12, ... represented by the plural different measurement value reference range codes EM11, EM12, ... respectively. For example, the rated range limit value pair DD1A is preset using the specified measurement value format HH81. The plurality of different measurement value reference ranges RN11, RN12,... include the measurement value target range RN1T and the measurement value application range RN1L.

在一些實施例中,該測量值目標範圍RN1T由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值目標範圍碼EM1T所代表;藉此該測量值目標範圍碼EM1T被配置以指示該物理參數目標範圍RD1ET。例如,該複數不同測量值參考範圍碼EM11、EM12、…皆基於該物理參數控制功能規格GAL8而被預設。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用。 In some embodiments, the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12, ...; whereby the measurement value target range code EM1T is Configure to indicate the physical parameter target range RD1ET. For example, the plurality of different measurement value reference range codes EM11, EM12,... are all preset based on the physical parameter control function specification GAL8. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T.

該測量值應用範圍RN1L由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值應用範圍碼EM1L所代表,並具有一應用範圍界限值對DN1L;藉此該測量值應用範圍碼EM1L被配置以指示該物理參數應用範圍RD1EL。例如,該應用範圍界限值對DN1L基於該物理參數應用範圍表示GA8L、該感測器靈敏度表示GW81和用於轉換該物理參數應用範圍表示GA8L的一第二資料編碼操作ZX82來用該指定測量值格式HH81而被預 設。該測量值應用範圍RN1L基於該物理參數應用範圍表示GA8L、該感測器靈敏度表示GW81和該第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The measurement value application range RN1L is represented by a measurement value application range code EM1L included in the plurality of different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L; whereby the measurement value is applied The range code EM1L is configured to indicate the physical parameter application range RD1EL. For example, the application range limit value for DN1L is based on the physical parameter application range representing GA8L, the sensor sensitivity representing GW81, and a second data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the specified measurement value The format HH81 is pre- Assume. The measurement value application range RN1L is preset based on the physical parameter application range representation GA8L, the sensor sensitivity representation GW81, and the second data encoding operation ZX82 using the designated measurement value format HH81.

在一些實施例中,該控制目標裝置130進一步包含耦合於該處理單元331的一儲存單元332。該儲存單元332儲存所預設的該額定範圍界限值對DD1A和一可變物理參數範圍碼UN8A。該控制訊號SC81進一步輸送該額定範圍界限值對DD1A。當該輸入單元337接收該控制訊號SC81時,該可變物理參數範圍碼UN8A等於選擇自該複數不同測量值參考範圍碼EM11、EM12、…的一特定測量值範圍碼EM14。 In some embodiments, the control target device 130 further includes a storage unit 332 coupled to the processing unit 331. The storage unit 332 stores the preset rated range limit value pair DD1A and a variable physical parameter range code UN8A. The control signal SC81 further transmits the rated range limit value pair DD1A. When the input unit 337 receives the control signal SC81, the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the plurality of different measurement value reference range codes EM11, EM12,...

例如,該特定測量值範圍碼EM14指示基於一感測操作ZS81而被該處理單元331先前確定的一第一特定物理參數範圍RD1E4。該第一特定物理參數範圍RD1E4選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。由該感測單元334所執行的該感測操作ZS81用於感測該可變物理參數QU1A。在該輸入單元337接收該控制訊號SC81之前,該特定測量值範圍碼EM14被指定到該可變物理參數範圍碼UN8A。 For example, the specific measurement value range code EM14 indicates a first specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81. The first specific physical parameter range RD1E4 is selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A. Before the input unit 337 receives the control signal SC81, the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.

例如,在該輸入單元337接收該控制訊號SC81之前,該處理單元331獲得該特定測量值範圍碼EM14。在該處理單元331於該輸入單元337接收該控制訊號SC81之前基於該感測操作ZS81而確定該第一特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該特定測量值範圍碼EM14指定 到該可變物理參數範圍碼UN8A。該特定測量值範圍碼EM14代表被配置以代表該第一特定物理參數範圍RD1E4的一特定測量值範圍。該特定測量值範圍基於該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預設。例如,該感測單元334藉由執行該感測操作ZS81來執行相依於該感測器靈敏度YW81的一感測訊號產生以產生一感測訊號。 For example, before the input unit 337 receives the control signal SC81, the processing unit 331 obtains the specific measurement value range code EM14. Under the condition that the processing unit 331 determines the first specific physical parameter range RD1E4 based on the sensing operation ZS81 before the input unit 337 receives the control signal SC81, the processing unit 331 uses the storage unit 332 to store all the parameters. The range code of the specific measurement value obtained is specified by EM14 To the variable physical parameter range code UN8A. The specific measurement value range code EM14 represents a specific measurement value range configured to represent the first specific physical parameter range RD1E4. The specific measurement value range is preset based on the sensor sensitivity indicator GW81 in the specified measurement value format HH81. For example, the sensing unit 334 performs a sensing signal generation dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.

在該輸入單元337接收該控制訊號SC81之前,該處理單元331接收該感測訊號,響應該感測訊號來以該指定測量值格式HH81獲得一特定測量值,並執行用於檢查該特定測量值和該特定測量值範圍之間的一數學關係的一特定檢查操作。在該處理單元331基於該特定檢查操作而確定該可變物理參數QU1A處於的該第一特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該特定測量值範圍碼EM14指定到該可變物理參數範圍碼UN8A。該處理單元331響應用於感測該可變物理參數QU1A的一特定感測操作來決定該處理單元331是否要使用該儲存單元332以改變該可變物理參數範圍碼UN8A。例如,該特定感測操作由該感測單元334所執行。 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, and responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes for checking the specific measurement value A specific check operation of a mathematical relationship between the specific measurement value range and the specific measurement value range. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is in the first specific physical parameter range RD1E4 based on the specific checking operation, the processing unit 331 uses the storage unit 332 to obtain the specific The measurement value range code EM14 is assigned to the variable physical parameter range code UN8A. The processing unit 331 responds to a specific sensing operation for sensing the variable physical parameter QU1A to determine whether the processing unit 331 will use the storage unit 332 to change the variable physical parameter range code UN8A. For example, the specific sensing operation is performed by the sensing unit 334.

在一些實施例中,在該輸入單元337接收該控制訊號SC81的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81和該儲存單元332的其中之一獲得一操作參考資料碼XU81,並藉由運行一資料確定程序NA8A來執行使用該操作參考資料碼XU81的一資料確定 AA8A以確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值應用範圍碼EM1L以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值應用範圍RN1L。 In some embodiments, under the condition that the input unit 337 receives the control signal SC81, the processing unit 331 responds to the control signal SC81 to obtain an operation reference data code from one of the control signal SC81 and the storage unit 332 XU81, and execute a data determination using the operation reference data code XU81 by running a data determination program NA8A AA8A determines to select the measurement value application range code EM1L from the plurality of different measurement value reference range codes EM11, EM12, ... so as to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12, ....

該操作參考資料碼XU81相同於基於該物理參數控制功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NA8A基於該物理參數控制功能規格GAL8而被建構。該資料確定AA8A是一第一資料確定操作AA81和一第二資料確定操作AA82的其中之一。在該操作參考資料碼XU81藉由存取被儲存在該儲存單元332中的該可變物理參數範圍碼UN8A而被獲得以相同於該特定測量值範圍碼EM14的條件下,是該第一資料確定操作AA81的該資料確定AA8A基於所獲得的該特定測量值範圍碼EM14來確定該測量值應用範圍碼EM1L。例如,所確定的該測量值應用範圍碼EM1L相同或不同於所獲得的該特定測量值範圍碼EM14。 The operation reference code XU81 is the same as an allowable reference code preset based on the physical parameter control function specification GAL8. The data determination program NA8A is constructed based on the physical parameter control function specification GAL8. The data determination AA8A is one of a first data determination operation AA81 and a second data determination operation AA82. Under the condition that the operation reference data code XU81 is obtained by accessing the variable physical parameter range code UN8A stored in the storage unit 332 and is the same as the specific measurement value range code EM14, it is the first data The data of the determination operation AA81 determines that AA8A determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.

在該操作參考資料碼XU81從該控制訊號SC81和該儲存單元332的其中之一而被獲得以相同於所預設的該額定範圍界限值對DD1A的條件下,是該第二資料確定操作AA82的該資料確定AA8A藉由執行使用該第一測量值VN81和所獲得的該額定範圍界限值對DD1A的一第一科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該第一科學計算MR81基於一特定經驗公式XR81而被執行。該特定經驗公式 XR81基於所預設的該額定範圍界限值對DD1A和該複數不同測量值參考範圍碼EM11、EM12、…而被預先制定。例如,該特定經驗公式XR81基於該物理參數控制功能規格GAL8而被預先制定。 Under the condition that the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage unit 332 and is the same as the preset rated range limit value pair DD1A, it is the second data determination operation AA82 The data determines that AA8A selects from the plurality of different measurement value reference range codes EM11, EM12, ... by performing a first scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value for DD1A The measurement value application range code EM1L is used to determine the measurement value application range code EM1L. For example, the first scientific calculation MR81 is executed based on a specific empirical formula XR81. The specific empirical formula XR81 is pre-defined based on the preset rated range limit value DD1A and the multiple different measurement value reference range codes EM11, EM12,.... For example, the specific empirical formula XR81 is formulated in advance based on the physical parameter control function specification GAL8.

在一些實施例中,該處理單元331基於所確定的該測量值應用範圍碼EM1L來獲得該應用範圍界限值對DN1L,並基於該第一測量值VN81和所獲得的該應用範圍界限值對DN1L之間的一資料比較CD81來檢查該第一數學關係KV81以做出該第一測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的一第一邏輯決定PB81。在該第一邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the processing unit 331 obtains the application range limit value pair DN1L based on the determined measurement value application range code EM1L, and based on the first measurement value VN81 and the obtained application range limit value pair DN1L A data comparison between CD81 to check the first mathematical relationship KV81 to make a first logical decision PB81 whether the first measurement value VN81 is within the selected measurement value application range RN1L. Under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

該處理單元331從該控制訊號SC81獲得該測量值目標範圍碼EM1T。在該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的一第二邏輯決定PZ81。在該第二邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81。 The processing unit 331 obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter application range RD1EL, the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement value application The range code EM1L is used to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to determine whether the obtained measurement value target range code EM1T and the determined measurement value application range code EM1L are An equal second logic determines PZ81. Under the condition that the second logic decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to determine the range difference DS81.

在一些實施例中,該應用範圍界限值對 DN1L包含該測量值應用範圍RN1L的一第一應用範圍界限值DN15和相對於該第一應用範圍界限值DN15的一第二應用範圍界限值DN16。該控制目標裝置130進一步包含耦合於該輸出單元338的一功能目標335。該功能目標335具有該可變物理參數QU1A。例如,該感測單元334耦合於該功能目標335。該處理單元331通過該輸出單元338來使該功能目標335執行與該可變物理參數QU1A相關的一指定功能操作ZH81。例如,該指定功能操作ZH81用於導致一觸發事件EQ81發生。該控制裝置212響應該觸發事件EQ81來輸出該控制訊號SC81。 In some embodiments, the application range limit value pair DN1L includes a first application range limit value DN15 of the measurement value application range RN1L and a second application range limit value DN16 relative to the first application range limit value DN15. The control target device 130 further includes a function target 335 coupled to the output unit 338. The function target 335 has the variable physical parameter QU1A. For example, the sensing unit 334 is coupled to the functional target 335. The processing unit 331 uses the output unit 338 to make the function target 335 execute a designated function operation ZH81 related to the variable physical parameter QU1A. For example, the designated function operation ZH81 is used to cause a trigger event EQ81 to occur. The control device 212 responds to the trigger event EQ81 to output the control signal SC81.

例如,在該第一應用範圍界限值DN15不同於該第二應用範圍界限值DN16且該第一測量值VN81是於該第一應用範圍界限值DN15和該第二應用範圍界限值DN16之間的條件下,該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該第一邏輯決定PB81以成為肯定的。在該第一應用範圍界限值DN15、該第二應用範圍界限值DN16和該第一測量值VN81是相等的條件下,該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該第一邏輯決定PB81以成為肯定的。 For example, when the first application range limit value DN15 is different from the second application range limit value DN16 and the first measurement value VN81 is between the first application range limit value DN15 and the second application range limit value DN16 Under conditions, the processing unit 331 makes the first logical decision PB81 by comparing the first measured value VN81 with the obtained application range limit value pair DN1L to become affirmative. Under the condition that the first application range limit value DN15, the second application range limit value DN16, and the first measurement value VN81 are equal, the processing unit 331 compares the first measurement value VN81 with the obtained application value The range limit value is positive for DN1L to make the first logical decision PB81.

該物理參數控制功能規格GAL8進一步包含一物理參數表示GA8T1。該物理參數表示GA8T1用於表示在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T。該儲存單元332具有一第一記憶體位置YM8L和不同於該第一記憶體位置YM8L的一第二記憶體位置 YX8T,在該第一記憶體位置YM8L儲存該應用範圍界限值對DN1L,並在該第二記憶體位置YX8T儲存一控制碼CC1T。 The physical parameter control function specification GAL8 further includes a physical parameter representation GA8T1. The physical parameter representation GA8T1 is used to represent a designated physical parameter QD1T within the physical parameter target range RD1ET. The storage unit 332 has a first memory location YM8L and a second memory location different from the first memory location YM8L YX8T, the application range limit value pair DN1L is stored in the first memory location YM8L, and a control code CC1T is stored in the second memory location YX8T.

例如,該第一記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。該第二記憶體位置YX8T基於所預設的該測量值目標範圍碼EM1T而被識別。該控制碼CC1T基於該物理參數表示GA8T1和用於轉換該物理參數表示GA8T1的一第三資料編碼操作ZX91而被預設。例如,該應用範圍界限值對DN1L和該控制碼CC1T分別基於所預設的該測量值應用範圍碼EM1L和所預設的該測量值目標範圍碼EM1T而被該儲存單元332儲存。 For example, the first memory location YM8L is identified based on the preset measurement value application range code EM1L. The second memory position YX8T is identified based on the preset measurement value target range code EM1T. The control code CC1T is preset based on the physical parameter representing GA8T1 and a third data encoding operation ZX91 for converting the physical parameter representing GA8T1. For example, the application range limit value pair DN1L and the control code CC1T are respectively stored by the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T.

在一些實施例中,該處理單元331藉由運行一資料獲取程序ND8A來執行使用所確定的該測量值應用範圍碼EM1L的一資料獲取AD8A以獲得該應用範圍界限值對DN1L。例如,該資料獲取AD8A是一第一資料獲取操作AD81和一第二資料獲取操作AD82的其中之一。該資料獲取程序ND8A基於該物理參數控制功能規格GAL8而被建構。該第一資料獲取操作AD81基於所確定的該測量值應用範圍碼EM1L來使用該儲存單元332以存取被儲存在該第一記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。 In some embodiments, the processing unit 331 executes a data acquisition AD8A using the determined measurement value application range code EM1L by running a data acquisition program ND8A to obtain the application range limit value pair DN1L. For example, the data acquisition AD8A is one of a first data acquisition operation AD81 and a second data acquisition operation AD82. The data acquisition program ND8A is constructed based on the physical parameter control function specification GAL8. The first data acquisition operation AD81 uses the storage unit 332 based on the determined measurement value application range code EM1L to access the application range limit value pair DN1L stored in the first memory location YM8L to obtain the application range The limit value is DN1L.

該第二資料獲取操作AD82依靠該控制訊號SC81和該儲存單元332的其中之一來取得該額定範圍界限值對DD1A,並藉由執行使用所確定的該測量值應用範圍碼EM1L和所取得的該額定範圍界限值對DD1A的一第二 科學計算MZ81來獲得該應用範圍界限值對DN1L。例如,該額定範圍界限值對DD1A包含該額定測量值範圍RD1N的一額定範圍界限值DD11和相對於該額定範圍界限值DD11的一額定範圍界限值DD12,並基於該額定物理參數範圍表示GA8E、該感測器靈敏度表示GW81和該第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設。 The second data acquisition operation AD82 relies on one of the control signal SC81 and the storage unit 332 to acquire the rated range limit value pair DD1A, and by executing the determined application range code EM1L of the measured value and the acquired The limit value of the rated range is a second Scientifically calculate MZ81 to obtain the application range limit value pair DN1L. For example, the rated range limit value pair DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and based on the rated physical parameter range represents GA8E, The sensor sensitivity indicates that GW81 and the first data encoding operation ZX81 are preset using the designated measurement value format HH81.

在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該第二記憶體位置YX8T的該控制碼CC1T,並基於所存取的該控制碼CC1T來執行用於該物理參數控制功能FA81的一訊號產生控制GY81以控制該輸出單元338。該輸出單元338響應該訊號產生控制GY81來執行用於該物理參數控制功能FA81的一訊號產生操作BY81以產生一功能訊號SG81,該功能訊號SG81用於控制該功能目標335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 uses the storage unit 332 based on the obtained measurement value target range code EM1T to access the storage unit 332 stored in the second memory location YX8T Control code CC1T, and execute a signal generation control GY81 for the physical parameter control function FA81 based on the accessed control code CC1T to control the output unit 338. The output unit 338 responds to the signal generation control GY81 to execute a signal generation operation BY81 for the physical parameter control function FA81 to generate a function signal SG81, and the function signal SG81 is used to control the function object 335 to cause the variable physical The parameter QU1A enters the target range RD1ET of the physical parameter.

在一些實施例中,該控制裝置212是一外部裝置。該複數不同測量值參考範圍RN11、RN12、…具有一總參考範圍數目NT81。該總參考範圍數目NT81基於該物理參數控制功能規格GAL8而被預設。該處理單元331響應該控制訊號SC81來獲得該總參考範圍數目NT81。該第一科學計算MR81進一步使用所獲得的該總參考範圍數目NT81。該第二科學計算MZ81進一步使用所獲得的該總參考範圍數目NT81。例如,該總參考範圍數目大於或等於2。例如,該總參考範圍數目NT11≧3;該總參考範圍數目NT11 ≧4;該總參考範圍數目NT11≧5;該總參考範圍數目NT11≧6;且該總參考範圍數目NT11≦255。 In some embodiments, the control device 212 is an external device. The plurality of different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81. The total number of reference ranges NT81 is preset based on the physical parameter control function specification GAL8. The processing unit 331 responds to the control signal SC81 to obtain the total reference range number NT81. The first scientific calculation MR81 further uses the obtained total reference range number NT81. The second scientific calculation MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to 2. For example, the total number of reference ranges NT11≧3; the total number of reference ranges NT11 ≧4; the total number of reference ranges NT11≧5; the total number of reference ranges NT11≧6; and the total number of reference ranges NT11≦255.

該功能目標335響應該功能訊號SG81來將該可變物理參數QU1A從一第一特定物理參數QU17改變成一第二特定物理參數QU18。例如,該第一特定物理參數QU17是於該物理參數應用範圍RD1EL之內;且該第二特定物理參數QU18是於該物理參數目標範圍RD1ET之內。該物理參數控制功能規格GAL8進一步包含用於表示該物理參數目標範圍RD1ET的一物理參數候選範圍表示GA8T。 The function target 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a first specific physical parameter QU17 to a second specific physical parameter QU18. For example, the first specific physical parameter QU17 is within the physical parameter application range RD1EL; and the second specific physical parameter QU18 is within the physical parameter target range RD1ET. The physical parameter control function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.

該測量值目標範圍RN1T是該額定測量值範圍RD1N的一第一部分,並具有一目標範圍界限值對DN1T。例如,該目標範圍界限值對DN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和用於轉換該物理參數候選範圍表示GA8T的一第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和該第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L是該額定測量值範圍RD1N的一第二部分。 The measurement value target range RN1T is a first part of the rated measurement value range RD1N, and has a target range limit value pair DN1T. For example, the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor sensitivity representing GW81, and a fourth data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the specified measurement value The format HH81 is preset. The measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor sensitivity representation GW81, and the fourth data encoding operation ZX83 using the designated measurement value format HH81. The measurement value application range RN1L is a second part of the rated measurement value range RD1N.

該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的或相鄰的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的條件下,該測量值目標範圍RN1T和該測量值應用範圍RN1L是分開的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是相鄰的條件下,該測量值目標範圍RN1T 和該測量值應用範圍RN1L是相鄰的。 The physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measured value target range RN1T and the measured value application range RN1L are separated. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measured value target range RN1T It is adjacent to the measurement value application range RN1L.

例如,該測量值應用範圍碼EM1L被配置以等於一整數。該額定範圍界限值DD12大於該額定範圍界限值DD11。該額定範圍界限值DD12和該額定範圍界限值DD11之間具有相對於該額定範圍界限值DD11的一相對值VA11。該相對值VA11等於該額定範圍界限值DD12減去該額定範圍界限值DD11的一計算結果。例如,該應用範圍界限值對DN1L基於該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、和該相對值VA11對於該總參考範圍數目NT81的一比率而被預設。該第二科學計算MZ81使用該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、該比率和其任意組合的其中之一。 For example, the measurement value application range code EM1L is configured to be equal to an integer. The rated range limit value DD12 is greater than the rated range limit value DD11. There is a relative value VA11 between the rated range limit value DD12 and the rated range limit value DD11 relative to the rated range limit value DD11. The relative value VA11 is equal to a calculation result of the rated range limit value DD12 minus the rated range limit value DD11. For example, the application range limit value pair DN1L is preset based on the rated range limit value DD11, the rated range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. The second scientific calculation MZ81 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.

在一些實施例中,該儲存單元332進一步具有不同於該第二記憶體位置YX8T的一第三記憶體位置YM8T,並在該第三記憶體位置YM8T儲存該目標範圍界限值對DN1T。例如,該第三記憶體位置YM8T基於所預設的該測量值目標範圍碼EM1T而被識別。在該處理單元331於一操作時間TF81之內執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以產生一第二感測訊號SN82。例如,在該處理單元331執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的一感測訊號產生HF82,該感測訊號產生HF82用於產生該第二感測訊號SN82。 In some embodiments, the storage unit 332 further has a third memory location YM8T different from the second memory location YX8T, and stores the target range limit value pair DN1T in the third memory location YM8T. For example, the third memory location YM8T is identified based on the preset measurement value target range code EM1T. After the processing unit 331 executes the signal generation control GY81 within an operating time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing signal SN82. For example, after the processing unit 331 executes the signal generation control GY81, the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal dependent on the sensor sensitivity YW81 to generate HF82, the sensing signal The HF82 is generated for generating the second sensing signal SN82.

該處理單元331於該操作時間TF81之後的 一指定時間TG82之內響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82。該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該第三記憶體位置YM8T的該目標範圍界限值對DN1T,並藉由比較該第二測量值VN82和所存取的該目標範圍界限值對DN1T來檢查該第二測量值VN82和該測量值目標範圍RN1T之間的一第二數學關係KV91以做出該第二測量值VN82是否為於該測量值目標範圍RN1T之內的一第三邏輯決定PB91。 The processing unit 331 after the operating time TF81 Respond to the second sensing signal SN82 within a specified time TG82 to obtain a second measurement value VN82 in the specified measurement value format HH81. The processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the third memory location YM8T based on the obtained measurement value target range code EM1T, and by comparing the second The measured value VN82 and the target range limit value pair DN1T accessed to check a second mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T to determine whether the second measured value VN82 is A third logical decision PB91 within the measured value target range RN1T.

在該第三邏輯決定PB91是肯定的條件下,該處理單元331於該指定時間TG82之內確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,產生一肯定操作報告RL81,並導致該輸出單元338輸出輸送該肯定操作報告RL81的一控制回應訊號SE81,藉此該控制回應訊號SE81用於導致該控制裝置212獲得該肯定操作報告RL81。例如,該肯定操作報告RL81表示該可變物理參數QU1A成功地進入該物理參數目標範圍RD1ET的一操作情況EP81。該處理單元331藉由導致該輸出單元338產生該控制回應訊號SE81來回應該控制訊號SC81。 Under the condition that the third logical decision PB91 is affirmative, the processing unit 331 determines within the specified time TG82 that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET, generates a positive operation report RL81, and causes The output unit 338 outputs a control response signal SE81 that transmits the affirmative operation report RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the affirmative operation report RL81. For example, the positive operation report RL81 indicates an operation situation EP81 in which the variable physical parameter QU1A has successfully entered the physical parameter target range RD1ET. The processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.

在一些實施例中,在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由做出該第三邏輯決定PB91而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標 範圍碼EM1T之間的一第一碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the current variable physical parameter QU1A by making the third logical decision PB91 Under the condition of the physical parameter target range RD1ET, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target A first code difference DF81 between the range codes EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

當該輸入單元337接收該控制訊號SC81時,該輸出單元338顯示一第一狀態指示LB81。例如,該第一狀態指示LB81用於指示該可變物理參數QU1A被配置於該第一特定物理參數範圍RD1E4之內的一第一特定狀態XJ81。在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由做出該第三邏輯決定PB91而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331進一步基於該第一碼差異DF81來導致該輸出單元338將該第一狀態指示LB81改變成一第二狀態指示LB82。例如,該第二狀態指示LB82用於指示該可變物理參數QU1A被配置於該物理參數目標範圍RD1ET之內的一第二特定狀態XJ82。 When the input unit 337 receives the control signal SC81, the output unit 338 displays a first status indicator LB81. For example, the first state indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in a first specific state XJ81 within the first specific physical parameter range RD1E4. The specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T, and the processing unit 331 determines the physical parameter target that the variable physical parameter QU1A is currently in by making the third logical decision PB91 Under the condition of the range RD1ET, the processing unit 331 further causes the output unit 338 to change the first status indicator LB81 to a second status indicator LB82 based on the first code difference DF81. For example, the second state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in a second specific state XJ82 within the physical parameter target range RD1ET.

該控制訊號SC81是一電訊號SP81和一光訊號SQ81的其中之一。該輸入單元337包含一第一輸入組件3371、一第二輸入組件3372和一第三輸入組件3373。該第一輸入組件3371耦合於該處理單元331。在該控制訊號SC81是該電訊號SP81的條件下,該第一輸入組件3371藉由接收輸送一控制訊息CG81的該電訊號SP81來導致該處理單元331獲得該控制訊息CG81。例如,該控制訊息CG81包含該測量值目標範圍碼EM1T。 The control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81. The input unit 337 includes a first input component 3371, a second input component 3372, and a third input component 3373. The first input component 3371 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the electric signal SP81, the first input component 3371 causes the processing unit 331 to obtain the control message CG81 by receiving the electric signal SP81 for sending a control message CG81. For example, the control message CG81 includes the measured value target range code EM1T.

該第二輸入組件3372耦合於該處理單元331。在該控制訊號SC81是該光訊號SQ81的條件下,該第 二輸入組件3372接收輸送一編碼影像FY81的該光訊號SQ81。例如,該編碼影像FY81代表該控制訊息CG81。該第三輸入組件3373耦合於該處理單元331。在該可變物理參數QU1A由於該控制訊號SC81而被配置於該物理參數目標範圍RD1ET之內的條件下,該第三輸入組件3373接收一使用者輸入操作BQ81,並響應該使用者輸入操作BQ81來導致該處理單元331確定一特定輸入碼UW81。例如,該特定輸入碼UW81選擇自該複數不同測量值參考範圍碼EM11、EM12、…。 The second input component 3372 is coupled to the processing unit 331. Under the condition that the control signal SC81 is the optical signal SQ81, the first The two-input component 3372 receives the optical signal SQ81 for delivering an encoded image FY81. For example, the encoded image FY81 represents the control message CG81. The third input component 3373 is coupled to the processing unit 331. Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET due to the control signal SC81, the third input component 3373 receives a user input operation BQ81, and responds to the user input operation BQ81 This causes the processing unit 331 to determine a specific input code UW81. For example, the specific input code UW81 is selected from the plurality of different measurement value reference range codes EM11, EM12,...

在一些實施例中,在該控制訊號SC81是該光訊號SQ81的條件下,該第二輸入組件3372感測該編碼影像FY81以確定一編碼資料DY81,並解碼該編碼資料DY81以提供該控制訊息CG81到該處理單元331。在該特定輸入碼UW81不同於所預設的該測量值目標範圍碼EM1T的條件下,該處理單元331基於等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A和該特定輸入碼UW81之間的一第二碼差異DX81來通過該輸出單元338而導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一第二特定物理參數範圍RD1E5。 In some embodiments, under the condition that the control signal SC81 is the optical signal SQ81, the second input component 3372 senses the encoded image FY81 to determine an encoded data DY81, and decodes the encoded data DY81 to provide the control information CG81 to the processing unit 331. Under the condition that the specific input code UW81 is different from the preset measurement value target range code EM1T, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the obtained measurement value target range code EM1T and the A second code difference DX81 between specific input codes UW81 causes the variable physical parameter QU1A to leave the physical parameter target range RD1ET through the output unit 338 to enter the plurality of different physical parameter reference ranges RD1E1, RD1E2,... A second specific physical parameter range in RD1E5.

該感測單元334感測處於一拘束條件FR81的該可變物理參數QU1A以提供該第一感測訊號SN81到該處理單元331。例如,該拘束條件FR81是該可變物理參數QU1A等於包含於該額定物理參數範圍RD1E中的一第三特定物理參數QU15。該處理單元331基於該第一感測訊號 SN81來估計該第三特定物理參數QU15以獲得該第一測量值VN81。由於處於該拘束條件FR81的該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內,該處理單元331辨識該第一測量值VN81為於該測量值應用範圍RN1L之內的一可允許值,藉此辨識該第一測量值VN81和該測量值應用範圍RN1L之間的該第一數學關係KV81為一數值交集關係,並藉此確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 The sensing unit 334 senses the variable physical parameter QU1A under a constraint condition FR81 to provide the first sensing signal SN81 to the processing unit 331. For example, the constraint condition FR81 is that the variable physical parameter QU1A is equal to a third specific physical parameter QU15 included in the rated physical parameter range RD1E. The processing unit 331 is based on the first sensing signal SN81 estimates the third specific physical parameter QU15 to obtain the first measured value VN81. Since the variable physical parameter QU1A in the constraint condition FR81 is within the physical parameter application range RD1EL, the processing unit 331 recognizes that the first measurement value VN81 is an allowable value within the measurement value application range RN1L To identify the first mathematical relationship KV81 between the first measurement value VN81 and the measurement value application range RN1L as a numerical value intersection relationship, and thereby determine the physical parameter application range in which the variable physical parameter QU1A is currently located RD1EL.

在一些實施例中,該感測單元334基於與該感測訊號產生HF81相關的該感測器靈敏度YW81而被特徵化,並被配置以符合該感測器規格FU11。該感測器規格FU11包含用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81、和用於表示一感測器測量範圍RB8E的一感測器測量範圍表示GW8R。例如,該額定物理參數範圍RD1E被配置以相同於該感測器測量範圍RB8E,或被配置以是該感測器測量範圍RB8E的一部分。該感測器測量範圍RB8E相關於由該感測單元334所執行的一物理參數感測。該感測器測量範圍表示GW8R基於一第一預設測量單位而被提供。例如,該第一預設測量單位是一公制測量單位和一英制測量單位的其中之一。 In some embodiments, the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11. The sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81, and a sensor measurement range representation GW8R for representing a sensor measurement range RB8E. For example, the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E. The sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334. The measurement range of the sensor indicates that the GW8R is provided based on a first preset measurement unit. For example, the first preset measurement unit is one of a metric measurement unit and an English measurement unit.

該額定測量值範圍RD1N和該額定範圍界限值對DD1A皆基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L和該應用範圍界限值對 DN1L皆基於該物理參數應用範圍表示GA8L、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The rated measurement value range RD1N and the rated range limit value pair DD1A are based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the first data encoding operation ZX81. The specified measurement value format HH81 is preset. The measurement value application range RN1L and the application range limit value pair DN1L is preset based on the physical parameter application range representing GA8L, the sensor measuring range representing GW8R, the sensor sensitivity representing GW81, and the second data encoding operation ZX82 to use the designated measurement value format HH81.

該測量值目標範圍RN1T和該目標範圍界限值對DN1T皆基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數表示GA8T1和該物理參數候選範圍表示GA8T皆基於一第二預設測量單位而被提供。例如,該第二預設測量單位是一公制測量單位和一英制測量單位的其中之一,並相同或不同於該第一預設測量單位。 The measurement value target range RN1T and the target range limit value pair DN1T are all based on the physical parameter candidate range representing GA8T, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the fourth data encoding operation ZX83. The specified measurement value format HH81 is preset. The rated physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter represents GA8T1, and the physical parameter candidate range represents GA8T are all provided based on a second preset measurement unit. For example, the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.

該可變物理參數QU1A進一步基於該感測器測量範圍RB8E而被特徵化。例如,該感測器測量範圍表示GW8R、該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數候選範圍表示GA8T和該物理參數表示GA8T1皆屬於十進制資料類型。該第一測量值VN81、該第二測量值VN82、該額定範圍界限值對DD1A、該應用範圍界限值對DN1L、該目標範圍界限值對DN1T和該控制碼CC1T皆屬於該二進制資料類型,並皆適用於電腦處理。該感測器規格FU11和該物理參數控制功能規格GAL8皆被預設。 The variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E. For example, the sensor measurement range represents GW8R, the rated physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter candidate range represents GA8T, and the physical parameter represents GA8T1 are all decimal data types. The first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T all belong to the binary data type, and Both are suitable for computer processing. The sensor specification FU11 and the physical parameter control function specification GAL8 are both preset.

在一些實施例中,在該輸入單元337接收該控制訊號SC81之前,該輸入單元337接收包含所預設的該 應用範圍界限值對DN1L和一第一記憶體位址AM8L的一第一寫入請求訊息WN8L。例如,該第一記憶體位置YM8L基於該第一記憶體位址AM8L而被識別;且該第一記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L而被預設。該處理單元331響應該第一寫入請求訊息WN8L來使用該儲存單元332以將該第一寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該第一記憶體位置YM8L。 In some embodiments, before the input unit 337 receives the control signal SC81, the input unit 337 receives the preset The application range limit value is a first write request message WN8L for DN1L and a first memory address AM8L. For example, the first memory location YM8L is identified based on the first memory address AM8L; and the first memory address AM8L is preset based on the preset measurement value application range code EM1L. The processing unit 331 responds to the first write request message WN8L to use the storage unit 332 to store the application range threshold pair DN1L of the first write request message WN8L to the first memory location YM8L.

在該輸入單元337接收該控制訊號SC81之前,該輸入單元337接收包含所預設的該控制碼CC1T和一第二記憶體位址AX8T的一第二寫入請求訊息WC8T。例如,該第二記憶體位置YX8T基於該第二記憶體位址AX8T而被識別;且該第二記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T而被預設。該處理單元331響應該第二寫入請求訊息WC8T來使用該儲存單元332以將該第二寫入請求訊息WC8T的該控制碼CC1T儲存到該第二記憶體位置YX8T。 Before the input unit 337 receives the control signal SC81, the input unit 337 receives a second write request message WC8T containing the preset control code CC1T and a second memory address AX8T. For example, the second memory location YX8T is identified based on the second memory address AX8T; and the second memory address AX8T is preset based on the preset measurement value target range code EM1T. The processing unit 331 responds to the second write request message WC8T to use the storage unit 332 to store the control code CC1T of the second write request message WC8T in the second memory location YX8T.

請參閱第1圖、第2圖、第3圖、第4圖、第5圖、第6圖和第7圖。一種用於控制一可變物理參數QU1A的方法ML80被揭露。該可變物理參數QU1A基於由一測量值目標範圍RN1T所代表的一物理參數目標範圍RD1ET和由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL而被特徵化。 Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7. A method ML80 for controlling a variable physical parameter QU1A is disclosed. The variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L.

該方法ML80包含下列步驟:感測該可變物理參數QU1A以產生一第一感測訊號SN81;在起到指示該測量值目標範圍RN1T的作用的一控制訊號SC81被接收的 條件下,響應該第一感測訊號SN81來獲得一第一測量值VN81;以及在該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL藉由檢查該第一測量值VN81和該測量值應用範圍RN1L之間的一第一數學關係KV81而被確定的條件下,由於該控制訊號SC81而確定該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍差異DS81以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The method ML80 includes the following steps: sensing the variable physical parameter QU1A to generate a first sensing signal SN81; when a control signal SC81 that functions to indicate the target range RN1T of the measurement value is received Under conditions, a first measurement value VN81 is obtained in response to the first sensing signal SN81; and the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently in is checked by checking the first measurement value VN81 and the measurement value Under the condition that a first mathematical relationship KV81 between the application range RN1L is determined, a range difference DS81 between the measurement value target range RN1T and the measurement value application range RN1L is determined due to the control signal SC81 to cause the Change the physical parameter QU1A into the target range RD1ET of the physical parameter.

在一些實施例中,該方法ML80進一步包含一步驟:提供一感測單元334。例如,感測該可變物理參數QU1A的步驟藉由使用該感測單元334而被執行。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。 In some embodiments, the method ML80 further includes a step of providing a sensing unit 334. For example, the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334. The sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.

該第一測量值VN81以一指定測量值格式HH81而被獲得。該測量值目標範圍RN1T和該測量值應用範圍RN1L皆基於該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T和該測量值應用範圍RN1L分別具有一目標範圍界限值對DN1T和一應用範圍界限值對DN1L。 The first measurement value VN81 is obtained in a designated measurement value format HH81. The measurement value target range RN1T and the measurement value application range RN1L are both preset based on the sensor sensitivity indicator GW81 using the designated measurement value format HH81. The measurement value target range RN1T and the measurement value application range RN1L have a target range limit value pair DN1T and an application range limit value pair DN1L, respectively.

該控制訊號SC81輸送該目標範圍界限值對DN1T、該應用範圍界限值對DN1L和一控制碼CC1T。例如,該控制碼CC1T基於在該物理參數目標範圍RD1ET之 內的一指定物理參數QD1T而被預設。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T的作用。 The control signal SC81 transmits the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T. For example, the control code CC1T is based on the physical parameter target range RD1ET One of the designated physical parameters QD1T is preset. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T.

在一些實施例中,該方法ML80進一步包含下列步驟:從該控制訊號SC81獲得該應用範圍界限值對DN1L;從該控制訊號SC81獲得該目標範圍界限值對DN1T;以及從該控制訊號SC81獲得該控制碼CC1T。確定該範圍差異DS81的步驟包含下列子步驟:藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L,檢查該第一數學關係KV81以做出該第一測量值VN81是否為於該測量值應用範圍RN1L之內的一第一邏輯決定PB81;以及在該第一邏輯決定PB81是肯定的條件下,確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the method ML80 further includes the following steps: obtaining the application range limit value pair DN1L from the control signal SC81; obtaining the target range limit value pair DN1T from the control signal SC81; and obtaining the target range limit value pair DN1T from the control signal SC81 Control code CC1T. The step of determining the range difference DS81 includes the following sub-steps: by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L, checking the first mathematical relationship KV81 to determine whether the first measurement value VN81 is To determine a first logical decision PB81 within the measurement value application range RN1L; and under the condition that the first logical decision PB81 is affirmative, determine the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

確定該範圍差異DS81的步驟進一步包含下列子步驟:在該物理參數應用範圍RD1EL被確定的條件下,藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的一第二邏輯決定PY81;在該第二邏輯決定PY81是否定的條件下,辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81;以及在該範圍差異DS81被確定的條件下,基於所獲得的該控制碼CC1T來執行一訊號產生控制GY81以產生用於導致該可變物理參數QU1A進入該物理參數目標範圍 RD1ET的一功能訊號SG81; The step of determining the range difference DS81 further includes the following sub-steps: Under the condition that the physical parameter application range RD1EL is determined, the target range limit value pair DN1T obtained by comparing with the application range limit value pair DN1L obtained To check a range relationship KE8A between the measured value target range RN1T and the measured value application range RN1L to determine whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal The second logic determines PY81; under the condition that the second logic determines PY81 is negative, identify the range relationship KE8A as a range difference relationship to determine the range difference DS81; and under the condition that the range difference DS81 is determined, based on The obtained control code CC1T executes a signal generation control GY81 to generate a signal for causing the variable physical parameter QU1A to enter the physical parameter target range A functional signal SG81 of RD1ET;

在一些實施例中,該方法ML80進一步包含下列步驟:在該訊號產生控制GY81於一操作時間TF81之內被執行之後,感測該可變物理參數QU1A以產生一第二感測訊號SN82;於該操作時間TF81之後的一指定時間TG82之內,響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82;以及在該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET於該指定時間TG82之內藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T而被確定的條件下,執行一確保操作GU81,該確保操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN8T被記錄。 In some embodiments, the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; Within a designated time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measured value VN82 in the designated measured value format HH81; Under the condition that the parameter target range RD1ET is determined by comparing the second measured value VN82 with the obtained target range limit value pair DN1T within the specified time TG82, a guarantee operation GU81 is performed, and the guarantee operation GU81 is used for A physical parameter target range code UN8T representing the determined target range RD1ET of the physical parameter is recorded.

在一些實施例中,該方法ML80進一步包含下列步驟:在該訊號產生控制GY81於一操作時間TF81之內被執行之後,感測該可變物理參數QU1A以產生一第二感測訊號SN82;於該操作時間TF81之後的一指定時間TG82之內,響應該第二感測訊號SN82來獲得一第二測量值VN82;以及在該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET於該指定時間TG82之內藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T而被確定的條件下,執行一確保操作GU81,該確保操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN8T被記錄。 In some embodiments, the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second sensing signal SN82; Within a designated time TG82 after the operating time TF81, respond to the second sensing signal SN82 to obtain a second measured value VN82; During the time TG82, under the condition determined by comparing the second measured value VN82 with the obtained target range limit value pair DN1T, an assurance operation GU81 is performed, and the assurance operation GU81 is used to cause the physical A physical parameter target range code UN8T of the parameter target range RD1ET is recorded.

該可變物理參數QU1A相關於一可變時間 長度LF8A。例如,該可變時間長度LF8A基於一時間長度參考範圍HJ81和一參考時間長度LJ8T而被特徵化。該時間長度參考範圍HJ81由一時間長度值參考範圍GJ81所代表。該參考時間長度LJ8T由一時間長度值CL8T所代表。該控制訊號SC81進一步輸送該時間長度值CL8T。該方法ML80進一步包含下列步驟:從該控制訊號SC81獲得該時間長度值CL8T;以及檢查所獲得的該時間長度值CL8T和該時間長度值參考範圍GJ81之間的一數值關係KJ81以做出用於控制一特定時間TJ8T的一計數操作BC8T是否要被執行的一第三邏輯決定PE81。 The variable physical parameter QU1A is related to a variable time Length LF8A. For example, the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T. The time length reference range HJ81 is represented by a time length value reference range GJ81. The reference time length LJ8T is represented by a time length value CL8T. The control signal SC81 further conveys the time length value CL8T. The method ML80 further includes the following steps: obtaining the time length value CL8T from the control signal SC81; and checking a numerical relationship KJ81 between the obtained time length value CL8T and the time length value reference range GJ81 to make A third logic decision PE81 that controls whether a counting operation BC8T for a specific time TJ8T is to be executed.

該方法ML80進一步包含下列步驟:在該第三邏輯決定PE81是肯定的條件下,基於所獲得的該時間長度值CL8T來執行該計數操作BC8T;在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,基於該計數操作BC8T來到達該特定時間TJ8T;以及在該特定時間TJ8T之內執行用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該物理參數應用範圍RD1EL的一訊號產生操作BY91。 The method ML80 further includes the following steps: under the condition that the third logic determines that PE81 is affirmative, execute the counting operation BC8T based on the obtained time length value CL8T; in the variable physical parameter QU1A due to the control signal SC81 It is configured to arrive at the specific time TJ8T based on the counting operation BC8T under the condition within the physical parameter target range RD1ET; and execute within the specific time TJ8T to cause the variable physical parameter QU1A to leave the physical parameter The target range RD1ET enters the physical parameter application range RD1EL to generate a signal BY91.

在一些實施例中,該方法ML80進一步包含下列步驟:提供一感測單元334,其中感測該可變物理參數QU1A的步驟藉由使用該感測單元334而被執行;以及執行與該物理參數應用範圍RD1EL相關的一物理參數控制功能FA81。確定該範圍差異DS81的步驟包含一子步驟:在該範圍差異DS81由於該控制訊號SC81而被確定的條件下, 產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一功能訊號SG81。 In some embodiments, the method ML80 further includes the following steps: providing a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334; and the execution is related to the physical parameter A physical parameter control function FA81 related to the application range RD1EL. The step of determining the range difference DS81 includes a sub-step: under the condition that the range difference DS81 is determined due to the control signal SC81, A function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET is generated.

該物理參數控制功能FA81被配置以符合與該物理參數應用範圍RD1EL相關的一物理參數控制功能規格GAL8。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。該第一測量值VN81以一指定測量值格式HH81而被獲得。例如,該指定測量值格式HH81基於一指定位元數目UY81而被特徵化。 The physical parameter control function FA81 is configured to comply with a physical parameter control function specification GAL8 related to the physical parameter application range RD1EL. The sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81. The first measurement value VN81 is obtained in a designated measurement value format HH81. For example, the designated measurement value format HH81 is characterized based on a designated number of bits UY81.

該可變物理參數QU1A進一步基於一額定物理參數範圍RD1E而被特徵化。例如,該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複數不同物理參數參考範圍RD1E1、RD1E2、…。該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。該物理參數控制功能規格GAL8包含該感測器規格FU11、用於表示該額定物理參數範圍RD1E的一額定物理參數範圍表示GA8E、和用於表示該物理參數應用範圍RD1EL的一物理參數應用範圍表示GA8L。 The variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E. For example, the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... respectively. The physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The physical parameter control function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter application range representation used to represent the physical parameter application range RD1EL GA8L.

該額定測量值範圍RD1N基於該額定物理參數範圍表示GA8E、該感測器靈敏度表示GW81和用於轉換該額定物理參數範圍表示GA8E的一第一資料編碼操作 ZX81來用該指定測量值格式HH81而被預設,具有一額定範圍界限值對DD1A,並包含由複數不同測量值參考範圍碼EM11、EM12、…所分別代表的該複數不同測量值參考範圍RN11、RN12、…。例如,該額定範圍界限值對DD1A用該指定測量值格式HH81而被預設。該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和該測量值應用範圍RN1L。 The rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor sensitivity representing GW81, and a first data encoding operation for converting the rated physical parameter range representing GA8E ZX81 is preset using the specified measurement value format HH81, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges RN11 represented by multiple different measurement value reference range codes EM11, EM12, ... , RN12,.... For example, the rated range limit value pair DD1A is preset using the specified measurement value format HH81. The plurality of different measurement value reference ranges RN11, RN12,... include the measurement value target range RN1T and the measurement value application range RN1L.

在一些實施例中,該測量值目標範圍RN1T由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值目標範圍碼EM1T所代表。例如,該複數不同測量值參考範圍碼EM11、EM12、…皆基於該物理參數控制功能規格GAL8而被預設。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用。 In some embodiments, the measurement value target range RN1T is represented by a measurement value target range code EM1T included in the plurality of different measurement value reference range codes EM11, EM12,... For example, the plurality of different measurement value reference range codes EM11, EM12,... are all preset based on the physical parameter control function specification GAL8. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T.

該測量值應用範圍RN1L由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值應用範圍碼EM1L所代表,並具有一應用範圍界限值對DN1L。例如,該應用範圍界限值對DN1L基於該物理參數應用範圍表示GA8L、該感測器靈敏度表示GW81和用於轉換該物理參數應用範圍表示GA8L的一第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The measurement value application range RN1L is represented by a measurement value application range code EM1L included in the plurality of different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L. For example, the application range limit value for DN1L is based on the physical parameter application range representing GA8L, the sensor sensitivity representing GW81, and a second data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the specified measurement value The format HH81 is preset.

該方法ML80進一步包含下列步驟:提供一儲存空間SU11;以及在該儲存空間SU11中儲存所預設的該額定範圍界限值對DD1A和一可變物理參數範圍碼UN8A。該控制訊號SC81進一步輸送該額定範圍界限值對 DD1A。當該控制訊號SC81被接收時,該可變物理參數範圍碼UN8A等於選擇自該複數不同測量值參考範圍碼EM11、EM12、…的一特定測量值範圍碼EM14。 The method ML80 further includes the following steps: providing a storage space SU11; and storing the preset rated range limit value pair DD1A and a variable physical parameter range code UN8A in the storage space SU11. The control signal SC81 further transmits the limit value pair of the rated range DD1A. When the control signal SC81 is received, the variable physical parameter range code UN8A is equal to a specific measurement value range code EM14 selected from the plurality of different measurement value reference range codes EM11, EM12,...

例如,該特定測量值範圍碼EM14指示基於一感測操作ZS81而被先前確定的一特定物理參數範圍RD1E4。該特定物理參數範圍RD1E4選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。由該感測單元334所執行的該感測操作ZS81用於感測該可變物理參數QU1A。在該控制訊號SC81被接收之前,該特定測量值範圍碼EM14被指定到該可變物理參數範圍碼UN8A。 For example, the specific measurement value range code EM14 indicates a specific physical parameter range RD1E4 previously determined based on a sensing operation ZS81. The specific physical parameter range RD1E4 is selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A. Before the control signal SC81 is received, the specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A.

在一些實施例中,該方法ML80進一步包含下列步驟:在該控制訊號SC81從一控制裝置212而被接收的條件下,響應該控制訊號SC81來從該控制訊號SC81和該儲存空間SU11的其中之一獲得一操作參考資料碼XU81;以及藉由運行一資料確定程序NA8A來執行使用該操作參考資料碼XU81的一資料確定AA8A以確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值應用範圍碼EM1L以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值應用範圍RN1L。 In some embodiments, the method ML80 further includes the following steps: under the condition that the control signal SC81 is received from a control device 212, responding to the control signal SC81 to receive one of the control signal SC81 and the storage space SU11 One obtains an operation reference data code XU81; and executes a data determination AA8A using the operation reference data code XU81 by running a data determination program NA8A to determine the selection from the plural different measurement value reference range codes EM11, EM12, ... The measurement value application range code EM1L is used to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12,...

該操作參考資料碼XU81相同於基於該物理參數控制功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NA8A基於該物理參數控制功能規格GAL8而被建構。該資料確定AA8A是一第一資料確定操作AA81和一第二資料確定操作AA82的其中之一。在該操作參考資料碼XU81藉由存取被儲存在該儲存空間SU11中的 該可變物理參數範圍碼UN8A而被獲得以相同於該特定測量值範圍碼EM14的條件下,是該第一資料確定操作AA81的該資料確定AA8A基於所獲得的該特定測量值範圍碼EM14來確定該測量值應用範圍碼EM1L。例如,所確定的該測量值應用範圍碼EM1L相同或不同於所獲得的該特定測量值範圍碼EM14。 The operation reference code XU81 is the same as an allowable reference code preset based on the physical parameter control function specification GAL8. The data determination program NA8A is constructed based on the physical parameter control function specification GAL8. The data determination AA8A is one of a first data determination operation AA81 and a second data determination operation AA82. In the operation reference data code XU81 is stored in the storage space SU11 by accessing Under the condition that the variable physical parameter range code UN8A is obtained to be the same as the specific measurement value range code EM14, it is the data determination of the first data determination operation AA81 that AA8A is based on the obtained specific measurement value range code EM14. Determine the application range code EM1L for the measured value. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.

在該操作參考資料碼XU81從該控制訊號SC81和該儲存空間SU11的其中之一而被獲得以相同於所預設的該額定範圍界限值對DD1A的條件下,是該第二資料確定操作AA82的該資料確定AA8A藉由執行使用該第一測量值VN81和所獲得的該額定範圍界限值對DD1A的一第一科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該第一科學計算MR81基於一特定經驗公式XR81而被執行,且該特定經驗公式XR81基於所預設的該額定範圍界限值對DD1A和該複數不同測量值參考範圍碼EM11、EM12、…而被預先制定。 Under the condition that the operation reference data code XU81 is obtained from one of the control signal SC81 and the storage space SU11 under the same condition as the preset rated range limit value pair DD1A, it is the second data determination operation AA82 The data determines that AA8A selects from the plurality of different measurement value reference range codes EM11, EM12, ... by performing a first scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value for DD1A The measurement value application range code EM1L is used to determine the measurement value application range code EM1L. For example, the first scientific calculation MR81 is executed based on a specific empirical formula XR81, and the specific empirical formula XR81 is based on the preset rated range limit value pair DD1A and the plurality of different measured value reference range codes EM11, EM12,... It is pre-defined.

在一些實施例中,該方法ML80進一步包含下列步驟:基於所確定的該測量值應用範圍碼EM1L,獲得該應用範圍界限值對DN1L;以及從該控制訊號SC81獲得該測量值目標範圍碼EM1T。確定該範圍差異DS81的步驟進一步包含下列子步驟:基於該第一測量值VN81和所獲得的該應用範圍界限值對DN1L之間的一資料比較CD81,檢查該第一數學關係KV81以做出該第一測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的一第一邏輯 決定PB81;以及在該第一邏輯決定PB81是肯定的條件下,確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the method ML80 further includes the following steps: obtaining the application range limit value pair DN1L based on the determined measurement value application range code EM1L; and obtaining the measurement value target range code EM1T from the control signal SC81. The step of determining the range difference DS81 further includes the following sub-steps: based on a data comparison CD81 between the first measured value VN81 and the obtained application range limit value pair DN1L, checking the first mathematical relationship KV81 to make the Whether the first measurement value VN81 is a first logic within the selected application range RN1L of the measurement value Determine PB81; and under the condition that the first logical decision PB81 is affirmative, determine the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

確定該範圍差異DS81的步驟進一步包含下列子步驟:在該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL被確定的條件下,藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的一第二邏輯決定PZ81;以及在該第二邏輯決定PZ81是否定的條件下,辨識該範圍關係KE8A為一範圍相異關係以確定該範圍差異DS81。 The step of determining the range difference DS81 further includes the following sub-steps: under the condition that the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located is determined, by comparing the measured value target range code EM1T obtained with the target range code EM1T. The determined measurement value application range code EM1L is used to check a range relationship KE8A between the measurement value target range RN1T and the measurement value application range RN1L to make the obtained measurement value target range code EM1T and the determined measurement A second logic determines whether the value application range code EM1L is equal to PZ81; and under the condition that the second logic determines PZ81 is negative, the range relationship KE8A is identified as a range difference relationship to determine the range difference DS81.

在一些實施例中,該應用範圍界限值對DN1L包含一第一應用範圍界限值DN15和相對於該第一應用範圍界限值DN15的一第二應用範圍界限值DN16。該儲存空間SU11進一步具有一第一記憶體位置YM8L和不同於該第一記憶體位置YM8L的一第二記憶體位置YX8T。例如,該第一記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。該第二記憶體位置YX8T基於所預設的該測量值目標範圍碼EM1T而被識別。該物理參數控制功能規格GAL8進一步包含一物理參數表示GA8T1,該物理參數表示GA8T1用於表示在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T。 In some embodiments, the application range limit value pair DN1L includes a first application range limit value DN15 and a second application range limit value DN16 relative to the first application range limit value DN15. The storage space SU11 further has a first memory position YM8L and a second memory position YX8T different from the first memory position YM8L. For example, the first memory location YM8L is identified based on the preset measurement value application range code EM1L. The second memory position YX8T is identified based on the preset measurement value target range code EM1T. The physical parameter control function specification GAL8 further includes a physical parameter representation GA8T1, and the physical parameter representation GA8T1 is used to indicate a designated physical parameter QD1T within the physical parameter target range RD1ET.

該方法ML80進一步包含下列步驟:在該第 一記憶體位置YM8L儲存該應用範圍界限值對DN1L;在該第二記憶體位置YX8T儲存一控制碼CC1T,其中該控制碼CC1T基於該物理參數表示GA8T1和用於轉換該物理參數表示GA8T1的一第三資料編碼操作ZX91而被預設;執行與該可變物理參數QU1A相關的一指定功能操作ZH81,其中該指定功能操作ZH81用於導致一觸發事件EQ81發生;以及藉由使用該控制裝置212,響應該觸發事件EQ81來產生該控制訊號SC81。 The method ML80 further includes the following steps: A memory location YM8L stores the application range limit value pair DN1L; in the second memory location YX8T stores a control code CC1T, where the control code CC1T represents GA8T1 based on the physical parameter and is used to convert the physical parameter to represent GA8T1. The third data encoding operation ZX91 is preset; executes a designated function operation ZH81 related to the variable physical parameter QU1A, wherein the designated function operation ZH81 is used to cause a trigger event EQ81 to occur; and by using the control device 212 , In response to the trigger event EQ81 to generate the control signal SC81.

在一些實施例中,獲得該應用範圍界限值對DN1L的步驟包含一子步驟:藉由運行一資料獲取程序ND8A來執行使用所確定的該測量值應用範圍碼EM1L的一資料獲取AD8A以獲得該應用範圍界限值對DN1L。例如,該資料獲取AD8A是一第一資料獲取操作AD81和一第二資料獲取操作AD82的其中之一。該資料獲取程序ND8A基於該物理參數控制功能規格GAL8而被建構。 In some embodiments, the step of obtaining the application range limit value pair DN1L includes a sub-step: by running a data acquisition program ND8A to execute a data acquisition AD8A using the determined measurement value application range code EM1L to obtain the The limit value of the application range is DN1L. For example, the data acquisition AD8A is one of a first data acquisition operation AD81 and a second data acquisition operation AD82. The data acquisition program ND8A is constructed based on the physical parameter control function specification GAL8.

該第一資料獲取操作AD81基於所確定的該測量值應用範圍碼EM1L來存取被儲存在該第一記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。該第二資料獲取操作AD82依靠該控制訊號SC81和該儲存空間SU11的其中之一來取得該額定範圍界限值對DD1A,並藉由執行使用所確定的該測量值應用範圍碼EM1L和所取得的該額定範圍界限值對DD1A的一第二科學計算MZ81來獲得該應用範圍界限值對DN1L。 The first data acquisition operation AD81 accesses the application range limit value pair DN1L stored in the first memory location YM8L based on the determined measurement value application range code EM1L to obtain the application range limit value pair DN1L. The second data acquisition operation AD82 relies on one of the control signal SC81 and the storage space SU11 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and the acquired A second scientific calculation MZ81 of the rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L.

確定該範圍差異DS81的步驟進一步包含下列子步驟:在該範圍差異DS81被確定的條件下,基於所獲 得的該測量值目標範圍碼EM1T來存取被儲存在該第二記憶體位置YX8T的該控制碼CC1T;基於所存取的該控制碼CC1T,執行用於該物理參數控制功能FA81的一訊號產生控制GY81;以及響應該訊號產生控制GY81,執行用於該物理參數控制功能FA81的一訊號產生操作BY81以產生一功能訊號SG81,該功能訊號SG81用於控制該功能目標335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The step of determining the range difference DS81 further includes the following sub-steps: Under the condition that the range difference DS81 is determined, based on the obtained The obtained target range code of the measured value EM1T is used to access the control code CC1T stored in the second memory location YX8T; based on the accessed control code CC1T, a signal for the physical parameter control function FA81 is executed Generate control GY81; and in response to the signal generation control GY81, perform a signal generation operation BY81 for the physical parameter control function FA81 to generate a function signal SG81, which is used to control the function target 335 to cause the variable The physical parameter QU1A enters the target range RD1ET of the physical parameter.

在一些實施例中,該物理參數控制功能規格GAL8進一步包含用於表示該物理參數目標範圍RD1ET的一物理參數候選範圍表示GA8T。該測量值目標範圍RN1T具有一目標範圍界限值對DN1T。例如,該目標範圍界限值對DN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和用於轉換該物理參數候選範圍表示GA8T的一第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。 In some embodiments, the physical parameter control function specification GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET. The measured value target range RN1T has a target range limit value pair DN1T. For example, the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor sensitivity representing GW81, and a fourth data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the specified measurement value The format HH81 is preset.

該控制裝置212是一外部裝置。該方法ML80進一步包含下列步驟:提供不同於該第二記憶體位置YX8T的一第三記憶體位置YM8T,其中該第三記憶體位置YM8T於該儲存空間SU11中,並基於所預設的該測量值目標範圍碼EM1T而被識別;以及在該第三記憶體位置YM8T儲存該目標範圍界限值對DN1T。 The control device 212 is an external device. The method ML80 further includes the following steps: providing a third memory location YM8T different from the second memory location YX8T, wherein the third memory location YM8T is in the storage space SU11, and based on the preset measurement Value target range code EM1T to be identified; and store the target range limit value pair DN1T in the third memory location YM8T.

在一些實施例中,該方法ML80進一步包含下列步驟:在該訊號產生控制GY81於一操作時間TF81之內被執行之後,感測該可變物理參數QU1A以產生一第二 感測訊號SN82;於該操作時間TF81之後的一指定時間TG82之內,響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82;基於所獲得的該測量值目標範圍碼EM1T,存取被儲存在該第三記憶體位置YM8T的該目標範圍界限值對DN1T;以及藉由比較該第二測量值VN82和所存取的該目標範圍界限值對DN1T,檢查該第二測量值VN82和該測量值目標範圍RN1T之間的一第二數學關係KV91以做出該第二測量值VN82是否為於該測量值目標範圍RN1T之內的一第三邏輯決定PB91。 In some embodiments, the method ML80 further includes the following steps: after the signal generation control GY81 is executed within an operating time TF81, sensing the variable physical parameter QU1A to generate a second Sense signal SN82; within a specified time TG82 after the operating time TF81, respond to the second sense signal SN82 to obtain a second measurement value VN82 in the specified measurement value format HH81; based on the obtained measurement value The target range code EM1T accesses the target range limit value pair DN1T stored in the third memory location YM8T; and by comparing the second measured value VN82 with the accessed target range limit value pair DN1T, check A second mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T is used to make a third logical decision PB91 whether the second measured value VN82 is within the measured value target range RN1T.

該方法ML80進一步包含下列步驟:在該第三邏輯決定PB91是肯定的條件下,於該指定時間TG82之內確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,並產生一肯定操作報告RL81,其中該肯定操作報告RL81表示該可變物理參數QU1A成功地進入該物理參數目標範圍RD1ET的一操作情況EP81;以及產生輸送該肯定操作報告RL81的一控制回應訊號SE81,藉此該控制回應訊號SE81用於導致該控制裝置212獲得該肯定操作報告RL81。 The method ML80 further includes the following steps: under the condition that the third logical decision PB91 is affirmative, determine within the specified time TG82 the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, and generate an affirmative operation Report RL81, wherein the affirmative operation report RL81 indicates that the variable physical parameter QU1A successfully enters the physical parameter target range RD1ET an operation condition EP81; and generates a control response signal SE81 that transmits the affirmative operation report RL81, thereby controlling The response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81.

在一些實施例中,該方法ML80進一步包含一步驟:在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET藉由做出該第三邏輯決定PB91而被確定的條件下,基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的一碼差異DF81來將所獲得的該測 量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, the method ML80 further includes a step: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET Under the condition determined by making the third logical decision PB91, based on a value between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T Code difference DF81 to compare the obtained measurement The value target range code EM1T is assigned to the variable physical parameter range code UN8A.

該方法ML80進一步包含下列步驟:當該控制訊號SC81被接收時,顯示一第一狀態指示LB81,其中該第一狀態指示LB81用於指示該可變物理參數QU1A被配置於該特定物理參數範圍RD1E4之內的一第一特定狀態XJ81;以及在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET藉由做出該第三邏輯決定PB91而被確定的條件下,基於該第一碼差異DF81來將該第一狀態指示LB81改變成一第二狀態指示LB82,其中該第二狀態指示LB82用於指示該可變物理參數QU1A被配置於該物理參數目標範圍RD1ET之內的一第二特定狀態XJ82。 The method ML80 further includes the following steps: when the control signal SC81 is received, a first status indicator LB81 is displayed, wherein the first status indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in the specific physical parameter range RD1E4 A first specific state XJ81 within a first specific state XJ81; and the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by doing Under the condition that the third logical decision PB91 is determined, the first status indicator LB81 is changed to a second status indicator LB82 based on the first code difference DF81, wherein the second status indicator LB82 is used to indicate the variable The physical parameter QU1A is configured in a second specific state XJ82 within the physical parameter target range RD1ET.

該方法ML80進一步包含下列步驟:在該控制訊號SC81被接收之前,接收包含所預設的該應用範圍界限值對DN1L和一第一記憶體位址AM8L的一第一寫入請求訊息WN8L,其中該第一記憶體位置YM8L基於該第一記憶體位址AM8L而被識別,且該第一記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L而被預設;以及響應該第一寫入請求訊息WN8L,將該第一寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該第一記憶體位置YM8L。 The method ML80 further includes the following steps: before the control signal SC81 is received, receiving a first write request message WN8L including the preset application range limit value pair DN1L and a first memory address AM8L, wherein the The first memory location YM8L is identified based on the first memory address AM8L, and the first memory address AM8L is preset based on the preset measurement value application range code EM1L; and in response to the first write The request message WN8L stores the application range limit value pair DN1L of the first write request message WN8L in the first memory location YM8L.

該方法ML80進一步包含下列步驟:在該控制訊號SC81被接收之前,接收包含所預設的該控制碼 CC1T和一第二記憶體位址AX8T的一第二寫入請求訊息WC8T,其中該第二記憶體位置YX8T基於該第二記憶體位址AX8T而被識別,且該第二記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T而被預設;以及響應該第二寫入請求訊息WC8T,將該第二寫入請求訊息WC8T的該控制碼CC1T儲存到該第二記憶體位置YX8T。 The method ML80 further includes the following steps: before the control signal SC81 is received, receiving the preset control code CC1T and a second write request message WC8T of a second memory address AX8T, wherein the second memory location YX8T is identified based on the second memory address AX8T, and the second memory address AX8T is based on the predicted It is assumed that the target range code EM1T of the measured value is preset; and in response to the second write request message WC8T, the control code CC1T of the second write request message WC8T is stored in the second memory location YX8T.

請參閱第1圖、第2圖、第3圖、第4圖、第5圖、第6圖和第7圖。一種用於藉由產生一功能訊號SG81而控制一可變物理參數QU1A的方法ML82被揭露。該可變物理參數QU1A基於由一測量值目標範圍RN1T所代表的一物理參數目標範圍RD1ET和由一測量值應用範圍RN1L所代表的一物理參數應用範圍RD1EL而被特徵化。 Please refer to Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, and Figure 7. A method ML82 for controlling a variable physical parameter QU1A by generating a function signal SG81 is disclosed. The variable physical parameter QU1A is characterized based on a physical parameter target range RD1ET represented by a measured value target range RN1T and a physical parameter application range RD1EL represented by a measured value application range RN1L.

該方法ML82包含下列步驟:該感測單元334感測該可變物理參數QU1A以產生一第一感測訊號SN81;在起到指示該測量值目標範圍RN1T的作用的一控制訊號SC81被該輸入單元337接收的條件下,該處理單元331響應該第一感測訊號SN81來獲得一第一測量值VN81;以及在該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL藉由檢查該第一測量值VN81和該測量值應用範圍RN1L之間的一第一數學關係KV81而被該處理單元331確定的條件下,該處理單元331由於該控制訊號SC81而確定該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的一範圍關係KE8A以做出用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該功能訊號SG81是否要被該輸出單元240產生的一合理決定PW81。 The method ML82 includes the following steps: the sensing unit 334 senses the variable physical parameter QU1A to generate a first sensing signal SN81; a control signal SC81 that functions to indicate the target range RN1T of the measurement value is inputted Under the condition received by the unit 337, the processing unit 331 responds to the first sensing signal SN81 to obtain a first measurement value VN81; Under the condition that a first mathematical relationship KV81 between a measurement value VN81 and the measurement value application range RN1L is determined by the processing unit 331, the processing unit 331 determines the measurement value target range RN1T and the measurement value target range RN1T due to the control signal SC81 A range relationship KE8A between the measurement value application ranges RN1L is used to make a reasonable decision PW81 whether the function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET is to be generated by the output unit 240.

在一些實施例中,該方法ML82進一步包含一步驟:該控制目標裝置130提供一感測單元334。例如,感測該可變物理參數QU1A的步驟藉由使用該感測單元334而被執行。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。 In some embodiments, the method ML82 further includes a step: the control target device 130 provides a sensing unit 334. For example, the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334. The sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.

該第一測量值VN81以一指定測量值格式HH81而被該處理單元331獲得。該測量值目標範圍RN1T和該測量值應用範圍RN1L皆基於該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T和該測量值應用範圍RN1L分別具有一目標範圍界限值對DN1T和一應用範圍界限值對DN1L。 The first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81. The measurement value target range RN1T and the measurement value application range RN1L are both preset based on the sensor sensitivity indicator GW81 using the designated measurement value format HH81. The measurement value target range RN1T and the measurement value application range RN1L have a target range limit value pair DN1T and an application range limit value pair DN1L, respectively.

該控制訊號SC81輸送該目標範圍界限值對DN1T、該應用範圍界限值對DN1L和一控制碼CC1T。例如,該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T而被預設。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T的作用。該方法ML82進一步包含下列步驟:該處理單元331從該控制訊號SC81獲得該應用範圍界限值對DN1L;該處理單元331從該控制訊號SC81獲得該目標範圍界限值對DN1T;以及該處理單元331從該控制訊號SC81獲得該控制碼CC1T。 The control signal SC81 transmits the target range limit value pair DN1T, the application range limit value pair DN1L and a control code CC1T. For example, the control code CC1T is preset based on a designated physical parameter QD1T within the physical parameter target range RD1ET. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T. The method ML82 further includes the following steps: the processing unit 331 obtains the application range limit value pair DN1L from the control signal SC81; the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81; and the processing unit 331 obtains the target range limit value pair DN1T from the control signal SC81 The control signal SC81 obtains the control code CC1T.

確定該範圍關係KE8A的步驟包含下列子 步驟:該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L,檢查該第一數學關係KV81以做出該第一測量值VN81是否為於該測量值應用範圍RN1L之內的一第一邏輯決定PB81;以及在該第一邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 The steps to determine the range relationship KE8A include the following sub Step: The processing unit 331 checks the first mathematical relationship KV81 to determine whether the first measurement value VN81 is applied to the measurement value by comparing the first measurement value VN81 with the obtained application range limit value pair DN1L A first logical decision PB81 within the range RN1L; and under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

確定該範圍關係KE8A的步驟包含下列子步驟:在該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL被該處理單元331確定的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的一第二邏輯決定PY81;以及在該第二邏輯決定PY81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以做出該合理決定PW81以成為肯定的。 The step of determining the range relationship KE8A includes the following sub-steps: under the condition that the physical parameter application range RD1EL currently in the variable physical parameter QU1A is determined by the processing unit 331, the processing unit 331 obtains the target by comparing The range limit value pair DN1T and the obtained application range limit value pair DN1L are checked to check the range relationship KE8A to determine whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal. The second logical decision PY81; and under the condition that the second logical decision PY81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make the reasonable decision PW81 to be affirmative.

在一些實施例中,該方法ML82進一步包含下列步驟:在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該控制碼CC1T來執行一訊號產生控制GY81以導致該輸出單元240產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一功能訊號SG81;以及在該訊號產生控制GY81於一操作時間TF81之內被該處理單元331執行之後,該感測單元334感測該可變物理參數QU1A以產生一第二感測訊號SN82。 In some embodiments, the method ML82 further includes the following steps: under the condition that the reasonable determination PW81 is affirmative, the processing unit 331 executes a signal generation control GY81 based on the obtained control code CC1T to cause the output unit 240 Generate a function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET; and after the signal generation control GY81 is executed by the processing unit 331 within an operating time TF81, the sensing unit 334 The variable physical parameter QU1A is sensed to generate a second sensing signal SN82.

該方法ML82進一步包含下列步驟:該處理 單元331於該操作時間TF81之後的一指定時間TG82之內,響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82;以及在該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET於該指定時間TG82之內藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T而被該處理單元331確定的條件下,該處理單元331執行一確保操作GU81,該確保操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的一物理參數目標範圍碼UN8T被該儲存單元332記錄。 The method ML82 further includes the following steps: the processing The unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81; and when the variable physical parameter QU1A is currently in The physical parameter target range RD1ET within the specified time TG82 is determined by the processing unit 331 by comparing the second measured value VN82 with the obtained target range limit value pair DN1T, and the processing unit 331 executes A guarantee operation GU81 is used to cause a physical parameter target range code UN8T representing the determined physical parameter target range RD1ET to be recorded by the storage unit 332.

該可變物理參數QU1A相關於一可變時間長度LF8A。例如,該可變時間長度LF8A基於一時間長度參考範圍HJ81和一參考時間長度LJ8T而被特徵化。該時間長度參考範圍HJ81由一時間長度值參考範圍GJ81所代表。該參考時間長度LJ8T由一時間長度值CL8T所代表。該控制訊號SC81進一步輸送該時間長度值CL8T。該方法ML82進一步包含下列步驟:該處理單元331從該控制訊號SC81獲得該時間長度值CL8T;以及該處理單元331檢查所獲得的該時間長度值CL8T和該時間長度值參考範圍GJ81之間的一數值關係KJ81以做出用於控制一特定時間TJ8T的一計數操作BC8T是否要被執行的一第三邏輯決定PE81。 The variable physical parameter QU1A is related to a variable time length LF8A. For example, the variable time length LF8A is characterized based on a time length reference range HJ81 and a reference time length LJ8T. The time length reference range HJ81 is represented by a time length value reference range GJ81. The reference time length LJ8T is represented by a time length value CL8T. The control signal SC81 further conveys the time length value CL8T. The method ML82 further includes the following steps: the processing unit 331 obtains the time length value CL8T from the control signal SC81; and the processing unit 331 checks a value between the obtained time length value CL8T and the time length value reference range GJ81 The numerical relationship KJ81 is used to make a third logical decision PE81 for controlling whether a counting operation BC8T for a specific time TJ8T is to be executed.

該方法ML82進一步包含下列步驟:在該第三邏輯決定PE81是肯定的條件下,該處理單元331基於所獲得的該時間長度值CL8T來執行該計數操作BC8T;在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該 物理參數目標範圍RD1ET之內的條件下,該處理單元331基於該計數操作BC8T來到達該特定時間TJ8T;以及該處理單元331導致該輸出單元240在該特定時間TJ8T之內執行用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該物理參數應用範圍RD1EL的一訊號產生操作BY91。 The method ML82 further includes the following steps: under the condition that the third logic determines that PE81 is affirmative, the processing unit 331 performs the counting operation BC8T based on the obtained time length value CL8T; in the variable physical parameter QU1A due to the The control signal SC81 is configured to Under the condition that the physical parameter target range RD1ET is within the target range, the processing unit 331 reaches the specific time TJ8T based on the counting operation BC8T; and the processing unit 331 causes the output unit 240 to execute within the specific time TJ8T for causing the available A signal generating operation BY91 that changes the physical parameter QU1A out of the physical parameter target range RD1ET to enter the physical parameter application range RD1EL.

在一些實施例中,該方法ML82進一步包含下列步驟:該控制目標裝置130提供一感測單元334,其中感測該可變物理參數QU1A的步驟藉由使用該感測單元334而被執行;該操作單元397執行與該可變物理參數QU1A相關的一物理參數控制功能FA81;以及在該合理決定PW81是肯定的條件下,該處理單元331導致該輸出單元240產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的一功能訊號SG81。 In some embodiments, the method ML82 further includes the following steps: the control target device 130 provides a sensing unit 334, wherein the step of sensing the variable physical parameter QU1A is performed by using the sensing unit 334; the The operation unit 397 executes a physical parameter control function FA81 related to the variable physical parameter QU1A; and under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 causes the output unit 240 to generate the variable physical parameter QU1A enters a functional signal SG81 of the physical parameter target range RD1ET.

該物理參數控制功能FA81被配置以符合與該物理參數應用範圍RD1EL相關的一物理參數控制功能規格GAL8。該感測單元334被配置以符合與該測量值應用範圍RN1L相關的一感測器規格FU11。例如,該感測器規格FU11包含用於表示一感測器靈敏度YW81的一感測器靈敏度表示GW81。該感測器靈敏度YW81相關於由該感測單元334所執行的一感測訊號產生HF81。 The physical parameter control function FA81 is configured to comply with a physical parameter control function specification GAL8 related to the physical parameter application range RD1EL. The sensing unit 334 is configured to comply with a sensor specification FU11 related to the measurement value application range RN1L. For example, the sensor specification FU11 includes a sensor sensitivity representation GW81 for representing a sensor sensitivity YW81. The sensor sensitivity YW81 is related to a sensing signal generated by the sensing unit 334 to generate HF81.

該第一測量值VN81以一指定測量值格式HH81而被該處理單元331獲得。例如,該指定測量值格式HH81基於一指定位元數目UY81而被特徵化。例如,當該輸入單元337接收該控制訊號SC81時,該感測單元334感 測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的該感測訊號產生HF81,該感測訊號產生HF81用於產生該第一感測訊號SN81。 The first measurement value VN81 is obtained by the processing unit 331 in a designated measurement value format HH81. For example, the designated measurement value format HH81 is characterized based on a designated number of bits UY81. For example, when the input unit 337 receives the control signal SC81, the sensing unit 334 senses The variable physical parameter QU1A is measured to perform the sensing signal generation HF81 dependent on the sensor sensitivity YW81, and the sensing signal generation HF81 is used to generate the first sensing signal SN81.

該可變物理參數QU1A進一步基於一額定物理參數範圍RD1E而被特徵化。例如,該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複數不同物理參數參考範圍RD1E1、RD1E2、…。該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。該物理參數控制功能規格GAL8包含該感測器規格FU11、用於表示該額定物理參數範圍RD1E的一額定物理參數範圍表示GA8E、和用於表示該物理參數應用範圍RD1EL的一物理參數應用範圍表示GA8L。 The variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E. For example, the rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, ... respectively. The physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The physical parameter control function specification GAL8 includes the sensor specification FU11, a rated physical parameter range representation GA8E used to represent the rated physical parameter range RD1E, and a physical parameter application range representation used to represent the physical parameter application range RD1EL GA8L.

在一些實施例中,該額定測量值範圍RD1N基於該額定物理參數範圍表示GA8E、該感測器靈敏度表示GW81和用於轉換該額定物理參數範圍表示GA8E的一第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設,具有一額定範圍界限值對DD1A,並包含由複數不同測量值參考範圍碼EM11、EM12、…所分別代表的該複數不同測量值參考範圍RN11、RN12、…。例如,該額定範圍界限值對DD1A用該指定測量值格式HH81而被預設,且該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和該測量值應用範圍RN1L。 In some embodiments, the rated measurement value range RD1N is based on the rated physical parameter range representing GA8E, the sensor sensitivity representing GW81, and a first data encoding operation ZX81 for converting the rated physical parameter range representing GA8E to use the The specified measurement value format HH81 is preset, has a rated range limit value pair DD1A, and includes the multiple different measurement value reference ranges RN11, RN12, ... represented by multiple different measurement value reference range codes EM11, EM12, ... . For example, the rated range limit value pair DD1A is preset using the specified measurement value format HH81, and the plurality of different measurement value reference ranges RN11, RN12,... include the measurement value target range RN1T and the measurement value application range RN1L.

該測量值目標範圍RN1T由包含於該複數 不同測量值參考範圍碼EM11、EM12、…中的一測量值目標範圍碼EM1T所代表,並具有一目標範圍界限值對DN1T;藉此該測量值目標範圍碼EM1T被配置以指示該物理參數目標範圍RD1ET。例如,該複數不同測量值參考範圍碼EM11、EM12、…皆基於該物理參數控制功能規格GAL8而被預設。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用。 The measured value target range RN1T is contained in the complex number Different measurement value reference range codes EM11, EM12,... are represented by a measurement value target range code EM1T, and have a target range limit value pair DN1T; whereby the measurement value target range code EM1T is configured to indicate the physical parameter target Range RD1ET. For example, the plurality of different measurement value reference range codes EM11, EM12,... are all preset based on the physical parameter control function specification GAL8. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T.

該測量值應用範圍RN1L由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值應用範圍碼EM1L所代表,並具有一應用範圍界限值對DN1L;藉此該測量值應用範圍碼EM1L被配置以指示該物理參數應用範圍RD1EL。例如,該應用範圍界限值對DN1L基於該物理參數應用範圍表示GA8L、該感測器靈敏度表示GW81和用於轉換該物理參數應用範圍表示GA8L的一第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L基於該物理參數應用範圍表示GA8L、該感測器靈敏度表示GW81和該第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The measurement value application range RN1L is represented by a measurement value application range code EM1L included in the plurality of different measurement value reference range codes EM11, EM12, ..., and has an application range limit value pair DN1L; whereby the measurement value is applied The range code EM1L is configured to indicate the physical parameter application range RD1EL. For example, the application range limit value for DN1L is based on the physical parameter application range representing GA8L, the sensor sensitivity representing GW81, and a second data encoding operation ZX82 for converting the physical parameter application range representing GA8L to use the specified measurement value The format HH81 is preset. The measurement value application range RN1L is preset based on the physical parameter application range representation GA8L, the sensor sensitivity representation GW81, and the second data encoding operation ZX82 using the designated measurement value format HH81.

在一些實施例中,該方法ML82進一步包含下列步驟:該儲存單元332提供一儲存空間SU11;以及該儲存單元332在該儲存空間SU11中儲存所預設的該額定範圍界限值對DD1A和一可變物理參數範圍碼UN8A。該控制訊號SC81進一步輸送該額定範圍界限值對DD1A。當該控制訊號SC81被該輸入單元337接收時,該可變物理參數範圍碼UN8A等於選擇自該複數不同測量值參考範圍碼 EM11、EM12、…的一特定測量值範圍碼EM14。 In some embodiments, the method ML82 further includes the following steps: the storage unit 332 provides a storage space SU11; and the storage unit 332 stores the preset rated range limit value pair DD1A and a storage space SU11 in the storage space SU11. Change the physical parameter range code UN8A. The control signal SC81 further transmits the rated range limit value pair DD1A. When the control signal SC81 is received by the input unit 337, the variable physical parameter range code UN8A is equal to the reference range code selected from the plurality of different measured values A specific measurement value range code EM14 of EM11, EM12,...

例如,該特定測量值範圍碼EM14指示基於一感測操作ZS81而被該處理單元331先前確定的一第一特定物理參數範圍RD1E4。該第一特定物理參數範圍RD1E4選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。由該感測單元334所執行的該感測操作ZS81用於感測該可變物理參數QU1A。在該控制訊號SC81被該輸入單元337接收之前,該特定測量值範圍碼EM14被該處理單元331指定到該可變物理參數範圍碼UN8A。 For example, the specific measurement value range code EM14 indicates a first specific physical parameter range RD1E4 previously determined by the processing unit 331 based on a sensing operation ZS81. The first specific physical parameter range RD1E4 is selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The sensing operation ZS81 performed by the sensing unit 334 is used to sense the variable physical parameter QU1A. Before the control signal SC81 is received by the input unit 337, the specific measurement value range code EM14 is assigned by the processing unit 331 to the variable physical parameter range code UN8A.

例如,在該輸入單元337接收該控制訊號SC81之前,該處理單元331獲得該特定測量值範圍碼EM14。在該處理單元331於該輸入單元337接收該控制訊號SC81之前基於該感測操作ZS81而確定該第一特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該特定測量值範圍碼EM14指定到該可變物理參數範圍碼UN8A。該特定測量值範圍碼EM14代表被配置以代表該第一特定物理參數範圍RD1E4的一特定測量值範圍。該特定測量值範圍基於該感測器靈敏度表示GW81來用該指定測量值格式HH81而被預設。例如,該感測單元334藉由執行該感測操作ZS81來執行相依於該感測器靈敏度YW81的一感測訊號產生以產生一感測訊號。 For example, before the input unit 337 receives the control signal SC81, the processing unit 331 obtains the specific measurement value range code EM14. Under the condition that the processing unit 331 determines the first specific physical parameter range RD1E4 based on the sensing operation ZS81 before the input unit 337 receives the control signal SC81, the processing unit 331 uses the storage unit 332 to store all the parameters. The obtained specific measurement value range code EM14 is assigned to the variable physical parameter range code UN8A. The specific measurement value range code EM14 represents a specific measurement value range configured to represent the first specific physical parameter range RD1E4. The specific measurement value range is preset based on the sensor sensitivity indicator GW81 in the specified measurement value format HH81. For example, the sensing unit 334 performs a sensing signal generation dependent on the sensor sensitivity YW81 by performing the sensing operation ZS81 to generate a sensing signal.

在該輸入單元337接收該控制訊號SC81之前,該處理單元331接收該感測訊號,響應該感測訊號來以該指定測量值格式HH81獲得一特定測量值,並執行用 於檢查該特定測量值和該特定測量值範圍之間的一數學關係的一特定檢查操作。在該處理單元331基於該特定檢查操作而確定該可變物理參數QU1A處於的該第一特定物理參數範圍RD1E4的條件下,該處理單元331藉由使用該儲存單元332來將所獲得的該特定測量值範圍碼EM14指定到該可變物理參數範圍碼UN8A。該處理單元331響應用於感測該可變物理參數QU1A的一特定感測操作來決定該處理單元331是否要使用該儲存單元332以改變該可變物理參數範圍碼UN8A。例如,該特定感測操作由該感測單元334所執行。 Before the input unit 337 receives the control signal SC81, the processing unit 331 receives the sensing signal, responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HH81, and executes A specific inspection operation for checking a mathematical relationship between the specific measurement value and the specific measurement value range. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is in the first specific physical parameter range RD1E4 based on the specific checking operation, the processing unit 331 uses the storage unit 332 to obtain the specific The measurement value range code EM14 is assigned to the variable physical parameter range code UN8A. The processing unit 331 responds to a specific sensing operation for sensing the variable physical parameter QU1A to determine whether the processing unit 331 will use the storage unit 332 to change the variable physical parameter range code UN8A. For example, the specific sensing operation is performed by the sensing unit 334.

在一些實施例中,該方法ML82進一步包含下列步驟:在該控制訊號SC81從一控制裝置212而被該輸入單元337接收的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81和該儲存空間SU11的其中之一獲得一操作參考資料碼XU81;以及該處理單元331藉由運行一資料確定程序NA8A來執行使用該操作參考資料碼XU81的一資料確定AA8A以確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值應用範圍碼EM1L以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值應用範圍RN1L。 In some embodiments, the method ML82 further includes the following steps: under the condition that the control signal SC81 is received by the input unit 337 from a control device 212, the processing unit 331 responds to the control signal SC81 to receive the control signal SC81 And one of the storage spaces SU11 to obtain an operation reference data code XU81; and the processing unit 331 executes a data determination AA8A using the operation reference data code XU81 by running a data determination program NA8A to determine the selection from the plural number The measurement value application range code EM1L of different measurement value reference range codes EM11, EM12, ... is used to select the measurement value application range RN1L from the plurality of different measurement value reference ranges RN11, RN12, ....

該操作參考資料碼XU81相同於基於該物理參數控制功能規格GAL8而被預設的一可允許參考資料碼。該資料確定程序NA8A基於該物理參數控制功能規格GAL8而被建構。該資料確定AA8A是一第一資料確定操作AA81和一第二資料確定操作AA82的其中之一。在該操作 參考資料碼XU81藉由存取被儲存在該儲存空間SU11中的該可變物理參數範圍碼UN8A而被該處理單元331獲得以相同於該特定測量值範圍碼EM14的條件下,是該第一資料確定操作AA81的該資料確定AA8A基於所獲得的該特定測量值範圍碼EM14來確定該測量值應用範圍碼EM1L。例如,所確定的該測量值應用範圍碼EM1L相同或不同於所獲得的該特定測量值範圍碼EM14。 The operation reference code XU81 is the same as an allowable reference code preset based on the physical parameter control function specification GAL8. The data determination program NA8A is constructed based on the physical parameter control function specification GAL8. The data determination AA8A is one of a first data determination operation AA81 and a second data determination operation AA82. At that operation The reference data code XU81 is obtained by the processing unit 331 by accessing the variable physical parameter range code UN8A stored in the storage space SU11 under the same condition as the specific measurement value range code EM14, which is the first The data determination AA8A of the data determination operation AA81 determines the measurement value application range code EM1L based on the obtained specific measurement value range code EM14. For example, the determined measurement value application range code EM1L is the same as or different from the obtained specific measurement value range code EM14.

在該操作參考資料碼XU81從該控制訊號SC81和該儲存空間SU11的其中之一而被該處理單元331獲得以相同於所預設的該額定範圍界限值對DD1A的條件下,是該第二資料確定操作AA82的該資料確定AA8A藉由執行使用該第一測量值VN81和所獲得的該額定範圍界限值對DD1A的一第一科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該第一科學計算MR81基於一特定經驗公式XR81而被執行。該特定經驗公式XR81基於所預設的該額定範圍界限值對DD1A和該複數不同測量值參考範圍碼EM11、EM12、…而被預先制定。例如,該特定經驗公式XR81基於該物理參數控制功能規格GAL8而被預先制定。 Under the condition that the operation reference data code XU81 is obtained by the processing unit 331 from one of the control signal SC81 and the storage space SU11 to be the same as the preset rated range limit value pair DD1A, it is the second The data determination of the data determination operation AA82 determines AA8A by executing a first scientific calculation MR81 using the first measurement value VN81 and the obtained rated range limit value pair DD1A to obtain the reference range codes EM11, EM12 from the plurality of different measurement values. ,... Select the measurement value application range code EM1L to determine the measurement value application range code EM1L. For example, the first scientific calculation MR81 is executed based on a specific empirical formula XR81. The specific empirical formula XR81 is formulated in advance based on the preset rated range limit value pair DD1A and the plurality of different measured value reference range codes EM11, EM12,... For example, the specific empirical formula XR81 is formulated in advance based on the physical parameter control function specification GAL8.

在一些實施例中,該方法ML82進一步包含下列步驟:該處理單元331基於所確定的該測量值應用範圍碼EM1L,獲得該應用範圍界限值對DN1L;以及該處理單元331從該控制訊號SC81獲得該測量值目標範圍碼EM1T。確定該範圍關係KE8A的步驟包含下列子步驟:該 處理單元331基於該第一測量值VN81和所獲得的該應用範圍界限值對DN1L之間的一資料比較CD81,檢查該第一數學關係KV81以做出該第一測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的一第一邏輯決定PB81;以及在該第一邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 In some embodiments, the method ML82 further includes the following steps: the processing unit 331 obtains the application range limit value pair DN1L based on the determined measurement value application range code EM1L; and the processing unit 331 obtains the control signal SC81 The target range code of the measured value is EM1T. The steps to determine the range relationship KE8A include the following sub-steps: The processing unit 331 compares CD81 with a data between the first measurement value VN81 and the obtained application range limit value pair DN1L, and checks the first mathematical relationship KV81 to determine whether the first measurement value VN81 is the selected value A first logical decision PB81 within the measurement value application range RN1L of RN1L; and under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines the physical parameter application range in which the variable physical parameter QU1A is currently RD1EL.

確定該範圍關係KE8A的步驟進一步包含下列子步驟:在該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL被該處理單元331確定的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來檢查該範圍關係KE8A以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的一第二邏輯決定PZ81;以及在該第二邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為一範圍相異關係以做出該合理決定PW81以成為肯定的。 The step of determining the range relationship KE8A further includes the following sub-steps: under the condition that the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in is determined by the processing unit 331, the processing unit 331 obtains the The measured value target range code EM1T and the determined measurement value application range code EM1L are used to check the range relationship KE8A to determine whether the obtained measurement value target range code EM1T and the determined measurement value application range code EM1L are equal A second logical decision PZ81; and under the condition that the second logical decision PZ81 is negative, the processing unit 331 recognizes that the range relationship KE8A is a range difference relationship to make the reasonable decision PW81 to be affirmative.

在一些實施例中,該應用範圍界限值對DN1L包含該測量值應用範圍RN1L的一第一應用範圍界限值DN15和相對於該第一應用範圍界限值DN15的一第二應用範圍界限值DN16。例如,在該第一應用範圍界限值DN15不同於該第二應用範圍界限值DN16且該第一測量值VN81是於該第一應用範圍界限值DN15和該第二應用範圍界限值DN16之間的條件下,該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該 第一邏輯決定PB81以成為肯定的。在該第一應用範圍界限值DN15、該第二應用範圍界限值DN16和該第一測量值VN81是相等的條件下,該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來做出該第一邏輯決定PB81以成為肯定的。 In some embodiments, the application range limit value pair DN1L includes a first application range limit value DN15 of the measurement value application range RN1L and a second application range limit value DN16 relative to the first application range limit value DN15. For example, when the first application range limit value DN15 is different from the second application range limit value DN16 and the first measurement value VN81 is between the first application range limit value DN15 and the second application range limit value DN16 Under conditions, the processing unit 331 compares the first measured value VN81 with the obtained application range limit value pair DN1L to determine the The first logic determines PB81 to be affirmative. Under the condition that the first application range limit value DN15, the second application range limit value DN16, and the first measurement value VN81 are equal, the processing unit 331 compares the first measurement value VN81 with the obtained application value The range limit value is positive for DN1L to make the first logical decision PB81.

該儲存空間SU11進一步具有一第一記憶體位置YM8L和不同於該第一記憶體位置YM8L的一第二記憶體位置YX8T。例如,該第一記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。該第二記憶體位置YX8T基於所預設的該測量值目標範圍碼EM1T而被識別。該物理參數控制功能規格GAL8進一步包含一物理參數表示GA8T1,該物理參數表示GA8T1用於表示在該物理參數目標範圍RD1ET之內的一指定物理參數QD1T。 The storage space SU11 further has a first memory position YM8L and a second memory position YX8T different from the first memory position YM8L. For example, the first memory location YM8L is identified based on the preset measurement value application range code EM1L. The second memory position YX8T is identified based on the preset measurement value target range code EM1T. The physical parameter control function specification GAL8 further includes a physical parameter representation GA8T1, and the physical parameter representation GA8T1 is used to indicate a designated physical parameter QD1T within the physical parameter target range RD1ET.

該方法ML82進一步包含下列步驟:該儲存單元332在該第一記憶體位置YM8L儲存該應用範圍界限值對DN1L;該儲存單元332在該第二記憶體位置YX8T儲存一控制碼CC1T,其中該控制碼CC1T基於該物理參數表示GA8T1和用於轉換該物理參數表示GA8T1的一第三資料編碼操作ZX91而被預設;該處理單元331執行與該可變物理參數QU1A相關的一指定功能操作ZH81,其中該指定功能操作ZH81用於導致一觸發事件EQ81發生;以及藉由使用該控制裝置212,響應該觸發事件EQ81來產生該控制訊號SC81。例如,該應用範圍界限值對DN1L和該控制碼CC1T分別基於所預設的該測量值應用範圍碼EM1L和所預設的該測量值目標範圍碼EM1T而被該儲存單元332儲存。 The method ML82 further includes the following steps: the storage unit 332 stores the application range limit value pair DN1L at the first memory location YM8L; the storage unit 332 stores a control code CC1T at the second memory location YX8T, wherein the control The code CC1T is preset based on the physical parameter representing GA8T1 and a third data encoding operation ZX91 for converting the physical parameter representing GA8T1; the processing unit 331 executes a designated functional operation ZH81 related to the variable physical parameter QU1A, The designated function operation ZH81 is used to cause a trigger event EQ81 to occur; and the control signal SC81 is generated in response to the trigger event EQ81 by using the control device 212. For example, the application range limit value pair DN1L and the control code CC1T are respectively stored by the storage unit 332 based on the preset measurement value application range code EM1L and the preset measurement value target range code EM1T.

在一些實施例中,獲得該應用範圍界限值對DN1L的步驟包含一子步驟:該處理單元331藉由運行一資料獲取程序ND8A,執行使用所確定的該測量值應用範圍碼EM1L的一資料獲取AD8A以獲得該應用範圍界限值對DN1L。例如,該資料獲取AD8A是一第一資料獲取操作AD81和一第二資料獲取操作AD82的其中之一。該資料獲取程序ND8A基於該物理參數控制功能規格GAL8而被建構。該第一資料獲取操作AD81基於所確定的該測量值應用範圍碼EM1L來存取被儲存在該第一記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。 In some embodiments, the step of obtaining the application range limit value pair DN1L includes a sub-step: the processing unit 331 executes a data acquisition using the determined measurement value application range code EM1L by running a data acquisition program ND8A AD8A obtains the application range limit value pair DN1L. For example, the data acquisition AD8A is one of a first data acquisition operation AD81 and a second data acquisition operation AD82. The data acquisition program ND8A is constructed based on the physical parameter control function specification GAL8. The first data acquisition operation AD81 accesses the application range limit value pair DN1L stored in the first memory location YM8L based on the determined measurement value application range code EM1L to obtain the application range limit value pair DN1L.

該第二資料獲取操作AD82依靠該控制訊號SC81和該儲存空間SU11的其中之一來取得該額定範圍界限值對DD1A,並藉由執行使用所確定的該測量值應用範圍碼EM1L和所取得的該額定範圍界限值對DD1A的一第二科學計算MZ81來獲得該應用範圍界限值對DN1L。例如,該額定範圍界限值對DD1A包含該額定測量值範圍RD1N的一額定範圍界限值DD11和相對於該額定範圍界限值DD11的一額定範圍界限值DD12,並基於該額定物理參數範圍表示GA8E、該感測器靈敏度表示GW81和該第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設。 The second data acquisition operation AD82 relies on one of the control signal SC81 and the storage space SU11 to acquire the rated range limit value pair DD1A, and uses the determined measurement value application range code EM1L and the acquired A second scientific calculation MZ81 of the rated range limit value pair DD1A is used to obtain the application range limit value pair DN1L. For example, the rated range limit value pair DD1A includes a rated range limit value DD11 of the rated measurement value range RD1N and a rated range limit value DD12 relative to the rated range limit value DD11, and based on the rated physical parameter range represents GA8E, The sensor sensitivity indicates that GW81 and the first data encoding operation ZX81 are preset using the designated measurement value format HH81.

產生該功能訊號SG81的步驟包含下列子步驟:在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來使用該儲存單元332以存取被儲存在該第二記憶體位置YX8T的該控制 碼CC1T;該處理單元331基於所存取的該控制碼CC1T,執行用於該物理參數控制功能FA81的一訊號產生控制GY81;以及該輸出單元338響應該訊號產生控制GY81,執行用於該物理參數控制功能FA81的一訊號產生操作BY81以產生一功能訊號SG81,該功能訊號SG81用於控制該功能目標335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The step of generating the function signal SG81 includes the following sub-steps: Under the condition that the reasonable determination PW81 is affirmative, the processing unit 331 uses the storage unit 332 to access the storage unit 332 based on the obtained measurement value target range code EM1T The control of the second memory location YX8T Code CC1T; the processing unit 331 executes a signal generation control GY81 for the physical parameter control function FA81 based on the accessed control code CC1T; and the output unit 338 responds to the signal generation control GY81 to execute control GY81 for the physical parameter control function FA81; A signal generation operation BY81 of the parameter control function FA81 generates a function signal SG81, which is used to control the function target 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,該控制裝置212是一外部裝置。該複數不同測量值參考範圍RN11、RN12、…具有一總參考範圍數目NT81。該總參考範圍數目NT81基於該物理參數控制功能規格GAL8而被預設。該方法ML82進一步包含一步驟:該處理單元331響應該控制訊號SC81,獲得該總參考範圍數目NT81。該第一科學計算MR81進一步使用所獲得的該總參考範圍數目NT81。該第二科學計算MZ81進一步使用所獲得的該總參考範圍數目NT81。例如,該總參考範圍數目大於或等於2。例如,該總參考範圍數目NT11≧3;該總參考範圍數目NT11≧4;該總參考範圍數目NT11≧5;該總參考範圍數目NT11≧6;且該總參考範圍數目NT11≦255。 In some embodiments, the control device 212 is an external device. The plurality of different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81. The total number of reference ranges NT81 is preset based on the physical parameter control function specification GAL8. The method ML82 further includes a step: the processing unit 331 responds to the control signal SC81 to obtain the total reference range number NT81. The first scientific calculation MR81 further uses the obtained total reference range number NT81. The second scientific calculation MZ81 further uses the obtained total reference range number NT81. For example, the total number of reference ranges is greater than or equal to 2. For example, the total number of reference ranges NT11≧3; the total number of reference ranges NT11≧4; the total number of reference ranges NT11≧5; the total number of reference ranges NT11≧6; and the total number of reference ranges NT11≦255.

該方法ML82進一步包含一步驟:該功能目標335響應該功能訊號SG81,將該可變物理參數QU1A從一第一特定物理參數QU17改變成一第二特定物理參數QU18。例如,該第一特定物理參數QU17是於該物理參數應用範圍RD1EL之內;且該第二特定物理參數QU18是於該物理參數目標範圍RD1ET之內。該物理參數控制功能規 格GAL8進一步包含用於表示該物理參數目標範圍RD1ET的一物理參數候選範圍表示GA8T。 The method ML82 further includes a step: the function target 335 responds to the function signal SG81 to change the variable physical parameter QU1A from a first specific physical parameter QU17 to a second specific physical parameter QU18. For example, the first specific physical parameter QU17 is within the physical parameter application range RD1EL; and the second specific physical parameter QU18 is within the physical parameter target range RD1ET. The physical parameter control function regulation The grid GAL8 further includes a physical parameter candidate range representation GA8T for representing the physical parameter target range RD1ET.

該測量值目標範圍RN1T是該額定測量值範圍RD1N的一第一部分,並具有一目標範圍界限值對DN1T。例如,該目標範圍界限值對DN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和用於轉換該物理參數候選範圍表示GA8T的一第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值目標範圍RN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和該第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L是該額定測量值範圍RD1N的一第二部分。 The measurement value target range RN1T is a first part of the rated measurement value range RD1N, and has a target range limit value pair DN1T. For example, the target range limit value pair DN1T is based on the physical parameter candidate range representing GA8T, the sensor sensitivity representing GW81, and a fourth data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T to use the specified measurement value The format HH81 is preset. The measurement value target range RN1T is preset based on the physical parameter candidate range representation GA8T, the sensor sensitivity representation GW81, and the fourth data encoding operation ZX83 using the designated measurement value format HH81. The measurement value application range RN1L is a second part of the rated measurement value range RD1N.

該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的或相鄰的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是分開的條件下,該測量值目標範圍RN1T和該測量值應用範圍RN1L是分開的。在該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL是相鄰的條件下,該測量值目標範圍RN1T和該測量值應用範圍RN1L是相鄰的。 The physical parameter target range RD1ET and the physical parameter application range RD1EL are separate or adjacent. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are separated, the measured value target range RN1T and the measured value application range RN1L are separated. Under the condition that the physical parameter target range RD1ET and the physical parameter application range RD1EL are adjacent, the measured value target range RN1T and the measured value application range RN1L are adjacent.

例如,該測量值應用範圍碼EM1L被配置以等於一整數。該額定範圍界限值DD12大於該額定範圍界限值DD11。該額定範圍界限值DD12和該額定範圍界限值DD11之間具有相對於該額定範圍界限值DD11的一相對值VA11。該相對值VA11等於該額定範圍界限值DD12減去該額定範圍界限值DD11的一計算結果。例如,該應用範 圍界限值對DN1L基於該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、和該相對值VA11對於該總參考範圍數目NT81的一比率而被預設。該第二科學計算MZ81使用該額定範圍界限值DD11、該額定範圍界限值DD12、該整數、該比率和其任意組合的其中之一。 For example, the measurement value application range code EM1L is configured to be equal to an integer. The rated range limit value DD12 is greater than the rated range limit value DD11. There is a relative value VA11 between the rated range limit value DD12 and the rated range limit value DD11 relative to the rated range limit value DD11. The relative value VA11 is equal to a calculation result of the rated range limit value DD12 minus the rated range limit value DD11. For example, the application The range limit value pair DN1L is preset based on the rated range limit value DD11, the rated range limit value DD12, the integer, and a ratio of the relative value VA11 to the total reference range number NT81. The second scientific calculation MZ81 uses one of the rated range limit value DD11, the rated range limit value DD12, the integer, the ratio, and any combination thereof.

在一些實施例中,該方法ML82進一步包含下列步驟:該儲存單元332提供不同於該第二記憶體位置YX8T的一第三記憶體位置YM8T,其中該第三記憶體位置YM8T於該儲存空間SU11中,並基於所預設的該測量值目標範圍碼EM1T而被識別;該儲存單元332在該第三記憶體位置YM8T儲存該目標範圍界限值對DN1T;以及在該訊號產生控制GY81於一操作時間TF81之內被該處理單元331執行之後,該感測單元334感測該可變物理參數QU1A以產生一第二感測訊號SN82。例如,在該處理單元331執行該訊號產生控制GY81之後,該感測單元334感測該可變物理參數QU1A以執行相依於該感測器靈敏度YW81的一感測訊號產生HF82,該感測訊號產生HF82用於產生該第二感測訊號SN82。 In some embodiments, the method ML82 further includes the following steps: the storage unit 332 provides a third memory location YM8T different from the second memory location YX8T, wherein the third memory location YM8T is in the storage space SU11 And is identified based on the preset measurement value target range code EM1T; the storage unit 332 stores the target range limit value pair DN1T in the third memory location YM8T; and controls GY81 in an operation when the signal is generated After being executed by the processing unit 331 within the time TF81, the sensing unit 334 senses the variable physical parameter QU1A to generate a second sensing signal SN82. For example, after the processing unit 331 executes the signal generation control GY81, the sensing unit 334 senses the variable physical parameter QU1A to execute a sensing signal dependent on the sensor sensitivity YW81 to generate HF82, the sensing signal The HF82 is generated for generating the second sensing signal SN82.

該方法ML82進一步包含下列步驟:該處理單元331於該操作時間TF81之後的一指定時間TG82之內,響應該第二感測訊號SN82來以該指定測量值格式HH81獲得一第二測量值VN82;該處理單元331基於所獲得的該測量值目標範圍碼EM1T,使用該儲存單元332以存取被儲存在該第三記憶體位置YM8T的該目標範圍界限值對DN1T;以及該處理單元331藉由比較該第二測量值VN82 和所存取的該目標範圍界限值對DN1T,檢查該第二測量值VN82和該測量值目標範圍RN1T之間的一第二數學關係KV91以做出該第二測量值VN82是否為於該測量值目標範圍RN1T之內的一第三邏輯決定PB91。 The method ML82 further includes the following steps: the processing unit 331 responds to the second sensing signal SN82 within a specified time TG82 after the operating time TF81 to obtain a second measurement value VN82 in the specified measurement value format HH81; The processing unit 331 uses the storage unit 332 to access the target range limit value pair DN1T stored in the third memory location YM8T based on the obtained measurement value target range code EM1T; and the processing unit 331 uses Compare this second measured value VN82 And the accessed target range limit value pair DN1T, check a second mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T to determine whether the second measured value VN82 is in the measurement A third logic within the value target range RN1T determines PB91.

該方法ML82進一步包含下列步驟:在該第三邏輯決定PB91是肯定的條件下,該處理單元331於該指定時間TG82之內確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,並產生一肯定操作報告RL81,其中該肯定操作報告RL81表示該可變物理參數QU1A成功地進入該物理參數目標範圍RD1ET的一操作情況EP81;以及該處理單元331導致該輸出單元338產生輸送該肯定操作報告RL81的一控制回應訊號SE81,藉此該控制回應訊號SE81用於導致該控制裝置212獲得該肯定操作報告RL81。該處理單元331藉由導致該輸出單元338產生該控制回應訊號SE81來回應該控制訊號SC81。 The method ML82 further includes the following steps: under the condition that the third logical decision PB91 is affirmative, the processing unit 331 determines within the specified time TG82 that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET, and A positive operation report RL81 is generated, wherein the positive operation report RL81 indicates an operation condition EP81 in which the variable physical parameter QU1A has successfully entered the physical parameter target range RD1ET; and the processing unit 331 causes the output unit 338 to generate the positive operation Report a control response signal SE81 of RL81, whereby the control response signal SE81 is used to cause the control device 212 to obtain the positive operation report RL81. The processing unit 331 responds to the control signal SC81 by causing the output unit 338 to generate the control response signal SE81.

該方法ML82進一步包含一步驟:在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET藉由做出該第三邏輯決定PB91而被該處理單元331確定的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的一第一碼差異DF81來將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 The method ML82 further includes a step: when the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by making the first Under the condition that PB91 is determined by the three logics and determined by the processing unit 331, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. A first code difference DF81 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

該方法ML82進一步包含下列步驟:當該控 制訊號SC81被該輸入單元337接收時,該輸出單元240顯示一第一狀態指示LB81,其中該第一狀態指示LB81用於指示該可變物理參數QU1A被配置於該第一特定物理參數範圍RD1E4之內的一第一特定狀態XJ81;以及在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET藉由做出該第三邏輯決定PB91而被該處理單元331確定的條件下,該處理單元331基於該第一碼差異DF81來導致該輸出單元338將該第一狀態指示LB81改變成一第二狀態指示LB82。例如,該第二狀態指示LB82用於指示該可變物理參數QU1A被配置於該物理參數目標範圍RD1ET之內的一第二特定狀態XJ82。 The method ML82 further includes the following steps: When the control When the control signal SC81 is received by the input unit 337, the output unit 240 displays a first status indicator LB81, where the first status indicator LB81 is used to indicate that the variable physical parameter QU1A is configured in the first specific physical parameter range RD1E4 A first specific state XJ81 within a first specific state XJ81; and the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the variable physical parameter QU1A is currently in the physical parameter target range RD1ET by doing Under the condition that the third logical decision PB91 is determined by the processing unit 331, the processing unit 331 causes the output unit 338 to change the first status indicator LB81 to a second status indicator LB82 based on the first code difference DF81. For example, the second state indicator LB82 is used to indicate that the variable physical parameter QU1A is configured in a second specific state XJ82 within the physical parameter target range RD1ET.

在一些實施例中,該控制訊號SC81是一電訊號SP81和一光訊號SQ81的其中之一。該方法ML82進一步包含下列步驟:在該控制訊號SC81是該電訊號SP81的條件下,該處理單元331從輸送一控制訊息CG81的該電訊號SP81獲得該控制訊息CG81,其中該控制訊息CG81包含該測量值目標範圍碼EM1T;以及在該控制訊號SC81是該光訊號SQ81的條件下,該輸入單元337藉由感測由該光訊號SQ81所輸送的一編碼影像FY81來確定一編碼資料DY81,並解碼該編碼資料DY81以導致該處理單元331獲得該控制訊息CG81。例如,該編碼影像FY81代表該控制訊息CG81。 In some embodiments, the control signal SC81 is one of an electrical signal SP81 and an optical signal SQ81. The method ML82 further includes the following steps: under the condition that the control signal SC81 is the electric signal SP81, the processing unit 331 obtains the control message CG81 from the electric signal SP81 that transmits a control message CG81, wherein the control message CG81 includes the control message CG81. The measured value target range code EM1T; and under the condition that the control signal SC81 is the optical signal SQ81, the input unit 337 determines an encoded data DY81 by sensing an encoded image FY81 sent by the optical signal SQ81, and The encoded data DY81 is decoded to cause the processing unit 331 to obtain the control message CG81. For example, the encoded image FY81 represents the control message CG81.

該方法ML82進一步包含下列步驟:在該可變物理參數QU1A由於該控制訊號SC81而被配置於該物理 參數目標範圍RD1ET之內的條件下,該輸入單元337接收一使用者輸入操作BQ81;該處理單元331響應該使用者輸入操作BQ81,確定一特定輸入碼UW81,其中該特定輸入碼UW81選擇自該複數不同測量值參考範圍碼EM11、EM12、…;以及在該特定輸入碼UW81不同於所預設的該測量值目標範圍碼EM1T的條件下,該處理單元331基於等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A和該特定輸入碼UW81之間的一第二碼差異DX81來通過該輸出單元338而導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的一第二特定物理參數範圍RD1E5。 The method ML82 further includes the following steps: the variable physical parameter QU1A is configured in the physical parameter due to the control signal SC81 Within the parameter target range RD1ET, the input unit 337 receives a user input operation BQ81; the processing unit 331 responds to the user input operation BQ81 to determine a specific input code UW81, wherein the specific input code UW81 is selected from the A plurality of different measurement value reference range codes EM11, EM12, ...; and under the condition that the specific input code UW81 is different from the preset measurement value target range code EM1T, the processing unit 331 is based on the measurement value target being equal to the obtained measurement value target A second code difference DX81 between the variable physical parameter range code UN8A of the range code EM1T and the specific input code UW81 passes through the output unit 338 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter A second specific physical parameter range RD1E5 included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,...

在一些實施例中,感測該可變物理參數QU1A的步驟包含一子步驟:該感測單元334感測處於一拘束條件FR81的該可變物理參數QU1A以產生該第一感測訊號SN81。例如,該拘束條件FR81是該可變物理參數QU1A等於包含於該額定物理參數範圍RD1E中的一第三特定物理參數QU15。響應該第一感測訊號SN81來獲得該第一測量值VN81的步驟包含一子步驟:該處理單元331基於該第一感測訊號SN81,估計該第三特定物理參數QU15以獲得該第一測量值VN81。 In some embodiments, the step of sensing the variable physical parameter QU1A includes a sub-step: the sensing unit 334 senses the variable physical parameter QU1A in a restraining condition FR81 to generate the first sensing signal SN81. For example, the constraint condition FR81 is that the variable physical parameter QU1A is equal to a third specific physical parameter QU15 included in the rated physical parameter range RD1E. The step of obtaining the first measurement value VN81 in response to the first sensing signal SN81 includes a sub-step: the processing unit 331 estimates the third specific physical parameter QU15 to obtain the first measurement based on the first sensing signal SN81 Value VN81.

由於處於該拘束條件FR81的該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內,該處理單元331辨識該第一測量值VN81為於該測量值應用範圍RN1L之內的一可允許值,藉此辨識該第一測量值VN81和 該測量值應用範圍RN1L之間的該第一數學關係KV81為一數值交集關係,並藉此確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL。 Since the variable physical parameter QU1A in the constraint condition FR81 is within the physical parameter application range RD1EL, the processing unit 331 recognizes that the first measurement value VN81 is an allowable value within the measurement value application range RN1L , To identify the first measured value VN81 and The first mathematical relationship KV81 between the measurement value application ranges RN1L is a numerical intersection relationship, and thereby determines the physical parameter application range RD1EL in which the variable physical parameter QU1A is currently located.

在一些實施例中,該感測單元334基於與該感測訊號產生HF81相關的該感測器靈敏度YW81而被特徵化,並被配置以符合該感測器規格FU11。該感測器規格FU11包含用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81、和用於表示一感測器測量範圍RB8E的一感測器測量範圍表示GW8R。例如,該額定物理參數範圍RD1E被配置以相同於該感測器測量範圍RB8E,或被配置以是該感測器測量範圍RB8E的一部分。該感測器測量範圍RB8E相關於由該感測單元334所執行的一物理參數感測。該感測器測量範圍表示GW8R基於一第一預設測量單位而被提供。例如,該第一預設測量單位是一公制測量單位和一英制測量單位的其中之一。 In some embodiments, the sensing unit 334 is characterized based on the sensor sensitivity YW81 related to the sensing signal generation HF81, and is configured to comply with the sensor specification FU11. The sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81, and a sensor measurement range representation GW8R for representing a sensor measurement range RB8E. For example, the rated physical parameter range RD1E is configured to be the same as the sensor measurement range RB8E, or configured to be a part of the sensor measurement range RB8E. The sensor measurement range RB8E is related to a physical parameter sensing performed by the sensing unit 334. The measurement range of the sensor indicates that the GW8R is provided based on a first preset measurement unit. For example, the first preset measurement unit is one of a metric measurement unit and an English measurement unit.

該額定測量值範圍RD1N和該額定範圍界限值對DD1A皆基於該額定物理參數範圍表示GA8E、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第一資料編碼操作ZX81來用該指定測量值格式HH81而被預設。該測量值應用範圍RN1L和該應用範圍界限值對DN1L皆基於該物理參數應用範圍表示GA8L、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第二資料編碼操作ZX82來用該指定測量值格式HH81而被預設。 The rated measurement value range RD1N and the rated range limit value pair DD1A are based on the rated physical parameter range representing GA8E, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the first data encoding operation ZX81. The specified measurement value format HH81 is preset. The measurement value application range RN1L and the application range limit value pair DN1L are all based on the physical parameter application range representing GA8L, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81 and the second data encoding operation ZX82. The specified measurement value format HH81 is preset.

該測量值目標範圍RN1T和該目標範圍界 限值對DN1T皆基於該物理參數候選範圍表示GA8T、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和該第四資料編碼操作ZX83來用該指定測量值格式HH81而被預設。該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數表示GA8T1和該物理參數候選範圍表示GA8T皆基於一第二預設測量單位而被提供。例如,該第二預設測量單位是一公制測量單位和一英制測量單位的其中之一,並相同或不同於該第一預設測量單位。 The measured value target range RN1T and the target range boundary The limit value for DN1T is preset based on the physical parameter candidate range representing GA8T, the sensor measuring range representing GW8R, the sensor sensitivity representing GW81, and the fourth data encoding operation ZX83 to use the specified measurement value format HH81. . The rated physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter represents GA8T1, and the physical parameter candidate range represents GA8T are all provided based on a second preset measurement unit. For example, the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit.

該可變物理參數QU1A進一步基於該感測器測量範圍RB8E而被特徵化。例如,該感測器測量範圍表示GW8R、該額定物理參數範圍表示GA8E、該物理參數應用範圍表示GA8L、該物理參數候選範圍表示GA8T和該物理參數表示GA8T1皆屬於十進制資料類型。該第一測量值VN81、該第二測量值VN82、該額定範圍界限值對DD1A、該應用範圍界限值對DN1L、該目標範圍界限值對DN1T和該控制碼CC1T皆屬於該二進制資料類型,並皆適用於電腦處理。該感測器規格FU11和該物理參數控制功能規格GAL8皆被預設。 The variable physical parameter QU1A is further characterized based on the sensor measurement range RB8E. For example, the sensor measurement range represents GW8R, the rated physical parameter range represents GA8E, the physical parameter application range represents GA8L, the physical parameter candidate range represents GA8T, and the physical parameter represents GA8T1 are all decimal data types. The first measurement value VN81, the second measurement value VN82, the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, and the control code CC1T all belong to the binary data type, and Both are suitable for computer processing. The sensor specification FU11 and the physical parameter control function specification GAL8 are both preset.

在一些實施例中,該方法ML82進一步包含下列步驟:在該控制訊號SC81被該輸入單元337接收之前,該輸入單元337接收包含所預設的該應用範圍界限值對DN1L和一第一記憶體位址AM8L的一第一寫入請求訊息WN8L,其中該第一記憶體位置YM8L基於該第一記憶體位址AM8L而被識別,且該第一記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L而被預設;以及該處 理單元331響應該第一寫入請求訊息WN8L,使用該儲存單元332以將該第一寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該第一記憶體位置YM8L。 In some embodiments, the method ML82 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives the preset application range limit value pair DN1L and a first memory location. A first write request message WN8L at address AM8L, wherein the first memory location YM8L is identified based on the first memory address AM8L, and the first memory address AM8L is based on the preset measurement value application range Code EM1L is preset; and where In response to the first write request message WN8L, the processing unit 331 uses the storage unit 332 to store the application range threshold pair DN1L of the first write request message WN8L to the first memory location YM8L.

該方法ML82進一步包含下列步驟:在該控制訊號SC81被該輸入單元337接收之前,該輸入單元337接收包含所預設的該控制碼CC1T和一第二記憶體位址AX8T的一第二寫入請求訊息WC8T,其中該第二記憶體位置YX8T基於該第二記憶體位址AX8T而被識別,且該第二記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T而被預設;以及該處理單元331響應該第二寫入請求訊息WC8T,使用該儲存單元332以將該第二寫入請求訊息WC8T的該控制碼CC1T儲存到該第二記憶體位置YX8T。 The method ML82 further includes the following steps: before the control signal SC81 is received by the input unit 337, the input unit 337 receives a second write request including the preset control code CC1T and a second memory address AX8T Message WC8T, where the second memory location YX8T is identified based on the second memory address AX8T, and the second memory address AX8T is preset based on the preset measurement value target range code EM1T; and the In response to the second write request message WC8T, the processing unit 331 uses the storage unit 332 to store the control code CC1T of the second write request message WC8T in the second memory location YX8T.

請參閱第8圖和第9圖。第8圖為繪示於第1圖中的該控制系統901的一實施結構9017的示意圖。第9圖為繪示於第1圖中的該控制系統901的一實施結構9018的示意圖。如第8圖和第9圖所示,該實施結構9017和該實施結構9018的每一結構包含該控制裝置212和該控制目標裝置130。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337和該輸出單元338。該輸入單元337包含該第一輸入組件3371、該第二輸入組件3372和該第三輸入組件3373。該輸出單元338包含一輸出組件3381、一輸出組件3382和一輸出組件3383。該感測單元334、該功能目標335、該儲存單元332、該第一輸入組件3371、該第二輸入組件3372、該第三輸入 組件3373、該輸出組件3381、該輸出組件3382和該輸出組件3383皆耦合於該處理單元331,並皆受該處理單元331控制。 Please refer to Figure 8 and Figure 9. FIG. 8 is a schematic diagram of an implementation structure 9017 of the control system 901 shown in FIG. 1. FIG. 9 is a schematic diagram of an implementation structure 9018 of the control system 901 shown in FIG. 1. As shown in FIGS. 8 and 9, each of the implementation structure 9017 and the implementation structure 9018 includes the control device 212 and the control target device 130. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338. The input unit 337 includes the first input component 3371, the second input component 3372, and the third input component 3373. The output unit 338 includes an output component 3381, an output component 3382 and an output component 3383. The sensing unit 334, the function target 335, the storage unit 332, the first input component 3371, the second input component 3372, the third input The component 3373, the output component 3381, the output component 3382, and the output component 3383 are all coupled to the processing unit 331, and are all controlled by the processing unit 331.

在一些實施例中,該輸出組件3381進一步耦合於該功能目標335。該處理單元331於該操作時間TF81之內基於所獲得的該控制碼CC1T來執行該訊號產生控制GY81。該輸出組件3381響應該訊號產生控制GY81來執行用於該物理參數控制功能FA81的該訊號產生操作BY81以於該操作時間TF81之內產生該功能訊號SG81。例如,該功能訊號SG81是一控制訊號。該輸出組件3381將該功能訊號SG81傳輸到該功能目標335。該功能目標335響應該功能訊號SG81來導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。例如,該功能訊號SG81是一脈衝寬度調變訊號、一電位準訊號、一驅動訊號和一指令訊號的其中之一。 In some embodiments, the output component 3381 is further coupled to the functional target 335. The processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T within the operation time TF81. The output component 3381 responds to the signal generation control GY81 to execute the signal generation operation BY81 for the physical parameter control function FA81 to generate the function signal SG81 within the operation time TF81. For example, the function signal SG81 is a control signal. The output component 3381 transmits the function signal SG81 to the function target 335. The function target 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET. For example, the function signal SG81 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal.

在該處理單元331檢查該第二數學關係KV91以確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331確定該肯定操作報告RL81,並導致該輸出單元338產生輸送該肯定操作報告RL81的該控制回應訊號SE81。該控制回應訊號SE81是一電訊號LP81和一光訊號LQ81的其中之一。該輸出組件3382是一傳輸器。該輸出組件3383是一光發射組件。例如,該處理單元331藉由檢查該第二數學關係KV91來確定該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數情況,並藉此辨識該可變物理參 數QU1A和該物理參數目標範圍RD1ET之間的一物理參數關係為該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數交集關係。 Under the condition that the processing unit 331 checks the second mathematical relationship KV91 to determine that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET, the processing unit 331 determines the positive operation report RL81 and causes the output unit 338 The control response signal SE81 that transmits the affirmative operation report RL81 is generated. The control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81. The output component 3382 is a transmitter. The output component 3383 is a light emitting component. For example, the processing unit 331 determines the current state of a physical parameter of the variable physical parameter QU1A within the physical parameter target range RD1ET by checking the second mathematical relationship KV91, and thereby identifies the variable physical parameter. A physical parameter relationship between the number QU1A and the physical parameter target range RD1ET is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter target range RD1ET.

在該輸出組件3382被配置以產生該控制回應訊號SE81的條件下,該處理單元331基於所確定的該肯定操作報告RL81來導致該輸出組件3382向該控制裝置212傳輸輸送該肯定操作報告RL81的該電訊號LP81。在該輸出組件3383被配置以產生該控制回應訊號SE81的條件下,該處理單元331基於所確定的該肯定操作報告RL81來導致該輸出組件3383產生輸送該肯定操作報告RL81的該光訊號LQ81,藉此該控制裝置212從該輸出組件3383接收所產生的該光訊號LQ81。例如,該光發射組件是一顯示組件。該光訊號LQ81輸送代表該肯定操作報告RL81的一編碼影像FZ81。例如,該編碼影像FZ81是一條碼影像。 Under the condition that the output component 3382 is configured to generate the control response signal SE81, the processing unit 331 causes the output component 3382 to transmit the positive operation report RL81 to the control device 212 based on the determined positive operation report RL81 The telecommunication number is LP81. Under the condition that the output component 3383 is configured to generate the control response signal SE81, the processing unit 331 causes the output component 3383 to generate the optical signal LQ81 that transmits the positive operation report RL81 based on the determined positive operation report RL81, Thereby, the control device 212 receives the generated optical signal LQ81 from the output component 3383. For example, the light emitting component is a display component. The optical signal LQ81 transmits an encoded image FZ81 representing the affirmative operation report RL81. For example, the coded image FZ81 is a coded image.

例如,該控制裝置212由一控制裝置識別符HA0T所識別。該控制訊號SC81進一步輸送該控制裝置識別符HA0T。該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該控制裝置識別符HA0T,並基於所獲得的該控制裝置識別符HA0T和所確定的該肯定操作報告RL81來導致該輸出組件3382向該控制裝置212傳輸輸送該肯定操作報告RL81的該電訊號LP81。 For example, the control device 212 is identified by a control device identifier HAOT. The control signal SC81 further conveys the control device identifier HA0T. The processing unit 331 obtains the control device identifier HA0T from the control signal SC81 in response to the control signal SC81, and based on the obtained control device identifier HA0T and the determined positive operation report RL81 to cause the output component 3382 to send The control device 212 transmits the electrical signal LP81 that conveys the affirmative operation report RL81.

在一些實施例中,該輸入單元337有線地或無線地從該控制裝置212接收該控制訊號SC81。該控制訊號SC81是該電訊號SP81和該光訊號SQ81的其中之一。該第一輸入組件3371是一接收器,並在該控制訊號SC81是 該電訊號SP81的條件下從該控制裝置212接收該電訊號SP81。該第二輸入組件3372是一讀取器,並在該控制訊號SC81是該光訊號SQ81的條件下從該控制裝置212接收輸送該編碼影像FY81的該光訊號SQ81。例如,該編碼影像FY81是一條碼影像。 In some embodiments, the input unit 337 receives the control signal SC81 from the control device 212 by wire or wirelessly. The control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81. The first input component 3371 is a receiver, and the control signal SC81 is The electrical signal SP81 is received from the control device 212 under the condition of the electrical signal SP81. The second input component 3372 is a reader, and receives the optical signal SQ81 for delivering the encoded image FY81 from the control device 212 under the condition that the control signal SC81 is the optical signal SQ81. For example, the coded image FY81 is a coded image.

該功能目標335具有該可變物理參數QU1A。該輸入單元337進一步包含一輸入組件3374。該輸入組件3374耦合於該處理單元331,受該處理單元331控制,並在該可變物理參數QU1A要依靠該控制裝置212而被提供的條件下從該控制裝置212接收一物理參數訊號SB81。該功能目標335從該輸入組件3374接收該物理參數訊號SB81。該處理單元331通過該輸出組件3381來導致該功能目標335使用該物理參數訊號SB81以形成取決於該物理參數訊號SB81的該可變物理參數QU1A。例如,該輸入組件3374是一接收組件。該控制裝置212有線地或無線地傳輸該物理參數訊號SB81到該輸入組件3374。 The function target 335 has the variable physical parameter QU1A. The input unit 337 further includes an input component 3374. The input component 3374 is coupled to the processing unit 331, is controlled by the processing unit 331, and receives a physical parameter signal SB81 from the control device 212 under the condition that the variable physical parameter QU1A is provided by the control device 212. The function target 335 receives the physical parameter signal SB81 from the input component 3374. The processing unit 331 causes the function target 335 to use the physical parameter signal SB81 through the output component 3381 to form the variable physical parameter QU1A depending on the physical parameter signal SB81. For example, the input component 3374 is a receiving component. The control device 212 transmits the physical parameter signal SB81 to the input component 3374 in a wired or wireless manner.

該物理參數目標範圍RD1ET具有一預設物理參數目標範圍界限ZD1T1和相對於該預設物理參數目標範圍界限ZD1T1的一預設物理參數目標範圍界限ZD1T2。該目標範圍界限值對DN1T包含該測量值目標範圍RN1T的一目標範圍界限值DN17和相對於該目標範圍界限值DN17的一目標範圍界限值DN18。該預設物理參數目標範圍界限ZD1T1由該目標範圍界限值DN17所代表。該預設物理參數目標範圍界限ZD1T2由該目標範圍界限值DN18所代表。 The physical parameter target range RD1ET has a preset physical parameter target range limit ZD1T1 and a preset physical parameter target range limit ZD1T2 relative to the preset physical parameter target range limit ZD1T1. The target range limit value pair DN1T includes a target range limit value DN17 of the measured value target range RN1T and a target range limit value DN18 relative to the target range limit value DN17. The preset physical parameter target range limit ZD1T1 is represented by the target range limit value DN17. The preset physical parameter target range limit ZD1T2 is represented by the target range limit value DN18.

在一些實施例中,該觸發事件EQ81是一狀態改變事件。該控制裝置212包含一操作單元297和耦合於該操作單元297的一狀態改變偵測器475。例如,該狀態改變偵測器475是一極限偵測器和一邊緣偵測器的其中之一。該極限偵測器是一極限開關。該狀態改變偵測器475被配置以偵測與一預設特徵物理參數UL81相關的一特徵物理參數到達ZL82。該功能目標335包含一物理參數應用區AJ11。該物理參數應用區AJ11具有一可變物理參數QG1A。該可變物理參數QG1A相依於該可變物理參數QU1A,並基於該預設特徵物理參數UL81而被特徵化。例如,該物理參數應用區AJ11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。該預設特徵物理參數UL81相關於該可變物理參數QU1A。 In some embodiments, the trigger event EQ81 is a state change event. The control device 212 includes an operating unit 297 and a state change detector 475 coupled to the operating unit 297. For example, the state change detector 475 is one of a limit detector and an edge detector. The limit detector is a limit switch. The state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a predetermined characteristic physical parameter UL81 to the ZL82. The function object 335 includes a physical parameter application area AJ11. The physical parameter application area AJ11 has a variable physical parameter QG1A. The variable physical parameter QG1A is dependent on the variable physical parameter QU1A, and is characterized based on the predetermined characteristic physical parameter UL81. For example, the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area. The preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.

在該輸入單元337接收該控制訊號SC81之前,該處理單元331通過該輸出單元338來使該功能目標335執行與該可變物理參數QU1A相關的該指定功能操作ZH81。該指定功能操作ZH81用於控制該可變物理參數QG1A,並藉由改變該可變物理參數QG1A來導致該觸發事件EQ81發生。該可變物理參數QG1A被配置以處於一可變物理狀態XA8A。例如,該操作單元397受該控制裝置212控制以使該功能目標335執行該指定功能操作ZH81。 Before the input unit 337 receives the control signal SC81, the processing unit 331 uses the output unit 338 to make the function target 335 execute the designated function operation ZH81 related to the variable physical parameter QU1A. The designated function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A. The variable physical parameter QG1A is configured to be in a variable physical state XA8A. For example, the operation unit 397 is controlled by the control device 212 so that the function target 335 executes the designated function operation ZH81.

在該可變物理參數QU1A於該特定物理參數範圍RD1E4之內的條件下,該指定功能操作ZH81導致該可變物理參數QG1A到達該預設特徵物理參數UL81以形成該特徵物理參數到達ZL82,並藉由形成該特徵物理參數 到達ZL82來將該可變物理狀態XA8A從一非特徵物理參數到達狀態XA81改變成一實際特徵物理參數到達狀態XA82。該狀態改變偵測器475響應該特徵物理參數到達ZL82特來產生一觸發訊號SX81。例如,該實際特徵物理參數到達狀態XA82基於該預設特徵物理參數UL81而被特徵化。該狀態改變偵測器475響應該可變物理參數QG1A被從該非特徵物理參數到達狀態XA81改變成該實際特徵物理參數到達狀態XA82的一狀態改變事件來產生該觸發訊號SX81。 Under the condition that the variable physical parameter QU1A is within the specific physical parameter range RD1E4, the designated functional operation ZH81 causes the variable physical parameter QG1A to reach the preset characteristic physical parameter UL81 to form the characteristic physical parameter to ZL82, and By forming the characteristic physical parameter Reach ZL82 to change the variable physical state XA8A from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter reaching state XA82. The state change detector 475 generates a trigger signal SX81 in response to the characteristic physical parameter reaching ZL82. For example, the actual characteristic physical parameter reaching state XA82 is characterized based on the preset characteristic physical parameter UL81. The state change detector 475 generates the trigger signal SX81 in response to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82.

例如,該觸發事件EQ81是該可變物理參數QG1A進入該實際特徵物理參數到達狀態XA82的該狀態改變事件。該操作單元297接收該觸發訊號SX81,並響應所接收的該觸發訊號SX81來產生該控制訊號SC81。例如,在該狀態改變偵測器475是該極限開關的條件下,該特徵物理參數到達ZL82是等於一可變空間位置的該可變物理參數QG1A到達等於一預設極限位置的該預設特徵物理參數UL81的一極限位置到達。 For example, the trigger event EQ81 is the state change event in which the variable physical parameter QG1A enters the actual characteristic physical parameter arrival state XA82. The operating unit 297 receives the trigger signal SX81, and generates the control signal SC81 in response to the received trigger signal SX81. For example, under the condition that the state change detector 475 is the limit switch, the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches the preset characteristic equal to a preset limit position. A limit position of the physical parameter UL81 has been reached.

例如,該操作單元297響應所接收的該觸發訊號SX81來獲得包含該目標範圍界限值對DN1T和該測量值目標範圍碼EM1T的至少其中之一的一控制應用碼UA8T,並基於該控制應用碼UA8T來產生輸送該目標範圍界限值對DN1T和該測量值目標範圍碼EM1T的至少其中之一的該控制訊號SC81。例如,該功能目標335藉由執行基於該可變物理參數QU1A而被引起的該指定功能操作ZH81來在該物理參數應用區AJ11中形成該可變物理參數 QG1A。在該物理參數應用區AJ11耦合於該狀態改變偵測器475的條件下,該狀態改變偵測器475偵測該特徵物理參數到達ZL82。 For example, the operating unit 297 obtains a control application code UA8T including at least one of the target range limit value pair DN1T and the measured value target range code EM1T in response to the received trigger signal SX81, and based on the control application code UA8T generates the control signal SC81 that transmits at least one of the target range limit value pair DN1T and the measured value target range code EM1T. For example, the function target 335 forms the variable physical parameter in the physical parameter application area AJ11 by executing the designated function operation ZH81 caused based on the variable physical parameter QU1A QG1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.

在一些實施例中,該可變物理參數QU1A是一第一可變電性參數、一第一可變力學參數、一第一可變光學參數、一第一可變溫度、一第一可變電壓、一第一可變電流、一第一可變電功率、一第一可變電阻、一第一可變電容、一第一可變電感、一第一可變頻率、一第一時鐘時間、一第一可變時間長度、一第一可變亮度、一第一可變光強度、一第一可變音量、一第一可變資料流量、一第一可變振幅、一第一可變空間位置、一第一可變位移、一第一可變順序位置、一第一可變角度、一第一可變空間長度、一第一可變距離、一第一可變平移速度、一第一可變角速度、一第一可變加速度、一第一可變力、一第一可變壓力和一第一可變機械功率的其中之一。 In some embodiments, the variable physical parameter QU1A is a first variable electrical parameter, a first variable mechanical parameter, a first variable optical parameter, a first variable temperature, a first variable Voltage, a first variable current, a first variable electric power, a first variable resistor, a first variable capacitor, a first variable inductance, a first variable frequency, a first clock Time, a first variable length of time, a first variable brightness, a first variable light intensity, a first variable volume, a first variable data flow, a first variable amplitude, a first Variable space position, a first variable displacement, a first variable sequence position, a first variable angle, a first variable space length, a first variable distance, a first variable translation speed, One of a first variable angular velocity, a first variable acceleration, a first variable force, a first variable pressure, and a first variable mechanical power.

該操作單元397被配置以依靠該控制訊號SC81而執行與該可變物理參數QU1A相關的該物理參數控制功能FA81。該控制目標裝置130是複數應用裝置的其中之一。該物理參數控制功能FA81是複數特定控制功能的其中之一,該複數特定控制功能包含一光控制功能、一力控制功能、一電控制功能、一磁控制功能和其任意組合。該複數應用裝置包含一繼電器、一控制開關裝置、一電動機、一照明裝置、一門、一販賣機、一能量轉換器、一負載裝置、一定時裝置、一玩具、一電器、一列印裝置、一顯示裝置、一移動裝置、一揚聲器和其任意組合。 The operating unit 397 is configured to rely on the control signal SC81 to execute the physical parameter control function FA81 related to the variable physical parameter QU1A. The control target device 130 is one of a plurality of application devices. The physical parameter control function FA81 is one of a plurality of specific control functions, and the plurality of specific control functions include a light control function, a force control function, an electric control function, a magnetic control function, and any combination thereof. The plural application devices include a relay, a control switch device, a motor, a lighting device, a door, a vending machine, an energy converter, a load device, a timing device, a toy, an electrical appliance, a printing device, a Display device, a mobile device, a speaker, and any combination thereof.

該功能目標335是複數應用目標的其中之一,並被配置以執行一特定應用功能。該特定應用功能是複數物理參數應用功能的其中之一,該複數物理參數應用功能包含一光使用功能、一力使用功能、一電使用功能、一磁使用功能和其任意組合。該複數應用目標包含一電子組件、一致動器、一電阻器、一電容器、一電感器、一繼電器、一控制開關、一電晶體、一電動機、一照明單元、一能量轉換單元、一負載單元、一定時單元、一列印單元、一顯示目標、一揚聲器和其任意組合。例如,該功能目標335是一物理可實現功能目標。 The function target 335 is one of a plurality of application targets and is configured to perform a specific application function. The specific application function is one of the plural physical parameter application functions. The plural physical parameter application function includes a light use function, a force use function, an electricity use function, a magnetic use function, and any combination thereof. The plural application targets include an electronic component, an actuator, a resistor, a capacitor, an inductor, a relay, a control switch, a transistor, a motor, a lighting unit, an energy conversion unit, and a load unit , A certain time unit, a printing unit, a display target, a speaker and any combination thereof. For example, the functional target 335 is a physically achievable functional target.

例如,該可變物理參數QU1A和該可變物理參數QG1A分別屬於一物理參數類型TU11和一物理參數類型TU1G。該物理參數類型TU11相同或不同於該物理參數類型TU1G。該預設特徵物理參數UL81屬於該物理參數類型TU1G。該功能目標335進一步包含具有該可變物理參數QU1A的一物理參數形成區AU11。該物理參數應用區AJ11耦合於該物理參數形成區AU11。例如,該指定功能操作ZH81用於驅動該物理參數應用區AJ11以形成該特徵物理參數到達ZL82。例如,該物理參數形成區AU11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。例如,該物理參數類型TU11不同於一時間類型。 For example, the variable physical parameter QU1A and the variable physical parameter QG1A belong to a physical parameter type TU11 and a physical parameter type TU1G, respectively. The physical parameter type TU11 is the same as or different from the physical parameter type TU1G. The preset characteristic physical parameter UL81 belongs to the physical parameter type TU1G. The function object 335 further includes a physical parameter formation area AU11 having the variable physical parameter QU1A. The physical parameter application area AJ11 is coupled to the physical parameter forming area AU11. For example, the designated function operation ZH81 is used to drive the physical parameter application area AJ11 to form the characteristic physical parameter to ZL82. For example, the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area. For example, the physical parameter type TU11 is different from a time type.

該可變物理參數QG1A是一可變電性參數、一可變力學參數、一可變光學參數、一可變溫度、一可變電壓、一可變電流、一可變電功率、一可變電阻、一可變電容、一可變電感、一可變頻率、一時鐘時間、一可 變時間長度、一可變亮度、一可變光強度、一可變音量、一可變資料流量、一可變振幅、一可變空間位置、一可變位移、一可變順序位置、一可變角度、一可變空間長度、一可變距離、一可變平移速度、一可變角速度、一可變加速度、一可變力、一可變壓力和一可變機械功率的其中之一。例如,該可變物理參數QU1A相同或不同於該可變物理參數QG1A。 The variable physical parameter QG1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, a variable current, a variable electric power, a variable Resistance, one variable capacitor, one variable inductance, one variable frequency, one clock time, one option Variable time length, one variable brightness, one variable light intensity, one variable volume, one variable data flow, one variable amplitude, one variable spatial position, one variable displacement, one variable sequence position, one possible One of a variable angle, a variable space length, a variable distance, a variable translation speed, a variable angular velocity, a variable acceleration, a variable force, a variable pressure, and a variable mechanical power. For example, the variable physical parameter QU1A is the same as or different from the variable physical parameter QG1A.

請參閱第10圖、第11圖和第12圖。第10圖為繪示於第1圖中的該控制系統901的一實施結構9019的示意圖。第11圖為繪示於第1圖中的該控制系統901的一實施結構9020的示意圖。如第10圖、第11圖和第12圖所示,該實施結構9019、該實施結構9020和該實施結構9021的每一結構包含該控制裝置212和該控制目標裝置130。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337和該輸出單元338。該輸入單元337、該輸出單元338、該感測單元334、該功能目標335和該儲存單元332該皆受該處理單元331控制。 Please refer to Figure 10, Figure 11 and Figure 12. FIG. 10 is a schematic diagram of an implementation structure 9019 of the control system 901 shown in FIG. 1. FIG. 11 is a schematic diagram of an implementation structure 9020 of the control system 901 shown in FIG. 1. As shown in FIGS. 10, 11, and 12, each of the implementation structure 9019, the implementation structure 9020, and the implementation structure 9021 includes the control device 212 and the control target device 130. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338. The input unit 337, the output unit 338, the sensing unit 334, the function target 335, and the storage unit 332 should all be controlled by the processing unit 331.

在一些實施例中,該感測單元334感測該可變物理參數QU1A以產生該第一感測訊號SN81。例如,在該輸入單元337接收該控制訊號SC81的條件下,該感測單元334感測該可變物理參數QU1A以產生該第一感測訊號SN81。在該處理單元331藉由執行該訊號產生控制GY81來導致該輸出單元338於該操作時間TF81之內產生該功能訊號SG81之後,該感測單元334感測該可變物理參數QU1A 以產生該第二感測訊號SN82。例如,該感測單元334是一時間感測單元、一電性參數感測單元、一力學參數感測單元、一光學參數感測單元、一溫度感測單元、一濕度感測單元、一運動感測單元和一磁性參數感測單元的其中之一。 In some embodiments, the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81. For example, under the condition that the input unit 337 receives the control signal SC81, the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81. After the processing unit 331 executes the signal generation control GY81 to cause the output unit 338 to generate the function signal SG81 within the operation time TF81, the sensing unit 334 senses the variable physical parameter QU1A To generate the second sensing signal SN82. For example, the sensing unit 334 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, and a motion sensing unit. One of the sensing unit and a magnetic parameter sensing unit.

該感測單元334包含耦合於該處理單元331的一感測組件3341,並使用該感測組件3341以產生該第一感測訊號SN81和該第二感測訊號SN82。該感測組件3341屬於一感測器類型7341,並是第一複數應用感測器的其中之一。該第一複數應用感測器包含一第一電壓感測器、一第一電流感測器、一第一電阻感測器、一第一電容感測器、一第一電感感測器、一第一加速度計、一第一陀螺儀、一第一壓力轉能器、一第一應變規、一第一定時器、一第一光偵測器、一第一溫度感測器和一第一濕度感測器。例如,該感測組件3341產生一感測訊號分量SN811。該第一感測訊號SN81包含該感測訊號分量SN811。 The sensing unit 334 includes a sensing component 3341 coupled to the processing unit 331, and uses the sensing component 3341 to generate the first sensing signal SN81 and the second sensing signal SN82. The sensing component 3341 belongs to a sensor type 7341 and is one of the first plural application sensors. The first plural application sensor includes a first voltage sensor, a first current sensor, a first resistance sensor, a first capacitance sensor, a first inductance sensor, a First accelerometer, a first gyroscope, a first pressure transducer, a first strain gauge, a first timer, a first light detector, a first temperature sensor and a first Humidity sensor. For example, the sensing component 3341 generates a sensing signal component SN811. The first sensing signal SN81 includes the sensing signal component SN811.

該感測單元334進一步包含耦合於該處理單元331的一感測組件3342,並使用該感測組件3342以產生該第一感測訊號SN81和該第二感測訊號SN82。該感測組件3342屬於一感測器類型7342,並是第二複數應用感測器的其中之一。該感測器類型7342不同於或獨立於該感測器類型7341。該第二複數應用感測器包含一第二電壓感測器、一第二電流感測器、一第二電阻感測器、一第二電容感測器、一第二電感感測器、一第二加速度計、一第二陀螺儀、一第二壓力轉能器、一第二應變規、一第二定時器、一第二光偵測器、一第二溫度感測器和一第二濕度感測器。 The sensing unit 334 further includes a sensing component 3342 coupled to the processing unit 331, and uses the sensing component 3342 to generate the first sensing signal SN81 and the second sensing signal SN82. The sensor component 3342 belongs to a sensor type 7342 and is one of the second plural application sensors. The sensor type 7342 is different from or independent of the sensor type 7341. The second plural application sensor includes a second voltage sensor, a second current sensor, a second resistance sensor, a second capacitance sensor, a second inductance sensor, a Second accelerometer, a second gyroscope, a second pressure transducer, a second strain gauge, a second timer, a second light detector, a second temperature sensor and a second Humidity sensor.

例如,該感測組件3342產生一感測訊號分量SN812。該第一感測訊號SN81進一步包含該感測訊號分量SN812。例如,該感測單元334屬於一感測器類型734。該感測器類型734相關於該感測器類型7341和該感測器類型7342。例如,該感測單元334、該感測組件3341和該感測組件3342分別是一電功率感測單元、一電壓感測器和一電流感測器。例如,該感測單元334、該感測組件3341和該感測組件3342分別是一慣性測量單元、一加速度計和一陀螺儀。 For example, the sensing component 3342 generates a sensing signal component SN812. The first sensing signal SN81 further includes the sensing signal component SN812. For example, the sensing unit 334 belongs to a sensor type 734. The sensor type 734 is related to the sensor type 7341 and the sensor type 7342. For example, the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an electric power sensing unit, a voltage sensor, and a current sensor, respectively. For example, the sensing unit 334, the sensing component 3341, and the sensing component 3342 are an inertial measurement unit, an accelerometer, and a gyroscope, respectively.

在一些實施例中,該可變物理參數QU1A相依於一可變物理參數JA1A和不同於該可變物理參數JA1A的一可變物理參數JB1A。例如,該可變物理參數QU1A、該可變物理參數JA1A和該可變物理參數JB1A分別是一可變電功率、一可變電壓和一可變電流,並分別屬於一第一物理參數類型、一第二物理參數類型和一第三物理參數類型。該第二物理參數類型和該第三物理參數類型是不同的或獨立的。該第一物理參數類型相依於該第二物理參數類型和該第三物理參數類型。該感測組件3341感測該可變物理參數JA1A以產生該感測訊號分量SN811。該感測組件3342感測該可變物理參數JB1A以產生該感測訊號分量SN812。 In some embodiments, the variable physical parameter QU1A depends on a variable physical parameter JA1A and a variable physical parameter JB1A different from the variable physical parameter JA1A. For example, the variable physical parameter QU1A, the variable physical parameter JA1A, and the variable physical parameter JB1A are respectively a variable electric power, a variable voltage, and a variable current, and belong to a first physical parameter type, A second physical parameter type and a third physical parameter type. The second physical parameter type and the third physical parameter type are different or independent. The first physical parameter type depends on the second physical parameter type and the third physical parameter type. The sensing component 3341 senses the variable physical parameter JA1A to generate the sensing signal component SN811. The sensing component 3342 senses the variable physical parameter JB1A to generate the sensing signal component SN812.

該處理單元331接收該感測訊號分量SN811和該感測訊號分量SN812。在該輸入單元337接收該控制訊號SC81的條件下,該處理單元331響應該感測訊號分量SN811和該感測訊號分量SN812來獲得該第一測量值 VN81。例如,該處理單元331響應該感測訊號分量SN811來獲得一測量值VN811,響應該感測訊號分量SN812來獲得一測量值VN812,並藉由執行使用該測量值VN811和該測量值VN812的一科學計算MY81來獲得該第一測量值VN81。該科學計算MY81基於該第一物理參數類型、該第二物理參數類型和該第三物理參數類型而被預先制定。 The processing unit 331 receives the sensing signal component SN811 and the sensing signal component SN812. Under the condition that the input unit 337 receives the control signal SC81, the processing unit 331 responds to the sensing signal component SN811 and the sensing signal component SN812 to obtain the first measurement value VN81. For example, the processing unit 331 obtains a measurement value VN811 in response to the sensing signal component SN811, obtains a measurement value VN812 in response to the sensing signal component SN812, and executes one of the measurement value VN811 and the measurement value VN812. The MY81 is scientifically calculated to obtain the first measured value VN81. The scientific calculation MY81 is predetermined based on the first physical parameter type, the second physical parameter type, and the third physical parameter type.

該可變物理參數JA1A和該可變物理參數JB1A的每一物理參數是一可變電性參數、一可變力學參數、一可變光學參數、一可變溫度、一可變電壓、一可變電流、一可變電功率、一可變電阻、一可變電容、一可變電感、一可變頻率、一時鐘時間、一可變時間長度、一可變亮度、一可變光強度、一可變音量、一可變資料流量、一可變振幅、一可變空間位置、一可變位移、一可變順序位置、一可變角度、一可變空間長度、一可變距離、一可變平移速度、一可變角速度、一可變加速度、一可變力、一可變壓力和一可變機械功率的其中之一。 Each physical parameter of the variable physical parameter JA1A and the variable physical parameter JB1A is a variable electrical parameter, a variable mechanical parameter, a variable optical parameter, a variable temperature, a variable voltage, and a variable electrical parameter. Variable current, one variable electric power, one variable resistor, one variable capacitor, one variable inductance, one variable frequency, one clock time, one variable time length, one variable brightness, one variable light intensity , A variable volume, a variable data flow, a variable amplitude, a variable space position, a variable displacement, a variable sequence position, a variable angle, a variable space length, a variable distance, One of a variable translation speed, a variable angular velocity, a variable acceleration, a variable force, a variable pressure, and a variable mechanical power.

在一些實施例中,該感測單元334被配置以符合該感測器規格FU11。該感測單元334藉由執行相依於該感測器靈敏度YW81的該感測訊號產生HF81來產生該第一感測訊號SN81。該功能目標335包含具有該可變物理參數QU1A的該物理參數形成區AU11。在該輸入單元337接收該控制訊號SC81且該可變物理參數QU1A存在於該物理參數形成區AU11中的條件下,該感測單元334感測該可變物理參數QU1A以產生該第一感測訊號SN81。例如,該感測單元334耦合於該物理參數形成區AU11,或位於該物理 參數形成區AU11中。該處理單元331接收該第一感測訊號SN81,並藉由處理所接收的該第一感測訊號SN81來以該指定測量值格式HH11獲得該第一測量值VN81。 In some embodiments, the sensing unit 334 is configured to comply with the sensor specification FU11. The sensing unit 334 generates the first sensing signal SN81 by executing the sensing signal generation HF81 dependent on the sensor sensitivity YW81. The function object 335 includes the physical parameter formation area AU11 having the variable physical parameter QU1A. Under the condition that the input unit 337 receives the control signal SC81 and the variable physical parameter QU1A exists in the physical parameter formation area AU11, the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing Signal SN81. For example, the sensing unit 334 is coupled to the physical parameter formation area AU11, or is located in the physical parameter formation area AU11. In the parameter formation area AU11. The processing unit 331 receives the first sensing signal SN81, and obtains the first measurement value VN81 in the designated measurement value format HH11 by processing the received first sensing signal SN81.

該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L來執行用於檢查該第一測量值VN81和該測量值應用範圍RN1L之間的該第一數學關係KV81的一檢查操作BV81,並基於該檢查操作BV81來做出該第一邏輯決定PB81。在一些實施例中,該處理單元331處理所接收的該第一感測訊號SN81以獲得包含該第一測量值VN81的一測量值序列JN81。該處理單元331藉由比較該測量值序列JN81和所獲得的該應用範圍界限值對DN1L來執行用於檢查該測量值序列JN81和該測量值應用範圍RN1L之間的一數學關係KV85的一檢查操作BV85。該處理單元331基於該檢查操作BV85來做出該第一邏輯決定PB81。例如,該檢查操作BV85包含該檢查操作BV81。 The processing unit 331 compares the first measurement value VN81 with the obtained application range limit value pair DN1L to perform a check for the first mathematical relationship between the first measurement value VN81 and the measurement value application range RN1L A check operation BV81 of KV81, and the first logical decision PB81 is made based on the check operation BV81. In some embodiments, the processing unit 331 processes the received first sensing signal SN81 to obtain a measurement value sequence JN81 including the first measurement value VN81. The processing unit 331 performs a check for checking a mathematical relationship KV85 between the measurement value sequence JN81 and the measurement value application range RN1L by comparing the measurement value sequence JN81 with the obtained application range limit value pair DN1L Operate BV85. The processing unit 331 makes the first logical decision PB81 based on the check operation BV85. For example, the inspection operation BV85 includes the inspection operation BV81.

例如,在處理單元331基於該資料比較CD81而辨識該第一測量值VN81為於該測量值應用範圍RN1L之內的一可允許值VG81的條件下,該處理單元331做出該第一邏輯決定PB81以成為肯定的。或者,在該處理單元331辨識該第一數學關係KV81為一數值交集關係KW81的條件下,該處理單元331做出該第一邏輯決定PB81以成為肯定的。 For example, under the condition that the processing unit 331 recognizes that the first measurement value VN81 is an allowable value VG81 within the measurement value application range RN1L based on the data comparison CD81, the processing unit 331 makes the first logical decision PB81 has become affirmative. Or, under the condition that the processing unit 331 recognizes that the first mathematical relationship KV81 is a numerical intersection relationship KW81, the processing unit 331 makes the first logical decision PB81 to become affirmative.

在一些實施例中,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該測量值目標範圍 碼EM1T。該處理單元331於該操作時間TF81之後的該指定時間TG82之內執行與該可變物理參數QU1A相關的一驗證操作ZU81。在該處理單元331基於該驗證操作ZU81而確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。例如,該驗證操作ZU81於該操作時間TF81之後的該指定時間TG82之內響應該第二感測訊號SN82來以該指定測量值格式HH81獲得該第二測量值VN82。 In some embodiments, the processing unit 331 responds to the control signal SC81 to obtain the measurement value target range from the control signal SC81 Code EM1T. The processing unit 331 performs a verification operation ZU81 related to the variable physical parameter QU1A within the designated time TG82 after the operation time TF81. Under the condition that the processing unit 331 determines the physical parameter target range RD1ET into which the variable physical parameter QU1A enters based on the verification operation ZU81, the processing unit 331 uses the storage unit 332 to convert the obtained measurement value target range code EM1T is assigned to the variable physical parameter range code UN8A. For example, the verification operation ZU81 responds to the second sensing signal SN82 within the designated time TG82 after the operation time TF81 to obtain the second measured value VN82 in the designated measured value format HH81.

該驗證操作ZU81基於所獲得的該測量值自標範圍碼EM1T來獲得該目標範圍界限值對DN1T,並藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T來檢查該第二測量值VN82和該測量值目標範圍RN1T之間的該第二數學關係KV91以做出該第二測量值VN82是否為於該測量值目標範圍RN1T之內的該第三邏輯決定PB91。在該第三邏輯決定PB91是肯定的條件下,該驗證操作ZU81確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET,或確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET。 The verification operation ZU81 obtains the target range limit value pair DN1T based on the obtained measurement value self-calibration range code EM1T, and checks the target range limit value pair DN1T by comparing the second measurement value VN82 with the obtained target range limit value pair DN1T The second mathematical relationship KV91 between the second measurement value VN82 and the measurement value target range RN1T is used to make the third logical decision PB91 whether the second measurement value VN82 is within the measurement value target range RN1T. Under the condition that the third logical decision PB91 is affirmative, the verification operation ZU81 determines the physical parameter target range RD1ET in which the variable physical parameter QU1A is currently located, or determines the physical parameter target range RD1ET into which the variable physical parameter QU1A enters .

在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼 UN8A和所獲得的該測量值目標範圍碼EM1T之間的該第一碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 Under the condition that the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines based on the verification operation ZU81 that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET , The processing unit 331 is based on the variable physical parameter range code equal to the specific measurement value range code EM14 The first code difference DF81 between UN8A and the obtained measurement value target range code EM1T uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

在一些實施例中,在該處理單元331於該指定時間TG82之內基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331執行等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的一資料比較CE8T。在該處理單元331基於該資料比較CE8T而確定等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該第一碼差異DF81的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 In some embodiments, under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the physical parameter target range RD1ET based on the verification operation ZU81 within the specified time TG82, the processing unit 331 executes equal to A data comparison CE8T between the variable physical parameter range code UN8A of the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. The processing unit 331 compares CE8T based on the data to determine the first code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. Under conditions, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

例如,在該處理單元331基於該資料比較CE8T而確定該第一碼差異DF81的條件下,該處理單元331執行該確保操作GU81,該確保操作GU81用於導致代表所確定的該物理參數目標範圍RD1ET的該物理參數目標範圍碼UN8T被該儲存單元332記錄。例如,該物理參數目標範圍碼UN8T等於所獲得的該測量值目標範圍碼EM1T。該確保操作GU81使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 For example, under the condition that the processing unit 331 determines the first code difference DF81 based on the data comparison CE8T, the processing unit 331 executes the guarantee operation GU81, and the guarantee operation GU81 is used to result in representing the determined target range of the physical parameter The physical parameter target range code UN8T of RD1ET is recorded by the storage unit 332. For example, the physical parameter target range code UN8T is equal to the obtained measured value target range code EM1T. The guarantee operation GU81 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

當該輸入單元337接收該控制訊號SC81時,該輸出組件3383顯示該第一狀態指示LB81。例如,該第一狀態指示LB81用於指示該可變物理參數QU1A被配 置於該第一特定物理參數範圍RD1E4之內的該第一特定狀態XJ81。在該輸入單元337接收該控制訊號SC81之前,該處理單元331被配置以獲得該特定測量值範圍碼EM14,並基於所獲得的該特定測量值範圍碼EM14來導致該輸出單元338顯示該第一狀態指示LB81。 When the input unit 337 receives the control signal SC81, the output component 3383 displays the first status indicator LB81. For example, the first state indicator LB81 is used to indicate that the variable physical parameter QU1A is configured. The first specific state XJ81 placed within the first specific physical parameter range RD1E4. Before the input unit 337 receives the control signal SC81, the processing unit 331 is configured to obtain the specific measurement value range code EM14, and based on the obtained specific measurement value range code EM14, cause the output unit 338 to display the first The status indicates LB81.

在該處理單元331基於該資料比較CE8T而確定該第一碼差異DF81的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T來導致該輸出組件3383將該第一狀態指示LB81改變成該第二狀態指示LB82。例如,該第二狀態指示LB82用於指示該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的該第二特定狀態XJ82。 Under the condition that the processing unit 331 determines the first code difference DF81 based on the data comparing CE8T, the processing unit 331 causes the output component 3383 to indicate the first status LB81 based on the obtained measurement value target range code EM1T Change to this second state to indicate LB82. For example, the second state indicator LB82 is used to indicate that the variable physical parameter QU1A is currently in the second specific state XJ82 within the physical parameter target range RD1ET.

在一些實施例中,該物理參數目標範圍RD1ET和該物理參數應用範圍RD1EL皆包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。該物理參數目標範圍RD1ET相同或不同於該物理參數應用範圍RD1EL。該可變物理參數QU1A進一步基於一物理參數候選範圍RD1E2而被特徵化。該物理參數候選範圍RD1E2不同於該物理參數應用範圍RD1EL,並相同或不同於該物理參數目標範圍RD1ET。例如,該物理參數應用範圍RD1EL是一物理參數候選範圍。 In some embodiments, the physical parameter target range RD1ET and the physical parameter application range RD1EL are both included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,... The physical parameter target range RD1ET is the same as or different from the physical parameter application range RD1EL. The variable physical parameter QU1A is further characterized based on a physical parameter candidate range RD1E2. The physical parameter candidate range RD1E2 is different from the physical parameter application range RD1EL, and is the same as or different from the physical parameter target range RD1ET. For example, the physical parameter application range RD1EL is a physical parameter candidate range.

該物理參數目標範圍RD1ET被配置以對應於一對應物理參數範圍RY1ET。該額定物理參數範圍RD1E等於該物理參數目標範圍RD1ET和該對應物理參數範圍RY1ET的一範圍組合,並包含該物理參數應用範圍RD1EL 和該物理參數候選範圍RD1E2。該測量值目標範圍RN1T被配置以對應於一對應測量值範圍RX1T。該額定測量值範圍RD1N等於該測量值目標範圍RN1T和該對應測量值範圍RX1T的一範圍組合。該對應物理參數範圍RY1ET由該對應測量值範圍RX1T所代表。 The physical parameter target range RD1ET is configured to correspond to a corresponding physical parameter range RY1ET. The rated physical parameter range RD1E is equal to a range combination of the physical parameter target range RD1ET and the corresponding physical parameter range RY1ET, and includes the physical parameter application range RD1EL And the physical parameter candidate range RD1E2. The measurement value target range RN1T is configured to correspond to a corresponding measurement value range RX1T. The rated measurement value range RD1N is equal to a range combination of the measurement value target range RN1T and the corresponding measurement value range RX1T. The corresponding physical parameter range RY1ET is represented by the corresponding measurement value range RX1T.

該測量值目標範圍RN1T和該測量值應用範圍RN1L皆包含於該複數不同測量值參考範圍RN11、RN12、…中。該測量值目標範圍RN1T相同或不同於該測量值應用範圍RN1L。該物理參數候選範圍RD1E2由一測量值候選範圍RN12所代表。該測量值候選範圍RN12不同於該測量值應用範圍RN1L,並相同或不同於該測量值目標範圍RN1T。該額定測量值範圍RD1N包含該測量值應用範圍RN1L和該測量值候選範圍RN12。例如,該測量值候選範圍RN12基於該物理參數候選範圍RD1E2和該額定測量值範圍RD1N而被預設。該測量值應用範圍RN1L是一測量值候選範圍。該額定測量值範圍RD1N基於該額定物理參數範圍表示GA8E、該感測器靈敏度表示GW81和該額定物理參數範圍表示GA8E來用該指定測量值格式HH81而被預設。 The measurement value target range RN1T and the measurement value application range RN1L are both included in the plurality of different measurement value reference ranges RN11, RN12,... The measurement value target range RN1T is the same or different from the measurement value application range RN1L. The physical parameter candidate range RD1E2 is represented by a measurement value candidate range RN12. The measurement value candidate range RN12 is different from the measurement value application range RN1L, and is the same as or different from the measurement value target range RN1T. The rated measurement value range RD1N includes the measurement value application range RN1L and the measurement value candidate range RN12. For example, the measurement value candidate range RN12 is preset based on the physical parameter candidate range RD1E2 and the rated measurement value range RD1N. The measurement value application range RN1L is a measurement value candidate range. The rated measurement value range RD1N is preset based on the rated physical parameter range representing GA8E, the sensor sensitivity representing GW81, and the rated physical parameter range representing GA8E using the designated measurement value format HH81.

在一些實施例中,該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是分開的或相鄰的。在該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是分開的條件下,該測量值應用範圍RN1L和該測量值候選範圍RN12是分開的。在該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是相鄰的條件下,該 測量值應用範圍RN1L和該測量值候選範圍RN12是相鄰的。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數候選範圍RD1E2,分別由該複數不同測量值參考範圍RN11、RN12、…所代表,並分別由複數物理參數參考範圍碼所代表。 In some embodiments, the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separate or adjacent. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are separated, the measurement value application range RN1L and the measurement value candidate range RN12 are separated. Under the condition that the physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are adjacent, the The measurement value application range RN1L and the measurement value candidate range RN12 are adjacent. The plurality of different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter candidate range RD1E2, which are respectively represented by the plurality of different measured value reference ranges RN11, RN12,..., and are respectively represented by a complex number of physical parameter reference range codes.

該測量值候選範圍RN12由一測量值候選範圍碼EM12所代表,並具有一候選範圍界限值對DN1B,藉此該測量值候選範圍碼EM12被配置以指示該物理參數候選範圍RD1E2。例如,該候選範圍界限值對DN1B包含一候選範圍界限值DN13和相對於該候選範圍界限值DN13的一候選範圍界限值DN14。該測量值候選範圍碼EM12和該候選範圍界限值對DN1B皆被預設。該複數不同測量值參考範圍碼EM11、EM12、…包含所預設的該測量值候選範圍碼EM12。該複數不同測量值參考範圍RN11、RN12、…包含該測量值候選範圍RN12,並分別由該複數不同測量值參考範圍碼EM11、EM12、…所代表。例如,該複數物理參數參考範圍碼被配置以分別等於該複數不同測量值參考範圍碼EM11、EM12、…。 The measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range threshold pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2. For example, the candidate range limit value pair DN1B includes a candidate range limit value DN13 and a candidate range limit value DN14 relative to the candidate range limit value DN13. The measurement value candidate range code EM12 and the candidate range limit value pair DN1B are both preset. The plurality of different measurement value reference range codes EM11, EM12,... Contain the preset measurement value candidate range code EM12. The plurality of different measurement value reference ranges RN11, RN12, ... include the measurement value candidate range RN12, and are respectively represented by the plurality of different measurement value reference range codes EM11, EM12, .... For example, the plural physical parameter reference range codes are configured to be respectively equal to the plural different measured value reference range codes EM11, EM12,...

例如,該觸發應用功能規格GAL8進一步包含用於表示該物理參數候選範圍RD1E2的一物理參數候選範圍表示GA82。該測量值候選範圍RN12和該候選範圍界限值對DN1B皆基於該物理參數候選範圍表示GA82、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81、和用於轉換該物理參數候選範圍表示GA82的的一資料編碼操作ZX84來用該指定測量值格式HH81而被預設。 For example, the trigger application function specification GAL8 further includes a physical parameter candidate range representation GA82 for representing the physical parameter candidate range RD1E2. The measurement value candidate range RN12 and the candidate range limit value pair DN1B are based on the physical parameter candidate range representing GA82, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and the candidate range for converting the physical parameter A data encoding operation ZX84 representing GA82 is preset using the specified measurement value format HH81.

在一些實施例中,該物理參數控制功能規格GAL8用於表示該額定物理參數範圍RD1E和該複數不同物理參數參考範圍RD1E1、RD1E2、…。該額定測量值範圍RD1N、該額定範圍界限值對DD1A、該複數不同測量值參考範圍RN11、RN12、…、及該複數不同測量值參考範圍碼EM11、EM12、…皆基於該物理參數控制功能規格GAL8而被預設。該物理參數控制功能FA81選擇自複數不同物理參數控制作用功能。該儲存單元332儲存該物理參數控制功能規格GAL8。 In some embodiments, the physical parameter control function specification GAL8 is used to indicate the rated physical parameter range RD1E and the plurality of different physical parameter reference ranges RD1E1, RD1E2,... The rated measurement value range RD1N, the rated range limit value pair DD1A, the multiple different measurement value reference ranges RN11, RN12,..., and the multiple different measurement value reference range codes EM11, EM12,... are all based on the physical parameter control function specification GAL8 is preset. The physical parameter control function FA81 is selected from multiple different physical parameter control functions. The storage unit 332 stores the physical parameter control function specification GAL8.

該處理單元331根據該物理參數控制功能規格GAL8來預先設定該額定範圍界限值對DD1A、該應用範圍界限值對DN1L、該目標範圍界限值對DN1T、該候選範圍界限值對DN1B、…。該第一感測訊號SN81包含感測資料。例如,該感測資料屬於該二進制資料類型。該處理單元331基於該感測資料來以該指定測量值格式HH81獲得該第一測量值VN81。 The processing unit 331 presets the rated range limit value pair DD1A, the application range limit value pair DN1L, the target range limit value pair DN1T, the candidate range limit value pair DN1B,... according to the physical parameter control function specification GAL8. The first sensing signal SN81 includes sensing data. For example, the sensing data belongs to the binary data type. The processing unit 331 obtains the first measurement value VN81 in the designated measurement value format HH81 based on the sensing data.

在一些實施例中,該操作單元397被配置以依靠該控制訊號SC81來執行該物理參數控制功能FA81。該處理單元331基於用於該物理參數控制功能FA81的該檢查操作BV81來做出該第一測量值VN81是否為於該測量值應用範圍RN1L之內的該第一邏輯決定PB81。在該第一邏輯決定PB81是肯定的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該範圍關係KE8A以做出該合理決定PW81。 In some embodiments, the operating unit 397 is configured to rely on the control signal SC81 to execute the physical parameter control function FA81. The processing unit 331 makes the first logical decision PB81 whether the first measurement value VN81 is within the measurement value application range RN1L based on the check operation BV81 for the physical parameter control function FA81. Under the condition that the first logical decision PB81 is affirmative, the processing unit 331 checks the range relationship KE8A by comparing the obtained target range limit value pair DN1T with the obtained application range limit value pair DN1L to make It is reasonable to decide PW81.

例如,在該合理決定PW81是肯定的條件下,該處理單元331基於所獲得的該控制碼CC1T來執行該訊號產生控制GY81以導致該輸出單元338產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該功能訊號SG81。在該第一邏輯決定PB81是否定的條件下,該處理單元331藉由執行使用所確定的該測量值應用範圍碼EM1L的一科學計算MR82來確定選擇自該複數不同測量值參考範圍碼EM11、EM12、…的該測量值候選範圍碼EM12以便從該複數不同測量值參考範圍RN11、RN12、…中選擇該測量值候選範圍RN12。 For example, under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 executes the signal generation control GY81 based on the obtained control code CC1T to cause the output unit 338 to generate a signal for causing the variable physical parameter QU1A to enter the The function signal SG81 of the physical parameter target range RD1ET. Under the condition that the first logic determines that PB81 is negative, the processing unit 331 performs a scientific calculation MR82 using the determined measurement value application range code EM1L to determine to select from the plurality of different measurement value reference range codes EM11, The measurement value candidate range code EM12 of EM12,... Is used to select the measurement value candidate range RN12 from the plurality of different measurement value reference ranges RN11, RN12,...

該處理單元331基於所確定的該測量值候選範圍碼EM12來獲得該候選範圍界限值對DN1B,並基於該第一測量值VN81和所獲得的該候選範圍界限值對DN1B之間的一資料比較CD82來檢查該第一測量值VN81和所選擇的該測量值候選範圍RN12之間的一數學關係KV82以做出該第一測量值VN81是否為於所選擇的該測量值候選範圍RN12之內的一邏輯決定PB82。在該邏輯決定PB82是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前處於的該物理參數候選範圍RD1E2。 The processing unit 331 obtains the candidate range limit value pair DN1B based on the determined measurement value candidate range code EM12, and compares based on a data between the first measurement value VN81 and the obtained candidate range limit value pair DN1B CD82 checks a mathematical relationship KV82 between the first measurement value VN81 and the selected measurement value candidate range RN12 to determine whether the first measurement value VN81 is within the selected measurement value candidate range RN12 A logic determines PB82. Under the condition that the logical decision PB82 is affirmative, the processing unit 331 determines the physical parameter candidate range RD1E2 in which the variable physical parameter QU1A is currently located.

在該邏輯決定PB82是肯定的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值候選範圍碼EM12來檢查該測量值目標範圍RN1T和所選擇的該測量值候選範圍RN12之間的一範圍關係KE8B以做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值候選範圍碼EM12是否相等的一邏輯 決定PZ82。在該邏輯決定PZ82是否定的條件下,該處理單元331導致該輸出單元338產生用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET的該功能訊號SG81。 Under the condition that the logical decision PB82 is affirmative, the processing unit 331 checks the measured value target range RN1T and the selected measured value target range RN1T by comparing the obtained measured value target range code EM1T with the determined measured value candidate range code EM12 A range relationship KE8B between the measured value candidate range RN12 to determine whether the obtained measured value target range code EM1T and the determined measured value candidate range code EM12 are equal Decide PZ82. Under the condition that the logical decision PZ82 is negative, the processing unit 331 causes the output unit 338 to generate the function signal SG81 for causing the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

在一些實施例中,在該可變物理參數QU1A由於該控制訊號SC81而被配置於該物理參數目標範圍RD1ET之內的條件下,包含於該輸入單元337中的該第三輸入組件3373接收該使用者輸入操作BQ81,並響應該使用者輸入操作BQ81來提供一輸入資料DH81到該處理單元331。該處理單元331對於該輸入資料DH81執行一資料編碼操作EA81以確定該特定輸入碼UW81。該處理單元331響應於確定該特定輸入碼UW81來執行用於該物理參數控制功能FA81的一檢查操作ZP81以決定所確定的該特定輸入碼UW81是否等於該可變物理參數範圍碼UN8A。 In some embodiments, under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET due to the control signal SC81, the third input component 3373 included in the input unit 337 receives the The user inputs operation BQ81, and responds to the user input operation BQ81 to provide input data DH81 to the processing unit 331. The processing unit 331 performs a data encoding operation EA81 on the input data DH81 to determine the specific input code UW81. In response to determining the specific input code UW81, the processing unit 331 executes a check operation ZP81 for the physical parameter control function FA81 to determine whether the determined specific input code UW81 is equal to the variable physical parameter range code UN8A.

例如,在該處理單元331確定該特定輸入碼UW81的條件下,該處理單元331藉由使用該儲存單元332來讀取等於該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A,並執行用於檢查所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T之間的一算術關係KP81的該檢查操作ZP81。該檢查操作ZP81被配置以藉由執行用於該物理參數控制功能FA81的一資料比較CE81來比較所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T以決定所確定的該特定輸入碼UW81和所讀取的該測量值目標範圍碼EM1T是否不同。 For example, under the condition that the processing unit 331 determines the specific input code UW81, the processing unit 331 uses the storage unit 332 to read the variable physical parameter range code UN8A equal to the measured value target range code EM1T, and The checking operation ZP81 for checking an arithmetic relationship KP81 between the determined specific input code UW81 and the read measurement value target range code EM1T is performed. The check operation ZP81 is configured to compare the determined specific input code UW81 with the read target range code EM1T by executing a data comparison CE81 for the physical parameter control function FA81 to determine the determined Whether the specific input code UW81 and the read target range code EM1T of the measured value are different.

在該處理單元331藉由執行該資料比較 CE81來確定所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間的該第二碼差異DX81的條件下,該處理單元331導致該輸出組件3381執行用於該物理參數控制功能FA81的一訊號產生操作BY82以產生一功能訊號SG82。例如,該功能訊號SG82是一控制訊號。該輸出組件3381將該功能訊號SG82傳輸到該功能目標335。 In the processing unit 331 by performing the data comparison Under the condition that CE81 determines the second code difference DX81 between the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T, the processing unit 331 causes The output component 3381 performs a signal generation operation BY82 for the physical parameter control function FA81 to generate a function signal SG82. For example, the function signal SG82 is a control signal. The output component 3381 transmits the function signal SG82 to the function target 335.

該功能目標335響應該功能訊號SG82來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入該對應物理參數範圍RY1ET。例如,該功能訊號SG82是一脈衝寬度調變訊號、一電位準訊號、一驅動訊號和一指令訊號的其中之一。例如,該功能目標335響應該功能訊號SG82來導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中的該第二特定物理參數範圍RD1E5。 The function target 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET. For example, the function signal SG82 is one of a pulse width modulation signal, a potential quasi signal, a driving signal, and a command signal. For example, the function target 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the second specific physical parameter included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,... Range RD1E5.

例如,該複數不同測量值參考範圍碼EM11、EM12、…包含不同於該測量值目標範圍碼EM1T的一特定測量值範圍碼EM15。該特定測量值範圍碼EM15被配置以指示該第二特定物理參數範圍RD1E5。在所確定的該特定輸入碼UW81等於該特定測量值範圍碼EM15以導致所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間具有該第二碼差異DX81的條件下,該處理單元331藉由執行該資料比較CE81來確定該第二碼差異DX81,並響應於確定該第二碼差異DX81來導致該輸出單元338產生該功能訊 號SG82。該功能目標335響應該功能訊號SG82來導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入包含於該對應物理參數範圍RY1ET中的該第二特定物理參數範圍RD1E5。 For example, the plurality of different measurement value reference range codes EM11, EM12, ... include a specific measurement value range code EM15 that is different from the measurement value target range code EM1T. The specific measurement value range code EM15 is configured to indicate the second specific physical parameter range RD1E5. Between the determined specific input code UW81 being equal to the specific measurement value range code EM15 to cause the determined specific input code UW81 and the variable physical parameter range code UN8A equal to the obtained measurement value target range code EM1T With the second code difference DX81, the processing unit 331 determines the second code difference DX81 by performing the data comparison CE81, and in response to determining the second code difference DX81, causes the output unit 338 to generate the function News No. SG82. The function target 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the second specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET.

例如,在該處理單元331導致該輸出組件3381執行該訊號產生操作BY82之後,該處理單元331於一指定時間之內執行與該可變物理參數QU1A相關的一驗證操作。在該處理單元331基於該驗證操作而確定該可變物理參數QU1A進入的該第二特定物理參數範圍RD1E5的條件下,該處理單元331將等於該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81指定到該可變物理參數範圍碼UN8A。 For example, after the processing unit 331 causes the output component 3381 to perform the signal generation operation BY82, the processing unit 331 performs a verification operation related to the variable physical parameter QU1A within a specified time. Under the condition that the processing unit 331 determines the second specific physical parameter range RD1E5 into which the variable physical parameter QU1A enters based on the verification operation, the processing unit 331 will be equal to the determined specific measurement value range code EM15. The input code UW81 is assigned to the variable physical parameter range code UN8A.

請參閱第13圖、第14圖和第15圖。第13圖為繪示於第1圖中的該控制系統901的一實施結構9022的示意圖。第14圖為繪示於第1圖中的該控制系統901的一實施結構9023的示意圖。第15圖為繪示於第1圖中的該控制系統901的一實施結構9024的示意圖。如第13圖、第14圖和第15圖所示,該實施結構9022、該實施結構9023和該實施結構9024的每一結構包含該控制裝置212和該控制目標裝置130。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337和該輸出單元338。 Please refer to Figure 13, Figure 14, and Figure 15. FIG. 13 is a schematic diagram of an implementation structure 9022 of the control system 901 shown in FIG. 1. FIG. 14 is a schematic diagram of an implementation structure 9023 of the control system 901 shown in FIG. 1. FIG. 15 is a schematic diagram of an implementation structure 9024 of the control system 901 shown in FIG. 1. As shown in FIG. 13, FIG. 14, and FIG. 15, each of the implementation structure 9022, the implementation structure 9023, and the implementation structure 9024 includes the control device 212 and the control target device 130. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.

在一些實施例中,該儲存單元332具有該第一記憶體位置YM8L,並在該第一記憶體位置YM8L儲存 該應用範圍界限值對DN1L。該第一記憶體位置YM8L基於所預設的該測量值應用範圍碼EM1L而被識別。例如,該第一記憶體位置YM8L基於該第一記憶體位址AM8L而被識別,或由該第一記憶體位址AM8L所識別。 In some embodiments, the storage unit 332 has the first memory location YM8L, and stores in the first memory location YM8L The limit value of the application range is DN1L. The first memory position YM8L is identified based on the preset measurement value application range code EM1L. For example, the first memory location YM8L is identified based on the first memory address AM8L, or is identified by the first memory address AM8L.

該儲存單元332具有該第三記憶體位置YM8T和不同於該第三記憶體位置YM8T的該第二記憶體位置YX8T,在該第三記憶體位置YM8T儲存該目標範圍界限值對DN1T,並在該第二記憶體位置YX8T儲存該控制碼CC1T。例如,該第三記憶體位置YM8T和該第二記憶體位置YX8T皆基於所預設的該測量值目標範圍碼EM1T而被識別。該控制碼CC1T基於在該物理參數目標範圍RD1ET之內的該指定物理參數QD1T而被預設。該第三記憶體位置YM8T基於一記憶體位址AM8T而被識別,或由該記憶體位址AM8T所識別。該第二記憶體位置YX8T基於該第二記憶體位址AX8T而被識別,或由該第二記憶體位址AX8T所識別。該第一記憶體位置YM8L不同於該第二記憶體位置YX8T。 The storage unit 332 has the third memory location YM8T and the second memory location YX8T different from the third memory location YM8T, and stores the target range limit value pair DN1T in the third memory location YM8T, and The second memory location YX8T stores the control code CC1T. For example, the third memory position YM8T and the second memory position YX8T are both identified based on the preset measurement value target range code EM1T. The control code CC1T is preset based on the designated physical parameter QD1T within the physical parameter target range RD1ET. The third memory location YM8T is identified based on a memory address AM8T, or is identified by the memory address AM8T. The second memory location YX8T is identified based on the second memory address AX8T, or is identified by the second memory address AX8T. The first memory location YM8L is different from the second memory location YX8T.

該儲存單元332進一步具有一記憶體位置YM82和不同於該記憶體位置YM82的一記憶體位置YX82,在該記憶體位置YM82儲存該候選範圍界限值對DN1B,並在該記憶體位置YX82儲存一控制碼CC12。例如,該記憶體位置YM82和該記憶體位置YX82皆基於所預設的該測量值候選範圍碼EM12而被識別。該控制碼CC12基於在該物理參數候選範圍RD1E2之內的一指定物理參數QD12而被預設。 The storage unit 332 further has a memory location YM82 and a memory location YX82 different from the memory location YM82. The candidate range limit value pair DN1B is stored in the memory location YM82, and a memory location YX82 is stored in the memory location YX82. Control code CC12. For example, the memory position YM82 and the memory position YX82 are both identified based on the preset measurement value candidate range code EM12. The control code CC12 is preset based on a designated physical parameter QD12 within the physical parameter candidate range RD1E2.

例如,該物理參數控制功能規格GAL8包含一物理參數表示GA812,該物理參數表示GA812用於表示在該物理參數目標範圍RD1E2之內的該指定物理參數QD12。該控制碼CC12基於該物理參數表示GA812和用於轉換該物理參數表示GA812的一資料編碼操作ZX92而被預設。該記憶體位置YM82基於該記憶體位址AM82而被識別,或由該記憶體位址AM82所識別。該記憶體位置YX82基於該記憶體位址AX82而被識別,或由該記憶體位址AX82所識別。 For example, the physical parameter control function specification GAL8 includes a physical parameter representation GA812, and the physical parameter representation GA812 is used to indicate the designated physical parameter QD12 within the physical parameter target range RD1E2. The control code CC12 is preset based on the physical parameter representation GA812 and a data encoding operation ZX92 for converting the physical parameter representation GA812. The memory location YM82 is identified based on the memory address AM82, or is identified by the memory address AM82. The memory location YX82 is identified based on the memory address AX82, or is identified by the memory address AX82.

例如,該儲存單元332進一步具有一記憶體位置YX8L,並在該記憶體位置YX8L儲存一控制碼CC1L。該記憶體位置YX8L基於一記憶體位址AX8L而被識別,或由該記憶體位址AX8L所識別。該控制碼CC1L基於在該物理參數應用範圍RD1EL之內的一指定物理參數QD1L而被預設。 For example, the storage unit 332 further has a memory location YX8L, and stores a control code CC1L in the memory location YX8L. The memory location YX8L is identified based on a memory address AX8L, or is identified by the memory address AX8L. The control code CC1L is preset based on a designated physical parameter QD1L within the physical parameter application range RD1EL.

在一些實施例中,該應用範圍界限值對DN1L、該目標範圍界限值對DN1T和該候選範圍界限值對DN1B皆屬於一測量範圍界限資料碼類型TN81。該測量範圍界限資料碼類型TN81由一測量範圍界限資料碼類型識別符HN81所識別。該控制碼CC1T和該控制碼CC12皆屬於一控制碼類型TC81。該控制碼類型TC81由一控制碼類型識別符HC81所識別。該測量範圍界限資料碼類型識別符HN81和該控制碼類型識別符HC81皆被預設。 In some embodiments, the application range limit value pair DN1L, the target range limit value pair DN1T, and the candidate range limit value pair DN1B all belong to a measurement range limit data code type TN81. The measurement range limit data code type TN81 is identified by a measurement range limit data code type identifier HN81. The control code CC1T and the control code CC12 both belong to a control code type TC81. The control code type TC81 is identified by a control code type identifier HC81. The measurement range limit data code type identifier HN81 and the control code type identifier HC81 are both preset.

該第一記憶體位址AM8L基於所預設的該測量值應用範圍碼EM1L和所預設的該測量範圍界限資料 碼類型識別符HN81而被預設。該記憶體位址AX8L基於所預設的該測量值應用範圍碼EM1L和所預設的該控制碼類型識別符HC81而被預設。該第二記憶體位址AX8T基於所預設的該測量值目標範圍碼EM1T和所預設的該控制碼類型識別符HC81而被預設。該第三記憶體位址AM8T基於所預設的該測量值目標範圍碼EM1T和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位址AM82基於所預設的該測量值候選範圍碼EM12和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位址AX82基於所預設的該測量值候選範圍碼EM12和所預設的該控制碼類型識別符HC81而被預設。 The first memory address AM8L is based on the preset measurement value application range code EM1L and the preset measurement range limit data The code type identifier HN81 is preset. The memory address AX8L is preset based on the preset measurement value application range code EM1L and the preset control code type identifier HC81. The second memory address AX8T is preset based on the preset measurement value target range code EM1T and the preset control code type identifier HC81. The third memory address AM8T is preset based on the preset measurement value target range code EM1T and the preset measurement range limit data code type identifier HN81. The memory address AM82 is preset based on the preset measurement value candidate range code EM12 and the preset measurement range limit data code type identifier HN81. The memory address AX82 is preset based on the preset measurement value candidate range code EM12 and the preset control code type identifier HC81.

在一些實施例中,該處理單元331響應該控制訊號SC81來確定該測量值應用範圍碼EM1L,響應該控制訊號SC81來獲得所預設的該測量範圍界限資料碼類型識別符HN81,基於所確定的該測量值應用範圍碼EM1L和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該第一記憶體位址AM8L,並基於所獲得的該第一記憶體位址AM8L來使用該儲存單元332以存取被儲存在該第一記憶體位置YM8L的該應用範圍界限值對DN1L以獲得該應用範圍界限值對DN1L。 In some embodiments, the processing unit 331 determines the measurement value application range code EM1L in response to the control signal SC81, and obtains the preset measurement range limit data code type identifier HN81 in response to the control signal SC81, based on the determined The measurement value application range code EM1L and the obtained measurement range limit data code type identifier HN81 are used to obtain the first memory address AM8L, and the storage unit 332 is used based on the obtained first memory address AM8L The application range limit value pair DN1L stored in the first memory location YM8L is accessed to obtain the application range limit value pair DN1L.

該處理單元331基於該第一測量值VN81和所獲得的該應用範圍界限值對DN1L之間的該資料比較CD81來檢查該第一數學關係KV81以做出該第一測量值VN81是否為於所選擇的該測量值應用範圍RN1L之內的該第一邏輯決定PB81,並在該第一邏輯決定PB81是肯定的 條件下確定該可變物理參數QU1A目前於的該物理參數應用範圍RD1EL。例如,在該第一邏輯決定PB81是肯定的條件下,該處理單元331確定該可變物理參數QU1A目前於該物理參數應用範圍RD1EL之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該物理參數應用範圍RD1EL之間的一物理參數關係為該可變物理參數QU1A目前於該物理參數應用範圍RD1EL之內的一物理參數交集關係。 The processing unit 331 checks the first mathematical relationship KV81 based on the data comparison CD81 between the first measurement value VN81 and the obtained application range limit value pair DN1L to determine whether the first measurement value VN81 is the correct value. The first logic within the selected measurement value application range RN1L determines PB81, and the first logic determines PB81 is affirmative Under the conditions, determine the current application range RD1EL of the physical parameter QU1A of the variable physical parameter QU1A. For example, under the condition that the first logical decision PB81 is affirmative, the processing unit 331 determines the current physical parameter status of the variable physical parameter QU1A within the physical parameter application range RD1EL, and thereby identifies the variable physical parameter. A physical parameter relationship between the parameter QU1A and the physical parameter application range RD1EL is a physical parameter intersection relationship of the variable physical parameter QU1A currently in the physical parameter application range RD1EL.

該處理單元331響應該控制訊號SC81來獲得所預設的該控制碼類型識別符HC81,並從該控制訊號SC81獲得該測量值目標範圍碼EM1T。在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該測量值目標範圍碼EM1T和所獲得的該控制碼類型識別符HC81來獲得該第二記憶體位址AX8T,並基於所獲得的該第二記憶體位址AX8T來使用該儲存單元332以存取被儲存在該第二記憶體位置YX8T的該控制碼CC1T。該處理單元331基於所存取的該控制碼CC1T來導致該輸出單元338執行用於該物理參數控制功能FA81的該訊號產生操作BY81以產生該功能訊號SG81,該功能訊號SG81用於控制該功能目標335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The processing unit 331 obtains the preset control code type identifier HC81 in response to the control signal SC81, and obtains the measured value target range code EM1T from the control signal SC81. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 obtains the second memory address AX8T based on the obtained measured value target range code EM1T and the obtained control code type identifier HC81, And based on the obtained second memory address AX8T, the storage unit 332 is used to access the control code CC1T stored in the second memory location YX8T. The processing unit 331 causes the output unit 338 to execute the signal generation operation BY81 for the physical parameter control function FA81 based on the accessed control code CC1T to generate the function signal SG81, and the function signal SG81 is used to control the function The target 335 causes the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

該處理單元331基於所獲得的該測量值目標範圍碼EM1T和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該第三記憶體位址AM8T,並基於所獲得的該第三記憶體位址AM8T來使用該儲存單元332以存取 被儲存在該第三記憶體位置YM8T的該目標範圍界限值對DN1T以獲得該目標範圍界限值對DN1T。該處理單元331藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T來檢查該第二測量值VN82和該測量值目標範圍RN1T之間的該第二數學關係KV91以做出該第二測量值VN82是否為於該測量值目標範圍RN1T之內的該第三邏輯決定PB91。 The processing unit 331 obtains the third memory address AM8T based on the obtained measurement value target range code EM1T and the obtained measurement range limit data code type identifier HN81, and based on the obtained third memory address AM8T to use the storage unit 332 to access The target range limit value pair DN1T stored in the third memory location YM8T to obtain the target range limit value pair DN1T. The processing unit 331 checks the second mathematical relationship KV91 between the second measured value VN82 and the measured value target range RN1T by comparing the second measured value VN82 with the obtained target range limit value pair DN1T. The third logical decision PB91 to determine whether the second measurement value VN82 is within the measurement value target range RN1T.

在一些實施例中,在該輸入單元337接收該控制訊號SC81之前,該第一輸入組件3371和該第二輸入組件3372的其中之一接收包含所預設的該應用範圍界限值對DN1L和所預設的該第一記憶體位址AM8L的該第一寫入請求訊息WN8L。例如,該第一輸入組件3371和該第二輸入組件3372的其中之一預先從該控制裝置212接收該第一寫入請求訊息WN8L。該處理單元331響應該第一寫入請求訊息WN8L來使用該儲存單元332以將該第一寫入請求訊息WN8L的該應用範圍界限值對DN1L儲存到該第一記憶體位置YM8L。 In some embodiments, before the input unit 337 receives the control signal SC81, one of the first input component 3371 and the second input component 3372 receives the preset application range limit value pair DN1L and all The first write request message WN8L of the preset first memory address AM8L. For example, one of the first input component 3371 and the second input component 3372 receives the first write request message WN8L from the control device 212 in advance. The processing unit 331 responds to the first write request message WN8L to use the storage unit 332 to store the application range threshold pair DN1L of the first write request message WN8L to the first memory location YM8L.

在該輸入單元337接收該控制訊號SC81之前,該第一輸入組件3371和該第二輸入組件3372的其中之一接收包含所預設的該控制碼CC1T和所預設的該第二記憶體位址AX8T的該第二寫入請求訊息WC8T。例如,該第一輸入組件3371和該第二輸入組件3372的其中之一預先從該控制裝置212接收該第二寫入請求訊息WC8T。該處理單元331響應該第二寫入請求訊息WC8T來使用該儲存單元332以將該第二寫入請求訊息WC8T的該控制碼CC1T 儲存到該第二記憶體位置YX8T。 Before the input unit 337 receives the control signal SC81, one of the first input component 3371 and the second input component 3372 receives the preset control code CC1T and the preset second memory address The second write request message WC8T of AX8T. For example, one of the first input component 3371 and the second input component 3372 receives the second write request message WC8T from the control device 212 in advance. The processing unit 331 responds to the second write request message WC8T to use the storage unit 332 to use the control code CC1T of the second write request message WC8T Store to the second memory location YX8T.

在該輸入單元337接收該控制訊號SC81之前,該第一輸入組件3371和該第二輸入組件3372的其中之一接收包含所預設的該應用目標界限值對DN1T和所預設的該第三記憶體位址AM8T的一寫入請求訊息WN8T。例如,該第一輸入組件3371和該第二輸入組件3372的其中之一預先從該控制裝置212接收該寫入請求訊息WN8T。該處理單元331響應該寫入請求訊息WN8T來使用該儲存單元332以將該寫入請求訊息WN8T的該應用目標界限值對DN1T儲存到該第三記憶體位置YM8T。 Before the input unit 337 receives the control signal SC81, one of the first input component 3371 and the second input component 3372 receives the preset application target threshold pair DN1T and the preset third A write request message WN8T of the memory address AM8T. For example, one of the first input component 3371 and the second input component 3372 receives the write request message WN8T from the control device 212 in advance. The processing unit 331 responds to the write request message WN8T to use the storage unit 332 to store the application target threshold pair DN1T of the write request message WN8T in the third memory location YM8T.

該儲存單元332進一步具有一記憶體位置YN81,並在該記憶體位置YN81儲存該額定範圍界限值對DD1A。該記憶體位置YN81基於一記憶體位址AN81而被識別,或由該記憶體位址AN81所識別。例如,該記憶體位址AN81被預設。在該輸入單元337接收該控制訊號SC81之前,該第一輸入組件3371和該第二輸入組件3372的其中之一接收包含所預設的該額定範圍界限值對DD1A和所預設的該記憶體位址AN81的一寫入請求訊息WD81。例如,該第一輸入組件3371和該第二輸入組件3372的其中之一預先從該控制裝置212接收該寫入請求訊息WD81。該處理單元331響應該寫入請求訊息WD81來使用該儲存單元332以將該寫入請求訊息WD81的該額定範圍界限值對DD1A儲存到該記憶體位置YN81。 The storage unit 332 further has a memory location YN81, and stores the rated range limit value pair DD1A in the memory location YN81. The memory location YN81 is identified based on a memory address AN81, or is identified by the memory address AN81. For example, the memory address AN81 is preset. Before the input unit 337 receives the control signal SC81, one of the first input component 3371 and the second input component 3372 receives the preset limit value pair DD1A of the rated range and the preset memory position A write request message WD81 at address AN81. For example, one of the first input component 3371 and the second input component 3372 receives the write request message WD81 from the control device 212 in advance. The processing unit 331 responds to the write request message WD81 to use the storage unit 332 to store the rated range limit value pair DD1A of the write request message WD81 in the memory location YN81.

在一些實施例中,該處理單元331基於所確定的該測量值候選範圍碼EM12和所獲得的該測量範圍界 限資料碼類型識別符HN81來獲得該記憶體位址AM82,並基於所獲得的該記憶體位址AM82來使用該儲存單元332以存取被儲存在該記憶體位置YM82的該候選範圍界限值對DN1B以獲得該候選範圍界限值對DN1B。 In some embodiments, the processing unit 331 is based on the determined measurement value candidate range code EM12 and the obtained measurement range boundary. Limit the data code type identifier HN81 to obtain the memory address AM82, and use the storage unit 332 based on the obtained memory address AM82 to access the candidate range threshold pair DN1B stored in the memory location YM82 To obtain the candidate range limit value pair DN1B.

在一些實施例中,該第二特定物理參數範圍RD1E5由一特定測量值範圍RN15所代表。該特定測量值範圍RN15具有一特定範圍界限值對DN1E。該儲存單元332進一步具有一記憶體位置YM85和不同於該記憶體位置YM85的一記憶體位置YX85。該記憶體位置YM85基於一記憶體位址AM85而被識別,並基於該特定測量值範圍碼EM15和該測量範圍界限資料碼類型識別符HN81而被預設。該記憶體位置YX85基於一記憶體位址AX85而被識別,並基於該特定測量值範圍碼EM15和該控制碼類型識別符HC81而被預設。 In some embodiments, the second specific physical parameter range RD1E5 is represented by a specific measurement value range RN15. The specific measurement value range RN15 has a specific range limit value pair DN1E. The storage unit 332 further has a memory location YM85 and a memory location YX85 different from the memory location YM85. The memory location YM85 is identified based on a memory address AM85, and is preset based on the specific measurement value range code EM15 and the measurement range limit data code type identifier HN81. The memory location YX85 is identified based on a memory address AX85, and is preset based on the specific measurement value range code EM15 and the control code type identifier HC81.

該儲存單元332在該記憶體位置YM85儲存該特定範圍界限值對DN1E,並在該記憶體位置YX85儲存一控制碼CC15。該特定範圍界限值對DN1E被配置以代表該第二特定物理參數範圍RD1E5,並屬於該測量範圍界限資料碼類型TN81。該控制碼CC15屬於該控制碼類型TC81,並基於在該第二特定物理參數範圍RD1E5之內的一指定物理參數QD5T而被預設。所獲得的該測量值目標範圍碼EM1T The storage unit 332 stores the specific range limit value pair DN1E at the memory location YM85, and stores a control code CC15 at the memory location YX85. The specific range limit value pair DN1E is configured to represent the second specific physical parameter range RD1E5, and belongs to the measurement range limit data code type TN81. The control code CC15 belongs to the control code type TC81 and is preset based on a designated physical parameter QD5T within the second specific physical parameter range RD1E5. The target range code of the measured value obtained is EM1T

在所確定的該特定輸入碼UW81等於所預設的該特定測量值範圍碼EM15以導致所確定的該特定輸入碼UW81和等於所獲得的該測量值目標範圍碼EM1T的 該可變物理參數範圍碼UN8A之間具有該第二碼差異DX81的條件下,該處理單元331藉由執行該資料比較CE11來確定該第二碼差異DX81。在該處理單元331確定該第二碼差異DX81的條件下,該處理單元331基於等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81和所獲得的該控制碼類型識別符HC81來獲得該記憶體位址AX85。 When the determined specific input code UW81 is equal to the preset specific measurement value range code EM15 to cause the determined specific input code UW81 and equal to the obtained measurement value target range code EM1T Under the condition that the variable physical parameter range codes UN8A have the second code difference DX81, the processing unit 331 determines the second code difference DX81 by performing the data comparison CE11. Under the condition that the processing unit 331 determines the second code difference DX81, the processing unit 331 determines the specific input code UW81 that is equal to the preset specific measurement value range code EM15 and the obtained control code type. Identifier HC81 to obtain the memory address AX85.

該處理單元331基於所獲得的該記憶體位址AX85來使用該儲存單元332以存取被儲存在該記憶體位置YX85的該控制碼CC15,並基於所存取的該控制碼CC15來導致該輸出單元338執行用於該物理參數控制功能FA81的該訊號產生操作BY82以產生該功能訊號SG82,該功能訊號SG82用於控制該功能目標335以導致該可變物理參數QU1A進入包含於該對應物理參數範圍RY1ET中的該第二特定物理參數範圍RD1E5。 The processing unit 331 uses the storage unit 332 to access the control code CC15 stored in the memory location YX85 based on the obtained memory address AX85, and causes the output based on the accessed control code CC15 The unit 338 performs the signal generation operation BY82 for the physical parameter control function FA81 to generate the function signal SG82, and the function signal SG82 is used to control the function object 335 to cause the variable physical parameter QU1A to enter the corresponding physical parameter The second specific physical parameter range RD1E5 in the range RY1ET.

在一些實施例中,在該處理單元331於一操作時間TF82之內導致該輸出單元338執行該訊號產生操作BY82以產生該功能訊號SG82之後,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN83。該處理單元331於該操作時間TF82之後的一指定時間TG83響應該感測訊號SN83來獲得一測量值VN83。該處理單元331被配置以基於等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該記憶體位址AM85,並基於所獲得的該記憶體位址AM85來使用該儲存單元332以存 取被儲存在該記憶體位置YM85的該特定範圍界限值對DN1E。 In some embodiments, after the processing unit 331 causes the output unit 338 to perform the signal generation operation BY82 to generate the function signal SG82 within an operating time TF82, the sensing unit 334 senses the variable physical parameter QU1A To generate a sensing signal SN83. The processing unit 331 responds to the sensing signal SN83 at a specified time TG83 after the operating time TF82 to obtain a measurement value VN83. The processing unit 331 is configured to obtain the memory address AM85 based on the determined specific input code UW81 that is equal to the preset specific measurement value range code EM15 and the obtained measurement range limit data code type identifier HN81 , And based on the obtained memory address AM85 to use the storage unit 332 to store Take the specific range limit value pair DN1E stored in the memory location YM85.

在該處理單元331藉由比較該測量值VN83和所獲得的該特定範圍界限值對DN1E來檢查該測量值VN83和該特定測量值範圍RN15之間的一數學關係KV83以確定該可變物理參數QU1A目前處於的該第二特定物理參數範圍RD1E5的條件下,該處理單元331基於該可變物理參數範圍碼UN8A和等於所預設的該特定測量值範圍碼EM15的所確定的該特定輸入碼UW81之間的一碼差異來使用該儲存單元332以將所確定的該特定輸入碼UW81指定到該可變物理參數範圍碼UN8A。 The processing unit 331 checks a mathematical relationship KV83 between the measurement value VN83 and the specific measurement value range RN15 by comparing the measurement value VN83 with the obtained specific range limit value pair DN1E to determine the variable physical parameter Under the condition of the second specific physical parameter range RD1E5 that QU1A is currently in, the processing unit 331 determines based on the variable physical parameter range code UN8A and the specific input code equal to the preset specific measurement value range code EM15 A code difference between UW81 uses the storage unit 332 to assign the determined specific input code UW81 to the variable physical parameter range code UN8A.

例如,該處理單元331藉由檢查該數學關係KV83來確定該可變物理參數QU1A目前於該第二特定物理參數範圍RD1E5之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和該第二特定物理參數範圍RD1E5之間的一物理參數關係為該可變物理參數QU1A目前於該第二特定物理參數範圍RD1E5之內的一物理參數交集關係。 For example, the processing unit 331 determines the current state of a physical parameter of the variable physical parameter QU1A within the second specific physical parameter range RD1E5 by checking the mathematical relationship KV83, and thereby identifies the variable physical parameter QU1A and A physical parameter relationship between the second specific physical parameter range RD1E5 is a physical parameter intersection relationship of the variable physical parameter QU1A currently in the second specific physical parameter range RD1E5.

請參閱第16圖和第17圖。第16圖為繪示於第1圖中的該控制系統901的一實施結構9025的示意圖。第17圖為繪示於第1圖中的該控制系統901的一實施結構9026的示意圖。如第16圖和第17圖所示,該實施結構9025和該實施結構9026的每一結構包含該控制裝置212和該控制目標裝置130。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337、 該輸出單元338和耦合於該處理單元331的一定時器339。 Please refer to Figure 16 and Figure 17. FIG. 16 is a schematic diagram of an implementation structure 9025 of the control system 901 shown in FIG. 1. FIG. 17 is a schematic diagram of an implementation structure 9026 of the control system 901 shown in FIG. 1. As shown in FIGS. 16 and 17, each of the implementation structure 9025 and the implementation structure 9026 includes the control device 212 and the control target device 130. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operating unit 397 includes the processing unit 331, the input unit 337, The output unit 338 and a timer 339 coupled to the processing unit 331.

在一些實施例中,由該輸入單元337所接收的該控制訊號SC81輸送該控制訊息CG81,該控制訊息CG81包含該目標範圍界限值對DN1T、該額定範圍界限值對DD1A、該控制碼CC1T和該測量值目標範圍碼EM1T。在該處理單元331由於該控制訊號SC81而確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該控制碼CC1T來導致該輸出單元338執行該訊號產生操作BY81,該訊號產生操作BY81用於導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 In some embodiments, the control signal SC81 received by the input unit 337 conveys the control message CG81, and the control message CG81 includes the target range limit value pair DN1T, the rated range limit value pair DD1A, the control code CC1T, and The target range code of the measured value is EM1T. Under the condition that the processing unit 331 determines the range difference DS81 due to the control signal SC81, the processing unit 331 causes the output unit 338 to execute the signal generation operation BY81 based on the obtained control code CC1T, and the signal generation operation BY81 It is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

該處理單元331從所接收的該控制訊號SC81獲得該測量值目標範圍碼EM1T和該目標範圍界限值對DN1T。在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該第一碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 The processing unit 331 obtains the measured value target range code EM1T and the target range limit value pair DN1T from the received control signal SC81. In the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines the variable by comparing the second measurement value VN82 with the obtained target range limit value pair DN1T When the physical parameter QU1A is currently in the physical parameter target range RD1ET, the processing unit 331 is based on the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. The first code difference DF81 between the two uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

例如,該處理單元331藉由比較該第二測量值VN82和所獲得的該目標範圍界限值對DN1T來確定該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數情況,並藉此辨識該可變物理參數QU1A和 該物理參數目標範圍RD1ET之間的一物理參數關係為該可變物理參數QU1A目前於該物理參數目標範圍RD1ET之內的一物理參數交集關係。 For example, the processing unit 331 determines a physical parameter status of the variable physical parameter QU1A currently within the physical parameter target range RD1ET by comparing the second measured value VN82 with the obtained target range limit value pair DN1T. And identify the variable physical parameters QU1A and A physical parameter relationship between the physical parameter target range RD1ET is a physical parameter intersection relationship of the variable physical parameter QU1A currently within the physical parameter target range RD1ET.

在一些實施例中,該定時器339受該處理單元331控制,用於測量該可變時間長度LF8A,並被配置以符合一定時器規格FT11。該可變時間長度LF8A進一步基於一參考時間長度LJ8T而被特徵化。該控制訊號SC81輸送代表該參考時間長度LJ8T的該時間長度值CL8T。例如,該時間長度值CL8T基於該參考時間長度LJ8T和該定時器規格FT11來以一指定計數值格式HH91而被預設。該物理參數控制功能規格GAL8包含一時間長度表示GA8KJ。該時間長度表示GA8KJ用於表示該參考時間長度LJ8T。例如,該指定計數值格式HH91基於一指定位元數目UY91而被特徵化。 In some embodiments, the timer 339 is controlled by the processing unit 331 for measuring the variable time length LF8A, and is configured to comply with a timer specification FT11. The variable time length LF8A is further characterized based on a reference time length LJ8T. The control signal SC81 transmits the time length value CL8T representing the reference time length LJ8T. For example, the time length value CL8T is preset in a designated count value format HH91 based on the reference time length LJ8T and the timer specification FT11. The physical parameter control function specification GAL8 includes a time length representation GA8KJ. The length of time indicates that GA8KJ is used to indicate the length of reference time LJ8T. For example, the designated count value format HH91 is characterized based on a designated number of bits UY91.

例如,該時間長度值CL8T基於該時間長度表示GA8KJ、該定時器規格FT11和用於轉換該時間長度表示GA8KJ的一資料編碼操作ZX8KJ來以該指定計數值格式HH91而被預設。該處理單元331從該控制訊號SC81獲得該時間長度值CL8T,並檢查所獲得的該時間長度值CL8T和該時間長度值參考範圍GJ81之間的該數值關係KJ81以做出用於控制該特定時間TJ8T的該計數操作BC8T是否要被執行的該第三邏輯決定PE81。 For example, the time length value CL8T is preset in the designated count value format HH91 based on the time length representation GA8KJ, the timer specification FT11, and a data encoding operation ZX8KJ for converting the time length representation GA8KJ. The processing unit 331 obtains the time length value CL8T from the control signal SC81, and checks the numerical relationship KJ81 between the obtained time length value CL8T and the time length value reference range GJ81 to make a control signal for the specific time The third logic of whether the counting operation of TJ8T BC8T is to be executed determines PE81.

在一些實施例中,用於做出該第三邏輯決定PE81的該時間長度值參考範圍GJ81具有一時間長度範圍界限值對LN8A,並代表該時間長度參考範圍HJ81。該時 間長度值參考範圍GJ81基於該時間長度參考範圍HJ81和該定時器規格FT11來用該指定計數值格式HH91而被預設。例如,該物理參數控制功能規格GAL8包含一時間長度參考範圍表示GA8HJ,該時間長度參考範圍表示GA8HJ用於表示該時間長度參考範圍HJ81。該時間長度參考範圍HJ81和該時間長度範圍界限值對LN8A皆基於該時間長度參考範圍表示GA8HJ、該定時器規格FT11和用於轉換該時間長度參考範圍表示GA8HJ的一資料編碼操作ZX8HJ來用該指定計數值格式HH91而被預設。 In some embodiments, the time length value reference range GJ81 used to make the third logical decision PE81 has a time length range limit value pair LN8A, and represents the time length reference range HJ81. At that time The time length value reference range GJ81 is preset based on the time length reference range HJ81 and the timer specification FT11 in the designated count value format HH91. For example, the physical parameter control function specification GAL8 includes a time length reference range representing GA8HJ, and the time length reference range representing GA8HJ is used to represent the time length reference range HJ81. The time length reference range HJ81 and the time length range limit value pair LN8A are based on the time length reference range representing GA8HJ, the timer specification FT11, and a data encoding operation ZX8HJ used to convert the time length reference range representing GA8HJ to use the time length reference range representing GA8HJ. Specify the count value format HH91 and be preset.

該儲存單元332儲存該時間長度範圍界限值對LN8A。該處理單元331響應該控制訊號SC81來從該儲存單元332獲得該時間長度範圍界限值對LN8A,並藉由比較包含於所獲得的該時間長度值CL8T和所獲得的該時間長度範圍界限值對LN8A來檢查該數值關係KJ81以做出該第三邏輯決定PE81。 The storage unit 332 stores the time length range limit value pair LN8A. The processing unit 331 obtains the time length range limit value pair LN8A from the storage unit 332 in response to the control signal SC81, and compares the obtained time length value CL8T with the obtained time length range limit value pair LN8A checks the numerical relationship KJ81 to make the third logical decision PE81.

例如,在該處理單元331藉由檢查該數值關係KJ81而辨識該數值關係KJ81為一數值交集關係的條件下,該處理單元331做出該第三邏輯決定PE81以成為肯定的。例如,該時間長度範圍界限值對LN8A被預設,並包含該時間長度值參考範圍GJ81的一時間長度範圍界限值LN81和相對於該時間長度範圍界限值LN81的一時間長度範圍界限值LN82。在該處理單元331藉由比較所獲得的該時間長度值CL8T和所獲得的該時間長度範圍界限值對LN8A而確定該參考時間長度LJ8T包含於的該時間長度參考範圍HJ81的條件下,該處理單元331做出該第三邏輯決 定PE81以成為肯定的。 For example, under the condition that the processing unit 331 recognizes that the numerical relationship KJ81 is a numerical intersection relationship by checking the numerical relationship KJ81, the processing unit 331 makes the third logical decision PE81 to become affirmative. For example, the time length range limit value is preset for LN8A, and includes a time length range limit value LN81 of the time length value reference range GJ81 and a time length range limit value LN82 relative to the time length range limit value LN81. Under the condition that the processing unit 331 determines that the reference time length LJ8T is included in the time length reference range HJ81 by comparing the obtained time length value CL8T with the obtained time length range limit value pair LN8A, the processing Unit 331 makes the third logical decision Set PE81 to become affirmative.

在一些實施例中,在該第三邏輯決定PE81是肯定的條件下,該處理單元331基於所獲得的該時間長度值CL8T來導致該定時器339執行該計數操作BC8T。在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,該處理單元331基於該計數操作BC8T來到達該特定時間TJ8T,並在該特定時間TJ8T之內導致該輸出單元338執行一訊號產生操作BY91,該訊號產生操作BY91用於導致該可變物理參數QU1A離開該物理參數目標範圍RD1ET以進入該對應物理參數範圍RY1ET。 In some embodiments, under the condition that the third logic decision PE81 is affirmative, the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained time length value CL8T. Under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET due to the control signal SC81, the processing unit 331 reaches the specific time TJ8T based on the counting operation BC8T, and at the specific time Within TJ8T, the output unit 338 is caused to perform a signal generation operation BY91, and the signal generation operation BY91 is used to cause the variable physical parameter QU1A to leave the physical parameter target range RD1ET to enter the corresponding physical parameter range RY1ET.

例如,在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET內的條件下,該處理單元331基於該計數操作BC8T來經歷具有一結束時間TZ8T的一應用時間長度LT8T以到達該特定時間TJ8T。該處理單元331於該特定時間TJ8T之內藉由執行使用所獲得的該測量值目標範圍碼EM1T的一科學計算MK81來取得不同於所獲得的該測量值目標範圍碼EM1T的該測量值候選範圍碼EM12。例如,該控制裝置212基於該參考時間長度LJ8T和該定時器規格FT11來確定該時間長度值CL8T,並基於所確定的該時間長度值CL8T來輸出該控制訊號SC81。該控制訊息CG81進一步包含該時間長度值CL8T。該控制訊號SC81用於導致該可變物理參數QU1A於該物理參數目標範圍RD1ET之內足有與該參考時間長度LJ8T匹配的該應用時間長度LT8T。 For example, under the condition that the variable physical parameter QU1A is configured to be within the physical parameter target range RD1ET due to the control signal SC81, the processing unit 331 experiences an application time with an end time TZ8T based on the counting operation BC8T Length LT8T to reach the specific time TJ8T. The processing unit 331 obtains the measurement value candidate range different from the obtained measurement value target range code EM1T by executing a scientific calculation MK81 using the obtained measurement value target range code EM1T within the specific time TJ8T Code EM12. For example, the control device 212 determines the time length value CL8T based on the reference time length LJ8T and the timer specification FT11, and outputs the control signal SC81 based on the determined time length value CL8T. The control message CG81 further includes the time length value CL8T. The control signal SC81 is used to cause the variable physical parameter QU1A to have the application time length LT8T matching the reference time length LJ8T within the physical parameter target range RD1ET.

在一些實施例中,該處理單元331基於所取得的該測量值候選範圍碼EM12和所獲得的該控制碼類型識別符HC81來取得該記憶體位址AX82。該處理單元331基於所取得的該記憶體位址AX82來使用該儲存單元332以讀取被儲存在該記憶體位置YX82的該控制碼CC12,並基於所讀取的該控制碼CC12來執行用於控制該輸出單元338的一訊號產生控制GY91。該輸出單元338響應該訊號產生控制GY91來執行用於該物理參數控制功能FA81的該訊號產生操作BY91以產生一功能訊號SG91,該功能訊號SG91用於控制該功能目標335以導致該可變物理參數QU1A進入包含於該對應物理參數範圍RY1ET中的一物理參數候選範圍RD2E2。例如,該功能訊號SG91是一控制訊號。該物理參數候選範圍RD2E2是該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2的其中之一,並不同於該物理參數目標範圍RD1ET。 In some embodiments, the processing unit 331 obtains the memory address AX82 based on the obtained measurement value candidate range code EM12 and the obtained control code type identifier HC81. The processing unit 331 uses the storage unit 332 to read the control code CC12 stored in the memory location YX82 based on the acquired memory address AX82, and executes the control code CC12 based on the read control code CC12 A signal for controlling the output unit 338 is generated to control GY91. The output unit 338 responds to the signal generation control GY91 to execute the signal generation operation BY91 for the physical parameter control function FA81 to generate a function signal SG91, and the function signal SG91 is used to control the function object 335 to cause the variable physical The parameter QU1A enters a physical parameter candidate range RD2E2 included in the corresponding physical parameter range RY1ET. For example, the function signal SG91 is a control signal. The physical parameter candidate range RD2E2 is one of the physical parameter application range RD1EL and the physical parameter candidate range RD1E2, and is different from the physical parameter target range RD1ET.

例如,在該第三邏輯決定PE81是肯定的條件下,該處理單元331基於所獲得的該時間長度值CL8T來導致該定時器339執行該計數操作BC8T以到達該結束時間TZ8T。當該定時器339藉由執行該計數操作BC8T而到達該結束時間TZ8T時,該定時器339向該處理單元331傳輸一中斷請求訊號UH8T以到達該特定時間TJ8T。該處理單元331於該特定時間TJ8T之內響應該中斷請求訊號UH8T來執行使用所獲得的該測量值目標範圍碼EM1T的該科學計算MK81以取得不同於所獲得的該測量值目標範圍碼EM1T的該測量值候選範圍碼EM12。例如,該處理單元 331藉由從該定時器339接收該中斷請求訊號UH8T來辨識該特定時間TJ8T,並藉此經歷該應用時間長度LT8T。該特定時間TJ8T相鄰於該結束時間TZ8T。 For example, under the condition that the third logical decision PE81 is affirmative, the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained time length value CL8T to reach the end time TZ8T. When the timer 339 reaches the end time TZ8T by executing the counting operation BC8T, the timer 339 transmits an interrupt request signal UH8T to the processing unit 331 to reach the specific time TJ8T. The processing unit 331 responds to the interrupt request signal UH8T within the specific time TJ8T to execute the scientific calculation MK81 using the obtained measured value target range code EM1T to obtain a value different from the obtained measured value target range code EM1T The measured value candidate range code is EM12. For example, the processing unit 331 recognizes the specific time TJ8T by receiving the interrupt request signal UH8T from the timer 339, and thereby experiences the application time length LT8T. The specific time TJ8T is adjacent to the end time TZ8T.

在一些實施例中,該可變物理參數QU1A基於該額定物理參數範圍RD1E而被特徵化。該額定物理參數範圍RD1E包含該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2,並由該額定測量值範圍RD1N所代表。例如,該額定測量值範圍RD1N包含該測量值目標範圍RN1T、該測量值應用範圍RN1L和該測量值候選範圍RN12。該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2分別由該測量值目標範圍RN1T、該測量值應用範圍RN1L和該測量值候選範圍RN12所代表。 In some embodiments, the variable physical parameter QU1A is characterized based on the rated physical parameter range RD1E. The rated physical parameter range RD1E includes the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2, and is represented by the rated measurement value range RD1N. For example, the rated measurement value range RD1N includes the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12. The physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2 are respectively represented by the measurement value target range RN1T, the measurement value application range RN1L, and the measurement value candidate range RN12.

該物理參數控制功能規格GAL8包含用於表示該物理參數候選範圍RD1E3的一物理參數候選範圍表示GA83。該測量值候選範圍RN13基於該物理參數候選範圍表示GA83、該感測器測量範圍表示GW8R、該感測器靈敏度表示GW81和用於轉換該物理參數候選範圍表示GA83的一資料編碼操作ZX87來用該指定測量值格式HH81而被預設,並由包含於該複數不同測量值參考範圍碼EM11、EM12、…中的一測量值候選範圍碼EM13所代表。 The physical parameter control function specification GAL8 includes a physical parameter candidate range representation GA83 for representing the physical parameter candidate range RD1E3. The measurement value candidate range RN13 is based on the physical parameter candidate range representing GA83, the sensor measurement range representing GW8R, the sensor sensitivity representing GW81, and a data encoding operation ZX87 for converting the physical parameter candidate range representing GA83 to use The designated measurement value format HH81 is preset, and is represented by a measurement value candidate range code EM13 included in the plurality of different measurement value reference range codes EM11, EM12,...

該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2是不同的。該物理參數目標範圍RD1ET相同或不同於該物理參數應用範圍RD1EL。該物理參數目標範圍RD1ET相同或不同於該物理參數候選範圍RD1E2。 該測量值應用範圍RN1L和該測量值候選範圍RN12是不同的。該測量值目標範圍RN1T相同或不同於該測量值應用範圍RN1L。該測量值目標範圍RN1T相同或不同於該測量值候選範圍RN12。 The physical parameter application range RD1EL and the physical parameter candidate range RD1E2 are different. The physical parameter target range RD1ET is the same as or different from the physical parameter application range RD1EL. The physical parameter target range RD1ET is the same as or different from the physical parameter candidate range RD1E2. The measurement value application range RN1L and the measurement value candidate range RN12 are different. The measurement value target range RN1T is the same or different from the measurement value application range RN1L. The measurement value target range RN1T is the same as or different from the measurement value candidate range RN12.

在一些實施例中,該可變物理參數QU1A的該額定物理參數範圍RD1E包含該複數不同物理參數參考範圍RD1E1、RD1E2、…。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數目標範圍RD1ET、該物理參數應用範圍RD1EL和該物理參數候選範圍RD1E2。該可變物理參數QU1A基於該複數不同物理參數參考範圍RD1E1、RD1E2、…而處於複數不同參考狀態的其中之一。該複數不同參考狀態包含一第一參考狀態、一第二參考狀態和一第三參考狀態,藉此該可變物理參數QU1A由一可變目前狀態所特徵化。該可變目前狀態是該複數不同參考狀態的其中之一。 In some embodiments, the rated physical parameter range RD1E of the variable physical parameter QU1A includes the plurality of different physical parameter reference ranges RD1E1, RD1E2,... The plurality of different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET, the physical parameter application range RD1EL, and the physical parameter candidate range RD1E2. The variable physical parameter QU1A is in one of a plurality of different reference states based on the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... The plurality of different reference states includes a first reference state, a second reference state, and a third reference state, whereby the variable physical parameter QU1A is characterized by a variable current state. The variable current state is one of the plurality of different reference states.

例如,該第一參考狀態和該第二參考狀態是互補的。在該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內的條件下,該可變物理參數QU1A處於該第一參考狀態。在該可變物理參數QU1A是於該物理參數候選範圍RD1E2之內的條件下,該可變物理參數QU1A處於該第二參考狀態。在該可變物理參數QU1A是於該物理參數目標範圍RD1ET之內的條件下,該可變物理參數QU1A處於該第三參考狀態。該第三參考狀態相同或不同於該第一參考狀態。該第三參考狀態相同或不同於該第二參考狀態。 For example, the first reference state and the second reference state are complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the variable physical parameter QU1A is in the first reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the variable physical parameter QU1A is in the second reference state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the variable physical parameter QU1A is in the third reference state. The third reference state is the same or different from the first reference state. The third reference state is the same or different from the second reference state.

由該控制訊號SC81所輸送的該控制碼CC1T和由該儲存單元332所儲存的該控制碼CC1T皆基於在該物理參數目標範圍RD1ET之內的該指定物理參數QD1T而被預設。在該處理單元331確定該範圍差異DS81的條件下,該處理單元331基於所獲得的該控制碼CC1T來導致該輸出單元338執行用於該物理參數控制功能FA81的該訊號產生操作BY81以產生該功能訊號SG81。 The control code CC1T transmitted by the control signal SC81 and the control code CC1T stored by the storage unit 332 are preset based on the designated physical parameter QD1T within the physical parameter target range RD1ET. Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 causes the output unit 338 to perform the signal generation operation BY81 for the physical parameter control function FA81 based on the obtained control code CC1T to generate the Function signal SG81.

該功能目標335響應該功能訊號SG81來導致該可變物理參數QU1A從一目前狀態改變成該第三參考狀態,或響應該功能訊號SG81來導致該可變物理參數QU1A從一第一特定物理參數QU17改變成一第二特定物理參數QU18。例如,該目前狀態是該第一參考狀態和該第二參考狀態的其中之一。該第一特定物理參數QU17是於該物理參數應用範圍RD1EL之內,或於該物理參數候選範圍RD1E2之內。該第二特定物理參數QU18是於該物理參數目標範圍RD1ET之內。例如,該第一特定物理參數QU17是於該對應物理參數範圍RY1ET之內。 The function target 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to change from a current state to the third reference state, or responds to the function signal SG81 to cause the variable physical parameter QU1A to change from a first specific physical parameter QU17 changes to a second specific physical parameter QU18. For example, the current state is one of the first reference state and the second reference state. The first specific physical parameter QU17 is within the physical parameter application range RD1EL or within the physical parameter candidate range RD1E2. The second specific physical parameter QU18 is within the target range RD1ET of the physical parameter. For example, the first specific physical parameter QU17 is within the corresponding physical parameter range RY1ET.

在一些實施例中,該複數不同參考狀態分別導致該功能目標335處於複數不同功能狀態。該複數不同功能狀態是不同的,並包含一第一功能狀態、一第二功能狀態和一第三功能狀態。例如,該第一功能狀態和該第二功能狀態是互補的。在該可變物理參數QU1A是於該物理參數應用範圍RD1EL之內的條件下,該功能目標335處於該第一功能狀態。在該可變物理參數QU1A是於該物理參數候選範圍RD1E2之內的條件下,該功能目標335處於該 第二功能狀態。在該可變物理參數QU1A是於該物理參數目標範圍RD1ET之內的條件下,該功能目標335處於該第三功能狀態。該第三功能狀態相同或不同於該第一功能狀態。該第三功能狀態相同或不同於該第二功能狀態。 In some embodiments, the plurality of different reference states respectively cause the functional target 335 to be in a plurality of different functional states. The plurality of different functional states are different, and include a first functional state, a second functional state, and a third functional state. For example, the first functional state and the second functional state are complementary. Under the condition that the variable physical parameter QU1A is within the physical parameter application range RD1EL, the functional object 335 is in the first functional state. Under the condition that the variable physical parameter QU1A is within the physical parameter candidate range RD1E2, the functional target 335 is in the The second functional state. Under the condition that the variable physical parameter QU1A is within the physical parameter target range RD1ET, the functional object 335 is in the third functional state. The third functional state is the same or different from the first functional state. The third functional state is the same or different from the second functional state.

例如,該測量值目標範圍碼EM1T是一測量值參考範圍號碼。該測量值目標範圍RN1T基於該測量值目標範圍碼EM1T而被安排於該額定測量值範圍RD1N中。該測量值應用範圍碼EM1L是一測量值參考範圍號碼。該測量值應用範圍RN1L基於該測量值應用範圍碼EM1L而被安排於該額定測量值範圍RD1N中。該測量值候選範圍碼EM12是一測量值參考範圍號碼。該測量值候選範圍RN12基於該測量值候選範圍碼EM12而被安排於該額定測量值範圍RD1N中。 For example, the measured value target range code EM1T is a measured value reference range number. The measured value target range RN1T is arranged in the rated measured value range RD1N based on the measured value target range code EM1T. The measurement value application range code EM1L is a measurement value reference range number. The measurement value application range RN1L is arranged in the rated measurement value range RD1N based on the measurement value application range code EM1L. The measurement value candidate range code EM12 is a measurement value reference range number. The measurement value candidate range RN12 is arranged in the rated measurement value range RD1N based on the measurement value candidate range code EM12.

在一些實施例中,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數應用範圍RD1EL是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。在該可變物理參數QU1A是該第一可變電壓的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電壓範圍和一相對低電壓範圍。在該可變物理參數QU1A是該第一可變電流的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電流範圍和一相對低電流範圍。在該可變物理參數QU1A是該第一可變電阻的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電阻範圍和一相對低電阻範圍。 In some embodiments, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter application range RD1EL is the relatively high physical parameter range and the relatively low physical parameter range. The other of the parameter range. Under the condition that the variable physical parameter QU1A is the first variable voltage, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively. Under the condition that the variable physical parameter QU1A is the first variable current, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively. Under the condition that the variable physical parameter QU1A is the first variable resistance, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.

在該可變物理參數QU1A是該第一可變亮度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高亮度範圍和一相對低亮度範圍。在該可變物理參數QU1A是該第一可變光強度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高光強度範圍和一相對低光強度範圍。在該可變物理參數QU1A是該第一可變音量的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高音量範圍和一相對低音量範圍。在該可變物理參數QU1A是該第一可變角速度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高角速度範圍和一相對低角速度範圍。 Under the condition that the variable physical parameter QU1A is the first variable brightness, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high brightness range and a relatively low brightness range, respectively. Under the condition that the variable physical parameter QU1A is the first variable light intensity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high light intensity range and a relatively low light intensity range, respectively. Under the condition that the variable physical parameter QU1A is the first variable volume, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high volume range and a relatively low volume range, respectively. Under the condition that the variable physical parameter QU1A is the first variable angular velocity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.

例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RD1E2是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數應用範圍RD1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RD1E2是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該第一特定物理參數範圍RD1E4是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數目標範圍RD1ET是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該第二特定物理參數範圍RD1E5是該相對高物理 參數範圍和該相對低物理參數範圍的其中另一。 For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter application range RD1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RD1E2 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the first specific physical parameter range RD1E4 is the relatively high physical parameter range and the relatively low physical parameter range One of them. For example, the physical parameter target range RD1ET is one of a relatively high physical parameter range and a relatively low physical parameter range; and the second specific physical parameter range RD1E5 is the relatively high physical parameter range. The other of the parameter range and the relatively low physical parameter range.

在一些實施例中,在該控制目標裝置130是一繼電器的條件下,該功能目標335是一控制開關。在該功能目標335是該控制開關的條件下,該控制開關具有一可變開關狀態,並基於該可變物理參數QU1A而處於一接通狀態和一關斷狀態的其中之一。例如,該可變開關狀態等於該接通狀態和該關斷狀態的其中之一,且該接通狀態和該關斷狀態是互補的。該接通狀態是該第一功能狀態和該第二功能狀態的其中之一,且該關斷狀態是該第一功能狀態和該第二功能狀態的其中另一。 In some embodiments, under the condition that the control target device 130 is a relay, the function target 335 is a control switch. Under the condition that the functional target 335 is the control switch, the control switch has a variable switch state and is in one of an on state and an off state based on the variable physical parameter QU1A. For example, the variable switch state is equal to one of the on state and the off state, and the on state and the off state are complementary. The on state is one of the first functional state and the second functional state, and the off state is the other of the first functional state and the second functional state.

在該處理單元331確定該範圍差異DS81的條件下,該處理單元331辨識該可變目前狀態為不同於該第三參考狀態的一特定狀態,並藉此產生該功能訊號SG81。該功能目標335響應該功能訊號SG81來導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET,因此該可變目前狀態被改變成該第三參考狀態。在該處理單元331確定該第二碼差異DX81的條件下,該處理單元331導致該輸出單元338產生該功能訊號SG82。該功能目標335響應該功能訊號SG82來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入包含於該對應物理參數範圍RY1ET中的該第二特定物理參數範圍RD1E5;因此,在該第二特定物理參數範圍RD1E5等於該物理參數候選範圍RD1E2的條件下,該可變目前狀態被改變成該第二參考狀態。 Under the condition that the processing unit 331 determines the range difference DS81, the processing unit 331 recognizes that the variable current state is a specific state different from the third reference state, and thereby generates the function signal SG81. The function target 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET, so the variable current state is changed to the third reference state. Under the condition that the processing unit 331 determines the second code difference DX81, the processing unit 331 causes the output unit 338 to generate the function signal SG82. The function target 335 responds to the function signal SG82 to cause the variable physical parameter QU1A to enter the second specific physical parameter range RD1E5 included in the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET; therefore, in the second Under the condition that the specific physical parameter range RD1E5 is equal to the physical parameter candidate range RD1E2, the variable current state is changed to the second reference state.

例如,該可變物理參數QU1A是該第一可變電流。該物理參數應用範圍RD1EL、該物理參數候選範圍 RD1E2和該物理參數目標範圍RD1ET分別是一第一電流參考範圍、一第二電流參考範圍和一第三電流參考範圍。該控制碼CC1L基於在該第一電流參考範圍之內的一第一指定電流而被預設。該控制碼CC12基於在該第二電流參考範圍之內的一第二指定電流而被預設。該控制碼CC1T基於在該第三電流參考範圍之內的一第三指定電流而被預設。 For example, the variable physical parameter QU1A is the first variable current. The physical parameter application range RD1EL, the physical parameter candidate range RD1E2 and the physical parameter target range RD1ET are respectively a first current reference range, a second current reference range, and a third current reference range. The control code CC1L is preset based on a first designated current within the first current reference range. The control code CC12 is preset based on a second designated current within the second current reference range. The control code CC1T is preset based on a third specified current within the third current reference range.

該時間長度值CL8T基於該時間長度表示GA8KJ、該定時器規格FT11和該資料編碼操作ZX8KJ來以該指定計數值格式HH91而被預設。在該第三邏輯決定PE81是肯定的條件下,該處理單元331基於所獲得的該時間長度值CL8T來導致該定時器339執行該計數操作BC8T。在該第一可變電流由於該控制訊號SC81而被配置以於該第三電流參考範圍之內的條件下,該處理單元331基於該計數操作BC8T來經歷該應用時間長度LT8T以到達該特定時間TJ8T,藉此該第一可變電流在相關於該計數操作BC8T的該應用時間長度LT8T之內維持成為於該第三電流參考範圍之內。 The time length value CL8T is preset in the designated count value format HH91 based on the time length representation GA8KJ, the timer specification FT11, and the data encoding operation ZX8KJ. Under the condition that the third logic decision PE81 is affirmative, the processing unit 331 causes the timer 339 to perform the counting operation BC8T based on the obtained time length value CL8T. Under the condition that the first variable current is configured to be within the third current reference range due to the control signal SC81, the processing unit 331 experiences the application time length LT8T based on the counting operation BC8T to reach the specific time TJ8T, whereby the first variable current is maintained within the third current reference range within the application time length LT8T related to the counting operation BC8T.

例如,在該可變物理參數QU1A是一可變轉速的條件下,該物理參數應用範圍RD1EL、該物理參數候選範圍RD1E2和該物理參數目標範圍RD1ET分別是一第一轉速參考範圍、一第二轉速參考範圍和一第三轉速參考範圍。在該可變物理參數QU1A是一可變溫度的條件下,該物理參數應用範圍RD1EL、該物理參數候選範圍RD1E2和該物理參數目標範圍RD1ET分別是一第一溫度參考範圍、一第二溫度參考範圍和一第三溫度參考範圍。 For example, under the condition that the variable physical parameter QU1A is a variable rotational speed, the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first rotational speed reference range and a second rotational speed reference range. The rotational speed reference range and a third rotational speed reference range. Under the condition that the variable physical parameter QU1A is a variable temperature, the physical parameter application range RD1EL, the physical parameter candidate range RD1E2, and the physical parameter target range RD1ET are respectively a first temperature reference range and a second temperature reference Range and a third temperature reference range.

請參閱第18圖。第18圖為繪示於第1圖中的該控制系統901的一實施結構9027的示意圖。如第18圖所示,該實施結構9027包含該控制裝置212、該控制目標裝置130和一伺服器280。該控制裝置212鏈接於該伺服器280。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337、該輸出單元338和耦合於該處理單元331的一定時器340。該定時器340受該處理單元331控制。 Please refer to Figure 18. FIG. 18 is a schematic diagram of an implementation structure 9027 of the control system 901 shown in FIG. 1. As shown in FIG. 18, the implementation structure 9027 includes the control device 212, the control target device 130, and a server 280. The control device 212 is linked to the server 280. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operating unit 397 includes the processing unit 331, the input unit 337, the output unit 338, and a timer 340 coupled to the processing unit 331. The timer 340 is controlled by the processing unit 331.

在一些實施例中,包含於該輸入單元337中的該輸入組件3374耦合於該處理單元331,並在該可變物理參數QU1A要依靠該控制裝置212而被提供的條件下從該控制裝置212接收該物理參數訊號SB81。該功能目標335從該輸入組件3374接收該物理參數訊號SB81。該處理單元331導致該功能目標335使用該物理參數訊號SB81以形成取決於該物理參數訊號SB81的該可變物理參數QU1A。 In some embodiments, the input component 3374 included in the input unit 337 is coupled to the processing unit 331, and receives from the control device 212 under the condition that the variable physical parameter QU1A is provided by the control device 212. Receive the physical parameter signal SB81. The function target 335 receives the physical parameter signal SB81 from the input component 3374. The processing unit 331 causes the functional target 335 to use the physical parameter signal SB81 to form the variable physical parameter QU1A depending on the physical parameter signal SB81.

該控制裝置212包含該操作單元297、耦合於該操作單元297的一儲存單元250、和耦合於該操作單元297的一感測單元560。該操作單元297執行一讀取操作BR81和一感測操作BZ81的其中之一以輸出該物理參數訊號SB81。該讀取操作BR81讀取被儲存於該儲存單元250和該伺服器280的其中之一中的一物理參數資料記錄DU81。該感測單元560藉由執行該感測操作BZ81來感測一可變物理參數QL1A以導致該操作單元297輸出該物理 參數訊號SB81。例如,該感測單元560受該操作單元297控制以感測該可變物理參數QL1A。 The control device 212 includes the operating unit 297, a storage unit 250 coupled to the operating unit 297, and a sensing unit 560 coupled to the operating unit 297. The operating unit 297 performs one of a reading operation BR81 and a sensing operation BZ81 to output the physical parameter signal SB81. The reading operation BR81 reads a physical parameter data record DU81 stored in one of the storage unit 250 and the server 280. The sensing unit 560 senses a variable physical parameter QL1A by performing the sensing operation BZ81 to cause the operation unit 297 to output the physical Parameter signal SB81. For example, the sensing unit 560 is controlled by the operating unit 297 to sense the variable physical parameter QL1A.

例如,該可變物理參數QU1A屬於該物理參數類型TU11。該可變物理參數QL1A屬於一物理參數類型TL11。該物理參數類型TU11相同或不同於該物理參數類型TL11。該控制裝置212處於一應用環境EX81中。該控制裝置212和該應用環境EX81的其中之一具有該可變物理參數QL1A。該物理參數資料記錄DU81預先基於一可變物理參數QY1A而被提供。該可變物理參數QY1A屬於該物理參數類型TL11。例如,該物理參數類型TU11不同於一時間類型。 For example, the variable physical parameter QU1A belongs to the physical parameter type TU11. The variable physical parameter QL1A belongs to a physical parameter type TL11. The physical parameter type TU11 is the same or different from the physical parameter type TL11. The control device 212 is in an application environment EX81. One of the control device 212 and the application environment EX81 has the variable physical parameter QL1A. The physical parameter data record DU81 is provided in advance based on a variable physical parameter QY1A. The variable physical parameter QY1A belongs to the physical parameter type TL11. For example, the physical parameter type TU11 is different from a time type.

在一些實施例中,該功能目標335包含一驅動電路3355、和耦合於該驅動電路3355的一物理參數形成部分3351。該物理參數形成部分3351用於形成該可變物理參數QU1A,並包含該物理參數形成區AU11。該驅動電路3355耦合於該輸入組件3374和該輸出組件3381,並通過該輸出組件3381而受該處理單元331控制。該驅動電路3355從該輸入組件3374接收該物理參數訊號SB81,從該輸出組件3381接收該功能訊號SG81,並響應該功能訊號SG81來處理該物理參數訊號SB81以輸出一驅動訊號SL81。 In some embodiments, the functional object 335 includes a driving circuit 3355 and a physical parameter forming part 3351 coupled to the driving circuit 3355. The physical parameter forming part 3351 is used to form the variable physical parameter QU1A, and includes the physical parameter forming area AU11. The driving circuit 3355 is coupled to the input component 3374 and the output component 3381, and is controlled by the processing unit 331 through the output component 3381. The driving circuit 3355 receives the physical parameter signal SB81 from the input component 3374, receives the function signal SG81 from the output component 3381, and responds to the function signal SG81 to process the physical parameter signal SB81 to output a driving signal SL81.

該物理參數形成部分3351接收該驅動訊號SL81,並響應該驅動訊號SL81來使該可變物理參數QU1A處於該物理參數目標範圍RD1ET之內。例如,在該合理決定PW81是肯定的條件下,該處理單元331導致該輸出單元240執行用於該物理參數控制功能FA81的該訊號產生操 作BY81以提供該功能訊號SG81到該驅動電路3355。該驅動電路3355響應該功能訊號SG81來驅動該物理參數形成部分3351以使該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 The physical parameter forming part 3351 receives the driving signal SL81, and responds to the driving signal SL81 to make the variable physical parameter QU1A within the physical parameter target range RD1ET. For example, under the condition that the reasonable decision PW81 is affirmative, the processing unit 331 causes the output unit 240 to perform the signal generation operation for the physical parameter control function FA81. It is used as BY81 to provide the function signal SG81 to the driving circuit 3355. The driving circuit 3355 responds to the function signal SG81 to drive the physical parameter forming part 3351 so that the variable physical parameter QU1A enters the physical parameter target range RD1ET.

在一些實施例中,該額定測量值範圍RD1N被配置以具有複數不同測量值參考範圍RN11、RN12、…。例如,該複數不同測量值參考範圍RN11、RN12、…具有一總參考範圍數目NT81,並包含該測量值目標範圍RN1T。例如,該總參考範圍數目NT81被預設。該儲存單元332儲存該額定範圍界限值對DD1A。該處理單元331被配置以從該控制訊號SC81和該儲存單元332的其中之一獲得該總參考範圍數目NT81,從該控制訊號SC81獲得該測量值目標範圍碼EM1T,並響應該控制訊號SC81來從該儲存單元332獲得該額定範圍界限值對DD1A。 In some embodiments, the rated measurement value range RD1N is configured to have a plurality of different measurement value reference ranges RN11, RN12,.... For example, the plurality of different measurement value reference ranges RN11, RN12, ... have a total number of reference ranges NT81, and include the measurement value target range RN1T. For example, the total number of reference ranges NT81 is preset. The storage unit 332 stores the rated range limit value pair DD1A. The processing unit 331 is configured to obtain the total reference range number NT81 from one of the control signal SC81 and the storage unit 332, obtain the measured value target range code EM1T from the control signal SC81, and respond to the control signal SC81 The rated range limit value pair DD1A is obtained from the storage unit 332.

該處理單元331基於該第一測量值VN81、所獲得的該總參考範圍數目NT81和和所獲得的該額定範圍界限值對DD1A來執行該第一科學計算MR81來從該複數不同測量值參考範圍碼EM11、EM12、…中選擇該測量值應用範圍碼EM1L以確定該測量值應用範圍碼EM1L。例如,該第一科學計算MR81基於所預設的該總參考範圍數目NT81和所預設的該額定範圍界限值對DD1A而被預先建構。 The processing unit 331 executes the first scientific calculation MR81 based on the first measurement value VN81, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A to obtain a reference range from the plurality of different measurement values. Select the measurement value application range code EM1L from the codes EM11, EM12,... to determine the measurement value application range code EM1L. For example, the first scientific calculation MR81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.

該處理單元331基於所確定的該測量值應用範圍碼EM1L、所獲得的該總參考範圍數目NT81和所取得的該額定範圍界限值對DD1A來執行該第二科學計算 MZ81以獲得該應用範圍界限值對DN1L。例如,該第二科學計算MZ81基於所預設的該總參考範圍數目NT81和所預設的該額定範圍界限值對DD1A而被預先建構。 The processing unit 331 performs the second scientific calculation based on the determined measurement value application range code EM1L, the obtained total reference range number NT81, and the obtained rated range limit value pair DD1A MZ81 obtains the application range limit value pair DN1L. For example, the second scientific calculation MZ81 is pre-constructed based on the preset total reference range number NT81 and the preset rated range limit value pair DD1A.

在一些實施例中,該處理單元331響應於該操作時間TF81之內所執行的該訊號產生控制GY81來導致該定時器340執行一計數操作BE81。該處理單元331基於該計數操作BE81來到達該指定時間TG82,並在該指定時間TG82響應該第二感測訊號SN82來獲得該第二測量值VN82。 In some embodiments, the processing unit 331 responds to the signal generation control GY81 executed within the operation time TF81 to cause the timer 340 to perform a counting operation BE81. The processing unit 331 arrives at the designated time TG82 based on the counting operation BE81, and responds to the second sensing signal SN82 at the designated time TG82 to obtain the second measured value VN82.

該可變物理參數QL1A是一第二可變電性參數、一第二可變力學參數、一第二可變光學參數、一第二可變溫度、一第二可變電壓、一第二可變電流、一第二可變電功率、一第二可變電阻、一第二可變電容、一第二可變電感、一第二可變頻率、一第二時鐘時間、一第二可變時間長度、一第二可變亮度、一第二可變光強度、一第二可變音量、一第二可變資料流量、一第二可變振幅、一第二可變空間位置、一第二可變位移、一第二可變順序位置、一第二可變角度、一第二可變空間長度、一第二可變距離、一第二可變平移速度、一第二可變角速度、一第二可變加速度、一第二可變力、一第二可變壓力和一第二可變機械功率的其中之一。 The variable physical parameter QL1A is a second variable electrical parameter, a second variable mechanical parameter, a second variable optical parameter, a second variable temperature, a second variable voltage, a second variable Variable current, a second variable electric power, a second variable resistor, a second variable capacitor, a second variable inductance, a second variable frequency, a second clock time, a second Variable time length, a second variable brightness, a second variable light intensity, a second variable volume, a second variable data flow, a second variable amplitude, a second variable spatial position, a Second variable displacement, a second variable sequence position, a second variable angle, a second variable space length, a second variable distance, a second variable translation speed, a second variable angular velocity , One of a second variable acceleration, a second variable force, a second variable pressure, and a second variable mechanical power.

該可變物理參數QY1A是一第三可變電性參數、一第三可變力學參數、一第三可變光學參數、一第三可變溫度、一第三可變電壓、一第三可變電流、一第三可變電功率、一第三可變電阻、一第三可變電容、一第三 可變電感、一第三可變頻率、一第三時鐘時間、一第三可變時間長度、一第三可變亮度、一第三可變光強度、一第三可變音量、一第三可變資料流量、一第三可變振幅、一第三可變空間位置、一第三可變位移、一第三可變順序位置、一第三可變角度、一第三可變空間長度、一第三可變距離、一第三可變平移速度、一第三可變角速度、一第三可變加速度、一第三可變力、一第三可變壓力和一第三可變機械功率的其中之一。 The variable physical parameter QY1A is a third variable electrical parameter, a third variable mechanical parameter, a third variable optical parameter, a third variable temperature, a third variable voltage, and a third variable electrical parameter. Variable current, a third variable electric power, a third variable resistor, a third variable capacitor, a third Variable inductance, a third variable frequency, a third clock time, a third variable time length, a third variable brightness, a third variable light intensity, a third variable volume, a first Three variable data flow, one third variable amplitude, one third variable space position, one third variable displacement, one third variable sequence position, one third variable angle, one third variable space length , A third variable distance, a third variable translation speed, a third variable angular velocity, a third variable acceleration, a third variable force, a third variable pressure and a third variable mechanism One of power.

請參閱第19圖。第19圖為繪示於第1圖中的該控制系統901的一實施結構9028的示意圖。如第19圖所示,該實施結構9028包含該控制裝置212、該控制目標裝置130和該伺服器280。該控制裝置212、該控制目標裝置130和該伺服器280皆耦合於一網路410。該控制裝置212通過該網路410而鏈接於該伺服器280。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337和該輸出單元338。該控制裝置212通過該網路410來向該控制目標裝置130傳輸該控制訊號SC81。該控制目標裝置130通過該網路410來向該控制裝置212傳輸該控制回應訊號SE81。 Please refer to Figure 19. FIG. 19 is a schematic diagram of an implementation structure 9028 of the control system 901 shown in FIG. 1. As shown in FIG. 19, the implementation structure 9028 includes the control device 212, the control target device 130, and the server 280. The control device 212, the control target device 130, and the server 280 are all coupled to a network 410. The control device 212 is linked to the server 280 through the network 410. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338. The control device 212 transmits the control signal SC81 to the control target device 130 through the network 410. The control target device 130 transmits the control response signal SE81 to the control device 212 through the network 410.

在一些實施例中,所預設的該測量值目標範圍碼EM1T是一測量值參考範圍號碼。所儲存的該可變物理參數範圍碼UN8A是一可變物理參數範圍號碼。該控制訊號SC81輸送一相對參考範圍碼ZB81。例如,該相對參考範圍碼ZB81是一相對參考範圍號碼。該處理單元331從 該控制訊號SC81獲得該相對參考範圍碼ZB81,並在該輸入單元337接收該控制訊號SC81的條件下藉由使用該儲存單元332來存取等於一測量值參考範圍碼EB81的該可變物理參數範圍碼UN8A。該處理單元331基於所獲得的該相對參考範圍碼ZB81和所存取的該測量值參考範圍碼EB81來執行一科學計算MU81以獲得所預設的該測量值目標範圍碼EM1T。例如,該科學計算MU81使用所獲得的該相對參考範圍碼ZB81和所存取的該測量值參考範圍碼EB81。 In some embodiments, the preset measurement value target range code EM1T is a measurement value reference range number. The stored variable physical parameter range code UN8A is a variable physical parameter range number. The control signal SC81 conveys a relative reference range code ZB81. For example, the relative reference range code ZB81 is a relative reference range number. The processing unit 331 from The control signal SC81 obtains the relative reference range code ZB81, and accesses the variable physical parameter equal to a measured value reference range code EB81 by using the storage unit 332 under the condition that the input unit 337 receives the control signal SC81 Range code UN8A. The processing unit 331 performs a scientific calculation MU81 based on the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81 to obtain the preset measurement value target range code EM1T. For example, the scientific calculation MU81 uses the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81.

例如,該處理單元331藉由將所獲得的該相對參考範圍碼ZB81和所存取的該測量值參考範圍碼EB81相加來獲得所預設的該測量值目標範圍碼EM1T。該控制訊號SC81藉由輸送該相對參考範圍碼ZB81來起到指示指示該測量值目標範圍RN1T的作用。該處理單元331執行使用所獲得的該測量值目標範圍碼EM1T的該資料獲取AD8A以獲得該目標範圍界限值對DN1T。在該特定測量值範圍碼EM14不同於所獲得的該測量值目標範圍碼EM1T且該處理單元331確定該可變物理參數QU1A進入的該物理參數目標範圍RD1ET的條件下,該處理單元331基於等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該第一碼差異DF81來使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 For example, the processing unit 331 obtains the preset measurement value target range code EM1T by adding the obtained relative reference range code ZB81 and the accessed measurement value reference range code EB81. The control signal SC81 transmits the relative reference range code ZB81 to indicate the measurement value target range RN1T. The processing unit 331 executes the acquisition of AD8A using the obtained data of the measured value target range code EM1T to obtain the target range limit value pair DN1T. Under the condition that the specific measurement value range code EM14 is different from the obtained measurement value target range code EM1T and the processing unit 331 determines that the variable physical parameter QU1A enters the physical parameter target range RD1ET, the processing unit 331 is based on The first code difference DF81 between the variable physical parameter range code UN8A of the specific measurement value range code EM14 and the obtained measurement value target range code EM1T uses the storage unit 332 to store the obtained measurement value The target range code EM1T is assigned to the variable physical parameter range code UN8A.

在一些實施例中,該相對參考範圍碼ZB81等於一相對值VK81和一相對值VK82的其中之一。該相對值VK82不同於該相對值VK81。例如,該相對值VK81正 比於1,或等於1。該相對值VK82正比於(-1),或等於(-1)。在一第一特定情況中,該相對參考範圍碼ZB81等於該相對值VK81。例如,該相對值VK81被配置以等於一正整數。在一第二特定情況中,該相對參考範圍碼ZB81等於該相對值VK82。例如,該相對值VK82被配置以等於一負整數。 In some embodiments, the relative reference range code ZB81 is equal to one of a relative value VK81 and a relative value VK82. The relative value VK82 is different from the relative value VK81. For example, the relative value VK81 is positive Than 1, or equal to 1. The relative value VK82 is proportional to (-1), or equal to (-1). In a first specific case, the relative reference range code ZB81 is equal to the relative value VK81. For example, the relative value VK81 is configured to be equal to a positive integer. In a second specific case, the relative reference range code ZB81 is equal to the relative value VK82. For example, the relative value VK82 is configured to be equal to a negative integer.

該物理參數目標範圍RD1ET具有一第一特定物理參數範圍界限和相對於該第一特定物理參數範圍界限的一第二特定物理參數範圍界限。在該第一特定情況中,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得等於該相對值VK81的該相對參考範圍碼ZB81,並基於所獲得的該相對參考範圍碼ZB81來導致該可變物理參數QU1A具有一第一物理量改變以改變該可變物理參數QU1A的該可變目前狀態。 The physical parameter target range RD1ET has a first specific physical parameter range limit and a second specific physical parameter range limit relative to the first specific physical parameter range limit. In the first specific case, the processing unit 331 responds to the control signal SC81 to obtain the relative reference range code ZB81 equal to the relative value VK81 from the control signal SC81, and causes it based on the obtained relative reference range code ZB81 The variable physical parameter QU1A has a first physical quantity change to change the variable current state of the variable physical parameter QU1A.

例如,在該第一特定情況中,該處理單元331基於所獲得的該相對參考範圍碼ZB81來導致該可變物理參數QU1A從該對應物理參數範圍RY1ET通過該第一特定物理參數範圍界限以進入該物理參數目標範圍RD1ET。該第一特定物理參數範圍界限是該預設物理參數目標範圍界限ZD1T1和該預設物理參數目標範圍界限ZD1T2的其中之一。例如,在該第一特定情況中,該第一物理量改變是一第一物理增量和一第一物理減量的其中之一。 For example, in the first specific case, the processing unit 331 causes the variable physical parameter QU1A to pass from the corresponding physical parameter range RY1ET through the first specific physical parameter range boundary based on the obtained relative reference range code ZB81 to enter The physical parameter target range is RD1ET. The first specific physical parameter range limit is one of the preset physical parameter target range limit ZD1T1 and the preset physical parameter target range limit ZD1T2. For example, in the first specific case, the first physical quantity change is one of a first physical increment and a first physical decrement.

在該第二特定情況中,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得等於該相對值VK82的該相對參考範圍碼ZB81,並基於所獲得的該相對參考範圍碼ZB81來導致該可變物理參數QU1A具有與該第 一物理量改變相反的一第二物理量改變以改變該可變物理參數QU1A的該可變目前狀態。例如,在該第二特定情況中,該處理單元331基於所獲得的該相對參考範圍碼ZB81來導致該可變物理參數QU1A從該對應物理參數範圍RY1ET通過該第二特定物理參數範圍界限以進入該物理參數目標範圍RD1ET。 In the second specific case, the processing unit 331 responds to the control signal SC81 to obtain the relative reference range code ZB81 equal to the relative value VK82 from the control signal SC81, and causes it based on the obtained relative reference range code ZB81 The variable physical parameter QU1A has the same A physical quantity change opposite to a second physical quantity change to change the variable current state of the variable physical parameter QU1A. For example, in the second specific case, the processing unit 331 causes the variable physical parameter QU1A to pass from the corresponding physical parameter range RY1ET through the second specific physical parameter range boundary based on the obtained relative reference range code ZB81 to enter The physical parameter target range is RD1ET.

該第二特定物理參數範圍界限是該預設物理參數目標範圍界限ZD1T1和該預設物理參數目標範圍界限ZD1T2的其中另一。例如,在該第二特定情況中,該第二物理量改變是一第二物理增量和一第二物理減量的其中之一。例如,在該第二特定情況中的該相對參考範圍碼ZB81不同於在該第一特定情況中的該相對參考範圍碼ZB81。 The second specific physical parameter range limit is the other of the preset physical parameter target range limit ZD1T1 and the preset physical parameter target range limit ZD1T2. For example, in the second specific case, the second physical quantity change is one of a second physical increment and a second physical decrement. For example, the relative reference range code ZB81 in the second specific case is different from the relative reference range code ZB81 in the first specific case.

請參閱第20圖、第21圖、第22圖和第23圖。第20圖為繪示於第1圖中的該控制系統901的一實施結構9029的示意圖。第21圖為繪示於第1圖中的該控制系統901的一實施結構9030的示意圖。第22圖為繪示於第1圖中的該控制系統901的一實施結構9031的示意圖。第23圖為繪示於第1圖中的該控制系統901的一實施結構9032的示意圖。如第20圖、第21圖、第22圖和第23圖所示,該實施結構9029、該實施結構9030、該實施結構9031和該實施結構9032的每一結構包含該控制裝置212和該控制目標裝置130。該控制目標裝置130包含該操作單元397、該感測單元334、該功能目標335和該儲存單元332。該操作單元397包含該處理單元331、該輸入單元337、該 輸出單元338和耦合於該處理單元331的一定時器342。 Please refer to Figure 20, Figure 21, Figure 22 and Figure 23. FIG. 20 is a schematic diagram of an implementation structure 9029 of the control system 901 shown in FIG. 1. FIG. 21 is a schematic diagram of an implementation structure 9030 of the control system 901 shown in FIG. 1. FIG. 22 is a schematic diagram of an implementation structure 9031 of the control system 901 shown in FIG. 1. FIG. 23 is a schematic diagram of an implementation structure 9032 of the control system 901 shown in FIG. 1. As shown in Figures 20, 21, 22, and 23, each of the implementation structure 9029, the implementation structure 9030, the implementation structure 9031, and the implementation structure 9032 includes the control device 212 and the control Target device 130. The control target device 130 includes the operation unit 397, the sensing unit 334, the function target 335, and the storage unit 332. The operation unit 397 includes the processing unit 331, the input unit 337, the The output unit 338 and a timer 342 coupled to the processing unit 331.

在一些實施例中,該定時器342受該處理單元331控制,並用於測量一時鐘時間TH1A。該定時器342被配置以符合一定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於複數不同時間參考區間HR1E1、HR1E2、…而被特徵化。該複數不同時間參考區間HR1E1、HR1E2、…分別由複數時間值參考範圍RQ11、RQ12、…所代表,並基於一預設時間參考區間順序QB81而被排列。該複數時間值參考範圍RQ11、RQ12、…基於該預設時間參考區間順序QB81而被排列。 In some embodiments, the timer 342 is controlled by the processing unit 331 and used to measure a clock time TH1A. The timer 342 is configured to comply with a timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a plurality of different time reference intervals HR1E1, HR1E2,.... The plural different time reference intervals HR1E1, HR1E2,... are respectively represented by plural time value reference ranges RQ11, RQ12,..., and are arranged based on a preset time reference interval sequence QB81. The plural time value reference ranges RQ11, RQ12,... are arranged based on the preset time reference interval sequence QB81.

該複數時間值參考範圍RQ11、RQ12、…皆基於該定時器規格FT21來用一指定計數值格式HH95而被預設,並分別由複數時間值參考範圍碼EL11、EL12、…所代表。該儲存單元332進一步具有複數不同記憶體位置YS81、YS82、…,並在該複數不同記憶體位置YS81、YS82、…分別儲存複數物理參數指定範圍碼UQ11、UQ12、…。該複數不同時間參考區間HR1E1、HR1E2、…分別由複數時間參考區間碼所代表。例如,該複數時間參考區間碼被配置以分別等於該複數時間值參考範圍碼EL11、EL12、…。因此,該複數時間值參考範圍碼EL11、EL12、…被配置以分別指示該複數不同時間參考區間HR1E1、HR1E2、…。例如,該指定計數值格式HH95基於一指定位元數目UY95而被特徵化。 The complex time value reference ranges RQ11, RQ12,... are preset based on the timer specification FT21 using a designated count value format HH95, and are represented by complex time value reference range codes EL11, EL12,..., respectively. The storage unit 332 further has a plurality of different memory locations YS81, YS82,..., and stores a plurality of physical parameter designated range codes UQ11, UQ12,... in the plurality of different memory locations YS81, YS82,..., respectively. The plural different time reference intervals HR1E1, HR1E2,... are respectively represented by plural time reference interval codes. For example, the plural time reference interval codes are configured to be respectively equal to the plural time value reference range codes EL11, EL12,.... Therefore, the plural time value reference range codes EL11, EL12,... are configured to respectively indicate the plural different time reference intervals HR1E1, HR1E2,.... For example, the designated count value format HH95 is characterized based on a designated number of bits UY95.

該複數時間值參考範圍碼EL11、EL12、…包含一時間值目標範圍碼EL1T和一時間值候選範圍碼 EL12。該複數不同時間參考區間HR1E1、HR1E2、…包含一時間目標區間HR1ET和一時間候選區間HR1E2。該時間值目標範圍碼EL1T和該時間值候選範圍碼EL12被配置以分別指示該時間目標區間HR1ET和該時間候選區間HR1E2。該複數時間值參考範圍RQ11、RQ12、…包含一時間值目標範圍RQ1T和一時間值候選範圍RQ12。該時間目標區間HR1ET和該時間候選區間HR1E2分別由該時間值目標範圍RQ1T和該時間值候選範圍RQ12所代表。 The complex time value reference range codes EL11, EL12, ... include a time value target range code EL1T and a time value candidate range code EL12. The plural different time reference intervals HR1E1, HR1E2,... include a time target interval HR1ET and a time candidate interval HR1E2. The time value target range code EL1T and the time value candidate range code EL12 are configured to respectively indicate the time target interval HR1ET and the time candidate interval HR1E2. The complex time value reference ranges RQ11, RQ12,... include a time value target range RQ1T and a time value candidate range RQ12. The time target interval HR1ET and the time candidate interval HR1E2 are respectively represented by the time value target range RQ1T and the time value candidate range RQ12.

在一些實施例中,該複數不同記憶體位置YS81、YS82、…分別基於該複數時間值參考範圍碼EL11、EL12、…而被識別。例如,該複數不同記憶體位置YS81、YS82、…分別基於複數記憶體位址AS81、AS82、…而被識別,或分別由該複數記憶體位址AS81、AS82、…所識別。該複數記憶體位址AS81、AS82、…分別基於該複數時間值參考範圍碼EL11、EL12、…而被預設。例如,該時鐘時間TH1A進一步基於一額定時間區間HR1E而被特徵化。該額定時間區間HR1E包含該複數不同時間參考區間HR1E1、HR1E2、…,並由一額定時間值範圍HR1N所代表。該額定時間值範圍HR1N包含該複數時間值參考範圍RQ11、RQ12、…,並基於該額定時間區間HR1E和該定時器規格FT21來用該指定計數值格式HH95而被預設。 In some embodiments, the plurality of different memory locations YS81, YS82, ... are respectively identified based on the plurality of time value reference range codes EL11, EL12, .... For example, the plural different memory locations YS81, YS82,... are respectively identified based on the plural memory addresses AS81, AS82,..., or are respectively identified by the plural memory addresses AS81, AS82,.... The plural memory addresses AS81, AS82,... are preset based on the plural time value reference range codes EL11, EL12,..., respectively. For example, the clock time TH1A is further characterized based on a rated time interval HR1E. The rated time interval HR1E includes the plurality of different time reference intervals HR1E1, HR1E2,..., and is represented by a rated time value range HR1N. The rated time value range HR1N includes the plural time value reference ranges RQ11, RQ12,..., and is preset based on the rated time interval HR1E and the timer specification FT21 using the designated count value format HH95.

例如,該物理參數控制功能規格GAL8包含一額定時間區間表示GA8HE和一時間參考區間表示GA8HR。該額定時間區間表示GA8HE用於表示該額定時間區間HR1E。該時間參考區間表示GA8HR用於表示該複數 不同時間參考區間HR1E1、HR1E2、…。該額定時間值範圍HR1N基於該額定時間區間表示GA8HE、該定時器規格FT21和用於轉換該額定時間區間表示GA8HE的一資料編碼操作ZX8HE來用該指定計數值格式HH95而被預設。該複數時間值參考範圍RQ11、RQ12、…基於該時間參考區間表示GA8HR、該定時器規格FT21和用於轉換該時間參考區間表示GA8HR的一資料編碼操作ZX8HR來用該指定計數值格式HH95而被預設。 For example, the physical parameter control function specification GAL8 includes a rated time interval representing GA8HE and a time reference interval representing GA8HR. The rated time interval indicates that GA8HE is used to indicate the rated time interval HR1E. The time reference interval indicates that GA8HR is used to indicate the complex number Different time reference intervals HR1E1, HR1E2,.... The rated time value range HR1N is preset based on the rated time interval representing GA8HE, the timer specification FT21, and a data encoding operation ZX8HE for converting the rated time interval representing GA8HE to use the designated count value format HH95. The complex time value reference ranges RQ11, RQ12, ... are based on the time reference interval representing GA8HR, the timer specification FT21, and a data encoding operation ZX8HR for converting the time reference interval representing GA8HR to use the designated count value format HH95. Preset.

該複數物理參數指定範圍碼UQ11、UQ12、…被配置以分別基於該複數時間值參考範圍碼EL11、EL12、…而被儲存,並包含一物理參數目標範圍碼UQ1T和一物理參數候選範圍碼UQ12。該複數物理參數指定範圍碼UQ11、UQ12、…皆選擇自該複數不同測量值參考範圍碼EM11、EM12、…。該物理參數目標範圍碼UQ1T代表該可變物理參數QU1A被期望在該時間目標區間HR1ET內處於的一物理參數目標範圍RK1ET,並被配置以基於該時間值目標範圍碼EL1T而被儲存在一記憶體位置YS8T。該記憶體位置YS8T基於一記憶體位址AS8T而被識別。該複數時間值參考範圍碼EL11、EL12、…皆基於該物理參數控制功能規格GAL8而被預設。 The complex physical parameter designated range codes UQ11, UQ12, ... are configured to be stored based on the complex time value reference range codes EL11, EL12, ... respectively, and include a physical parameter target range code UQ1T and a physical parameter candidate range code UQ12 . The multiple physical parameter designated range codes UQ11, UQ12,... are all selected from the multiple different measured value reference range codes EM11, EM12,.... The physical parameter target range code UQ1T represents a physical parameter target range RK1ET that the variable physical parameter QU1A is expected to be within the time target interval HR1ET, and is configured to be stored in a memory based on the time value target range code EL1T Body position YS8T. The memory location YS8T is identified based on a memory address AS8T. The complex time value reference range codes EL11, EL12,... are all preset based on the physical parameter control function specification GAL8.

該物理參數候選範圍碼UQ12代表該可變物理參數QU1A被期望在該時間候選區間HR1E2內處於的一物理參數候選範圍RK1E2,並被配置以基於該時間值候選範圍碼EL12而被儲存在一記憶體位置YS82。該記憶體位置YS82基於一記憶體位址AS82而被識別。該物理參數目 標範圍RK1ET和該物理參數候選範圍RK1E2皆選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。例如,該時間候選區間HR1E2相鄰於該時間目標區間HR1ET。 The physical parameter candidate range code UQ12 represents a physical parameter candidate range RK1E2 that the variable physical parameter QU1A is expected to be in the time candidate interval HR1E2, and is configured to be stored in a memory based on the time value candidate range code EL12 Body position YS82. The memory location YS82 is identified based on a memory address AS82. The physical parameters Both the target range RK1ET and the physical parameter candidate range RK1E2 are selected from the plurality of different physical parameter reference ranges RD1E1, RD1E2,.... For example, the time candidate interval HR1E2 is adjacent to the time target interval HR1ET.

例如,在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該物理參數目標範圍RK1ET相同於該物理參數目標範圍RD1ET。在該物理參數目標範圍碼UQ12等於所預設的該測量值候選範圍碼EM12的條件下,該物理參數候選範圍RK1E2相同於該物理參數候選範圍RD1E2。例如,該時間目標區間HR1ET和該時間候選區間HR1E2之間具有一預設時間間隔。 For example, under the condition that the physical parameter target range code UQ1T is equal to the preset measured value target range code EM1T, the physical parameter target range RK1ET is the same as the physical parameter target range RD1ET. Under the condition that the physical parameter target range code UQ12 is equal to the preset measurement value candidate range code EM12, the physical parameter candidate range RK1E2 is the same as the physical parameter candidate range RD1E2. For example, there is a preset time interval between the time target interval HR1ET and the time candidate interval HR1E2.

在一些實施例中,當該輸入單元337接收該控制訊號SC81時,該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T。該控制訊號SC81輸送所預設的該時間值目標範圍碼EL1T。該處理單元331從該控制訊號SC81獲得所輸送的該時間值目標範圍碼EL1T,基於所獲得的該時間值目標範圍碼EL1T來獲得該記憶體位址AS8T,並基於所獲得的該記憶體位址AS8T來存取被儲存在該記憶體位置YS8T的該物理參數目標範圍碼UQ1T以獲得所預設的該測量值目標範圍碼EM1T。 In some embodiments, when the input unit 337 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T. The control signal SC81 transmits the preset target range code EL1T of the time value. The processing unit 331 obtains the transmitted time value target range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained time value target range code EL1T, and based on the obtained memory address AS8T To access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.

例如,在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該時間值目標範圍碼EL1T來起到指示該測量值目標範圍RN1T的作用。該處理單元331執行使用所獲得的該測量值目標範圍碼EM1T的該資料獲 取AD8A以獲得該目標範圍界限值對DN1T。 For example, under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 transmits the preset time value target range code EL1T to indicate the measurement The role of the value target range RN1T. The processing unit 331 executes the data acquisition using the acquired measurement value target range code EM1T Take AD8A to obtain the target range limit value pair DN1T.

在一些實施例中,在該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L來檢查該測量值目標範圍RN1T和該測量值應用範圍RN1L之間的該範圍關係KE8A以做出所獲得的該目標範圍界限值對DN1T和所獲得的該應用範圍界限值對DN1L是否相等的該第二邏輯決定PY81。在該第二邏輯決定PY81是否定的條件下,該處理單元331辨識該範圍關係KE8A為該範圍相異關係以確定該範圍差異DS81。例如,該處理單元331基於所確定的該測量值應用範圍碼EM1L來獲得所預定的該應用範圍界限值對DN1L。 In some embodiments, the processing unit 331 determines the condition of the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by comparing the first measured value VN81 with the obtained application range limit value pair DN1L Next, the processing unit 331 checks the range between the measurement value target range RN1T and the measurement value application range RN1L by comparing the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L The relationship KE8A is to make the second logical decision PY81 whether the obtained target range limit value pair DN1T and the obtained application range limit value pair DN1L are equal. Under the condition that the second logic decision PY81 is negative, the processing unit 331 identifies the range relationship KE8A as the range difference relationship to determine the range difference DS81. For example, the processing unit 331 obtains the predetermined application range limit value pair DN1L based on the determined measurement value application range code EM1L.

在一些實施例中,在該處理單元331藉由比較該第一測量值VN81和所獲得的該應用範圍界限值對DN1L而確定該可變物理參數QU1A目前處於的該物理參數應用範圍RD1EL的條件下,該處理單元331藉由比較所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L來做出所獲得的該測量值目標範圍碼EM1T和所確定的該測量值應用範圍碼EM1L是否相等的該第二邏輯決定PZ81。在該第二邏輯決定PZ81是否定的條件下,該處理單元331辨識該範圍關係KE8A為該範圍相異關係以確定該範圍差異DS81。 In some embodiments, the processing unit 331 determines the condition of the physical parameter application range RD1EL that the variable physical parameter QU1A is currently in by comparing the first measured value VN81 with the obtained application range limit value pair DN1L Next, the processing unit 331 compares the obtained measurement value target range code EM1T with the determined measurement value application range code EM1L to make the obtained measurement value target range code EM1T and the determined measurement value. The second logic of whether the application range codes EM1L are equal determines PZ81. Under the condition that the second logic decision PZ81 is negative, the processing unit 331 identifies the range relationship KE8A as the range difference relationship to determine the range difference DS81.

在該處理單元331確定該範圍差異DS81的 條件下,該處理單元331於該操作時間TF81之內執行用於產生該功能訊號SG81的該訊號產生控制GY81。該功能訊號SG81用於導致該可變物理參數QU1A進入相同於該物理參數目標範圍RD1ET的該物理參數目標範圍RK1ET。該處理單元331於該操作時間TF81之後的該指定時間TG82之內執行與該可變物理參數QU1A相關的該驗證操作ZU81。在該處理單元331於該指定時間TG82之內基於該驗證操作ZU81而確定該可變物理參數QU1A目前處於的該物理參數目標範圍RD1ET的條件下,該處理單元331執行等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該資料比較CE8T。 The processing unit 331 determines the range difference of DS81 Under conditions, the processing unit 331 executes the signal generation control GY81 for generating the function signal SG81 within the operation time TF81. The function signal SG81 is used to cause the variable physical parameter QU1A to enter the physical parameter target range RK1ET which is the same as the physical parameter target range RD1ET. The processing unit 331 executes the verification operation ZU81 related to the variable physical parameter QU1A within the designated time TG82 after the operation time TF81. Under the condition that the processing unit 331 determines the target range RD1ET of the physical parameter that the variable physical parameter QU1A is currently in based on the verification operation ZU81 within the specified time TG82, the processing unit 331 executes a range code equal to the specific measurement value The data comparison between the variable physical parameter range code UN8A of EM14 and the obtained measurement value target range code EM1T is CE8T.

在該處理單元331基於該資料比較CE8T而確定等於該特定測量值範圍碼EM14的該可變物理參數範圍碼UN8A和所獲得的該測量值目標範圍碼EM1T之間的該第一碼差異DF81的條件下,該處理單元331使用該儲存單元332以將所獲得的該測量值目標範圍碼EM1T指定到該可變物理參數範圍碼UN8A。 The processing unit 331 compares CE8T based on the data to determine the first code difference DF81 between the variable physical parameter range code UN8A equal to the specific measurement value range code EM14 and the obtained measurement value target range code EM1T. Under conditions, the processing unit 331 uses the storage unit 332 to assign the obtained measurement value target range code EM1T to the variable physical parameter range code UN8A.

在一些實施例中,該定時器342被配置以藉由使用該時間值目標範圍RQ1T來代表該時間目標區間HR1ET,並被配置以藉由使用該時間值候選範圍RQ12來代表該時間候選區間HR1E2。該控制訊號SC81進一步輸送代表一時鐘參考時間TR81的一時鐘參考時間值NR81。例如,該時鐘參考時間TR81接近一目前時間。例如,該時鐘參考時間TR81與該目前時間的一時間差異在一預設時間 長度內。該時鐘參考時間值NR81基於該時鐘參考時間TR81和該定時器規格FT21來以該指定計數值格式HH95而被預設。 In some embodiments, the timer 342 is configured to represent the time target interval HR1ET by using the time value target range RQ1T, and is configured to represent the time candidate interval HR1E2 by using the time value candidate range RQ12 . The control signal SC81 further conveys a clock reference time value NR81 representing a clock reference time TR81. For example, the clock reference time TR81 is close to a current time. For example, a time difference between the clock reference time TR81 and the current time is a preset time Within the length. The clock reference time value NR81 is preset in the designated count value format HH95 based on the clock reference time TR81 and the timer specification FT21.

該控制訊息CG81包含該時間值目標範圍碼EL1T和該時鐘參考時間值NR81。例如,該物理參數控制功能規格GAL8包含一時鐘時間表示GA8TR。該時鐘時間表示GA8TR用於表示該時鐘參考時間TR81。該時鐘參考時間值NR81基於該時鐘時間表示GA8TR、該定時器規格FT21和用於轉換該時鐘時間表示GA8TR的一資料編碼操作ZX8TR來以該指定計數值格式HH95而被預設。 The control message CG81 includes the time value target range code EL1T and the clock reference time value NR81. For example, the physical parameter control function specification GAL8 includes a clock time representing GA8TR. The clock time representing GA8TR is used to represent the clock reference time TR81. The clock reference time value NR81 is preset in the designated count value format HH95 based on the clock time representation GA8TR, the timer specification FT21, and a data encoding operation ZX8TR for converting the clock time representation GA8TR.

該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該時鐘參考時間值NR81。例如,包含於該控制裝置212中的該操作單元297被配置以獲得所預設的該時間值目標範圍碼EL1T和所預設的該時鐘參考時間值NR81,並基於所獲得的該時鐘參考時間值NR81和所獲得的該時間值目標範圍碼EL1T來輸出輸送該控制訊息CG81的該控制訊號SC81。 The processing unit 331 responds to the control signal SC81 to obtain the clock reference time value NR81 from the control signal SC81. For example, the operating unit 297 included in the control device 212 is configured to obtain the preset time value target range code EL1T and the preset clock reference time value NR81, and based on the obtained clock reference time The value NR81 and the obtained target range code EL1T of the time value are used to output the control signal SC81 for conveying the control message CG81.

在一些實施例中,該處理單元331基於所獲得的該時鐘參考時間值NR81來導致該定時器342在一啟動時間TT82之內啟動,並藉此導致該定時器342在該啟動時間TT82之內產生一時鐘時間訊號SY80。該時鐘時間訊號SY80是一初始時間訊號,並以該指定計數值格式HH95輸送一初始計數值NY80。例如,該初始計數值NY80等於該時鐘參考時間值NR81。 In some embodiments, the processing unit 331 causes the timer 342 to start within a starting time TT82 based on the obtained clock reference time value NR81, and thereby causes the timer 342 to be within the starting time TT82 Generate a clock time signal SY80. The clock time signal SY80 is an initial time signal, and transmits an initial count value NY80 in the designated count value format HH95. For example, the initial count value NY80 is equal to the clock reference time value NR81.

例如,該定時器342被配置以具有一可變計 數值NY8A。在該輸入單元337從該控制裝置212接收輸送該時鐘參考時間值NR81的該控制訊號SC81的條件下,該處理單元331基於所獲得的該時鐘參考時間值NR81來啟動該定時器342以執行用於該物理參數控制功能FA81的一計數操作BD81以改變該可變計數值NY8A。該可變計數值NY8A在該啟動時間TT82之內被配置以等於該初始計數值NY80,並以該指定計數值格式HH95而被提供。例如,該初始計數值NY80被配置以相同於所獲得的該時鐘參考時間值NR81。 For example, the timer 342 is configured to have a variable counter The value NY8A. Under the condition that the input unit 337 receives the control signal SC81 for delivering the clock reference time value NR81 from the control device 212, the processing unit 331 starts the timer 342 for execution based on the obtained clock reference time value NR81 A count operation BD81 in the physical parameter control function FA81 changes the variable count value NY8A. The variable count value NY8A is configured to be equal to the initial count value NY80 within the start time TT82, and is provided in the designated count value format HH95. For example, the initial count value NY80 is configured to be the same as the obtained clock reference time value NR81.

在該可變物理參數QU1A由於該控制訊號SC81而被配置以於該物理參數目標範圍RD1ET之內的條件下,該處理單元331基於該計數操作BD81來到達一指定時間TY81。在該指定時間TY81之內,該定時器342感測該時鐘時間TH1A以導致該可變計數值NY8A等於一特定計數值NY81,並藉此產生輸送該特定計數值NY81的一時鐘時間訊號SY81。 Under the condition that the variable physical parameter QU1A is configured within the physical parameter target range RD1ET due to the control signal SC81, the processing unit 331 reaches a specified time TY81 based on the counting operation BD81. Within the designated time TY81, the timer 342 senses the clock time TH1A to cause the variable count value NY8A to be equal to a specific count value NY81, and thereby generates a clock time signal SY81 that transmits the specific count value NY81.

該處理單元331在該指定時間TY81之內從該時鐘時間訊號SY81以該指定計數值格式HH95獲得該特定計數值NY81,並在該指定時間TY81之內藉由執行使用所獲得的該時間值目標範圍碼EL1T的一科學計算MK85來獲得該時間值候選範圍碼EL12以便檢查所獲得的該特定計數值NY81和該時間值候選範圍RQ12之間的一數學關係KQ81。 The processing unit 331 obtains the specific count value NY81 from the clock time signal SY81 in the specified count value format HH95 within the specified time TY81, and uses the time value target obtained by execution within the specified time TY81 A scientific calculation of the range code EL1T is MK85 to obtain the time value candidate range code EL12 in order to check a mathematical relationship KQ81 between the obtained specific count value NY81 and the time value candidate range RQ12.

在一些實施例中,該時間值目標範圍RQ1T具有一目標範圍界限值對DQ1T。該目標範圍界限值對 DQ1T包含一目標範圍界限值DQ17和相對於該目標範圍界限值DQ17的一目標範圍界限值DQ18。該時間值目標範圍RQ1T和該目標範圍界限值對DQ1T皆基於該時間目標區間HR1ET和該定時器規格FT21來用該指定計數值格式HH95而被預設。該時間值候選範圍RQ12具有一候選範圍界限值對DQ1B。該候選範圍界限值對DQ1B包含一候選範圍界限值DQ13和相對於該候選範圍界限值DQ13的一候選範圍界限值DQ14。該時間值候選範圍RQ12和該候選範圍界限值對DQ1B皆基於該時間候選區間HR1E2和該定時器規格FT21來用該指定計數值格式HH95而被預設。 In some embodiments, the time value target range RQ1T has a target range limit value pair DQ1T. The target range limit value pair DQ1T includes a target range limit value DQ17 and a target range limit value DQ18 relative to the target range limit value DQ17. The time value target range RQ1T and the target range limit value pair DQ1T are preset based on the time target interval HR1ET and the timer specification FT21 using the designated count value format HH95. The time value candidate range RQ12 has a candidate range limit value pair DQ1B. The candidate range limit value pair DQ1B includes a candidate range limit value DQ13 and a candidate range limit value DQ14 relative to the candidate range limit value DQ13. The time value candidate range RQ12 and the candidate range limit value pair DQ1B are preset based on the time candidate interval HR1E2 and the timer specification FT21 using the designated count value format HH95.

例如,該物理參數控制功能規格GAL8包含一時間候選區間表示GA8HT和一時間候選區間表示GA8H2。該時間候選區間表示GA8HT用於表示該時間目標區間HR1ET。該時間候選區間表示GA8H2用於表示該時間候選區間HR1E2。該時間值目標範圍RQ1T和該目標範圍界限值對DQ1T皆基於該時間候選區間表示GA8HT、該定時器規格FT21和用於轉換該時間候選區間表示GA8HT的一資料編碼操作ZX8HT來用該指定計數值格式HH95而被預設。該時間值候選範圍RQ12和該候選範圍界限值對DQ1B皆基於該時間候選區間表示GA8H2、該定時器規格FT21和用於轉換該時間候選區間表示GA8H2的一資料編碼操作ZX8H2來用該指定計數值格式HH95而被預設。 For example, the physical parameter control function specification GAL8 includes a time candidate interval representing GA8HT and a time candidate interval representing GA8H2. The time candidate interval indicates that GA8HT is used to indicate the time target interval HR1ET. The candidate time interval indicates that GA8H2 is used to indicate the candidate time interval HR1E2. The time value target range RQ1T and the target range limit value pair DQ1T are based on the time candidate interval representing GA8HT, the timer specification FT21, and a data encoding operation ZX8HT for converting the time candidate interval representing GA8HT to use the designated count value The format HH95 is preset. The time value candidate range RQ12 and the candidate range limit value pair DQ1B are based on the time candidate interval representing GA8H2, the timer specification FT21, and a data encoding operation ZX8H2 for converting the time candidate interval representing GA8H2 to use the designated count value The format HH95 is preset.

例如,在該指定時間TY81之內,該物理參數候選範圍碼UQ12等於所預設的該測量值候選範圍碼EM12。該儲存單元332儲存該目標範圍界限值對DQ1T和 該候選範圍界限值對DQ1B。該目標範圍界限值對DQ1T和該候選範圍界限值對DQ1B分別基於該時間值目標範圍碼EL1T和該時間值候選範圍碼EL12而被儲存在該儲存單元332中。 For example, within the designated time TY81, the physical parameter candidate range code UQ12 is equal to the preset measurement value candidate range code EM12. The storage unit 332 stores the target range limit value pair DQ1T and The candidate range limit value is DQ1B. The target range limit value pair DQ1T and the candidate range limit value pair DQ1B are stored in the storage unit 332 based on the time value target range code EL1T and the time value candidate range code EL12, respectively.

該處理單元331被配置以在該指定時間TY81之內基於所獲得的該時間值候選範圍碼EL12來從該儲存單元332獲得該候選範圍界限值對DQ1B,並藉由比較所獲得的該特定計數值NY81和所獲得的該候選範圍界限值對DQ1B來執行用於檢查該特定計數值NY81和該時間值候選範圍RQ12之間的該數學關係KQ81的一檢查操作ZQ81。在該處理單元331於該指定時間TY81之內基於該檢查操作ZQ81而確定該時鐘時間TH1A目前處於的該時間候選區間HR1E2的條件下,該處理單元331基於所獲得的該時間值候選範圍碼EL12來獲得該記憶體位址AS82,並於該指定時間TY81之內基於所獲得的該記憶體位址AS82來存取被儲存在該記憶體位置YS82的該物理參數候選範圍碼UQ12以獲得該物理參數候選範圍碼UQ12。 The processing unit 331 is configured to obtain the candidate range limit value pair DQ1B from the storage unit 332 based on the obtained time value candidate range code EL12 within the specified time TY81, and to compare the obtained specific counter value. The numerical value NY81 and the obtained candidate range limit value pair DQ1B are used to perform a check operation ZQ81 for checking the mathematical relationship KQ81 between the specific count value NY81 and the time value candidate range RQ12. Under the condition that the processing unit 331 determines the time candidate interval HR1E2 that the clock time TH1A is currently in based on the checking operation ZQ81 within the specified time TY81, the processing unit 331 is based on the obtained time value candidate range code EL12 To obtain the memory address AS82, and access the physical parameter candidate range code UQ12 stored in the memory location YS82 based on the obtained memory address AS82 within the specified time TY81 to obtain the physical parameter candidate Range code UQ12.

例如,該處理單元331基於該檢查操作ZQ81來確定該時鐘時間TH1A目前於該時間候選區間HR1E2之內的一時間情況,並藉此辨識該時鐘時間TH1A和該時間候選區間HR1E2之間的一時間關係為該時鐘時間TH1A目前於該時間候選區間HR1E2之內的一時間交集關係。在該處理單元331從該記憶體位置YS82獲得該物理參數候選範圍碼UQ12的條件下,該處理單元331於該指定時間TY81之內執行用於該物理參數控制功能FA81的一檢查操作 ZP85以決定所獲得的該物理參數候選範圍碼UQ12是否等於該可變物理參數範圍碼UN8A。 For example, the processing unit 331 determines a time situation of the clock time TH1A currently within the time candidate interval HR1E2 based on the check operation ZQ81, and thereby identifies a time between the clock time TH1A and the time candidate interval HR1E2 The relationship is a time intersection relationship of the clock time TH1A currently within the time candidate interval HR1E2. Under the condition that the processing unit 331 obtains the physical parameter candidate range code UQ12 from the memory position YS82, the processing unit 331 executes a check operation for the physical parameter control function FA81 within the specified time TY81 ZP85 determines whether the obtained physical parameter candidate range code UQ12 is equal to the variable physical parameter range code UN8A.

在一些實施例中,在該處理單元331從該記憶體位置YS82獲得該物理參數候選範圍碼UQ12的條件下,該處理單元331藉由使用該儲存單元332來讀取等於該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A,並執行用於檢查所獲得的該物理參數候選範圍碼UQ12和所讀取的該測量值目標範圍碼EM1T之間的一算術關係KP85的該檢查操作ZP85。該檢查操作ZP85被配置以藉由執行用於該物理參數控制功能FA81的一資料比較CE85來比較所獲得的該物理參數候選範圍碼UQ12和所讀取的該測量值目標範圍碼EM1T以決定所獲得的該物理參數候選範圍碼UQ12和所讀取的該測量值目標範圍碼EM1T是否不同。 In some embodiments, under the condition that the processing unit 331 obtains the physical parameter candidate range code UQ12 from the memory position YS82, the processing unit 331 reads the target range code equal to the measured value by using the storage unit 332 The variable physical parameter range code UN8A of EM1T, and execute the check operation ZP85 for checking an arithmetic relationship KP85 between the obtained physical parameter candidate range code UQ12 and the read target range code EM1T of the measured value . The checking operation ZP85 is configured to compare the obtained physical parameter candidate range code UQ12 with the read target range code EM1T by executing a data comparison CE85 for the physical parameter control function FA81 to determine the measured value target range code EM1T. Whether the obtained candidate range code UQ12 of the physical parameter is different from the read target range code EM1T of the measured value.

在該處理單元331藉由執行該資料比較CE85來確定所獲得的該物理參數候選範圍碼UQ12和等於所獲得的該測量值目標範圍碼EM1T的該可變物理參數範圍碼UN8A之間的一碼差異DX85的條件下,該處理單元331於該指定時間TY81之內導致該輸出組件3381執行用於該物理參數控制功能FA81的一訊號產生操作BY85以產生一功能訊號SG85。例如,該功能訊號SG85是一控制訊號。該輸出組件3381將該功能訊號SG85傳輸到該功能目標335。該功能目標335響應該功能訊號SG85來導致該可變物理參數QU1A從該物理參數目標範圍RD1ET進入該對應物理參數範圍RY1ET。例如,在該處理單元331從該記 憶體位置YS12獲得等於所預設的該測量值候選範圍碼EM12的該物理參數候選範圍碼UQ12的條件下,該功能目標335響應該功能訊號SG85來導致該可變物理參數QU1A進入相同於該物理參數候選範圍RD1E2的該物理參數候選範圍RK1E2。 The processing unit 331 performs the data comparison CE85 to determine a code between the obtained physical parameter candidate range code UQ12 and the variable physical parameter range code UN8A equal to the obtained measured value target range code EM1T Under the condition of the difference DX85, the processing unit 331 causes the output component 3381 to perform a signal generation operation BY85 for the physical parameter control function FA81 within the specified time TY81 to generate a function signal SG85. For example, the function signal SG85 is a control signal. The output component 3381 transmits the function signal SG85 to the function target 335. The function target 335 responds to the function signal SG85 to cause the variable physical parameter QU1A to enter the corresponding physical parameter range RY1ET from the physical parameter target range RD1ET. For example, in the processing unit 331 from the record Under the condition that the memory position YS12 obtains the physical parameter candidate range code UQ12 equal to the preset measurement value candidate range code EM12, the function target 335 responds to the function signal SG85 to cause the variable physical parameter QU1A to enter the same The physical parameter candidate range RK1E2 of the physical parameter candidate range RD1E2.

在一些實施例中,該控制裝置212包含該操作單元297和耦合於該操作單元297的該狀態改變偵測器475。該複數物理參數指定範圍碼UQ11、UQ12、…屬於一物理參數指定範圍碼類型TS81。該物理參數指定範圍碼類型TS81由一物理參數指定範圍碼類型識別符HS81所識別。該物理參數指定範圍碼類型識別符HS81被預設。該記憶體位址AS8T基於所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該時間值目標範圍碼EL1T而被預設。該記憶體位址AS82基於所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該時間值候選範圍碼EL12而被預設。 In some embodiments, the control device 212 includes the operating unit 297 and the state change detector 475 coupled to the operating unit 297. The plural physical parameter designated range codes UQ11, UQ12, ... belong to a physical parameter designated range code type TS81. The physical parameter designated range code type TS81 is identified by a physical parameter designated range code type identifier HS81. The physical parameter specifies the range code type identifier HS81 to be preset. The memory address AS8T is preset based on the preset physical parameter designated range code type identifier HS81 and the preset time value target range code EL1T. The memory address AS82 is preset based on the preset physical parameter designation range code type identifier HS81 and the preset time value candidate range code EL12.

在該輸入單元337接收該控制訊號SC81之前,該操作單元297被配置以取得所預設的該物理參數目標範圍碼UQ1T、所預設的該物理參數指定範圍碼類型識別符HS81和所預設的該時間值目標範圍碼EL1T,並預先基於所取得的該物理參數指定範圍碼類型識別符HS81和所取得的該時間值目標範圍碼EL1T來取得該記憶體位址AS8T。該操作單元297基於所取得的該物理參數目標範圍碼UQ1T和所取得的該記憶體位址AS8T來提供一寫入請求訊息WS8T到該輸入單元337。該寫入請求訊息WS8T包含 所取得的該物理參數目標範圍碼UQ1T和所取得的該記憶體位址AS8T。 Before the input unit 337 receives the control signal SC81, the operation unit 297 is configured to obtain the preset physical parameter target range code UQ1T, the preset physical parameter designated range code type identifier HS81, and the preset physical parameter specified range code type identifier HS81. The time value target range code EL1T is obtained in advance based on the obtained physical parameter designated range code type identifier HS81 and the obtained time value target range code EL1T to obtain the memory address AS8T. The operating unit 297 provides a write request message WS8T to the input unit 337 based on the acquired physical parameter target range code UQ1T and the acquired memory address AS8T. The write request message WS8T contains The obtained physical parameter target range code UQ1T and the obtained memory address AS8T.

例如,在該輸入單元337接收該控制訊號SC81之前,該輸入單元337從該操作單元297接收該寫入請求訊息WS8T。該處理單元331從所接收的該寫入請求訊息WS8T獲得所包含的該物理參數目標範圍碼UQ1T和所包含的該記憶體位址AS8T,並基於所獲得的該物理參數目標範圍碼UQ1T和所獲得的該記憶體位址AS8T來使用該儲存單元332以在該記憶體位置YS8T儲存所獲得的該物理參數目標範圍碼UQ1T。 For example, before the input unit 337 receives the control signal SC81, the input unit 337 receives the write request message WS8T from the operation unit 297. The processing unit 331 obtains the included physical parameter target range code UQ1T and the included memory address AS8T from the received write request message WS8T, and based on the obtained physical parameter target range code UQ1T and the obtained The memory address AS8T is used to use the storage unit 332 to store the obtained physical parameter target range code UQ1T in the memory location YS8T.

在該輸入單元337接收該控制訊號SC81之前,該操作單元297被配置以取得該物理參數候選範圍碼UQ12和所預設的該時間值候選範圍碼EL12,並預先基於所取得的該物理參數指定範圍碼類型識別符HS81和所取得的該時間值候選範圍碼EL12來取得該記憶體位址AS82。該處理單元331基於所取得的該物理參數候選範圍碼UQ12和所取得的該記憶體位址AS82來來提供一寫入請求訊息WS82到該輸入單元337。該寫入請求訊息WS82包含所取得的該物理參數候選範圍碼UQ12和所取得的該記憶體位址AS82。 Before the input unit 337 receives the control signal SC81, the operation unit 297 is configured to obtain the physical parameter candidate range code UQ12 and the preset time value candidate range code EL12, and specify in advance based on the obtained physical parameter The range code type identifier HS81 and the obtained time value candidate range code EL12 are used to obtain the memory address AS82. The processing unit 331 provides a write request message WS82 to the input unit 337 based on the obtained physical parameter candidate range code UQ12 and the obtained memory address AS82. The write request message WS82 includes the obtained physical parameter candidate range code UQ12 and the obtained memory address AS82.

例如,在該輸入單元337接收該控制訊號SC81之前,該輸入單元337從該操作單元29接收該寫入請求訊息WS82。該處理單元331從所接收的該寫入請求訊息WS82獲得所包含的該物理參數候選範圍碼UQ12和所包含的該記憶體位址AS82,並基於所獲得的該物理參數候選範 圍碼UQ12和所獲得的該記憶體位址AS82來使用該儲存單元332以在該記憶體位置YS82儲存所獲得的該物理參數候選範圍碼UQ12。 For example, before the input unit 337 receives the control signal SC81, the input unit 337 receives the write request message WS82 from the operating unit 29. The processing unit 331 obtains the included physical parameter candidate range code UQ12 and the included memory address AS82 from the received write request message WS82, and based on the obtained physical parameter candidate range The peripheral code UQ12 and the obtained memory address AS82 are used to use the storage unit 332 to store the obtained physical parameter candidate range code UQ12 in the memory location YS82.

請參閱第24圖、第25圖和第26圖。第24圖為繪示於第1圖中的該控制系統901的一實施結構9033的示意圖。第25圖為繪示於第1圖中的該控制系統901的一實施結構9034的示意圖。第25圖為繪示於第1圖中的該控制系統901的一實施結構9035的示意圖。如第24圖、第25圖和第26圖所示,該實施結構9033、該實施結構9034和該實施結構9035的每一結構包含該控制裝置212和該控制目標裝置130。該控制裝置212包含該操作單元297和該狀態改變偵測器475。該控制目標裝置130包含該操作單元397、該儲存單元332、該感測單元334和該功能目標335和一功能目標735。該操作單元397包含該處理單元331、該輸入單元337和該輸出單元338。 Please refer to Figure 24, Figure 25 and Figure 26. FIG. 24 is a schematic diagram of an implementation structure 9033 of the control system 901 shown in FIG. 1. FIG. 25 is a schematic diagram of an implementation structure 9034 of the control system 901 shown in FIG. 1. FIG. 25 is a schematic diagram of an implementation structure 9035 of the control system 901 shown in FIG. 1. As shown in FIG. 24, FIG. 25, and FIG. 26, each of the implementation structure 9033, the implementation structure 9034, and the implementation structure 9035 includes the control device 212 and the control target device 130. The control device 212 includes the operating unit 297 and the state change detector 475. The control target device 130 includes the operation unit 397, the storage unit 332, the sensing unit 334, the function target 335, and a function target 735. The operation unit 397 includes the processing unit 331, the input unit 337 and the output unit 338.

在一些實施例中,該控制目標裝置130進一步包含耦合於該操作單元397的一功能目標735和耦合於該操作單元397的一多工器363。該功能目標735耦合於該輸出單元338,並包含一物理參數形成區AU21。該物理參數形成區AU21具有一可變物理參數QU2A。該多工器363具有一輸入端3631、一輸入端3632、一控制端363C和一輸出端363P。該控制端363C耦合於該處理單元331。例如,該功能目標735是一物理可實現功能目標,並具有相似於該功能目標335的一功能結構。 In some embodiments, the control target device 130 further includes a function target 735 coupled to the operating unit 397 and a multiplexer 363 coupled to the operating unit 397. The function object 735 is coupled to the output unit 338 and includes a physical parameter formation area AU21. The physical parameter formation area AU21 has a variable physical parameter QU2A. The multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C, and an output terminal 363P. The control terminal 363C is coupled to the processing unit 331. For example, the functional object 735 is a physically achievable functional object and has a functional structure similar to the functional object 335.

該輸入端3631耦合於該物理參數形成區 AU11。該輸入端3632耦合於該物理參數形成區AU21。該輸出端363P耦合於該感測單元334。例如,該可變物理參數QU1A和該可變物理參數QU2A分別是一第四可變電性參數和一第五可變電性參數。例如,該第四可變電性參數和該第五可變電性參數分別是一第四可變電壓和一第五可變電壓。該輸入端3631和該輸出端363P之間具有一第一功能關係。該第一功能關係等於一第一導通關係和一第一關斷關係的其中之一。 The input terminal 3631 is coupled to the physical parameter formation area AU11. The input terminal 3632 is coupled to the physical parameter formation area AU21. The output terminal 363P is coupled to the sensing unit 334. For example, the variable physical parameter QU1A and the variable physical parameter QU2A are a fourth variable electrical parameter and a fifth variable electrical parameter, respectively. For example, the fourth variable electrical parameter and the fifth variable electrical parameter are a fourth variable voltage and a fifth variable voltage, respectively. There is a first functional relationship between the input terminal 3631 and the output terminal 363P. The first functional relationship is equal to one of a first on relationship and a first off relationship.

該輸入端3632和該輸出端363P之間具有一第二功能關係。該第二功能關係等於一第二導通關係和一第二關斷關係的其中之一。在該第一功能關係等於該第一導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3631來感測該可變物理參數QU1A,並通過該輸出端363P和該輸入端3631而耦合於該物理參數形成區AU11。在該第二功能關係等於該第二導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3632來感測該可變物理參數QU2A,並通過該輸出端363P和該輸入端3632而耦合於該物理參數形成區AU21。例如,該多工器263受該處理單元331控制,並是一類比多工器。 There is a second functional relationship between the input terminal 3632 and the output terminal 363P. The second functional relationship is equal to one of a second on-state relationship and a second off-state relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, and through the output terminal 363P and The input terminal 3631 is coupled to the physical parameter formation area AU11. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, and through the output terminal 363P and The input terminal 3632 is coupled to the physical parameter formation area AU21. For example, the multiplexer 263 is controlled by the processing unit 331 and is an analog multiplexer.

例如,該儲存單元332、該感測單元334、該多工器263、該功能目標335和該功能目標735皆耦合於該操作單元397,並皆受該處理單元331控制。該控制裝置212和該控制目標裝置130是分開的或接觸的。該操作單元397和該功能目標335是分開的或接觸的。該操作單元397和該功能目標735是分開的或接觸的。該操作單元397和 該感測單元334是分開的或接觸的。該控制裝置212用於控制該可變物理參數QU2A。 For example, the storage unit 332, the sensing unit 334, the multiplexer 263, the function target 335, and the function target 735 are all coupled to the operation unit 397 and are all controlled by the processing unit 331. The control device 212 and the control target device 130 are separate or in contact. The operating unit 397 and the functional target 335 are separated or in contact. The operation unit 397 and the function target 735 are separated or in contact. The operating unit 397 and The sensing unit 334 is separated or in contact. The control device 212 is used to control the variable physical parameter QU2A.

在一些實施例中,該功能目標335由一功能目標識別符HA2T所識別。該功能目標735由一功能目標識別符HA22所識別。該功能目標335和該功能目標735分別位於不同空間位置,並皆通過該輸出單元338而耦合於該處理單元331。該功能目標識別符HA2T和該功能目標識別符HA22皆基於該物理參數控制功能規格GAL8而被預設。該控制訊號SC81進一步輸送該功能目標識別符HA2T和該功能目標識別符HA22的至少其中之一。 In some embodiments, the functional target 335 is identified by a functional target identifier HA2T. The functional object 735 is identified by a functional object identifier HA22. The functional object 335 and the functional object 735 are respectively located in different spatial positions, and both are coupled to the processing unit 331 through the output unit 338. The function target identifier HA2T and the function target identifier HA22 are preset based on the physical parameter control function specification GAL8. The control signal SC81 further conveys at least one of the functional object identifier HA2T and the functional object identifier HA22.

該輸入單元337從該操作單元297接收該控制訊號SC81。在該控制訊號SC81輸送該功能目標識別符HA2T的條件下,該處理單元331響應該控制訊號SC81來選擇該功能目標335以進行控制。在該控制訊號SC81輸送該功能目標識別符HA22的條件下,該處理單元331響應該控制訊號SC81來選擇該功能目標735以進行控制。例如,該功能目標識別符HA2T是一第一功能目標號碼。該功能目標識別符HA22是一第二功能目標號碼。 The input unit 337 receives the control signal SC81 from the operation unit 297. Under the condition that the control signal SC81 transmits the functional object identifier HA2T, the processing unit 331 responds to the control signal SC81 to select the functional object 335 for control. Under the condition that the control signal SC81 transmits the functional object identifier HA22, the processing unit 331 responds to the control signal SC81 to select the functional object 735 for control. For example, the functional target identifier HA2T is a first functional target number. The functional target identifier HA22 is a second functional target number.

例如,該功能目標335和該功能目標735是分開的,或由設置於該功能目標335和該功能目標735之間的一材料層70U所隔開。該功能目標335、該材料層70U和該功能目標735皆耦合於一支撐媒介70M。該控制目標裝置130包含該材料層70U,或該材料層70U設置於該控制目標裝置130之外。該控制目標裝置130包含該支撐媒介70M,或該支撐媒介70M設置於該控制目標裝置130之 外。例如,該支撐媒介70M耦合於該操作單元397。 For example, the functional object 335 and the functional object 735 are separated, or separated by a material layer 70U disposed between the functional object 335 and the functional object 735. The functional object 335, the material layer 70U, and the functional object 735 are all coupled to a supporting medium 70M. The control target device 130 includes the material layer 70U, or the material layer 70U is disposed outside the control target device 130. The control target device 130 includes the support medium 70M, or the support medium 70M is set in the control target device 130 outside. For example, the supporting medium 70M is coupled to the operating unit 397.

在一些實施例中,在該控制訊號SC81輸送該功能目標識別符HA2T的條件下,該處理單元331響應該控制訊號SC81來從該控制訊號SC81獲得該功能目標識別符HA2T,並基於所獲得的該功能目標識別符HA2T來導致該感測單元334感測該可變物理參數QU1A,並藉此從該感測單元334接收該第一感測訊號SN81。該處理單元331基於所接收的該第一感測訊號SN81來以該指定測量值格式HH81獲得該第一測量值VN81,並基於所獲得的該功能目標識別符HA2T來向該功能目標335傳輸該功能訊號SG81、該功能訊號SG82和該功能訊號SG91的至少其中之一。 In some embodiments, under the condition that the control signal SC81 delivers the functional target identifier HA2T, the processing unit 331 responds to the control signal SC81 to obtain the functional target identifier HA2T from the control signal SC81, and based on the obtained The functional target identifier HA2T causes the sensing unit 334 to sense the variable physical parameter QU1A, thereby receiving the first sensing signal SN81 from the sensing unit 334. The processing unit 331 obtains the first measurement value VN81 in the designated measurement value format HH81 based on the received first sensing signal SN81, and transmits the function to the function target 335 based on the obtained function target identifier HA2T At least one of the signal SG81, the function signal SG82, and the function signal SG91.

例如,該處理單元331基於所獲得的該功能目標識別符HA2T來提供一控制訊號SD81到該控制端363C。例如,該控制訊號SD81是一選擇控制訊號,並起到指示該輸入端3631的作用。該多工器363響應該控制訊號SD81來導致該輸入端3631和該輸出端363P之間的該第一功能關係等於該第一導通關係。在該第一功能關係等於該第一導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生該第一感測訊號SN81,因此該處理單元331從該感測單元334接收該第一感測訊號SN81。 For example, the processing unit 331 provides a control signal SD81 to the control terminal 363C based on the obtained functional target identifier HA2T. For example, the control signal SD81 is a selection control signal and functions as an instruction to the input terminal 3631. The multiplexer 363 responds to the control signal SD81 to cause the first functional relationship between the input terminal 3631 and the output terminal 363P to be equal to the first conduction relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate the first sensing signal SN81, so the processing unit 331 obtains from the sensing unit 334 Receive the first sensing signal SN81.

該儲存單元332具有該儲存空間SU11。該儲存單元332進一步基於所預設的該功能目標識別符HA2T來在該儲存空間SU11中儲存該額定範圍界限值對DD1A、該可變物理參數範圍碼UN8A、該目標範圍界限值對 DN1T、該控制碼CC1T、該候選範圍界限值對DN1B、該控制碼CC12和該時間長度範圍界限值對LN8A。該處理單元331進一步基於所獲得的該功能目標識別符HA2T來使用該儲存單元332以存取該額定範圍界限值對DD1A、該可變物理參數範圍碼UN8A、該目標範圍界限值對DN1T、該控制碼CC1T、該候選範圍界限值對DN1B、該控制碼CC12和該時間長度範圍界限值對LN8A的其中任一。 The storage unit 332 has the storage space SU11. The storage unit 332 further stores the rated range limit value pair DD1A, the variable physical parameter range code UN8A, and the target range limit value pair in the storage space SU11 based on the preset function target identifier HA2T. DN1T, the control code CC1T, the candidate range limit value pair DN1B, the control code CC12, and the time length range limit value pair LN8A. The processing unit 331 further uses the storage unit 332 based on the obtained functional target identifier HA2T to access the rated range limit value pair DD1A, the variable physical parameter range code UN8A, the target range limit value pair DN1T, the Any one of the control code CC1T, the candidate range limit value pair DN1B, the control code CC12, and the time length range limit value pair LN8A.

在一些實施例中,該第一記憶體位址AM8T基於所預設的該功能目標識別符HA2T、所預設的該測量值目標範圍碼EM1T和所預設的該測量範圍界限資料碼類型識別符HN81而被預設。該處理單元331響應該控制訊號SC81來使用所獲得的該功能目標識別符HA2T、所獲得的該測量值目標範圍碼EM1T和所獲得的該測量範圍界限資料碼類型識別符HN81來獲得該第一記憶體位址AM8T,並基於所獲得的該第一記憶體位址AM8T來使用該儲存單元332以存取被儲存在該第一記憶體位置YM8T的該目標範圍界限值對DN1T以獲得該目標範圍界限值對DN1T。 In some embodiments, the first memory address AM8T is based on the preset function target identifier HA2T, the preset measurement value target range code EM1T, and the preset measurement range limit data code type identifier HN81 is preset. In response to the control signal SC81, the processing unit 331 uses the obtained functional target identifier HA2T, the obtained measured value target range code EM1T, and the obtained measurement range limit data code type identifier HN81 to obtain the first The memory address is AM8T, and the storage unit 332 is used based on the obtained first memory address AM8T to access the target range limit value pair DN1T stored in the first memory location YM8T to obtain the target range limit Value pair DN1T.

例如,該第二記憶體位址AX8T基於所預設的該功能目標識別符HA2T、所預設的該測量值目標範圍碼EM1T和所預設的該控制碼類型識別符HC81而被預設。在該處理單元331確定該可變物理參數QU1A目前處於的該對應物理參數範圍RY1ET的條件下,該處理單元331基於所獲得的該功能目標識別符HA2T、所獲得的該測量值目標範圍碼EM1T和所獲得的該控制碼類型識別符HC81來獲得該第二記憶體位址AX8T,並基於所獲得的該第二記憶體位 址AX8T來使用該儲存單元332以存取被儲存在該第二記憶體位置YX8T的該控制碼CC1T以獲得該控制碼CC1T。 For example, the second memory address AX8T is preset based on the preset function target identifier HA2T, the preset measurement value target range code EM1T, and the preset control code type identifier HC81. Under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained functional target identifier HA2T and the obtained measured value target range code EM1T And the obtained control code type identifier HC81 to obtain the second memory address AX8T, and based on the obtained second memory location Address AX8T to use the storage unit 332 to access the control code CC1T stored in the second memory location YX8T to obtain the control code CC1T.

在一些實施例中,在該處理單元331確定該可變物理參數QU1A目前處於的該對應物理參數範圍RY1ET的條件下,該處理單元331基於所獲得的該功能目標識別符HA2T和所獲得的該控制碼CC1T來執行用於控制該輸出單元338的該訊號產生控制GY81。該輸出單元338響應該訊號產生控制GY81來執行用於該物理參數控制功能FA81的該訊號產生操作BY81以產生該功能訊號SG81,並導致該輸出單元338向該功能目標335傳輸該功能訊號SG81。該功能訊號SG81用於控制該功能目標335以導致該可變物理參數QU1A進入該物理參數目標範圍RD1ET。 In some embodiments, under the condition that the processing unit 331 determines that the variable physical parameter QU1A is currently in the corresponding physical parameter range RY1ET, the processing unit 331 is based on the obtained functional target identifier HA2T and the obtained The control code CC1T executes the signal generation control GY81 for controlling the output unit 338. In response to the signal generation control GY81, the output unit 338 executes the signal generation operation BY81 for the physical parameter control function FA81 to generate the function signal SG81, and causes the output unit 338 to transmit the function signal SG81 to the function target 335. The function signal SG81 is used to control the function target 335 to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET.

例如,該輸出單元338包含一輸出端338P和一輸出端338Q。該輸出端338P耦合於該功能目標335。該輸出端338P耦合於該功能目標735。該輸出端338P和該輸出端338Q分別位於不同空間位置。所預設的該功能目標識別符HA2T被配置以指示該輸出端338P。所預設的該功能目標識別符HA22被配置以指示該輸出端338Q。該訊號產生控制GY81起到指示該輸出端338P的作用,並用於導致該處理單元331提供一控制訊號SF81到該輸出單元338。該控制訊號SF81起到指示該輸出端338P的作用。該輸出單元338響應該訊號產生控制GY81和該控制訊號SF81的其中之一來執行使用該輸出端338P的該訊號產生操作BY81以向該功能目標335傳輸該功能訊號SG81。 For example, the output unit 338 includes an output terminal 338P and an output terminal 338Q. The output terminal 338P is coupled to the functional target 335. The output terminal 338P is coupled to the functional target 735. The output terminal 338P and the output terminal 338Q are respectively located at different spatial positions. The preset function target identifier HA2T is configured to indicate the output terminal 338P. The preset function target identifier HA22 is configured to indicate the output terminal 338Q. The signal generation control GY81 functions as an instruction to the output terminal 338P, and is used to cause the processing unit 331 to provide a control signal SF81 to the output unit 338. The control signal SF81 plays a role of instructing the output terminal 338P. The output unit 338 responds to one of the signal generation control GY81 and the control signal SF81 to execute the signal generation operation BY81 using the output terminal 338P to transmit the function signal SG81 to the function target 335.

在一些實施例中,該輸入單元337從該控制 裝置212接收一控制訊號SC97。該控制訊號SC97輸送該功能目標識別符HA22。在該控制訊號SC97輸送該功能目標識別符HA22的條件下,該處理單元331響應該控制訊號SC97來從該控制訊號SC97獲得該功能目標識別符HA22,並基於所獲得的該功能目標識別符HA22來提供一控制訊號SD82到該控制端363C。例如,該控制訊號SD82是一選擇控制訊號,起到指示該輸入端3632的作用,並不同於該控制訊號SD81。 In some embodiments, the input unit 337 controls The device 212 receives a control signal SC97. The control signal SC97 conveys the functional target identifier HA22. Under the condition that the control signal SC97 transmits the functional object identifier HA22, the processing unit 331 responds to the control signal SC97 to obtain the functional object identifier HA22 from the control signal SC97, and based on the obtained functional object identifier HA22 To provide a control signal SD82 to the control terminal 363C. For example, the control signal SD82 is a selection control signal, which functions as an instruction to the input terminal 3632, and is different from the control signal SD81.

該多工器363響應該控制訊號SD82來導致該輸入端3632和該輸出端363P之間的該第二功能關係等於該第二導通關係。在該第二功能關係等於該第二導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN91。該處理單元331從該感測單元334接收該感測訊號SN91,並基於所接收的該感測訊號SN91來以該指定測量值格式HH81獲得一測量值VN91。 The multiplexer 363 responds to the control signal SD82 to cause the second functional relationship between the input terminal 3632 and the output terminal 363P to be equal to the second conduction relationship. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN91. The processing unit 331 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 in the designated measurement value format HH81 based on the received sensing signal SN91.

在一特定情況中,該處理單元331基於所獲得的該測量值VN91和所獲得的該功能目標識別符HA22來執行用於控制該輸出單元338的一訊號產生控制GY97。該訊號產生控制GY97起到指示該輸出端338Q的作用,並用於導致該處理單元331提供一控制訊號SF97到該輸出單元338。該控制訊號SF97起到指示該輸出端338Q的作用。該輸出單元338響應該訊號產生控制GY97和該控制訊號SF97的其中之一來執行使用該輸出端338Q的一訊號產生操作BY97以向該功能目標735傳輸一功能訊號SG97。該功能訊號SG97用於控制該可變物理參數QU2A。 In a specific case, the processing unit 331 executes a signal generation control GY97 for controlling the output unit 338 based on the obtained measured value VN91 and the obtained functional target identifier HA22. The signal generation control GY97 functions to indicate the output terminal 338Q, and is used to cause the processing unit 331 to provide a control signal SF97 to the output unit 338. The control signal SF97 functions to indicate the output terminal 338Q. The output unit 338 responds to one of the signal generation control GY97 and the control signal SF97 to execute a signal generation operation BY97 using the output terminal 338Q to transmit a function signal SG97 to the function target 735. The function signal SG97 is used to control the variable physical parameter QU2A.

請參閱第27圖,其為繪示於第1圖中的該控制系統901的一實施結構9036的示意圖。如第27圖所示,該實施結構9036包含該控制目標裝置130和用於控制該控制目標裝置130的該控制裝置212。該控制目標裝置130具有該可變物理參數QU1A。該可變物理參數QU1A基於由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET而被特徵化。用於控制該可變物理參數QU1A的該控制裝置212包含一感測單元260和該操作單元297。 Please refer to FIG. 27, which is a schematic diagram of an implementation structure 9036 of the control system 901 shown in FIG. 1. As shown in FIG. 27, the implementation structure 9036 includes the control target device 130 and the control device 212 for controlling the control target device 130. The control target device 130 has the variable physical parameter QU1A. The variable physical parameter QU1A is characterized based on the physical parameter target range RD1ET represented by the measured value target range RN1T. The control device 212 for controlling the variable physical parameter QU1A includes a sensing unit 260 and the operating unit 297.

該感測單元260感測一可變物理參數QP1A以產生一感測訊號SM81。例如,該可變物理參數QP1A基於由一測量值應用範圍RM1L所代表的一物理參數應用範圍RC1EL而被特徵化。該操作單元297耦合於該感測單元260。在該觸發事件EQ81發生的條件下,該操作單元297響應該感測訊號SM81來獲得一測量值VM81。在該操作單元297藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的一數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該操作單元297產生起到指示該測量值目標範圍RN1T的作用的該控制訊號SC81。 The sensing unit 260 senses a variable physical parameter QP1A to generate a sensing signal SM81. For example, the variable physical parameter QP1A is characterized based on a physical parameter application range RC1EL represented by a measurement value application range RM1L. The operating unit 297 is coupled to the sensing unit 260. Under the condition that the trigger event EQ81 occurs, the operating unit 297 responds to the sensing signal SM81 to obtain a measurement value VM81. Under the condition that the operating unit 297 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by checking a mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the operating unit 297 generates the control signal SC81 that functions to indicate the target range RN1T of the measurement value.

請參閱第28圖。第28圖為繪示於第1圖中的該控制系統901的一實施結構9037的示意圖。如第28圖所示,該實施結構9037包含該控制目標裝置130和該控制裝置212。請額外參閱第27圖。在一些實施例中,該感測單元260被配置以符合與該測量值應用範圍RM1L相關的一感測器規格FQ11。例如,該感測器規格FQ11包含用 於表示一感測器靈敏度YQ81的一感測器靈敏度表示GQ81。該感測器靈敏度YQ81相關於由該感測單元260所執行的一感測訊號產生HE81。該可變物理參數QU1A進一步依靠該感測單元334而被控制。該感測單元334被配置以符合與該測量值目標範圍RN1T相關的該感測器規格EU11。例如,該感測器規格FU11包含用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81。該感測器靈敏度YW81不同於該感測器靈敏度YQ81。 Please refer to Figure 28. FIG. 28 is a schematic diagram of an implementation structure 9037 of the control system 901 shown in FIG. 1. As shown in FIG. 28, the implementation structure 9037 includes the control target device 130 and the control device 212. Please refer to Figure 27 additionally. In some embodiments, the sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L. For example, the sensor specification FQ11 includes A sensor sensitivity where YQ81 represents a sensor sensitivity is GQ81. The sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81. The variable physical parameter QU1A is further controlled by the sensing unit 334. The sensing unit 334 is configured to comply with the sensor specification EU11 related to the measurement value target range RN1T. For example, the sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81. The sensor sensitivity YW81 is different from the sensor sensitivity YQ81.

該測量值VM81以一指定測量值格式HQ81而被該操作單元297獲得。該可變物理參數QP1A進一步基於不同於該物理參數應用範圍RC1EL的一物理參數候選範圍RC1E2而被特徵化。該測量值應用範圍RM1L和代表該物理參數候選範圍RC1E2的一測量值候選範圍RM12皆基於該感測器靈敏度表示GQ81來用該指定測量值格式HQ81而被預設。該測量值目標範圍RN1T基於該感測器靈敏度表示GW81而被預設,並具有該目標範圍界限值對DN1T。 The measurement value VM81 is obtained by the operation unit 297 in a designated measurement value format HQ81. The variable physical parameter QP1A is further characterized based on a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL. The measurement value application range RM1L and a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2 are both preset based on the sensor sensitivity indicator GQ81 using the specified measurement value format HQ81. The measurement value target range RN1T is preset based on the sensor sensitivity indicator GW81, and has the target range limit value pair DN1T.

該可變物理參數QU1A相關於一可變時間長度LF8A。例如,該可變時間長度LE8A基於一參考時間長度LJ8T而被特徵化。該參考時間長度LJ8T由一時間長度值CL8T所代表。該控制訊號SC81輸送該目標範圍界限值對DN1T、該時間長度值CL8T和該控制碼CC1T,並用於導致該可變物理參數QU1A於該物理參數目標範圍RD1ET之內足有與該參考時間長度LJ8T匹配的一應用時間長度LT8T。例如,該控制碼CC1T基於在該物理參數目 標範圍RD1ET之內的一指定物理參數QD1T而被預先設定。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T的作用。 The variable physical parameter QU1A is related to a variable time length LF8A. For example, the variable time length LE8A is characterized based on a reference time length LJ8T. The reference time length LJ8T is represented by a time length value CL8T. The control signal SC81 conveys the target range limit value pair DN1T, the time length value CL8T, and the control code CC1T, and is used to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET and the reference time length LJ8T A matching application time length LT8T. For example, the control code CC1T is based on the physical parameter A designated physical parameter QD1T within the standard range RD1ET is preset. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T.

該測量值應用範圍RM1L具有一應用範圍界限值對DM1L。例如,該應用範圍界限值對DM1L被預設。該操作單元297響應該觸發事件EQ81來獲得該應用範圍界限值對DM1L,並藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來檢查該數學關係KA81。該測量值候選範圍RM12具有一候選範圍界限值對DM1B。例如,該候選範圍界限值對DM1B被預設。該操作單元297響應該觸發事件EQ81來獲得所預設的該候選範圍界限值對DM1B。 The measurement value application range RM1L has an application range limit value pair DM1L. For example, the application range limit value is preset for DM1L. The operating unit 297 obtains the application range limit value pair DM1L in response to the trigger event EQ81, and checks the mathematical relationship KA81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L. The measurement value candidate range RM12 has a candidate range limit value pair DM1B. For example, the candidate range limit value is preset for DM1B. The operating unit 297 responds to the trigger event EQ81 to obtain the preset candidate range limit value pair DM1B.

在一些實施例中,該物理參數應用範圍RC1EL被配置以對應於在該物理參數應用範圍RC1EL之外的一對應物理參數範圍RW1EL。在該操作單元297藉由檢查該數學關係KA81而確定該可變物理參數QP1A目前處於的該對應物理參數範圍RW1EL的條件下,該操作單元297執行該測量值VM81和所獲得的該參考範圍界限值對DM1B之間的一資料比較CA91。在該操作單元297基於該資料比較CA91而確定該可變物理參數QP1A目前處於的該物理參數候選範圍RC1E2的條件下,該操作單元297產生用於控制該可變物理參數QU1A的一控制訊號SC82,該控制訊號SC82不同於該控制訊號SC81。 In some embodiments, the physical parameter application range RC1EL is configured to correspond to a corresponding physical parameter range RW1EL outside the physical parameter application range RC1EL. Under the condition that the operating unit 297 determines the corresponding physical parameter range RW1EL that the variable physical parameter QP1A is currently in by checking the mathematical relationship KA81, the operating unit 297 executes the measurement value VM81 and the obtained reference range limit A data comparison CA91 between the value pair DM1B. Under the condition that the operating unit 297 determines the physical parameter candidate range RC1E2 that the variable physical parameter QP1A is currently in based on the data comparison CA91, the operating unit 297 generates a control signal SC82 for controlling the variable physical parameter QU1A , The control signal SC82 is different from the control signal SC81.

在該操作單元297藉由檢查該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數 應用範圍RC1EL的條件下,該操作單元297被配置以獲得包含該目標範圍界限值對DN1T、該時間長度值CL8T和該控制碼CC1T的一控制資料碼CK8T,基於該控制資料碼CK8T來執行用於產生該控制訊號SC81的一訊號產生控制GS81,並執行一確保操作GT81,該確保操作GT81用於導致代表所確定的該物理參數應用範圍RC1EL的一物理參數應用範圍碼UM8L被記錄。該可變物理參數QU1A和該可變物理參數QP1A分別屬於該物理參數類型TU11和一物理參數類型TP11。例如,該物理參數類型TU11相同或不同於該物理參數類型TP11。 In the operating unit 297, the physical parameter that the variable physical parameter QP1A is currently in is determined by checking the mathematical relationship KA81 Under the condition of the application range RC1EL, the operating unit 297 is configured to obtain a control data code CK8T including the target range limit value pair DN1T, the time length value CL8T, and the control code CC1T, and execute the control data code CK8T based on the control data code CK8T. A signal for generating the control signal SC81 generates a control GS81, and performs a guarantee operation GT81, which is used to cause a physical parameter application range code UM8L representing the determined physical parameter application range RC1EL to be recorded. The variable physical parameter QU1A and the variable physical parameter QP1A belong to the physical parameter type TU11 and a physical parameter type TP11, respectively. For example, the physical parameter type TU11 is the same as or different from the physical parameter type TP11.

請參閱第29圖、第30圖、第31圖、第32圖和第33圖。第29圖為繪示於第1圖中的該控制系統901的一實施結構9038的示意圖。第30圖為繪示於第1圖中的該控制系統901的一實施結構9039的示意圖。第31圖為繪示於第1圖中的該控制系統901的一實施結構9040的示意圖。第32圖為繪示於第1圖中的該控制系統901的一實施結構9041的示意圖。第33圖為繪示於第1圖中的該控制系統901的一實施結構9042的示意圖。如第29圖、第30圖、第31圖、第32圖和第33圖所示,該實施結構9038、該實施結構9039、該實施結構9040、該實施結構9041和該實施結構9042的每一結構包含該控制裝置212和該控制目標裝置130。 Please refer to Figure 29, Figure 30, Figure 31, Figure 32 and Figure 33. FIG. 29 is a schematic diagram of an implementation structure 9038 of the control system 901 shown in FIG. 1. FIG. 30 is a schematic diagram of an implementation structure 9039 of the control system 901 shown in FIG. 1. FIG. 31 is a schematic diagram of an implementation structure 9040 of the control system 901 shown in FIG. 1. FIG. 32 is a schematic diagram of an implementation structure 9041 of the control system 901 shown in FIG. 1. FIG. 33 is a schematic diagram of an implementation structure 9042 of the control system 901 shown in FIG. 1. As shown in Figures 29, 30, 31, 32, and 33, each of the implementation structure 9038, the implementation structure 9039, the implementation structure 9040, the implementation structure 9041, and the implementation structure 9042 The structure includes the control device 212 and the control target device 130.

請額外參閱第26圖。在一些實施例中,該可變物理參數QU1A和該可變物理參數QP1A分別被形成於一實際位置LD81和不同於該實際位置LD81的一實際位 置LC81。該操作單元297被配置以執行與該物理參數應用範圍RC1EL相關的一觸發應用功能FB81,並包含耦合於該感測單元260的一處理單元230、和耦合於該處理單元230的一輸出單元240。該觸發應用功能FB81被配置以符合與該物理參數應用範圍RC1EL相關的一觸發應用功能規格GBL8。 Please refer to Figure 26 additionally. In some embodiments, the variable physical parameter QU1A and the variable physical parameter QP1A are respectively formed at an actual position LD81 and an actual position different from the actual position LD81. 置LC81. The operating unit 297 is configured to execute a trigger application function FB81 related to the physical parameter application range RC1EL, and includes a processing unit 230 coupled to the sensing unit 260, and an output unit 240 coupled to the processing unit 230 . The trigger application function FB81 is configured to comply with a trigger application function specification GBL8 related to the physical parameter application range RC1EL.

該感測單元260被配置以符合與該測量值應用範圍RM1L相關的一感測器規格FQ11。例如,該感測器規格FQ11包含用於表示一感測器靈敏度YQ81的一感測器靈敏度表示GQ81。該感測器靈敏度YQ81相關於由該感測單元260所執行的一感測訊號產生HE81。例如,當該觸發事件EQ81發生時,該感測單元260感測該可變物理參數QP1A以執行相依於該感測器靈敏度YQ81的該感測訊號產生HE81,該感測訊號產生HE81用於產生該感測訊號SM81。 The sensing unit 260 is configured to comply with a sensor specification FQ11 related to the measurement value application range RM1L. For example, the sensor specification FQ11 includes a sensor sensitivity representation GQ81 for representing a sensor sensitivity YQ81. The sensor sensitivity YQ81 is related to a sensing signal generated by the sensing unit 260 to generate HE81. For example, when the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to perform the sensing signal generation HE81 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE81 is used to generate The sensing signal SM81.

該可變物理參數QU1A依靠該感測單元334而被控制。該感測單元334被配置以符合與該測量值目標範圍RN1T相關的該感測器規格FU11。例如,該感測器規格FU11包含用於表示該感測器靈敏度YW81的該感測器靈敏度表示GW81。該感測器靈敏度YW81不同於該感測器靈敏度YQ81。 The variable physical parameter QU1A is controlled by the sensing unit 334. The sensing unit 334 is configured to comply with the sensor specification FU11 related to the measured value target range RN1T. For example, the sensor specification FU11 includes the sensor sensitivity representation GW81 for representing the sensor sensitivity YW81. The sensor sensitivity YW81 is different from the sensor sensitivity YQ81.

在一些實施例中,在該觸發事件EQ81發生的條件下,該處理單元230響應該感測訊號SM81來以一指定測量值格式HQ81獲得該測量值VM81。例如,該指定測量值格式HQ81基於一指定位元數目UX81而被特徵化。在該處理單元230確定該可變物理參數QP1A目前處於的該 物理參數應用範圍RC1EL的條件下,該處理單元230導致該輸出單元240產生該控制訊號SC81。該可變物理參數QP1A進一步基於一額定物理參數範圍RC1E而被特徵化。例如,該額定物理參數範圍RC1E由一額定測量值範圍RC1N所代表,並包含由複數不同測量值參考範圍RM11、RM12、…所分別代表的複數不同物理參數參考範圍RC1E1、RC1E2、…。 In some embodiments, under the condition that the trigger event EQ81 occurs, the processing unit 230 responds to the sensing signal SM81 to obtain the measurement value VM81 in a specified measurement value format HQ81. For example, the designated measurement value format HQ81 is characterized based on a designated number of bits UX81. The processing unit 230 determines that the variable physical parameter QP1A is currently in the Under the condition of the physical parameter application range RC1EL, the processing unit 230 causes the output unit 240 to generate the control signal SC81. The variable physical parameter QP1A is further characterized based on a rated physical parameter range RC1E. For example, the rated physical parameter range RC1E is represented by a rated measurement value range RC1N, and includes a plurality of different physical parameter reference ranges RC1E1, RC1E2, ... represented by a plurality of different measurement value reference ranges RM11, RM12, ....

該複數不同物理參數參考範圍RC1E1、RC1E2、…包含該物理參數應用範圍RC1EL。該觸發應用功能規格GBL8包含該感測器規格FQ11、用於表示該額定物理參數範圍RC1E的一額定物理參數範圍表示GB8E、和用於表示該物理參數應用範圍RC1EL的一物理參數應用範圍表示GB8L。該物理參數目標範圍RD1ET由一物理參數候選範圍表示GA8T所表示。例如,該物理參數候選範圍表示GA8T被預設。 The plurality of different physical parameter reference ranges RC1E1, RC1E2,... include the physical parameter application range RC1EL. The trigger application function specification GBL8 includes the sensor specification FQ11, a rated physical parameter range representing the rated physical parameter range RC1E, GB8E, and a physical parameter application range representing the physical parameter application range RC1EL, GB8L . The physical parameter target range RD1ET is represented by a physical parameter candidate range representation GA8T. For example, the physical parameter candidate range indicates that GA8T is preset.

該額定測量值範圍RC1N基於該額定物理參數範圍表示GB8E、該感測器靈敏度表示GQ81和用於轉換該額定物理參數範圍表示GB1E的一資料編碼操作ZR81來用該指定測量值格式HQ81而被預設,具有一額定範圍界限值對DC1A,並包含由複數不同測量值參考範圍碼EH11、EH12、…所分別代表的該複數不同測量值參考範圍RM11、RM12、…。例如,該額定範圍界限值對DC1A用該指定測量值格式HQ81而被預設。 The rated measurement value range RC1N is predicted based on the rated physical parameter range representing GB8E, the sensor sensitivity representing GQ81, and a data encoding operation ZR81 for converting the rated physical parameter range representing GB1E to use the designated measurement value format HQ81. Suppose, there is a rated range limit value pair DC1A, and includes the plural different measurement value reference ranges RM11, RM12,... represented by the plural different measurement value reference range codes EH11, EH12, ... respectively. For example, the rated range limit value is preset for DC1A using the specified measurement value format HQ81.

在一些實施例中,該複數不同測量值參考範圍RM11、RM12、…包含該測量值應用範圍RM1L。該測量 值應用範圍RM1L由包含於該複數不同測量值參考範圍碼EH11、EH12、…中的一測量值應用範圍碼EH1L所代表,並具有一應用範圍界限值對DM1L;藉此該測量值應用範圍碼EH1L被配置以指示該物理參數應用範圍RC1EL。例如,該複數不同測量值參考範圍碼EH11、EH12、…皆基於該觸發應用功能規格GBL8而被預設。 In some embodiments, the plurality of different measurement value reference ranges RM11, RM12, ... include the measurement value application range RM1L. The measurement The value application range RM1L is represented by a measurement value application range code EH1L included in the plurality of different measurement value reference range codes EH11, EH12, ..., and has an application range limit value pair DM1L; whereby the measurement value application range code EH1L is configured to indicate the physical parameter application range RC1EL. For example, the plurality of different measurement value reference range codes EH11, EH12,... are all preset based on the trigger application function specification GBL8.

該應用範圍界限值對DM1L包含該測量值應用範圍RM1L的一應用範圍界限值DM15和相對於該應用範圍界限值DM15的一應用範圍界限值DM16,並基於該物理參數應用範圍表示GB8L、該感測器靈敏度表示GQ81和用於轉換該物理參數應用範圍表示GB8L的一資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。該測量值應用範圍RM1L基於該物理參數應用範圍表示GB8L、該感測器靈敏度表示GQ81和該資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。 The application range limit value pair DM1L includes an application range limit value DM15 of the measurement value application range RM1L and an application range limit value DM16 relative to the application range limit value DM15, and based on the physical parameter, the application range represents GB8L, the sense The sensor sensitivity indicator GQ81 and a data encoding operation ZR82 used to convert the physical parameter application range indicator GB8L are preset using the designated measurement value format HQ81. The measurement value application range RM1L is preset based on the physical parameter application range representation GB8L, the sensor sensitivity representation GQ81, and the data encoding operation ZR82 to use the specified measurement value format HQ81.

該測量值目標範圍RN1T基於該物理參數候選範圍表示GA8T、該感測器靈敏度表示GW81和用於轉換該物理參數候選範圍表示GA8T的一資料編碼操作ZX83而被預設。該控制裝置212進一步包含耦合於該處理單元230的一儲存單元250。該儲存單元250儲存所預設的該額定範圍界限值對DC1A和一可變物理參數範圍碼UM8A。例如,該測量值目標範圍RN1T具有一目標範圍界限值對DN1T。 The measurement target range RN1T is preset based on the physical parameter candidate range representing GA8T, the sensor sensitivity representing GW81, and a data encoding operation ZX83 for converting the physical parameter candidate range representing GA8T. The control device 212 further includes a storage unit 250 coupled to the processing unit 230. The storage unit 250 stores the preset rated range limit value pair DC1A and a variable physical parameter range code UM8A. For example, the measured value target range RN1T has a target range limit value pair DN1T.

在一些實施例中,當該觸發事件EQ81發生時,該可變物理參數範圍碼UM8A等於選擇自該複數不同 測量值參考範圍碼EH11、EH12、…的一特定測量值範圍碼EH14。例如,該特定測量值範圍碼EH14指示基於基於一感測操作ZM81而被該處理單元230先前確定的一特定物理參數範圍RC1E4。該特定物理參數範圍RC1E4選擇自該複數不同物理參數參考範圍RC1E1、RC1E2、…。由該感測單元260所執行的該感測操作ZM81用於感測該可變物理參數QP1A。在該觸發事件EQ81發生之前,該特定測量值範圍碼EH14被指定到該可變物理參數範圍碼UM8A。 In some embodiments, when the trigger event EQ81 occurs, the variable physical parameter range code UM8A is equal to the number selected from the plurality of different A specific measurement value range code EH14 of the measurement value reference range code EH11, EH12,... For example, the specific measurement value range code EH14 indicates a specific physical parameter range RC1E4 previously determined by the processing unit 230 based on a sensing operation ZM81. The specific physical parameter range RC1E4 is selected from the plurality of different physical parameter reference ranges RC1E1, RC1E2,.... The sensing operation ZM81 performed by the sensing unit 260 is used to sense the variable physical parameter QP1A. Before the trigger event EQ81 occurs, the specific measurement value range code EH14 is assigned to the variable physical parameter range code UM8A.

例如,在該觸發事件EQ81發生之前,該處理單元230獲得該特定測量值範圍碼EH14。在該處理單元230於該觸發事件EQ81發生之前基於該感測操作ZM81而確定該特定物理參數範圍RC1E4的條件下,該處理單元230藉由使用該儲存單元250來將所獲得的該特定測量值範圍碼EH14指定到該可變物理參數範圍碼UM8A。該特定測量值範圍碼EH14代表被配置以代表該特定物理參數範圍RC1E4的一特定測量值範圍。該特定測量值範圍基於該感測器靈敏度表示GQ81來用該指定測量值格式HQ81而被預設。例如,該感測單元260藉由執行該感測操作ZM81來執行相依於該感測器靈敏度YQ81的一感測訊號產生以產生一感測訊號。 For example, before the trigger event EQ81 occurs, the processing unit 230 obtains the specific measurement value range code EH14. Under the condition that the processing unit 230 determines the specific physical parameter range RC1E4 based on the sensing operation ZM81 before the trigger event EQ81 occurs, the processing unit 230 uses the storage unit 250 to obtain the specific measurement value The range code EH14 is assigned to the variable physical parameter range code UM8A. The specific measurement value range code EH14 represents a specific measurement value range configured to represent the specific physical parameter range RC1E4. The specified measurement value range is preset based on the sensor sensitivity indicator GQ81 in the specified measurement value format HQ81. For example, the sensing unit 260 performs a sensing signal generation dependent on the sensor sensitivity YQ81 by performing the sensing operation ZM81 to generate a sensing signal.

在該觸發事件EQ81發生之前,該處理單元230接收該感測訊號,響應該感測訊號來以該指定測量值格式HQ81獲得一特定測量值,並執行用於檢查該特定測量值和該特定測量值範圍之間的一數學關係的一特定檢查操作。在該處理單元230基於該特定檢查操作而確定該可變 物理參數QP1A處於的該特定物理參數範圍RC1E4的條件下,該處理單元230藉由使用該儲存單元250來將所獲得的該特定測量值範圍碼EH14指定到該可變物理參數範圍碼UM8A。該處理單元230響應用於感測該可變物理參數QP1A的一特定感測操作來決定該處理單元230是否要使用該儲存單元250以改變該可變物理參數範圍碼UM8A。例如,該特定感測操作由該感測單元260所執行。 Before the trigger event EQ81 occurs, the processing unit 230 receives the sensing signal, and responds to the sensing signal to obtain a specific measurement value in the specified measurement value format HQ81, and executes a method for checking the specific measurement value and the specific measurement. A specific check operation for a mathematical relationship between value ranges. The processing unit 230 determines the variable based on the specific inspection operation When the physical parameter QP1A is in the specific physical parameter range RC1E4, the processing unit 230 assigns the obtained specific measurement value range code EH14 to the variable physical parameter range code UM8A by using the storage unit 250. The processing unit 230 responds to a specific sensing operation for sensing the variable physical parameter QP1A to determine whether the processing unit 230 should use the storage unit 250 to change the variable physical parameter range code UM8A. For example, the specific sensing operation is performed by the sensing unit 260.

在一些實施例中,在該觸發事件EQ81發生的條件下,該處理單元230響應該觸發事件EQ81來從該儲存單元250獲得一操作參考資料碼XK81,並藉由運行一資料確定程序NE8A來執行使用該操作參考資料碼XK81的一資料確定AE8A以確定選擇自該複數不同測量值參考範圍碼EH11、EH12、…的該測量值應用範圍碼EH1L以便從該複數不同測量值參考範圍RM11、RM12、…中選擇該測量值應用範圍RM1L。 In some embodiments, under the condition that the trigger event EQ81 occurs, the processing unit 230 obtains an operation reference data code XK81 from the storage unit 250 in response to the trigger event EQ81, and executes it by running a data determination program NE8A Use a data of the operation reference code XK81 to determine AE8A to determine the measurement value application range code EH1L from the multiple different measurement value reference range codes EH11, EH12, ... so as to select the multiple different measurement value reference ranges RM11, RM12, …Select the measurement value application range RM1L.

該操作參考資料碼XK81相同於基於該觸發應用功能規格GBL8而被預設的一可允許參考資料碼。該資料確定程序NE8A基於該觸發應用功能規格GBL8而被建構。該資料確定AE8A是一資料確定操作AE81和一資料確定操作AE82的其中之一。在該操作參考資料碼XK81藉由存取被儲存在該儲存單元250中的該可變物理參數範圍碼UM8A而被獲得以相同於該特定測量值範圍碼EH14的條件下,是該資料確定操作AE81的該資料確定AE8A基於所獲得的該特定測量值範圍碼EH14來確定該測量值應用範圍碼EH1L。例如,所確定的該測量值應用範圍碼EH1L相同 或不同於所獲得的該特定測量值範圍碼EH14。 The operation reference code XK81 is the same as an allowable reference code preset based on the trigger application function specification GBL8. The data determination program NE8A is constructed based on the trigger application function specification GBL8. The data determination AE8A is one of a data determination operation AE81 and a data determination operation AE82. Under the condition that the operation reference data code XK81 is obtained by accessing the variable physical parameter range code UM8A stored in the storage unit 250 and is the same as the specific measurement value range code EH14, it is the data determination operation The data of AE81 determines that AE8A determines the measurement value application range code EH1L based on the obtained specific measurement value range code EH14. For example, the determined application range code of the measured value is the same as EH1L Or different from the obtained specific measurement value range code EH14.

在該操作參考資料碼XK81藉由存取被儲存在該儲存單元250中的該額定範圍界限值對DC1A而被獲得以相同於所預設的該額定範圍界限值對DC1A的條件下,是該資料確定操作AE82的該資料確定AE8A藉由執行使用該測量值VM81和所獲得的該額定範圍界限值對DC1A的一科學計算MF81來從該複數不同測量值參考範圍碼EH11、EH12、…中選擇該測量值應用範圍碼EH1L以確定該測量值應用範圍碼EH1L。例如,該科學計算MF81基於一特定經驗公式XP81而被執行。該特定經驗公式XP81基於所預設的該額定範圍界限值對DC1A和該複數不同測量值參考範圍碼EH11、EH12、…而被預先制定。例如,該特定經驗公式XP81基於該觸發應用功能規格GBL8而被預先制定。 Under the condition that the operation reference data code XK81 is obtained by accessing the rated range limit value pair DC1A stored in the storage unit 250 under the same condition as the preset rated range limit value pair DC1A, it is the The data determination operation of AE82 determines AE8A by performing a scientific calculation MF81 that uses the measured value VM81 and the obtained rated range limit value to DC1A to select from the plural different measured value reference range codes EH11, EH12,... The measurement value application range code EH1L is used to determine the measurement value application range code EH1L. For example, the scientific calculation MF81 is executed based on a specific empirical formula XP81. The specific empirical formula XP81 is formulated in advance based on the preset rated range limit value pair DC1A and the plurality of different measured value reference range codes EH11, EH12,... For example, the specific empirical formula XP81 is formulated in advance based on the trigger application function specification GBL8.

該處理單元230基於所確定的該測量值應用範圍碼EH1L來獲得該應用範圍界限值對DM1L,並基於該測量值VM81和所獲得的該應用範圍界限值對DM1L之間的一資料比較CA81來檢查該數學關係KA81以做出該測量值VM81是否為於所選擇的該測量值應用範圍RM1L之內的一邏輯決定PH81。在該邏輯決定PH81是肯定的條件下,該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL。 The processing unit 230 obtains the application range limit value pair DM1L based on the determined measurement value application range code EH1L, and compares CA81 based on a data comparison between the measurement value VM81 and the obtained application range limit value pair DM1L. The mathematical relationship KA81 is checked to make a logical decision PH81 whether the measurement value VM81 is within the selected measurement value application range RM1L. Under the condition that the logical decision PH81 is affirmative, the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.

例如,在該應用範圍界限值DM15不同於該應用範圍界限值DM16且該測量值VM81是於該應用範圍界限值DM15和該應用範圍界限值DM16之間的條件下, 該處理單元230藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來做出該邏輯決定PH81以成為肯定的。在該應用範圍界限值DM15、該應用範圍界限值DM16和該測量值VM81是相等的條件下,該處理單元230藉由比較該測量值VM81和所獲得的該應用範圍界限值對DM1L來做出該邏輯決定PH81以成為肯定的。 For example, under the condition that the application range limit value DM15 is different from the application range limit value DM16 and the measurement value VM81 is between the application range limit value DM15 and the application range limit value DM16, The processing unit 230 makes the logical decision PH81 by comparing the measured value VM81 with the obtained application range limit value pair DM1L to become affirmative. Under the condition that the application range limit value DM15, the application range limit value DM16, and the measurement value VM81 are equal, the processing unit 230 compares the measurement value VM81 with the obtained application range limit value pair DM1L. This logic determines PH81 to become affirmative.

在一些實施例中,該控制裝置212具有該可變物理參數QP1A。該可變物理參數QU1A存在於該控制目標裝置130中。該觸發事件EQ81是一觸發作用事件、一使用者輸入事件、一訊號輸入事件、一狀態改變事件和一識別媒介出現事件的其中之一,並被應用到該觸發應用功能FB81。在是該觸發作用事件的該觸發事件EQ81要發生的條件下,該控制目標裝置130被配置以執行與該可變物理參數QU1A相關的一指定功能操作ZH81。例如,該指定功能操作ZH81用於導致該觸發作用事件發生。 In some embodiments, the control device 212 has the variable physical parameter QP1A. The variable physical parameter QU1A exists in the control target device 130. The trigger event EQ81 is one of a trigger action event, a user input event, a signal input event, a state change event, and an identification medium appearance event, and is applied to the trigger application function FB81. Under the condition that the trigger event EQ81 which is the trigger action event is about to occur, the control target device 130 is configured to execute a designated functional operation ZH81 related to the variable physical parameter QU1A. For example, the designated function operation ZH81 is used to cause the triggering event to occur.

該觸發應用功能FB81相關於一記憶體單元25Y1。該測量值目標範圍RN1T由一測量值目標範圍碼EM1T所代表;藉此該測量值目標範圍碼EM1T被配置以指示該物理參數目標範圍RD1ET。例如,該測量值目標範圍碼EM1T基於該觸發應用功能規格GBL8而被預設。所預設的該測量值應用範圍碼EH1L和所預設的該測量值目標範圍碼EM1T之間具有一數學關係KY81。 The trigger application function FB81 is related to a memory unit 25Y1. The measured value target range RN1T is represented by a measured value target range code EM1T; thereby, the measured value target range code EM1T is configured to indicate the physical parameter target range RD1ET. For example, the measured value target range code EM1T is preset based on the trigger application function specification GBL8. There is a mathematical relationship KY81 between the preset measurement value application range code EH1L and the preset measurement value target range code EM1T.

該記憶體單元25Y1具有一記憶體位置PM8L和不同於該記憶體位置PM8L的一記憶體位置PV8L,在該記憶體位置PM8L儲存該應用範圍界限值對 DM1L,並在該記憶體位置PV8L儲存一控制資料碼CK8T。例如,該記憶體位置PM8L和該記憶體位置PV8L皆基於所預設的該測量值應用範圍碼EH1L而被識別。該控制資料碼CK8T包含該測量值目標範圍碼EM1T。例如,該應用範圍界限值對DM1L和該控制資料碼CK8T皆基於所預設的該測量值應用範圍碼EH1L而被該記憶體單元25Y1儲存。 The memory unit 25Y1 has a memory location PM8L and a memory location PV8L different from the memory location PM8L, and the application range limit value pair is stored in the memory location PM8L DM1L, and store a control data code CK8T in the memory location PV8L. For example, the memory position PM8L and the memory position PV8L are both identified based on the preset measurement value application range code EH1L. The control data code CK8T includes the measured value target range code EM1T. For example, the application range limit value pair DM1L and the control data code CK8T are stored by the memory unit 25Y1 based on the preset measurement value application range code EH1L.

在一些實施例中,該處理單元230藉由運行一資料獲取程序NF8A來執行使用所確定的該測量值應用範圍碼EH1L的一資料獲取AF8A以獲得該應用範圍界限值對DM1L。例如,該資料獲取AF8A是一資料獲取操作AF81和一資料獲取操作AF82的其中之一。該資料獲取程序NF8A基於該觸發應用功能規格GBL8而被建構。該資料獲取操作AF81基於所確定的該測量值應用範圍碼EH1L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PM8L的該應用範圍界限值對DM1L以獲得該應用範圍界限值對DM1L。 In some embodiments, the processing unit 230 executes a data acquisition AF8A using the determined measurement value application range code EH1L by running a data acquisition program NF8A to obtain the application range limit value pair DM1L. For example, the data acquisition AF8A is one of a data acquisition operation AF81 and a data acquisition operation AF82. The data acquisition program NF8A is constructed based on the trigger application function specification GBL8. The data acquisition operation AF81 uses the memory unit 25Y1 based on the determined measurement value application range code EH1L to access the application range limit value pair DM1L stored in the memory location PM8L to obtain the application range limit value pair DM1L.

該資料獲取操作AF82藉由讀取被儲存在該儲存單元250中的該額定範圍界限值對DC1A來取得所預設的該額定範圍界限值對DC1A,並藉由執行使用所確定的該測量值應用範圍碼EH1L和所取得的該額定範圍界限值對DC1A的一科學計算MG81來獲得該應用範圍界限值對DM1L。例如,該額定範圍界限值對DC1A包含該額定測量值範圍RC1N的一額定範圍界限值DC11和相對於該額定範圍界限值DC11的一額定範圍界限值DC12,並基於該額定物理參數範圍表示GB8E、該感測器靈敏度表示GQ81和該 資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。 The data acquisition operation AF82 obtains the preset rated range limit value pair DC1A by reading the rated range limit value pair DC1A stored in the storage unit 250, and uses the determined measurement value by executing Apply the range code EH1L and a scientific calculation MG81 of the obtained rated range limit value to DC1A to obtain the application range limit value pair DM1L. For example, the rated range limit value pair DC1A includes a rated range limit value DC11 of the rated measurement value range RC1N and a rated range limit value DC12 relative to the rated range limit value DC11, and based on the rated physical parameter range, GB8E, The sensor sensitivity represents the GQ81 and the The data encoding operation ZR81 is preset using the specified measurement value format HQ81.

在一些實施例中,在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的一資料獲取AG8A以獲得一控制應用碼UA8T。例如,該資料獲取AG8A是一資料獲取操作AG81和一資料獲取操作AG82的其中之一。 In some embodiments, under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 executes a data using the determined measurement value application range code EH1L Obtain AG8A to obtain a control application code UA8T. For example, the data acquisition AG8A is one of a data acquisition operation AG81 and a data acquisition operation AG82.

該資料獲取操作AG81基於所確定的該測量值應用範圍碼EH1L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PV8L的該控制資料碼CK8T以獲得等於該控制資料碼CK8T的該控制應用碼UA8T。該資料獲取操作AG82藉由執行使用所確定的該測量值應用範圍碼EH1L和該數學關係KY81的一科學計算MQ81來獲得等於所預設的該測量值目標範圍碼EM1T的該控制應用碼UA8T。 The data acquisition operation AG81 uses the memory unit 25Y1 to access the control data code CK8T stored in the memory location PV8L based on the determined measurement value application range code EH1L to obtain the control data code CK8T equal to the control data code CK8T. Control application code UA8T. The data acquisition operation AG82 obtains the control application code UA8T equal to the preset measurement value target range code EM1T by executing a scientific calculation MQ81 using the determined measurement value application range code EH1L and the mathematical relationship KY81.

該處理單元230基於所獲得的該控制應用碼UA8T來在一操作時間TD81之內執行用於該觸發應用功能FB81的一訊號產生控制GS81以控制該輸出單元240。該輸出單元240響應該訊號產生控制GS81來執行用於該觸發應用功能FB81的一訊號產生操作BS81以產生該控制訊號SC81。例如,該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A於該物理參數目標範圍RD1ET之內。例如,該控制訊號SC81輸送該控制訊息CG81。該處理單元230基於所獲得的該控制應用碼UA8T 來導致該輸出單元240產生該控制訊息CG81。 The processing unit 230 executes a signal generation control GS81 for the trigger application function FB81 within an operating time TD81 based on the obtained control application code UA8T to control the output unit 240. The output unit 240 responds to the signal generation control GS81 to execute a signal generation operation BS81 for the trigger application function FB81 to generate the control signal SC81. For example, the control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T, and is used to cause the variable physical parameter QU1A to be within the physical parameter target range RD1ET. For example, the control signal SC81 conveys the control message CG81. The processing unit 230 is based on the obtained control application code UA8T This causes the output unit 240 to generate the control message CG81.

在一些實施例中,該複數不同物理參數參考範圍RC1E1、RC1E2、…進一步包含不同於該物理參數應用範圍RC1EL的一物理參數候選範圍RC1E2。該複數不同測量值參考範圍RM11、RM12、…具有一總參考範圍數目NS81,並進一步包含代表該物理參數候選範圍RC1E2的一測量值候選範圍RM12。該觸發應用功能規格GBL8進一步包含用於表示該物理參數候選範圍RC1E2的一物理參數候選範圍表示GB82。 In some embodiments, the plurality of different physical parameter reference ranges RC1E1, RC1E2, ... further include a physical parameter candidate range RC1E2 that is different from the physical parameter application range RC1EL. The plurality of different measurement value reference ranges RM11, RM12,... Have a total reference range number NS81, and further include a measurement value candidate range RM12 representing the physical parameter candidate range RC1E2. The trigger application function specification GBL8 further includes a physical parameter candidate range representation GB82 for representing the physical parameter candidate range RC1E2.

該測量值候選範圍RM12由不同於該測量值應用範圍碼EH1L的一測量值候選範圍碼EH12所代表,具有一候選範圍界限值對DM1B,並被配置以代表該物理參數候選範圍RC1E2;藉此該測量值候選範圍碼EH12被配置以指示該物理參數候選範圍RC1E2。例如,該候選範圍界限值對DM1B基於該物理參數候選範圍表示GB82、該感測器靈敏度表示GQ81和用於轉換該物理參數候選範圍表示GB82的一資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。 The measurement value candidate range RM12 is represented by a measurement value candidate range code EH12 different from the measurement value application range code EH1L, has a candidate range limit value pair DM1B, and is configured to represent the physical parameter candidate range RC1E2; thereby The measurement value candidate range code EH12 is configured to indicate the physical parameter candidate range RC1E2. For example, the candidate range limit value pair DM1B uses the specified measurement value format HQ81 based on the physical parameter candidate range representation GB82, the sensor sensitivity representation GQ81, and a data encoding operation ZR83 for converting the physical parameter candidate range representation GB82. It is preset.

該測量值候選範圍RM12基於該物理參數候選範圍表示GB82、該感測器靈敏度表示GQ81和該資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。該總參考範圍數目NS81基於該觸發應用功能規格GBL8而被預設。該處理單元230響應該觸發事件EQ81來獲得該總參考範圍數目NS81。該科學計算MF81進一步使用所獲得的該總參考範圍數目NS81。該科學計算MG81進一步使用所 獲得的該總參考範圍數目NS81。例如,該總參考範圍數目NS81大於或等於2。例如,該總參考範圍數目NS81≧3;該總參考範圍數目NS81≧4;該總參考範圍數目NS81≧5;該總參考範圍數目NS81≧6;且該總參考範圍數目NS81≦255。 The measurement value candidate range RM12 is preset based on the physical parameter candidate range representation GB82, the sensor sensitivity representation GQ81, and the data encoding operation ZR83 to use the specified measurement value format HQ81. The total reference range number NS81 is preset based on the trigger application function specification GBL8. The processing unit 230 obtains the total reference range number NS81 in response to the trigger event EQ81. The scientific calculation MF81 further uses the obtained total reference range number NS81. The scientific calculation MG81 further uses the The total number of reference ranges obtained is NS81. For example, the total number of reference ranges NS81 is greater than or equal to 2. For example, the total number of reference ranges NS81≧3; the total number of reference ranges NS81≧4; the total number of reference ranges NS81≧5; the total number of reference ranges NS81≧6; and the total number of reference ranges NS81≦255.

在一些實施例中,該控制目標裝置130接收該控制訊號SC81,從所接收的該控制訊號SC81獲得該測量值目標範圍碼EM1T,並基於所獲得的該測量值目標範圍碼EM1T來導致該可變物理參數QU1A於該物理參數目標範圍RD1ET之內。例如,該控制訊號SC81輸送基於該控制應用碼UA8T而被確定的一控制訊息CG81。該控制訊息CG81包含該測量值目標範圍碼EM1T。例如,該控制訊息CG81包含該目標範圍界限值對DN1T和該控制碼CC1T。 In some embodiments, the control target device 130 receives the control signal SC81, obtains the measurement value target range code EM1T from the received control signal SC81, and causes the measurement value target range code EM1T to be based on the obtained measurement value target range code EM1T. Change the physical parameter QU1A within the target range RD1ET of the physical parameter. For example, the control signal SC81 conveys a control message CG81 determined based on the control application code UA8T. The control message CG81 includes the measurement value target range code EM1T. For example, the control message CG81 includes the target range limit value pair DN1T and the control code CC1T.

該測量值應用範圍RM1L是該額定測量值範圍RC1N的一第一部分。該測量值候選範圍RM12是該額定測量值範圍RC1N的一第二部分。該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是分開的或相鄰的。在該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是分開的條件下,該測量值應用範圍RM1L和該測量值候選範圍RM12是分開的。在該物理參數應用範圍RC1EL和該物理參數候選範圍RC1E2是相鄰的條件下,該測量值應用範圍RM1L和該測量值候選範圍RM12是相鄰的。 The measurement value application range RM1L is a first part of the rated measurement value range RC1N. The measurement value candidate range RM12 is a second part of the rated measurement value range RC1N. The physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separate or adjacent. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are separated, the measurement value application range RM1L and the measurement value candidate range RM12 are separated. Under the condition that the physical parameter application range RC1EL and the physical parameter candidate range RC1E2 are adjacent, the measurement value application range RM1L and the measurement value candidate range RM12 are adjacent.

例如,該測量值應用範圍碼EH1L被配置以等於一整數。該額定範圍界限值DC12大於該額定範圍界 限值DC11。該額定範圍界限值DC12和該額定範圍界限值DC11之間具有相對於該額定範圍界限值DC11的一相對值VC11。該相對值VC11等於該額定範圍界限值DC12減去該額定範圍界限值DC11的一計算結果。例如,該應用範圍界限值對DM1L基於該額定範圍界限值DC11、該額定範圍界限值DC12、該整數、和該相對值VC11對於該總參考範圍數目NS11的一比率而被預設。該科學計算MG81使用該額定範圍界限值DC11、該額定範圍界限值DC12、該整數、該比率和其任意組合的其中之一。 For example, the measurement value application range code EH1L is configured to be equal to an integer. The rated range limit value DC12 is greater than the rated range limit The limit is DC11. The rated range limit value DC12 and the rated range limit value DC11 have a relative value VC11 relative to the rated range limit value DC11. The relative value VC11 is equal to a calculation result of the rated range limit value DC12 minus the rated range limit value DC11. For example, the application range limit value pair DM1L is preset based on the rated range limit value DC11, the rated range limit value DC12, the integer, and a ratio of the relative value VC11 to the total reference range number NS11. The scientific calculation MG81 uses one of the rated range limit value DC11, the rated range limit value DC12, the integer, the ratio, and any combination thereof.

在一些實施例中,在該邏輯決定PH81是否定的條件下,該處理單元230藉由執行使用所確定的該測量值應用範圍碼EH1L的一第四科學計算MF12來確定選擇自該複數不同測量值參考範圍碼EH11、EH12、…的該測量值候選範圍碼EH12以便從該複數不同測量值參考範圍RM11、RM12、…中選擇該測量值候選範圍RM12。 In some embodiments, under the condition that the logic determines PH81 is negative, the processing unit 230 determines the selection from the plurality of different measurements by executing a fourth scientific calculation MF12 using the determined measurement value application range code EH1L The measurement value candidate range code EH12 of the value reference range codes EH11, EH12, ... is so as to select the measurement value candidate range RM12 from the plurality of different measurement value reference ranges RM11, RM12, ....

該處理單元230基於所確定的該測量值候選範圍碼EH12來獲得該候選範圍界限值對DM1B,並基於該測量值VM81和所獲得的該候選範圍界限值對DM1B之間的一資料比較CA91來檢查該測量值VM81和所選擇的該測量值候選範圍RM12之間的一數學關係KA91以做出該測量值VM81是否為於所選擇的該測量值候選範圍RM12之內的一邏輯決定PH91。在該邏輯決定PH91是肯定的條件下,該處理單元230確定該可變物理參數QP1A目前處於的該物理參數候選範圍RC1E2。 The processing unit 230 obtains the candidate range limit value pair DM1B based on the determined measurement value candidate range code EH12, and compares CA91 based on a data between the measurement value VM81 and the obtained candidate range limit value pair DM1B. A mathematical relationship KA91 between the measurement value VM81 and the selected measurement value candidate range RM12 is checked to make a logical decision PH91 whether the measurement value VM81 is within the selected measurement value candidate range RM12. Under the condition that the logical decision PH91 is affirmative, the processing unit 230 determines the physical parameter candidate range RC1E2 in which the variable physical parameter QP1A is currently located.

在該處理單元230確定該可變物理參數 QP1A目前處於的該物理參數候選範圍RC1E2的條件下,該處理單元230導致該輸出單元240執行用於該觸發應用功能FB81的一訊號產生操作BS91以產生用於控制該可變物理參數QU1A的一控制訊號SC82,該控制訊號SC82不同於該控制訊號SC81。 Determine the variable physical parameter in the processing unit 230 QP1A is currently in the condition of the physical parameter candidate range RC1E2, the processing unit 230 causes the output unit 240 to execute a signal generation operation BS91 for the trigger application function FB81 to generate a signal for controlling the variable physical parameter QU1A The control signal SC82 is different from the control signal SC81.

在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理單元230藉由做出該邏輯決定PH81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於等於該特定測量值範圍碼EH14的該可變物理參數範圍碼UM8A和所確定的該測量值應用範圍碼EH1L之間的一碼差異DA81來使用該儲存單元250以將所確定的該測量值應用範圍碼EH1L指定到該可變物理參數範圍碼UM8A。在該觸發事件EQ81是該可變物理參數QP1A從該特定物理參數範圍RC1E4進入該物理參數應用範圍RC1EL的該狀態改變事件的條件下,該處理單元230基於該碼差異DA81來確定是該狀態改變事件的該觸發事件EQ81。 In the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L, and the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of, the processing unit 230 uses the storage unit 250 based on a code difference DA81 between the variable physical parameter range code UM8A equal to the specific measurement value range code EH14 and the determined measurement value application range code EH1L The determined application range code EH1L of the measured value is assigned to the variable physical parameter range code UM8A. Under the condition that the trigger event EQ81 is the state change event in which the variable physical parameter QP1A enters the physical parameter application range RC1EL from the specific physical parameter range RC1E4, the processing unit 230 determines the state change based on the code difference DA81 The triggering event EQ81 of the event.

在一些實施例中,該操作單元297進一步包含一響應區域AC1、一讀取器220和一輸入單元270。該響應區域AC1用於執行該觸發應用功能FB81。該讀取器220,耦合於該響應區域AC1。該輸入單元270,耦合於該處理單元230。在該觸發事件EQ81是該識別媒介出現事件且該處理單元230通過該讀取器220而辨識了出現於該響應區域AC1的一識別媒介310的條件下,該處理單元230基於該感測訊號SM81來獲得該測量值VM81。 In some embodiments, the operating unit 297 further includes a response area AC1, a reader 220, and an input unit 270. The response area AC1 is used to execute the trigger application function FB81. The reader 220 is coupled to the response area AC1. The input unit 270 is coupled to the processing unit 230. Under the condition that the trigger event EQ81 is the occurrence event of the identification medium and the processing unit 230 has identified an identification medium 310 appearing in the response area AC1 through the reader 220, the processing unit 230 is based on the sensing signal SM81 To obtain the measured value VM81.

當該觸發事件EQ81發生時,該輸出單元240顯示一狀態指示LA81。例如,該狀態指示LA81用於指示該可變物理參數QP1A被配置於該特定物理參數範圍RC1E4之內的一特定狀態XH81。在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理單元230藉由做出該邏輯決定PH81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230進一步基於該碼差異DA81來導致該輸出單元240將該狀態指示LA81改變成一狀態指示LA82。例如,該狀態指示LA82用於指示該可變物理參數QP1A被配置於該物理參數應用範圍RC1EL之內的一特定狀態XH82。 When the trigger event EQ81 occurs, the output unit 240 displays a status indication LA81. For example, the state indication LA81 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH81 within the specific physical parameter range RC1E4. In the specific measurement value range code EH14 is different from the determined measurement value application range code EH1L, and the processing unit 230 determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located by making the logical decision PH81 Under the condition of, the processing unit 230 further causes the output unit 240 to change the status indicator LA81 to a status indicator LA82 based on the code difference DA81. For example, the state indication LA82 is used to indicate that the variable physical parameter QP1A is configured in a specific state XH82 within the physical parameter application range RC1EL.

在該輸入單元270於該操作時間TD81之後的一指定時間TW81之內從該控制目標裝置130接收響應該控制訊號SC81而被產生的一控制回應訊號SE81的條件下,該處理單元230響應該控制回應訊號SE81來執行與該可變物理參數QU1A相關的一指定實際操作BJ81。在該操作時間TD81之後,該感測單元260感測該可變物理參數QP1A以產生一感測訊號SM82。例如,在該操作時間TD81之後,該感測單元260感測該可變物理參數QP1A以執行相依於該感測器靈敏度YQ81的一感測訊號產生HE82,該感測訊號產生HE82用於產生該感測訊號SM82。 Under the condition that the input unit 270 receives a control response signal SE81 generated in response to the control signal SC81 from the control target device 130 within a specified time TW81 after the operation time TD81, the processing unit 230 responds to the control In response to the signal SE81, a designated actual operation BJ81 related to the variable physical parameter QU1A is executed. After the operating time TD81, the sensing unit 260 senses the variable physical parameter QP1A to generate a sensing signal SM82. For example, after the operating time TD81, the sensing unit 260 senses the variable physical parameter QP1A to perform a sensing signal generation HE82 dependent on the sensor sensitivity YQ81, and the sensing signal generation HE82 is used to generate the Sensing signal SM82.

在一些實施例中,該處理單元230於該操作時間TD81之後的一指定時間TE82之內響應該感測訊號SM82來以該指定測量值格式HQ81獲得一測量值VM82。該處理單元230於該指定時間TE82之內藉由執行使用所確 定的該測量值應用範圍碼EH1L的一科學計算MF83來獲得包含於該複數不同測量值參考範圍碼EH11、EH12、…中的一特定測量值範圍碼EH17。例如,該特定測量值範圍碼EH17不同於所確定的該測量值應用範圍碼EH1L,並代表包含於該複數不同測量值參考範圍RM11、RM12、…中的一特定測量值範圍RM17。 In some embodiments, the processing unit 230 responds to the sensing signal SM82 within a specified time TE82 after the operating time TD81 to obtain a measurement value VM82 in the specified measurement value format HQ81. The processing unit 230 executes and uses the confirmation within the specified time TE82. The predetermined measurement value applies a scientific calculation MF83 of the range code EH1L to obtain a specific measurement value range code EH17 included in the plurality of different measurement value reference range codes EH11, EH12,... For example, the specific measurement value range code EH17 is different from the determined measurement value application range code EH1L, and represents a specific measurement value range RM17 included in the plurality of different measurement value reference ranges RM11, RM12,...

該特定測量值範圍RM17代表包含於該複數不同物理參數參考範圍RC1E1、RC1E2、…中的一特定物理參數範圍RC1E7。該處理單元230基於該特定測量值範圍碼EH17來執行用於檢查該測量值VM82和該特定測量值範圍RM17之間的一數學關係KA83的一檢查操作BA83。 The specific measurement value range RM17 represents a specific physical parameter range RC1E7 included in the plurality of different physical parameter reference ranges RC1E1, RC1E2,... The processing unit 230 executes a check operation BA83 for checking a mathematical relationship KA83 between the measurement value VM82 and the specific measurement value range RM17 based on the specific measurement value range code EH17.

在一些實施例中,在該處理單元230於該指定時間TE82之內基於該檢查操作BA83而確定該可變物理參數QP1A目前處於的該特定物理參數範圍RC1E7的條件下,該處理單元230導致該輸出單元240產生用於控制該可變物理參數QU1A的一控制訊號SC83,並使用該儲存單元250以將該特定測量值範圍碼EH17指定到該可變物理參數範圍碼UM8A。例如,該控制訊號SC83不同於該控制訊號SC81。 In some embodiments, under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the specific physical parameter range RC1E7 based on the checking operation BA83 within the specified time TE82, the processing unit 230 causes the The output unit 240 generates a control signal SC83 for controlling the variable physical parameter QU1A, and uses the storage unit 250 to assign the specific measurement value range code EH17 to the variable physical parameter range code UM8A. For example, the control signal SC83 is different from the control signal SC81.

在該觸發事件EQ81發生的條件下,該感測單元260感測處於一拘束條件FP81的該可變物理參數QP1A以提供該感測訊號SM81到該處理單元230。例如,該拘束條件FP81是該可變物理參數QP1A等於包含於該額定物理參數範圍RC1E中的一特定物理參數QP15。該處理單元230基於該感測訊號SM81來估計該特定物理參數 QP15以獲得該測量值VM81。由於處於該拘束條件FP81的該可變物理參數QP1A是於該物理參數應用範圍RC1EL之內,該處理單元230辨識該測量值VM81為於該測量值應用範圍RM1L之內的一可允許值,藉此辨識該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81為一數值交集關係,並藉此確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL。 Under the condition that the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A in a restraining condition FP81 to provide the sensing signal SM81 to the processing unit 230. For example, the constraint condition FP81 is that the variable physical parameter QP1A is equal to a specific physical parameter QP15 included in the rated physical parameter range RC1E. The processing unit 230 estimates the specific physical parameter based on the sensing signal SM81 QP15 obtains the measured value VM81. Since the variable physical parameter QP1A in the constraint condition FP81 is within the physical parameter application range RC1EL, the processing unit 230 recognizes that the measurement value VM81 is an allowable value within the measurement value application range RM1L, by This identifies the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L as a numerical intersection relationship, and thereby determines the physical parameter application range RC1EL in which the variable physical parameter QP1A is currently located.

在一些實施例中,該感測單元260基於與該感測訊號產生HE81相關的該感測器靈敏度YQ81而被特徵化,並被配置以符合該感測器規格FQ11。該感測器規格FQ11包含用於表示該感測器靈敏度YQ81的該感測器靈敏度表示GQ81、和用於表示一感測器測量範圍RA8E的一感測器測量範圍表示GQ8R。例如,該額定物理參數範圍RC1E被配置以相同於該感測器測量範圍RA8E,或被配置以是該感測器測量範圍RA8E的一部分。該感測器測量範圍RA8E相關於由該第一感測單元260所執行的一物理參數感測。該感測器測量範圍表示GQ8R基於一第一預設測量單位而被提供。例如,該第一預設測量單位是一公制測量單位和一英制測量單位的其中之一。 In some embodiments, the sensing unit 260 is characterized based on the sensor sensitivity YQ81 related to the sensing signal generating HE81, and is configured to comply with the sensor specification FQ11. The sensor specification FQ11 includes the sensor sensitivity representation GQ81 for representing the sensor sensitivity YQ81, and a sensor measurement range representation GQ8R for representing a sensor measurement range RA8E. For example, the rated physical parameter range RC1E is configured to be the same as the sensor measurement range RA8E, or is configured to be a part of the sensor measurement range RA8E. The sensor measurement range RA8E is related to a physical parameter sensing performed by the first sensing unit 260. The measurement range of the sensor means that the GQ8R is provided based on a first preset measurement unit. For example, the first preset measurement unit is one of a metric measurement unit and an English measurement unit.

該額定測量值範圍RC1N和該額定範圍界限值對DC1A皆基於該額定物理參數範圍表示GB8E、該感測器測量範圍表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。該測量值應用範圍RM1L和該應用範圍界限值對DM1L皆基於該物理參數應用範圍表示GB8L、該感測器測量範圍 表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR82來用該指定測量值格式HQ81而被預設。 The rated measurement value range RC1N and the rated range limit value for DC1A are based on the rated physical parameter range indicating GB8E, the sensor measuring range indicating GQ8R, the sensor sensitivity indicating GQ81 and the data encoding operation ZR81 to use the designation The measured value format HQ81 is preset. The measurement value application range RM1L and the application range limit value pair DM1L are based on the physical parameter application range represents GB8L, the sensor measurement range It means GQ8R, the sensor sensitivity means GQ81, and the data encoding operation ZR82 is preset using the designated measurement value format HQ81.

該測量值候選範圍RM12和該候選範圍界限值對DM1B皆基於該物理參數候選範圍表示GB82、該感測器測量範圍表示GQ8R、該感測器靈敏度表示GQ81和該資料編碼操作ZR83來用該指定測量值格式HQ81而被預設。該額定物理參數範圍表示GB8E、該物理參數應用範圍表示GB8L、該物理參數候選範圍表示GA8T和該物理參數候選範圍表示GB82皆基於一第二預設測量單位而被提供。例如,該第二預設測量單位是一公制測量單位和一英制測量單位的其中之一,並相同或不同於該第一預設測量單位。例如,該物理參數目標範圍RD1ET被配置以是該感測器測量範圍RB8E的一部分。 The measurement value candidate range RM12 and the candidate range limit value pair DM1B are based on the physical parameter candidate range representing GB82, the sensor measurement range representing GQ8R, the sensor sensitivity representing GQ81, and the data encoding operation ZR83 to use the designation The measured value format HQ81 is preset. The rated physical parameter range represents GB8E, the physical parameter application range represents GB8L, the physical parameter candidate range represents GA8T, and the physical parameter candidate range represents GB82 are provided based on a second preset measurement unit. For example, the second preset measurement unit is one of a metric measurement unit and an English measurement unit, and is the same as or different from the first preset measurement unit. For example, the physical parameter target range RD1ET is configured to be a part of the sensor measurement range RB8E.

該可變物理參數QP1A進一步基於該感測器測量範圍RA8E而被特徵化。例如,該感測器測量範圍表示GQ8R、該額定物理參數範圍表示GB8E、該物理參數應用範圍表示GB8L、該物理參數候選範圍表示GA8T、該物理參數候選範圍表示GB82和該感測器測量範圍表示GW8R皆屬於十進制資料類型。該測量值VM81、該測量值VM82、該額定範圍界限值對DC1A、該應用範圍界限值對DM1L、該目標範圍界限值對DN1T和該候選範圍界限值對DM1B皆屬於該二進制資料類型,並皆適用於電腦處理。該感測器規格FQ11、該感測器規格FU11和該觸發應用功能規格GBL8皆被預設。 The variable physical parameter QP1A is further characterized based on the sensor measurement range RA8E. For example, the sensor measurement range represents GQ8R, the rated physical parameter range represents GB8E, the physical parameter application range represents GB8L, the physical parameter candidate range represents GA8T, the physical parameter candidate range represents GB82 and the sensor measurement range represents GW8R all belong to the decimal data type. The measurement value VM81, the measurement value VM82, the rated range limit value pair DC1A, the application range limit value pair DM1L, the target range limit value pair DN1T, and the candidate range limit value pair DM1B all belong to the binary data type and are all Suitable for computer processing. The sensor specification FQ11, the sensor specification FU11, and the trigger application function specification GBL8 are all preset.

在一些實施例中,該記憶體位置PM8L基於 一記憶體位址FM8L而被識別。該記憶體位址FM8L基於所預設的該測量值應用範圍碼EH1L而被預設。該記憶體位置PV8L基於一記憶體位址FV8L而被識別。該記憶體位址FV8L基於所預設的該測量值應用範圍碼EH1L而被預設。 In some embodiments, the memory location PM8L is based on A memory address FM8L is recognized. The memory address FM8L is preset based on the preset measurement value application range code EH1L. The memory location PV8L is identified based on a memory address FV8L. The memory address FV8L is preset based on the preset measurement value application range code EH1L.

在該觸發事件EQ81發生之前,該處理單元230被配置以取得所預設的該測量值應用範圍碼EH1L、所預設的該應用範圍界限值對DM1L和所預設的該控制資料碼CK8T,基於所取得的該測量值應用範圍碼EH1L來獲得該記憶體位址FM8L,並基於所取得的該應用範圍界限值對DM1L和所獲得的該記憶體位址FM8L來導致該操作單元297提供包含所取得的該應用範圍界限值對DM1L和所獲得的該記憶體位址FM8L的一寫入請求訊息WB8L。例如,該寫入請求訊息WB8L用於導致該記憶體單元25Y1在該記憶體位置PM8L儲存所輸送的該應用範圍界限值對DM1L。 Before the trigger event EQ81 occurs, the processing unit 230 is configured to obtain the preset measurement value application range code EH1L, the preset application range limit value pair DM1L, and the preset control data code CK8T, The memory address FM8L is obtained based on the obtained measurement value using the range code EH1L, and based on the obtained application range limit value pair DM1L and the obtained memory address FM8L, the operating unit 297 is provided with the obtained memory address FM8L. The application range limit value is a write request message WB8L for DM1L and the obtained memory address FM8L. For example, the write request message WB8L is used to cause the memory unit 25Y1 to store the delivered application range limit value pair DM1L in the memory location PM8L.

在該觸發事件EQ81發生之前,該處理單元230基於所取得的該測量值應用範圍碼EH1L來獲得該記憶體位址FV8L,並基於所取得的該控制資料碼CK8T和所獲得的該記憶體位址FV8L來導致該操作單元297提供包含所取得的該控制資料碼CK8T和所獲得的該記憶體位址FV8L的一寫入請求訊息WA8L。例如,該寫入請求訊息WA8L用於導致該記憶體單元25Y1在該記憶體位置PV8L儲存所輸送的該控制資料碼CK8T。 Before the trigger event EQ81 occurs, the processing unit 230 applies the range code EH1L to obtain the memory address FV8L based on the obtained measurement value, and obtains the memory address FV8L based on the obtained control data code CK8T and the obtained memory address FV8L This causes the operating unit 297 to provide a write request message WA8L including the acquired control data code CK8T and the acquired memory address FV8L. For example, the write request message WA8L is used to cause the memory unit 25Y1 to store the transmitted control data code CK8T in the memory location PV8L.

該控制裝置212耦合於一伺服器280。該識別媒介310是一電子標籤350、一條碼媒介360和一生物識 別作用媒介370的其中之一。該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。例如,該儲存單元250具有一儲存空間SS11。該儲存空間SS11具有該可變物理參數範圍碼UM8A、該額定範圍界限值對DC1A和該總參考範圍數目NS81。 The control device 212 is coupled to a server 280. The identification medium 310 is an electronic tag 350, a code medium 360 and a biological identification Don’t be one of the media 370. One of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1. For example, the storage unit 250 has a storage space SS11. The storage space SS11 has the variable physical parameter range code UM8A, the rated range limit value pair DC1A, and the total reference range number NS81.

請參閱第34圖。第34圖為繪示於第1圖中的該控制系統901的一實施結構9043的示意圖。如第34圖所示,該實施結構9043含該控制裝置212、該控制目標裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該控制目標裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該輸入單元270和該輸出單元240。該處理單元230耦合於該伺服器280。 Please refer to Figure 34. FIG. 34 is a schematic diagram of an implementation structure 9043 of the control system 901 shown in FIG. 1. As shown in FIG. 34, the implementation structure 9043 includes the control device 212, the control target device 130, and the server 280. The control device 212 is linked to the server 280. The control device 212 is used for controlling the variable physical parameter QU1A existing in the control target device 130 by the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260. The operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240. The processing unit 230 is coupled to the server 280.

該控制裝置212設置於該應用環境EX81中。該可變物理參數QP1A存在於一物理參數形成區AT11中。該控制裝置212和該應用環境EX81的其中之一具有該可變物理參數QP1A。例如,該感測單元260耦合於具有該可變物理參數QP1A的該物理參數形成區AT11。該可變物理參數QU1A存在於該物理參數形成區AU11中。例如,在該物理參數形成區AT11位於該應用環境EX81中的條件下,該物理參數形成區AT11鄰接於該控制裝置212。 The control device 212 is installed in the application environment EX81. The variable physical parameter QP1A exists in a physical parameter formation area AT11. One of the control device 212 and the application environment EX81 has the variable physical parameter QP1A. For example, the sensing unit 260 is coupled to the physical parameter formation area AT11 having the variable physical parameter QP1A. The variable physical parameter QU1A exists in the physical parameter formation area AU11. For example, under the condition that the physical parameter formation area AT11 is located in the application environment EX81, the physical parameter formation area AT11 is adjacent to the control device 212.

例如,該物理參數形成區AU11和該物理參數形成區AT11是分開的,並分別被形成於該實際位置LD81和該實際位置LC81;藉此,該可變物理參數QU1A 和該可變物理參數QP1A分別被形成於該實際位置LD81和不同於該實際位置LD81的該實際位置LC81。例如,該物理參數形成區AT11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。例如,該物理參數形成區AU11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。 For example, the physical parameter formation area AU11 and the physical parameter formation area AT11 are separate and are formed at the actual position LD81 and the actual position LC81; thereby, the variable physical parameter QU1A And the variable physical parameter QP1A are respectively formed at the actual position LD81 and the actual position LC81 which is different from the actual position LD81. For example, the physical parameter formation area AT11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area. For example, the physical parameter formation area AU11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area.

例如,該處理單元230響應該觸發事件EQ81來導致該可變物理參數QP1A在該物理參數形成區AT11中形成。在該可變物理參數QP1A存在於該物理參數形成區AT11中的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。例如,該物理參數形成區AT11是一使用者介面區。 For example, the processing unit 230 responds to the trigger event EQ81 to cause the variable physical parameter QP1A to be formed in the physical parameter formation area AT11. Under the condition that the variable physical parameter QP1A exists in the physical parameter formation area AT11, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. For example, the physical parameter formation area AT11 is a user interface area.

在一些實施例中,該控制目標裝置130包含該操作單元397、耦合於該操作單元397的該感測單元334、和耦合於該操作單元397的一功能目標335。該功能目標335受該操作單元397控制,並包含具有該可變物理參數QU1A的該物理參數形成區AU11。該可變物理參數QU1A進一步基於包含該物理參數目標範圍RD1ET的一額定物理參數範圍RD1E而被特徵化。該額定物理參數範圍RD1E由一額定測量值範圍RD1N所代表,並包含由複數不同測量值參考範圍RN11、RN12、…所分別代表的複數不同物理參數參考範圍RD1E1、RD1E2、…。該複數不同物理參數參考範圍RD1E1、RD1E2、…包含該物理參數目標範圍RD1ET和一物理參數候選範圍RD1E2。 In some embodiments, the control target device 130 includes the operating unit 397, the sensing unit 334 coupled to the operating unit 397, and a functional target 335 coupled to the operating unit 397. The function object 335 is controlled by the operating unit 397 and includes the physical parameter forming area AU11 having the variable physical parameter QU1A. The variable physical parameter QU1A is further characterized based on a rated physical parameter range RD1E that includes the physical parameter target range RD1ET. The rated physical parameter range RD1E is represented by a rated measurement value range RD1N, and includes a plurality of different physical parameter reference ranges RD1E1, RD1E2, ... represented by a plurality of different measurement value reference ranges RN11, RN12, .... The plurality of different physical parameter reference ranges RD1E1, RD1E2,... include the physical parameter target range RD1ET and a physical parameter candidate range RD1E2.

該額定測量值範圍RD1N包含該複數不同 測量值參考範圍RN11、RN12、…,並基於該額定物理參數範圍表示GB8E、該感測器靈敏度表示GQ81和用於轉換該額定物理參數範圍表示GB8E的該資料編碼操作ZR81來用該指定測量值格式HQ81而被預設。該複數不同測量值參考範圍RN11、RN12、…包含該測量值目標範圍RN1T和代表該物理參數候選範圍RD1E2的一測量值候選範圍RN12。該測量值候選範圍RN12由一測量值候選範圍碼EM12所代表,並具有一候選範圍界限值對DN1B,藉此該測量值候選範圍碼EM12被配置以指示該物理參數候選範圍RD1E2。在該觸發事件EQ81發生之前,該可變物理參數QU1A被配置以於一特定物理參數範圍RD1E4之內。該特定物理參數範圍RD1E4包含於該複數不同物理參數參考範圍RD1E1、RD1E2、…中。 The rated measurement value range RD1N contains the plural different The measurement value reference range RN11, RN12,..., and based on the rated physical parameter range represents GB8E, the sensor sensitivity represents GQ81, and the data encoding operation ZR81 used to convert the rated physical parameter range represents GB8E to use the specified measurement value The format HQ81 is preset. The plurality of different measurement value reference ranges RN11, RN12,... include the measurement value target range RN1T and a measurement value candidate range RN12 representing the physical parameter candidate range RD1E2. The measurement value candidate range RN12 is represented by a measurement value candidate range code EM12 and has a candidate range threshold pair DN1B, whereby the measurement value candidate range code EM12 is configured to indicate the physical parameter candidate range RD1E2. Before the trigger event EQ81 occurs, the variable physical parameter QU1A is configured to be within a specific physical parameter range RD1E4. The specific physical parameter range RD1E4 is included in the plurality of different physical parameter reference ranges RD1E1, RD1E2,....

在一些實施例中,由該控制目標裝置130所引起的該觸發作用事件是一狀態改變事件。該控制裝置212進一步包含耦合於該處理單元230的一狀態改變偵測器475。例如,該狀態改變偵測器475是一極限偵測器和一邊緣偵測器的其中之一。該極限偵測器是一極限開關。該狀態改變偵測器475被配置以偵測與一預設特徵物理參數UL81相關的一特徵物理參數到達ZL82。該功能目標335包含一物理參數應用區AJ11。該物理參數應用區AJ11具有一可變物理參數QG1A。該可變物理參數QG1A相依於該可變物理參數QU1A,並基於該預設特徵物理參數UL81而被特徵化。例如,該物理參數應用區AJ11是一負載區、一顯示區、一感測區、一功率供應區和一環境區的其中之一。 該預設特徵物理參數UL81相關於該可變物理參數QU1A。 In some embodiments, the triggering event caused by the control target device 130 is a state change event. The control device 212 further includes a state change detector 475 coupled to the processing unit 230. For example, the state change detector 475 is one of a limit detector and an edge detector. The limit detector is a limit switch. The state change detector 475 is configured to detect the arrival of a characteristic physical parameter related to a predetermined characteristic physical parameter UL81 to the ZL82. The function object 335 includes a physical parameter application area AJ11. The physical parameter application area AJ11 has a variable physical parameter QG1A. The variable physical parameter QG1A is dependent on the variable physical parameter QU1A, and is characterized based on the predetermined characteristic physical parameter UL81. For example, the physical parameter application area AJ11 is one of a load area, a display area, a sensing area, a power supply area, and an environment area. The preset characteristic physical parameter UL81 is related to the variable physical parameter QU1A.

在該觸發事件EQ81發生之前,該操作單元397使該功能目標335執行與該可變物理參數QU1A相關的該指定功能操作ZH81。該指定功能操作ZH81用於控制該可變物理參數QG1A,並藉由改變該可變物理參數QG1A來導致該觸發事件EQ81發生。該可變物理參數QG1A被配置以處於一可變物理狀態XA8A。例如,該操作單元397受該控制裝置212控制以使該功能目標335執行該指定功能操作ZH81。例如,該額定測量值範圍RD1N具有一額定範圍界限值對DD1A。 Before the trigger event EQ81 occurs, the operation unit 397 causes the function target 335 to execute the designated function operation ZH81 related to the variable physical parameter QU1A. The designated function operation ZH81 is used to control the variable physical parameter QG1A, and cause the trigger event EQ81 to occur by changing the variable physical parameter QG1A. The variable physical parameter QG1A is configured to be in a variable physical state XA8A. For example, the operation unit 397 is controlled by the control device 212 so that the function target 335 executes the designated function operation ZH81. For example, the rated measurement value range RD1N has a rated range limit value pair DD1A.

在該可變物理參數QU1A於該觸發事件EQ81之前被配置以於該特定物理參數範圍RD1E4之內的條件下,該指定功能操作ZH81導致該可變物理參數QG1A到達該預設特徵物理參數UL81以形成該特徵物理參數到達ZL82,並藉由形成該特徵物理參數到達ZL82來將該可變物理狀態XA8A從一非特徵物理參數到達狀態XA81改變成一實際特徵物理參數到達狀態XA82。該狀態改變偵測器475響應該特徵物理參數到達ZL82特來產生一觸發訊號SX81。例如,該實際特徵物理參數到達狀態XA82基於該預設特徵物理參數UL81而被特徵化。該狀態改變偵測器475響應該可變物理參數QG1A被從該非特徵物理參數到達狀態XA81改變成該實際特徵物理參數到達狀態XA82的一狀態改變事件來產生該觸發訊號SX81。 Under the condition that the variable physical parameter QU1A is configured to be within the specific physical parameter range RD1E4 before the trigger event EQ81, the designated functional operation ZH81 causes the variable physical parameter QG1A to reach the preset characteristic physical parameter UL81. The characteristic physical parameter is formed to reach ZL82, and the variable physical state XA8A is changed from a non-characteristic physical parameter reaching state XA81 to an actual characteristic physical parameter reaching state XA82 by forming the characteristic physical parameter reaching ZL82. The state change detector 475 generates a trigger signal SX81 in response to the characteristic physical parameter reaching ZL82. For example, the actual characteristic physical parameter reaching state XA82 is characterized based on the preset characteristic physical parameter UL81. The state change detector 475 generates the trigger signal SX81 in response to a state change event in which the variable physical parameter QG1A is changed from the non-characteristic physical parameter reaching state XA81 to the actual characteristic physical parameter reaching state XA82.

在一些實施例中,該輸入單元270耦合於該狀態改變偵測器475。該觸發事件EQ81是該可變物理參數 QG1A進入該實際特徵物理參數到達狀態XA82的該狀態改變事件。該輸入單元270和該處理單元230的其中之一接收該觸發訊號SX81。該處理單元230響應所接收的該觸發訊號SX81來獲得該控制應用碼UA8T,並基於所獲得的該控制應用碼UA8T來在該操作時間TD81之內執行用於該觸發應用功能FB81的該訊號產生控制GS81以導致該輸出單元240產生該控制訊號SC81。 In some embodiments, the input unit 270 is coupled to the state change detector 475. The trigger event EQ81 is the variable physical parameter QG1A enters the state change event in which the actual characteristic physical parameter reaches the state XA82. One of the input unit 270 and the processing unit 230 receives the trigger signal SX81. The processing unit 230 obtains the control application code UA8T in response to the received trigger signal SX81, and executes the signal generation for the trigger application function FB81 within the operation time TD81 based on the obtained control application code UA8T The GS81 is controlled to cause the output unit 240 to generate the control signal SC81.

例如,在該狀態改變偵測器475是該極限開關的條件下,該特徵物理參數到達ZL82是等於一可變空間位置的該可變物理參數QG1A到達等於一預設極限位置的該預設特徵物理參數UL81的一極限位置到達。例如,該功能目標335藉由執行基於該可變物理參數QU1A而被引起的該指定功能操作ZH81來在該物理參數應用區AJ11中形成該可變物理參數QG1A。在該物理參數應用區AJ11耦合於該狀態改變偵測器475的條件下,該狀態改變偵測器475偵測該特徵物理參數到達ZL82。 For example, under the condition that the state change detector 475 is the limit switch, the characteristic physical parameter reaching ZL82 is equal to a variable space position and the variable physical parameter QG1A reaches the preset characteristic equal to a preset limit position. A limit position of the physical parameter UL81 has been reached. For example, the function target 335 forms the variable physical parameter QG1A in the physical parameter application area AJ11 by executing the designated function operation ZH81 caused based on the variable physical parameter QU1A. Under the condition that the physical parameter application area AJ11 is coupled to the state change detector 475, the state change detector 475 detects that the characteristic physical parameter reaches the ZL82.

例如,該處理單元230響應所接收的該觸發訊號SX81來使用該感測訊號SM81以獲得該測量值VM81。在該處理單元230藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的該資料獲取AG8A以獲得該控制應用碼UA8T,並基於所獲得的該控制應用碼UA8T來導致該輸出單元240產生起到指示該測量值目標範圍RN1T的作用的 該控制訊號SC81。 For example, the processing unit 230 uses the sensing signal SM81 to obtain the measurement value VM81 in response to the received trigger signal SX81. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the processing unit 230 execute the data acquisition AG8A using the determined measurement value application range code EH1L to obtain the control application code UA8T, and based on the obtained control application code UA8T, cause the output unit 240 to generate a target indicating the measurement value Scope of the role of RN1T The control signal SC81.

在一些實施例中,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。例如,在該觸發事件EQ81發生的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。在該處理單元230藉由執行該訊號產生控制GS81來導致該輸出單元240於該操作時間TD81之內產生該控制訊號SC81之後,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM82。例如,該感測單元260是一時間感測單元、一電性參數感測單元、一力學參數感測單元、一光學參數感測單元、一溫度感測單元、一濕度感測單元、一運動感測單元和一磁性參數感測單元的其中之一。 In some embodiments, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. For example, under the condition that the trigger event EQ81 occurs, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. After the processing unit 230 executes the signal generation control GS81 to cause the output unit 240 to generate the control signal SC81 within the operation time TD81, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing Test signal SM82. For example, the sensing unit 260 is a time sensing unit, an electrical parameter sensing unit, a mechanical parameter sensing unit, an optical parameter sensing unit, a temperature sensing unit, a humidity sensing unit, and a motion sensing unit. One of the sensing unit and a magnetic parameter sensing unit.

例如,該感測單元260包含耦合於該處理單元230的一感測組件261,並使用該感測組件261以產生該感測訊號SM81和該感測訊號SM82。該感測組件261是複數應用感測器的其中之一。該複數應用感測器包含一電壓感測器、一電流感測器、一電阻感測器、一電容感測器、一電感感測器、一加速度計、一陀螺儀、一壓力轉能器、一應變規、一定時器、一光偵測器、一溫度感測器和一濕度感測器。例如,該感測組件261產生一感測訊號分量。該第一感測訊號SM81包含該感測訊號分量。 For example, the sensing unit 260 includes a sensing component 261 coupled to the processing unit 230, and uses the sensing component 261 to generate the sensing signal SM81 and the sensing signal SM82. The sensing component 261 is one of a plurality of application sensors. The plural application sensors include a voltage sensor, a current sensor, a resistance sensor, a capacitance sensor, an inductance sensor, an accelerometer, a gyroscope, and a pressure transducer , A strain gauge, a timer, a light detector, a temperature sensor and a humidity sensor. For example, the sensing component 261 generates a sensing signal component. The first sensing signal SM81 includes the sensing signal component.

請參閱第35圖,其為繪示於第1圖中的該控制系統901的一實施結構9044的示意圖。如第35圖所示,該實施結構9044包含該控制裝置212、該控制目標裝置130和該伺服器280。該控制裝置212是一計算裝置、一 通訊裝置、一使用者裝置、一移動裝置、一遙控器、一電子裝置、一可攜式裝置、一桌上型裝置、一相對固定裝置、一固定裝置、一智慧電話和其任意組合的其中之一。該電子標籤350是一被動式電子標籤、一主動式電子標籤、一半主動式電子標籤、一無線電子標籤和一有線電子標籤的其中之一。例如,該控制裝置212通過在該輸出單元240和該操作單元397之間的一實際鏈接而向該控制目標裝置130傳輸該控制訊號SC81。該實際鏈接是一有線鏈接和一無線鏈接的其中之一。 Please refer to FIG. 35, which is a schematic diagram of an implementation structure 9044 of the control system 901 shown in FIG. 1. As shown in FIG. 35, the implementation structure 9044 includes the control device 212, the control target device 130, and the server 280. The control device 212 is a computing device, a Communication device, a user device, a mobile device, a remote control, an electronic device, a portable device, a desktop device, a relatively fixed device, a fixed device, a smart phone, and any combination thereof one. The electronic tag 350 is one of a passive electronic tag, an active electronic tag, a semi-active electronic tag, a wireless electronic tag and a wired electronic tag. For example, the control device 212 transmits the control signal SC81 to the control target device 130 through an actual link between the output unit 240 and the operation unit 397. The actual link is one of a wired link and a wireless link.

在一些實施例中,該額定物理參數範圍RC1E包含一特定物理參數QP15,並由該額定測量值範圍RC1N所代表。該感測單元260感測處於該拘束條件FP81的該可變物理參數QP1A以提供該感測訊號SM81到該處理單元230。例如,該拘束條件FP81是該可變物理參數QP1A等於該特定物理參數QP15。在該觸發事件EQ81發生的條件下,該處理單元230基於該感測訊號SM81來估計該特定物理參數QP15以獲得該測量值VM81。 In some embodiments, the rated physical parameter range RC1E includes a specific physical parameter QP15 and is represented by the rated measurement value range RC1N. The sensing unit 260 senses the variable physical parameter QP1A in the restraint condition FP81 to provide the sensing signal SM81 to the processing unit 230. For example, the constraint condition FP81 is that the variable physical parameter QP1A is equal to the specific physical parameter QP15. Under the condition that the trigger event EQ81 occurs, the processing unit 230 estimates the specific physical parameter QP15 based on the sensing signal SM81 to obtain the measured value VM81.

該控制訊號SC81是該電訊號SP81和該光訊號SQ81的其中之一。該輸出單元240包含一輸出組件450、一顯示組件460和一輸出組件455。該輸出組件450耦合於該處理單元230,並在該控制訊號SC81是該電訊號SP81的條件下,用於輸出該電訊號SP81。例如,該輸出組件450是一傳輸組件。當該觸發事件EQ81發生時,該顯示組件460顯示該狀態指示LA81。在該特定測量值範圍碼EH14不同於所確定的該測量值應用範圍碼EH1L且該處理 單元230藉由做出該邏輯決定PH81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於該碼差異DA81來導致該顯示組件460將該狀態指示LA81改變成該狀態指示LA82。 The control signal SC81 is one of the electrical signal SP81 and the optical signal SQ81. The output unit 240 includes an output component 450, a display component 460, and an output component 455. The output component 450 is coupled to the processing unit 230, and is used to output the electrical signal SP81 under the condition that the control signal SC81 is the electrical signal SP81. For example, the output component 450 is a transmission component. When the trigger event EQ81 occurs, the display component 460 displays the status indication LA81. In the specific measurement value range code EH14 is different from the determined application range code EH1L of the measurement value and the processing The unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by making the logical decision PH81, the processing unit 230 causes the display component 460 to indicate the status based on the code difference DA81 LA81 changes to this state to indicate LA82.

該顯示組件460耦合於該處理單元230,用於顯示與該測量值VM81相關的一測量資訊LY81,並在該控制訊號SC81是該光訊號SQ81的條件下,用於輸出該光訊號SQ81。該輸出組件455耦合於該處理單元230。例如,該處理單元230被配置以導致該輸出組件455向該控制目標裝置130傳輸一物理參數訊號SB81。該可變物理參數QU1A基於該物理參數訊號SB81而被形成。例如,該輸出組件455是一傳輸組件。 The display component 460 is coupled to the processing unit 230 for displaying measurement information LY81 related to the measurement value VM81, and is used for outputting the optical signal SQ81 under the condition that the control signal SC81 is the optical signal SQ81. The output component 455 is coupled to the processing unit 230. For example, the processing unit 230 is configured to cause the output component 455 to transmit a physical parameter signal SB81 to the control target device 130. The variable physical parameter QU1A is formed based on the physical parameter signal SB81. For example, the output component 455 is a transmission component.

在一些實施例中,該控制裝置212耦合於該伺服器280,並進一步包含耦合於該感測單元260的一物理參數形成單元290。例如,在該可變物理參數QP1A要由該物理參數形成單元290產生的條件下,該物理參數形成單元290產生該可變物理參數QP1A。該輸入單元270包含一輸入組件440和一輸入組件445。該輸入組件440耦合於該處理單元230。例如,該輸入組件440和該顯示組件460的其中之一包含一使用者介面區AP11。 In some embodiments, the control device 212 is coupled to the server 280 and further includes a physical parameter forming unit 290 coupled to the sensing unit 260. For example, under the condition that the variable physical parameter QP1A is to be generated by the physical parameter forming unit 290, the physical parameter forming unit 290 generates the variable physical parameter QP1A. The input unit 270 includes an input component 440 and an input component 445. The input component 440 is coupled to the processing unit 230. For example, one of the input component 440 and the display component 460 includes a user interface area AP11.

該輸入組件445耦合於該處理單元230,用於接收該控制回應訊號SE81,並包含一接收組件4451和一讀取器4452。該接收組件4451和該讀取器4452皆耦合於該處理單元230。該控制回應訊號SE81是一電訊號LP81和一光訊號LQ81的其中之一。在該控制回應訊號SE81是 該電訊號LP81的條件下,該接收組件4451用於接收該電訊號LP81。在該控制回應訊號SE81是該光訊號LQ81的條件下,該讀取器4452用於接收該光訊號LQ81。例如,該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。 The input component 445 is coupled to the processing unit 230 for receiving the control response signal SE81, and includes a receiving component 4451 and a reader 4452. The receiving component 4451 and the reader 4452 are both coupled to the processing unit 230. The control response signal SE81 is one of an electrical signal LP81 and an optical signal LQ81. In the control response signal SE81 is Under the condition of the electrical signal LP81, the receiving component 4451 is used to receive the electrical signal LP81. Under the condition that the control response signal SE81 is the optical signal LQ81, the reader 4452 is used to receive the optical signal LQ81. For example, one of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1.

該應用環境EX81、該輸入組件440、該顯示組件460和該物理參數形成單元290的其中之一具有該物理參數形成區AT11。該處理單元230藉由執行用於該觸發應用功能FB81的一指定功能操作BH82來導致該物理參數形成區AT11具有該可變物理參數QP1A,並藉此導致該感測單元260感測處於該拘束條件FP81的該可變物理參數QP1A。該電子標籤350、該儲存單元250和該伺服器280的其中之一中包含該記憶體單元25Y1。該感測單元260、該儲存單元250、該輸出組件450、該顯示組件460、該輸出組件455、該輸入組件440、該接收組件4451、該讀取器4452和該物理參數形成單元290皆受該處理單元230控制。例如,該感測單元260和該顯示組件460的其中之一包含該物理參數形成區AT11。 One of the application environment EX81, the input component 440, the display component 460, and the physical parameter forming unit 290 has the physical parameter forming area AT11. The processing unit 230 causes the physical parameter formation area AT11 to have the variable physical parameter QP1A by executing a designated function operation BH82 for the trigger application function FB81, and thereby causes the sensing unit 260 to sense that it is in the constraint The variable physical parameter QP1A of the condition FP81. One of the electronic tag 350, the storage unit 250, and the server 280 includes the memory unit 25Y1. The sensing unit 260, the storage unit 250, the output component 450, the display component 460, the output component 455, the input component 440, the receiving component 4451, the reader 4452, and the physical parameter forming unit 290 are all affected by The processing unit 230 controls. For example, one of the sensing unit 260 and the display component 460 includes the physical parameter formation area AT11.

該可變物理參數QP1A是一第四可變電性參數、一第四可變力學參數、一第四可變光學參數、一第四可變溫度、一第四可變電壓、一第四可變電流、一第四可變電功率、一第四可變電阻、一第四可變電容、一第四可變電感、一第四可變頻率、一第四時鐘時間、一第四可變時間長度、一第四可變亮度、一第四可變光強度、一第四可變音量、一第四可變資料流量、一第四可變振幅、一 第四可變空間位置、一第四可變位移、一第四可變順序位置、一第四可變角度、一第四可變空間長度、一第四可變距離、一第四可變平移速度、一第四可變角速度、一第四可變加速度、一第四可變力、一第四可變壓力和一第四可變機械功率的其中之一。 The variable physical parameter QP1A is a fourth variable electrical parameter, a fourth variable mechanical parameter, a fourth variable optical parameter, a fourth variable temperature, a fourth variable voltage, and a fourth variable Variable current, a fourth variable electric power, a fourth variable resistor, a fourth variable capacitor, a fourth variable inductance, a fourth variable frequency, a fourth clock time, a fourth variable Variable time length, a fourth variable brightness, a fourth variable light intensity, a fourth variable volume, a fourth variable data flow, a fourth variable amplitude, a Fourth variable space position, a fourth variable displacement, a fourth variable sequence position, a fourth variable angle, a fourth variable space length, a fourth variable distance, a fourth variable translation One of speed, a fourth variable angular velocity, a fourth variable acceleration, a fourth variable force, a fourth variable pressure, and a fourth variable mechanical power.

在一些實施例中,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RC1E4是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。在該可變物理參數QP1A是該第四可變電壓的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電壓範圍和一相對低電壓範圍。在該可變物理參數QP1A是該第二可變電流的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電流範圍和一相對低電流範圍。在該可變物理參數QP1A是該第四可變電阻的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高電阻範圍和一相對低電阻範圍。 In some embodiments, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E4 is the relatively high physical parameter range and the relatively low physical parameter range. The other of the parameter range. Under the condition that the variable physical parameter QP1A is the fourth variable voltage, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high voltage range and a relatively low voltage range, respectively. Under the condition that the variable physical parameter QP1A is the second variable current, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high current range and a relatively low current range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable resistor, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high resistance range and a relatively low resistance range, respectively.

在該可變物理參數QP1A是該第四可變空間位置的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高位置範圍和一相對低位置範圍。在該可變物理參數QP1A是該第四可變壓力的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高壓力範圍和一相對低壓力範圍。在該可變物理參數QP1A是該第四可變長度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高長度範圍和一相 對低長度範圍。在該可變物理參數QP1A是該第四可變角速度的條件下,該相對高物理參數範圍和該相對低物理參數範圍分別是一相對高角速度範圍和一相對低角速度範圍。 Under the condition that the variable physical parameter QP1A is the fourth variable spatial position, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high position range and a relatively low position range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable pressure, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high pressure range and a relatively low pressure range, respectively. Under the condition that the variable physical parameter QP1A is the fourth variable length, the relatively high physical parameter range and the relatively low physical parameter range are respectively a relatively high length range and a phase For low length ranges. Under the condition that the variable physical parameter QP1A is the fourth variable angular velocity, the relatively high physical parameter range and the relatively low physical parameter range are a relatively high angular velocity range and a relatively low angular velocity range, respectively.

例如,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RC1E2是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數應用範圍RC1EL是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該特定物理參數範圍RC1E7是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。例如,該物理參數候選範圍RC1E2是一相對高物理參數範圍和一相對低物理參數範圍的其中之一;且該物理參數候選範圍RC1E3是該相對高物理參數範圍和該相對低物理參數範圍的其中另一。 For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E2 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter application range RC1EL is one of a relatively high physical parameter range and a relatively low physical parameter range; and the specific physical parameter range RC1E7 is one of the relatively high physical parameter range and the relatively low physical parameter range another. For example, the physical parameter candidate range RC1E2 is one of a relatively high physical parameter range and a relatively low physical parameter range; and the physical parameter candidate range RC1E3 is one of the relatively high physical parameter range and the relatively low physical parameter range another.

在一些實施例中,在該可變物理參數QP1A是於該物理參數應用範圍RC1EL之內的條件下,該可變物理參數QP1A處於一第一參考狀態。在該可變物理參數QP1A是於該特定物理參數範圍RC1E4之內的條件下,該可變物理參數QP1A處於一第二參考狀態。在該可變物理參數QP1A是於該物理參數候選範圍RC1E2之內的條件下,該可變物理參數QP1A處於一第三參考狀態。在該可變物理參數QP1A是於該特定物理參數範圍RC1E7之內的條件下,該可變物理參數QP1A處於一第四參考狀態。該第一參考狀態相同或不同於該第二參考狀態。該第二參考 狀態不同於該第三參考狀態。該第一參考狀態不同於該第四參考狀態。 In some embodiments, under the condition that the variable physical parameter QP1A is within the physical parameter application range RC1EL, the variable physical parameter QP1A is in a first reference state. Under the condition that the variable physical parameter QP1A is within the specific physical parameter range RC1E4, the variable physical parameter QP1A is in a second reference state. Under the condition that the variable physical parameter QP1A is within the physical parameter candidate range RC1E2, the variable physical parameter QP1A is in a third reference state. Under the condition that the variable physical parameter QP1A is within the specific physical parameter range RC1E7, the variable physical parameter QP1A is in a fourth reference state. The first reference state is the same or different from the second reference state. The second reference The state is different from the third reference state. The first reference state is different from the fourth reference state.

例如,該測量值應用範圍碼EH1L是一測量值參考範圍號碼。該測量值應用範圍RM1L基於該測量值應用範圍碼EH1L而被安排於該額定測量值範圍RC1N中。該測量值候選範圍碼EH12是一測量值參考範圍號碼。該測量值候選範圍RM12基於該測量值候選範圍碼EH12而被安排於該額定測量值範圍RC1N中。該測量值目標範圍碼EM1T是一測量值參考範圍號碼。該測量值目標範圍RN1T基於該測量值目標範圍碼EM1T而被安排於該額定測量值範圍RD1N中。 For example, the measurement value application range code EH1L is a measurement value reference range number. The measurement value application range RM1L is arranged in the rated measurement value range RC1N based on the measurement value application range code EH1L. The measurement value candidate range code EH12 is a measurement value reference range number. The measurement value candidate range RM12 is arranged in the rated measurement value range RC1N based on the measurement value candidate range code EH12. The measured value target range code EM1T is a measured value reference range number. The measured value target range RN1T is arranged in the rated measured value range RD1N based on the measured value target range code EM1T.

例如,該可變物理參數QP1A是該第二可變電壓。該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和該物理參數候選範圍RD1E2分別是一第一電壓參考範圍、一第二電壓參考範圍和一第三電壓參考範圍。例如,在該可變物理參數QP1A是該第二可變位移的條件下,該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和該物理參數候選範圍RD1E2分別是一第一位移參考範圍、一第二位移參考範圍和一第三位移參考範圍。例如,在該可變物理參數QP1A是該第二時鐘時間的條件下,該物理參數應用範圍RC1EL、該特定物理參數範圍RC1E4和該物理參數候選範圍RD1E2分別是一第一時鐘時間參考範圍、一第二時鐘時間參考範圍和一第三時鐘時間參考範圍。 For example, the variable physical parameter QP1A is the second variable voltage. The physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are a first voltage reference range, a second voltage reference range, and a third voltage reference range, respectively. For example, under the condition that the variable physical parameter QP1A is the second variable displacement, the physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are respectively a first displacement reference range and a first displacement reference range. The second displacement reference range and a third displacement reference range. For example, under the condition that the variable physical parameter QP1A is the second clock time, the physical parameter application range RC1EL, the specific physical parameter range RC1E4, and the physical parameter candidate range RD1E2 are respectively a first clock time reference range and a The second clock time reference range and a third clock time reference range.

例如,該操作單元297包含耦合於該處理單元230的一通訊介面單元246。該處理單元230通過該通訊 介面單元246而耦合於該網路410。例如,該通訊介面單元246受該處理單元230控制,並包含耦合於該處理單元230的該輸出組件450和耦合於該處理單元230的該接收組件4451。該處理單元230通過該通訊介面單元246和該網路410而耦合於該伺服器280。 For example, the operating unit 297 includes a communication interface unit 246 coupled to the processing unit 230. The processing unit 230 through the communication The interface unit 246 is coupled to the network 410. For example, the communication interface unit 246 is controlled by the processing unit 230 and includes the output component 450 coupled to the processing unit 230 and the receiving component 4451 coupled to the processing unit 230. The processing unit 230 is coupled to the server 280 through the communication interface unit 246 and the network 410.

請參閱第36圖、第37圖和第38圖。第36圖為繪示於第1圖中的該控制系統901的一實施結構9045的示意圖。第37圖為繪示於第1圖中的該控制系統901的一實施結構9046的示意圖。第38圖為繪示於第1圖中的該控制系統901的一實施結構9047的示意圖。如第36圖、第37圖和第38圖所示,該實施結構9045、該實施結構9046和該實施結構9047的每一結構包含該控制裝置212、該控制目標裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於控制存在於該控制目標裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該輸入單元270和該輸出單元240,並耦合於該伺服器280。 Please refer to Figure 36, Figure 37 and Figure 38. FIG. 36 is a schematic diagram of an implementation structure 9045 of the control system 901 shown in FIG. 1. FIG. 37 is a schematic diagram of an implementation structure 9046 of the control system 901 shown in FIG. 1. FIG. 38 is a schematic diagram of an implementation structure 9047 of the control system 901 shown in FIG. 1. As shown in FIGS. 36, 37, and 38, each of the implementation structure 9045, the implementation structure 9046, and the implementation structure 9047 includes the control device 212, the control target device 130, and the server 280. The control device 212 is linked to the server 280. The control device 212 is used to control the variable physical parameter QU1A existing in the control target device 130 and includes the operating unit 297 and the sensing unit 260. The operating unit 297 includes the processing unit 230, the input unit 270, and the output unit 240, and is coupled to the server 280.

在一些實施例中,該觸發應用功能FB81相關於該記憶體單元25Y1。該記憶體單元25Y1儲存該控制資料碼CK8T。該控制資料碼CK8T是一控制資訊碼CM82、一控制資訊碼CM83、一控制資訊碼CM84和一控制資訊碼CM85的其中之一。該控制訊息CG81是一控制資料訊息CN82、一控制資料訊息CN83、一控制資料訊息CN84和一控制資料訊息CN85的其中之一。 In some embodiments, the trigger application function FB81 is related to the memory unit 25Y1. The memory unit 25Y1 stores the control data code CK8T. The control data code CK8T is one of a control information code CM82, a control information code CM83, a control information code CM84, and a control information code CM85. The control message CG81 is one of a control data message CN82, a control data message CN83, a control data message CN84, and a control data message CN85.

在該控制資料碼CK8T是該控制資訊碼 CM82的條件下,該控制訊號SC81是輸送該控制資料訊息CN82的一指令訊號SW82。該控制資訊碼CM82和該控制資料訊息CN82皆包含該測量值目標範圍碼EM1T。該控制訊號SC81藉由輸送該測量值目標範圍碼EM1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 In the control data code CK8T is the control information code Under the condition of CM82, the control signal SC81 is a command signal SW82 for transmitting the control data message CN82. The control information code CM82 and the control data message CN82 both include the measured value target range code EM1T. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the measurement value target range code EM1T, and is used to cause the variable physical parameter QU1A to enter the physical parameter represented by the measurement value target range RN1T Target range RD1ET.

在該控制資料碼CK8T是該控制資訊碼CM83的條件下,該控制訊號SC81是輸送該控制資料訊息CN83的一指令訊號SW83。該控制資訊碼CM83和該控制資料訊息CN83皆包含該目標範圍界限值對DN1T、該額定範圍界限值對DD1A和該控制碼CC1T。例如,該控制資訊碼CM83和該控制資料訊息CN83皆進一步包含該測量值目標範圍碼EM1T。該控制訊號SC81藉由輸送該目標範圍界限值對DN1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 Under the condition that the control data code CK8T is the control information code CM83, the control signal SC81 is a command signal SW83 for transmitting the control data message CN83. The control information code CM83 and the control data message CN83 both include the target range limit value pair DN1T, the rated range limit value pair DD1A, and the control code CC1T. For example, the control information code CM83 and the control data message CN83 both further include the measured value target range code EM1T. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the target range limit value pair DN1T, and is used to cause the variable physical parameter QU1A to enter the physical parameter represented by the measurement value target range RN1T Target range RD1ET.

在一些實施例中,在該控制資料碼CK8T是該控制資訊碼CM84的條件下,該控制訊號SC81是輸送該控制資料訊息CN84的一指令訊號SW84。該控制資訊碼CM84和該控制資料訊息CN84皆包含一相對參考範圍碼ZB81。該控制訊號SC81藉由輸送該相對參考範圍碼ZB81來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 In some embodiments, under the condition that the control data code CK8T is the control information code CM84, the control signal SC81 is a command signal SW84 for transmitting the control data message CN84. The control information code CM84 and the control data message CN84 both include a relative reference range code ZB81. The control signal SC81 serves to indicate the measurement value target range RN1T by transmitting the relative reference range code ZB81, and is used to cause the variable physical parameter QU1A to enter the physical parameter target represented by the measurement value target range RN1T Range RD1ET.

例如,該操作單元397包含一定時器339。該定時器339用於測量該可變時間長度LF8A,並被配置以符合一定時器規格FT81。該控制資料碼CK8T和該控制訊息CG81皆進一步包含該時間長度值CL8T。該處理單元230基於該參考時間長度LJ8T和該定時器規格FT81來以一指定計數值格式HH91設定該時間長度值CL8T,並基於所獲得的該控制資料碼CK8T來導致該輸出單元240執行該訊號產生操作BS81以產生輸送該時間長度值CL8T的該控制訊號SC81。例如,該指定計數值格式HH91基於一指定位元數目UY91而被特徵化。 For example, the operating unit 397 includes a timer 339. The timer 339 is used to measure the variable time length LF8A, and is configured to comply with a timer specification FT81. Both the control data code CK8T and the control message CG81 further include the time length value CL8T. The processing unit 230 sets the time length value CL8T in a designated count value format HH91 based on the reference time length LJ8T and the timer specification FT81, and causes the output unit 240 to execute the signal based on the obtained control data code CK8T The operation BS81 is generated to generate the control signal SC81 that transmits the time length value CL8T. For example, the designated count value format HH91 is characterized based on a designated number of bits UY91.

該觸發應用功能規格GBL8包含一時間長度表示GB8KJ。該時間長度表示GB8KJ用於表示該參考時間長度LJ8T。例如,該時間長度值CL8T基於該時間長度表示GB8KJ、該定時器規格FT81和用於轉換該時間長度表示GB8KJ的一資料編碼操作ZR8KJ來用該指定計數值格式HH91而被預設。該儲存單元250儲存包含該時間長度值CL8T的該控制資料碼CK8T。該處理單元230被配置以從該儲存單元250獲得該控制資料碼CK8T。例如,該時間長度表示GB8KJ相同於該時間長度表示GA8KJ。 The trigger application function specification GBL8 includes a time length representation GB8KJ. The time length indicates that GB8KJ is used to indicate the reference time length LJ8T. For example, the time length value CL8T is preset based on the time length representation GB8KJ, the timer specification FT81, and a data encoding operation ZR8KJ for converting the time length representation GB8KJ to use the designated count value format HH91. The storage unit 250 stores the control data code CK8T including the time length value CL8T. The processing unit 230 is configured to obtain the control data code CK8T from the storage unit 250. For example, the length of time indicates that GB8KJ is the same as the length of time indicates GA8KJ.

在一些實施例中,該控制目標裝置130儲存一物理參數目標範圍碼UQ1T。在該控制資料碼CK8T是該控制資訊碼CM85的條件下,該控制訊號SC81是輸送該控制資料訊息CN85的一指令訊號SW85。該控制資訊碼CM85和該控制資料訊息CN85皆包含一時間值目標範圍碼EL1T和一時鐘參考時間值NR81。該時間值目標範圍碼EL1T被 預設。在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該時間值目標範圍碼EL1T來起到指示該測量值目標範圍RN1T的作用,並用於導致該可變物理參數QU1A進入由該測量值目標範圍RN1T所代表的該物理參數目標範圍RD1ET。 In some embodiments, the control target device 130 stores a physical parameter target range code UQ1T. Under the condition that the control data code CK8T is the control information code CM85, the control signal SC81 is a command signal SW85 for transmitting the control data message CN85. The control information code CM85 and the control data message CN85 both include a time value target range code EL1T and a clock reference time value NR81. The target range code EL1T of the time value is Preset. Under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 conveys the preset time value target range code EL1T to indicate the measurement value target The range RN1T is used to cause the variable physical parameter QU1A to enter the physical parameter target range RD1ET represented by the measured value target range RN1T.

該操作單元397進一步包含一定時器342。該定時器342用於測量一時鐘時間TH1A,並被配置以符合一定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於一時鐘參考時間TR81而被特徵化。該觸發事件EQ81在一觸發時間TT81發生。該觸發時間TT81是一目前時間。該時鐘參考時間值NR81基於該時鐘參考時間TR81和該定時器規格FT21來以一指定計數值格式HH95而被預設。該時鐘參考時間TR81與該觸發時間TT81的一時間差異在一預設時間長度內。該定時器規格FT81和該定時器規格FT21皆被預設。例如,該指定計數值格式HH95基於一指定位元數目UY95而被特徵化。 The operating unit 397 further includes a timer 342. The timer 342 is used to measure a clock time TH1A and is configured to comply with a timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a clock reference time TR81. The trigger event EQ81 occurs at a trigger time TT81. The trigger time TT81 is a current time. The clock reference time value NR81 is preset based on the clock reference time TR81 and the timer specification FT21 in a designated count value format HH95. A time difference between the clock reference time TR81 and the trigger time TT81 is within a preset time length. Both the timer specification FT81 and the timer specification FT21 are preset. For example, the designated count value format HH95 is characterized based on a designated number of bits UY95.

該時鐘時間TH1A基於一時間目標區間HR1ET而被特徵化。該時間目標區間HR1ET包含該時鐘參考時間TR81,並由一時間值參考範圍RQ1T所代表。該時間值參考範圍RQ1T基於該定時器規格FT21來用該指定計數值格式HH95而被預設。該時間值目標範圍碼EL1T被配置以指示該時間目標區間HR1ET,並基於該觸發應用功能規格GBL8而被預設。該物理參數目標範圍碼UQ1T代表該 可變物理參數QU1A被期望在該時間目標區間HR1ET內處於的一物理參數目標範圍RK1ET。該物理參數目標範圍RK1ET選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。 The clock time TH1A is characterized based on a time target interval HR1ET. The time target interval HR1ET includes the clock reference time TR81 and is represented by a time value reference range RQ1T. The time value reference range RQ1T is preset based on the timer specification FT21 in the designated count value format HH95. The time value target range code EL1T is configured to indicate the time target interval HR1ET, and is preset based on the trigger application function specification GBL8. The physical parameter target range code UQ1T represents the The variable physical parameter QU1A is expected to be in a physical parameter target range RK1ET within the time target interval HR1ET. The physical parameter target range RK1ET is selected from the plural different physical parameter reference ranges RD1E1, RD1E2,....

在一些實施例中,在該可變物理參數QP1A相同於該時鐘時間TH1A的條件下,該感測單元260感測該時鐘時間TH1A以產生該感測訊號SM81,並作為一定時器。例如,在該可變物理參數QP1A相同於該時鐘時間TH1A的條件下,該測量值應用範圍碼EH1L相同於該時間值目標範圍碼EL1T。該處理單元230響應該觸發事件EQ81來執行該資料確定AE8A以確定相同於該時間值目標範圍碼EL1T的該測量值應用範圍碼EH1L。 In some embodiments, under the condition that the variable physical parameter QP1A is the same as the clock time TH1A, the sensing unit 260 senses the clock time TH1A to generate the sensing signal SM81, which serves as a timer. For example, under the condition that the variable physical parameter QP1A is the same as the clock time TH1A, the measurement value application range code EH1L is the same as the time value target range code EL1T. The processing unit 230 executes the data determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the time value target range code EL1T.

例如,在該處理單元230確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230執行使用所確定的該測量值應用範圍碼EH1L的該資料獲取AG8A以獲得相同於該控制資料碼CK8T的該控制應用碼UA8T。在所獲得的該控制資料碼CK8T包含所預設的該時鐘參考時間值NR81和所預設的該時間值目標範圍碼EL1T的條件下,該處理單元230基於所獲得的該控制資料碼CK8T來導致該輸出單元240執行該訊號產生操作BS81以產生輸送所獲得的該時鐘參考時間值NR81和所獲得的該時間值目標範圍碼EL1T的該控制訊號SC81。 For example, under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 executes the data acquisition AG8A using the determined measurement value application range code EH1L to obtain The control application code UA8T which is the same as the control data code CK8T. Under the condition that the obtained control data code CK8T includes the preset clock reference time value NR81 and the preset time value target range code EL1T, the processing unit 230 performs the processing based on the obtained control data code CK8T The output unit 240 is caused to execute the signal generating operation BS81 to generate the control signal SC81 that transmits the obtained clock reference time value NR81 and the obtained time value target range code EL1T.

例如,該物理參數控制功能規格GBL8包含一時鐘時間表示GB8TR。該時鐘時間表示GB8TR用於表示 該時鐘參考時間TR81。該時鐘參考時間值NR81基於該時鐘時間表示GB8TR、該定時器規格FT21和用於轉換該時鐘時間表示GB8TR的一資料編碼操作ZR8TR來用該指定計數值格式HH95而被預設。例如,該時鐘時間表示GB8TR相同於該時鐘時間表示GA8TR。 For example, the physical parameter control function specification GBL8 includes a clock time representing GB8TR. The clock time indicates that GB8TR is used to indicate This clock refers to time TR81. The clock reference time value NR81 is preset based on the clock time representation GB8TR, the timer specification FT21, and a data encoding operation ZR8TR for converting the clock time representation GB8TR to the designated count value format HH95. For example, the clock time indicates that GB8TR is the same as the clock time indicates GA8TR.

在一些實施例中,該控制目標裝置130進一步包含耦合於該操作單元397的一儲存單元332。該儲存單元332具有一記憶體位置YM8T和不同於該記憶體位置YM8T的一記憶體位置YX8T。例如,該記憶體位置YM8T基於一記憶體位址AM8T而被識別。該記憶體位置YX8T基於一記憶體位址AX8T而被識別。該記憶體位址AM8T和該記憶體位址AX8T皆基於所預設的該測量值目標範圍碼EM1T而被預設。 In some embodiments, the control target device 130 further includes a storage unit 332 coupled to the operation unit 397. The storage unit 332 has a memory location YM8T and a memory location YX8T different from the memory location YM8T. For example, the memory location YM8T is identified based on a memory address AM8T. The memory location YX8T is identified based on a memory address AX8T. The memory address AM8T and the memory address AX8T are preset based on the preset measurement value target range code EM1T.

在該觸發事件EQ81發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元270獲得一輸入資料DJ81,對於該輸入資料DJ81執行一資料編碼操作EJ81以確定所預設的該目標範圍界限值對DN1T,被配置以獲得所預設的該測量值目標範圍碼EM1T,並基於所獲得的該測量值目標範圍碼EM1T來取得該記憶體位址AM8T。例如,在該觸發事件EQ81發生之前,該輸入單元270接收用於操作該使用者介面區AP11的一使用者輸入操作JV81,並響應該使用者輸入操作JV81來提供該輸入資料DJ81到該處理單元230。 Before the trigger event EQ81 occurs, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ81 from the input unit 270, and performs a data encoding operation EJ81 on the input data DJ81 to determine the preset target The range limit value pair DN1T is configured to obtain the preset measurement value target range code EM1T, and the memory address AM8T is obtained based on the obtained measurement value target range code EM1T. For example, before the trigger event EQ81 occurs, the input unit 270 receives a user input operation JV81 for operating the user interface area AP11, and responds to the user input operation JV81 to provide the input data DJ81 to the processing unit 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該目標範圍界限值對DN1T和所取得的該 記憶體位址AM8T來導致該輸出單元240提供一寫入請求訊息WN8T到該操作單元397。該寫入請求訊息WN8T包含所確定的該目標範圍界限值對DN1T和所取得的該記憶體位址AM8T。該操作單元397響應該寫入請求訊息WN8T來導致該儲存單元332在該記憶體位置YM8T儲存該目標範圍界限值對DN1T。 Before the trigger event EQ81 occurs, the processing unit 230 pairs DN1T and the obtained target range threshold value based on the determined target range limit value. The memory address AM8T causes the output unit 240 to provide a write request message WN8T to the operating unit 397. The write request message WN8T includes the determined target range limit value pair DN1T and the acquired memory address AM8T. The operating unit 397 responds to the write request message WN8T to cause the storage unit 332 to store the target range limit value pair DN1T in the memory location YM8T.

在一些實施例中,在該觸發事件EQ81發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元270獲得一輸入資料DJ82,對於該輸入資料DJ82執行一資料編碼操作EJ82以確定所預設的該控制碼CC1T,並基於所獲得的該測量值目標範圍碼EM1T來取得該記憶體位址AX8T。例如,在該觸發事件EQ81發生之前,該輸入單元270接收用於操作該使用者介面區AP11的一使用者輸入操作JV82,並響應該使用者輸入操作JV82來提供該輸入資料DJ82到該處理單元230。 In some embodiments, before the trigger event EQ81 occurs, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ82 from the input unit 270, and performs a data encoding operation EJ82 on the input data DJ82 to determine The preset control code CC1T is used to obtain the memory address AX8T based on the obtained measurement value target range code EM1T. For example, before the trigger event EQ81 occurs, the input unit 270 receives a user input operation JV82 for operating the user interface area AP11, and responds to the user input operation JV82 to provide the input data DJ82 to the processing unit 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該控制碼CC1T和所取得的該記憶體位址AX8T來導致該輸出單元240提供該第二寫入請求訊息WC8T到該操作單元397。該第二寫入請求訊息WC8T包含所確定的該控制碼CC1T和所取得的該記憶體位址AX8T。該操作單元397響應該寫入請求訊息WC8T來導致該儲存單元332在該記憶體位置YX8T儲存該控制碼CC1T。 Before the trigger event EQ81 occurs, the processing unit 230 causes the output unit 240 to provide the second write request message WC8T to the operating unit 397 based on the determined control code CC1T and the acquired memory address AX8T. The second write request message WC8T includes the determined control code CC1T and the acquired memory address AX8T. The operating unit 397 responds to the write request message WC8T to cause the storage unit 332 to store the control code CC1T in the memory location YX8T.

該儲存單元332進一步具有一記憶體位置YN81。例如,該記憶體位置YN81基於一記憶體位址AN81而被識別。該記憶體位址AN81被預設。在該觸發事件EQ81 發生之前,該處理單元230依靠該使用者介面區AP11來從該輸入單元270獲得一輸入資料DJ83,對於該輸入資料DJ83執行一資料編碼操作EJ83以確定所預設的該額定範圍界限值對DD1A,並被配置以取得所預設的該記憶體位址AN81。例如,在該觸發事件EQ81發生之前,該輸入單元270接收用於操作該使用者介面區AP11的一使用者輸入操作JV83,並響應該使用者輸入操作JV83來提供該輸入資料DJ83到該處理單元230。 The storage unit 332 further has a memory location YN81. For example, the memory location YN81 is identified based on a memory address AN81. The memory address AN81 is preset. In the trigger event EQ81 Before this happens, the processing unit 230 relies on the user interface area AP11 to obtain an input data DJ83 from the input unit 270, and performs a data encoding operation EJ83 on the input data DJ83 to determine the preset threshold value pair DD1A of the rated range. , And is configured to obtain the preset memory address AN81. For example, before the trigger event EQ81 occurs, the input unit 270 receives a user input operation JV83 for operating the user interface area AP11, and responds to the user input operation JV83 to provide the input data DJ83 to the processing unit 230.

在該觸發事件EQ81發生之前,該處理單元230基於所確定的該額定範圍界限值對DD1A和所取得的該記憶體位址AN81來導致該輸出單元240提供該寫入請求訊息WD81到該操作單元397。該寫入請求訊息WD81包含所確定的該額定範圍界限值對DD1A和所取得的該記憶體位址AN81。該操作單元397響應該寫入請求訊息WD81來導致該儲存單元332在該記憶體位置YN81儲存該額定範圍界限值對DD1A。 Before the trigger event EQ81 occurs, the processing unit 230 causes the output unit 240 to provide the write request message WD81 to the operating unit 397 based on the determined nominal range limit value pair DD1A and the acquired memory address AN81 . The write request message WD81 includes the determined limit value pair DD1A of the rated range and the acquired memory address AN81. The operating unit 397 responds to the write request message WD81 to cause the storage unit 332 to store the rated range limit value pair DD1A in the memory location YN81.

請參閱第39圖、第40圖、第41圖和第42圖。第39圖為繪示於第1圖中的該控制系統901的一實施結構9048的示意圖。第40圖為繪示於第1圖中的該控制系統901的一實施結構9049的示意圖。第41圖為繪示於第1圖中的該控制系統901的一實施結構9050的示意圖。第42圖為繪示於第1圖中的該控制系統901的一實施結構9051的示意圖。如第39圖、第40圖、第41圖和第42圖所示,該實施結構9048、該實施結構9049、該實施結構9050和該實施結構9051的每一結構包含該控制裝置212、該控 制目標裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該控制目標裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該輸入單元270和該輸出單元240。該處理單元230耦合於該伺服器280。 Please refer to Figure 39, Figure 40, Figure 41 and Figure 42. FIG. 39 is a schematic diagram of an implementation structure 9048 of the control system 901 shown in FIG. 1. FIG. 40 is a schematic diagram of an implementation structure 9049 of the control system 901 shown in FIG. 1. FIG. 41 is a schematic diagram of an implementation structure 9050 of the control system 901 shown in FIG. 1. FIG. 42 is a schematic diagram of an implementation structure 9051 of the control system 901 shown in FIG. 1. As shown in Figures 39, 40, 41, and 42, each of the implementation structure 9048, the implementation structure 9049, the implementation structure 9050, and the implementation structure 9051 includes the control device 212, the control The target device 130 and the server 280 are controlled. The control device 212 is linked to the server 280. The control device 212 is configured to control the variable physical parameter QU1A existing in the control target device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260. The operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240. The processing unit 230 is coupled to the server 280.

在一些實施例中,該控制目標裝置130包含該操作單元397、該功能目標335、該感測單元334、一功能目標735和一多工器363。該操作單元397具有一輸出端338P和一輸出端338Q。該輸出端338P和該輸出端338Q分別位於不同空間位置。該功能目標335、該感測單元334、該功能目標735和該多工器363皆耦合於該操作單元397。該輸出端338P耦合於該功能目標335。該功能目標735包含一物理參數形成區AU21,並耦合於該輸出端338Q。該物理參數形成區AU21具有一可變物理參數QU2A。例如,該功能目標735是一物理可實現功能目標,並具有相似於該功能目標335的一功能結構。 In some embodiments, the control target device 130 includes the operation unit 397, the function target 335, the sensing unit 334, a function target 735, and a multiplexer 363. The operating unit 397 has an output terminal 338P and an output terminal 338Q. The output terminal 338P and the output terminal 338Q are respectively located at different spatial positions. The function target 335, the sensing unit 334, the function target 735, and the multiplexer 363 are all coupled to the operation unit 397. The output terminal 338P is coupled to the functional target 335. The function object 735 includes a physical parameter formation area AU21 and is coupled to the output terminal 338Q. The physical parameter formation area AU21 has a variable physical parameter QU2A. For example, the functional object 735 is a physically achievable functional object and has a functional structure similar to the functional object 335.

該感測單元334用於通過該多工器363而感測複數實際物理參數的其中之一。該複數實際物理參數包含該可變物理參數QU1A和該可變物理參數QU2A。該控制裝置212用於控制該可變物理參數QU2A。該多工器363具有一輸入端3631、一輸入端3632、一控制端363C和一輸出端363P。 The sensing unit 334 is used for sensing one of a plurality of actual physical parameters through the multiplexer 363. The plural actual physical parameters include the variable physical parameter QU1A and the variable physical parameter QU2A. The control device 212 is used to control the variable physical parameter QU2A. The multiplexer 363 has an input terminal 3631, an input terminal 3632, a control terminal 363C, and an output terminal 363P.

該控制端363C耦合於該操作單元397。該輸入端3631耦合於該物理參數形成區AU11。該輸入端3632 耦合於該物理參數形成區AU21。該輸出端363P耦合於該感測單元334。例如,該可變物理參數QU1A和該可變物理參數QU2A分別是一第五可變電性參數和一第六可變電性參數。例如,該第五可變電性參數和該第六可變電性參數分別是一第五可變電壓和一第六可變電壓。該輸入端3631和該輸出端363P之間具有一第一功能關係。該第一功能關係等於一第一導通關係和一第一關斷關係的其中之一。 The control terminal 363C is coupled to the operating unit 397. The input terminal 3631 is coupled to the physical parameter formation area AU11. The input 3632 Coupled to the physical parameter formation area AU21. The output terminal 363P is coupled to the sensing unit 334. For example, the variable physical parameter QU1A and the variable physical parameter QU2A are a fifth variable electrical parameter and a sixth variable electrical parameter, respectively. For example, the fifth variable electrical parameter and the sixth variable electrical parameter are a fifth variable voltage and a sixth variable voltage, respectively. There is a first functional relationship between the input terminal 3631 and the output terminal 363P. The first functional relationship is equal to one of a first on relationship and a first off relationship.

該輸入端3632和該輸出端363P之間具有一第二功能關係。該第二功能關係等於一第二導通關係和一第二關斷關係的其中之一。在該第一功能關係等於該第一導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3631來感測該可變物理參數QU1A,並通過該輸出端363P和該輸入端3631而耦合於該物理參數形成區AU11。在該第二功能關係等於該第二導通關係的條件下,該感測單元334用於通過該輸出端363P和該輸入端3632來感測該可變物理參數QU2A,並通過該輸出端363P和該輸入端3632而耦合於該物理參數形成區AU21。例如,該多工器363受該操作單元397控制,並是一類比多工器。 There is a second functional relationship between the input terminal 3632 and the output terminal 363P. The second functional relationship is equal to one of a second on-state relationship and a second off-state relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU1A through the output terminal 363P and the input terminal 3631, and through the output terminal 363P and The input terminal 3631 is coupled to the physical parameter formation area AU11. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 is used to sense the variable physical parameter QU2A through the output terminal 363P and the input terminal 3632, and through the output terminal 363P and The input terminal 3632 is coupled to the physical parameter formation area AU21. For example, the multiplexer 363 is controlled by the operating unit 397 and is an analog multiplexer.

在一些實施例中,該控制裝置212和該應用環境EX81的其中之一具有一物理參數形成區AT21。該物理參數形成區AT21具有一可變物理參數QP2A。該控制裝置212進一步包含耦合於該處理單元230的一多工器263。該多工器263具有一輸入端2631、一輸入端2632、一控制端263C和一輸出端263P。該控制端263C耦合於該處理單元230。 In some embodiments, one of the control device 212 and the application environment EX81 has a physical parameter formation area AT21. The physical parameter formation area AT21 has a variable physical parameter QP2A. The control device 212 further includes a multiplexer 263 coupled to the processing unit 230. The multiplexer 263 has an input terminal 2631, an input terminal 2632, a control terminal 263C, and an output terminal 263P. The control terminal 263C is coupled to the processing unit 230.

該輸入端2631耦合於該物理參數形成區AT11。該輸入端2632耦合於該物理參數形成區AT21。該輸出端263P耦合於該感測單元260。例如,該可變物理參數QP1A和該可變物理參數QP2A分別是一第七可變電性參數和一第八可變電性參數。例如,該第七可變電性參數和該第八可變電性參數分別是一第七可變電壓和一第八可變電壓。該輸入端2631和該輸出端263P之間具有一第三功能關係。該第三功能關係等於一第三導通關係和一第三關斷關係的其中之一。 The input terminal 2631 is coupled to the physical parameter formation area AT11. The input terminal 2632 is coupled to the physical parameter formation area AT21. The output terminal 263P is coupled to the sensing unit 260. For example, the variable physical parameter QP1A and the variable physical parameter QP2A are a seventh variable electrical parameter and an eighth variable electrical parameter, respectively. For example, the seventh variable electrical parameter and the eighth variable electrical parameter are a seventh variable voltage and an eighth variable voltage, respectively. There is a third functional relationship between the input terminal 2631 and the output terminal 263P. The third functional relationship is equal to one of a third on relationship and a third off relationship.

該輸入端2632和該輸出端263P之間具有一第四功能關係。該第四功能關係等於一第四導通關係和一第四關斷關係的其中之一。在該第三功能關係等於該第三導通關係的條件下,該感測單元260用於通過該輸出端263P和該輸入端2631來感測該可變物理參數QP1A,並通過該輸出端263P和該輸入端2631而耦合於該物理參數形成區AT11。在該第四功能關係等於該第四導通關係的條件下,該感測單元260用於通過該輸出端263P和該輸入端2632來感測該可變物理參數QP2A,並通過該輸出端263P和該輸入端2632而耦合於該物理參數形成區AT21。例如,該多工器263受該處理單元230控制,並是一類比多工器。 There is a fourth functional relationship between the input terminal 2632 and the output terminal 263P. The fourth functional relationship is equal to one of a fourth on relationship and a fourth off relationship. Under the condition that the third functional relationship is equal to the third conduction relationship, the sensing unit 260 is configured to sense the variable physical parameter QP1A through the output terminal 263P and the input terminal 2631, and through the output terminal 263P and The input terminal 2631 is coupled to the physical parameter formation area AT11. Under the condition that the fourth functional relationship is equal to the fourth conduction relationship, the sensing unit 260 is used to sense the variable physical parameter QP2A through the output terminal 263P and the input terminal 2632, and through the output terminal 263P and The input terminal 2632 is coupled to the physical parameter formation area AT21. For example, the multiplexer 263 is controlled by the processing unit 230 and is an analog multiplexer.

在一些實施例中,該功能目標335由一功能目標識別符HA2T所識別。該功能目標735由一功能目標識別符HA22所識別。該功能目標335和該功能目標735分別位於不同空間位置,並皆耦合於該操作單元397。該功能目標識別符HA2T和該功能目標識別符HA22皆基於該觸 發應用功能規格GBL8而被預設。為了控制該功能目標335,該控制訊號SC81進一步輸送該功能目標識別符HA2T。該操作單元397從該控制裝置212接收該控制訊號SC81。該操作單元397響應該控制訊號SC81來選擇該功能目標335以進行控制。例如,該功能目標識別符HA2T被配置以指示該輸出端338P,並是一第一功能目標號碼。該功能目標識別符HA22被配置以指示該輸出端338Q,並是一第二功能目標號碼。 In some embodiments, the functional target 335 is identified by a functional target identifier HA2T. The functional object 735 is identified by a functional object identifier HA22. The function target 335 and the function target 735 are respectively located in different spatial positions, and both are coupled to the operation unit 397. Both the functional object identifier HA2T and the functional object identifier HA22 are based on the touch The application function specification GBL8 is preset. In order to control the functional object 335, the control signal SC81 further transmits the functional object identifier HA2T. The operating unit 397 receives the control signal SC81 from the control device 212. The operating unit 397 responds to the control signal SC81 to select the function target 335 for control. For example, the functional target identifier HA2T is configured to indicate the output terminal 338P and is a first functional target number. The functional target identifier HA22 is configured to indicate the output terminal 338Q, and is a second functional target number.

該控制裝置212進一步包含耦合於該處理單元230的一電使用目標285、和耦合於該處理單元230的一電使用目標286。該電使用目標285由一電使用目標識別符HZ2T所識別。該電使用目標286由一電使用目標識別符HZ22所識別。該電使用目標識別符HZ2T和該電使用目標識別符HZ22皆基於該觸發應用功能規格GBL8而被預設。在該觸發事件EQ81依靠該電使用目標285而發生的條件下,該處理單元230響應該觸發事件EQ81來選擇該功能目標335以進行控制。在該觸發事件EQ81依靠該電使用目標286而發生的條件下,該處理單元230響應該觸發事件EQ81來選擇該功能目標735以進行控制。 The control device 212 further includes an electricity usage target 285 coupled to the processing unit 230 and an electricity usage target 286 coupled to the processing unit 230. The power usage target 285 is identified by a power usage target identifier HZ2T. The power usage target 286 is identified by a power usage target identifier HZ22. The power usage target identifier HZ2T and the power usage target identifier HZ22 are both preset based on the trigger application function specification GBL8. Under the condition that the trigger event EQ81 relies on the power usage target 285 to occur, the processing unit 230 responds to the trigger event EQ81 to select the function target 335 for control. Under the condition that the trigger event EQ81 occurs depending on the power usage target 286, the processing unit 230 responds to the trigger event EQ81 to select the function target 735 for control.

在一些實施例中,該儲存單元250具有一記憶體位置XC9T和一記憶體位置XC92,在該記憶體位置XC9T儲存該功能目標識別符HA2T,並在該記憶體位置XC92儲存該功能目標識別符HA22。該記憶體位置XC9T由一記憶體位址EC9T所識別,或基於該記憶體位址EC9T而被識別。該記憶體位址EC9T基於該電使用目標識別符 HZ2T而被預設;藉此,該電使用目標285相關於該功能目標識別符HA2T。例如,該電使用目標識別符HZ2T和該功能目標識別符HA2T之間具有一數學關係KK91;藉此,該電使用目標285相關於該功能目標識別符HA2T。 In some embodiments, the storage unit 250 has a memory location XC9T and a memory location XC92, the functional target identifier HA2T is stored in the memory location XC9T, and the functional target identifier is stored in the memory location XC92 HA22. The memory location XC9T is identified by a memory address EC9T, or is identified based on the memory address EC9T. The memory address EC9T is based on the power target identifier HZ2T is preset; thereby, the power usage target 285 is related to the functional target identifier HA2T. For example, there is a mathematical relationship KK91 between the power usage target identifier HZ2T and the function target identifier HA2T; thereby, the power usage target 285 is related to the function target identifier HA2T.

該記憶體位置XC92由一記憶體位址EC92所識別,或基於該記憶體位址EC92而被識別。該記憶體位址EC92基於該電使用目標識別符HZ22而被預設;藉此,該電使用目標286相關於該功能目標識別符HA22。例如,該電使用目標識別符HZ22和該功能目標識別符HA22之間具有一數學關係KK92;藉此,該電使用目標286相關於該功能目標識別符HA22。 The memory location XC92 is identified by a memory address EC92, or is identified based on the memory address EC92. The memory address EC92 is preset based on the power usage target identifier HZ22; thereby, the power usage target 286 is related to the function target identifier HA22. For example, there is a mathematical relationship KK92 between the power usage target identifier HZ22 and the function target identifier HA22; thereby, the power usage target 286 is related to the function target identifier HA22.

在一些實施例中,該觸發事件EQ81依靠該電使用目標285而發生,並導致該處理單元230接收一操作請求訊號SZ91。在該觸發事件EQ81依靠該電使用目標285而發生的條件下,該處理單元230響應該操作請求訊號SZ91來獲得該測量值VM81和該電使用目標識別符HZ2T,並基於所獲得的該電使用目標識別符HZ2T來獲得該功能目標識別符HA2T。該處理單元230基於所獲得的該功能目標識別符HA2T來導致該輸出單元240向該操作單元397傳輸該控制訊號SC81、該控制訊號SC82和該控制訊號SC83的至少其中之一。 In some embodiments, the trigger event EQ81 occurs depending on the power usage target 285 and causes the processing unit 230 to receive an operation request signal SZ91. Under the condition that the trigger event EQ81 relies on the electricity usage target 285 to occur, the processing unit 230 responds to the operation request signal SZ91 to obtain the measured value VM81 and the electricity usage target identifier HZ2T, and based on the obtained electricity usage target identifier HZ2T The target identifier HZ2T is used to obtain the functional target identifier HA2T. The processing unit 230 causes the output unit 240 to transmit at least one of the control signal SC81, the control signal SC82, and the control signal SC83 to the operating unit 397 based on the obtained functional target identifier HA2T.

例如,該觸發事件EQ81是該輸入單元270接收一使用者輸入操作JU91的一使用者輸入事件。該輸入單元270響應是該使用者輸入事件的該觸發事件EQ81來提供該操作請求訊號SZ91到該處理單元230。在該觸發事件 EQ81依靠該電使用目標285而發生的條件下,該輸入單元270依靠該電使用目標285來提供該操作請求訊號SZ91到該處理單元230。該處理單元230響應該操作請求訊號SZ91來提供一控制訊號SV81到該控制端263C。例如,該控制訊號SV81是一選擇控制訊號,並起到指示該輸入端2631的作用。該多工器263響應該控制訊號SV81來導致該輸入端2631和該輸出端263P之間的該第三功能關係等於該第三導通關係。 For example, the trigger event EQ81 is a user input event in which the input unit 270 receives a user input operation JU91. The input unit 270 responds to the trigger event EQ81 which is the user input event to provide the operation request signal SZ91 to the processing unit 230. At the trigger event Under the condition that the EQ81 relies on the power usage target 285, the input unit 270 relies on the power usage target 285 to provide the operation request signal SZ91 to the processing unit 230. The processing unit 230 responds to the operation request signal SZ91 to provide a control signal SV81 to the control terminal 263C. For example, the control signal SV81 is a selection control signal and functions as an instruction to the input terminal 2631. The multiplexer 263 responds to the control signal SV81 to cause the third functional relationship between the input terminal 2631 and the output terminal 263P to be equal to the third conduction relationship.

在該第三功能關係等於該第三導通關係的條件下,該感測單元260感測該可變物理參數QP1A以產生該感測訊號SM81。該處理單元230從該感測單元260接收該感測訊號SM81,並基於所接收的該感測訊號SM81來以該指定測量值格式HQ81獲得該測量值VM81。例如,該電使用目標285和該電使用目標286被配置以分別對應於該功能目標335和該功能目標735,皆耦合於該處理單元230,並分別位於不同空間位置。 Under the condition that the third functional relationship is equal to the third conduction relationship, the sensing unit 260 senses the variable physical parameter QP1A to generate the sensing signal SM81. The processing unit 230 receives the sensing signal SM81 from the sensing unit 260, and obtains the measurement value VM81 in the designated measurement value format HQ81 based on the received sensing signal SM81. For example, the power usage target 285 and the power usage target 286 are configured to correspond to the function target 335 and the function target 735, respectively, are coupled to the processing unit 230 and are located at different spatial positions.

在一些實施例中,該輸入單元270接收用於選擇該電使用目標285的該使用者輸入操作JU91以導致該觸發事件EQ81發生。該輸入單元270響應該使用者輸入操作JU91來產生該操作請求訊號SZ91。該處理單元230接收該操作請求訊號SZ91,響應該操作請求訊號SZ91來使用該感測訊號SM81以獲得該測量值VM81,並響應該操作請求訊號SZ91來執行一資料獲取AF9C以獲得該電使用目標識別符HZ2T。例如,該儲存單元250包含該儲存空間SS11。該儲存空間SS11具有所預設的該額定範圍界限值對 DC1A、該可變物理參數範圍碼UM8A、該電使用目標識別符HZ2T、該電使用目標識別符HZ22、該功能目標識別符HA2T、該相對值VK81和該相對值VK82。 In some embodiments, the input unit 270 receives the user input operation JU91 for selecting the power usage target 285 to cause the trigger event EQ81 to occur. The input unit 270 generates the operation request signal SZ91 in response to the user input operation JU91. The processing unit 230 receives the operation request signal SZ91, uses the sensing signal SM81 to obtain the measured value VM81 in response to the operation request signal SZ91, and executes a data acquisition AF9C in response to the operation request signal SZ91 to obtain the power usage target Identifier HZ2T. For example, the storage unit 250 includes the storage space SS11. The storage space SS11 has the preset limit value pair of the rated range DC1A, the variable physical parameter range code UM8A, the power use target identifier HZ2T, the power use target identifier HZ22, the function target identifier HA2T, the relative value VK81, and the relative value VK82.

在一些實施例中,該處理單元230被配置以基於所獲得的該電使用目標識別符HZ2T來獲得該記憶體位址EC9T,並基於所獲得的該記憶體位址EC9T來存取被儲存在該記憶體位置XC9T的該功能目標識別符HA2T以獲得該功能目標識別符HA2T。在該處理單元230藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所獲得的該功能目標識別符HA2T和所存取的該控制資料碼CK8T來執行該訊號產生控制GS81以導致該輸出單元240產生該控制訊號SC81,並導致該輸出單元240向該操作單元397傳輸該控制訊號SC81。 In some embodiments, the processing unit 230 is configured to obtain the memory address EC9T based on the obtained power use target identifier HZ2T, and access the memory address EC9T based on the obtained memory address EC9T to access the memory address stored in the memory. The functional object identifier HA2T of the body position XC9T is obtained to obtain the functional object identifier HA2T. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the processing unit 230 executes the signal generation control GS81 based on the obtained function target identifier HA2T and the accessed control data code CK8T to cause the output unit 240 to generate the control signal SC81, and cause the output unit 240 to send the control signal SC81 to the operating unit 397 transmits the control signal SC81.

例如,該控制訊號SC81輸送該功能目標識別符HA2T。例如,該控制訊號SC81輸送該功能目標識別符HA2T和該測量值目標範圍碼EM1T。該操作單元397響應該控制訊號SC81來從該控制訊號SC81獲得該測量值目標範圍碼EM1T和該功能目標識別符HA2T。在一第三特定情況中,該操作單元397基於所獲得的該測量值目標範圍碼EM1T和所獲得的該功能目標識別符HA2T來執行使用該輸出端338P的該訊號產生操作BY81以向該功能目標335傳輸一功能訊號SG81。該功能目標335響應該功能訊號SG81來導致該可變物理參數QU1A處於該物理參數目標 範圍RD1ET。 For example, the control signal SC81 conveys the functional target identifier HA2T. For example, the control signal SC81 transmits the functional target identifier HA2T and the measured value target range code EM1T. The operating unit 397 responds to the control signal SC81 to obtain the measured value target range code EM1T and the functional target identifier HA2T from the control signal SC81. In a third specific case, the operation unit 397 executes the signal generation operation BY81 using the output terminal 338P based on the obtained measurement value target range code EM1T and the obtained function target identifier HA2T to transfer the function The target 335 transmits a function signal SG81. The function target 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to be in the physical parameter target Range RD1ET.

在一些實施例中,在該控制訊號SC81輸送該功能目標識別符HA2T和該測量值目標範圍碼EM1T的條件下,該操作單元397響應該控制訊號SC81來從該控制訊號SC81獲得該功能目標識別符HA2T和該測量值目標範圍碼EM1T,並基於所獲得的該功能目標識別符HA2T來提供一控制訊號SD81到該控制端363C。例如,該控制訊號SD81是一選擇控制訊號,並起到指示該輸入端3631的作用。該多工器363響應該控制訊號SD81來導致該輸入端3631和該輸出端363P之間的該第一功能關係等於該第一導通關係。在該第一功能關係等於該第一導通關係的條件下,該感測單元334感測該可變物理參數QU1A以產生一感測訊號SN81。 In some embodiments, under the condition that the control signal SC81 transmits the functional target identifier HA2T and the measured value target range code EM1T, the operating unit 397 responds to the control signal SC81 to obtain the functional target identification from the control signal SC81 Based on the obtained functional target identifier HA2T, a control signal SD81 is provided to the control terminal 363C. For example, the control signal SD81 is a selection control signal and functions as an instruction to the input terminal 3631. The multiplexer 363 responds to the control signal SD81 to cause the first functional relationship between the input terminal 3631 and the output terminal 363P to be equal to the first conduction relationship. Under the condition that the first functional relationship is equal to the first conduction relationship, the sensing unit 334 senses the variable physical parameter QU1A to generate a sensing signal SN81.

該操作單元397從該感測單元334接收該感測訊號SN81,並基於所接收的該感測訊號SN81來獲得一測量值VN81。在該第三特定情況中,該操作單元397基於所獲得的該測量值VN81、所獲得的該測量值目標範圍碼EM1T和所獲得的該功能目標識別符HA2T來執行使用該輸出端338P的該訊號產生操作BY81以向該功能目標335傳輸該功能訊號SG81。 The operating unit 397 receives the sensing signal SN81 from the sensing unit 334, and obtains a measurement value VN81 based on the received sensing signal SN81. In the third specific case, the operation unit 397 executes the operation using the output terminal 338P based on the obtained measurement value VN81, the obtained measurement value target range code EM1T, and the obtained function target identifier HA2T. The signal generation operation BY81 transmits the function signal SG81 to the function target 335.

在一些實施例中,該儲存空間SS11進一步具有一記憶體位置PF9T。該儲存單元250在該記憶體位置PF9T儲存所預設的該電使用目標識別符HZ2T。該記憶體位置PF9T由一記憶體位址FF9T所識別,或基於該記憶體位址FF9T而被識別。該記憶體位址FF9T被預設。該電使 用目標285通過該處理單元230而耦合於該記憶體位置PF9T。例如,該操作請求訊號SZ91輸送一輸入資料DJ91。 In some embodiments, the storage space SS11 further has a memory location PF9T. The storage unit 250 stores the preset power usage target identifier HZ2T in the memory location PF9T. The memory location PF9T is identified by a memory address FF9T, or is identified based on the memory address FF9T. The memory address FF9T is preset. The electrician The target 285 is coupled to the memory location PF9T through the processing unit 230. For example, the operation request signal SZ91 sends an input data DJ91.

該資料獲取AF9C是一資料獲取操作AF95和一資料獲取操作AF96的其中之一。該資料獲取操作AF95藉由使用所預設的該記憶體位址PF2T來存取被儲存在該記憶體位置PF9T的該電使用目標識別符HZ2T以獲得所預設的該電使用目標識別符HZ2T。該資料獲取操作AF96基於一預設資料導出規則YU91來處理該輸入資料DJ91以獲得所預設的該電使用目標識別符HZ2T。 The data acquisition AF9C is one of a data acquisition operation AF95 and a data acquisition operation AF96. The data acquisition operation AF95 uses the preset memory address PF2T to access the power use target identifier HZ2T stored in the memory location PF9T to obtain the preset power use target identifier HZ2T. The data acquisition operation AF96 processes the input data DJ91 based on a preset data derivation rule YU91 to obtain the preset power usage target identifier HZ2T.

在一些實施例中,在該輸入單元270接收用於選擇該電使用目標286的一使用者輸入操作JU92的一觸發事件發生的條件下,該輸入單元270導致該處理單元230接收一操作請求訊號SZ92。該處理單元230響應該操作請求訊號SZ92來獲得一測量值VM91和該電使用目標識別符HZ22,並基於所獲得的該電使用目標識別符HZ22來獲得該功能目標識別符HA22。該處理單元230基於所獲得的該測量值VM91和所獲得的該功能目標識別符HA22來導致該輸出單元240向該操作單元397傳輸一控制訊號SC97。該控制訊號SC97用於控制該可變物理參數QU2A,並輸送該功能目標識別符HA22。 In some embodiments, the input unit 270 causes the processing unit 230 to receive an operation request signal under the condition that a trigger event occurs when the input unit 270 receives a user input for selecting the power usage target 286 to operate the JU92. SZ92. In response to the operation request signal SZ92, the processing unit 230 obtains a measured value VM91 and the electric use target identifier HZ22, and obtains the functional target identifier HA22 based on the obtained electric use target identifier HZ22. The processing unit 230 causes the output unit 240 to transmit a control signal SC97 to the operation unit 397 based on the obtained measurement value VM91 and the obtained function target identifier HA22. The control signal SC97 is used to control the variable physical parameter QU2A and transmit the functional target identifier HA22.

例如,該處理單元230響應該操作請求訊號SZ92來提供一控制訊號SV82到該控制端263C。例如,該控制訊號SV82是一選擇控制訊號,起到指示該輸入端2632的作用,並不同於該控制訊號SV81。該多工器263響應該控制訊號SV82來導致該輸入端2632和該輸出端263P之間 的該第四功能關係等於該第四導通關係。在該第四功能關係等於該第四導通關係的條件下,該感測單元260感測該可變物理參數QP2A以產生一感測訊號SM91。該處理單元230從該感測單元260接收該感測訊號SM91,並基於所接收的該感測訊號SM91來獲得該測量值VM91。 For example, the processing unit 230 responds to the operation request signal SZ92 to provide a control signal SV82 to the control terminal 263C. For example, the control signal SV82 is a selection control signal, which functions as an instruction to the input terminal 2632, and is different from the control signal SV81. The multiplexer 263 responds to the control signal SV82 to cause a gap between the input terminal 2632 and the output terminal 263P The fourth functional relationship of is equal to the fourth conduction relationship. Under the condition that the fourth functional relationship is equal to the fourth conduction relationship, the sensing unit 260 senses the variable physical parameter QP2A to generate a sensing signal SM91. The processing unit 230 receives the sensing signal SM91 from the sensing unit 260, and obtains the measurement value VM91 based on the received sensing signal SM91.

在一些實施例中,該操作單元397響應該控制訊號SC97來從該控制訊號SC97獲得該功能目標識別符HA22,並基於所獲得的該功能目標識別符HA22來提供一控制訊號SD82到該控制端363C。例如,該控制訊號SD82是一選擇控制訊號,並起到指示該輸入端3632的作用。該多工器363響應該控制訊號SD82來導致該輸入端3632和該輸出端363P之間的該第二功能關係等於該第二導通關係。在該第二功能關係等於該第二導通關係的條件下,該感測單元334感測該可變物理參數QU2A以產生一感測訊號SN91。 In some embodiments, the operating unit 397 obtains the functional object identifier HA22 from the control signal SC97 in response to the control signal SC97, and provides a control signal SD82 to the control terminal based on the obtained functional object identifier HA22 363C. For example, the control signal SD82 is a selection control signal and functions as an instruction to the input terminal 3632. The multiplexer 363 responds to the control signal SD82 to cause the second functional relationship between the input terminal 3632 and the output terminal 363P to be equal to the second conduction relationship. Under the condition that the second functional relationship is equal to the second conduction relationship, the sensing unit 334 senses the variable physical parameter QU2A to generate a sensing signal SN91.

該操作單元397從該感測單元334接收該感測訊號SN91,並基於所接收的該感測訊號SN91來獲得一測量值VN91。該操作單元397基於所獲得的該測量值VN91和所獲得的該功能目標識別符HA22來執行使用該輸出端338Q的一訊號產生操作BY97以向該功能目標735傳輸一功能訊號SG97。該功能訊號SG97用於控制該可變物理參數QU2A。 The operating unit 397 receives the sensing signal SN91 from the sensing unit 334, and obtains a measurement value VN91 based on the received sensing signal SN91. The operating unit 397 executes a signal generation operation BY97 using the output terminal 338Q based on the obtained measured value VN91 and the obtained functional object identifier HA22 to transmit a functional signal SG97 to the functional object 735. The function signal SG97 is used to control the variable physical parameter QU2A.

在一些實施例中,該使用者介面區AP21具有該電使用目標285和該電使用目標286。該使用者輸入操作JU91由該使用者295所執行。該電使用目標285是一第 三感測目標和一第三顯示目標的其中之一。在該電使用目標285是該第三感測目標的條件下,該輸入組件440包含該電使用目標285。在該電使用目標285是該第三顯示目標的條件下,該顯示組件460包含該電使用目標285。例如,該第三感測目標是一第三按鈕目標。該第三顯示目標是一第三圖符目標。 In some embodiments, the user interface area AP21 has the power usage target 285 and the power usage target 286. The user input operation JU91 is executed by the user 295. The electricity use target 285 is the first One of three sensing targets and a third display target. Under the condition that the electricity usage target 285 is the third sensing target, the input component 440 includes the electricity usage target 285. Under the condition that the power usage target 285 is the third display target, the display component 460 includes the power usage target 285. For example, the third sensing target is a third button target. The third display target is a third icon target.

該電使用目標286是一第四感測目標和一第四顯示目標的其中之一。在該電使用目標286是該第四感測目標的條件下,該輸入組件440包含該電使用目標286。在該電使用目標286是該第四顯示目標的條件下,該顯示組件460包含該電使用目標286。例如,該第四感測目標是一第四按鈕目標。該第三顯示目標是一第四圖符目標。 The power usage target 286 is one of a fourth sensing target and a fourth display target. Under the condition that the electricity usage target 286 is the fourth sensing target, the input component 440 includes the electricity usage target 286. Under the condition that the power usage target 286 is the fourth display target, the display component 460 includes the power usage target 286. For example, the fourth sensing target is a fourth button target. The third display object is a fourth icon object.

例如,在該電使用目標285被配置以存在於該輸入組件440的條件下,該電使用目標285接收該使用者輸入操作JU91來導致該輸入組件440提供該操作請求訊號SZ91到該處理單元230。在該電使用目標285被配置以存在於該顯示組件460的條件下,該指向裝置441接收用於選擇該電使用目標285的該使用者輸入操作JU91來導致該指向裝置441提供該操作請求訊號SZ91到該處理單元230。例如,該使用者輸入操作JU91被配置以依靠該指向裝置441和該選擇工具YJ81來選擇該電使用目標285。例如,該選擇工具YJ81是一游標。 For example, under the condition that the power usage target 285 is configured to exist in the input component 440, the power usage target 285 receives the user input operation JU91 to cause the input component 440 to provide the operation request signal SZ91 to the processing unit 230 . Under the condition that the power usage target 285 is configured to exist in the display assembly 460, the pointing device 441 receives the user input operation JU91 for selecting the power usage target 285 to cause the pointing device 441 to provide the operation request signal SZ91 to the processing unit 230. For example, the user input operation JU91 is configured to rely on the pointing device 441 and the selection tool YJ81 to select the power usage target 285. For example, the selection tool YJ81 is a cursor.

在一些實施例中,所預設的該額定範圍界限值對DC1A、該可變物理參數範圍碼UM8A、該相對值VK81和該相對值VK82皆進一步基於所預設的該功能目標識別 符HA2T而被儲存在該儲存空間SS11中。該處理單元230進一步基於該功能目標識別符HA2T來使用該儲存單元250以存取所預設的該額定範圍界限值對DC1A、該可變物理參數範圍碼UM8A、該相對值VK81和該相對值VK82的其中任一。 In some embodiments, the preset rated range limit value pair DC1A, the variable physical parameter range code UM8A, the relative value VK81, and the relative value VK82 are all further based on the preset function target identification Symbol HA2T is stored in the storage space SS11. The processing unit 230 further uses the storage unit 250 based on the functional target identifier HA2T to access the preset rated range limit value pair DC1A, the variable physical parameter range code UM8A, the relative value VK81, and the relative value Any of VK82.

所預設的該應用範圍界限值對DM1L、所預設的該控制資料碼CK8T和所預設的該候選範圍界限值對DM1B皆進一步基於所預設的該功能目標識別符HA2T而被儲存在該記憶體空間SA1中。該處理單元230進一步基於該功能目標識別符HA2T來使用該記憶體單元25Y1以存取所預設的該應用範圍界限值對DM1L、所預設的該控制資料碼CK8T和所預設的該候選範圍界限值對DM1B的其中任一。 The preset application range limit value pair DM1L, the preset control data code CK8T, and the preset candidate range limit value pair DM1B are further stored based on the preset function target identifier HA2T The memory space SA1. The processing unit 230 further uses the memory unit 25Y1 based on the functional target identifier HA2T to access the preset application range limit value pair DM1L, the preset control data code CK8T, and the preset candidate Any of the range limits to DM1B.

所預設的該應用範圍界限值對DM1L和所預設的該候選範圍界限值對DM1B皆被配置以屬於一測量範圍界限資料碼類型TM81。該測量範圍界限資料碼類型TM81由一測量範圍界限資料碼類型識別符HM81所識別。該測量範圍界限資料碼類型識別符HM81被預設。所預設的該控制資料碼CK8T被配置以屬於一控制資料碼類型TK81。該控制資料碼類型TK81由一控制資料碼類型識別符HK81所識別。該控制資料碼類型識別符HK81被預設。 Both the preset application range limit value pair DM1L and the preset candidate range limit value pair DM1B are configured to belong to a measurement range limit data code type TM81. The measurement range limit data code type TM81 is identified by a measurement range limit data code type identifier HM81. The measurement range limit data code type identifier HM81 is preset. The preset control data code CK8T is configured to belong to a control data code type TK81. The control data code type TK81 is identified by a control data code type identifier HK81. The control data code type identifier HK81 is preset.

例如,該記憶體位址FM8L基於所預設的該功能目標識別符HA2T、所預設的該測量值應用範圍碼EH1L和所預設的該測量範圍界限資料碼類型識別符HM81而被預設。該處理單元230響應該觸發事件EQ81來獲得該 功能目標識別符HA2T。該資料獲取操作AF81基於所獲得的該功能目標識別符HA2T、所確定的該測量值應用範圍碼EH1L和所獲得的該測量範圍界限資料碼類型識別符HM81來獲得該記憶體位址FM8L,並基於所獲得的該記憶體位址FM8L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PM8L的所預設的該應用範圍界限值對DM1L。 For example, the memory address FM8L is preset based on the preset function target identifier HA2T, the preset measurement value application range code EH1L, and the preset measurement range limit data code type identifier HM81. The processing unit 230 responds to the trigger event EQ81 to obtain the Functional target identifier HA2T. The data acquisition operation AF81 obtains the memory address FM8L based on the obtained functional target identifier HA2T, the determined measurement value application range code EH1L, and the obtained measurement range limit data code type identifier HM81, and based on The obtained memory address FM8L uses the memory unit 25Y1 to access the preset application range limit value pair DM1L stored in the memory location PM8L.

例如,該記憶體位址FV8L基於所預設的該功能目標識別符HA2T、所預設的該測量值應用範圍碼EH1L和所預設的該控制資料碼類型識別符HK81而被預設。在該處理單元230確定該可變物理參數QP1A目前於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所獲得的該功能目標識別符HA2T、所確定的該測量值應用範圍碼EH1L和所獲得的該控制資料碼類型識別符HK81來獲得該記憶體位址FV8L,並基於所獲得的該記憶體位址FV8L來使用該記憶體單元25Y1以存取被儲存在該記憶體位置PV8L的該控制資料碼CK8T。 For example, the memory address FV8L is preset based on the preset function target identifier HA2T, the preset measurement value application range code EH1L, and the preset control data code type identifier HK81. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL, the processing unit 230 is based on the obtained functional target identifier HA2T and the determined measurement value application range code EH1L And the obtained control data code type identifier HK81 to obtain the memory address FV8L, and based on the obtained memory address FV8L to use the memory unit 25Y1 to access the memory location PV8L stored in the memory location PV8L Control data code CK8T.

請參閱第43圖。第43圖為繪示於第1圖中的該控制系統901的一實施結構9052的示意圖。如第43圖所示,該實施結構9052包含該控制裝置212、該控制目標裝置130和該伺服器280。該控制裝置212鏈接於該伺服器280。該控制裝置212用於依靠該觸發事件EQ81而控制存在於該控制目標裝置130中的該可變物理參數QU1A,並包含該操作單元297和該感測單元260。該操作單元297包含該處理單元230、該輸入單元270和該輸出單元240。該處理單元230耦合於該伺服器280。 Please refer to Figure 43. FIG. 43 is a schematic diagram of an implementation structure 9052 of the control system 901 shown in FIG. 1. As shown in FIG. 43, the implementation structure 9052 includes the control device 212, the control target device 130, and the server 280. The control device 212 is linked to the server 280. The control device 212 is configured to control the variable physical parameter QU1A existing in the control target device 130 by relying on the trigger event EQ81, and includes the operating unit 297 and the sensing unit 260. The operation unit 297 includes the processing unit 230, the input unit 270, and the output unit 240. The processing unit 230 is coupled to the server 280.

在一些實施例中,該操作單元297包含耦合於該處理單元230的一定時器545、和耦合於該處理單元230的一電應用目標WJ11。該定時器545用於測量該時鐘時間TH1A,並被配置以符合一定時器規格FW22。該定時器545受該處理單元230控制而感測該時鐘時間TH1A以產生一時鐘時間訊號SK91。 In some embodiments, the operating unit 297 includes a timer 545 coupled to the processing unit 230 and an electrical application target WJ11 coupled to the processing unit 230. The timer 545 is used to measure the clock time TH1A and is configured to comply with a timer specification FW22. The timer 545 is controlled by the processing unit 230 to sense the clock time TH1A to generate a clock time signal SK91.

在該感測單元260被配置以相同於該定時器545的條件下,該感測訊號SM81被配置以相同於該時鐘時間訊號SK91,該感測器規格FQ11被配置以相同於該定時器規格FW22,且該可變物理參數QP1A被配置以相同於該時鐘時間TH1A。該記憶體單元25Y1儲存相同於該控制資訊碼CM85的該控制資料碼CK8T。例如,在該可變物理參數QP1A被配置以相同於該時鐘時間TH1A的條件下,該測量值應用範圍碼EH1L相同於該時間值目標範圍碼EL1T。該定時器規格FW22被預設。 Under the condition that the sensing unit 260 is configured to be the same as the timer 545, the sensing signal SM81 is configured to be the same as the clock time signal SK91, and the sensor specification FQ11 is configured to be the same as the timer specification FW22, and the variable physical parameter QP1A is configured to be the same as the clock time TH1A. The memory unit 25Y1 stores the control data code CK8T which is the same as the control information code CM85. For example, under the condition that the variable physical parameter QP1A is configured to be the same as the clock time TH1A, the measurement value application range code EH1L is the same as the time value target range code EL1T. The timer specification FW22 is preset.

該觸發事件EQ81是該輸入單元270接收該使用者輸入操作JU81的該使用者輸入事件。該使用者輸入操作JU81用於選擇該電應用目標WJ11。該輸入單元270響應該觸發事件EQ81來提供該操作請求訊號SZ81到該處理單元230。在該使用者輸入事件發生的條件下,該處理單元230響應該操作請求訊號SZ81來使用該時鐘時間訊號SK91以獲得該測量值VM81。例如,該時鐘時間訊號SK91以一指定計數值格式HQ92輸送一特定計數值NP91。該指定測量值格式HQ92基於一指定位元數目UX92而被特徵化。 The trigger event EQ81 is the user input event of the input unit 270 receiving the user input operation JU81. The user input operation JU81 is used to select the electrical application target WJ11. The input unit 270 responds to the trigger event EQ81 to provide the operation request signal SZ81 to the processing unit 230. Under the condition that the user input event occurs, the processing unit 230 responds to the operation request signal SZ81 to use the clock time signal SK91 to obtain the measured value VM81. For example, the clock time signal SK91 transmits a specific count value NP91 in a specified count value format HQ92. The designated measurement value format HQ92 is characterized based on a designated number of bits UX92.

該處理單元230使用該時鐘時間訊號SK91以獲得等於該特定計數值NP91的該測量值VM81。該處理單元230響應該觸發事件EQ81來執行該資料確定AE8A以確定相同於該時間值目標範圍碼EL1T的該測量值應用範圍碼EH1L。在該處理單元230藉由檢查該測量值VM81和該測量值應用範圍RM1L之間的該數學關係KA81而確定該可變物理參數QP1A目前處於的該物理參數應用範圍RC1EL的條件下,該處理單元230基於所確定的該測量值應用範圍碼EH1L來從該記憶體單元25Y1獲得相同於該控制資訊碼CM85的該控制應用碼UA8T。例如,在該感測單元260被配置以相同於該定時器545的條件下,該指定測量值格式HQ81被配置以相同於該指定計數值格式HQ92。 The processing unit 230 uses the clock time signal SK91 to obtain the measured value VM81 equal to the specific count value NP91. The processing unit 230 executes the data determination AE8A in response to the trigger event EQ81 to determine the measurement value application range code EH1L that is the same as the time value target range code EL1T. Under the condition that the processing unit 230 determines that the variable physical parameter QP1A is currently in the physical parameter application range RC1EL by checking the mathematical relationship KA81 between the measurement value VM81 and the measurement value application range RM1L, the processing unit 230 obtains the control application code UA8T which is the same as the control information code CM85 from the memory unit 25Y1 based on the determined measurement value application range code EH1L. For example, under the condition that the sensing unit 260 is configured to be the same as the timer 545, the designated measurement value format HQ81 is configured to be the same as the designated count value format HQ92.

例如,該控制資訊碼CM85包含所預設的該時間值目標範圍碼EL1T和所預設的該時鐘參考時間值NR81。該處理單元230基於所獲得的該控制應用碼UA8T來在該操作時間TD81之內執行用於該觸發應用功能FB81的該訊號產生控制GS81以導致該輸出單元240產生輸送該控制資料訊息CN85的該控制訊號SC81。例如,該控制資料訊息CN85包含所預設的該時間值目標範圍碼EL1T和所預設的該時鐘參考時間值NR81。在該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T的條件下,該控制訊號SC81藉由輸送所預設的該時間值目標範圍碼EL1T來起到指示該測量值目標範圍RN1T的作用。 For example, the control information code CM85 includes the preset time value target range code EL1T and the preset clock reference time value NR81. The processing unit 230 executes the signal generation control GS81 for the trigger application function FB81 within the operation time TD81 based on the obtained control application code UA8T to cause the output unit 240 to generate the control data message CN85. Control signal SC81. For example, the control data message CN85 includes the preset time value target range code EL1T and the preset clock reference time value NR81. Under the condition that the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T, the control signal SC81 conveys the preset time value target range code EL1T to indicate the measurement value target The scope of the role of RN1T.

在一些實施例中,該控制目標裝置130包含該操作單元397、該功能單元335和該儲存單元332。包含 於該操作單元397中的該定時器342用於測量該時鐘時間TH1A,並被配置以符合該定時器規格FT21。該可變物理參數QU1A相關於該時鐘時間TH1A。該時鐘時間TH1A基於一時間目標區間HR1ET而被特徵化。該時間目標區間HR1ET由一時間值目標範圍RQ1T所代表。該時間值目標範圍碼EL1T被配置以指示該時間目標區間HR1ET。 In some embodiments, the control target device 130 includes the operation unit 397, the function unit 335, and the storage unit 332. Include The timer 342 in the operating unit 397 is used to measure the clock time TH1A, and is configured to comply with the timer specification FT21. The variable physical parameter QU1A is related to the clock time TH1A. The clock time TH1A is characterized based on a time target interval HR1ET. The time target interval HR1ET is represented by a time value target range RQ1T. The time value target range code EL1T is configured to indicate the time target interval HR1ET.

該儲存單元332具有一記憶體位置YS8T,並在該記憶體位置YS8T儲存該物理參數目標範圍碼UQ1T。該物理參數目標範圍碼UQ1T代表該可變物理參數QU1A被期望在該時間目標區間HR1ET內處於的一物理參數目標範圍RK1ET,並被配置以基於該時間值目標範圍碼EL1T而被儲存在該記憶體位置YS8T。該記憶體位置YS8T基於一記憶體位址AS8T而被識別。該記憶體位址AS8T基於該時間值目標範圍碼EL1T而被預設。該物理參數目標範圍RK1ET選擇自該複數不同物理參數參考範圍RD1E1、RD1E2、…。 The storage unit 332 has a memory location YS8T, and stores the physical parameter target range code UQ1T in the memory location YS8T. The physical parameter target range code UQ1T represents a physical parameter target range RK1ET that the variable physical parameter QU1A is expected to be within the time target interval HR1ET, and is configured to be stored in the memory based on the time value target range code EL1T Body position YS8T. The memory location YS8T is identified based on a memory address AS8T. The memory address AS8T is preset based on the time value target range code EL1T. The physical parameter target range RK1ET is selected from the plural different physical parameter reference ranges RD1E1, RD1E2,....

在一些實施例中,當該操作單元397接收該控制訊號SC81時,該物理參數目標範圍碼UQ1T等於所預設的該測量值目標範圍碼EM1T。該控制訊號SC81輸送所預設的該時間值目標範圍碼EL1T。該操作單元397從該控制訊號SC81獲得所輸送的該時間值目標範圍碼EL1T,基於所獲得的該時間值目標範圍碼EL1T來獲得該記憶體位址AS8T,並基於所獲得的該記憶體位址AS8T來存取被儲存在該記憶體位置YS8T的該物理參數目標範圍碼UQ1T以獲得所預設的該測量值目標範圍碼EM1T。 In some embodiments, when the operating unit 397 receives the control signal SC81, the physical parameter target range code UQ1T is equal to the preset measurement value target range code EM1T. The control signal SC81 transmits the preset target range code EL1T of the time value. The operating unit 397 obtains the transmitted time value target range code EL1T from the control signal SC81, obtains the memory address AS8T based on the obtained time value target range code EL1T, and obtains the memory address AS8T based on the obtained memory address AS8T To access the physical parameter target range code UQ1T stored in the memory location YS8T to obtain the preset measurement value target range code EM1T.

該操作單元397基於所獲得的該測量值目標範圍碼EM1T來執行用於該物理參數控制功能FA81的該訊號產生操作BY81以向該功能目標335傳輸該功能訊號SG81。該功能目標335響應該功能訊號SG81來導致該可變物理參數QU1A處於該物理參數目標範圍RD1ET。該操作單元397從該控制訊號SC81獲得所輸送的該時鐘參考時間值NR81,基於所獲得的該時鐘參考時間值NR81來導致該定時器342在一啟動時間TT82之內啟動,並藉此導致該定時器342在該啟動時間TT82之內產生一時鐘時間訊號SY80。該時鐘時間訊號SY80是一初始時間訊號,並以該指定計數值格式HH95輸送一初始計數值NY80。例如,該初始計數值NY80被配置以相同於該時鐘參考時間值NR81。 The operation unit 397 executes the signal generation operation BY81 for the physical parameter control function FA81 based on the obtained measured value target range code EM1T to transmit the function signal SG81 to the functional target 335. The function target 335 responds to the function signal SG81 to cause the variable physical parameter QU1A to be in the physical parameter target range RD1ET. The operating unit 397 obtains the supplied clock reference time value NR81 from the control signal SC81, and causes the timer 342 to start within a starting time TT82 based on the obtained clock reference time value NR81, and thereby causes the The timer 342 generates a clock time signal SY80 within the start time TT82. The clock time signal SY80 is an initial time signal, and transmits an initial count value NY80 in the designated count value format HH95. For example, the initial count value NY80 is configured to be the same as the clock reference time value NR81.

提出於此之本揭露多數變形例與其他實施例,將對於熟習本項技藝者理解到具有呈現於上述說明與相關圖式之教導的益處。因此,吾人應理解到本揭露並非受限於所揭露之特定實施例,而變形例與其他實施例意圖是包含在以下的申請專利範圍之範疇之內。 Many modifications and other embodiments of the present disclosure presented here will be understood by those who are familiar with the art to have the benefits of the teachings presented in the above description and related drawings. Therefore, we should understand that the present disclosure is not limited to the specific embodiments disclosed, and the modifications and other embodiments are intended to be included in the scope of the following patent applications.

130‧‧‧控制目標裝置 130‧‧‧Control the target device

212‧‧‧控制裝置 212‧‧‧Control device

334‧‧‧感測單元 334‧‧‧sensing unit

397‧‧‧操作單元 397‧‧‧operation unit

901‧‧‧控制系統 901‧‧‧Control System

DS81‧‧‧範圍差異 DS81‧‧‧Range difference

KV81‧‧‧第一數學關係 KV81‧‧‧The first mathematical relationship

QU1A‧‧‧可變物理參數 QU1A‧‧‧Variable physical parameters

RD1EL‧‧‧物理參數應用範圍 RD1EL‧‧‧Physical parameter application range

RD1ET‧‧‧物理參數目標範圍 RD1ET‧‧‧Target range of physical parameters

RN1L‧‧‧測量值應用範圍 RN1L‧‧‧Measurement value application range

RN1T‧‧‧測量值目標範圍 RN1T‧‧‧Measurement value target range

SC81‧‧‧控制訊號 SC81‧‧‧Control signal

SN81‧‧‧第一感測訊號 SN81‧‧‧First sensing signal

VN81‧‧‧第一測量值 VN81‧‧‧First measured value

Claims (24)

一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化,該控制目標裝置包含:一感測單元,感測該可變物理參數以產生一第一感測訊號;以及一操作單元,耦合於該感測單元,在該操作單元從一控制裝置接收起到指示該測量值目標範圍的作用的一控制訊號的條件下響應該第一感測訊號來獲得一第一測量值,響應該控制訊號來檢查該第一測量值和該測量值應用範圍之間的一第一數學關係,在該操作單元由於檢查該第一數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下由於該控制訊號來檢查所指示的該測量值目標範圍和該測量值應用範圍之間的一範圍關係,並在該操作單元由於檢查該範圍關係而確定所指示的該測量值目標範圍和該測量值應用範圍之間的一範圍差異的條件下向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter target range represented by a measured value target range and a physical parameter application range represented by a measured value application range Characterized, the control target device includes: a sensing unit, which senses the variable physical parameter to generate a first sensing signal; and an operating unit, coupled to the sensing unit, from a The control device responds to the first sensing signal to obtain a first measurement value under the condition of receiving a control signal that functions to indicate the target range of the measurement value, and checks the first measurement value and the measurement value in response to the control signal A first mathematical relationship between application ranges, under the condition that the operating unit checks the first mathematical relationship and determines that the variable physical parameter is currently in the application range of the physical parameter due to the control signal to check the indicated A range relationship between the measurement value target range and the measurement value application range, and the operating unit determines a range difference between the indicated measurement value target range and the measurement value application range due to checking the range relationship Under conditions, a function signal is transmitted to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the physical parameter application range. 如請求項1所述的控制目標裝置,其中:該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生; 該第一測量值以一指定測量值格式而被獲得;該測量值目標範圍和該測量值應用範圍皆基於該感測器靈敏度表示來用該指定測量值格式而被預設;該測量值目標範圍和該測量值應用範圍分別具有一目標範圍界限值對和一應用範圍界限值對;該控制訊號輸送該目標範圍界限值對、該應用範圍界限值對和一控制碼,其中該控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預設,且該控制訊號藉由輸送該目標範圍界限值對來起到指示該測量值目標範圍的作用;該操作單元從該控制訊號獲得該應用範圍界限值對,藉由比較該第一測量值和所獲得的該應用範圍界限值對來檢查該第一數學關係以做出該第一測量值是否為於該測量值應用範圍之內的一第一邏輯決定,並在該第一邏輯決定是肯定的條件下確定該物理參數應用範圍;該操作單元從該控制訊號獲得該目標範圍界限值對,在該操作單元確定該物理參數應用範圍的條件下藉由比較所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對來檢查該範圍關係以做出所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對是否相等的一第二邏輯決定,並在該第二邏輯決定是否定的條件下辨識該範圍關係為一範圍相異關係以確定該範圍差異;該操作單元從該控制訊號獲得該控制碼,並在該操作單元確定該範圍差異的條件下基於所獲得的該控制碼來執行一訊號產生控制以產生用於導致該可變物理參數進入該 物理參數目標範圍的該功能訊號;在該操作單元於一操作時間之內執行該訊號產生控制之後,該感測單元感測該可變物理參數以產生一第二感測訊號;該操作單元於該操作時間之後的一指定時間之內響應該第二感測訊號來以該指定測量值格式獲得一第二測量值;在該操作單元於該指定時間之內藉由比較該第二測量值和所獲得的該目標範圍界限值對來確定該可變物理參數目前處於的該物理參數目標範圍的條件下,該操作單元執行一確保操作,該確保操作用於導致代表所確定的該物理參數目標範圍的一物理參數目標範圍碼被記錄;該可變物理參數相關於一可變時間長度,其中該操作單元用於測量該可變時間長度,該可變時間長度基於一時間長度參考範圍和一參考時間長度而被特徵化,該時間長度參考範圍由一時間長度值參考範圍所代表,且該參考時間長度由一時間長度值所代表;該控制訊號進一步輸送該時間長度值;該操作單元被配置以從該控制訊號獲得該時間長度值,並檢查所獲得的該時間長度值和該時間長度值參考範圍之間的一數值關係以做出用於控制一特定時間的一計數操作是否要被執行的一第三邏輯決定;以及在該第三邏輯決定是肯定的條件下,該操作單元基於所獲得的該時間長度值來執行該計數操作,在該可變物理參數由於該控制訊號而被配置以於該物理參數目標範圍之 內的條件下基於該計數操作來到達該特定時間,並在該特定時間之內執行用於導致該可變物理參數離開該物理參數目標範圍以進入該物理參數應用範圍的一訊號產生操作。 The control target device according to claim 1, wherein: the sensing unit is configured to meet a sensor specification related to the measurement value application range, wherein the sensor specification includes a sensor sensitivity A sensor sensitivity representation of, and the sensor sensitivity is related to the generation of a sensing signal performed by the sensing unit; The first measurement value is obtained in a specified measurement value format; the measurement value target range and the measurement value application range are both preset based on the sensor sensitivity representation using the specified measurement value format; the measurement value target The range and the measurement value application range respectively have a target range limit value pair and an application range limit value pair; the control signal conveys the target range limit value pair, the application range limit value pair and a control code, wherein the control code is based on A designated physical parameter within the target range of the physical parameter is preset, and the control signal serves to indicate the target range of the measurement value by transmitting the target range limit value pair; the operating unit receives the control signal from the target range. The application range limit value pair is obtained, and the first mathematical relationship is checked by comparing the first measurement value with the obtained application range limit value pair to determine whether the first measurement value is within the measurement value application range A first logical decision within and determine the application range of the physical parameter under the condition that the first logical decision is affirmative; the operating unit obtains the target range limit value pair from the control signal, and determines the physical parameter in the operating unit Under the conditions of the application range, check the range relationship by comparing the obtained target range limit value pair with the obtained application range limit value pair to make the obtained target range limit value pair and the obtained application A second logical decision whether the range limit value pairs are equal, and under the condition that the second logical decision is negative, the range relationship is identified as a range difference relationship to determine the range difference; the operating unit obtains the range difference from the control signal Control code, and execute a signal generation control based on the obtained control code under the condition that the operating unit determines the range difference to generate a signal for causing the variable physical parameter to enter the The functional signal within the target range of the physical parameter; after the operating unit executes the signal generation control within an operating time, the sensing unit senses the variable physical parameter to generate a second sensing signal; the operating unit Within a specified time after the operating time, respond to the second sensing signal to obtain a second measurement value in the specified measurement value format; within the specified time, the operating unit compares the second measurement value with The obtained target range limit value pair is used to determine the condition that the variable physical parameter is currently in the target range of the physical parameter, the operating unit performs an assurance operation, and the assurance operation is used to cause the determined physical parameter target to be represented A physical parameter target range code of the range is recorded; the variable physical parameter is related to a variable time length, wherein the operating unit is used to measure the variable time length, the variable time length is based on a time length reference range and a It is characterized by a reference time length, the time length reference range is represented by a time length value reference range, and the reference time length is represented by a time length value; the control signal further conveys the time length value; the operating unit is It is configured to obtain the time length value from the control signal, and check a numerical relationship between the obtained time length value and the reference range of the time length value to determine whether a counting operation for controlling a specific time is to be Performing a third logical decision; and under the condition that the third logical decision is affirmative, the operating unit performs the counting operation based on the obtained time length value, and the variable physical parameter is affected by the control signal Configured to be within the target range of the physical parameter The specific time is reached based on the counting operation under the conditions within, and a signal generating operation for causing the variable physical parameter to leave the target range of the physical parameter to enter the application range of the physical parameter is performed within the specific time. 如請求項1所述的控制目標裝置,其中:該操作單元被配置以執行與該物理參數應用範圍相關的一物理參數控制功能,並包含耦合於該感測單元的一處理單元、耦合於該處理單元的一輸入單元、和耦合於該處理單元的一輸出單元;該物理參數控制功能被配置以符合與該物理參數應用範圍相關的一物理參數控制功能規格;該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生;在該輸入單元從該控制裝置接收該控制訊號的條件下,該處理單元響應該第一感測訊號來以一指定測量值格式獲得該第一測量值,其中該指定測量值格式基於一指定位元數目而被特徵化;在該處理單元由於該控制訊號而確定該範圍差異的條件下,該處理單元導致該輸出單元輸出用於導致該可變物理參數進入該物理參數目標範圍的該功能訊號;該可變物理參數進一步基於一額定物理參數範圍而被特徵化,其中該額定物理參數範圍由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同物理參數參考範圍; 該物理參數目標範圍和該物理參數應用範圍皆包含於該複數不同物理參數參考範圍中;該物理參數控制功能規格包含該感測器規格、用於表示該額定物理參數範圍的一額定物理參數範圍表示、和用於表示該物理參數應用範圍的一物理參數應用範圍表示;該額定測量值範圍基於該額定物理參數範圍表示、該感測器靈敏度表示和用於轉換該額定物理參數範圍表示的一第一資料編碼操作來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值目標範圍和該測量值應用範圍;該測量值目標範圍由包含於該複數不同測量值參考範圍碼中的一測量值目標範圍碼所代表,其中該複數不同測量值參考範圍碼皆基於該物理參數控制功能規格而被預設;該控制訊號藉由輸送該測量值目標範圍碼來起到指示該測量值目標範圍的作用;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,並具有一應用範圍界限值對,其中該應用範圍界限值對基於該物理參數應用範圍表示、該感測器靈敏度表示和用於轉換該物理參數應用範圍表示的一第二資料編碼操作來用該指定測量值格式而被預設; 該控制目標裝置進一步包含耦合於該處理單元的一儲存單元;該儲存單元儲存所預設的該額定範圍界限值對和一可變物理參數範圍碼;該控制訊號進一步輸送該額定範圍界限值對;當該輸入單元接收該控制訊號時,該可變物理參數範圍碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一第一特定物理參數範圍,該第一特定物理參數範圍選擇自該複數不同物理參數參考範圍,且由該感測單元所執行的該感測操作用於感測該可變物理參數;在該輸入單元接收該控制訊號之前,該特定測量值範圍碼被指定到該可變物理參數範圍碼;在該輸入單元接收該控制訊號的條件下,該處理單元響應該控制訊號來從該控制訊號和該儲存單元的其中之一獲得一操作參考資料碼,並藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定以確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該物理參數控制功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該物理參數控制功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定 操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存單元中的該可變物理參數範圍碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼;在該操作參考資料碼從該控制訊號和該儲存單元的其中之一而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該第一測量值和所獲得的該額定範圍界限值對的一第一科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第一科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該處理單元基於所確定的該測量值應用範圍碼來獲得該應用範圍界限值對,基於該第一測量值和所獲得的該應用範圍界限值對之間的一資料比較來檢查該第一數學關係以做出該第一測量值是否為於所選擇的該測量值應用範圍之內的一第一邏輯決定,並在該第一邏輯決定是肯定的條件下確定該物理參數應用範圍;該處理單元從該控制訊號獲得該測量值目標範圍碼,並在該處理單元確定該物理參數應用範圍的條件下藉由比較所獲得的該測量值目標範圍碼和所確定的該測量值應用 範圍碼來檢查該範圍關係以做出所獲得的該測量值目標範圍碼和所確定的該測量值應用範圍碼是否相等的一第二邏輯決定;以及在該第二邏輯決定是否定的條件下,該處理單元辨識該範圍關係為一範圍相異關係以確定該範圍差異。 The control target device according to claim 1, wherein: the operating unit is configured to perform a physical parameter control function related to the application range of the physical parameter, and includes a processing unit coupled to the sensing unit, and An input unit of the processing unit, and an output unit coupled to the processing unit; the physical parameter control function is configured to comply with a physical parameter control function specification related to the application range of the physical parameter; the sensing unit is configured to comply A sensor specification related to the application range of the measurement value, wherein the sensor specification includes a sensor sensitivity indication for indicating the sensitivity of a sensor, and the sensor sensitivity is related to the sensor unit A sensing signal is generated; under the condition that the input unit receives the control signal from the control device, the processing unit responds to the first sensing signal to obtain the first measurement value in a specified measurement value format, wherein The specified measurement value format is characterized based on a specified number of bits; under the condition that the processing unit determines the range difference due to the control signal, the processing unit causes the output unit to output for causing the variable physical parameter to enter The functional signal of the target range of the physical parameter; the variable physical parameter is further characterized based on a range of a rated physical parameter, where the range of the rated physical parameter is represented by a range of rated measurement values, and includes reference by a plurality of different measurement values The reference ranges of the plural different physical parameters represented by the ranges; The physical parameter target range and the physical parameter application range are both included in the plurality of different physical parameter reference ranges; the physical parameter control function specification includes the sensor specifications and a rated physical parameter range used to represent the rated physical parameter range Representation, and a physical parameter application range representation used to indicate the application range of the physical parameter; the rated measurement value range is based on the rated physical parameter range representation, the sensor sensitivity representation, and a representation used to convert the rated physical parameter range representation The first data encoding operation is preset by using the specified measurement value format, has a pair of rated range limit values, and includes the plurality of different measurement value reference ranges represented by a plurality of different measurement value reference range codes, wherein the rated value The range limit value pair is preset using the specified measurement value format, and the plurality of different measurement value reference ranges include the measurement value target range and the measurement value application range; the measurement value target range is included in the plurality of different measurement value references A measurement value target range code in the range code represents, wherein the multiple different measurement value reference range codes are preset based on the physical parameter control function specification; the control signal is performed by transmitting the measurement value target range code Indicate the function of the target range of the measurement value; the measurement value application range is represented by a measurement value application range code included in the plurality of different measurement value reference range codes, and has an application range limit value pair, wherein the application range limit The value pair is preset in the specified measurement value format based on the physical parameter application range representation, the sensor sensitivity representation, and a second data encoding operation for converting the physical parameter application range representation; The control target device further includes a storage unit coupled to the processing unit; the storage unit stores the preset rated range limit value pair and a variable physical parameter range code; the control signal further transmits the rated range limit value pair ; When the input unit receives the control signal, the variable physical parameter range code is equal to a specific measurement value range code selected from the plurality of different measurement value reference range codes, wherein the specific measurement value range code indicates based on a sensing operation A first specific physical parameter range previously determined, the first specific physical parameter range is selected from the plurality of different physical parameter reference ranges, and the sensing operation performed by the sensing unit is used to sense the variable Physical parameter; before the input unit receives the control signal, the specific measurement value range code is assigned to the variable physical parameter range code; under the condition that the input unit receives the control signal, the processing unit responds to the control signal Obtain an operation reference data code from one of the control signal and the storage unit, and execute a data determination using the operation reference data code by running a data determination program to determine the reference range selected from the plurality of different measurement values The measurement value application range code of the code is used to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference material code is the same as an allowable reference material code preset based on the physical parameter control function specification ; The data determination procedure is constructed based on the physical parameter control function specifications; the data determination is a first data determination operation and a second data determination One of the operations; under the condition that the operation reference data code is obtained by accessing the variable physical parameter range code stored in the storage unit to be the same as the specific measurement value range code, it is the first The data determination of a data determination operation determines the measurement value application range code based on the obtained specific measurement value range code, wherein the determined measurement value application range code is the same or different from the obtained specific measurement value range code ; Under the condition that the operation reference data code is obtained from one of the control signal and the storage unit to be the same as the preset limit value pair of the rated range, it is the data determination of the second data determination operation The measurement value application range code is selected from the plurality of different measurement value reference range codes to determine the measurement value application range by performing a first scientific calculation using the first measurement value and the obtained rated range limit value pair Code, wherein the first scientific calculation is executed based on a specific empirical formula, and the specific empirical formula is pre-defined based on the preset limit value pair of the rated range and the plurality of different measurement value reference range codes; the processing unit The application range limit value pair is obtained based on the determined application range code of the measurement value, and the first mathematical relationship is checked based on a data comparison between the first measurement value and the obtained application range limit value pair. To determine whether the first measurement value is a first logical decision within the selected application range of the measurement value, and determine the physical parameter application range under the condition that the first logical decision is affirmative; the processing unit The control signal obtains the target range code of the measured value, and compares the target range code of the measured value obtained with the determined application of the measured value under the condition that the processing unit determines the application range of the physical parameter Range code to check the range relationship to make a second logical decision whether the obtained target range code of the measured value and the determined application range code of the measured value are equal; and under the condition that the second logical decision is negative , The processing unit recognizes that the range relationship is a range difference relationship to determine the range difference. 如請求項3所述的控制目標裝置,其中:該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該控制目標裝置進一步包含耦合於該輸出單元的該功能目標;該功能目標具有該可變物理參數,其中該感測單元耦合於該功能目標;該處理單元通過該輸出單元來使該功能目標執行與該可變物理參數相關的一指定功能操作,其中該指定功能操作用於導致一觸發事件發生,且該控制裝置響應該觸發事件來輸出該控制訊號;該物理參數控制功能規格進一步包含一物理參數表示,該物理參數表示用於表示在該物理參數目標範圍之內的一指定物理參數;該儲存單元具有一第一記憶體位置和不同於該第一記憶體位置的一第二記憶體位置,在該第一記憶體位置儲存該應用範圍界限值對,並在該第二記憶體位置儲存一控制碼,其中:該第一記憶體位置基於所預設的該測量值應用範圍碼而被識別; 該第二記憶體位置基於所預設的該測量值目標範圍碼而被識別;以及該控制碼基於該物理參數表示和用於轉換該物理參數表示的一第三資料編碼操作而被預設;該處理單元藉由運行一資料獲取程序來執行使用所確定的該測量值應用範圍碼的一資料獲取以獲得該應用範圍界限值對,其中該資料獲取是一第一資料獲取操作和一第二資料獲取操作的其中之一,且該資料獲取程序基於該物理參數控制功能規格而被建構;該第一資料獲取操作基於所確定的該測量值應用範圍碼來使用該儲存單元以存取被儲存在該第一記憶體位置的該應用範圍界限值對以獲得該應用範圍界限值對;該第二資料獲取操作依靠該控制訊號和該儲存單元的其中之一來取得該額定範圍界限值對,並藉由執行使用所確定的該測量值應用範圍碼和所取得的該額定範圍界限值對的一第二科學計算來獲得該應用範圍界限值對;在該處理單元確定該範圍差異的條件下,該處理單元基於所獲得的該測量值目標範圍碼來使用該儲存單元以存取被儲存在該第二記憶體位置的該控制碼,並基於所存取的該控制碼來執行用於該物理參數控制功能的一訊號產生控制以控制該輸出單元;該輸出單元響應該訊號產生控制來執行用於該物理參數控制功能的一訊號產生操作以產生該功能訊號,該功能訊號用於控制該功能目標以導致該可變物理參數進入該物理參數目標範圍; 該控制裝置是一外部裝置;該複數不同測量值參考範圍具有一總參考範圍數目;該總參考範圍數目基於該物理參數控制功能規格而被預設;該處理單元響應該控制訊號來獲得該總參考範圍數目;該第一科學計算進一步使用所獲得的該總參考範圍數目;該第二科學計算進一步使用所獲得的該總參考範圍數目;該功能目標響應該功能訊號來將該可變物理參數從一第一特定物理參數改變成一第二特定物理參數,其中該第一特定物理參數是於該物理參數應用範圍之內,且該第二特定物理參數是於該物理參數目標範圍之內;該物理參數控制功能規格進一步包含用於表示該物理參數目標範圍的一物理參數候選範圍表示;該測量值目標範圍是該額定測量值範圍的一第一部分,並具有一目標範圍界限值對,其中該目標範圍界限值對基於該物理參數候選範圍表示、該感測器靈敏度表示和用於轉換該物理參數候選範圍表示的一第四資料編碼操作來用該指定測量值格式而被預設;該測量值應用範圍是該額定測量值範圍的一第二部分;該物理參數目標範圍和該物理參數應用範圍是分開的或相鄰的; 在該物理參數目標範圍和該物理參數應用範圍是分開的條件下,該測量值目標範圍和該測量值應用範圍是分開的;在該物理參數目標範圍和該物理參數應用範圍是相鄰的條件下,該測量值目標範圍和該測量值應用範圍是相鄰的;該儲存單元進一步具有不同於該第二記憶體位置的一第三記憶體位置,並在該第三記憶體位置儲存該目標範圍界限值對,其中該第三記憶體位置基於所預設的該測量值目標範圍碼而被識別;在該處理單元於一操作時間之內執行該訊號產生控制之後,該感測單元感測該可變物理參數以產生一第二感測訊號;該處理單元於該操作時間之後的一指定時間之內響應該第二感測訊號來以該指定測量值格式獲得一第二測量值;該處理單元基於所獲得的該測量值目標範圍碼來使用該儲存單元以存取被儲存在該第三記憶體位置的該目標範圍界限值對,並藉由比較該第二測量值和所存取的該目標範圍界限值對來檢查該第二測量值和該測量值目標範圍之間的一第二數學關係以做出該第二測量值是否為於該測量值目標範圍之內的一第三邏輯決定;在該第三邏輯決定是肯定的條件下,該處理單元於該指定時間之內確定該可變物理參數目前處於的該物理參數目標範圍,產生一肯定操作報告,並導致該輸出單元輸出 輸送該肯定操作報告的一控制回應訊號,藉此該控制回應訊號用於導致該控制裝置獲得該肯定操作報告,其中該肯定操作報告表示該可變物理參數成功地進入該物理參數目標範圍的一操作情況;在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該處理單元藉由做出該第三邏輯決定而確定該物理參數目標範圍的條件下,該處理單元基於等於該特定測量值範圍碼的該可變物理參數範圍碼和所獲得的該測量值目標範圍碼之間的一第一碼差異來使用該儲存單元以將所獲得的該測量值目標範圍碼指定到該可變物理參數範圍碼;當該輸入單元接收該控制訊號時,該輸出單元顯示一第一狀態指示,其中該第一狀態指示用於指示該可變物理參數被配置於該第一特定物理參數範圍之內的一第一特定狀態;在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該處理單元藉由做出該第三邏輯決定而確定該物理參數目標範圍的條件下,該處理單元進一步基於該第一碼差異來導致該輸出單元將該第一狀態指示改變成一第二狀態指示,其中該第二狀態指示用於指示該可變物理參數被配置於該物理參數目標範圍之內的一第二特定狀態;該控制訊號是一電訊號和一光訊號的其中之一;該輸入單元包含:一第一輸入組件,耦合於該處理單元,並在該控制訊號是該電訊號的條件下,藉由接收輸送一控制訊息的 該電訊號來導致該處理單元獲得該控制訊息,其中該控制訊息包含該測量值目標範圍碼;一第二輸入組件,耦合於該處理單元,並在該控制訊號是該光訊號的條件下接收輸送一編碼影像的該光訊號,其中該編碼影像代表該控制訊息;以及一第三輸入組件,耦合於該處理單元,在該可變物理參數由於該控制訊號而被配置於該物理參數目標範圍之內的條件下接收一使用者輸入操作,並響應該使用者輸入操作來導致該處理單元確定一特定輸入碼,其中該特定輸入碼選擇自該複數不同測量值參考範圍碼;在該控制訊號是該光訊號的條件下,該第二輸入組件感測該編碼影像以確定一編碼資料,並解碼該編碼資料以提供該控制訊息到該處理單元;在該特定輸入碼不同於所預設的該測量值目標範圍碼的條件下,該處理單元基於等於所獲得的該測量值目標範圍碼的該可變物理參數範圍碼和該特定輸入碼之間的一第二碼差異來通過該輸出單元而導致該可變物理參數離開該物理參數目標範圍以進入包含於該複數不同物理參數參考範圍中的一第二特定物理參數範圍;該感測單元感測處於一拘束條件的該可變物理參數以提供該第一感測訊號到該處理單元,其中該拘束條件是該可變物理參數等於包含於該額定物理參數範圍中的一第三特定物理參數;該處理單元基於該第一感測訊號來估計該第三特定物理參數以獲得該第一測量值; 在該輸入單元接收該控制訊號之前,該輸入單元接收包含所預設的該應用範圍界限值對和一第一記憶體位址的一第一寫入請求訊息,其中該第一記憶體位置基於該第一記憶體位址而被識別,且該第一記憶體位址基於所預設的該測量值應用範圍碼而被預設;該處理單元響應該第一寫入請求訊息來使用該儲存單元以將該第一寫入請求訊息的該應用範圍界限值對儲存到該第一記憶體位置;在該輸入單元接收該控制訊號之前,該輸入單元接收包含所預設的該控制碼和一第二記憶體位址的一第二寫入請求訊息,其中該第二記憶體位置基於該第二記憶體位址而被識別,且該第二記憶體位址基於所預設的該測量值目標範圍碼而被預設;以及該處理單元響應該第二寫入請求訊息來使用該儲存單元以將該第二寫入請求訊息的該控制碼儲存到該第二記憶體位置。 The control target device according to claim 3, wherein: the application range limit value pair includes a first application range limit value and a second application range limit value relative to the first application range limit value; the control target device It further includes the functional object coupled to the output unit; the functional object has the variable physical parameter, wherein the sensing unit is coupled to the functional object; the processing unit causes the functional object to perform and the variable through the output unit A designated function operation related to a physical parameter, wherein the designated function operation is used to cause a trigger event to occur, and the control device outputs the control signal in response to the trigger event; the physical parameter control function specification further includes a physical parameter indication, the The physical parameter indicates a designated physical parameter within the target range of the physical parameter; the storage unit has a first memory location and a second memory location different from the first memory location. A memory location stores the application range limit value pair, and stores a control code in the second memory location, wherein: the first memory location is identified based on the preset measurement value application range code; The second memory location is identified based on the preset measurement value target range code; and the control code is preset based on the physical parameter representation and a third data encoding operation for converting the physical parameter representation; The processing unit executes a data acquisition using the determined application range code of the measurement value by running a data acquisition program to obtain the application range limit value pair, wherein the data acquisition is a first data acquisition operation and a second data acquisition operation. One of the data acquisition operations, and the data acquisition procedure is constructed based on the physical parameter control function specification; the first data acquisition operation uses the storage unit to access the stored data based on the determined application range code of the measurement value The application range limit value pair at the first memory location to obtain the application range limit value pair; the second data acquisition operation relies on one of the control signal and the storage unit to obtain the rated range limit value pair, And by performing a second scientific calculation using the determined application range code of the measurement value and the obtained rated range limit value pair to obtain the application range limit value pair; under the condition that the processing unit determines the range difference , The processing unit uses the storage unit to access the control code stored in the second memory location based on the obtained measurement value target range code, and executes the control code based on the accessed control code A signal generation control of the physical parameter control function is used to control the output unit; the output unit responds to the signal generation control to perform a signal generation operation for the physical parameter control function to generate the function signal, and the function signal is used to control the Functional target to cause the variable physical parameter to enter the target range of the physical parameter; The control device is an external device; the plurality of different measurement value reference ranges has a total reference range number; the total reference range number is preset based on the physical parameter control function specification; the processing unit responds to the control signal to obtain the total reference range The number of reference ranges; the first scientific calculation further uses the obtained total reference range number; the second scientific calculation further uses the obtained total reference range number; the functional target responds to the functional signal to the variable physical parameter Changing from a first specific physical parameter to a second specific physical parameter, wherein the first specific physical parameter is within the application range of the physical parameter, and the second specific physical parameter is within the target range of the physical parameter; the The physical parameter control function specification further includes a physical parameter candidate range representation for representing the physical parameter target range; the measured value target range is a first part of the rated measurement value range, and has a target range limit value pair, wherein the The target range limit value pair is preset using the specified measurement value format based on the physical parameter candidate range representation, the sensor sensitivity representation, and a fourth data encoding operation for converting the physical parameter candidate range representation; the measurement The value application range is a second part of the rated measurement value range; the physical parameter target range and the physical parameter application range are separate or adjacent; Under the condition that the physical parameter target range and the physical parameter application range are separate, the measured value target range and the measured value application range are separate; the physical parameter target range and the physical parameter application range are adjacent conditions Next, the measurement value target range and the measurement value application range are adjacent; the storage unit further has a third memory location different from the second memory location, and stores the target in the third memory location Range limit value pair, wherein the third memory position is identified based on the preset measurement value target range code; after the processing unit executes the signal generation control within an operating time, the sensing unit senses The variable physical parameter generates a second sensing signal; the processing unit responds to the second sensing signal within a specified time after the operating time to obtain a second measurement value in the specified measurement value format; the The processing unit uses the storage unit to access the target range limit value pair stored in the third memory location based on the obtained measurement value target range code, and by comparing the second measurement value with the accessed To check a second mathematical relationship between the second measurement value and the measurement value target range to determine whether the second measurement value is a third value within the measurement value target range Logical decision; under the condition that the third logical decision is affirmative, the processing unit determines within the specified time that the variable physical parameter is currently in the target range of the physical parameter, generates a positive operation report, and causes the output unit Output A control response signal of the positive operation report is transmitted, whereby the control response signal is used to cause the control device to obtain the positive operation report, wherein the positive operation report indicates that the variable physical parameter successfully enters a target range of the physical parameter Operating conditions; under the condition that the specific measurement value range code is different from the obtained measurement value target range code and the processing unit determines the physical parameter target range by making the third logical decision, the processing unit is based on A first code difference between the variable physical parameter range code of the specific measurement value range code and the obtained measurement value target range code is used to use the storage unit to assign the obtained measurement value target range code to The variable physical parameter range code; when the input unit receives the control signal, the output unit displays a first status indicator, wherein the first status indicator is used to indicate that the variable physical parameter is configured in the first specific physical A first specific state within the parameter range; when the specific measurement value range code is different from the obtained measurement value target range code and the processing unit determines the physical parameter target range by making the third logical decision Under conditions, the processing unit further causes the output unit to change the first status indication to a second status indication based on the first code difference, wherein the second status indication is used to indicate that the variable physical parameter is configured in the physical A second specific state within the target range of the parameter; the control signal is one of an electrical signal and an optical signal; the input unit includes: a first input component coupled to the processing unit, and the control signal Under the condition of the telecommunication signal, by receiving and sending a control message The electrical signal causes the processing unit to obtain the control message, wherein the control message includes the measured value target range code; a second input component is coupled to the processing unit and receives under the condition that the control signal is the optical signal Transmitting the optical signal of a coded image, where the coded image represents the control message; and a third input component, coupled to the processing unit, where the variable physical parameter is configured in the physical parameter target range due to the control signal Receive a user input operation under the conditions within, and respond to the user input operation to cause the processing unit to determine a specific input code, wherein the specific input code is selected from the plurality of different measurement value reference range codes; in the control signal Under the condition of the optical signal, the second input component senses the encoded image to determine an encoded data, and decodes the encoded data to provide the control information to the processing unit; when the specific input code is different from the preset Under the condition of the measurement value target range code, the processing unit passes the output unit based on a second code difference between the variable physical parameter range code equal to the obtained measurement value target range code and the specific input code As a result, the variable physical parameter leaves the physical parameter target range to enter a second specific physical parameter range included in the plurality of different physical parameter reference ranges; the sensing unit senses the variable physical parameter in a restrained condition To provide the first sensing signal to the processing unit, wherein the constraint condition is that the variable physical parameter is equal to a third specific physical parameter included in the rated physical parameter range; the processing unit is based on the first sensing signal To estimate the third specific physical parameter to obtain the first measured value; Before the input unit receives the control signal, the input unit receives a first write request message including the preset application range limit value pair and a first memory address, wherein the first memory location is based on the The first memory address is identified, and the first memory address is preset based on the preset measurement value application range code; the processing unit responds to the first write request message to use the storage unit to The application range limit value pair of the first write request message is stored in the first memory location; before the input unit receives the control signal, the input unit receives the preset control code and a second memory A second write request message for a body address, wherein the second memory location is identified based on the second memory address, and the second memory address is preset based on the preset measurement value target range code And the processing unit responds to the second write request message to use the storage unit to store the control code of the second write request message in the second memory location. 一種用於藉由產生一功能訊號而控制一可變物理參數的方法,其中該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化,該方法包含下列步驟:感測該可變物理參數以產生一第一感測訊號;在起到指示該測量值目標範圍的作用的一控制訊號從一控制裝置而被接收的條件下,響應該第一感測訊號來獲得一第一測量值;響應該控制訊號,檢查該第一測量值和該測量值應用 範圍之間的一第一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該第一數學關係而被確定的條件下,由於該控制訊號來檢查所指示的該測量值目標範圍和該測量值應用範圍之間的一範圍關係;由於檢查該範圍關係,確定該範圍關係以做出該功能訊號是否要被產生的一合理決定;以及在該合理決定是肯定的的條件下,向具有該可變物理參數的一功能目標傳輸該功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter by generating a functional signal, wherein the variable physical parameter is based on a physical parameter target range represented by a measured value target range and a measured value application range represented The application range of a physical parameter is characterized. The method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; Under the condition that the device is received, respond to the first sensing signal to obtain a first measurement value; in response to the control signal, check the first measurement value and the measurement value application A first mathematical relationship between ranges; under the condition that the physical parameter application range in which the variable physical parameter is currently in is determined by checking the first mathematical relationship, the indicated measurement value is checked due to the control signal A range relationship between the target range and the application range of the measured value; since the range relationship is checked, the range relationship is determined to make a reasonable decision whether the functional signal is to be generated; and the condition under which the reasonable decision is affirmative Next, the function signal is transmitted to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the application range of the physical parameter. 如請求項5所述的方法,其中:該方法進一步包含一步驟:提供一感測單元,其中感測該可變物理參數的步驟藉由使用該感測單元而被執行;該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生;該第一測量值以一指定測量值格式而被獲得;該測量值目標範圍和該測量值應用範圍皆基於該感測器靈敏度表示來用該指定測量值格式而被預設;該測量值目標範圍和該測量值應用範圍分別具有一目標範圍界限值對和一應用範圍界限值對;該控制訊號輸送該目標範圍界限值對、該應用範圍界限值對和一控制碼,其中該控制碼基於在該物理參數目標 範圍之內的一指定物理參數而被預設,且該控制訊號藉由輸送該目標範圍界限值對來起到指示該測量值目標範圍的作用;該方法進一步包含下列步驟:從該控制訊號獲得該應用範圍界限值對;從該控制訊號獲得該目標範圍界限值對;以及從該控制訊號獲得該控制碼;檢查該範圍關係的步驟包含下列子步驟:藉由比較該第一測量值和所獲得的該應用範圍界限值對,檢查該第一數學關係以做出該第一測量值是否為於該測量值應用範圍之內的一第一邏輯決定;在該第一邏輯決定是肯定的條件下,確定該物理參數應用範圍;以及在該物理參數應用範圍被確定的條件下,藉由比較所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對來檢查該範圍關係以做出所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對是否相等的一第二邏輯決定;做出該合理決定的步驟包含一子步驟:在該第二邏輯決定是否定的條件下,辨識該範圍關係為一範圍相異關係以做出該合理決定以成為肯定的;向該功能目標傳輸該功能訊號的步驟包含一子步驟:在該合理決定是肯定的條件下,基於所獲得的該控制碼來執行一訊號產生控制以產生該功能訊號;該方法進一步包含下列步驟: 在該訊號產生控制於一操作時間之內被執行之後,感測該可變物理參數以產生一第二感測訊號;於該操作時間之後的一指定時間之內,響應該第二感測訊號來以該指定測量值格式獲得一第二測量值;以及在該可變物理參數目前處於的該物理參數目標範圍於該指定時間之內藉由比較該第二測量值和所獲得的該目標範圍界限值對而被確定的條件下,執行一確保操作,該確保操作用於導致代表所確定的該物理參數目標範圍的一物理參數目標範圍碼被記錄;該可變物理參數相關於一可變時間長度,其中該可變時間長度基於一時間長度參考範圍和一參考時間長度而被特徵化,該時間長度參考範圍由一時間長度值參考範圍所代表,且該參考時間長度由一時間長度值所代表;該控制訊號進一步輸送該時間長度值;以及該方法進一步包含下列步驟:從該控制訊號獲得該時間長度值;檢查所獲得的該時間長度值和該時間長度值參考範圍之間的一數值關係以做出用於控制一特定時間的一計數操作是否要被執行的一第三邏輯決定;在該第三邏輯決定是肯定的條件下,基於所獲得的該時間長度值來執行該計數操作;在該可變物理參數由於該控制訊號而被配置以於該物理參數目標範圍之內的條件下,基於該計數操作來到達該特定時間;以及 在該特定時間之內執行用於導致該可變物理參數離開該物理參數目標範圍以進入該物理參數應用範圍的一訊號產生操作。 The method of claim 5, wherein: the method further comprises a step of: providing a sensing unit, wherein the step of sensing the variable physical parameter is performed by using the sensing unit; the sensing unit is Is configured to comply with a sensor specification related to the application range of the measured value, wherein the sensor specification includes a sensor sensitivity representation for representing the sensitivity of a sensor, and the sensor sensitivity is related to the A sensing signal generated by the sensing unit; the first measurement value is obtained in a specified measurement value format; the measurement value target range and the measurement value application range are both based on the sensor sensitivity representation to use the specified The measurement value format is preset; the measurement value target range and the measurement value application range respectively have a target range limit value pair and an application range limit value pair; the control signal transmits the target range limit value pair and the application range limit Value pair and a control code, where the control code is based on the physical parameter target A designated physical parameter within the range is preset, and the control signal is used to indicate the target range of the measurement value by transmitting the target range limit value pair; the method further includes the following steps: obtaining from the control signal The application range limit value pair; the target range limit value pair is obtained from the control signal; and the control code is obtained from the control signal; the step of checking the range relationship includes the following sub-steps: by comparing the first measured value with all Obtain the application range limit value pair, check the first mathematical relationship to make a first logical decision whether the first measurement value is within the application range of the measurement value; a condition that the first logical decision is affirmative Next, determine the application range of the physical parameter; and under the condition that the application range of the physical parameter is determined, check the range relationship by comparing the obtained target range limit value pair with the obtained application range limit value pair Make a second logical decision whether the obtained target range limit value pair and the obtained application range limit value pair are equal; the step of making the reasonable decision includes a sub-step: the second logical decision is negative Under the condition of, identify the range relationship as a range difference relationship to make the reasonable decision to be affirmative; the step of transmitting the functional signal to the functional target includes a sub-step: under the condition that the reasonable decision is affirmative, Perform a signal generation control to generate the function signal based on the obtained control code; the method further includes the following steps: After the signal generation control is executed within an operating time, sense the variable physical parameter to generate a second sensing signal; within a specified time after the operating time, respond to the second sensing signal To obtain a second measurement value in the specified measurement value format; and compare the second measurement value with the obtained target range within the specified time within the target range of the physical parameter that the variable physical parameter is currently in Under the condition that the threshold value pair is determined, a guarantee operation is performed to cause a physical parameter target range code representing the determined target range of the physical parameter to be recorded; the variable physical parameter is related to a variable Time length, where the variable time length is characterized based on a time length reference range and a reference time length, the time length reference range is represented by a time length value reference range, and the reference time length is a time length value The control signal further conveys the time length value; and the method further includes the following steps: obtain the time length value from the control signal; check a value between the obtained time length value and the time length value reference range Numerical relationship to make a third logical decision for controlling whether a counting operation for a specific time is to be performed; under the condition that the third logical decision is affirmative, the counting is performed based on the obtained time length value Operation; under the condition that the variable physical parameter is configured to be within the target range of the physical parameter due to the control signal, the specific time is reached based on the counting operation; and A signal generating operation for causing the variable physical parameter to leave the target range of the physical parameter to enter the application range of the physical parameter is performed within the specific time. 如請求項5所述的方法,其中:該方法進一步包含下列步驟:提供一感測單元,其中感測該可變物理參數的步驟藉由使用該感測單元而被執行;以及執行與該物理參數應用範圍相關的一物理參數控制功能;該物理參數控制功能被配置以符合與該物理參數應用範圍相關的一物理參數控制功能規格;該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生;該第一測量值以一指定測量值格式而被獲得,其中該指定測量值格式基於一指定位元數目而被特徵化;該可變物理參數進一步基於一額定物理參數範圍而被特徵化,其中該額定物理參數範圍由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同物理參數參考範圍;該物理參數目標範圍和該物理參數應用範圍皆包含於該複數不同物理參數參考範圍中;該物理參數控制功能規格包含該感測器規格、用於表示該額定物理參數範圍的一額定物理參數範圍表示、和用 於表示該物理參數應用範圍的一物理參數應用範圍表示;該額定測量值範圍基於該額定物理參數範圍表示、該感測器靈敏度表示和用於轉換該額定物理參數範圍表示的一第一資料編碼操作來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值目標範圍和該測量值應用範圍;該測量值目標範圍由包含於該複數不同測量值參考範圍碼中的一測量值目標範圍碼所代表,其中該複數不同測量值參考範圍碼皆基於該物理參數控制功能規格而被預設;該控制訊號藉由輸送該測量值目標範圍碼來起到指示該測量值目標範圍的作用;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,並具有一應用範圍界限值對,其中該應用範圍界限值對基於該物理參數應用範圍表示、該感測器靈敏度表示和用於轉換該物理參數應用範圍表示的一第二資料編碼操作來用該指定測量值格式而被預設;該方法進一步包含下列步驟:提供一儲存空間;以及在該儲存空間中儲存所預設的該額定範圍界限值對和一可變物理參數範圍碼; 該控制訊號進一步輸送該額定範圍界限值對;當該控制訊號被接收時,該可變物理參數範圍碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一第一特定物理參數範圍,該第一特定物理參數範圍選擇自該複數不同物理參數參考範圍,且由該感測單元所執行的該感測操作用於感測該可變物理參數;在該控制訊號被接收之前,該特定測量值範圍碼被指定到該可變物理參數範圍碼;該方法進一步包含下列步驟:在該控制訊號從該控制裝置而被接收的條件下,響應該控制訊號來從該控制訊號和該儲存空間的其中之一獲得一操作參考資料碼;以及藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定以確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該物理參數控制功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該物理參數控制功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該可變物理參數範圍碼而被獲得以相同於該特定測量值 範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中所確定的該測量值應用範圍碼相同或不同於所獲得的該特定測量值範圍碼;在該操作參考資料碼從該控制訊號和該儲存空間的其中之一而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該第一測量值和所獲得的該額定範圍界限值對的一第一科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第一科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該方法進一步包含下列步驟:基於所確定的該測量值應用範圍碼,獲得該應用範圍界限值對;以及從該控制訊號獲得該測量值目標範圍碼;檢查該範圍關係的步驟包含下列子步驟:基於該第一測量值和所獲得的該應用範圍界限值對之間的一資料比較,檢查該第一數學關係以做出該第一測量值是否為於所選擇的該測量值應用範圍之內的一第一邏輯決定;在該第一邏輯決定是肯定的條件下,確定該物理參數應用範圍;以及做出該合理決定的步驟包含下列子步驟: 在該物理參數應用範圍被確定的條件下,藉由比較所獲得的該測量值目標範圍碼和所確定的該測量值應用範圍碼來檢查該範圍關係以做出所獲得的該測量值目標範圍碼和所確定的該測量值應用範圍碼是否相等的一第二邏輯決定;以及在該第二邏輯決定是否定的條件下,辨識該範圍關係為一範圍相異關係以做出該合理決定以成為肯定的。 The method according to claim 5, wherein: the method further comprises the following steps: providing a sensing unit, wherein the step of sensing the variable physical parameter is performed by using the sensing unit; A physical parameter control function related to the parameter application range; the physical parameter control function is configured to comply with a physical parameter control function specification related to the physical parameter application range; the sensing unit is configured to comply with the measurement value application range A sensor specification of, wherein the sensor specification includes a sensor sensitivity indication for indicating the sensitivity of a sensor, and the sensor sensitivity is related to a sensor signal performed by the sensor unit Generated; the first measurement value is obtained in a specified measurement value format, wherein the specified measurement value format is characterized based on a specified number of bits; the variable physical parameter is further characterized based on a rated physical parameter range , Where the rated physical parameter range is represented by a rated measurement value range, and includes a plurality of different physical parameter reference ranges represented by a plurality of different measurement value reference ranges; the physical parameter target range and the physical parameter application range are both included in The plurality of different physical parameters are in the reference range; the physical parameter control function specification includes the sensor specification, a rated physical parameter range representation used to indicate the rated physical parameter range, and Representation of a physical parameter application range representing the application range of the physical parameter; the rated measurement value range is based on the rated physical parameter range representation, the sensor sensitivity representation, and a first data code used to convert the rated physical parameter range representation Operate to use the specified measurement value format to be preset, with a pair of rated range limit values, and include the plurality of different measurement value reference ranges represented by a plurality of different measurement value reference range codes, wherein the rated range limit value pair The specified measurement value format is preset, and the plurality of different measurement value reference ranges include the measurement value target range and the measurement value application range; the measurement value target range is determined by the reference range code included in the plurality of different measurement values Represented by a target range code of a measurement value, where the multiple reference range codes for different measurement values are preset based on the physical parameter control function specification; the control signal indicates the measurement value by transmitting the target range code of the measurement value The function of the target range; the measurement value application range is represented by a measurement value application range code included in the plurality of different measurement value reference range codes, and has an application range limit value pair, wherein the application range limit value pair is based on the The physical parameter application range representation, the sensor sensitivity representation, and a second data encoding operation for converting the physical parameter application range representation are preset using the specified measurement value format; the method further includes the following steps: providing a Storage space; and storing the preset limit value pair of the rated range and a variable physical parameter range code in the storage space; The control signal further conveys the rated range limit value pair; when the control signal is received, the variable physical parameter range code is equal to a specific measurement value range code selected from the plurality of different measurement value reference range codes, wherein the specific measurement The value range code indicates a first specific physical parameter range previously determined based on a sensing operation, the first specific physical parameter range is selected from the plurality of different physical parameter reference ranges, and the sensing performed by the sensing unit The measurement operation is used to sense the variable physical parameter; before the control signal is received, the specific measurement value range code is assigned to the variable physical parameter range code; the method further includes the following steps: Under the condition that the control device is received, in response to the control signal, obtain an operation reference data code from one of the control signal and the storage space; and execute the operation reference data code by running a data determination program A data is determined to determine the measurement value application range code selected from the plurality of different measurement value reference range codes in order to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference data code is the same as based on the physical parameter An allowable reference data code preset for the control function specifications; the data determination procedure is constructed based on the physical parameter control function specifications; the data determination is one of a first data determination operation and a second data determination operation 1. The operation reference data code is obtained by accessing the variable physical parameter range code stored in the storage space to be the same as the specific measurement value Under the condition of the range code, the data determination of the first data determination operation determines the measurement value application range code based on the obtained specific measurement value range code, wherein the determined measurement value application range code is the same or different The specific measurement value range code obtained; under the condition that the operation reference data code is obtained from one of the control signal and the storage space to be the same as the preset limit value pair of the rated range, it is the The data determination of the second data determination operation is to select the measurement value application from the plurality of different measurement value reference range codes by performing a first scientific calculation using the first measurement value and the obtained rated range limit value pair The range code determines the measurement value application range code, wherein the first scientific calculation is performed based on a specific empirical formula, and the specific empirical formula is based on the preset limit value pair of the rated range and the plurality of different measurement value reference ranges The method further includes the following steps: obtaining the application range limit value pair based on the determined application range code of the measurement value; and obtaining the measurement value target range code from the control signal; checking the range relationship The step includes the following sub-steps: based on a data comparison between the first measurement value and the obtained application range limit value pair, the first mathematical relationship is checked to determine whether the first measurement value is the selected one A first logical decision within the application range of the measured value; determining the application range of the physical parameter under the condition that the first logical decision is affirmative; and the step of making the reasonable decision includes the following sub-steps: Under the condition that the physical parameter application range is determined, by comparing the obtained measurement value target range code with the determined measurement value application range code to check the range relationship to make the obtained measurement value target range A second logical decision whether the code and the determined application range code of the measurement value are equal; and under the condition that the second logical decision is negative, identify the range relationship as a range difference relationship to make the reasonable decision Be sure. 如請求項7所述的方法,其中:該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該儲存空間進一步具有一第一記憶體位置和不同於該第一記憶體位置的一第二記憶體位置,其中該第一記憶體位置基於所預設的該測量值應用範圍碼而被識別,且該第二記憶體位置基於所預設的該測量值目標範圍碼而被識別;該物理參數控制功能規格進一步包含一物理參數表示,該物理參數表示用於表示在該物理參數目標範圍之內的一指定物理參數;該方法進一步包含下列步驟:在該第一記憶體位置儲存該應用範圍界限值對;在該第二記憶體位置儲存一控制碼,其中該控制碼基於該物理參數表示和用於轉換該物理參數表示的一第三資料編碼操作而被預設;執行與該可變物理參數相關的一指定功能操作,其中該指定功能操作用於導致一觸發事件發生;以及 藉由使用該控制裝置,響應該觸發事件來產生該控制訊號;獲得該應用範圍界限值對的步驟包含一子步驟:藉由運行一資料獲取程序,執行使用所確定的該測量值應用範圍碼的一資料獲取以獲得該應用範圍界限值對,其中該資料獲取是一第一資料獲取操作和一第二資料獲取操作的其中之一,且該資料獲取程序基於該物理參數控制功能規格而被建構;該第一資料獲取操作基於所確定的該測量值應用範圍碼來存取被儲存在該第一記憶體位置的該應用範圍界限值對以獲得該應用範圍界限值對;該第二資料獲取操作依靠該控制訊號和該儲存空間的其中之一來取得該額定範圍界限值對,並藉由執行使用所確定的該測量值應用範圍碼和所取得的該額定範圍界限值對的一第二科學計算來獲得該應用範圍界限值對;向該功能目標傳輸該功能訊號的步驟包含下列子步驟:在該合理決定是肯定的條件下,基於所獲得的該測量值目標範圍碼來存取被儲存在該第二記憶體位置的該控制碼;基於所存取的該控制碼,執行用於該物理參數控制功能的一訊號產生控制;以及響應該訊號產生控制,執行用於該物理參數控制功能的一訊號產生操作以產生該功能訊號,該功能訊號用於控制該功能目標以導致該可變物理參數進入該物理參數 目標範圍;該控制裝置是一外部裝置;該複數不同測量值參考範圍具有一總參考範圍數目;該總參考範圍數目基於該物理參數控制功能規格而被預設;該方法進一步包含一步驟:響應該控制訊號,獲得該總參考範圍數目;該第一科學計算進一步使用所獲得的該總參考範圍數目;該第二科學計算進一步使用所獲得的該總參考範圍數目;該方法進一步包含一步驟:響應該功能訊號,將該可變物理參數從一第一特定物理參數改變成一第二特定物理參數,其中該第一特定物理參數是於該物理參數應用範圍之內,且該第二特定物理參數是於該物理參數目標範圍之內;該物理參數控制功能規格進一步包含用於表示該物理參數目標範圍的一物理參數候選範圍表示;該測量值目標範圍是該額定測量值範圍的一第一部分,並具有一目標範圍界限值對,其中該目標範圍界限值對基於該物理參數候選範圍表示、該感測器靈敏度表示和用於轉換該物理參數候選範圍表示的一第四資料編碼操作來用該指定測量值格式而被預設;該測量值應用範圍是該額定測量值範圍的一第二部分; 該物理參數目標範圍和該物理參數應用範圍是分開的或相鄰的;在該物理參數目標範圍和該物理參數應用範圍是分開的條件下,該測量值目標範圍和該測量值應用範圍是分開的;在該物理參數目標範圍和該物理參數應用範圍是相鄰的條件下,該測量值目標範圍和該測量值應用範圍是相鄰的;該方法進一步包含下列步驟:提供不同於該第二記憶體位置的一第三記憶體位置,其中該第三記憶體位置於該儲存空間中,並基於所預設的該測量值目標範圍碼而被識別;在該第三記憶體位置儲存該目標範圍界限值對;在該訊號產生控制於一操作時間之內被執行之後,感測該可變物理參數以產生一第二感測訊號;於該操作時間之後的一指定時間之內,響應該第二感測訊號來以該指定測量值格式獲得一第二測量值;基於所獲得的該測量值目標範圍碼,存取被儲存在該第三記憶體位置的該目標範圍界限值對;藉由比較該第二測量值和所存取的該目標範圍界限值對,檢查該第二測量值和該測量值目標範圍之間的一第二數學關係以做出該第二測量值是否為於該測量值目標範圍之內的一第三邏輯決定;在該第三邏輯決定是肯定的條件下,於該指定時間之內確定該可變物理參數目前處於的該物理參數目標範 圍,並產生一肯定操作報告,其中該肯定操作報告表示該可變物理參數成功地進入該物理參數目標範圍的一操作情況;產生輸送該肯定操作報告的一控制回應訊號,藉此該控制回應訊號用於導致該控制裝置獲得該肯定操作報告;在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該物理參數目標範圍藉由做出該第三邏輯決定而被確定的條件下,基於等於該特定測量值範圍碼的該可變物理參數範圍碼和所獲得的該測量值目標範圍碼之間的一第一碼差異來將所獲得的該測量值目標範圍碼指定到該可變物理參數範圍碼;當該控制訊號被接收時,顯示一第一狀態指示,其中該第一狀態指示用於指示該可變物理參數被配置於該第一特定物理參數範圍之內的一第一特定狀態;以及在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該物理參數目標範圍藉由做出該第三邏輯決定而被確定的條件下,基於該第一碼差異來將該第一狀態指示改變成一第二狀態指示,其中該第二狀態指示用於指示該可變物理參數被配置於該物理參數目標範圍之內的一第二特定狀態;該控制訊號是一電訊號和一光訊號的其中之一;該方法進一步包含下列步驟:在該控制訊號是該電訊號的條件下,從輸送一控制訊息的該電訊號獲得該控制訊息,其中該控制訊息包含 該測量值目標範圍碼;在該控制訊號是該光訊號的條件下,藉由感測由該光訊號所輸送的一編碼影像來確定一編碼資料,並解碼該編碼資料以獲得該控制訊息,其中該編碼影像代表該控制訊息;在該可變物理參數由於該控制訊號而被配置於該物理參數目標範圍之內的條件下,接收一使用者輸入操作;響應該使用者輸入操作,確定一特定輸入碼,其中該特定輸入碼選擇自該複數不同測量值參考範圍碼;以及在該特定輸入碼不同於所預設的該測量值目標範圍碼的條件下,基於等於所獲得的該測量值目標範圍碼的該可變物理參數範圍碼和該特定輸入碼之間的一第二碼差異來導致該可變物理參數離開該物理參數目標範圍以進入包含於該複數不同物理參數參考範圍中的一第二特定物理參數範圍;感測該可變物理參數的步驟包含一子步驟:感測處於一拘束條件的該可變物理參數以產生該第一感測訊號,其中該拘束條件是該可變物理參數等於包含於該額定物理參數範圍中的一第三特定物理參數;響應該第一感測訊號來獲得該第一測量值的步驟包含一子步驟:基於該第一感測訊號,估計該第三特定物理參數以獲得該第一測量值;以及該方法進一步包含下列步驟:在該控制訊號被接收之前,接收包含所預設的該 應用範圍界限值對和一第一記憶體位址的一第一寫入請求訊息,其中該第一記憶體位置基於該第一記憶體位址而被識別,且該第一記憶體位址基於所預設的該測量值應用範圍碼而被預設;響應該第一寫入請求訊息,將該第一寫入請求訊息的該應用範圍界限值對儲存到該第一記憶體位置;在該控制訊號被接收之前,接收包含所預設的該控制碼和一第二記憶體位址的一第二寫入請求訊息,其中該第二記憶體位置基於該第二記憶體位址而被識別,且該第二記憶體位址基於所預設的該測量值目標範圍碼而被預設;以及響應該第二寫入請求訊息,將該第二寫入請求訊息的該控制碼儲存到該第二記憶體位置。 The method according to claim 7, wherein: the application range limit value pair includes a first application range limit value and a second application range limit value relative to the first application range limit value; the storage space further has a A first memory location and a second memory location different from the first memory location, wherein the first memory location is identified based on the preset measurement value application range code, and the second memory The position is identified based on the preset target range code of the measured value; the physical parameter control function specification further includes a physical parameter representation, and the physical parameter represents a designated physical parameter within the target range of the physical parameter; The method further includes the following steps: storing the application range limit value pair in the first memory location; storing a control code in the second memory location, wherein the control code is based on the physical parameter representation and is used to convert the physical parameter Represents a third data encoding operation and is preset; executes a designated function operation related to the variable physical parameter, wherein the designated function operation is used to cause a trigger event to occur; and The control signal is generated by using the control device in response to the trigger event; the step of obtaining the application range limit value pair includes a sub-step: by running a data acquisition program, executing the application range code using the determined measurement value A data acquisition to obtain the application range limit value pair, wherein the data acquisition is one of a first data acquisition operation and a second data acquisition operation, and the data acquisition procedure is controlled based on the physical parameter control function specification Construction; the first data acquisition operation accesses the application range limit value pair stored in the first memory location based on the determined application range code of the measurement value to obtain the application range limit value pair; the second data The obtaining operation relies on one of the control signal and the storage space to obtain the rated range limit value pair, and by executing a first of the determined application range code of the measured value and the obtained rated range limit value pair 2. Scientific calculation to obtain the application range limit value pair; the step of transmitting the function signal to the function target includes the following sub-steps: under the condition that the reasonable decision is affirmative, access based on the obtained measurement value target range code The control code stored in the second memory location; based on the accessed control code, perform a signal generation control for the physical parameter control function; and in response to the signal generation control, perform a signal generation control for the physical parameter A signal generating operation of the control function generates the function signal, and the function signal is used to control the function target to cause the variable physical parameter to enter the physical parameter Target range; the control device is an external device; the plurality of different measurement value reference ranges has a total reference range number; the total reference range number is preset based on the physical parameter control function specification; the method further includes a step: The signal should be controlled to obtain the total reference range number; the first scientific calculation further uses the obtained total reference range number; the second scientific calculation further uses the obtained total reference range number; the method further includes a step: In response to the function signal, the variable physical parameter is changed from a first specific physical parameter to a second specific physical parameter, wherein the first specific physical parameter is within the application range of the physical parameter, and the second specific physical parameter Is within the physical parameter target range; the physical parameter control function specification further includes a physical parameter candidate range representation for representing the physical parameter target range; the measured value target range is a first part of the rated measurement value range, And has a target range limit value pair, wherein the target range limit value pair is based on the physical parameter candidate range representation, the sensor sensitivity representation, and a fourth data encoding operation for converting the physical parameter candidate range representation to use the The specified measurement value format is preset; the measurement value application range is a second part of the rated measurement value range; The physical parameter target range and the physical parameter application range are separate or adjacent; under the condition that the physical parameter target range and the physical parameter application range are separate, the measured value target range and the measured value application range are separate Under the condition that the physical parameter target range and the physical parameter application range are adjacent, the measured value target range and the measured value application range are adjacent; the method further includes the following steps: providing a second A third memory location of the memory location, wherein the third memory location is in the storage space and is identified based on the preset measurement value target range code; the target is stored in the third memory location Range limit value pair; after the signal generation control is executed within an operating time, the variable physical parameter is sensed to generate a second sensing signal; within a specified time after the operating time, respond to the A second sensing signal to obtain a second measurement value in the specified measurement value format; access the target range limit value pair stored in the third memory location based on the obtained measurement value target range code; By comparing the second measurement value with the accessed target range limit value pair, a second mathematical relationship between the second measurement value and the target range of the measurement value is checked to determine whether the second measurement value is in A third logical decision within the target range of the measured value; under the condition that the third logical decision is affirmative, determine the target range of the physical parameter that the variable physical parameter is currently in within the specified time And generate an affirmative operation report, wherein the affirmative operation report indicates an operation condition in which the variable physical parameter has successfully entered the target range of the physical parameter; a control response signal for conveying the affirmative operation report is generated, thereby the control response The signal is used to cause the control device to obtain the positive operation report; when the specific measurement value range code is different from the obtained measurement value target range code and the physical parameter target range is determined by making the third logical decision Under conditions, based on a first code difference between the variable physical parameter range code equal to the specific measurement value range code and the obtained measurement value target range code, the obtained measurement value target range code is assigned to The variable physical parameter range code; when the control signal is received, a first status indicator is displayed, wherein the first status indicator is used to indicate that the variable physical parameter is configured within the range of the first specific physical parameter A first specific state; and under the condition that the specific measurement value range code is different from the obtained measurement value target range code and the physical parameter target range is determined by making the third logical decision, based on the first A code difference is used to change the first state indicator to a second state indicator, wherein the second state indicator is used to indicate that the variable physical parameter is configured in a second specific state within the target range of the physical parameter; the control The signal is one of an electrical signal and an optical signal; the method further includes the following steps: under the condition that the control signal is the electrical signal, the control message is obtained from the electrical signal that transmits a control message, wherein the control Message contains The measured value target range code; under the condition that the control signal is the optical signal, by sensing an encoded image conveyed by the optical signal to determine an encoded data, and decode the encoded data to obtain the control message, The coded image represents the control message; under the condition that the variable physical parameter is configured within the target range of the physical parameter due to the control signal, a user input operation is received; in response to the user input operation, a determination is made A specific input code, wherein the specific input code is selected from the plurality of different measurement value reference range codes; and under the condition that the specific input code is different from the preset measurement value target range code, based on the measurement value being equal to the obtained measurement value A second code difference between the variable physical parameter range code of the target range code and the specific input code causes the variable physical parameter to leave the physical parameter target range to enter the reference range included in the plurality of different physical parameter reference ranges A second specific physical parameter range; the step of sensing the variable physical parameter includes a sub-step: sensing the variable physical parameter in a restraining condition to generate the first sensing signal, wherein the restraining condition is the The variable physical parameter is equal to a third specific physical parameter included in the rated physical parameter range; the step of obtaining the first measured value in response to the first sensing signal includes a sub-step: based on the first sensing signal, estimating The third specific physical parameter to obtain the first measured value; and the method further includes the following steps: before the control signal is received, receiving the preset A first write request message of a pair of application range limit values and a first memory address, wherein the first memory location is identified based on the first memory address, and the first memory address is based on a preset The measurement value is preset by the application range code; in response to the first write request message, the application range limit value pair of the first write request message is stored in the first memory location; when the control signal is Before receiving, receive a second write request message including the preset control code and a second memory address, wherein the second memory location is identified based on the second memory address, and the second The memory address is preset based on the preset measurement value target range code; and in response to the second write request message, the control code of the second write request message is stored in the second memory location. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值目標範圍所代表的一物理參數目標範圍和由一測量值應用範圍所代表的一物理參數應用範圍而被特徵化,該方法包含下列步驟:感測該可變物理參數以產生一第一感測訊號;在起到指示該測量值目標範圍的作用的一控制訊號從一控制裝置而被接收的條件下,響應該第一感測訊號來獲得一第一測量值;響應該控制訊號,檢查該第一測量值和該測量值應用範圍之間的一第一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該第一數學關係而被確定的條件下,由於該控制訊 號來檢查所指示的該測量值目標範圍和該測量值應用範圍之間的一範圍關係;以及在所指示的該測量值目標範圍和該測量值應用範圍之間的一範圍差異由於檢查該範圍關係而被確定的條件下,向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is determined based on a physical parameter target range represented by a measured value target range and a physical parameter application range represented by a measured value application range Characterized, the method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; under the condition that a control signal that functions to indicate the target range of the measurement value is received from a control device , In response to the first sensing signal to obtain a first measurement value; in response to the control signal, check a first mathematical relationship between the first measurement value and the measurement value application range; when the variable physical parameter is currently in Under the condition that the application range of the physical parameter is determined by checking the first mathematical relationship, due to the control signal To check a range relationship between the indicated measurement value target range and the measurement value application range; and a range difference between the indicated measurement value target range and the measurement value application range due to checking the range Under the condition that the relationship is determined, a function signal is transmitted to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target from the application range of the physical parameter Scope. 如請求項9所述的方法,其中:該方法進一步包含一步驟:提供一感測單元,其中感測該可變物理參數的步驟藉由使用該感測單元而被執行;該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生;該第一測量值以一指定測量值格式而被獲得;該測量值目標範圍和該測量值應用範圍皆基於該感測器靈敏度表示來用該指定測量值格式而被預設;該測量值目標範圍和該測量值應用範圍分別具有一目標範圍界限值對和一應用範圍界限值對;該控制訊號輸送該目標範圍界限值對、該應用範圍界限值對和一控制碼,其中該控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預設,且該控制訊號藉由輸送該目標範圍界限值對來起到指示該測量值目標範圍的作用;該方法進一步包含下列步驟: 從該控制訊號獲得該應用範圍界限值對;從該控制訊號獲得該目標範圍界限值對;以及從該控制訊號獲得該控制碼;檢查該範圍關係的步驟包含下列子步驟:藉由比較該第一測量值和所獲得的該應用範圍界限值對,檢查該第一數學關係以做出該第一測量值是否為於該測量值應用範圍之內的一第一邏輯決定;在該第一邏輯決定是肯定的條件下,確定該物理參數應用範圍;以及在該物理參數應用範圍被確定的條件下,藉由比較所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對來檢查該範圍關係以做出所獲得的該目標範圍界限值對和所獲得的該應用範圍界限值對是否相等的一第二邏輯決定;向該功能目標傳輸該功能訊號的步驟包含下列子步驟:在該第二邏輯決定是否定的條件下,辨識該範圍關係為一範圍相異關係以確定該範圍差異;以及在該範圍差異被確定的條件下,基於所獲得的該控制碼來執行一訊號產生控制以產生用於導致該可變物理參數進入該物理參數目標範圍的該功能訊號;該方法進一步包含下列步驟:在該訊號產生控制於一操作時間之內被執行之後,感測該可變物理參數以產生一第二感測訊號;於該操作時間之後的一指定時間之內,響應該第 二感測訊號來以該指定測量值格式獲得一第二測量值;以及在該可變物理參數目前處於的該物理參數目標範圍於該指定時間之內藉由比較該第二測量值和所獲得的該目標範圍界限值對而被確定的條件下,執行一確保操作,該確保操作用於導致代表所確定的該物理參數目標範圍的一物理參數目標範圍碼被記錄;該可變物理參數相關於一可變時間長度,其中該可變時間長度基於一時間長度參考範圍和一參考時間長度而被特徵化,該時間長度參考範圍由一時間長度值參考範圍所代表,且該參考時間長度由一時間長度值所代表;該控制訊號進一步輸送該時間長度值;以及該方法進一步包含下列步驟:從該控制訊號獲得該時間長度值;檢查所獲得的該時間長度值和該時間長度值參考範圍之間的一數值關係以做出用於控制一特定時間的一計數操作是否要被執行的一第三邏輯決定;在該第三邏輯決定是肯定的條件下,基於所獲得的該時間長度值來執行該計數操作;在該可變物理參數由於該控制訊號而被配置以於該物理參數目標範圍之內的條件下,基於該計數操作來到達該特定時間;以及在該特定時間之內執行用於導致該可變物理參數離開該物理參數目標範圍以進入該物理參數應用範圍的一訊號產生操作。 The method according to claim 9, wherein: the method further comprises a step: providing a sensing unit, wherein the step of sensing the variable physical parameter is performed by using the sensing unit; the sensing unit is Is configured to comply with a sensor specification related to the application range of the measured value, wherein the sensor specification includes a sensor sensitivity representation for representing the sensitivity of a sensor, and the sensor sensitivity is related to the A sensing signal generated by the sensing unit; the first measurement value is obtained in a specified measurement value format; the measurement value target range and the measurement value application range are both based on the sensor sensitivity representation to use the specified The measurement value format is preset; the measurement value target range and the measurement value application range respectively have a target range limit value pair and an application range limit value pair; the control signal transmits the target range limit value pair and the application range limit Value pair and a control code, wherein the control code is preset based on a designated physical parameter within the target range of the physical parameter, and the control signal indicates the measured value by conveying the target range limit value pair The role of the target range; the method further includes the following steps: Obtain the application range limit value pair from the control signal; obtain the target range limit value pair from the control signal; and obtain the control code from the control signal; the step of checking the range relationship includes the following sub-steps: by comparing the first A measurement value and the obtained application range limit value pair, check the first mathematical relationship to make a first logical decision whether the first measurement value is within the application range of the measurement value; in the first logic Under the condition that the decision is affirmative, determine the application range of the physical parameter; and under the condition that the application range of the physical parameter is determined, by comparing the obtained target range limit value pair with the obtained application range limit value pair The range relationship is checked to make a second logical decision whether the obtained target range limit value pair and the obtained application range limit value pair are equal; the step of transmitting the function signal to the function target includes the following sub-steps: Under the condition that the second logical decision is negative, identify the range relationship as a range difference relationship to determine the range difference; and under the condition that the range difference is determined, execute a signal based on the obtained control code Generating control to generate the functional signal for causing the variable physical parameter to enter the target range of the physical parameter; the method further includes the following steps: after the signal generating control is executed within an operating time, sensing the variable Physical parameters to generate a second sensing signal; within a specified time after the operating time, respond to the first Two sensing signals to obtain a second measurement value in the specified measurement value format; and within the specified time by comparing the second measurement value and the obtained value within the target range of the physical parameter that the variable physical parameter is currently in Under the condition that the target range limit value pair is determined, a guarantee operation is performed, and the guarantee operation is used to cause a physical parameter target range code representing the determined target range of the physical parameter to be recorded; the variable physical parameter is related In a variable time length, where the variable time length is characterized based on a time length reference range and a reference time length, the time length reference range is represented by a time length value reference range, and the reference time length is Represented by a time length value; the control signal further conveys the time length value; and the method further includes the following steps: obtain the time length value from the control signal; check the obtained time length value and the time length value reference range To make a third logical decision for controlling whether a counting operation for a specific time is to be performed; under the condition that the third logical decision is affirmative, based on the obtained time length value To perform the counting operation; to reach the specific time based on the counting operation under the condition that the variable physical parameter is configured to be within the target range of the physical parameter due to the control signal; and execute within the specific time A signal generating operation for causing the variable physical parameter to leave the target range of the physical parameter to enter the application range of the physical parameter. 如請求項9所述的方法,其中:該方法進一步包含下列步驟:提供一感測單元,其中感測該可變物理參數的步驟藉由使用該感測單元而被執行;以及執行與該物理參數應用範圍相關的一物理參數控制功能;該物理參數控制功能被配置以符合與該物理參數應用範圍相關的一物理參數控制功能規格;該感測單元被配置以符合與該測量值應用範圍相關的一感測器規格,其中該感測器規格包含用於表示一感測器靈敏度的一感測器靈敏度表示,且該感測器靈敏度相關於由該感測單元所執行的一感測訊號產生;該第一測量值以一指定測量值格式而被獲得,其中該指定測量值格式基於一指定位元數目而被特徵化;該可變物理參數進一步基於一額定物理參數範圍而被特徵化,其中該額定物理參數範圍由一額定測量值範圍所代表,並包含由複數不同測量值參考範圍所分別代表的複數不同物理參數參考範圍;該物理參數目標範圍和該物理參數應用範圍皆包含於該複數不同物理參數參考範圍中;該物理參數控制功能規格包含該感測器規格、用於表示該額定物理參數範圍的一額定物理參數範圍表示、和用於表示該物理參數應用範圍的一物理參數應用範圍表示;該額定測量值範圍基於該額定物理參數範圍表示、該感測器靈敏度表示和用於轉換該額定物理參數範圍表示的 一第一資料編碼操作來用該指定測量值格式而被預設,具有一額定範圍界限值對,並包含由複數不同測量值參考範圍碼所分別代表的該複數不同測量值參考範圍,其中該額定範圍界限值對用該指定測量值格式而被預設,且該複數不同測量值參考範圍包含該測量值目標範圍和該測量值應用範圍;該測量值目標範圍由包含於該複數不同測量值參考範圍碼中的一測量值目標範圍碼所代表,其中該複數不同測量值參考範圍碼皆基於該物理參數控制功能規格而被預設;該控制訊號藉由輸送該測量值目標範圍碼來起到指示該測量值目標範圍的作用;該測量值應用範圍由包含於該複數不同測量值參考範圍碼中的一測量值應用範圍碼所代表,並具有一應用範圍界限值對,其中該應用範圍界限值對基於該物理參數應用範圍表示、該感測器靈敏度表示和用於轉換該物理參數應用範圍表示的一第二資料編碼操作來用該指定測量值格式而被預設;該方法進一步包含下列步驟:提供一儲存空間;以及在該儲存空間中儲存所預設的該額定範圍界限值對和一可變物理參數範圍碼;該控制訊號進一步輸送該額定範圍界限值對;當該控制訊號被接收時,該可變物理參數範圍碼等於選擇自該複數不同測量值參考範圍碼的一特定測量值範圍 碼,其中該特定測量值範圍碼指示基於一感測操作而被先前確定的一特定物理參數範圍,該特定物理參數範圍選擇自該複數不同物理參數參考範圍,且由該感測單元所執行的該感測操作用於感測該可變物理參數;在該控制訊號被接收之前,該特定測量值範圍碼被指定到該可變物理參數範圍碼;該方法進一步包含下列步驟:在該控制訊號從該控制裝置而被接收的條件下,響應該控制訊號來從該控制訊號和該儲存空間的其中之一獲得一操作參考資料碼;以及藉由運行一資料確定程序來執行使用該操作參考資料碼的一資料確定以確定選擇自該複數不同測量值參考範圍碼的該測量值應用範圍碼以便從該複數不同測量值參考範圍中選擇該測量值應用範圍;該操作參考資料碼相同於基於該物理參數控制功能規格而被預設的一可允許參考資料碼;該資料確定程序基於該物理參數控制功能規格而被建構;該資料確定是一第一資料確定操作和一第二資料確定操作的其中之一;在該操作參考資料碼藉由存取被儲存在該儲存空間中的該可變物理參數範圍碼而被獲得以相同於該特定測量值範圍碼的條件下,是該第一資料確定操作的該資料確定基於所獲得的該特定測量值範圍碼來確定該測量值應用範圍碼,其中所確定的該測量值應用範圍碼相同或不同於所獲 得的該特定測量值範圍碼;在該操作參考資料碼從該控制訊號和該儲存空間的其中之一而被獲得以相同於所預設的該額定範圍界限值對的條件下,是該第二資料確定操作的該資料確定藉由執行使用該第一測量值和所獲得的該額定範圍界限值對的一第一科學計算來從該複數不同測量值參考範圍碼中選擇該測量值應用範圍碼以確定該測量值應用範圍碼,其中該第一科學計算基於一特定經驗公式而被執行,且該特定經驗公式基於所預設的該額定範圍界限值對和該複數不同測量值參考範圍碼而被預先制定;該方法進一步包含下列步驟:基於所確定的該測量值應用範圍碼,獲得該應用範圍界限值對;以及從該控制訊號獲得該測量值目標範圍碼;檢查該範圍關係的步驟進一步包含下列子步驟:基於該第一測量值和所獲得的該應用範圍界限值對之間的一資料比較,檢查該第一數學關係以做出該第一測量值是否為於所選擇的該測量值應用範圍之內的一第一邏輯決定;在該第一邏輯決定是肯定的條件下,確定該物理參數應用範圍;以及在該物理參數應用範圍被確定的條件下,藉由比較所獲得的該測量值目標範圍碼和所確定的該測量值應用範圍碼來檢查該範圍關係以做出所獲得的該測量值目標範圍碼和所確定的該測量值應用範圍碼是否相等的一第二邏 輯決定;以及向該功能目標傳輸該功能訊號的步驟包含一子步驟:在該第二邏輯決定是否定的條件下,辨識該範圍關係為一範圍相異關係以確定該範圍差異。 The method according to claim 9, wherein: the method further comprises the following steps: providing a sensing unit, wherein the step of sensing the variable physical parameter is performed by using the sensing unit; and performing the same with the physical A physical parameter control function related to the parameter application range; the physical parameter control function is configured to comply with a physical parameter control function specification related to the physical parameter application range; the sensing unit is configured to comply with the measurement value application range A sensor specification of, wherein the sensor specification includes a sensor sensitivity indication for indicating the sensitivity of a sensor, and the sensor sensitivity is related to a sensor signal performed by the sensor unit Generated; the first measurement value is obtained in a specified measurement value format, wherein the specified measurement value format is characterized based on a specified number of bits; the variable physical parameter is further characterized based on a rated physical parameter range , Where the rated physical parameter range is represented by a rated measurement value range, and includes a plurality of different physical parameter reference ranges represented by a plurality of different measurement value reference ranges; the physical parameter target range and the physical parameter application range are both included in The plurality of different physical parameters are in the reference range; the physical parameter control function specification includes the sensor specifications, a nominal physical parameter range representation for representing the rated physical parameter range, and a physical parameter range representing the application range of the physical parameter Parameter application range representation; the rated measurement value range is based on the rated physical parameter range representation, the sensor sensitivity representation, and the value used to convert the rated physical parameter range representation A first data encoding operation is preset using the specified measurement value format, has a pair of rated range limit values, and includes the plurality of different measurement value reference ranges represented by a plurality of different measurement value reference range codes, wherein the The rated range limit value pair is preset using the specified measurement value format, and the plurality of different measurement value reference ranges include the measurement value target range and the measurement value application range; the measurement value target range is included in the plurality of different measurement values A measurement value target range code in the reference range code is represented, wherein the multiple different measurement value reference range codes are preset based on the physical parameter control function specification; the control signal is started by sending the measurement value target range code To indicate the target range of the measurement value; the measurement value application range is represented by a measurement value application range code included in the plurality of different measurement value reference range codes, and has an application range limit value pair, wherein the application range The threshold value pair is preset based on the physical parameter application range representation, the sensor sensitivity representation, and a second data encoding operation for converting the physical parameter application range representation to use the specified measurement value format; the method further includes The following steps: provide a storage space; and store the preset rated range limit value pair and a variable physical parameter range code in the storage space; the control signal further transmits the rated range limit value pair; when the control signal When received, the variable physical parameter range code is equal to a specific measurement value range selected from the plurality of different measurement value reference range codes Code, wherein the specific measurement value range code indicates a specific physical parameter range previously determined based on a sensing operation, and the specific physical parameter range is selected from the plurality of different physical parameter reference ranges and executed by the sensing unit The sensing operation is used to sense the variable physical parameter; before the control signal is received, the specific measurement value range code is assigned to the variable physical parameter range code; the method further includes the following steps: Under the condition of being received from the control device, in response to the control signal, obtain an operation reference data code from one of the control signal and the storage space; and execute the operation reference data by running a data determination program A data of the code is determined to determine the measurement value application range code selected from the plurality of different measurement value reference range codes in order to select the measurement value application range from the plurality of different measurement value reference ranges; the operation reference data code is the same as based on the An allowable reference data code preset for the physical parameter control function specification; the data determination procedure is constructed based on the physical parameter control function specification; the data determination is a first data determination operation and a second data determination operation One of them; under the condition that the operation reference data code is obtained by accessing the variable physical parameter range code stored in the storage space to be the same as the specific measurement value range code, it is the first data The data of the determination operation determines that the measurement value application range code is determined based on the obtained specific measurement value range code, wherein the determined measurement value application range code is the same or different from the obtained measurement value application range code. The specific measurement value range code obtained; under the condition that the operation reference data code is obtained from one of the control signal and the storage space under the same condition as the preset limit value pair of the rated range, it is the first The data determination of the second data determination operation selects the measurement value application range from the plurality of different measurement value reference range codes by performing a first scientific calculation using the first measurement value and the obtained rated range limit value pair Code to determine the measurement value application range code, wherein the first scientific calculation is performed based on a specific empirical formula, and the specific empirical formula is based on the preset rating range limit value pair and the plurality of different measurement value reference range codes The method further includes the following steps: obtaining the application range limit value pair based on the determined application range code of the measurement value; and obtaining the measurement value target range code from the control signal; and the step of checking the range relationship The method further includes the following sub-steps: based on a data comparison between the first measurement value and the obtained pair of application range limit values, checking the first mathematical relationship to determine whether the first measurement value is the selected one A first logical decision within the application range of the measured value; under the condition that the first logical decision is affirmative, the application range of the physical parameter is determined; and under the condition that the application range of the physical parameter is determined, it is obtained by comparison The measured value target range code and the determined application range code of the measured value are used to check the range relationship to determine whether the obtained target range code of the measured value and the determined application range code of the measured value are equal to a second logic And the step of transmitting the functional signal to the functional target includes a sub-step: under the condition that the second logical decision is negative, identifying the range relationship as a range difference relationship to determine the range difference. 如請求項11所述的方法,其中:該應用範圍界限值對包含一第一應用範圍界限值和相對於該第一應用範圍界限值的一第二應用範圍界限值;該儲存空間進一步具有一第一記憶體位置和不同於該第一記憶體位置的一第二記憶體位置,其中該第一記憶體位置基於所預設的該測量值應用範圍碼而被識別,且該第二記憶體位置基於所預設的該測量值目標範圍碼而被識別;該物理參數控制功能規格進一步包含一物理參數表示,該物理參數表示用於表示在該物理參數目標範圍之內的一指定物理參數;該方法進一步包含下列步驟:在該第一記憶體位置儲存該應用範圍界限值對;在該第二記憶體位置儲存一控制碼,其中該控制碼基於該物理參數表示和用於轉換該物理參數表示的一第三資料編碼操作而被預設;執行與該可變物理參數相關的一指定功能操作,其中該指定功能操作用於導致一觸發事件發生;以及藉由使用該控制裝置,響應該觸發事件來產生該控制訊號;獲得該應用範圍界限值對的步驟包含一子步驟:藉由 運行一資料獲取程序來執行使用所確定的該測量值應用範圍碼的一資料獲取以獲得該應用範圍界限值對,其中該資料獲取是一第一資料獲取操作和一第二資料獲取操作的其中之一,且該資料獲取程序基於該物理參數控制功能規格而被建構;該第一資料獲取操作基於所確定的該測量值應用範圍碼來存取被儲存在該第一記憶體位置的該應用範圍界限值對以獲得該應用範圍界限值對;該第二資料獲取操作依靠該控制訊號和該儲存空間的其中之一來取得該額定範圍界限值對,並藉由執行使用所確定的該測量值應用範圍碼和所取得的該額定範圍界限值對的一第二科學計算來獲得該應用範圍界限值對;向該功能目標傳輸該功能訊號的步驟進一步包含下列子步驟:在該範圍差異被確定的條件下,基於所獲得的該測量值目標範圍碼來存取被儲存在該第二記憶體位置的該控制碼;基於所存取的該控制碼,執行用於該物理參數控制功能的一訊號產生控制;以及響應該訊號產生控制,執行用於該物理參數控制功能的一訊號產生操作以產生該功能訊號,該功能訊號用於控制該功能目標以導致該可變物理參數進入該物理參數目標範圍;該物理參數控制功能規格進一步包含用於表示該物理參數目標範圍的一物理參數候選範圍表示; 該測量值目標範圍具有一目標範圍界限值對,其中該目標範圍界限值對基於該物理參數候選範圍表示、該感測器靈敏度表示和用於轉換該物理參數候選範圍表示的一第四資料編碼操作來用該指定測量值格式而被預設;該控制裝置是一外部裝置;以及該方法進一步包含下列步驟:提供不同於該第二記憶體位置的一第三記憶體位置,其中該第三記憶體位置於該儲存空間中,並基於所預設的該測量值目標範圍碼而被識別;在該第三記憶體位置儲存該目標範圍界限值對;在該訊號產生控制於一操作時間之內被執行之後,感測該可變物理參數以產生一第二感測訊號;於該操作時間之後的一指定時間之內,響應該第二感測訊號來以該指定測量值格式獲得一第二測量值;基於所獲得的該測量值目標範圍碼,存取被儲存在該第三記憶體位置的該目標範圍界限值對;藉由比較該第二測量值和所存取的該目標範圍界限值對,檢查該第二測量值和該測量值目標範圍之間的一第二數學關係以做出該第二測量值是否為於該測量值目標範圍之內的一第三邏輯決定;在該第三邏輯決定是肯定的條件下,於該指定時間之內確定該可變物理參數目前處於的該物理參數目標範圍,並產生一肯定操作報告,其中該肯定操作報告表示該可變物理參數成功地進入該物理參數目標範圍的一操作情況; 產生輸送該肯定操作報告的一控制回應訊號,藉此該控制回應訊號用於導致該控制裝置獲得該肯定操作報告;在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該物理參數目標範圍藉由做出該第三邏輯決定而被確定的條件下,基於等於該特定測量值範圍碼的該可變物理參數範圍碼和所獲得的該測量值目標範圍碼之間的一碼差異來將所獲得的該測量值目標範圍碼指定到該可變物理參數範圍碼;當該控制訊號被接收時,顯示一第一狀態指示,其中該第一狀態指示用於指示該可變物理參數被配置於該特定物理參數範圍之內的一第一特定狀態;在該特定測量值範圍碼不同於所獲得的該測量值目標範圍碼且該物理參數目標範圍藉由做出該第三邏輯決定而被確定的條件下,基於該第一碼差異來將該第一狀態指示改變成一第二狀態指示,其中該第二狀態指示用於指示該可變物理參數被配置於該物理參數目標範圍之內的一第二特定狀態;在該控制訊號被接收之前,接收包含所預設的該應用範圍界限值對和一第一記憶體位址的一第一寫入請求訊息,其中該第一記憶體位置基於該第一記憶體位址而被識別,且該第一記憶體位址基於所預設的該測量值應用範圍碼而被預設;響應該第一寫入請求訊息,將該第一寫入請求訊息的該應用範圍界限值對儲存到該第一記憶體位置; 在該控制訊號被接收之前,接收包含所預設的該控制碼和一第二記憶體位址的一第二寫入請求訊息,其中該第二記憶體位置基於該第二記憶體位址而被識別,且該第二記憶體位址基於所預設的該測量值目標範圍碼而被預設;以及響應該第二寫入請求訊息,將該第二寫入請求訊息的該控制碼儲存到該第二記憶體位置。 The method according to claim 11, wherein: the application range limit value pair includes a first application range limit value and a second application range limit value relative to the first application range limit value; the storage space further has a A first memory location and a second memory location different from the first memory location, wherein the first memory location is identified based on the preset measurement value application range code, and the second memory The position is identified based on the preset target range code of the measured value; the physical parameter control function specification further includes a physical parameter representation, and the physical parameter represents a designated physical parameter within the target range of the physical parameter; The method further includes the following steps: storing the application range limit value pair in the first memory location; storing a control code in the second memory location, wherein the control code is based on the physical parameter representation and is used to convert the physical parameter Represents a third data encoding operation and is preset; executes a designated function operation related to the variable physical parameter, wherein the designated function operation is used to cause a trigger event to occur; and responds to the control device by using the control device Trigger an event to generate the control signal; the step of obtaining the application range limit value pair includes a sub-step: Run a data acquisition program to execute a data acquisition using the determined application range code of the measurement value to obtain the application range limit value pair, wherein the data acquisition is one of a first data acquisition operation and a second data acquisition operation One, and the data acquisition program is constructed based on the physical parameter control function specification; the first data acquisition operation is based on the determined measurement value application range code to access the application stored in the first memory location Range limit value pair to obtain the application range limit value pair; the second data acquisition operation relies on one of the control signal and the storage space to obtain the rated range limit value pair, and performs the measurement determined by using A second scientific calculation of the applied range code and the obtained rated range limit value pair is obtained to obtain the applied range limit value pair; the step of transmitting the function signal to the function target further includes the following sub-steps: Under certain conditions, access the control code stored in the second memory location based on the obtained measurement value target range code; execute the control code for the physical parameter control function based on the accessed control code A signal generation control; and in response to the signal generation control, perform a signal generation operation for the physical parameter control function to generate the function signal, and the function signal is used to control the function target to cause the variable physical parameter to enter the physical Parameter target range; the physical parameter control function specification further includes a physical parameter candidate range representation for representing the physical parameter target range; The measured value target range has a target range limit value pair, wherein the target range limit value pair is based on the physical parameter candidate range representation, the sensor sensitivity representation, and a fourth data code for converting the physical parameter candidate range representation Operation to use the specified measurement value format to be preset; the control device is an external device; and the method further includes the following steps: providing a third memory location different from the second memory location, wherein the third The memory is located in the storage space and is identified based on the preset measurement value target range code; the target range limit value pair is stored in the third memory location; when the signal is generated and controlled at an operating time After the internal is executed, the variable physical parameter is sensed to generate a second sensing signal; within a specified time after the operating time, in response to the second sensing signal to obtain a first in the specified measurement value format Two measured values; based on the obtained measured value target range code, access the target range limit value pair stored in the third memory location; by comparing the second measured value with the accessed target range Threshold value pair, checking a second mathematical relationship between the second measurement value and the target range of the measurement value to make a third logical decision whether the second measurement value is within the target range of the measurement value; Under the condition that the third logical decision is affirmative, determine the target range of the physical parameter that the variable physical parameter is currently in within the specified time, and generate a positive operation report, wherein the positive operation report indicates the variable physical parameter An operation condition that successfully enters the target range of the physical parameter; Generate a control response signal for conveying the affirmative operation report, whereby the control response signal is used to cause the control device to obtain the affirmative operation report; when the specific measurement value range code is different from the obtained measurement value target range code and the Under the condition that the physical parameter target range is determined by making the third logical decision, based on the one between the variable physical parameter range code equal to the specific measurement value range code and the obtained measurement value target range code Code difference to assign the obtained measurement value target range code to the variable physical parameter range code; when the control signal is received, a first status indicator is displayed, wherein the first status indicator is used to indicate the variable The physical parameter is configured in a first specific state within the specific physical parameter range; the specific measurement value range code is different from the obtained measurement value target range code and the physical parameter target range is made by making the third Under the condition of being determined by logical decision, the first status indicator is changed to a second status indicator based on the first code difference, wherein the second status indicator is used to indicate that the variable physical parameter is configured in the physical parameter target A second specific state within the range; before the control signal is received, a first write request message including the preset limit value pair of the application range and a first memory address is received, wherein the first The memory location is identified based on the first memory address, and the first memory address is preset based on the preset measurement value application range code; in response to the first write request message, the first The application range limit value pair of the write request message is stored in the first memory location; Before the control signal is received, receive a second write request message including the preset control code and a second memory address, wherein the second memory location is identified based on the second memory address , And the second memory address is preset based on the preset measurement value target range code; and in response to the second write request message, the control code of the second write request message is stored in the first 2. Memory location. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該控制目標裝置包含:一感測單元,感測該可變物理參數以產生一感測訊號;以及一操作單元,耦合於該感測單元,在該操作單元通過一無線鏈接從一控制裝置接收輸送該控制碼的一控制訊號的條件下響應該感測訊號來獲得一測量值,從該控制訊號獲得所輸送的該控制碼,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,並在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下基於所獲得的該控制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range A control code that is characterized and related to the target range of the physical parameter is preset based on a designated physical parameter within the target range of the physical parameter. The control target device includes: a sensing unit that senses the available Changing the physical parameter to generate a sensing signal; and an operating unit coupled to the sensing unit, and responding to the sensing under the condition that the operating unit receives a control signal for transmitting the control code from a control device through a wireless link Signal to obtain a measurement value, obtain the transmitted control code from the control signal, check a mathematical relationship between the measurement value and the application range of the measurement value in response to the control signal, and check the mathematical relationship in the operating unit It is determined that the variable physical parameter is currently in the application range of the physical parameter based on the obtained control code to transmit a function signal to a functional target with the variable physical parameter, and the function signal is used to enable the function The target causes the variable physical parameter to enter the target range of the physical parameter from the application range of the physical parameter. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該方法包含下列步驟:感測該可變物理參數以產生一感測訊號;在輸送該控制碼的一控制訊號通過一無線鏈接從一控制裝置而被接收的條件下,響應該感測訊號來獲得一測量值;從該控制訊號獲得所輸送的該控制碼;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;以及在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,基於所獲得的該控制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range And a control code related to the target range of the physical parameter is preset based on a designated physical parameter within the target range of the physical parameter. The method includes the following steps: sensing the variable physical parameter to generate a sense Test signal; under the condition that a control signal conveying the control code is received from a control device through a wireless link, respond to the sensing signal to obtain a measurement value; obtain the transmitted control code from the control signal; In response to the control signal, check a mathematical relationship between the measurement value and the application range of the measurement value; and under the condition that the physical parameter application range that the variable physical parameter is currently in is determined by checking the mathematical relationship, based on The obtained control code transmits a function signal to a function target having the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the physical parameter application range. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該控制目標裝置包含:一感測單元,感測該可變物理參數以產生一感測訊 號;以及一操作單元,耦合於該感測單元,在該操作單元從一控制裝置接收輸送該控制碼的一控制訊號的條件下響應該感測訊號來獲得一測量值,從是一光訊號的該控制訊號獲得所輸送的該控制碼,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,並在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下基於所獲得的該控制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range A control code that is characterized and related to the target range of the physical parameter is preset based on a designated physical parameter within the target range of the physical parameter. The control target device includes: a sensing unit that senses the available Change physical parameters to generate a sensing signal And an operating unit, coupled to the sensing unit, and responding to the sensing signal to obtain a measured value under the condition that the operating unit receives a control signal for transmitting the control code from a control device, and is thus an optical signal The control signal obtains the transmitted control code, and responds to the control signal to check a mathematical relationship between the measurement value and the application range of the measurement value, and the operating unit determines the variable physical relationship by checking the mathematical relationship Under the condition of the physical parameter application range that the parameter is currently in, a function signal is transmitted to a function target with the variable physical parameter based on the obtained control code, and the function signal is used to cause the function target to cause the variable physical parameter Enter the target range of the physical parameter from the application range of the physical parameter. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且與該物理參數目標範圍相關的一控制碼基於在該物理參數目標範圍之內的一指定物理參數而被預先設定,該方法包含下列步驟:感測該可變物理參數以產生一感測訊號;在輸送該控制碼的一控制訊號從一控制裝置而被接收的條件下,響應該感測訊號來獲得一測量值;從是一光訊號的該控制訊號獲得所輸送的該控制碼;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;以及在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,基於所獲得的該控 制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range And a control code related to the target range of the physical parameter is preset based on a designated physical parameter within the target range of the physical parameter. The method includes the following steps: sensing the variable physical parameter to generate a sense Test signal; under the condition that a control signal conveying the control code is received from a control device, respond to the sensing signal to obtain a measurement value; obtain the conveyed control code from the control signal that is an optical signal ; In response to the control signal, check a mathematical relationship between the measurement value and the application range of the measurement value; and under the condition that the physical parameter application range that the variable physical parameter is currently in is determined by checking the mathematical relationship, Based on the obtained control The coding is used to transmit a function signal to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the application range of the physical parameter. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且該物理參數目標範圍由一目標範圍碼所指示,該控制目標裝置包含:一儲存單元,儲存基於在該物理參數目標範圍之內的一指定物理參數而被預先設定的一控制碼;一感測單元,感測該可變物理參數以產生一感測訊號;以及一操作單元,耦合於該儲存單元和該感測單元,在該操作單元通過一無線鏈接從一控制裝置接收輸送該目標範圍碼的一控制訊號的條件下響應該感測訊號來獲得一測量值,從該控制訊號獲得所輸送的該目標範圍碼,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下基於所獲得的該目標範圍碼來存取所儲存的該控制碼,並基於所存取的該控制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range Is characterized, and the physical parameter target range is indicated by a target range code. The control target device includes: a storage unit for storing a control preset based on a designated physical parameter within the physical parameter target range Code; a sensing unit that senses the variable physical parameters to generate a sensing signal; and an operating unit, coupled to the storage unit and the sensing unit, where the operating unit receives from a control device through a wireless link Respond to the sensing signal to obtain a measurement value under the condition of transmitting a control signal of the target range code, obtain the transmitted target range code from the control signal, and check the measurement value and the measurement value application in response to the control signal A mathematical relationship between ranges, under the condition that the operating unit checks the mathematical relationship and determines that the variable physical parameter is currently in the physical parameter application range based on the obtained target range code to access the stored Control code, and based on the accessed control code to transmit a functional signal to a functional target with the variable physical parameter, the functional signal is used to cause the functional target to cause the variable physical parameter to enter the physical parameter application range The target range of the physical parameter. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用 範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且該物理參數目標範圍由一目標範圍碼所指示,該方法包含下列步驟:儲存基於在該物理參數目標範圍之內的一指定物理參數而被預先設定的一控制碼;感測該可變物理參數以產生一感測訊號;在輸送該目標範圍碼的一控制訊號通過一無線鏈接從一控制裝置而被接收的條件下,響應該感測訊號來獲得一測量值;從該控制訊號獲得所輸送的該目標範圍碼;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,基於所獲得的該目標範圍碼來存取所儲存的該控制碼;以及基於所存取的該控制碼,向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application represented by a measurement value application range The range and a physical parameter target range different from the application range of the physical parameter are characterized, and the physical parameter target range is indicated by a target range code. The method includes the following steps: storing based on the physical parameter target range A control code that is preset for a designated physical parameter; senses the variable physical parameter to generate a sensing signal; a control signal that transmits the target range code is received from a control device via a wireless link Under conditions, respond to the sensing signal to obtain a measurement value; obtain the delivered target range code from the control signal; respond to the control signal to check a mathematical relationship between the measurement value and the application range of the measurement value; Under the condition that the physical parameter application range that the variable physical parameter is currently in is determined by checking the mathematical relationship, access the stored control code based on the obtained target range code; and access the stored control code based on the accessed The control code transmits a function signal to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the physical parameter application range. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且該物理參數目標範圍由一目標範圍碼所指示,該控制目標裝置包含:一儲存單元,儲存基於在該物理參數目標範圍之內的 一指定物理參數而被預先設定的一控制碼;一感測單元,感測該可變物理參數以產生一感測訊號;以及一操作單元,耦合於該儲存單元和該感測單元,在該操作單元從一控制裝置接收輸送該目標範圍碼的一控制訊號的條件下響應該感測訊號來獲得一測量值,從是一光訊號的該控制訊號獲得所輸送的該目標範圍碼,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下基於所獲得的該目標範圍碼來存取所儲存的該控制碼,並基於所存取的該控制碼來向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range Is characterized, and the physical parameter target range is indicated by a target range code. The control target device includes: a storage unit for storing data based on the physical parameter target range A control code that is preset for a designated physical parameter; a sensing unit that senses the variable physical parameter to generate a sensing signal; and an operating unit coupled to the storage unit and the sensing unit, in the The operating unit responds to the sensing signal to obtain a measurement value under the condition of receiving a control signal conveying the target range code from a control device, obtains the conveyed target range code from the control signal which is an optical signal, and responds to the The control signal is used to check a mathematical relationship between the measurement value and the application range of the measurement value, and based on the obtained condition that the operating unit determines that the variable physical parameter is currently in the application range of the physical parameter by checking the mathematical relationship The target range code is used to access the stored control code, and based on the accessed control code, a function signal is transmitted to a function target with the variable physical parameter, and the function signal is used to cause the function target to cause The variable physical parameter enters the target range of the physical parameter from the application range of the physical parameter. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,且該物理參數目標範圍由一目標範圍碼所指示,該方法包含下列步驟:儲存基於在該物理參數目標範圍之內的一指定物理參數而被預先設定的一控制碼;感測該可變物理參數以產生一感測訊號;在輸送該目標範圍碼的一控制訊號從一控制裝置而被接收的條件下,響應該感測訊號來獲得一測量值;從是一光訊號的該控制訊號獲得所輸送的該目標範圍 碼;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,基於所獲得的該目標範圍碼來存取所儲存的該控制碼;以及基於所存取的該控制碼,向具有該可變物理參數的一功能目標傳輸一功能訊號,該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range The target range of the physical parameter is indicated by a target range code. The method includes the following steps: storing a control code preset based on a designated physical parameter within the target range of the physical parameter; Change the physical parameter to generate a sensing signal; under the condition that a control signal conveying the target range code is received from a control device, respond to the sensing signal to obtain a measurement value; the control is thus an optical signal The target range delivered by the signal Code; in response to the control signal, check a mathematical relationship between the measurement value and the measurement value application range; under the condition that the physical parameter application range that the variable physical parameter is currently in is determined by checking the mathematical relationship, The stored control code is accessed based on the obtained target range code; and based on the accessed control code, a function signal is transmitted to a function target with the variable physical parameter, and the function signal is used to make The function target causes the variable physical parameter to enter the physical parameter target range from the physical parameter application range. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,該控制目標裝置包含:一感測單元,感測該可變物理參數以產生一第一感測訊號;以及一操作單元,耦合於該感測單元,在該操作單元從一控制裝置接收起到指示該物理參數目標範圍的作用的一控制訊號的條件下響應該第一感測訊號來獲得一測量值,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,並在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下由於該控制訊號而向具有該可變物理參數的一功能目標傳輸一功能訊號,其中:該功能訊號用於使該功能目標導致該可變物理參數從 該物理參數應用範圍進入該物理參數目標範圍;在該操作單元產生該功能訊號之後,該感測單元感測該可變物理參數以產生一第二感測訊號;以及該操作單元基於該第二感測訊號和代表所指示的該物理參數目標範圍的一測量值目標範圍來辨識該可變物理參數和該物理參數目標範圍之間的一物理參數關係以向該控制裝置傳輸輸送一肯定操作報告的一控制回應訊號,該肯定操作報告表示該可變物理參數由於該控制訊號而成功地進入該物理參數目標範圍的一操作情況。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range Characterized, the control target device includes: a sensing unit that senses the variable physical parameter to generate a first sensing signal; and an operating unit coupled to the sensing unit, where the operating unit controls The device responds to the first sensing signal to obtain a measurement value under the condition of receiving a control signal that functions to indicate the target range of the physical parameter, and responds to the control signal to check the measurement value and the application range of the measurement value. A mathematical relationship, and under the condition that the operating unit determines that the variable physical parameter is currently in the application range of the physical parameter by checking the mathematical relationship, the control signal transmits a control signal to a functional target with the variable physical parameter. Function signal, where: the function signal is used to cause the function target to cause the variable physical parameter to change from The physical parameter application range enters the physical parameter target range; after the operating unit generates the function signal, the sensing unit senses the variable physical parameter to generate a second sensing signal; and the operating unit is based on the second The sensing signal and a measured value target range representing the indicated target range of the physical parameter are used to identify a physical parameter relationship between the variable physical parameter and the target range of the physical parameter to transmit a positive operation report to the control device A control response signal of, and the affirmative operation report indicates an operation situation in which the variable physical parameter successfully enters the target range of the physical parameter due to the control signal. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,該方法包含下列步驟:感測該可變物理參數以產生一第一感測訊號;在起到指示該物理參數目標範圍的作用的一控制訊號從一控制裝置而被接收的條件下,響應該第一感測訊號來獲得一測量值;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,由於該控制訊號而向具有該可變物理參數的一功能目標傳輸一功能訊號,其中該功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍;在該功能訊號被產生之後,感測該可變物理參數以產 生一第二感測訊號;以及基於該第二感測訊號和代表所指示的該物理參數目標範圍的一測量值目標範圍,辨識該可變物理參數和該物理參數目標範圍之間的一物理參數關係以向該控制裝置傳輸輸送一肯定操作報告的一控制回應訊號,該肯定操作報告表示該可變物理參數由於該控制訊號而成功地進入該物理參數目標範圍的一操作情況。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range The method includes the following steps: sensing the variable physical parameter to generate a first sensing signal; under the condition that a control signal that functions to indicate the target range of the physical parameter is received from a control device, In response to the first sensing signal, a measurement value is obtained; in response to the control signal, a mathematical relationship between the measurement value and the measurement value application range is checked; the physical parameter application range in which the variable physical parameter is currently located is due to Under the condition determined by checking the mathematical relationship, a function signal is transmitted to a function target with the variable physical parameter due to the control signal, wherein the function signal is used to cause the function target to cause the variable physical parameter to change from the The physical parameter application range enters the physical parameter target range; after the function signal is generated, the variable physical parameter is sensed to produce Generating a second sensing signal; and based on the second sensing signal and a measured value target range representing the indicated physical parameter target range, identifying a physical parameter between the variable physical parameter and the physical parameter target range The parameter relationship is to transmit a control response signal of a positive operation report to the control device, and the positive operation report indicates an operation situation in which the variable physical parameter successfully enters the target range of the physical parameter due to the control signal. 一種用於控制一可變物理參數的控制目標裝置,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,該控制目標裝置包含:一感測單元,感測該可變物理參數以產生一感測訊號;以及一操作單元,耦合於該感測單元,包含一輸入單元,在該操作單元從一控制裝置接收起到指示該物理參數目標範圍的作用的一控制訊號的條件下響應該感測訊號來獲得一測量值,響應該控制訊號來檢查該測量值和該測量值應用範圍之間的一數學關係,並在該操作單元由於檢查該數學關係而確定該可變物理參數目前處於的該物理參數應用範圍的條件下由於該控制訊號而向具有該可變物理參數的一功能目標傳輸一第一功能訊號,其中:該第一功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍;在該可變物理參數基於該第一功能訊號而被配置以處於該物理參數目標範圍的條件下,該輸入單元接收一使用 者輸入操作;以及在該操作單元響應該使用者輸入操作而確定用於指示一特定物理參數範圍的一碼的條件下,該操作單元基於所確定的該碼來向該功能目標傳輸一第二功能訊號,其中該第二功能訊號用於使該功能目標導致該可變物理參數離開該物理參數目標範圍以進入不同於該物理參數目標範圍的該特定物理參數範圍。 A control target device for controlling a variable physical parameter, wherein the variable physical parameter is based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range Characterized, the control target device includes: a sensing unit that senses the variable physical parameter to generate a sensing signal; and an operating unit, coupled to the sensing unit, includes an input unit, in the operating unit Responding to the sensing signal to obtain a measurement value under the condition of receiving a control signal that functions to indicate the target range of the physical parameter from a control device, and responding to the control signal to check whether the measurement value is between the measurement value and the measurement value application range The control signal transmits to a functional target with the variable physical parameter under the condition that the operating unit checks the mathematical relationship and determines that the variable physical parameter is currently in the application range of the physical parameter. A first function signal, wherein: the first function signal is used to cause the function target to cause the variable physical parameter to enter the physical parameter target range from the physical parameter application range; the variable physical parameter is based on the first function signal And configured to be in the target range of the physical parameter, the input unit receives a use Operator input operation; and under the condition that the operating unit determines a code indicating a specific physical parameter range in response to the user input operation, the operating unit transmits a second function to the functional target based on the determined code Signal, wherein the second function signal is used to cause the function target to cause the variable physical parameter to leave the physical parameter target range to enter the specific physical parameter range different from the physical parameter target range. 一種用於控制一可變物理參數的方法,其中該可變物理參數基於由一測量值應用範圍所代表的一物理參數應用範圍和不同於該物理參數應用範圍的一物理參數目標範圍而被特徵化,該方法包含下列步驟:感測該可變物理參數以產生一感測訊號;在起到指示該物理參數目標範圍的作用的一控制訊號從一控制裝置而被接收的條件下,響應該感測訊號來獲得一測量值;響應該控制訊號,檢查該測量值和該測量值應用範圍之間的一數學關係;在該可變物理參數目前處於的該物理參數應用範圍由於檢查該數學關係而被確定的條件下,由於該控制訊號而向具有該可變物理參數的一功能目標傳輸一第一功能訊號,其中該第一功能訊號用於使該功能目標導致該可變物理參數從該物理參數應用範圍進入該物理參數目標範圍;在該可變物理參數基於該第一功能訊號而被配置以處於該物理參數目標範圍的條件下,接收一使用者輸入操作;以及 在用於指示一特定物理參數範圍的一碼響應該使用者輸入操作而被確定的條件下,基於所確定的該碼來向該功能目標傳輸一第二功能訊號,其中該第二功能訊號用於使該功能目標導致該可變物理參數離開該物理參數目標範圍以進入不同於該物理參數目標範圍的該特定物理參數範圍。 A method for controlling a variable physical parameter, wherein the variable physical parameter is characterized based on a physical parameter application range represented by a measurement value application range and a physical parameter target range different from the physical parameter application range The method includes the following steps: sensing the variable physical parameter to generate a sensing signal; responding to the condition that a control signal that functions to indicate the target range of the physical parameter is received from a control device Sensing the signal to obtain a measurement value; in response to the control signal, check a mathematical relationship between the measurement value and the application range of the measurement value; check the mathematical relationship between the physical parameter application range where the variable physical parameter is currently Under certain conditions, a first functional signal is transmitted to a functional target with the variable physical parameter due to the control signal, wherein the first functional signal is used to cause the functional target to cause the variable physical parameter to change from the The physical parameter application range enters the physical parameter target range; receiving a user input operation under the condition that the variable physical parameter is configured based on the first function signal to be in the physical parameter target range; and Under the condition that a code indicating a specific physical parameter range is determined in response to the user input operation, a second function signal is transmitted to the function target based on the determined code, wherein the second function signal is used for Making the function target causes the variable physical parameter to leave the physical parameter target range to enter the specific physical parameter range different from the physical parameter target range.
TW108148736A 2019-12-31 2019-12-31 Control target device and method for controlling variable physical parameter TWI741471B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW108148736A TWI741471B (en) 2019-12-31 2019-12-31 Control target device and method for controlling variable physical parameter
CN202011556362.0A CN113126539A (en) 2019-12-31 2020-12-24 Functional device and method for controlling variable physical parameters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW108148736A TWI741471B (en) 2019-12-31 2019-12-31 Control target device and method for controlling variable physical parameter

Publications (2)

Publication Number Publication Date
TW202127157A TW202127157A (en) 2021-07-16
TWI741471B true TWI741471B (en) 2021-10-01

Family

ID=76772217

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108148736A TWI741471B (en) 2019-12-31 2019-12-31 Control target device and method for controlling variable physical parameter

Country Status (2)

Country Link
CN (1) CN113126539A (en)
TW (1) TWI741471B (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565755B (en) * 2002-04-25 2003-12-11 Mitsubishi Electric Corp Control parameter automatic adjustment apparatus
CN101346676A (en) * 2005-12-30 2009-01-14 Abb公司 Method and device for tuning and control
CN101506507A (en) * 2006-08-22 2009-08-12 通用汽车环球科技运作公司 Method and apparatus for estimating exhaust pressure of an internal combustion engine
CN101930215A (en) * 2009-06-22 2010-12-29 费希尔-罗斯蒙特系统公司 Adaptive controller based on the model parameter of continuous scheduling
CN102812303A (en) * 2009-12-16 2012-12-05 国家科学和工业研究组织 HVAC Control System And Method
US20150241881A1 (en) * 2012-01-10 2015-08-27 Schlumberger Technology Corporation Submersible pump control
CN105473354A (en) * 2013-08-18 2016-04-06 森思博有限公司 Power consumption assessment of an HVAC system
CN106030296A (en) * 2013-12-20 2016-10-12 格尔德·赖梅 Sensor arrangement and method for determining at least one physical parameter
CN106233080A (en) * 2014-04-25 2016-12-14 尚飞公司 Order and/or control device and system
CN107850876A (en) * 2015-06-25 2018-03-27 雷诺两合公司 For the method for the energy equivalence coefficient for controlling hybrid moto vehicle
US20190033846A1 (en) * 2016-05-09 2019-01-31 Strong Force Iot Portfolio 2016, Llc Methods and systems for detection in an industrial internet of things data collection environment with adjustment of detection parameters for continuous vibration data
CN109642536A (en) * 2016-06-21 2019-04-16 能源启用解决方案有限公司 Control or processing system and method
TW201921197A (en) * 2013-10-14 2019-06-01 美商應用材料股份有限公司 Matching process controllers for improved matching of process

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW565755B (en) * 2002-04-25 2003-12-11 Mitsubishi Electric Corp Control parameter automatic adjustment apparatus
CN101346676A (en) * 2005-12-30 2009-01-14 Abb公司 Method and device for tuning and control
CN101506507A (en) * 2006-08-22 2009-08-12 通用汽车环球科技运作公司 Method and apparatus for estimating exhaust pressure of an internal combustion engine
CN101930215A (en) * 2009-06-22 2010-12-29 费希尔-罗斯蒙特系统公司 Adaptive controller based on the model parameter of continuous scheduling
CN102812303A (en) * 2009-12-16 2012-12-05 国家科学和工业研究组织 HVAC Control System And Method
US20150241881A1 (en) * 2012-01-10 2015-08-27 Schlumberger Technology Corporation Submersible pump control
CN105473354A (en) * 2013-08-18 2016-04-06 森思博有限公司 Power consumption assessment of an HVAC system
TW201921197A (en) * 2013-10-14 2019-06-01 美商應用材料股份有限公司 Matching process controllers for improved matching of process
CN106030296A (en) * 2013-12-20 2016-10-12 格尔德·赖梅 Sensor arrangement and method for determining at least one physical parameter
CN106233080A (en) * 2014-04-25 2016-12-14 尚飞公司 Order and/or control device and system
CN107850876A (en) * 2015-06-25 2018-03-27 雷诺两合公司 For the method for the energy equivalence coefficient for controlling hybrid moto vehicle
US20190033846A1 (en) * 2016-05-09 2019-01-31 Strong Force Iot Portfolio 2016, Llc Methods and systems for detection in an industrial internet of things data collection environment with adjustment of detection parameters for continuous vibration data
CN109642536A (en) * 2016-06-21 2019-04-16 能源启用解决方案有限公司 Control or processing system and method

Also Published As

Publication number Publication date
CN113126539A (en) 2021-07-16
TW202127157A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
CN109274309B (en) Motor control method, motor control device, electronic device and storage medium
CN107076571B (en) For initializing the method, equipment and system of meter reading device
WO2024179153A1 (en) Fan operation control method and apparatus, and electronic device and storage medium
CN104049123A (en) Storage modes for measurement values and contextual information
TWI741471B (en) Control target device and method for controlling variable physical parameter
TWI734334B (en) Control target device and method for controlling variable physical parameter
WO2021136374A1 (en) Control target apparatus and method for controlling variable physical parameters
TWI791391B (en) Control device and system and method for controlling variable physical parameter
WO2021136253A1 (en) Functional apparatus and method for controlling variable physical parameters
TWI734335B (en) Control device and method for controlling variable physical parameter
TWI742502B (en) Control device and method for controlling variable physical parameter
EP4411544A1 (en) Electronic device and operation method thereof
TWI775592B (en) Control device and method for controlling illuminating device
CA2999899A1 (en) System and methods for commissioning and maintaining industrial equipment
TW201003453A (en) Password securing system and method and password generating apparatus
TWI854268B (en) Control device and method for controlling variable physical parameter
TWI798812B (en) Control device and method for controlling illuminating device
WO2021136260A1 (en) Control apparatus and method for controlling variable physical parameters
TW202314412A (en) Control device and method for controlling variable physical parameter
CN113126486B (en) Control device and method for controlling variable physical parameters
CN111290578A (en) Touch keyboard and vibration feedback method thereof, computer equipment and readable storage medium
JP2007133607A (en) Method for setting card reader and card authentication system
KR102443782B1 (en) Method and system for predicting target user based on future interaction prediction
CN105554378A (en) Control method, control device and electronic device
CN105549860A (en) Control method, control apparatus and electronic apparatus