TWI754700B - 萃取離子束的裝置 - Google Patents

萃取離子束的裝置 Download PDF

Info

Publication number
TWI754700B
TWI754700B TW106141426A TW106141426A TWI754700B TW I754700 B TWI754700 B TW I754700B TW 106141426 A TW106141426 A TW 106141426A TW 106141426 A TW106141426 A TW 106141426A TW I754700 B TWI754700 B TW I754700B
Authority
TW
Taiwan
Prior art keywords
electrode
ion beam
ions
electrostatic energy
ion
Prior art date
Application number
TW106141426A
Other languages
English (en)
Other versions
TW201828326A (zh
Inventor
亞歷山大 利坎斯奇
Original Assignee
美商瓦里安半導體設備公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商瓦里安半導體設備公司 filed Critical 美商瓦里安半導體設備公司
Publication of TW201828326A publication Critical patent/TW201828326A/zh
Application granted granted Critical
Publication of TWI754700B publication Critical patent/TWI754700B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/22Electrostatic deflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/061Ion deflecting means, e.g. ion gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/053Arrangements for energy or mass analysis electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/0817Microwaves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/022Details
    • H01J27/024Extraction optics, e.g. grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/44Energy spectrometers, e.g. alpha-, beta-spectrometers
    • H01J49/46Static spectrometers
    • H01J49/48Static spectrometers using electrostatic analysers, e.g. cylindrical sector, Wien filter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一種能夠不使用質量分析器磁體便從所萃取的離子束過 濾出不需要的種類的裝置。所述裝置包括具有腔室壁的離子源,由射頻電壓對所述腔室壁施加偏壓。利用射頻萃取會使離子以不同的能量離開離子源,其中每一離子種類的能量與此離子種類的質量相關。然後可只使用靜電能量過濾器來過濾所萃取的離子束以除去不需要的種類。靜電能量過濾器可充當高通過濾器,以使能量高於某一閾值的離子到達工件。作為另一選擇,靜電能量過濾器可充當低通過濾器,以使能量低於某一閾值的離子到達工件。在另一實施例中,靜電能量過濾器用作帶通過濾器。

Description

萃取離子束的裝置
本發明實施例是有關於一種執行質量分離(mass separation)的裝置,且特別是有關於一種具有射頻(Radio Frequency,RF)萃取的離子源以及一種設置在所述離子源下游的靜電能量過濾器。
離子用於多種半導體製程(例如植入製程、非晶化製程、沉積製程及蝕刻製程)中。這些離子可在離子源腔室內形成且通過離子源腔室中的萃取開孔被萃取。
存在幾種不同類型的離子植入系統。第一種類型被稱為束線系統(beam-line system)。在束線系統中,離子是從離子源萃取,通過質量分析器以基於離子的質荷比(mass to charge ratio)來選擇特定離子,且被形成平行的帶狀離子束(ribbon ion beam)。束線系統也可包括減速台(deceleration stage)及其他組件,以使所得帶狀離子束更均勻。
第二種類型的離子植入系統被稱為電漿浸入式離子植入系統(plasma immersion ion implantation system)。在這些系統中, 在電漿腔室內設置工件。通過相對於電漿對工件施加負偏壓而朝工件吸引電漿中的離子。
第三種類型的離子植入系統使用電漿腔室來形成電漿。電漿中的離子通過萃取開孔被萃取且直接朝設置在電漿腔室外部的工件加速。
每一種類型的離子植入均具有優點及缺點。舉例來說,第三種類型的系統成本相對低且產生具有高電流的離子束,但缺乏濾除不需要的種類的能力。如果存在一種保持這第三種類型的系統的優點而且還能夠從所萃取的帶狀離子束過濾出不需要的種類的裝置,將是有益的。
本發明揭露一種能夠不使用質量分析器磁體便從所萃取的離子束過濾出不需要的種類的裝置。所述裝置包括具有腔室壁的離子源,由射頻電壓對所述腔室壁施加偏壓。在離子源的萃取開孔的外部設置有萃取光學元件,所述萃取光學元件可被接地或被施加直流(Direct Current,DC)偏壓。利用射頻萃取會使離子以不同的能量離開離子源,其中每一離子種類的能量與此離子種類的質量相關。然後可只使用靜電能量過濾器來過濾所萃取的離子束以除去不需要的種類。靜電能量過濾器可充當高通過濾器(high pass filter),以使能量超過某一閾值的離子到達工件。作為另一選擇,靜電能量過濾器可充當低通過濾器(low pass filter), 以使能量低於某一閾值的離子到達工件。在另一實施例中,靜電能量過濾器用作帶通過濾器(bandpass filter)。
根據一個實施例,揭露一種萃取離子束的裝置。所述裝置包括:離子源,具有多個腔室壁,所述多個腔室壁界定離子源腔室,其中所述多個腔室壁中的一者包括萃取板,所述萃取板具有萃取開孔,其中使用射頻電壓對所述萃取板施加偏壓;萃取光學元件,設置在所述離子源腔室的外部,以通過所述萃取開孔從所述離子源腔室萃取離子束;以及靜電能量過濾器,設置在所述萃取光學元件的下游,以選擇性地使所述離子束中的特定離子到達工件。在某些實施例中,所述萃取光學元件被施加直流偏壓。在某些實施例中,所述靜電能量過濾器只使用電場來操縱所述離子束。在一些實施例中,所述靜電能量過濾器用作高通過濾器,以使能量大於第一預定值的離子通過。在其他實施例中,所述靜電能量過濾器用作低通過濾器,以使能量小於第二預定值的離子通過。在再一些實施例中,所述靜電能量過濾器用作帶通過濾器,以使能量介於第一預定值與第二預定值之間的離子通過。在某些實施例中,所述裝置包括設置在所述靜電能量過濾器與所述工件之間的第二靜電能量過濾器。
根據另一實施例,揭露一種萃取離子束的裝置。所述裝置包括:離子源,具有多個腔室壁,所述多個腔室壁界定離子源腔室,其中所述多個腔室壁中的一者包括萃取板,所述萃取板具有萃取開孔,其中使用射頻電壓對所述萃取板施加偏壓;萃取光 學元件,設置在所述離子源腔室的外部,以通過所述萃取開孔從所述離子源腔室萃取離子束;以及靜電能量過濾器,設置在所述萃取光學元件的下游,其中所述靜電能量過濾器包括至少一個電極,所述至少一個電極包括貫穿所述至少一個電極的開孔,以選擇性地使所述離子束中具有特定能量的離子通過所述開孔並到達工件。在某些實施例中,所述靜電能量過濾器包括被以第一正電壓施加偏壓的第一電極,使得能量小於所述第一正電壓的離子被所述第一電極排斥,從而使能量大於所述第一正電壓的離子通過所述開孔。在另一實施例中,所述裝置還包括被以負電壓施加偏壓的第二電極,所述第二電極設置在所述第一電極與所述工件之間以使通過所述第一電極的所述開孔的離子加速。在某些實施例中,所述靜電能量過濾器包括入口電極、出口電極及至少一個中心電極,所述入口電極、所述出口電極及所述至少一個中心電極中的每一者包括上板及下板,在所述上板與所述下板之間界定開孔,其中所述上板與所述下板被獨立地施加偏壓,且其中所述入口電極的開孔、所述出口電極的開孔及所述至少一個中心電極的開孔不線性對齊。在某些實施例中,所述靜電能量過濾器包括多個中心電極。在某些實施例中,所述靜電能量過濾器包括入口電極、出口電極及至少一個中心電極,所述入口電極、所述出口電極及所述至少一個中心電極中的每一者包括兩個被獨立地施加偏壓且間隔開的導電杆,在所述兩個被獨立地施加偏壓且間隔開的導電杆之間界定開孔,其中所述入口電極的開孔、所述出口電極 的開孔及所述至少一個中心電極的開孔不線性對齊。
根據另一實施例,揭露一種萃取離子束的裝置。所述裝置包括:離子源,被配置成萃取離子束,其中所述離子束中的每一種類的離子具有唯一的離子能量分佈函數(ion energy distribution function);以及靜電能量過濾器,設置在所述離子源的下游,以基於所述唯一的離子能量分佈函數選擇性地使特定種類的離子朝工件通過。在某些實施例中,所述靜電能量過濾器包括分辨開孔(resolving aperture),使得只有具有所期望能量的離子通過所述分辨開孔並被朝所述工件引導。在一些實施例中,所述裝置包括第二靜電能量過濾器,所述第二靜電能量過濾器設置在所述靜電能量過濾器與所述工件之間,以基於所述唯一的離子能量分佈函數選擇性地使特定種類的離子朝所述工件通過。
1:離子束
10:工件
100:離子源
110:離子源腔室
111:腔室壁
112:萃取板
113:介電窗
115:萃取開孔
120:射頻天線
130:射頻電源
140:偏壓電源
141:阻隔電容器
150:氣體存儲容器
151:氣體入口
180:地電極
185:地開孔
200:靜電能量過濾器
300、301、302、310、311、312、320:線
303、313、314、321、322、323、324:峰
400:導電板
401、411:開孔
410:第二導電板
500、550:中心電極
510、560:入口電極
520、570:出口電極
580:電漿浸沒槍區
590:隧道
591:入口開孔
592:出口開孔
593、594:投射路徑
600:分辨開孔
為了更好地理解本揭露,參照圖式,所述圖式併入本申請供參考且在附圖中:圖1繪示出根據一個實施例的使用靜電能量過濾器根據質量來分離離子的裝置。
圖2繪示出對於三個不同的種類,離子的能量隨著質量而變化的曲線圖。
圖3A及圖3B繪示出靜電能量過濾器的兩個實施例。
圖4A及圖4B繪示出靜電能量過濾器的其他實施例。
圖5A至圖5C繪示出各種能量的離子穿過圖4A至圖4B所示靜電能量過濾器的路徑。
圖6繪示出使用分辨開孔的圖4A所示靜電能量過濾器。
圖1繪示出可用於只使用靜電能量過濾器根據質量來分離離子的裝置的第一實施例。所述裝置包括離子源100。離子源100包括多個腔室壁111,所述多個腔室壁111界定離子源腔室110。可抵靠介電窗113設置射頻天線120。此介電窗113可包括腔室壁111中的一個腔室壁111的一部分或全部。射頻天線120可包含導電材料,例如銅。射頻電源130與射頻天線120進行電通信。射頻電源130可向射頻天線120供應射頻電壓。由射頻電源130供應的功率可介於0.1kW與10kW之間,且可為任何適合的頻率,例如介於1MHz與15MHz之間的頻率。此外,由射頻電源130供應的功率可為脈衝式的。
儘管所述附圖繪示出射頻天線120抵靠介電窗設置在離子源腔室110的外部,然而也可存在其他實施例。舉例來說,電漿可以不同的方式產生,例如由伯納斯離子源(Bernas ion source)、電容耦合電漿(Capacitively Coupled Plasma,CCP)源、間接加熱式陰極(Indirectly Heated Cathode,IHC或另一電漿源)產生。電漿產生的方式不受本揭露限制。
在某些實施例中,腔室壁111可為導電的,且可由金屬 構造而成。在某些實施例中,這些腔室壁111可由偏壓電源140施加電偏壓。被施加到腔室壁111的偏壓在離子源腔室110內形成電位。電漿的電位與地電極180的電位之間的差可有助於確定所萃取的離子擁有的能量。
被稱為萃取板112的一個腔室壁包括萃取開孔115。萃取開孔115可為通過其萃取在離子源腔室110中產生的離子並朝工件10引導所述離子的開口。萃取開孔115可為任何適合的形狀。在某些實施例中,萃取開孔115可為橢圓形形狀或矩形形狀,萃取開孔115的被稱為長度的一個尺寸可比被稱為高度的第二尺寸大得多。在某些實施例中,萃取開孔115的長度可為兩米大或大於兩米。如上所述,在某些實施例中,腔室壁111及萃取板112全部為導電的。在其他實施例中,只有萃取板112為導電的且與偏壓電源140進行通信。剩餘的腔室壁111可由介電材料製成。偏壓電源140可以介於0.5kV與10kV之間的射頻電壓以及介於0.1MHz與50MHz之間的頻率對腔室壁111及萃取板112施加偏壓。
在萃取開孔115的外部且靠近萃取開孔115設置有萃取光學元件。在某些實施例中,萃取光學元件包括地電極180。地電極180可為其中設置有地開孔185的單個導電組件。作為另一選擇,地電極180可由兩個導電組件構成,所述兩個導電元件間隔開以在所述兩個元件之間形成地開孔185。地電極180可為金屬,例如鈦。地電極180可電連接到地。當然,在其他實施例中,可 使用單獨的電源對地電極180施加偏壓。萃取開孔115與地開孔185對齊。
在其他實施例中,萃取光學元件可更複雜。舉例來說,萃取光學元件可包括一個或多個附加電極。舉例來說,可存在設置在萃取板112與地電極180之間的一個或多個電極。在其他實施例中,可存在設置在地電極180與靜電能量過濾器200之間的一個或多個電極。萃取光學元件的配置可變化且不受本揭露限制。
靜電能量過濾器200位於地電極180的下游。與傳統質量分析器不同,靜電能量過濾器200只利用電場來基於質量對離子束1進行過濾。更具體來說,靜電能量過濾器200使用電場來操縱離子束1的能量。從離子源100萃取的離子的能量與離子的質量相關。因此,靜電能量過濾器200具有基於離子的質量來過濾離子束的作用。由於每一種類的質量是不同的,因此靜電能量過濾器200具有基於種類的類型進行過濾的作用。此外,如上所述,這種過濾是在不使用磁體或磁場的情況下執行。
在操作中,通過氣體入口151將來自氣體存儲容器150的饋入氣體(feed gas)引入到離子源腔室110。由射頻電源130對射頻天線120供能。這種能量會激發饋入氣體,使得形成電漿。所述電漿中的離子通常帶有正電荷。由於地電極180被施加比腔室壁111及萃取板112更負的偏壓,因此離子是以離子束1的形式離開萃取開孔115。離子束1通過萃取開孔115、地開孔185、靜電能量過濾器200並朝工件10行進。
如上所述,偏壓電源140通過阻隔電容器(blocking capacitor)141對腔室壁111供應射頻電壓。從偏壓電源140輸出的射頻電壓可呈以下形式:Vbias=V0sin(2πf),其中V0為偏壓的幅值,且f為偏壓的頻率。
一旦啟動,離子源將形成平均正電位(被稱為自偏壓(self-bias voltage))。這種自偏壓通常為正值。因此,電漿的電壓可被表示為:Vplasma=Vselfbias+V0sin(2πf),其中Vselfbias為自偏壓,V0為偏壓的幅值,且f為偏壓的頻率。
每當電漿的電位相對於地電極180為正時,離子便被朝地電極180吸引。如果Vselfbias大於或等於V0,則電漿將始終比地電極180更正。如果Vselfbias小於V0,則每當sin(2πf)大於-Vselfbias/V0時,電漿將比地電極180更正。自偏壓可為V0、地電極180的大小、萃取板112的大小及偏壓的頻率的函數。
然而,由於離子具有有限的質量及慣性,因此離子無法立即對變化的電漿電位作出反應。舉例來說,重離子無法對射頻電壓的高頻率變化作出回應。因此,這些重離子是以大致等於自偏壓的能量被全部萃取。較輕的離子具有較小的慣性且因此能夠對變化的電漿電位作出反應。因此,較輕的離子是以與較重的離子不同的能量被萃取。
換句話說,不同的離子具有不同的離子能量分佈函數。舉例來說,圖2繪示出從利用頻率為13.56MHz的射頻電壓的離子源萃取的各個種類的離子能量分佈。線300繪示出重種類的離 子的離子能量分佈函數。應注意,幾乎所有這些離子均具有相同的能量,因為重種類的離子能量分佈函數具有一個非常窄的峰303。這些重種類在這一窄峰303處的能級可非常接近於如上所述的電漿的自偏壓。此外,重種類的分佈非常窄,線上301與線302之間延伸。
線320繪示出非常輕的種類的離子的離子能量分佈函數。應注意,輕種類是以廣得多的能級範圍(從線321延伸到線322)被萃取。然而,存在出現在比自偏壓低得多的能量處的一個大的峰323以及處於比自偏壓大得多的能量處的一個較小的峰324。
線310繪示出質量介於重種類與輕種類之間的種類的離子能量分佈函數。與輕種類相同,線310具有雙峰輪廓,其中這些峰中的每一者與輕種類的峰相比更接近於自偏壓。具體來說,峰313處於比峰323高的能量處,而峰314處於比峰324低的能量處。此外,這兩個峰313、314的幅值比輕種類的峰323、324的幅值大一些。這可能是因為所有中等質量的離子是在較窄的能量範圍內被萃取。中等質量的種類的能量範圍介於線311與線312之間。
基於這一曲線圖,可以看出,對於較重的種類來說,離子能量分佈較密集(即,跨越較小的能量範圍)。較輕的種類具有寬得多的能量分佈。因此,使用包括射頻元件的萃取電壓會得到具有多個種類的離子束1,其中這些種類中的每一者具有與此種類 的質量相關的特定離子能量分佈函數。
可利用離子束1中的所萃取的離子具有唯一的離子能量分佈函數這一事實來從所萃取的離子束過濾出不需要的種類。
可使用靜電能量過濾器200來選擇這些所萃取的種類中的一種或多種。靜電能量過濾器200的複雜度可基於所期望的種類而變化。舉例來說,參照圖2,如果期望具有只包括輕種類的離子束,則靜電能量過濾器200可用於只允許將能量大於由線312表示的能量的離子傳送到工件10。作為另一選擇,靜電能量過濾器200可用於只允許將能量小於由線311表示的能量的離子傳送到工件10。
在圖3A所示的一個實施例中,靜電能量過濾器200可包括單個導電板400,導電板400具有開孔401,導電板400被以預定電壓(例如比由線312表示的電壓略大的電壓)施加偏壓。以小於這一預定電壓的能級被萃取的所有離子均將被導電板400排斥,且將不通過靜電能量過濾器200。能量大於預定電壓的離子將通過開孔401並朝工件10行進。
因此,在一個實施例中,靜電能量過濾器200可為被以預定電壓施加偏壓的一個導電板,以形成高通過濾器來隻使最輕的種類通過。
當然,靜電能量過濾器200可包括多個導電板。舉例來說,圖3B繪示出具有帶有開孔401的導電板400的靜電能量過濾器200,導電板400被以第一預定電壓施加正偏壓以排斥離子能量 小於第一預定電壓的離子。可在導電板400的下游設置具有開孔411的第二導電板410。此第二導電板410可被施加負偏壓以使通過開孔401的離子加速。在這一特定實施例中,開孔401、411可對齊以使離子以直的路徑行進。
儘管圖3A及圖3B繪示出其中靜電能量過濾器200充當高通過濾器的實施例,然而也可存在其他配置。圖4A繪示出一個這樣的配置。在這一配置中,靜電能量過濾器200包括入口電極510、出口電極520及設置在入口電極510與出口電極520之間的一個或多個中心電極500。各電極均為導電材料,例如導電板。此外,各電極均包括開孔。各電極均包括兩個間隔開的導電板,其中所述兩個板之間的空間形成開孔。這些間隔開的板可被稱為電極的上板及下板。各電極的上板及下板可以不同的電壓被獨立地施加偏壓以使離子偏轉。此外,各中心電極500可被獨立於所有其他中心電極500施加偏壓。電極的開孔不線性對齊。因此,離子束在離子束通過靜電能量過濾器200時發生偏轉。
在某些實施例中,在出口電極520的下游設置有電漿浸沒槍區(plasma flood gun region)580。電漿浸沒槍區580包括隧道590,電子的目標是進入隧道590。隧道590也具有入口開孔591及出口開孔592。入口開孔591也可用作分辨開孔,如以下更詳細闡述。
如圖4A中所見,離子束1的路徑並非直線式。實際上,施加到中心電極500的上板及下板中的每一者的偏壓會形成電 場,所述電場使離子束1在離子束1通過中心電極500中的每一者中的開孔時發生偏轉。如果所有離子均具有相同的能量,則靜電能量過濾器200中的電場將使所有離子沿循圖4A所示的離子束1的路徑。換句話說,所述電場會使離子向下偏轉。然而,如以上針對圖2所述,從離子源100萃取的離子具有不同的能量。
圖4B繪示出靜電能量過濾器200的另一實施例。在這一實施例中,構成各電極的導電板被導電杆取代。因此,靜電能量過濾器200仍由入口電極560、出口電極570及一個或多個中心電極550構成。然而,這些電極中的每一者是由兩個間隔開的導電杆構成,在所述兩個間隔開的導電杆之間具有開孔。間隔開的導電杆中的每一者可被獨立地施加偏壓。這一實施例的操作相同於針對圖4A闡述的操作。
靜電能量過濾器200中的電場使這些離子沿循不同的路徑。圖5A至圖5C繪示出使用圖4B所示靜電能量過濾器200的三個不同的場景。舉例來說,具有所期望能量的離子可沿循離子束1的路徑。此示於圖5A中。離子通過靜電能量過濾器200,且通過入口開孔591。離子離開隧道590並朝工件10行進。
具有大於所期望能量的離子無法向下偏轉到相同的程度。因此,具有太大能量的離子無法通過入口開孔591。圖5B繪示出具有比所期望的能量大的能量的離子的投射路徑593。應注意,這些離子的投射路徑593偏轉到比圖5A所示程度低的程度。因此,離子不能充分偏轉而通過入口開孔591。因此,入口開孔 591用作分辨開孔,從而只允許具有規定能量的離子通過。
相似地,具有小於所期望能量的離子可偏轉到比所期望程度大的程度。具有太小能量的這些離子可撞射中心電極550中的一者的下部,或者無法通過入口開孔591。圖5C繪示出具有比所期望的能量小的能量的離子的投射路徑594。在這個圖中,離子被朝中心電極550中的一者拉回(pull back)。
因此,圖5A至圖5C繪示出只有所期望能量的離子通過靜電能量過濾器200並到達工件10。
儘管圖4A至圖4B以及圖5A至圖5C繪示出設置在靜電能量過濾器200之後的電漿浸沒槍區580,然而也存在其他實施例。舉例來說,可在靜電能量過濾器200之後設置分辨開孔600,如圖6所示。這一分辨開孔600可具有阻止能量與所期望能級不同的離子的作用。換句話說,分辨開孔600可執行與電漿浸沒槍區580中的隧道590相同的功能。儘管圖6繪示出具有分辨開孔600的圖4A所示實施例,然而分辨開孔也可與圖4B所示的實施例一起使用。
此外,這些各種實施例可進行組合。舉例來說,圖3A所示高通過濾器可與圖4A或圖4B所示靜電能量過濾器200結合使用。此外,圖4A或圖4B所示靜電能量過濾器200可進行級聯(cascaded),其中每一過濾器被設計成使特定的能帶通過。
在操作中,考慮到隨後進行的過濾,可對偏壓的頻率及幅值進行選擇以提供最優離子能量分佈函數及離子束品質。舉例 來說,可對頻率進行選擇以在所關注的峰與其他峰(參見圖2)之間形成所期望的能隙。在某些實施例中,偏壓電源140可為可變的電源以使得可基於所期望的種類來修改頻率。如上所述,各峰之間的間距可取決於偏壓的頻率。
此外,儘管本揭露闡述了正弦偏壓,然而也可存在其他實施例。舉例來說,偏壓可為鋸齒形狀。在某些實施例中,偏壓包括多頻率射頻信號。
本發明裝置具有許多優點。首先,通過利用經過調製的偏壓,可按照質量來分離離子束而不使用昂貴的磁體。此外,通過將經過調製的偏壓與靜電能量過濾器一起使用,系統的尺寸大大減小。另外,在一些實施例中,靜電能量過濾器可簡單地為被施加偏壓的導電板,從而進一步減小裝置的成本及大小。此外,靜電能量過濾器的微調可更簡單。
本揭露的範圍不受本文所述的具體實施例限制。實際上,通過前述說明及附圖,除本文所述的實施例以外,本揭露的其他各種實施例及對本揭露的修改將對所屬領域中具有通常知識者顯而易見。因此,這些其他實施例及修改旨在落於本揭露的範圍內。此外,儘管本文已出於特定目的在特定環境中的特定實施方案的上下文中闡述了本揭露,然而所屬領域中具有通常知識者應認識到,本揭露的適用性並非僅限於此,且本揭露可出於任何數目的目的在任何數目的環境中有益地實施。因此,應根據本文所述的本揭露的全部廣度及精神來理解以上所述的申請專利範 圍。
1:離子束
10:工件
100:離子源
110:離子源腔室
111:腔室壁
112:萃取板
113:介電窗
115:萃取開孔
120:射頻天線
130:射頻電源
140:偏壓電源
141:阻隔電容器
150:氣體存儲容器
151:氣體入口
180:地電極
185:地開孔
200:靜電能量過濾器

Claims (14)

  1. 一種萃取離子束的裝置,包括:離子源,具有多個腔室壁,所述多個腔室壁界定離子源腔室,其中所述多個腔室壁中的一者包括萃取板,所述萃取板具有萃取開孔,其中使用射頻電壓對所述萃取板施加偏壓;萃取光學元件,設置在所述離子源腔室的外部,以通過所述萃取開孔從所述離子源腔室萃取離子束;以及靜電能量過濾器,設置在所述萃取光學元件的下游,以基於離子的質量選擇性地使所述離子束中的特定離子到達工件,其中所述靜電能量過濾器只使用電場來操縱所述離子束。
  2. 如申請專利範圍第1項所述的萃取離子束的裝置,其中所述萃取光學元件被施加直流偏壓。
  3. 如申請專利範圍第1項所述的萃取離子束的裝置,其中所述靜電能量過濾器用作高通過濾器,以使能量大於第一預定值的離子通過。
  4. 如申請專利範圍第1項所述的萃取離子束的裝置,其中所述靜電能量過濾器用作低通過濾器,以使能量小於第二預定值的離子通過。
  5. 如申請專利範圍第1項所述的萃取離子束的裝置,其中所述靜電能量過濾器用作帶通過濾器,以使能量介於第一預定值與第二預定值之間的離子通過。
  6. 如申請專利範圍第1項所述的萃取離子束的裝置,還包括設置在所述靜電能量過濾器與所述工件之間的第二靜電能量過濾器。
  7. 一種萃取離子束的裝置,包括:離子源,具有多個腔室壁,所述多個腔室壁界定離子源腔室,其中所述多個腔室壁中的一者包括萃取板,所述萃取板具有萃取開孔,其中使用射頻電壓對所述萃取板施加偏壓;萃取光學元件,設置在所述離子源腔室的外部,以通過所述萃取開孔從所述離子源腔室萃取離子束,其中所述離子束中不同質量的離子具有不同的能量;以及靜電能量過濾器,設置在所述萃取光學元件的下游,其中所述靜電能量過濾器包括至少一個電極,所述至少一個電極包括貫穿所述至少一個電極的開孔,以選擇性地使所述離子束中具有特定能量的離子通過所述開孔並到達工件。
  8. 如申請專利範圍第7項所述的萃取離子束的裝置,其中所述靜電能量過濾器包括被以第一正電壓施加偏壓的第一電極,使得能量小於所述第一正電壓的離子被所述第一電極排斥,從而使能量大於所述第一正電壓的離子通過所述開孔。
  9. 如申請專利範圍第8項所述的萃取離子束的裝置,還包括被以負電壓施加偏壓的第二電極,所述第二電極設置在所述第一電極與所述工件之間以使通過所述第一電極的所述開孔的離子加速。
  10. 如申請專利範圍第7項所述的萃取離子束的裝置,其中所述靜電能量過濾器包括入口電極、出口電極及至少一個中心電極,所述入口電極、所述出口電極及所述至少一個中心電極中的每一者包括上板及下板,在所述上板與所述下板之間界定開孔,其中所述上板與所述下板被獨立地施加偏壓,且其中所述入口電極的開孔、所述出口電極的開孔及所述至少一個中心電極的開孔不線性對齊。
  11. 如申請專利範圍第7項所述的萃取離子束的裝置,其中所述靜電能量過濾器包括入口電極、出口電極及至少一個中心電極,所述入口電極、所述出口電極及所述至少一個中心電極中的每一者包括兩個被獨立地施加偏壓且間隔開的導電杆,在所述兩個被獨立地施加偏壓且間隔開的導電杆之間界定開孔,其中所述入口電極的開孔、所述出口電極的開孔及所述至少一個中心電極的開孔不線性對齊。
  12. 一種萃取離子束的裝置,包括:離子源,被配置成萃取離子束,其中從所述離子源所萃取的所述離子束中的每種類離子具有唯一的離子能量分佈函數;以及靜電能量過濾器,設置在所述離子源的下游,以基於所述唯一的離子能量分佈函數選擇性地使特定種類的離子朝工件通過。
  13. 如申請專利範圍第12項所述的萃取離子束的裝置,其中所述靜電能量過濾器包括分辨開孔,使得只有具有所期望能量的離子通過所述分辨開孔並被朝所述工件引導。
  14. 如申請專利範圍第12項所述的萃取離子束的裝置,還包括第二靜電能量過濾器,所述第二靜電能量過濾器設置在所述靜電能量過濾器與所述工件之間,以基於所述唯一的離子能量分佈函數選擇性地使特定種類的離子朝所述工件通過。
TW106141426A 2017-01-27 2017-11-28 萃取離子束的裝置 TWI754700B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/417,767 2017-01-27
US15/417,767 US10068758B2 (en) 2017-01-27 2017-01-27 Ion mass separation using RF extraction

Publications (2)

Publication Number Publication Date
TW201828326A TW201828326A (zh) 2018-08-01
TWI754700B true TWI754700B (zh) 2022-02-11

Family

ID=62979693

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106141426A TWI754700B (zh) 2017-01-27 2017-11-28 萃取離子束的裝置

Country Status (3)

Country Link
US (1) US10068758B2 (zh)
TW (1) TWI754700B (zh)
WO (1) WO2018140120A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10468224B2 (en) * 2017-12-21 2019-11-05 Varian Semiconductor Equipment Associates, Inc. Apparatus and method for controlling ion beam properties using energy filter
US10714301B1 (en) * 2018-02-21 2020-07-14 Varian Semiconductor Equipment Associates, Inc. Conductive beam optics for reducing particles in ion implanter
US10886098B2 (en) * 2018-11-20 2021-01-05 Applied Materials, Inc. Electrostatic filter and ion implanter having asymmetric electrostatic configuration
US10937624B2 (en) 2018-11-20 2021-03-02 Applied Materials, Inc. Apparatus and method for controlling ion beam using electrostatic filter
US10804068B2 (en) * 2018-11-20 2020-10-13 Applied Materials, Inc. Electostatic filter and method for controlling ion beam properties using electrostatic filter
US10790116B2 (en) 2018-11-20 2020-09-29 Applied Materials, Inc. Electostatic filter and method for controlling ion beam using electostatic filter
US11600473B2 (en) * 2019-03-13 2023-03-07 Applied Materials, Inc. Ion source with biased extraction plate
US10763072B1 (en) 2019-03-15 2020-09-01 Applied Materials, Inc. Apparatus, system and techniques for mass analyzed ion beam
US20210090845A1 (en) * 2019-09-19 2021-03-25 Applied Materials, Inc. Electrostatic filter with shaped electrodes
USD956005S1 (en) 2019-09-19 2022-06-28 Applied Materials, Inc. Shaped electrode
US11587778B2 (en) 2020-11-03 2023-02-21 Applied Materials, Inc. Electrodynamic mass analysis with RF biased ion source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232327A1 (en) * 2003-03-11 2004-11-25 Bateman Robert Harold Mass spectrometer
US20080111071A1 (en) * 2003-11-17 2008-05-15 Waters Investments Limited Mass Spectrometer
WO2012122036A2 (en) * 2011-03-04 2012-09-13 Perkinelmer Health Sciences, Inc. Electrostatic lenses and systems including the same
US20140265849A1 (en) * 2013-03-14 2014-09-18 Varian Semiconductor Equipment Associates, Inc. Hardware plasma interlock system
US20150014275A1 (en) * 2013-07-15 2015-01-15 Bryan Barnard Switchable ion gun with improved gas inlet arrangement
TW201537608A (zh) * 2014-03-27 2015-10-01 Sen Corp 離子植入裝置、最終能量過濾器以及離子植入方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929839A (en) * 1988-10-11 1990-05-29 Microbeam Inc. Focused ion beam column
DE69205098T2 (de) * 1991-07-23 1996-02-29 Nissin Electric Co Ltd Ionenquelle mit Massentrennvorrichtung.
US6734447B2 (en) 2002-08-13 2004-05-11 Taiwan Semiconductor Manufacturing Co., Ltd. Electron filter for current implanter
US7619213B2 (en) 2006-08-03 2009-11-17 Agilent Technologies, Inc. Ion extraction pulser and method for mass spectrometry
US8030621B2 (en) * 2007-06-08 2011-10-04 Massachusetts Institute Of Technology Focused ion beam field source
US7888653B2 (en) 2009-01-02 2011-02-15 Varian Semiconductor Equipment Associates, Inc. Techniques for independently controlling deflection, deceleration and focus of an ion beam
JP5808706B2 (ja) 2012-03-29 2015-11-10 住友重機械イオンテクノロジー株式会社 イオン注入装置及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232327A1 (en) * 2003-03-11 2004-11-25 Bateman Robert Harold Mass spectrometer
US20080111071A1 (en) * 2003-11-17 2008-05-15 Waters Investments Limited Mass Spectrometer
WO2012122036A2 (en) * 2011-03-04 2012-09-13 Perkinelmer Health Sciences, Inc. Electrostatic lenses and systems including the same
US20140265849A1 (en) * 2013-03-14 2014-09-18 Varian Semiconductor Equipment Associates, Inc. Hardware plasma interlock system
US20150014275A1 (en) * 2013-07-15 2015-01-15 Bryan Barnard Switchable ion gun with improved gas inlet arrangement
TW201537608A (zh) * 2014-03-27 2015-10-01 Sen Corp 離子植入裝置、最終能量過濾器以及離子植入方法

Also Published As

Publication number Publication date
US20180218894A1 (en) 2018-08-02
WO2018140120A1 (en) 2018-08-02
TW201828326A (zh) 2018-08-01
US10068758B2 (en) 2018-09-04

Similar Documents

Publication Publication Date Title
TWI754700B (zh) 萃取離子束的裝置
US9281162B2 (en) Single bend energy filter for controlling deflection of charged particle beam
Schulze et al. Secondary electrons in dual-frequency capacitive radio frequency discharges
EP1082747B1 (en) Acceleration and analysis architecture for ion implanter
KR101236563B1 (ko) 하전된 빔 덤프 및 입자 어트랙터
JP3650551B2 (ja) 質量分析計
US10192727B2 (en) Electrodynamic mass analysis
US20170178866A1 (en) Apparatus and techniques for time modulated extraction of an ion beam
US4541890A (en) Hall ion generator for working surfaces with a low energy high intensity ion beam
US20170148620A1 (en) Ion transport apparatus and mass spectrometer using the same
US9287103B2 (en) Ion guide for mass spectrometry
US10002751B2 (en) Ion beam irradiation apparatus
CN111937116A (zh) 部分密封的离子引导器和离子束沉积系统
US8993982B2 (en) Switchable ion gun with improved gas inlet arrangement
JP5426571B2 (ja) イオン電荷蓄積装置の電荷制御
US10381210B2 (en) Double bend ion guides and devices using them
WO2014163940A2 (en) Methods and systems for applying end cap dc bias in ion traps
TWI618110B (zh) 離子植入系統
TWI830283B (zh) 離子注入系統
CN110612595B (zh) 离子检测装置及质谱分析装置
EP3257067B1 (en) Device for improved detection of ions in mass spectrometry
JP7190436B2 (ja) イオン源デバイス
US10074514B1 (en) Apparatus and method for improved ion beam current
JP5898406B2 (ja) 粒子ビームシステム
JP4285283B2 (ja) 質量分析装置